gdb: add target_ops::supports_displaced_step
[deliverable/binutils-gdb.git] / gdb / m68hc11-tdep.c
1 /* Target-dependent code for Motorola 68HC11 & 68HC12
2
3 Copyright (C) 1999-2020 Free Software Foundation, Inc.
4
5 Contributed by Stephane Carrez, stcarrez@nerim.fr
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "frame-unwind.h"
26 #include "frame-base.h"
27 #include "dwarf2/frame.h"
28 #include "trad-frame.h"
29 #include "symtab.h"
30 #include "gdbtypes.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "value.h"
34 #include "inferior.h"
35 #include "dis-asm.h"
36 #include "symfile.h"
37 #include "objfiles.h"
38 #include "arch-utils.h"
39 #include "regcache.h"
40 #include "reggroups.h"
41
42 #include "target.h"
43 #include "opcode/m68hc11.h"
44 #include "elf/m68hc11.h"
45 #include "elf-bfd.h"
46
47 /* Macros for setting and testing a bit in a minimal symbol.
48 For 68HC11/68HC12 we have two flags that tell which return
49 type the function is using. This is used for prologue and frame
50 analysis to compute correct stack frame layout.
51
52 The MSB of the minimal symbol's "info" field is used for this purpose.
53
54 MSYMBOL_SET_RTC Actually sets the "RTC" bit.
55 MSYMBOL_SET_RTI Actually sets the "RTI" bit.
56 MSYMBOL_IS_RTC Tests the "RTC" bit in a minimal symbol.
57 MSYMBOL_IS_RTI Tests the "RTC" bit in a minimal symbol. */
58
59 #define MSYMBOL_SET_RTC(msym) \
60 MSYMBOL_TARGET_FLAG_1 (msym) = 1
61
62 #define MSYMBOL_SET_RTI(msym) \
63 MSYMBOL_TARGET_FLAG_2 (msym) = 1
64
65 #define MSYMBOL_IS_RTC(msym) \
66 MSYMBOL_TARGET_FLAG_1 (msym)
67
68 #define MSYMBOL_IS_RTI(msym) \
69 MSYMBOL_TARGET_FLAG_2 (msym)
70
71 enum insn_return_kind {
72 RETURN_RTS,
73 RETURN_RTC,
74 RETURN_RTI
75 };
76
77
78 /* Register numbers of various important registers. */
79
80 #define HARD_X_REGNUM 0
81 #define HARD_D_REGNUM 1
82 #define HARD_Y_REGNUM 2
83 #define HARD_SP_REGNUM 3
84 #define HARD_PC_REGNUM 4
85
86 #define HARD_A_REGNUM 5
87 #define HARD_B_REGNUM 6
88 #define HARD_CCR_REGNUM 7
89
90 /* 68HC12 page number register.
91 Note: to keep a compatibility with gcc register naming, we must
92 not have to rename FP and other soft registers. The page register
93 is a real hard register and must therefore be counted by gdbarch_num_regs.
94 For this it has the same number as Z register (which is not used). */
95 #define HARD_PAGE_REGNUM 8
96 #define M68HC11_LAST_HARD_REG (HARD_PAGE_REGNUM)
97
98 /* Z is replaced by X or Y by gcc during machine reorg.
99 ??? There is no way to get it and even know whether
100 it's in X or Y or in ZS. */
101 #define SOFT_Z_REGNUM 8
102
103 /* Soft registers. These registers are special. There are treated
104 like normal hard registers by gcc and gdb (ie, within dwarf2 info).
