59d04c490a621741bcc3636217b71c0a307199d3
[deliverable/binutils-gdb.git] / gdb / linux-tdep.c
1 /* Target-dependent code for GNU/Linux, architecture independent.
2
3 Copyright (C) 2009-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbtypes.h"
22 #include "linux-tdep.h"
23 #include "auxv.h"
24 #include "target.h"
25 #include "gdbthread.h"
26 #include "gdbcore.h"
27 #include "regcache.h"
28 #include "regset.h"
29 #include "elf/common.h"
30 #include "elf-bfd.h" /* for elfcore_write_* */
31 #include "inferior.h"
32 #include "cli/cli-utils.h"
33 #include "arch-utils.h"
34 #include "gdb_obstack.h"
35 #include "observable.h"
36 #include "objfiles.h"
37 #include "infcall.h"
38 #include "gdbcmd.h"
39 #include "gdb_regex.h"
40 #include "gdbsupport/enum-flags.h"
41 #include "gdbsupport/gdb_optional.h"
42
43 #include <ctype.h>
44
45 /* This enum represents the values that the user can choose when
46 informing the Linux kernel about which memory mappings will be
47 dumped in a corefile. They are described in the file
48 Documentation/filesystems/proc.txt, inside the Linux kernel
49 tree. */
50
51 enum filter_flag
52 {
53 COREFILTER_ANON_PRIVATE = 1 << 0,
54 COREFILTER_ANON_SHARED = 1 << 1,
55 COREFILTER_MAPPED_PRIVATE = 1 << 2,
56 COREFILTER_MAPPED_SHARED = 1 << 3,
57 COREFILTER_ELF_HEADERS = 1 << 4,
58 COREFILTER_HUGETLB_PRIVATE = 1 << 5,
59 COREFILTER_HUGETLB_SHARED = 1 << 6,
60 };
61 DEF_ENUM_FLAGS_TYPE (enum filter_flag, filter_flags);
62
63 /* This struct is used to map flags found in the "VmFlags:" field (in
64 the /proc/<PID>/smaps file). */
65
66 struct smaps_vmflags
67 {
68 /* Zero if this structure has not been initialized yet. It
69 probably means that the Linux kernel being used does not emit
70 the "VmFlags:" field on "/proc/PID/smaps". */
71
72 unsigned int initialized_p : 1;
73
74 /* Memory mapped I/O area (VM_IO, "io"). */
75
76 unsigned int io_page : 1;
77
78 /* Area uses huge TLB pages (VM_HUGETLB, "ht"). */
79
80 unsigned int uses_huge_tlb : 1;
81
82 /* Do not include this memory region on the coredump (VM_DONTDUMP, "dd"). */
83
84 unsigned int exclude_coredump : 1;
85
86 /* Is this a MAP_SHARED mapping (VM_SHARED, "sh"). */
87
88 unsigned int shared_mapping : 1;
89 };
90
91 /* Whether to take the /proc/PID/coredump_filter into account when
92 generating a corefile. */
93
94 static bool use_coredump_filter = true;
95
96 /* Whether the value of smaps_vmflags->exclude_coredump should be
97 ignored, including mappings marked with the VM_DONTDUMP flag in
98 the dump. */
99 static bool dump_excluded_mappings = false;
100
101 /* This enum represents the signals' numbers on a generic architecture
102 running the Linux kernel. The definition of "generic" comes from
103 the file <include/uapi/asm-generic/signal.h>, from the Linux kernel
104 tree, which is the "de facto" implementation of signal numbers to
105 be used by new architecture ports.
106
107 For those architectures which have differences between the generic
108 standard (e.g., Alpha), we define the different signals (and *only*
109 those) in the specific target-dependent file (e.g.,
110 alpha-linux-tdep.c, for Alpha). Please refer to the architecture's
111 tdep file for more information.
112
113 ARM deserves a special mention here. On the file
114 <arch/arm/include/uapi/asm/signal.h>, it defines only one different
115 (and ARM-only) signal, which is SIGSWI, with the same number as
116 SIGRTMIN. This signal is used only for a very specific target,
117 called ArthurOS (from RISCOS). Therefore, we do not handle it on
118 the ARM-tdep file, and we can safely use the generic signal handler
119 here for ARM targets.
120
121 As stated above, this enum is derived from
122 <include/uapi/asm-generic/signal.h>, from the Linux kernel
123 tree. */
124
125 enum
126 {
127 LINUX_SIGHUP = 1,
128 LINUX_SIGINT = 2,
129 LINUX_SIGQUIT = 3,
130 LINUX_SIGILL = 4,
131 LINUX_SIGTRAP = 5,
132 LINUX_SIGABRT = 6,
133 LINUX_SIGIOT = 6,
134 LINUX_SIGBUS = 7,
135 LINUX_SIGFPE = 8,
136 LINUX_SIGKILL = 9,
137 LINUX_SIGUSR1 = 10,
138 LINUX_SIGSEGV = 11,
139 LINUX_SIGUSR2 = 12,
140 LINUX_SIGPIPE = 13,
141 LINUX_SIGALRM = 14,
142 LINUX_SIGTERM = 15,
143 LINUX_SIGSTKFLT = 16,
144 LINUX_SIGCHLD = 17,
145 LINUX_SIGCONT = 18,
146 LINUX_SIGSTOP = 19,
147 LINUX_SIGTSTP = 20,
148 LINUX_SIGTTIN = 21,
149 LINUX_SIGTTOU = 22,
150 LINUX_SIGURG = 23,
151 LINUX_SIGXCPU = 24,
152 LINUX_SIGXFSZ = 25,
153 LINUX_SIGVTALRM = 26,
154 LINUX_SIGPROF = 27,
155 LINUX_SIGWINCH = 28,
156 LINUX_SIGIO = 29,
157 LINUX_SIGPOLL = LINUX_SIGIO,
158 LINUX_SIGPWR = 30,
159 LINUX_SIGSYS = 31,
160 LINUX_SIGUNUSED = 31,
161
162 LINUX_SIGRTMIN = 32,
163 LINUX_SIGRTMAX = 64,
164 };
165
166 static struct gdbarch_data *linux_gdbarch_data_handle;
167
168 struct linux_gdbarch_data
169 {
170 struct type *siginfo_type;
171 };
172
173 static void *
174 init_linux_gdbarch_data (struct gdbarch *gdbarch)
175 {
176 return GDBARCH_OBSTACK_ZALLOC (gdbarch, struct linux_gdbarch_data);
177 }
178
179 static struct linux_gdbarch_data *
180 get_linux_gdbarch_data (struct gdbarch *gdbarch)
181 {
182 return ((struct linux_gdbarch_data *)
183 gdbarch_data (gdbarch, linux_gdbarch_data_handle));
184 }
185
186 /* Linux-specific cached data. This is used by GDB for caching
187 purposes for each inferior. This helps reduce the overhead of
188 transfering data from a remote target to the local host. */
189 struct linux_info
190 {
191 /* Cache of the inferior's vsyscall/vDSO mapping range. Only valid
192 if VSYSCALL_RANGE_P is positive. This is cached because getting
193 at this info requires an auxv lookup (which is itself cached),
194 and looking through the inferior's mappings (which change
195 throughout execution and therefore cannot be cached). */
196 struct mem_range vsyscall_range {};
197
198 /* Zero if we haven't tried looking up the vsyscall's range before
199 yet. Positive if we tried looking it up, and found it. Negative
200 if we tried looking it up but failed. */
201 int vsyscall_range_p = 0;
202 };
203
204 /* Per-inferior data key. */
205 static const struct inferior_key<linux_info> linux_inferior_data;
206
207 /* Frees whatever allocated space there is to be freed and sets INF's
208 linux cache data pointer to NULL. */
209
210 static void
211 invalidate_linux_cache_inf (struct inferior *inf)
212 {
213 linux_inferior_data.clear (inf);
214 }
215
216 /* Fetch the linux cache info for INF. This function always returns a
217 valid INFO pointer. */
218
219 static struct linux_info *
220 get_linux_inferior_data (void)
221 {
222 struct linux_info *info;
223 struct inferior *inf = current_inferior ();
224
225 info = linux_inferior_data.get (inf);
226 if (info == NULL)
227 info = linux_inferior_data.emplace (inf);
228
229 return info;
230 }
231
232 /* See linux-tdep.h. */
233
234 struct type *
235 linux_get_siginfo_type_with_fields (struct gdbarch *gdbarch,
236 linux_siginfo_extra_fields extra_fields)
237 {
238 struct linux_gdbarch_data *linux_gdbarch_data;
239 struct type *int_type, *uint_type, *long_type, *void_ptr_type, *short_type;
240 struct type *uid_type, *pid_type;
241 struct type *sigval_type, *clock_type;
242 struct type *siginfo_type, *sifields_type;
243 struct type *type;
244
245 linux_gdbarch_data = get_linux_gdbarch_data (gdbarch);
246 if (linux_gdbarch_data->siginfo_type != NULL)
247 return linux_gdbarch_data->siginfo_type;
248
249 int_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
250 0, "int");
251 uint_type = arch_integer_type (gdbarch, gdbarch_int_bit (gdbarch),
252 1, "unsigned int");
253 long_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
254 0, "long");
255 short_type = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch),
256 0, "short");
257 void_ptr_type = lookup_pointer_type (builtin_type (gdbarch)->builtin_void);
258
259 /* sival_t */
260 sigval_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
261 TYPE_NAME (sigval_type) = xstrdup ("sigval_t");
262 append_composite_type_field (sigval_type, "sival_int", int_type);
263 append_composite_type_field (sigval_type, "sival_ptr", void_ptr_type);
264
265 /* __pid_t */
266 pid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
267 TYPE_LENGTH (int_type) * TARGET_CHAR_BIT, "__pid_t");
268 TYPE_TARGET_TYPE (pid_type) = int_type;
269 TYPE_TARGET_STUB (pid_type) = 1;
270
271 /* __uid_t */
272 uid_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
273 TYPE_LENGTH (uint_type) * TARGET_CHAR_BIT, "__uid_t");
274 TYPE_TARGET_TYPE (uid_type) = uint_type;
275 TYPE_TARGET_STUB (uid_type) = 1;
276
277 /* __clock_t */
278 clock_type = arch_type (gdbarch, TYPE_CODE_TYPEDEF,
279 TYPE_LENGTH (long_type) * TARGET_CHAR_BIT,
280 "__clock_t");
281 TYPE_TARGET_TYPE (clock_type) = long_type;
282 TYPE_TARGET_STUB (clock_type) = 1;
283
284 /* _sifields */
285 sifields_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_UNION);
286
287 {
288 const int si_max_size = 128;
289 int si_pad_size;
290 int size_of_int = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
291
292 /* _pad */
293 if (gdbarch_ptr_bit (gdbarch) == 64)
294 si_pad_size = (si_max_size / size_of_int) - 4;
295 else
296 si_pad_size = (si_max_size / size_of_int) - 3;
297 append_composite_type_field (sifields_type, "_pad",
298 init_vector_type (int_type, si_pad_size));
299 }
300
301 /* _kill */
302 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
303 append_composite_type_field (type, "si_pid", pid_type);
304 append_composite_type_field (type, "si_uid", uid_type);
305 append_composite_type_field (sifields_type, "_kill", type);
306
307 /* _timer */
308 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
309 append_composite_type_field (type, "si_tid", int_type);
310 append_composite_type_field (type, "si_overrun", int_type);
311 append_composite_type_field (type, "si_sigval", sigval_type);
312 append_composite_type_field (sifields_type, "_timer", type);
313
314 /* _rt */
315 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
316 append_composite_type_field (type, "si_pid", pid_type);
317 append_composite_type_field (type, "si_uid", uid_type);
318 append_composite_type_field (type, "si_sigval", sigval_type);
319 append_composite_type_field (sifields_type, "_rt", type);
320
321 /* _sigchld */
322 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
323 append_composite_type_field (type, "si_pid", pid_type);
324 append_composite_type_field (type, "si_uid", uid_type);
325 append_composite_type_field (type, "si_status", int_type);
326 append_composite_type_field (type, "si_utime", clock_type);
327 append_composite_type_field (type, "si_stime", clock_type);
328 append_composite_type_field (sifields_type, "_sigchld", type);
329
330 /* _sigfault */
331 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
332 append_composite_type_field (type, "si_addr", void_ptr_type);
333
334 /* Additional bound fields for _sigfault in case they were requested. */
335 if ((extra_fields & LINUX_SIGINFO_FIELD_ADDR_BND) != 0)
336 {
337 struct type *sigfault_bnd_fields;
338
339 append_composite_type_field (type, "_addr_lsb", short_type);
340 sigfault_bnd_fields = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
341 append_composite_type_field (sigfault_bnd_fields, "_lower", void_ptr_type);
342 append_composite_type_field (sigfault_bnd_fields, "_upper", void_ptr_type);
343 append_composite_type_field (type, "_addr_bnd", sigfault_bnd_fields);
344 }
345 append_composite_type_field (sifields_type, "_sigfault", type);
346
347 /* _sigpoll */
348 type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
349 append_composite_type_field (type, "si_band", long_type);
350 append_composite_type_field (type, "si_fd", int_type);
351 append_composite_type_field (sifields_type, "_sigpoll", type);
352
353 /* struct siginfo */
354 siginfo_type = arch_composite_type (gdbarch, NULL, TYPE_CODE_STRUCT);
355 TYPE_NAME (siginfo_type) = xstrdup ("siginfo");
356 append_composite_type_field (siginfo_type, "si_signo", int_type);
357 append_composite_type_field (siginfo_type, "si_errno", int_type);
358 append_composite_type_field (siginfo_type, "si_code", int_type);
359 append_composite_type_field_aligned (siginfo_type,
360 "_sifields", sifields_type,
361 TYPE_LENGTH (long_type));
362
363 linux_gdbarch_data->siginfo_type = siginfo_type;
364
365 return siginfo_type;
366 }
367
368 /* This function is suitable for architectures that don't
369 extend/override the standard siginfo structure. */
370
371 static struct type *
372 linux_get_siginfo_type (struct gdbarch *gdbarch)
373 {
374 return linux_get_siginfo_type_with_fields (gdbarch, 0);
375 }
376
377 /* Return true if the target is running on uClinux instead of normal
378 Linux kernel. */
379
380 int
381 linux_is_uclinux (void)
382 {
383 CORE_ADDR dummy;
384
385 return (target_auxv_search (current_top_target (), AT_NULL, &dummy) > 0
386 && target_auxv_search (current_top_target (), AT_PAGESZ, &dummy) == 0);
387 }
388
389 static int
390 linux_has_shared_address_space (struct gdbarch *gdbarch)
391 {
392 return linux_is_uclinux ();
393 }
394
395 /* This is how we want PTIDs from core files to be printed. */
396
397 static std::string
398 linux_core_pid_to_str (struct gdbarch *gdbarch, ptid_t ptid)
399 {
400 if (ptid.lwp () != 0)
401 return string_printf ("LWP %ld", ptid.lwp ());
402
403 return normal_pid_to_str (ptid);
404 }
405
406 /* Service function for corefiles and info proc. */
407
408 static void
409 read_mapping (const char *line,
410 ULONGEST *addr, ULONGEST *endaddr,
411 const char **permissions, size_t *permissions_len,
412 ULONGEST *offset,
413 const char **device, size_t *device_len,
414 ULONGEST *inode,
415 const char **filename)
416 {
417 const char *p = line;
418
419 *addr = strtoulst (p, &p, 16);
420 if (*p == '-')
421 p++;
422 *endaddr = strtoulst (p, &p, 16);
423
424 p = skip_spaces (p);
425 *permissions = p;
426 while (*p && !isspace (*p))
427 p++;
428 *permissions_len = p - *permissions;
429
430 *offset = strtoulst (p, &p, 16);
431
432 p = skip_spaces (p);
433 *device = p;
434 while (*p && !isspace (*p))
435 p++;
436 *device_len = p - *device;
437
438 *inode = strtoulst (p, &p, 10);
439
440 p = skip_spaces (p);
441 *filename = p;
442 }
443
444 /* Helper function to decode the "VmFlags" field in /proc/PID/smaps.
445
446 This function was based on the documentation found on
447 <Documentation/filesystems/proc.txt>, on the Linux kernel.
448
449 Linux kernels before commit
450 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have this
451 field on smaps. */
452
453 static void
454 decode_vmflags (char *p, struct smaps_vmflags *v)
455 {
456 char *saveptr = NULL;
457 const char *s;
458
459 v->initialized_p = 1;
460 p = skip_to_space (p);
461 p = skip_spaces (p);
462
463 for (s = strtok_r (p, " ", &saveptr);
464 s != NULL;
465 s = strtok_r (NULL, " ", &saveptr))
466 {
467 if (strcmp (s, "io") == 0)
468 v->io_page = 1;
469 else if (strcmp (s, "ht") == 0)
470 v->uses_huge_tlb = 1;
471 else if (strcmp (s, "dd") == 0)
472 v->exclude_coredump = 1;
473 else if (strcmp (s, "sh") == 0)
474 v->shared_mapping = 1;
475 }
476 }
477
478 /* Regexes used by mapping_is_anonymous_p. Put in a structure because
479 they're initialized lazily. */
480
481 struct mapping_regexes
482 {
483 /* Matches "/dev/zero" filenames (with or without the "(deleted)"
484 string in the end). We know for sure, based on the Linux kernel
485 code, that memory mappings whose associated filename is
486 "/dev/zero" are guaranteed to be MAP_ANONYMOUS. */
487 compiled_regex dev_zero
488 {"^/dev/zero\\( (deleted)\\)\\?$", REG_NOSUB,
489 _("Could not compile regex to match /dev/zero filename")};
490
491 /* Matches "/SYSV%08x" filenames (with or without the "(deleted)"
492 string in the end). These filenames refer to shared memory
493 (shmem), and memory mappings associated with them are
494 MAP_ANONYMOUS as well. */
495 compiled_regex shmem_file
496 {"^/\\?SYSV[0-9a-fA-F]\\{8\\}\\( (deleted)\\)\\?$", REG_NOSUB,
497 _("Could not compile regex to match shmem filenames")};
498
499 /* A heuristic we use to try to mimic the Linux kernel's 'n_link ==
500 0' code, which is responsible to decide if it is dealing with a
501 'MAP_SHARED | MAP_ANONYMOUS' mapping. In other words, if
502 FILE_DELETED matches, it does not necessarily mean that we are
503 dealing with an anonymous shared mapping. However, there is no
504 easy way to detect this currently, so this is the best
505 approximation we have.
506
507 As a result, GDB will dump readonly pages of deleted executables
508 when using the default value of coredump_filter (0x33), while the
509 Linux kernel will not dump those pages. But we can live with
510 that. */
511 compiled_regex file_deleted
512 {" (deleted)$", REG_NOSUB,
513 _("Could not compile regex to match '<file> (deleted)'")};
514 };
515
516 /* Return 1 if the memory mapping is anonymous, 0 otherwise.
517
518 FILENAME is the name of the file present in the first line of the
519 memory mapping, in the "/proc/PID/smaps" output. For example, if
520 the first line is:
521
522 7fd0ca877000-7fd0d0da0000 r--p 00000000 fd:02 2100770 /path/to/file
523
524 Then FILENAME will be "/path/to/file". */
525
526 static int
527 mapping_is_anonymous_p (const char *filename)
528 {
529 static gdb::optional<mapping_regexes> regexes;
530 static int init_regex_p = 0;
531
532 if (!init_regex_p)
533 {
534 /* Let's be pessimistic and assume there will be an error while
535 compiling the regex'es. */
536 init_regex_p = -1;
537
538 regexes.emplace ();
539
540 /* If we reached this point, then everything succeeded. */
541 init_regex_p = 1;
542 }
543
544 if (init_regex_p == -1)
545 {
546 const char deleted[] = " (deleted)";
547 size_t del_len = sizeof (deleted) - 1;
548 size_t filename_len = strlen (filename);
549
550 /* There was an error while compiling the regex'es above. In
551 order to try to give some reliable information to the caller,
552 we just try to find the string " (deleted)" in the filename.
553 If we managed to find it, then we assume the mapping is
554 anonymous. */
555 return (filename_len >= del_len
556 && strcmp (filename + filename_len - del_len, deleted) == 0);
557 }
558
559 if (*filename == '\0'
560 || regexes->dev_zero.exec (filename, 0, NULL, 0) == 0
561 || regexes->shmem_file.exec (filename, 0, NULL, 0) == 0
562 || regexes->file_deleted.exec (filename, 0, NULL, 0) == 0)
563 return 1;
564
565 return 0;
566 }
567
568 /* Return 0 if the memory mapping (which is related to FILTERFLAGS, V,
569 MAYBE_PRIVATE_P, MAPPING_ANONYMOUS_P, ADDR and OFFSET) should not
570 be dumped, or greater than 0 if it should.
571
572 In a nutshell, this is the logic that we follow in order to decide
573 if a mapping should be dumped or not.
574
575 - If the mapping is associated to a file whose name ends with
576 " (deleted)", or if the file is "/dev/zero", or if it is
577 "/SYSV%08x" (shared memory), or if there is no file associated
578 with it, or if the AnonHugePages: or the Anonymous: fields in the
579 /proc/PID/smaps have contents, then GDB considers this mapping to
580 be anonymous. Otherwise, GDB considers this mapping to be a
581 file-backed mapping (because there will be a file associated with
582 it).
583
584 It is worth mentioning that, from all those checks described
585 above, the most fragile is the one to see if the file name ends
586 with " (deleted)". This does not necessarily mean that the
587 mapping is anonymous, because the deleted file associated with
588 the mapping may have been a hard link to another file, for
589 example. The Linux kernel checks to see if "i_nlink == 0", but
590 GDB cannot easily (and normally) do this check (iff running as
591 root, it could find the mapping in /proc/PID/map_files/ and
592 determine whether there still are other hard links to the
593 inode/file). Therefore, we made a compromise here, and we assume
594 that if the file name ends with " (deleted)", then the mapping is
595 indeed anonymous. FWIW, this is something the Linux kernel could
596 do better: expose this information in a more direct way.
597
598 - If we see the flag "sh" in the "VmFlags:" field (in
599 /proc/PID/smaps), then certainly the memory mapping is shared
600 (VM_SHARED). If we have access to the VmFlags, and we don't see
601 the "sh" there, then certainly the mapping is private. However,
602 Linux kernels before commit
603 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10) do not have the
604 "VmFlags:" field; in that case, we use another heuristic: if we
605 see 'p' in the permission flags, then we assume that the mapping
606 is private, even though the presence of the 's' flag there would
607 mean VM_MAYSHARE, which means the mapping could still be private.
608 This should work OK enough, however.
609
610 - Even if, at the end, we decided that we should not dump the
611 mapping, we still have to check if it is something like an ELF
612 header (of a DSO or an executable, for example). If it is, and
613 if the user is interested in dump it, then we should dump it. */
614
615 static int
616 dump_mapping_p (filter_flags filterflags, const struct smaps_vmflags *v,
617 int maybe_private_p, int mapping_anon_p, int mapping_file_p,
618 const char *filename, ULONGEST addr, ULONGEST offset)
619 {
620 /* Initially, we trust in what we received from our caller. This
621 value may not be very precise (i.e., it was probably gathered
622 from the permission line in the /proc/PID/smaps list, which
623 actually refers to VM_MAYSHARE, and not VM_SHARED), but it is
624 what we have until we take a look at the "VmFlags:" field
625 (assuming that the version of the Linux kernel being used
626 supports it, of course). */
627 int private_p = maybe_private_p;
628 int dump_p;
629
630 /* We always dump vDSO and vsyscall mappings, because it's likely that
631 there'll be no file to read the contents from at core load time.