105 They are physically located in memory. */
106 #define SOFT_FP_REGNUM 9
107 #define SOFT_TMP_REGNUM 10
108 #define SOFT_ZS_REGNUM 11
109 #define SOFT_XY_REGNUM 12
110 #define SOFT_UNUSED_REGNUM 13
111 #define SOFT_D1_REGNUM 14
112 #define SOFT_D32_REGNUM (SOFT_D1_REGNUM+31)
113 #define M68HC11_MAX_SOFT_REGS 32
114
115 #define M68HC11_NUM_REGS (M68HC11_LAST_HARD_REG + 1)
116 #define M68HC11_NUM_PSEUDO_REGS (M68HC11_MAX_SOFT_REGS+5)
117 #define M68HC11_ALL_REGS (M68HC11_NUM_REGS+M68HC11_NUM_PSEUDO_REGS)
118
119 #define M68HC11_REG_SIZE (2)
120
121 #define M68HC12_NUM_REGS (9)
122 #define M68HC12_NUM_PSEUDO_REGS ((M68HC11_MAX_SOFT_REGS+5)+1-1)
123 #define M68HC12_HARD_PC_REGNUM (SOFT_D32_REGNUM+1)
124
125 struct insn_sequence;
126 struct gdbarch_tdep
127 {
128 /* Stack pointer correction value. For 68hc11, the stack pointer points
129 to the next push location. An offset of 1 must be applied to obtain
130 the address where the last value is saved. For 68hc12, the stack
131 pointer points to the last value pushed. No offset is necessary. */
132 int stack_correction;
133
134 /* Description of instructions in the prologue. */
135 struct insn_sequence *prologue;
136
137 /* True if the page memory bank register is available
138 and must be used. */
139 int use_page_register;
140
141 /* ELF flags for ABI. */
142 int elf_flags;
143 };
144
145 #define STACK_CORRECTION(gdbarch) (gdbarch_tdep (gdbarch)->stack_correction)
146 #define USE_PAGE_REGISTER(gdbarch) (gdbarch_tdep (gdbarch)->use_page_register)
147
148 struct m68hc11_unwind_cache
149 {
150 /* The previous frame's inner most stack address. Used as this
151 frame ID's stack_addr. */
152 CORE_ADDR prev_sp;
153 /* The frame's base, optionally used by the high-level debug info. */
154 CORE_ADDR base;
155 CORE_ADDR pc;
156 int size;
157 int prologue_type;
158 CORE_ADDR return_pc;
159 CORE_ADDR sp_offset;
160 int frameless;
161 enum insn_return_kind return_kind;
162
163 /* Table indicating the location of each and every register. */
164 struct trad_frame_saved_reg *saved_regs;
165 };
166
167 /* Table of registers for 68HC11. This includes the hard registers
168 and the soft registers used by GCC. */
169 static const char *
170 m68hc11_register_names[] =
171 {
172 "x", "d", "y", "sp", "pc", "a", "b",
173 "ccr", "page", "frame","tmp", "zs", "xy", 0,
174 "d1", "d2", "d3", "d4", "d5", "d6", "d7",
175 "d8", "d9", "d10", "d11", "d12", "d13", "d14",
176 "d15", "d16", "d17", "d18", "d19", "d20", "d21",
177 "d22", "d23", "d24", "d25", "d26", "d27", "d28",
178 "d29", "d30", "d31", "d32"
179 };
180
181 struct m68hc11_soft_reg
182 {
183 const char *name;
184 CORE_ADDR addr;
185 };
186
187 static struct m68hc11_soft_reg soft_regs[M68HC11_ALL_REGS];
188
189 #define M68HC11_FP_ADDR soft_regs[SOFT_FP_REGNUM].addr
190
191 static int soft_min_addr;
192 static int soft_max_addr;
193 static int soft_reg_initialized = 0;
194
195 /* Look in the symbol table for the address of a pseudo register
196 in memory. If we don't find it, pretend the register is not used
197 and not available. */
198 static void
199 m68hc11_get_register_info (struct m68hc11_soft_reg *reg, const char *name)
200 {
201 struct bound_minimal_symbol msymbol;
202
203 msymbol = lookup_minimal_symbol (name, NULL, NULL);
204 if (msymbol.minsym)
205 {
206 reg->addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
207 reg->name = xstrdup (name);
208
209 /* Keep track of the address range for soft registers. */
210 if (reg->addr < (CORE_ADDR) soft_min_addr)
211 soft_min_addr = reg->addr;
212 if (reg->addr > (CORE_ADDR) soft_max_addr)
213 soft_max_addr = reg->addr;
214 }
215 else
216 {
217 reg->name = 0;
218 reg->addr = 0;
219 }
220 }
221
222 /* Initialize the table of soft register addresses according
223 to the symbol table. */
224 static void
225 m68hc11_initialize_register_info (void)
226 {
227 int i;
228
229 if (soft_reg_initialized)
230 return;
231
232 soft_min_addr = INT_MAX;
233 soft_max_addr = 0;
234 for (i = 0; i < M68HC11_ALL_REGS; i++)
235 {
236 soft_regs[i].name = 0;
237 }
238