632 The kernel does the same. */
633 if (strcmp ("[vdso]", filename) == 0
634 || strcmp ("[vsyscall]", filename) == 0)
635 return 1;
636
637 if (v->initialized_p)
638 {
639 /* We never dump I/O mappings. */
640 if (v->io_page)
641 return 0;
642
643 /* Check if we should exclude this mapping. */
644 if (!dump_excluded_mappings && v->exclude_coredump)
645 return 0;
646
647 /* Update our notion of whether this mapping is shared or
648 private based on a trustworthy value. */
649 private_p = !v->shared_mapping;
650
651 /* HugeTLB checking. */
652 if (v->uses_huge_tlb)
653 {
654 if ((private_p && (filterflags & COREFILTER_HUGETLB_PRIVATE))
655 || (!private_p && (filterflags & COREFILTER_HUGETLB_SHARED)))
656 return 1;
657
658 return 0;
659 }
660 }
661
662 if (private_p)
663 {
664 if (mapping_anon_p && mapping_file_p)
665 {
666 /* This is a special situation. It can happen when we see a
667 mapping that is file-backed, but that contains anonymous
668 pages. */
669 dump_p = ((filterflags & COREFILTER_ANON_PRIVATE) != 0
670 || (filterflags & COREFILTER_MAPPED_PRIVATE) != 0);
671 }
672 else if (mapping_anon_p)
673 dump_p = (filterflags & COREFILTER_ANON_PRIVATE) != 0;
674 else
675 dump_p = (filterflags & COREFILTER_MAPPED_PRIVATE) != 0;
676 }
677 else
678 {
679 if (mapping_anon_p && mapping_file_p)
680 {
681 /* This is a special situation. It can happen when we see a
682 mapping that is file-backed, but that contains anonymous
683 pages. */
684 dump_p = ((filterflags & COREFILTER_ANON_SHARED) != 0
685 || (filterflags & COREFILTER_MAPPED_SHARED) != 0);
686 }
687 else if (mapping_anon_p)
688 dump_p = (filterflags & COREFILTER_ANON_SHARED) != 0;
689 else
690 dump_p = (filterflags & COREFILTER_MAPPED_SHARED) != 0;
691 }
692
693 /* Even if we decided that we shouldn't dump this mapping, we still
694 have to check whether (a) the user wants us to dump mappings
695 containing an ELF header, and (b) the mapping in question
696 contains an ELF header. If (a) and (b) are true, then we should
697 dump this mapping.
698
699 A mapping contains an ELF header if it is a private mapping, its
700 offset is zero, and its first word is ELFMAG. */
701 if (!dump_p && private_p && offset == 0
702 && (filterflags & COREFILTER_ELF_HEADERS) != 0)
703 {
704 /* Let's check if we have an ELF header. */
705 gdb::unique_xmalloc_ptr<char> header;
706 int errcode;
707
708 /* Useful define specifying the size of the ELF magical
709 header. */
710 #ifndef SELFMAG
711 #define SELFMAG 4
712 #endif
713
714 /* Read the first SELFMAG bytes and check if it is ELFMAG. */
715 if (target_read_string (addr, &header, SELFMAG, &errcode) == SELFMAG
716 && errcode == 0)
717 {
718 const char *h = header.get ();
719
720 /* The EI_MAG* and ELFMAG* constants come from
721 <elf/common.h>. */
722 if (h[EI_MAG0] == ELFMAG0 && h[EI_MAG1] == ELFMAG1
723 && h[EI_MAG2] == ELFMAG2 && h[EI_MAG3] == ELFMAG3)
724 {
725 /* This mapping contains an ELF header, so we
726 should dump it. */
727 dump_p = 1;
728 }
729 }
730 }
731
732 return dump_p;
733 }
734
735 /* Implement the "info proc" command. */
736
737 static void
738 linux_info_proc (struct gdbarch *gdbarch, const char *args,
739 enum info_proc_what what)
740 {
741 /* A long is used for pid instead of an int to avoid a loss of precision
742 compiler warning from the output of strtoul. */
743 long pid;
744 int cmdline_f = (what == IP_MINIMAL || what == IP_CMDLINE || what == IP_ALL);
745 int cwd_f = (what == IP_MINIMAL || what == IP_CWD || what == IP_ALL);
746 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
747 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
748 int status_f = (what == IP_STATUS || what == IP_ALL);
749 int stat_f = (what == IP_STAT || what == IP_ALL);
750 char filename[100];
751 int target_errno;
752
753 if (args && isdigit (args[0]))
754 {
755 char *tem;
756
757 pid = strtoul (args, &tem, 10);
758 args = tem;
759 }
760 else
761 {
762 if (!target_has_execution)
763 error (_("No current process: you must name one."));
764 if (current_inferior ()->fake_pid_p)
765 error (_("Can't determine the current process's PID: you must name one."));
766
767 pid = current_inferior ()->pid;
768 }
769
770 args = skip_spaces (args);
771 if (args && args[0])
772 error (_("Too many parameters: %s"), args);
773
774 printf_filtered (_("process %ld\n"), pid);
775 if (cmdline_f)
776 {
777 xsnprintf (filename, sizeof filename, "/proc/%ld/cmdline", pid);
778 gdb_byte *buffer;
779 ssize_t len = target_fileio_read_alloc (NULL, filename, &buffer);
780
781 if (len > 0)
782 {
783 gdb::unique_xmalloc_ptr<char> cmdline ((char *) buffer);
784 ssize_t pos;
785
786 for (pos = 0; pos < len - 1; pos++)
787 {
788 if (buffer[pos] == '\0')
789 buffer[pos] = ' ';
790 }
791 buffer[len - 1] = '\0';
792 printf_filtered ("cmdline = '%s'\n", buffer);
793 }
794 else
795 warning (_("unable to open /proc file '%s'"), filename);
796 }
797 if (cwd_f)
798 {
799 xsnprintf (filename, sizeof filename, "/proc/%ld/cwd", pid);
800 gdb::optional<std::string> contents
801 = target_fileio_readlink (NULL, filename, &target_errno);
802 if (contents.has_value ())
803 printf_filtered ("cwd = '%s'\n", contents->c_str ());
804 else
805 warning (_("unable to read link '%s'"), filename);
806 }
807 if (exe_f)
808 {
809 xsnprintf (filename, sizeof filename, "/proc/%ld/exe", pid);
810 gdb::optional<std::string> contents
811 = target_fileio_readlink (NULL, filename, &target_errno);
812 if (contents.has_value ())
813 printf_filtered ("exe = '%s'\n", contents->c_str ());
814 else
815 warning (_("unable to read link '%s'"), filename);
816 }
817 if (mappings_f)
818 {
819 xsnprintf (filename, sizeof filename, "/proc/%ld/maps", pid);
820 gdb::unique_xmalloc_ptr<char> map
821 = target_fileio_read_stralloc (NULL, filename);
822 if (map != NULL)
823 {
824 char *line;
825
826 printf_filtered (_("Mapped address spaces:\n\n"));
827 if (gdbarch_addr_bit (gdbarch) == 32)
828 {
829 printf_filtered ("\t%10s %10s %10s %10s %s\n",
830 "Start Addr",
831 " End Addr",
832 " Size", " Offset", "objfile");
833 }
834 else
835 {
836 printf_filtered (" %18s %18s %10s %10s %s\n",
837 "Start Addr",
838 " End Addr",
839 " Size", " Offset", "objfile");
840 }
841
842 char *saveptr;
843 for (line = strtok_r (map.get (), "\n", &saveptr);
844 line;
845 line = strtok_r (NULL, "\n", &saveptr))
846 {
847 ULONGEST addr, endaddr, offset, inode;
848 const char *permissions, *device, *mapping_filename;
849 size_t permissions_len, device_len;
850
851 read_mapping (line, &addr, &endaddr,
852 &permissions, &permissions_len,
853 &offset, &device, &device_len,
854 &inode, &mapping_filename);
855
856 if (gdbarch_addr_bit (gdbarch) == 32)
857 {
858 printf_filtered ("\t%10s %10s %10s %10s %s\n",
859 paddress (gdbarch, addr),
860 paddress (gdbarch, endaddr),
861 hex_string (endaddr - addr),
862 hex_string (offset),
863 *mapping_filename ? mapping_filename : "");
864 }
865 else
866 {
867 printf_filtered (" %18s %18s %10s %10s %s\n",
868 paddress (gdbarch, addr),
869 paddress (gdbarch, endaddr),
870 hex_string (endaddr - addr),
871 hex_string (offset),
872 *mapping_filename ? mapping_filename : "");
873 }
874 }
875 }
876 else
877 warning (_("unable to open /proc file '%s'"), filename);
878 }
879 if (status_f)
880 {
881 xsnprintf (filename, sizeof filename, "/proc/%ld/status", pid);
882 gdb::unique_xmalloc_ptr<char> status
883 = target_fileio_read_stralloc (NULL, filename);
884 if (status)
885 puts_filtered (status.get ());
886 else
887 warning (_("unable to open /proc file '%s'"), filename);
888 }
889 if (stat_f)
890 {
891 xsnprintf (filename, sizeof filename, "/proc/%ld/stat", pid);
892 gdb::unique_xmalloc_ptr<char> statstr
893 = target_fileio_read_stralloc (NULL, filename);
894 if (statstr)
895 {
896 const char *p = statstr.get ();
897
898 printf_filtered (_("Process: %s\n"),
899 pulongest (strtoulst (p, &p, 10)));
900
901 p = skip_spaces (p);
902 if (*p == '(')
903 {
904 /* ps command also relies on no trailing fields
905 ever contain ')'. */
906 const char *ep = strrchr (p, ')');
907 if (ep != NULL)
908 {
909 printf_filtered ("Exec file: %.*s\n",
910 (int) (ep - p - 1), p + 1);
911 p = ep + 1;
912 }
913 }
914
915 p = skip_spaces (p);
916 if (*p)
917 printf_filtered (_("State: %c\n"), *p++);
918
919 if (*p)
920 printf_filtered (_("Parent process: %s\n"),
921 pulongest (strtoulst (p, &p, 10)));
922 if (*p)
923 printf_filtered (_("Process group: %s\n"),
924 pulongest (strtoulst (p, &p, 10)));
925 if (*p)
926 printf_filtered (_("Session id: %s\n"),
927 pulongest (strtoulst (p, &p, 10)));
928 if (*p)
929 printf_filtered (_("TTY: %s\n"),
930 pulongest (strtoulst (p, &p, 10)));
931 if (*p)
932 printf_filtered (_("TTY owner process group: %s\n"),
933 pulongest (strtoulst (p, &p, 10)));
934
935 if (*p)
936 printf_filtered (_("Flags: %s\n"),
937 hex_string (strtoulst (p, &p, 10)));
938 if (*p)
939 printf_filtered (_("Minor faults (no memory page): %s\n"),
940 pulongest (strtoulst (p, &p, 10)));
941 if (*p)
942 printf_filtered (_("Minor faults, children: %s\n"),
943 pulongest (strtoulst (p, &p, 10)));
944 if (*p)
945 printf_filtered (_("Major faults (memory page faults): %s\n"),
946 pulongest (strtoulst (p, &p, 10)));
947 if (*p)
948 printf_filtered (_("Major faults, children: %s\n"),
949 pulongest (strtoulst (p, &p, 10)));
950 if (*p)
951 printf_filtered (_("utime: %s\n"),
952 pulongest (strtoulst (p, &p, 10)));
953 if (*p)
954 printf_filtered (_("stime: %s\n"),
955 pulongest (strtoulst (p, &p, 10)));
956 if (*p)
957 printf_filtered (_("utime, children: %s\n"),
958 pulongest (strtoulst (p, &p, 10)));
959 if (*p)
960 printf_filtered (_("stime, children: %s\n"),
961 pulongest (strtoulst (p, &p, 10)));
962 if (*p)
963 printf_filtered (_("jiffies remaining in current "
964 "time slice: %s\n"),
965 pulongest (strtoulst (p, &p, 10)));
966 if (*p)
967 printf_filtered (_("'nice' value: %s\n"),
968 pulongest (strtoulst (p, &p, 10)));
969 if (*p)
970 printf_filtered (_("jiffies until next timeout: %s\n"),
971 pulongest (strtoulst (p, &p, 10)));
972 if (*p)
973 printf_filtered (_("jiffies until next SIGALRM: %s\n"),
974 pulongest (strtoulst (p, &p, 10)));
975 if (*p)
976 printf_filtered (_("start time (jiffies since "
977 "system boot): %s\n"),
978 pulongest (strtoulst (p, &p, 10)));
979 if (*p)
980 printf_filtered (_("Virtual memory size: %s\n"),
981 pulongest (strtoulst (p, &p, 10)));
982 if (*p)
983 printf_filtered (_("Resident set size: %s\n"),
984 pulongest (strtoulst (p, &p, 10)));
985 if (*p)
986 printf_filtered (_("rlim: %s\n"),
987 pulongest (strtoulst (p, &p, 10)));
988 if (*p)
989 printf_filtered (_("Start of text: %s\n"),
990 hex_string (strtoulst (p, &p, 10)));
991 if (*p)
992 printf_filtered (_("End of text: %s\n"),
993 hex_string (strtoulst (p, &p, 10)));
994 if (*p)
995 printf_filtered (_("Start of stack: %s\n"),
996 hex_string (strtoulst (p, &p, 10)));
997 #if 0 /* Don't know how architecture-dependent the rest is...