239 m68hc11_get_register_info (&soft_regs[SOFT_FP_REGNUM], "_.frame");
240 m68hc11_get_register_info (&soft_regs[SOFT_TMP_REGNUM], "_.tmp");
241 m68hc11_get_register_info (&soft_regs[SOFT_ZS_REGNUM], "_.z");
242 soft_regs[SOFT_Z_REGNUM] = soft_regs[SOFT_ZS_REGNUM];
243 m68hc11_get_register_info (&soft_regs[SOFT_XY_REGNUM], "_.xy");
244
245 for (i = SOFT_D1_REGNUM; i < M68HC11_MAX_SOFT_REGS; i++)
246 {
247 char buf[10];
248
249 xsnprintf (buf, sizeof (buf), "_.d%d", i - SOFT_D1_REGNUM + 1);
250 m68hc11_get_register_info (&soft_regs[i], buf);
251 }
252
253 if (soft_regs[SOFT_FP_REGNUM].name == 0)
254 warning (_("No frame soft register found in the symbol table.\n"
255 "Stack backtrace will not work."));
256 soft_reg_initialized = 1;
257 }
258
259 /* Given an address in memory, return the soft register number if
260 that address corresponds to a soft register. Returns -1 if not. */
261 static int
262 m68hc11_which_soft_register (CORE_ADDR addr)
263 {
264 int i;
265
266 if (addr < soft_min_addr || addr > soft_max_addr)
267 return -1;
268
269 for (i = SOFT_FP_REGNUM; i < M68HC11_ALL_REGS; i++)
270 {
271 if (soft_regs[i].name && soft_regs[i].addr == addr)
272 return i;
273 }
274 return -1;
275 }
276
277 /* Fetch a pseudo register. The 68hc11 soft registers are treated like
278 pseudo registers. They are located in memory. Translate the register
279 fetch into a memory read. */
280 static enum register_status
281 m68hc11_pseudo_register_read (struct gdbarch *gdbarch,
282 readable_regcache *regcache,
283 int regno, gdb_byte *buf)
284 {
285 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
286
287 /* The PC is a pseudo reg only for 68HC12 with the memory bank
288 addressing mode. */
289 if (regno == M68HC12_HARD_PC_REGNUM)
290 {
291 ULONGEST pc;
292 const int regsize = 4;
293 enum register_status status;
294
295 status = regcache->cooked_read (HARD_PC_REGNUM, &pc);
296 if (status != REG_VALID)
297 return status;
298 if (pc >= 0x8000 && pc < 0xc000)
299 {
300 ULONGEST page;
301
302 regcache->cooked_read (HARD_PAGE_REGNUM, &page);
303 pc -= 0x8000;
304 pc += (page << 14);
305 pc += 0x1000000;
306 }
307 store_unsigned_integer (buf, regsize, byte_order, pc);
308 return REG_VALID;
309 }
310
311 m68hc11_initialize_register_info ();
312
313 /* Fetch a soft register: translate into a memory read. */
314 if (soft_regs[regno].name)
315 {
316 target_read_memory (soft_regs[regno].addr, buf, 2);
317 }
318 else
319 {
320 memset (buf, 0, 2);
321 }
322
323 return REG_VALID;
324 }
325
326 /* Store a pseudo register. Translate the register store
327 into a memory write. */
328 static void
329 m68hc11_pseudo_register_write (struct gdbarch *gdbarch,
330 struct regcache *regcache,
331 int regno, const gdb_byte *buf)
332 {
333 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
334
335 /* The PC is a pseudo reg only for 68HC12 with the memory bank
336 addressing mode. */
337 if (regno == M68HC12_HARD_PC_REGNUM)
338 {
339 const int regsize = 4;
340 gdb_byte *tmp = (gdb_byte *) alloca (regsize);
341 CORE_ADDR pc;
342
343 memcpy (tmp, buf, regsize);
344 pc = extract_unsigned_integer (tmp, regsize, byte_order);
345 if (pc >= 0x1000000)
346 {
347 pc -= 0x1000000;
348 regcache_cooked_write_unsigned (regcache, HARD_PAGE_REGNUM,
349 (pc >> 14) & 0x0ff);
350 pc &= 0x03fff;
351 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM,
352 pc + 0x8000);
353 }
354 else
355 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM, pc);
356 return;
357 }
358
359 m68hc11_initialize_register_info ();
360
361 /* Store a soft register: translate into a memory write. */
362 if (soft_regs[regno].name)
363 {
364 const int regsize = 2;
365 gdb_byte *tmp = (gdb_byte *) alloca (regsize);
366 memcpy (tmp, buf, regsize);
367 target_write_memory (soft_regs[regno].addr, tmp, regsize);
368 }
369 }
370
371 static const char *
372 m68hc11_register_name (struct gdbarch *gdbarch, int reg_nr)
373 {
374 if (reg_nr == M68HC12_HARD_PC_REGNUM && USE_PAGE_REGISTER (gdbarch))
375 return "pc";
376 if (reg_nr == HARD_PC_REGNUM && USE_PAGE_REGISTER (gdbarch))