998 Anyway the signal bitmap info is available from "status". */
999 if (*p)
1000 printf_filtered (_("Kernel stack pointer: %s\n"),
1001 hex_string (strtoulst (p, &p, 10)));
1002 if (*p)
1003 printf_filtered (_("Kernel instr pointer: %s\n"),
1004 hex_string (strtoulst (p, &p, 10)));
1005 if (*p)
1006 printf_filtered (_("Pending signals bitmap: %s\n"),
1007 hex_string (strtoulst (p, &p, 10)));
1008 if (*p)
1009 printf_filtered (_("Blocked signals bitmap: %s\n"),
1010 hex_string (strtoulst (p, &p, 10)));
1011 if (*p)
1012 printf_filtered (_("Ignored signals bitmap: %s\n"),
1013 hex_string (strtoulst (p, &p, 10)));
1014 if (*p)
1015 printf_filtered (_("Catched signals bitmap: %s\n"),
1016 hex_string (strtoulst (p, &p, 10)));
1017 if (*p)
1018 printf_filtered (_("wchan (system call): %s\n"),
1019 hex_string (strtoulst (p, &p, 10)));
1020 #endif
1021 }
1022 else
1023 warning (_("unable to open /proc file '%s'"), filename);
1024 }
1025 }
1026
1027 /* Implement "info proc mappings" for a corefile. */
1028
1029 static void
1030 linux_core_info_proc_mappings (struct gdbarch *gdbarch, const char *args)
1031 {
1032 asection *section;
1033 ULONGEST count, page_size;
1034 unsigned char *descdata, *filenames, *descend;
1035 size_t note_size;
1036 unsigned int addr_size_bits, addr_size;
1037 struct gdbarch *core_gdbarch = gdbarch_from_bfd (core_bfd);
1038 /* We assume this for reading 64-bit core files. */
1039 gdb_static_assert (sizeof (ULONGEST) >= 8);
1040
1041 section = bfd_get_section_by_name (core_bfd, ".note.linuxcore.file");
1042 if (section == NULL)
1043 {
1044 warning (_("unable to find mappings in core file"));
1045 return;
1046 }
1047
1048 addr_size_bits = gdbarch_addr_bit (core_gdbarch);
1049 addr_size = addr_size_bits / 8;
1050 note_size = bfd_section_size (section);
1051
1052 if (note_size < 2 * addr_size)
1053 error (_("malformed core note - too short for header"));
1054
1055 gdb::def_vector<unsigned char> contents (note_size);
1056 if (!bfd_get_section_contents (core_bfd, section, contents.data (),
1057 0, note_size))
1058 error (_("could not get core note contents"));
1059
1060 descdata = contents.data ();
1061 descend = descdata + note_size;
1062
1063 if (descdata[note_size - 1] != '\0')
1064 error (_("malformed note - does not end with \\0"));
1065
1066 count = bfd_get (addr_size_bits, core_bfd, descdata);
1067 descdata += addr_size;
1068
1069 page_size = bfd_get (addr_size_bits, core_bfd, descdata);
1070 descdata += addr_size;
1071
1072 if (note_size < 2 * addr_size + count * 3 * addr_size)
1073 error (_("malformed note - too short for supplied file count"));
1074
1075 printf_filtered (_("Mapped address spaces:\n\n"));
1076 if (gdbarch_addr_bit (gdbarch) == 32)
1077 {
1078 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1079 "Start Addr",
1080 " End Addr",
1081 " Size", " Offset", "objfile");
1082 }
1083 else
1084 {
1085 printf_filtered (" %18s %18s %10s %10s %s\n",
1086 "Start Addr",
1087 " End Addr",
1088 " Size", " Offset", "objfile");
1089 }
1090
1091 filenames = descdata + count * 3 * addr_size;
1092 while (--count > 0)
1093 {
1094 ULONGEST start, end, file_ofs;
1095
1096 if (filenames == descend)
1097 error (_("malformed note - filenames end too early"));
1098
1099 start = bfd_get (addr_size_bits, core_bfd, descdata);
1100 descdata += addr_size;
1101 end = bfd_get (addr_size_bits, core_bfd, descdata);
1102 descdata += addr_size;
1103 file_ofs = bfd_get (addr_size_bits, core_bfd, descdata);
1104 descdata += addr_size;
1105
1106 file_ofs *= page_size;
1107
1108 if (gdbarch_addr_bit (gdbarch) == 32)
1109 printf_filtered ("\t%10s %10s %10s %10s %s\n",
1110 paddress (gdbarch, start),
1111 paddress (gdbarch, end),
1112 hex_string (end - start),
1113 hex_string (file_ofs),
1114 filenames);
1115 else
1116 printf_filtered (" %18s %18s %10s %10s %s\n",
1117 paddress (gdbarch, start),
1118 paddress (gdbarch, end),
1119 hex_string (end - start),
1120 hex_string (file_ofs),
1121 filenames);
1122
1123 filenames += 1 + strlen ((char *) filenames);
1124 }
1125 }
1126
1127 /* Implement "info proc" for a corefile. */
1128
1129 static void
1130 linux_core_info_proc (struct gdbarch *gdbarch, const char *args,
1131 enum info_proc_what what)
1132 {
1133 int exe_f = (what == IP_MINIMAL || what == IP_EXE || what == IP_ALL);
1134 int mappings_f = (what == IP_MAPPINGS || what == IP_ALL);
1135
1136 if (exe_f)
1137 {
1138 const char *exe;
1139
1140 exe = bfd_core_file_failing_command (core_bfd);
1141 if (exe != NULL)
1142 printf_filtered ("exe = '%s'\n", exe);
1143 else
1144 warning (_("unable to find command name in core file"));
1145 }
1146
1147 if (mappings_f)
1148 linux_core_info_proc_mappings (gdbarch, args);
1149
1150 if (!exe_f && !mappings_f)
1151 error (_("unable to handle request"));
1152 }
1153
1154 /* Read siginfo data from the core, if possible. Returns -1 on
1155 failure. Otherwise, returns the number of bytes read. READBUF,
1156 OFFSET, and LEN are all as specified by the to_xfer_partial
1157 interface. */
1158
1159 static LONGEST
1160 linux_core_xfer_siginfo (struct gdbarch *gdbarch, gdb_byte *readbuf,
1161 ULONGEST offset, ULONGEST len)
1162 {
1163 thread_section_name section_name (".note.linuxcore.siginfo", inferior_ptid);
1164 asection *section = bfd_get_section_by_name (core_bfd, section_name.c_str ());
1165 if (section == NULL)
1166 return -1;
1167
1168 if (!bfd_get_section_contents (core_bfd, section, readbuf, offset, len))
1169 return -1;
1170
1171 return len;
1172 }
1173
1174 typedef int linux_find_memory_region_ftype (ULONGEST vaddr, ULONGEST size,
1175 ULONGEST offset, ULONGEST inode,
1176 int read, int write,
1177 int exec, int modified,
1178 const char *filename,
1179 void *data);
1180
1181 /* List memory regions in the inferior for a corefile. */
1182
1183 static int
1184 linux_find_memory_regions_full (struct gdbarch *gdbarch,
1185 linux_find_memory_region_ftype *func,
1186 void *obfd)
1187 {
1188 char mapsfilename[100];
1189 char coredumpfilter_name[100];
1190 pid_t pid;
1191 /* Default dump behavior of coredump_filter (0x33), according to
1192 Documentation/filesystems/proc.txt from the Linux kernel
1193 tree. */
1194 filter_flags filterflags = (COREFILTER_ANON_PRIVATE
1195 | COREFILTER_ANON_SHARED
1196 | COREFILTER_ELF_HEADERS
1197 | COREFILTER_HUGETLB_PRIVATE);
1198
1199 /* We need to know the real target PID to access /proc. */
1200 if (current_inferior ()->fake_pid_p)
1201 return 1;
1202
1203 pid = current_inferior ()->pid;
1204
1205 if (use_coredump_filter)
1206 {
1207 xsnprintf (coredumpfilter_name, sizeof (coredumpfilter_name),
1208 "/proc/%d/coredump_filter", pid);
1209 gdb::unique_xmalloc_ptr<char> coredumpfilterdata
1210 = target_fileio_read_stralloc (NULL, coredumpfilter_name);
1211 if (coredumpfilterdata != NULL)
1212 {
1213 unsigned int flags;
1214
1215 sscanf (coredumpfilterdata.get (), "%x", &flags);
1216 filterflags = (enum filter_flag) flags;
1217 }
1218 }
1219
1220 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/smaps", pid);
1221 gdb::unique_xmalloc_ptr<char> data
1222 = target_fileio_read_stralloc (NULL, mapsfilename);
1223 if (data == NULL)
1224 {
1225 /* Older Linux kernels did not support /proc/PID/smaps. */
1226 xsnprintf (mapsfilename, sizeof mapsfilename, "/proc/%d/maps", pid);
1227 data = target_fileio_read_stralloc (NULL, mapsfilename);
1228 }
1229
1230 if (data != NULL)
1231 {
1232 char *line, *t;
1233
1234 line = strtok_r (data.get (), "\n", &t);
1235 while (line != NULL)
1236 {
1237 ULONGEST addr, endaddr, offset, inode;
1238 const char *permissions, *device, *filename;
1239 struct smaps_vmflags v;
1240 size_t permissions_len, device_len;
1241 int read, write, exec, priv;
1242 int has_anonymous = 0;
1243 int should_dump_p = 0;
1244 int mapping_anon_p;
1245 int mapping_file_p;
1246
1247 memset (&v, 0, sizeof (v));
1248 read_mapping (line, &addr, &endaddr, &permissions, &permissions_len,
1249 &offset, &device, &device_len, &inode, &filename);
1250 mapping_anon_p = mapping_is_anonymous_p (filename);
1251 /* If the mapping is not anonymous, then we can consider it
1252 to be file-backed. These two states (anonymous or
1253 file-backed) seem to be exclusive, but they can actually
1254 coexist. For example, if a file-backed mapping has
1255 "Anonymous:" pages (see more below), then the Linux
1256 kernel will dump this mapping when the user specified
1257 that she only wants anonymous mappings in the corefile
1258 (*even* when she explicitly disabled the dumping of
1259 file-backed mappings). */
1260 mapping_file_p = !mapping_anon_p;
1261
1262 /* Decode permissions. */
1263 read = (memchr (permissions, 'r', permissions_len) != 0);
1264 write = (memchr (permissions, 'w', permissions_len) != 0);
1265 exec = (memchr (permissions, 'x', permissions_len) != 0);
1266 /* 'private' here actually means VM_MAYSHARE, and not
1267 VM_SHARED. In order to know if a mapping is really
1268 private or not, we must check the flag "sh" in the
1269 VmFlags field. This is done by decode_vmflags. However,
1270 if we are using a Linux kernel released before the commit
1271 834f82e2aa9a8ede94b17b656329f850c1471514 (3.10), we will
1272 not have the VmFlags there. In this case, there is
1273 really no way to know if we are dealing with VM_SHARED,
1274 so we just assume that VM_MAYSHARE is enough. */
1275 priv = memchr (permissions, 'p', permissions_len) != 0;
1276
1277 /* Try to detect if region should be dumped by parsing smaps
1278 counters. */
1279 for (line = strtok_r (NULL, "\n", &t);
1280 line != NULL && line[0] >= 'A' && line[0] <= 'Z';
1281 line = strtok_r (NULL, "\n", &t))
1282 {
1283 char keyword[64 + 1];
1284
1285 if (sscanf (line, "%64s", keyword) != 1)
1286 {
1287 warning (_("Error parsing {s,}maps file '%s'"), mapsfilename);
1288 break;
1289 }
1290
1291 if (strcmp (keyword, "Anonymous:") == 0)
1292 {
1293 /* Older Linux kernels did not support the
1294 "Anonymous:" counter. Check it here. */
1295 has_anonymous = 1;
1296 }
1297 else if (strcmp (keyword, "VmFlags:") == 0)
1298 decode_vmflags (line, &v);
1299
1300 if (strcmp (keyword, "AnonHugePages:") == 0
1301 || strcmp (keyword, "Anonymous:") == 0)
1302 {
1303 unsigned long number;
1304
1305 if (sscanf (line, "%*s%lu", &number) != 1)
1306 {
1307 warning (_("Error parsing {s,}maps file '%s' number"),
1308 mapsfilename);
1309 break;
1310 }
1311 if (number > 0)
1312 {
1313 /* Even if we are dealing with a file-backed
1314 mapping, if it contains anonymous pages we
1315 consider it to be *also* an anonymous
1316 mapping, because this is what the Linux
1317 kernel does:
1318
1319 // Dump segments that have been written to.