377 return "ppc";
378
379 if (reg_nr < 0)
380 return NULL;
381 if (reg_nr >= M68HC11_ALL_REGS)
382 return NULL;
383
384 m68hc11_initialize_register_info ();
385
386 /* If we don't know the address of a soft register, pretend it
387 does not exist. */
388 if (reg_nr > M68HC11_LAST_HARD_REG && soft_regs[reg_nr].name == 0)
389 return NULL;
390 return m68hc11_register_names[reg_nr];
391 }
392
393 constexpr gdb_byte m68hc11_break_insn[] = {0x0};
394
395 typedef BP_MANIPULATION (m68hc11_break_insn) m68hc11_breakpoint;
396 \f
397 /* 68HC11 & 68HC12 prologue analysis. */
398
399 #define MAX_CODES 12
400
401 /* 68HC11 opcodes. */
402 #undef M6811_OP_PAGE2
403 #define M6811_OP_PAGE2 (0x18)
404 #define M6811_OP_LDX (0xde)
405 #define M6811_OP_LDX_EXT (0xfe)
406 #define M6811_OP_PSHX (0x3c)
407 #define M6811_OP_STS (0x9f)
408 #define M6811_OP_STS_EXT (0xbf)
409 #define M6811_OP_TSX (0x30)
410 #define M6811_OP_XGDX (0x8f)
411 #define M6811_OP_ADDD (0xc3)
412 #define M6811_OP_TXS (0x35)
413 #define M6811_OP_DES (0x34)
414
415 /* 68HC12 opcodes. */
416 #define M6812_OP_PAGE2 (0x18)
417 #define M6812_OP_MOVW (0x01)
418 #define M6812_PB_PSHW (0xae)
419 #define M6812_OP_STS (0x5f)
420 #define M6812_OP_STS_EXT (0x7f)
421 #define M6812_OP_LEAS (0x1b)
422 #define M6812_OP_PSHX (0x34)
423 #define M6812_OP_PSHY (0x35)
424
425 /* Operand extraction. */
426 #define OP_DIRECT (0x100) /* 8-byte direct addressing. */
427 #define OP_IMM_LOW (0x200) /* Low part of 16-bit constant/address. */
428 #define OP_IMM_HIGH (0x300) /* High part of 16-bit constant/address. */
429 #define OP_PBYTE (0x400) /* 68HC12 indexed operand. */
430
431 /* Identification of the sequence. */
432 enum m6811_seq_type
433 {
434 P_LAST = 0,
435 P_SAVE_REG, /* Save a register on the stack. */
436 P_SET_FRAME, /* Setup the frame pointer. */
437 P_LOCAL_1, /* Allocate 1 byte for locals. */
438 P_LOCAL_2, /* Allocate 2 bytes for locals. */
439 P_LOCAL_N /* Allocate N bytes for locals. */
440 };
441
442 struct insn_sequence {
443 enum m6811_seq_type type;
444 unsigned length;
445 unsigned short code[MAX_CODES];
446 };
447
448 /* Sequence of instructions in the 68HC11 function prologue. */
449 static struct insn_sequence m6811_prologue[] = {
450 /* Sequences to save a soft-register. */
451 { P_SAVE_REG, 3, { M6811_OP_LDX, OP_DIRECT,
452 M6811_OP_PSHX } },
453 { P_SAVE_REG, 5, { M6811_OP_PAGE2, M6811_OP_LDX, OP_DIRECT,
454 M6811_OP_PAGE2, M6811_OP_PSHX } },
455 { P_SAVE_REG, 4, { M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
456 M6811_OP_PSHX } },
457 { P_SAVE_REG, 6, { M6811_OP_PAGE2, M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
458 M6811_OP_PAGE2, M6811_OP_PSHX } },
459
460 /* Sequences to allocate local variables. */
461 { P_LOCAL_N, 7, { M6811_OP_TSX,
462 M6811_OP_XGDX,
463 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
464 M6811_OP_XGDX,
465 M6811_OP_TXS } },
466 { P_LOCAL_N, 11, { M6811_OP_PAGE2, M6811_OP_TSX,
467 M6811_OP_PAGE2, M6811_OP_XGDX,
468 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
469 M6811_OP_PAGE2, M6811_OP_XGDX,
470 M6811_OP_PAGE2, M6811_OP_TXS } },
471 { P_LOCAL_1, 1, { M6811_OP_DES } },
472 { P_LOCAL_2, 1, { M6811_OP_PSHX } },
473 { P_LOCAL_2, 2, { M6811_OP_PAGE2, M6811_OP_PSHX } },
474
475 /* Initialize the frame pointer. */
476 { P_SET_FRAME, 2, { M6811_OP_STS, OP_DIRECT } },
477 { P_SET_FRAME, 3, { M6811_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
478 { P_LAST, 0, { 0 } }
479 };
480
481
482 /* Sequence of instructions in the 68HC12 function prologue. */
483 static struct insn_sequence m6812_prologue[] = {
484 { P_SAVE_REG, 5, { M6812_OP_PAGE2, M6812_OP_MOVW, M6812_PB_PSHW,
485 OP_IMM_HIGH, OP_IMM_LOW } },
486 { P_SET_FRAME, 2, { M6812_OP_STS, OP_DIRECT } },
487 { P_SET_FRAME, 3, { M6812_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
488 { P_LOCAL_N, 2, { M6812_OP_LEAS, OP_PBYTE } },
489 { P_LOCAL_2, 1, { M6812_OP_PSHX } },
490 { P_LOCAL_2, 1, { M6812_OP_PSHY } },
491 { P_LAST, 0 }
492 };
493
494
495 /* Analyze the sequence of instructions starting at the given address.