1320 if (vma->anon_vma && FILTER(ANON_PRIVATE))
1321 goto whole;
1322
1323 Note that if the mapping is already marked as
1324 file-backed (i.e., mapping_file_p is
1325 non-zero), then this is a special case, and
1326 this mapping will be dumped either when the
1327 user wants to dump file-backed *or* anonymous
1328 mappings. */
1329 mapping_anon_p = 1;
1330 }
1331 }
1332 }
1333
1334 if (has_anonymous)
1335 should_dump_p = dump_mapping_p (filterflags, &v, priv,
1336 mapping_anon_p, mapping_file_p,
1337 filename, addr, offset);
1338 else
1339 {
1340 /* Older Linux kernels did not support the "Anonymous:" counter.
1341 If it is missing, we can't be sure - dump all the pages. */
1342 should_dump_p = 1;
1343 }
1344
1345 /* Invoke the callback function to create the corefile segment. */
1346 if (should_dump_p)
1347 func (addr, endaddr - addr, offset, inode,
1348 read, write, exec, 1, /* MODIFIED is true because we
1349 want to dump the mapping. */
1350 filename, obfd);
1351 }
1352
1353 return 0;
1354 }
1355
1356 return 1;
1357 }
1358
1359 /* A structure for passing information through
1360 linux_find_memory_regions_full. */
1361
1362 struct linux_find_memory_regions_data
1363 {
1364 /* The original callback. */
1365
1366 find_memory_region_ftype func;
1367
1368 /* The original datum. */
1369
1370 void *obfd;
1371 };
1372
1373 /* A callback for linux_find_memory_regions that converts between the
1374 "full"-style callback and find_memory_region_ftype. */
1375
1376 static int
1377 linux_find_memory_regions_thunk (ULONGEST vaddr, ULONGEST size,
1378 ULONGEST offset, ULONGEST inode,
1379 int read, int write, int exec, int modified,
1380 const char *filename, void *arg)
1381 {
1382 struct linux_find_memory_regions_data *data
1383 = (struct linux_find_memory_regions_data *) arg;
1384
1385 return data->func (vaddr, size, read, write, exec, modified, data->obfd);
1386 }
1387
1388 /* A variant of linux_find_memory_regions_full that is suitable as the
1389 gdbarch find_memory_regions method. */
1390
1391 static int
1392 linux_find_memory_regions (struct gdbarch *gdbarch,
1393 find_memory_region_ftype func, void *obfd)
1394 {
1395 struct linux_find_memory_regions_data data;
1396
1397 data.func = func;
1398 data.obfd = obfd;
1399
1400 return linux_find_memory_regions_full (gdbarch,
1401 linux_find_memory_regions_thunk,
1402 &data);
1403 }
1404
1405 /* Determine which signal stopped execution. */
1406
1407 static int
1408 find_signalled_thread (struct thread_info *info, void *data)
1409 {
1410 if (info->suspend.stop_signal != GDB_SIGNAL_0
1411 && info->ptid.pid () == inferior_ptid.pid ())
1412 return 1;
1413
1414 return 0;
1415 }
1416
1417 /* This is used to pass information from
1418 linux_make_mappings_corefile_notes through
1419 linux_find_memory_regions_full. */
1420
1421 struct linux_make_mappings_data
1422 {
1423 /* Number of files mapped. */
1424 ULONGEST file_count;
1425
1426 /* The obstack for the main part of the data. */
1427 struct obstack *data_obstack;
1428
1429 /* The filename obstack. */
1430 struct obstack *filename_obstack;
1431
1432 /* The architecture's "long" type. */
1433 struct type *long_type;
1434 };
1435
1436 static linux_find_memory_region_ftype linux_make_mappings_callback;
1437
1438 /* A callback for linux_find_memory_regions_full that updates the
1439 mappings data for linux_make_mappings_corefile_notes. */
1440
1441 static int
1442 linux_make_mappings_callback (ULONGEST vaddr, ULONGEST size,
1443 ULONGEST offset, ULONGEST inode,
1444 int read, int write, int exec, int modified,
1445 const char *filename, void *data)
1446 {
1447 struct linux_make_mappings_data *map_data
1448 = (struct linux_make_mappings_data *) data;
1449 gdb_byte buf[sizeof (ULONGEST)];
1450
1451 if (*filename == '\0' || inode == 0)
1452 return 0;
1453
1454 ++map_data->file_count;
1455
1456 pack_long (buf, map_data->long_type, vaddr);
1457 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1458 pack_long (buf, map_data->long_type, vaddr + size);
1459 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1460 pack_long (buf, map_data->long_type, offset);
1461 obstack_grow (map_data->data_obstack, buf, TYPE_LENGTH (map_data->long_type));
1462
1463 obstack_grow_str0 (map_data->filename_obstack, filename);
1464
1465 return 0;
1466 }
1467
1468 /* Write the file mapping data to the core file, if possible. OBFD is
1469 the output BFD. NOTE_DATA is the current note data, and NOTE_SIZE
1470 is a pointer to the note size. Returns the new NOTE_DATA and
1471 updates NOTE_SIZE. */
1472
1473 static char *
1474 linux_make_mappings_corefile_notes (struct gdbarch *gdbarch, bfd *obfd,
1475 char *note_data, int *note_size)
1476 {
1477 struct linux_make_mappings_data mapping_data;
1478 struct type *long_type
1479 = arch_integer_type (gdbarch, gdbarch_long_bit (gdbarch), 0, "long");
1480 gdb_byte buf[sizeof (ULONGEST)];
1481
1482 auto_obstack data_obstack, filename_obstack;
1483
1484 mapping_data.file_count = 0;
1485 mapping_data.data_obstack = &data_obstack;
1486 mapping_data.filename_obstack = &filename_obstack;
1487 mapping_data.long_type = long_type;
1488
1489 /* Reserve space for the count. */
1490 obstack_blank (&data_obstack, TYPE_LENGTH (long_type));
1491 /* We always write the page size as 1 since we have no good way to
1492 determine the correct value. */
1493 pack_long (buf, long_type, 1);
1494 obstack_grow (&data_obstack, buf, TYPE_LENGTH (long_type));
1495
1496 linux_find_memory_regions_full (gdbarch, linux_make_mappings_callback,
1497 &mapping_data);
1498
1499 if (mapping_data.file_count != 0)
1500 {
1501 /* Write the count to the obstack. */
1502 pack_long ((gdb_byte *) obstack_base (&data_obstack),
1503 long_type, mapping_data.file_count);
1504
1505 /* Copy the filenames to the data obstack. */
1506 int size = obstack_object_size (&filename_obstack);
1507 obstack_grow (&data_obstack, obstack_base (&filename_obstack),
1508 size);
1509
1510 note_data = elfcore_write_note (obfd, note_data, note_size,
1511 "CORE", NT_FILE,
1512 obstack_base (&data_obstack),
1513 obstack_object_size (&data_obstack));
1514 }
1515
1516 return note_data;
1517 }
1518
1519 /* Structure for passing information from
1520 linux_collect_thread_registers via an iterator to
1521 linux_collect_regset_section_cb. */
1522
1523 struct linux_collect_regset_section_cb_data
1524 {
1525 struct gdbarch *gdbarch;
1526 const struct regcache *regcache;
1527 bfd *obfd;
1528 char *note_data;
1529 int *note_size;
1530 unsigned long lwp;
1531 enum gdb_signal stop_signal;
1532 int abort_iteration;
1533 };
1534
1535 /* Callback for iterate_over_regset_sections that records a single
1536 regset in the corefile note section. */
1537
1538 static void
1539 linux_collect_regset_section_cb (const char *sect_name, int supply_size,
1540 int collect_size, const struct regset *regset,
1541 const char *human_name, void *cb_data)
1542 {
1543 struct linux_collect_regset_section_cb_data *data
1544 = (struct linux_collect_regset_section_cb_data *) cb_data;
1545 bool variable_size_section = (regset != NULL
1546 && regset->flags & REGSET_VARIABLE_SIZE);
1547
1548 if (!variable_size_section)
1549 gdb_assert (supply_size == collect_size);
1550
1551 if (data->abort_iteration)
1552 return;
1553
1554 gdb_assert (regset && regset->collect_regset);
1555
1556 /* This is intentionally zero-initialized by using std::vector, so
1557 that any padding bytes in the core file will show as 0. */
1558 std::vector<gdb_byte> buf (collect_size);
1559
1560 regset->collect_regset (regset, data->regcache, -1, buf.data (),
1561 collect_size);
1562
1563 /* PRSTATUS still needs to be treated specially. */
1564 if (strcmp (sect_name, ".reg") == 0)
1565 data->note_data = (char *) elfcore_write_prstatus
1566 (data->obfd, data->note_data, data->note_size, data->lwp,
1567 gdb_signal_to_host (data->stop_signal), buf.data ());
1568 else
1569 data->note_data = (char *) elfcore_write_register_note
1570 (data->obfd, data->note_data, data->note_size,
1571 sect_name, buf.data (), collect_size);
1572
1573 if (data->note_data == NULL)
1574 data->abort_iteration = 1;
1575 }
1576
1577 /* Records the thread's register state for the corefile note
1578 section. */
1579
1580 static char *
1581 linux_collect_thread_registers (const struct regcache *regcache,
1582 ptid_t ptid, bfd *obfd,
1583 char *note_data, int *note_size,
1584 enum gdb_signal stop_signal)
1585 {
1586 struct gdbarch *gdbarch = regcache->arch ();
1587 struct linux_collect_regset_section_cb_data data;
1588
1589 data.gdbarch = gdbarch;
1590 data.regcache = regcache;
1591 data.obfd = obfd;
1592 data.note_data = note_data;
1593 data.note_size = note_size;
1594 data.stop_signal = stop_signal;
1595 data.abort_iteration = 0;
1596
1597 /* For remote targets the LWP may not be available, so use the TID. */
1598 data.lwp = ptid.lwp ();
1599 if (!data.lwp)
1600 data.lwp = ptid.tid ();
1601
1602 gdbarch_iterate_over_regset_sections (gdbarch,
1603 linux_collect_regset_section_cb,
1604 &data, regcache);
1605 return data.note_data;
1606 }
1607
1608 /* Fetch the siginfo data for the specified thread, if it exists. If
1609 there is no data, or we could not read it, return an empty
1610 buffer. */
1611
1612 static gdb::byte_vector
1613 linux_get_siginfo_data (thread_info *thread, struct gdbarch *gdbarch)
1614 {
1615 struct type *siginfo_type;
1616 LONGEST bytes_read;
1617
1618 if (!gdbarch_get_siginfo_type_p (gdbarch))
1619 return gdb::byte_vector ();
1620
1621 scoped_restore save_inferior_ptid = make_scoped_restore (&inferior_ptid);
1622 inferior_ptid = thread->ptid;
1623
1624 siginfo_type = gdbarch_get_siginfo_type (gdbarch);
1625
1626 gdb::byte_vector buf (TYPE_LENGTH (siginfo_type));
1627
1628 bytes_read = target_read (current_top_target (), TARGET_OBJECT_SIGNAL_INFO, NULL,
1629 buf.data (), 0, TYPE_LENGTH (siginfo_type));
1630 if (bytes_read != TYPE_LENGTH (siginfo_type))
1631 buf.clear ();
1632
1633 return buf;
1634 }
1635
1636 struct linux_corefile_thread_data
1637 {
1638 struct gdbarch *gdbarch;
1639 bfd *obfd;
1640 char *note_data;
1641 int *note_size;
1642 enum gdb_signal stop_signal;
1643 };
1644
1645 /* Records the thread's register state for the corefile note
1646 section. */
1647
1648 static void
1649 linux_corefile_thread (struct thread_info *info,
1650 struct linux_corefile_thread_data *args)
1651 {
1652 struct regcache *regcache;
1653
1654 regcache = get_thread_arch_regcache (info->ptid, args->gdbarch);
1655
1656 target_fetch_registers (regcache, -1);
1657 gdb::byte_vector siginfo_data = linux_get_siginfo_data (info, args->gdbarch);
1658
1659 args->note_data = linux_collect_thread_registers
1660 (regcache, info->ptid, args->obfd, args->note_data,
1661 args->note_size, args->stop_signal);
1662
1663 /* Don't return anything if we got no register information above,
1664 such a core file is useless. */
1665 if (args->note_data != NULL)
1666 if (!siginfo_data.empty ())
1667 args->note_data = elfcore_write_note (args->obfd,
1668 args->note_data,
1669 args->note_size,
1670 "CORE", NT_SIGINFO,
1671 siginfo_data.data (),
1672 siginfo_data.size ());
1673 }
1674
1675 /* Fill the PRPSINFO structure with information about the process being
1676 debugged. Returns 1 in case of success, 0 for failures. Please note that
1677 even if the structure cannot be entirely filled (e.g., GDB was unable to
1678 gather information about the process UID/GID), this function will still
1679 return 1 since some information was already recorded. It will only return
1680 0 iff nothing can be gathered. */
1681
1682 static int
1683 linux_fill_prpsinfo (struct elf_internal_linux_prpsinfo *p)
1684 {
1685 /* The filename which we will use to obtain some info about the process.