496 Returns a pointer to the sequence when it is recognized and
497 the optional value (constant/address) associated with it. */
498 static struct insn_sequence *
499 m68hc11_analyze_instruction (struct gdbarch *gdbarch,
500 struct insn_sequence *seq, CORE_ADDR pc,
501 CORE_ADDR *val)
502 {
503 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
504 unsigned char buffer[MAX_CODES];
505 unsigned bufsize;
506 unsigned j;
507 CORE_ADDR cur_val;
508 short v = 0;
509
510 bufsize = 0;
511 for (; seq->type != P_LAST; seq++)
512 {
513 cur_val = 0;
514 for (j = 0; j < seq->length; j++)
515 {
516 if (bufsize < j + 1)
517 {
518 buffer[bufsize] = read_memory_unsigned_integer (pc + bufsize,
519 1, byte_order);
520 bufsize++;
521 }
522 /* Continue while we match the opcode. */
523 if (seq->code[j] == buffer[j])
524 continue;
525
526 if ((seq->code[j] & 0xf00) == 0)
527 break;
528
529 /* Extract a sequence parameter (address or constant). */
530 switch (seq->code[j])
531 {
532 case OP_DIRECT:
533 cur_val = (CORE_ADDR) buffer[j];
534 break;
535
536 case OP_IMM_HIGH:
537 cur_val = cur_val & 0x0ff;
538 cur_val |= (buffer[j] << 8);
539 break;
540
541 case OP_IMM_LOW:
542 cur_val &= 0x0ff00;
543 cur_val |= buffer[j];
544 break;
545
546 case OP_PBYTE:
547 if ((buffer[j] & 0xE0) == 0x80)
548 {
549 v = buffer[j] & 0x1f;
550 if (v & 0x10)
551 v |= 0xfff0;
552 }
553 else if ((buffer[j] & 0xfe) == 0xf0)
554 {
555 v = read_memory_unsigned_integer (pc + j + 1, 1, byte_order);
556 if (buffer[j] & 1)
557 v |= 0xff00;
558 }
559 else if (buffer[j] == 0xf2)
560 {
561 v = read_memory_unsigned_integer (pc + j + 1, 2, byte_order);
562 }
563 cur_val = v;
564 break;
565 }
566 }
567
568 /* We have a full match. */
569 if (j == seq->length)
570 {
571 *val = cur_val;
572 return seq;
573 }
574 }
575 return 0;
576 }
577
578 /* Return the instruction that the function at the PC is using. */
579 static enum insn_return_kind
580 m68hc11_get_return_insn (CORE_ADDR pc)
581 {
582 struct bound_minimal_symbol sym;
583
584 /* A flag indicating that this is a STO_M68HC12_FAR or STO_M68HC12_INTERRUPT
585 function is stored by elfread.c in the high bit of the info field.
586 Use this to decide which instruction the function uses to return. */
587 sym = lookup_minimal_symbol_by_pc (pc);
588 if (sym.minsym == 0)
589 return RETURN_RTS;
590
591 if (MSYMBOL_IS_RTC (sym.minsym))
592 return RETURN_RTC;
593 else if (MSYMBOL_IS_RTI (sym.minsym))
594 return RETURN_RTI;
595 else
596 return RETURN_RTS;
597 }
598
599 /* Analyze the function prologue to find some information
600 about the function:
601 - the PC of the first line (for m68hc11_skip_prologue)
602 - the offset of the previous frame saved address (from current frame)
603 - the soft registers which are pushed. */
604 static CORE_ADDR
605 m68hc11_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
606 CORE_ADDR current_pc, struct m68hc11_unwind_cache *info)
607 {
608 LONGEST save_addr;
609 CORE_ADDR func_end;
610 int size;
611 int found_frame_point;
612 int saved_reg;
613 int done = 0;
614 struct insn_sequence *seq_table;
615
616 info->size = 0;
617 info->sp_offset = 0;
618 if (pc >= current_pc)
619 return current_pc;
620
621 size = 0;
622
623 m68hc11_initialize_register_info ();
624 if (pc == 0)
625 {
626 info->size = 0;
627 return pc;
628 }
629
630 seq_table = gdbarch_tdep (gdbarch)->prologue;
631
632 /* The 68hc11 stack is as follows:
633
634
635 | |
636 +-----------+
637 | |
638 | args |
639 | |
640 +-----------+
641 | PC-return |
642 +-----------+
643 | Old frame |
644 +-----------+
645 | |
646 | Locals |
647 | |
648 +-----------+ <--- current frame
649 | |
650
651 With most processors (like 68K) the previous frame can be computed
652 easily because it is always at a fixed offset (see link/unlink).
653 That is, locals are accessed with negative offsets, arguments are
654 accessed with positive ones. Since 68hc11 only supports offsets
655 in the range [0..255], the frame is defined at the bottom of
656 locals (see picture).
657
658 The purpose of the analysis made here is to find out the size
659 of locals in this function. An alternative to this is to use
660 DWARF2 info. This would be better but I don't know how to
661 access dwarf2 debug from this function.
662
663 Walk from the function entry point to the point where we save
664 the frame. While walking instructions, compute the size of bytes
665 which are pushed. This gives us the index to access the previous
666 frame.
667
668 We limit the search to 128 bytes so that the algorithm is bounded
669 in case of random and wrong code. We also stop and abort if
670 we find an instruction which is not supposed to appear in the
671 prologue (as generated by gcc 2.95, 2.96). */
672
673 func_end = pc + 128;
674 found_frame_point = 0;
675 info->size = 0;
676 save_addr = 0;
677 while (!done && pc + 2 < func_end)
678 {
679 struct insn_sequence *seq;
680 CORE_ADDR val;
681
682 seq = m68hc11_analyze_instruction (gdbarch, seq_table, pc, &val);
683 if (seq == 0)
684 break;
685
686 /* If we are within the instruction group, we can't advance the
687 pc nor the stack offset. Otherwise the caller's stack computed
688 from the current stack can be wrong. */
689 if (pc + seq->length > current_pc)
690 break;
691
692 pc = pc + seq->length;
693 if (seq->type == P_SAVE_REG)
694 {
695 if (found_frame_point)
696 {
697 saved_reg = m68hc11_which_soft_register (val);
698 if (saved_reg < 0)
699 break;
700
701 save_addr -= 2;
702 if (info->saved_regs)
703 info->saved_regs[saved_reg].addr = save_addr;
704 }
705 else
706 {
707 size += 2;
708 }
709 }
710 else if (seq->type == P_SET_FRAME)
711 {
712 found_frame_point = 1;
713 info->size = size;
714 }
715 else if (seq->type == P_LOCAL_1)
716 {
717 size += 1;
718 }
719 else if (seq->type == P_LOCAL_2)
720 {
721 size += 2;
722 }
723 else if (seq->type == P_LOCAL_N)
724 {
725 /* Stack pointer is decremented for the allocation. */
726 if (val & 0x8000)
727 size -= (int) (val) | 0xffff0000;
728 else
729 size -= val;
730 }
731 }
732 if (found_frame_point == 0)
733 info->sp_offset = size;
734 else
735 info->sp_offset = -1;
736 return pc;
737 }
738
739 static CORE_ADDR
740 m68hc11_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
741 {
742 CORE_ADDR func_addr, func_end;
743 struct symtab_and_line sal;
744 struct m68hc11_unwind_cache tmp_cache = { 0 };
745
746 /* If we have line debugging information, then the end of the
747 prologue should be the first assembly instruction of the
748 first source line. */
749 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
750 {
751 sal = find_pc_line (func_addr, 0);
752 if (sal.end && sal.end < func_end)
753 return sal.end;
754 }
755
756 pc = m68hc11_scan_prologue (gdbarch, pc, (CORE_ADDR) -1, &tmp_cache);
757 return pc;
758 }
759
760 /* Put here the code to store, into fi->saved_regs, the addresses of
761 the saved registers of frame described by FRAME_INFO. This
762 includes special registers such as pc and fp saved in special ways
763 in the stack frame. sp is even more special: the address we return
764 for it IS the sp for the next frame. */
765
766 static struct m68hc11_unwind_cache *
767 m68hc11_frame_unwind_cache (struct frame_info *this_frame,
768 void **this_prologue_cache)
769 {
770 struct gdbarch *gdbarch = get_frame_arch (this_frame);
771 ULONGEST prev_sp;
772 ULONGEST this_base;
773 struct m68hc11_unwind_cache *info;
774 CORE_ADDR current_pc;
775 int i;
776
777 if ((*this_prologue_cache))
778 return (struct m68hc11_unwind_cache *) (*this_prologue_cache);
779
780 info = FRAME_OBSTACK_ZALLOC (struct m68hc11_unwind_cache);
781 (*this_prologue_cache) = info;
782 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
783
784 info->pc = get_frame_func (this_frame);
785
786 info->size = 0;
787 info->return_kind = m68hc11_get_return_insn (info->pc);