1686 We will basically use this to store the `/proc/PID/FILENAME' file. */
1687 char filename[100];
1688 /* The basename of the executable. */
1689 const char *basename;
1690 const char *infargs;
1691 /* Temporary buffer. */
1692 char *tmpstr;
1693 /* The valid states of a process, according to the Linux kernel. */
1694 const char valid_states[] = "RSDTZW";
1695 /* The program state. */
1696 const char *prog_state;
1697 /* The state of the process. */
1698 char pr_sname;
1699 /* The PID of the program which generated the corefile. */
1700 pid_t pid;
1701 /* Process flags. */
1702 unsigned int pr_flag;
1703 /* Process nice value. */
1704 long pr_nice;
1705 /* The number of fields read by `sscanf'. */
1706 int n_fields = 0;
1707
1708 gdb_assert (p != NULL);
1709
1710 /* Obtaining PID and filename. */
1711 pid = inferior_ptid.pid ();
1712 xsnprintf (filename, sizeof (filename), "/proc/%d/cmdline", (int) pid);
1713 /* The full name of the program which generated the corefile. */
1714 gdb::unique_xmalloc_ptr<char> fname
1715 = target_fileio_read_stralloc (NULL, filename);
1716
1717 if (fname == NULL || fname.get ()[0] == '\0')
1718 {
1719 /* No program name was read, so we won't be able to retrieve more
1720 information about the process. */
1721 return 0;
1722 }
1723
1724 memset (p, 0, sizeof (*p));
1725
1726 /* Defining the PID. */
1727 p->pr_pid = pid;
1728
1729 /* Copying the program name. Only the basename matters. */
1730 basename = lbasename (fname.get ());
1731 strncpy (p->pr_fname, basename, sizeof (p->pr_fname));
1732 p->pr_fname[sizeof (p->pr_fname) - 1] = '\0';
1733
1734 infargs = get_inferior_args ();
1735
1736 /* The arguments of the program. */
1737 std::string psargs = fname.get ();
1738 if (infargs != NULL)
1739 psargs = psargs + " " + infargs;
1740
1741 strncpy (p->pr_psargs, psargs.c_str (), sizeof (p->pr_psargs));
1742 p->pr_psargs[sizeof (p->pr_psargs) - 1] = '\0';
1743
1744 xsnprintf (filename, sizeof (filename), "/proc/%d/stat", (int) pid);
1745 /* The contents of `/proc/PID/stat'. */
1746 gdb::unique_xmalloc_ptr<char> proc_stat_contents
1747 = target_fileio_read_stralloc (NULL, filename);
1748 char *proc_stat = proc_stat_contents.get ();
1749
1750 if (proc_stat == NULL || *proc_stat == '\0')
1751 {
1752 /* Despite being unable to read more information about the
1753 process, we return 1 here because at least we have its
1754 command line, PID and arguments. */
1755 return 1;
1756 }
1757
1758 /* Ok, we have the stats. It's time to do a little parsing of the
1759 contents of the buffer, so that we end up reading what we want.
1760
1761 The following parsing mechanism is strongly based on the
1762 information generated by the `fs/proc/array.c' file, present in
1763 the Linux kernel tree. More details about how the information is
1764 displayed can be obtained by seeing the manpage of proc(5),
1765 specifically under the entry of `/proc/[pid]/stat'. */
1766
1767 /* Getting rid of the PID, since we already have it. */
1768 while (isdigit (*proc_stat))
1769 ++proc_stat;
1770
1771 proc_stat = skip_spaces (proc_stat);
1772
1773 /* ps command also relies on no trailing fields ever contain ')'. */
1774 proc_stat = strrchr (proc_stat, ')');
1775 if (proc_stat == NULL)
1776 return 1;
1777 proc_stat++;
1778
1779 proc_stat = skip_spaces (proc_stat);
1780
1781 n_fields = sscanf (proc_stat,
1782 "%c" /* Process state. */
1783 "%d%d%d" /* Parent PID, group ID, session ID. */
1784 "%*d%*d" /* tty_nr, tpgid (not used). */
1785 "%u" /* Flags. */
1786 "%*s%*s%*s%*s" /* minflt, cminflt, majflt,
1787 cmajflt (not used). */
1788 "%*s%*s%*s%*s" /* utime, stime, cutime,
1789 cstime (not used). */
1790 "%*s" /* Priority (not used). */
1791 "%ld", /* Nice. */
1792 &pr_sname,
1793 &p->pr_ppid, &p->pr_pgrp, &p->pr_sid,
1794 &pr_flag,
1795 &pr_nice);
1796
1797 if (n_fields != 6)
1798 {
1799 /* Again, we couldn't read the complementary information about
1800 the process state. However, we already have minimal
1801 information, so we just return 1 here. */
1802 return 1;
1803 }
1804
1805 /* Filling the structure fields. */
1806 prog_state = strchr (valid_states, pr_sname);
1807 if (prog_state != NULL)
1808 p->pr_state = prog_state - valid_states;
1809 else
1810 {
1811 /* Zero means "Running". */
1812 p->pr_state = 0;
1813 }
1814
1815 p->pr_sname = p->pr_state > 5 ? '.' : pr_sname;
1816 p->pr_zomb = p->pr_sname == 'Z';
1817 p->pr_nice = pr_nice;
1818 p->pr_flag = pr_flag;
1819
1820 /* Finally, obtaining the UID and GID. For that, we read and parse the
1821 contents of the `/proc/PID/status' file. */
1822 xsnprintf (filename, sizeof (filename), "/proc/%d/status", (int) pid);
1823 /* The contents of `/proc/PID/status'. */
1824 gdb::unique_xmalloc_ptr<char> proc_status_contents
1825 = target_fileio_read_stralloc (NULL, filename);
1826 char *proc_status = proc_status_contents.get ();
1827
1828 if (proc_status == NULL || *proc_status == '\0')
1829 {
1830 /* Returning 1 since we already have a bunch of information. */
1831 return 1;
1832 }
1833
1834 /* Extracting the UID. */
1835 tmpstr = strstr (proc_status, "Uid:");
1836 if (tmpstr != NULL)
1837 {
1838 /* Advancing the pointer to the beginning of the UID. */
1839 tmpstr += sizeof ("Uid:");
1840 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1841 ++tmpstr;
1842
1843 if (isdigit (*tmpstr))
1844 p->pr_uid = strtol (tmpstr, &tmpstr, 10);
1845 }
1846
1847 /* Extracting the GID. */
1848 tmpstr = strstr (proc_status, "Gid:");
1849 if (tmpstr != NULL)
1850 {
1851 /* Advancing the pointer to the beginning of the GID. */
1852 tmpstr += sizeof ("Gid:");
1853 while (*tmpstr != '\0' && !isdigit (*tmpstr))
1854 ++tmpstr;
1855
1856 if (isdigit (*tmpstr))
1857 p->pr_gid = strtol (tmpstr, &tmpstr, 10);
1858 }
1859
1860 return 1;
1861 }
1862
1863 /* Build the note section for a corefile, and return it in a malloc
1864 buffer. */
1865
1866 static char *
1867 linux_make_corefile_notes (struct gdbarch *gdbarch, bfd *obfd, int *note_size)
1868 {
1869 struct linux_corefile_thread_data thread_args;
1870 struct elf_internal_linux_prpsinfo prpsinfo;
1871 char *note_data = NULL;
1872 struct thread_info *curr_thr, *signalled_thr;
1873
1874 if (! gdbarch_iterate_over_regset_sections_p (gdbarch))
1875 return NULL;
1876
1877 if (linux_fill_prpsinfo (&prpsinfo))
1878 {
1879 if (gdbarch_ptr_bit (gdbarch) == 64)
1880 note_data = elfcore_write_linux_prpsinfo64 (obfd,
1881 note_data, note_size,
1882 &prpsinfo);
1883 else
1884 note_data = elfcore_write_linux_prpsinfo32 (obfd,
1885 note_data, note_size,
1886 &prpsinfo);
1887 }
1888
1889 /* Thread register information. */
1890 try
1891 {
1892 update_thread_list ();
1893 }
1894 catch (const gdb_exception_error &e)
1895 {
1896 exception_print (gdb_stderr, e);
1897 }
1898
1899 /* Like the kernel, prefer dumping the signalled thread first.
1900 "First thread" is what tools use to infer the signalled thread.