788
789 /* The SP was moved to the FP. This indicates that a new frame
790 was created. Get THIS frame's FP value by unwinding it from
791 the next frame. */
792 this_base = get_frame_register_unsigned (this_frame, SOFT_FP_REGNUM);
793 if (this_base == 0)
794 {
795 info->base = 0;
796 return info;
797 }
798
799 current_pc = get_frame_pc (this_frame);
800 if (info->pc != 0)
801 m68hc11_scan_prologue (gdbarch, info->pc, current_pc, info);
802
803 info->saved_regs[HARD_PC_REGNUM].addr = info->size;
804
805 if (info->sp_offset != (CORE_ADDR) -1)
806 {
807 info->saved_regs[HARD_PC_REGNUM].addr = info->sp_offset;
808 this_base = get_frame_register_unsigned (this_frame, HARD_SP_REGNUM);
809 prev_sp = this_base + info->sp_offset + 2;
810 this_base += STACK_CORRECTION (gdbarch);
811 }
812 else
813 {
814 /* The FP points at the last saved register. Adjust the FP back
815 to before the first saved register giving the SP. */
816 prev_sp = this_base + info->size + 2;
817
818 this_base += STACK_CORRECTION (gdbarch);
819 if (soft_regs[SOFT_FP_REGNUM].name)
820 info->saved_regs[SOFT_FP_REGNUM].addr = info->size - 2;
821 }
822
823 if (info->return_kind == RETURN_RTC)
824 {
825 prev_sp += 1;
826 info->saved_regs[HARD_PAGE_REGNUM].addr = info->size;
827 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 1;
828 }
829 else if (info->return_kind == RETURN_RTI)
830 {
831 prev_sp += 7;
832 info->saved_regs[HARD_CCR_REGNUM].addr = info->size;
833 info->saved_regs[HARD_D_REGNUM].addr = info->size + 1;
834 info->saved_regs[HARD_X_REGNUM].addr = info->size + 3;
835 info->saved_regs[HARD_Y_REGNUM].addr = info->size + 5;
836 info->saved_regs[HARD_PC_REGNUM].addr = info->size + 7;
837 }
838
839 /* Add 1 here to adjust for the post-decrement nature of the push
840 instruction. */
841 info->prev_sp = prev_sp;
842
843 info->base = this_base;
844
845 /* Adjust all the saved registers so that they contain addresses and not
846 offsets. */
847 for (i = 0; i < gdbarch_num_cooked_regs (gdbarch); i++)
848 if (trad_frame_addr_p (info->saved_regs, i))
849 {
850 info->saved_regs[i].addr += this_base;
851 }
852
853 /* The previous frame's SP needed to be computed. Save the computed
854 value. */
855 trad_frame_set_value (info->saved_regs, HARD_SP_REGNUM, info->prev_sp);
856
857 return info;
858 }
859
860 /* Given a GDB frame, determine the address of the calling function's
861 frame. This will be used to create a new GDB frame struct. */
862
863 static void
864 m68hc11_frame_this_id (struct frame_info *this_frame,
865 void **this_prologue_cache,
866 struct frame_id *this_id)
867 {
868 struct m68hc11_unwind_cache *info
869 = m68hc11_frame_unwind_cache (this_frame, this_prologue_cache);
870 CORE_ADDR base;
871 CORE_ADDR func;
872 struct frame_id id;
873
874 /* The FUNC is easy. */
875 func = get_frame_func (this_frame);
876
877 /* Hopefully the prologue analysis either correctly determined the
878 frame's base (which is the SP from the previous frame), or set
879 that base to "NULL". */
880 base = info->prev_sp;
881 if (base == 0)
882 return;
883
884 id = frame_id_build (base, func);
885 (*this_id) = id;
886 }
887
888 static struct value *
889 m68hc11_frame_prev_register (struct frame_info *this_frame,
890 void **this_prologue_cache, int regnum)
891 {
892 struct value *value;
893 struct m68hc11_unwind_cache *info
894 = m68hc11_frame_unwind_cache (this_frame, this_prologue_cache);
895
896 value = trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
897
898 /* Take into account the 68HC12 specific call (PC + page). */
899 if (regnum == HARD_PC_REGNUM
900 && info->return_kind == RETURN_RTC
901 && USE_PAGE_REGISTER (get_frame_arch (this_frame)))
902 {
903 CORE_ADDR pc = value_as_long (value);
904 if (pc >= 0x08000 && pc < 0x0c000)
905 {
906 CORE_ADDR page;
907
908 release_value (value);
909
910 value = trad_frame_get_prev_register (this_frame, info->saved_regs,
911 HARD_PAGE_REGNUM);
912 page = value_as_long (value);
913 release_value (value);
914
915 pc -= 0x08000;