1901 In case there's more than one signalled thread, prefer the
1902 current thread, if it is signalled. */
1903 curr_thr = inferior_thread ();
1904 if (curr_thr->suspend.stop_signal != GDB_SIGNAL_0)
1905 signalled_thr = curr_thr;
1906 else
1907 {
1908 signalled_thr = iterate_over_threads (find_signalled_thread, NULL);
1909 if (signalled_thr == NULL)
1910 signalled_thr = curr_thr;
1911 }
1912
1913 thread_args.gdbarch = gdbarch;
1914 thread_args.obfd = obfd;
1915 thread_args.note_data = note_data;
1916 thread_args.note_size = note_size;
1917 thread_args.stop_signal = signalled_thr->suspend.stop_signal;
1918
1919 linux_corefile_thread (signalled_thr, &thread_args);
1920 for (thread_info *thr : current_inferior ()->non_exited_threads ())
1921 {
1922 if (thr == signalled_thr)
1923 continue;
1924
1925 linux_corefile_thread (thr, &thread_args);
1926 }
1927
1928 note_data = thread_args.note_data;
1929 if (!note_data)
1930 return NULL;
1931
1932 /* Auxillary vector. */
1933 gdb::optional<gdb::byte_vector> auxv =
1934 target_read_alloc (current_top_target (), TARGET_OBJECT_AUXV, NULL);
1935 if (auxv && !auxv->empty ())
1936 {
1937 note_data = elfcore_write_note (obfd, note_data, note_size,
1938 "CORE", NT_AUXV, auxv->data (),
1939 auxv->size ());
1940
1941 if (!note_data)
1942 return NULL;
1943 }
1944
1945 /* File mappings. */
1946 note_data = linux_make_mappings_corefile_notes (gdbarch, obfd,
1947 note_data, note_size);
1948
1949 return note_data;
1950 }
1951
1952 /* Implementation of `gdbarch_gdb_signal_from_target', as defined in
1953 gdbarch.h. This function is not static because it is exported to
1954 other -tdep files. */
1955
1956 enum gdb_signal
1957 linux_gdb_signal_from_target (struct gdbarch *gdbarch, int signal)
1958 {
1959 switch (signal)
1960 {
1961 case 0:
1962 return GDB_SIGNAL_0;
1963
1964 case LINUX_SIGHUP:
1965 return GDB_SIGNAL_HUP;
1966
1967 case LINUX_SIGINT:
1968 return GDB_SIGNAL_INT;
1969
1970 case LINUX_SIGQUIT:
1971 return GDB_SIGNAL_QUIT;
1972
1973 case LINUX_SIGILL:
1974 return GDB_SIGNAL_ILL;
1975
1976 case LINUX_SIGTRAP:
1977 return GDB_SIGNAL_TRAP;
1978
1979 case LINUX_SIGABRT:
1980 return GDB_SIGNAL_ABRT;
1981
1982 case LINUX_SIGBUS:
1983 return GDB_SIGNAL_BUS;
1984
1985 case LINUX_SIGFPE:
1986 return GDB_SIGNAL_FPE;
1987
1988 case LINUX_SIGKILL:
1989 return GDB_SIGNAL_KILL;
1990
1991 case LINUX_SIGUSR1:
1992 return GDB_SIGNAL_USR1;
1993
1994 case LINUX_SIGSEGV:
1995 return GDB_SIGNAL_SEGV;
1996
1997 case LINUX_SIGUSR2:
1998 return GDB_SIGNAL_USR2;
1999
2000 case LINUX_SIGPIPE:
2001 return GDB_SIGNAL_PIPE;
2002
2003 case LINUX_SIGALRM:
2004 return GDB_SIGNAL_ALRM;
2005
2006 case LINUX_SIGTERM:
2007 return GDB_SIGNAL_TERM;
2008
2009 case LINUX_SIGCHLD:
2010 return GDB_SIGNAL_CHLD;
2011
2012 case LINUX_SIGCONT:
2013 return GDB_SIGNAL_CONT;
2014
2015 case LINUX_SIGSTOP:
2016 return GDB_SIGNAL_STOP;
2017
2018 case LINUX_SIGTSTP:
2019 return GDB_SIGNAL_TSTP;
2020
2021 case LINUX_SIGTTIN:
2022 return GDB_SIGNAL_TTIN;
2023
2024 case LINUX_SIGTTOU:
2025 return GDB_SIGNAL_TTOU;
2026
2027 case LINUX_SIGURG:
2028 return GDB_SIGNAL_URG;
2029
2030 case LINUX_SIGXCPU:
2031 return GDB_SIGNAL_XCPU;
2032
2033 case LINUX_SIGXFSZ:
2034 return GDB_SIGNAL_XFSZ;
2035
2036 case LINUX_SIGVTALRM:
2037 return GDB_SIGNAL_VTALRM;
2038
2039 case LINUX_SIGPROF:
2040 return GDB_SIGNAL_PROF;
2041
2042 case LINUX_SIGWINCH:
2043 return GDB_SIGNAL_WINCH;
2044
2045 /* No way to differentiate between SIGIO and SIGPOLL.
2046 Therefore, we just handle the first one. */
2047 case LINUX_SIGIO:
2048 return GDB_SIGNAL_IO;
2049
2050 case LINUX_SIGPWR:
2051 return GDB_SIGNAL_PWR;
2052
2053 case LINUX_SIGSYS:
2054 return GDB_SIGNAL_SYS;
2055
2056 /* SIGRTMIN and SIGRTMAX are not continuous in <gdb/signals.def>,
2057 therefore we have to handle them here. */
2058 case LINUX_SIGRTMIN:
2059 return GDB_SIGNAL_REALTIME_32;
2060
2061 case LINUX_SIGRTMAX:
2062 return GDB_SIGNAL_REALTIME_64;
2063 }
2064
2065 if (signal >= LINUX_SIGRTMIN + 1 && signal <= LINUX_SIGRTMAX - 1)
2066 {
2067 int offset = signal - LINUX_SIGRTMIN + 1;
2068
2069 return (enum gdb_signal) ((int) GDB_SIGNAL_REALTIME_33 + offset);
2070 }
2071
2072 return GDB_SIGNAL_UNKNOWN;
2073 }
2074
2075 /* Implementation of `gdbarch_gdb_signal_to_target', as defined in
2076 gdbarch.h. This function is not static because it is exported to
2077 other -tdep files. */
2078
2079 int
2080 linux_gdb_signal_to_target (struct gdbarch *gdbarch,
2081 enum gdb_signal signal)
2082 {
2083 switch (signal)
2084 {
2085 case GDB_SIGNAL_0:
2086 return 0;
2087
2088 case GDB_SIGNAL_HUP:
2089 return LINUX_SIGHUP;
2090
2091 case GDB_SIGNAL_INT:
2092 return LINUX_SIGINT;
2093
2094 case GDB_SIGNAL_QUIT:
2095 return LINUX_SIGQUIT;
2096
2097 case GDB_SIGNAL_ILL:
2098 return LINUX_SIGILL;
2099
2100 case GDB_SIGNAL_TRAP:
2101 return LINUX_SIGTRAP;
2102
2103 case GDB_SIGNAL_ABRT:
2104 return LINUX_SIGABRT;
2105
2106 case GDB_SIGNAL_FPE:
2107 return LINUX_SIGFPE;
2108
2109 case GDB_SIGNAL_KILL:
2110 return LINUX_SIGKILL;
2111
2112 case GDB_SIGNAL_BUS:
2113 return LINUX_SIGBUS;
2114
2115 case GDB_SIGNAL_SEGV:
2116 return LINUX_SIGSEGV;
2117
2118 case GDB_SIGNAL_SYS:
2119 return LINUX_SIGSYS;
2120
2121 case GDB_SIGNAL_PIPE:
2122 return LINUX_SIGPIPE;
2123
2124 case GDB_SIGNAL_ALRM:
2125 return LINUX_SIGALRM;
2126
2127 case GDB_SIGNAL_TERM:
2128 return LINUX_SIGTERM;
2129
2130 case GDB_SIGNAL_URG:
2131 return LINUX_SIGURG;
2132
2133 case GDB_SIGNAL_STOP:
2134 return LINUX_SIGSTOP;
2135
2136 case GDB_SIGNAL_TSTP:
2137 return LINUX_SIGTSTP;
2138
2139 case GDB_SIGNAL_CONT:
2140 return LINUX_SIGCONT;
2141
2142 case GDB_SIGNAL_CHLD:
2143 return LINUX_SIGCHLD;
2144
2145 case GDB_SIGNAL_TTIN:
2146 return LINUX_SIGTTIN;
2147
2148 case GDB_SIGNAL_TTOU:
2149 return LINUX_SIGTTOU;
2150
2151 case GDB_SIGNAL_IO:
2152 return LINUX_SIGIO;
2153
2154 case GDB_SIGNAL_XCPU:
2155 return LINUX_SIGXCPU;
2156
2157 case GDB_SIGNAL_XFSZ:
2158 return LINUX_SIGXFSZ;
2159
2160 case GDB_SIGNAL_VTALRM:
2161 return LINUX_SIGVTALRM;
2162
2163 case GDB_SIGNAL_PROF:
2164 return LINUX_SIGPROF;
2165
2166 case GDB_SIGNAL_WINCH:
2167 return LINUX_SIGWINCH;
2168
2169 case GDB_SIGNAL_USR1:
2170 return LINUX_SIGUSR1;
2171
2172 case GDB_SIGNAL_USR2:
2173 return LINUX_SIGUSR2;
2174
2175 case GDB_SIGNAL_PWR:
2176 return LINUX_SIGPWR;
2177
2178 case GDB_SIGNAL_POLL:
2179 return LINUX_SIGPOLL;
2180
2181 /* GDB_SIGNAL_REALTIME_32 is not continuous in <gdb/signals.def>,
2182 therefore we have to handle it here. */
2183 case GDB_SIGNAL_REALTIME_32:
2184 return LINUX_SIGRTMIN;
2185
2186 /* Same comment applies to _64. */
2187 case GDB_SIGNAL_REALTIME_64:
2188 return LINUX_SIGRTMAX;
2189 }
2190
2191 /* GDB_SIGNAL_REALTIME_33 to _64 are continuous. */
2192 if (signal >= GDB_SIGNAL_REALTIME_33
2193 && signal <= GDB_SIGNAL_REALTIME_63)
2194 {
2195 int offset = signal - GDB_SIGNAL_REALTIME_33;
2196
2197 return LINUX_SIGRTMIN + 1 + offset;
2198 }
2199
2200 return -1;
2201 }
2202
2203 /* Helper for linux_vsyscall_range that does the real work of finding
2204 the vsyscall's address range. */
2205
2206 static int
2207 linux_vsyscall_range_raw (struct gdbarch *gdbarch, struct mem_range *range)
2208 {
2209 char filename[100];
2210 long pid;
2211
2212 if (target_auxv_search (current_top_target (), AT_SYSINFO_EHDR, &range->start) <= 0)
2213 return 0;
2214
2215 /* It doesn't make sense to access the host's /proc when debugging a
2216 core file. Instead, look for the PT_LOAD segment that matches
2217 the vDSO. */
2218 if (!target_has_execution)
2219 {
2220 long phdrs_size;
2221 int num_phdrs, i;
2222
2223 phdrs_size = bfd_get_elf_phdr_upper_bound (core_bfd);
2224 if (phdrs_size == -1)
2225 return 0;
2226
2227 gdb::unique_xmalloc_ptr<Elf_Internal_Phdr>
2228 phdrs ((Elf_Internal_Phdr *) xmalloc (phdrs_size));
2229 num_phdrs = bfd_get_elf_phdrs (core_bfd, phdrs.get ());
2230 if (num_phdrs == -1)
2231 return 0;
2232
2233 for (i = 0; i < num_phdrs; i++)
2234 if (phdrs.get ()[i].p_type == PT_LOAD
2235 && phdrs.get ()[i].p_vaddr == range->start)
2236 {
2237 range->length = phdrs.get ()[i].p_memsz;
2238 return 1;
2239 }
2240
2241 return 0;
2242 }
2243
2244 /* We need to know the real target PID to access /proc. */
2245 if (current_inferior ()->fake_pid_p)
2246 return 0;
2247
2248 pid = current_inferior ()->pid;
2249
2250 /* Note that reading /proc/PID/task/PID/maps (1) is much faster than
2251 reading /proc/PID/maps (2). The later identifies thread stacks
2252 in the output, which requires scanning every thread in the thread
2253 group to check whether a VMA is actually a thread's stack. With
2254 Linux 4.4 on an Intel i7-4810MQ @ 2.80GHz, with an inferior with
2255 a few thousand threads, (1) takes a few miliseconds, while (2)
2256 takes several seconds. Also note that "smaps", what we read for
2257 determining core dump mappings, is even slower than "maps". */
2258 xsnprintf (filename, sizeof filename, "/proc/%ld/task/%ld/maps", pid, pid);
2259 gdb::unique_xmalloc_ptr<char> data
2260 = target_fileio_read_stralloc (NULL, filename);
2261 if (data != NULL)
2262 {
2263 char *line;
2264 char *saveptr = NULL;
2265
2266 for (line = strtok_r (data.get (), "\n", &saveptr);
2267 line != NULL;
2268 line = strtok_r (NULL, "\n", &saveptr))
2269 {
2270 ULONGEST addr, endaddr;
2271 const char *p = line;
2272
2273 addr = strtoulst (p, &p, 16);
2274 if (addr == range->start)
2275 {
2276 if (*p == '-')
2277 p++;
2278 endaddr = strtoulst (p, &p, 16);
2279 range->length = endaddr - addr;
2280 return 1;
2281 }
2282 }
2283 }
2284 else
2285 warning (_("unable to open /proc file '%s'"), filename);
2286
2287 return 0;
2288 }
2289
2290 /* Implementation of the "vsyscall_range" gdbarch hook. Handles
2291 caching, and defers the real work to linux_vsyscall_range_raw. */
2292
2293 static int
2294 linux_vsyscall_range (struct gdbarch *gdbarch, struct mem_range *range)
2295 {
2296 struct linux_info *info = get_linux_inferior_data ();
2297
2298 if (info->vsyscall_range_p == 0)
2299 {
2300 if (linux_vsyscall_range_raw (gdbarch, &info->vsyscall_range))
2301 info->vsyscall_range_p = 1;
2302 else
2303 info->vsyscall_range_p = -1;
2304 }
2305
2306 if (info->vsyscall_range_p < 0)
2307 return 0;
2308
2309 *range = info->vsyscall_range;
2310 return 1;
2311 }
2312
2313 /* Symbols for linux_infcall_mmap's ARG_FLAGS; their Linux MAP_* system
2314 definitions would be dependent on compilation host. */
2315 #define GDB_MMAP_MAP_PRIVATE 0x02 /* Changes are private. */
2316 #define GDB_MMAP_MAP_ANONYMOUS 0x20 /* Don't use a file. */
2317
2318 /* See gdbarch.sh 'infcall_mmap'. */
2319
2320 static CORE_ADDR
2321 linux_infcall_mmap (CORE_ADDR size, unsigned prot)
2322 {
2323 struct objfile *objf;
2324 /* Do there still exist any Linux systems without "mmap64"?
2325 "mmap" uses 64-bit off_t on x86_64 and 32-bit off_t on i386 and x32. */
2326 struct value *mmap_val = find_function_in_inferior ("mmap64", &objf);
2327 struct value *addr_val;
2328 struct gdbarch *gdbarch = get_objfile_arch (objf);
2329 CORE_ADDR retval;
2330 enum
2331 {
2332 ARG_ADDR, ARG_LENGTH, ARG_PROT, ARG_FLAGS, ARG_FD, ARG_OFFSET, ARG_LAST
2333 };
2334 struct value *arg[ARG_LAST];
2335
2336 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2337 0);
2338 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2339 arg[ARG_LENGTH] = value_from_ulongest
2340 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2341 gdb_assert ((prot & ~(GDB_MMAP_PROT_READ | GDB_MMAP_PROT_WRITE
2342 | GDB_MMAP_PROT_EXEC))
2343 == 0);
2344 arg[ARG_PROT] = value_from_longest (builtin_type (gdbarch)->builtin_int, prot);
2345 arg[ARG_FLAGS] = value_from_longest (builtin_type (gdbarch)->builtin_int,
2346 GDB_MMAP_MAP_PRIVATE
2347 | GDB_MMAP_MAP_ANONYMOUS);
2348 arg[ARG_FD] = value_from_longest (builtin_type (gdbarch)->builtin_int, -1);
2349 arg[ARG_OFFSET] = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2350 0);
2351 addr_val = call_function_by_hand (mmap_val, NULL, arg);
2352 retval = value_as_address (addr_val);
2353 if (retval == (CORE_ADDR) -1)
2354 error (_("Failed inferior mmap call for %s bytes, errno is changed."),
2355 pulongest (size));
2356 return retval;
2357 }
2358
2359 /* See gdbarch.sh 'infcall_munmap'. */
2360
2361 static void
2362 linux_infcall_munmap (CORE_ADDR addr, CORE_ADDR size)
2363 {
2364 struct objfile *objf;
2365 struct value *munmap_val = find_function_in_inferior ("munmap", &objf);
2366 struct value *retval_val;
2367 struct gdbarch *gdbarch = get_objfile_arch (objf);
2368 LONGEST retval;
2369 enum
2370 {
2371 ARG_ADDR, ARG_LENGTH, ARG_LAST
2372 };
2373 struct value *arg[ARG_LAST];
2374
2375 arg[ARG_ADDR] = value_from_pointer (builtin_type (gdbarch)->builtin_data_ptr,
2376 addr);
2377 /* Assuming sizeof (unsigned long) == sizeof (size_t). */
2378 arg[ARG_LENGTH] = value_from_ulongest
2379 (builtin_type (gdbarch)->builtin_unsigned_long, size);
2380 retval_val = call_function_by_hand (munmap_val, NULL, arg);
2381 retval = value_as_long (retval_val);
2382 if (retval != 0)
2383 warning (_("Failed inferior munmap call at %s for %s bytes, "
2384 "errno is changed."),
2385 hex_string (addr), pulongest (size));
2386 }
2387
2388 /* See linux-tdep.h. */
2389
2390 CORE_ADDR
2391 linux_displaced_step_location (struct gdbarch *gdbarch)
2392 {
2393 CORE_ADDR addr;
2394 int bp_len;
2395
2396 /* Determine entry point from target auxiliary vector. This avoids
2397 the need for symbols. Also, when debugging a stand-alone SPU
2398 executable, entry_point_address () will point to an SPU
2399 local-store address and is thus not usable as displaced stepping
2400 location. The auxiliary vector gets us the PowerPC-side entry
2401 point address instead. */
2402 if (target_auxv_search (current_top_target (), AT_ENTRY, &addr) <= 0)
2403 throw_error (NOT_SUPPORTED_ERROR,
2404 _("Cannot find AT_ENTRY auxiliary vector entry."));
2405
2406 /* Make certain that the address points at real code, and not a
2407 function descriptor. */
2408 addr = gdbarch_convert_from_func_ptr_addr (gdbarch, addr,
2409 current_top_target ());
2410
2411 /* Inferior calls also use the entry point as a breakpoint location.
2412 We don't want displaced stepping to interfere with those
2413 breakpoints, so leave space. */
2414 gdbarch_breakpoint_from_pc (gdbarch, &addr, &bp_len);
2415 addr += bp_len * 2;
2416
2417 return addr;
2418 }
2419
2420 /* See linux-tdep.h. */
2421
2422 CORE_ADDR
2423 linux_get_hwcap (struct target_ops *target)
2424 {
2425 CORE_ADDR field;
2426 if (target_auxv_search (target, AT_HWCAP, &field) != 1)
2427 return 0;
2428 return field;
2429 }
2430
2431 /* See linux-tdep.h. */
2432
2433 CORE_ADDR
2434 linux_get_hwcap2 (struct target_ops *target)
2435 {
2436 CORE_ADDR field;
2437 if (target_auxv_search (target, AT_HWCAP2, &field) != 1)
2438 return 0;
2439 return field;
2440 }
2441
2442 /* Display whether the gcore command is using the
2443 /proc/PID/coredump_filter file. */
2444
2445 static void
2446 show_use_coredump_filter (struct ui_file *file, int from_tty,
2447 struct cmd_list_element *c, const char *value)
2448 {
2449 fprintf_filtered (file, _("Use of /proc/PID/coredump_filter file to generate"
2450 " corefiles is %s.\n"), value);
2451 }
2452
2453 /* Display whether the gcore command is dumping mappings marked with
2454 the VM_DONTDUMP flag. */
2455
2456 static void
2457 show_dump_excluded_mappings (struct ui_file *file, int from_tty,
2458 struct cmd_list_element *c, const char *value)
2459 {
2460 fprintf_filtered (file, _("Dumping of mappings marked with the VM_DONTDUMP"
2461 " flag is %s.\n"), value);
2462 }
2463
2464 /* To be called from the various GDB_OSABI_LINUX handlers for the
2465 various GNU/Linux architectures and machine types. */
2466
2467 void
2468 linux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
2469 {
2470 set_gdbarch_core_pid_to_str (gdbarch, linux_core_pid_to_str);
2471 set_gdbarch_info_proc (gdbarch, linux_info_proc);
2472 set_gdbarch_core_info_proc (gdbarch, linux_core_info_proc);
2473 set_gdbarch_core_xfer_siginfo (gdbarch, linux_core_xfer_siginfo);
2474 set_gdbarch_find_memory_regions (gdbarch, linux_find_memory_regions);
2475 set_gdbarch_make_corefile_notes (gdbarch, linux_make_corefile_notes);
2476 set_gdbarch_has_shared_address_space (gdbarch,
2477 linux_has_shared_address_space);
2478 set_gdbarch_gdb_signal_from_target (gdbarch,
2479 linux_gdb_signal_from_target);
2480 set_gdbarch_gdb_signal_to_target (gdbarch,
2481 linux_gdb_signal_to_target);
2482 set_gdbarch_vsyscall_range (gdbarch, linux_vsyscall_range);
2483 set_gdbarch_infcall_mmap (gdbarch, linux_infcall_mmap);
2484 set_gdbarch_infcall_munmap (gdbarch, linux_infcall_munmap);
2485 set_gdbarch_get_siginfo_type (gdbarch, linux_get_siginfo_type);
2486 }
2487
2488 void
2489 _initialize_linux_tdep (void)
2490 {
2491 linux_gdbarch_data_handle =
2492 gdbarch_data_register_post_init (init_linux_gdbarch_data);
2493
2494 /* Observers used to invalidate the cache when needed. */
2495 gdb::observers::inferior_exit.attach (invalidate_linux_cache_inf);
2496 gdb::observers::inferior_appeared.attach (invalidate_linux_cache_inf);
2497
2498 add_setshow_boolean_cmd ("use-coredump-filter", class_files,
2499 &use_coredump_filter, _("\
2500 Set whether gcore should consider /proc/PID/coredump_filter."),
2501 _("\
2502 Show whether gcore should consider /proc/PID/coredump_filter."),
2503 _("\
2504 Use this command to set whether gcore should consider the contents\n\
2505 of /proc/PID/coredump_filter when generating the corefile. For more information\n\
2506 about this file, refer to the manpage of core(5)."),
2507 NULL, show_use_coredump_filter,
2508 &setlist, &showlist);
2509
2510 add_setshow_boolean_cmd ("dump-excluded-mappings", class_files,
2511 &dump_excluded_mappings, _("\
2512 Set whether gcore should dump mappings marked with the VM_DONTDUMP flag."),
2513 _("\
2514 Show whether gcore should dump mappings marked with the VM_DONTDUMP flag."),
2515 _("\
2516 Use this command to set whether gcore should dump mappings marked with the\n\
2517 VM_DONTDUMP flag (\"dd\" in /proc/PID/smaps) when generating the corefile. For\n\
2518 more information about this file, refer to the manpage of proc(5) and core(5)."),
2519 NULL, show_dump_excluded_mappings,
2520 &setlist, &showlist);
2521 }
This page took 0.077321 seconds and 3 git commands to generate.