916 pc += ((page & 0x0ff) << 14);
917 pc += 0x1000000;
918
919 return frame_unwind_got_constant (this_frame, regnum, pc);
920 }
921 }
922
923 return value;
924 }
925
926 static const struct frame_unwind m68hc11_frame_unwind = {
927 NORMAL_FRAME,
928 default_frame_unwind_stop_reason,
929 m68hc11_frame_this_id,
930 m68hc11_frame_prev_register,
931 NULL,
932 default_frame_sniffer
933 };
934
935 static CORE_ADDR
936 m68hc11_frame_base_address (struct frame_info *this_frame, void **this_cache)
937 {
938 struct m68hc11_unwind_cache *info
939 = m68hc11_frame_unwind_cache (this_frame, this_cache);
940
941 return info->base;
942 }
943
944 static CORE_ADDR
945 m68hc11_frame_args_address (struct frame_info *this_frame, void **this_cache)
946 {
947 CORE_ADDR addr;
948 struct m68hc11_unwind_cache *info
949 = m68hc11_frame_unwind_cache (this_frame, this_cache);
950
951 addr = info->base + info->size;
952 if (info->return_kind == RETURN_RTC)
953 addr += 1;
954 else if (info->return_kind == RETURN_RTI)
955 addr += 7;
956
957 return addr;
958 }
959
960 static const struct frame_base m68hc11_frame_base = {
961 &m68hc11_frame_unwind,
962 m68hc11_frame_base_address,
963 m68hc11_frame_base_address,
964 m68hc11_frame_args_address
965 };
966
967 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
968 frame. The frame ID's base needs to match the TOS value saved by
969 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
970
971 static struct frame_id
972 m68hc11_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
973 {
974 ULONGEST tos;
975 CORE_ADDR pc = get_frame_pc (this_frame);
976
977 tos = get_frame_register_unsigned (this_frame, SOFT_FP_REGNUM);
978 tos += 2;
979 return frame_id_build (tos, pc);
980 }
981
982 \f
983 /* Get and print the register from the given frame. */
984 static void
985 m68hc11_print_register (struct gdbarch *gdbarch, struct ui_file *file,
986 struct frame_info *frame, int regno)
987 {
988 LONGEST rval;
989
990 if (regno == HARD_PC_REGNUM || regno == HARD_SP_REGNUM
991 || regno == SOFT_FP_REGNUM || regno == M68HC12_HARD_PC_REGNUM)
992 rval = get_frame_register_unsigned (frame, regno);
993 else
994 rval = get_frame_register_signed (frame, regno);
995
996 if (regno == HARD_A_REGNUM || regno == HARD_B_REGNUM
997 || regno == HARD_CCR_REGNUM || regno == HARD_PAGE_REGNUM)
998 {
999 fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
1000 if (regno != HARD_CCR_REGNUM)
1001 print_longest (file, 'd', 1, rval);
1002 }
1003 else
1004 {
1005 if (regno == HARD_PC_REGNUM && gdbarch_tdep (gdbarch)->use_page_register)
1006 {
1007 ULONGEST page;
1008
1009 page = get_frame_register_unsigned (frame, HARD_PAGE_REGNUM);
1010 fprintf_filtered (file, "0x%02x:%04x ", (unsigned) page,
1011 (unsigned) rval);
1012 }
1013 else
1014 {
1015 fprintf_filtered (file, "0x%04x ", (unsigned) rval);
1016 if (regno != HARD_PC_REGNUM && regno != HARD_SP_REGNUM
1017 && regno != SOFT_FP_REGNUM && regno != M68HC12_HARD_PC_REGNUM)
1018 print_longest (file, 'd', 1, rval);
1019 }
1020 }
1021
1022 if (regno == HARD_CCR_REGNUM)
1023 {
1024 /* CCR register */
1025 int C, Z, N, V;
1026 unsigned char l = rval & 0xff;
1027
1028 fprintf_filtered (file, "%c%c%c%c%c%c%c%c ",
1029 l & M6811_S_BIT ? 'S' : '-',
1030 l & M6811_X_BIT ? 'X' : '-',
1031 l & M6811_H_BIT ? 'H' : '-',
1032 l & M6811_I_BIT ? 'I' : '-',
1033 l & M6811_N_BIT ? 'N' : '-',
1034 l & M6811_Z_BIT ? 'Z' : '-',
1035 l & M6811_V_BIT ? 'V' : '-',
1036 l & M6811_C_BIT ? 'C' : '-');
1037 N = (l & M6811_N_BIT) != 0;
1038 Z = (l & M6811_Z_BIT) != 0;
1039 V = (l & M6811_V_BIT) != 0;
1040 C = (l & M6811_C_BIT) != 0;
1041
1042 /* Print flags following the h8300. */
1043 if ((C | Z) == 0)
1044 fprintf_filtered (file, "u> ");
1045 else if ((C | Z) == 1)
1046 fprintf_filtered (file, "u<= ");
1047 else if (C == 0)
1048 fprintf_filtered (file, "u< ");
1049
1050 if (Z == 0)
1051 fprintf_filtered (file, "!= ");
1052 else
1053 fprintf_filtered (file, "== ");
1054
1055 if ((N ^ V) == 0)
1056 fprintf_filtered (file, ">= ");
1057 else
1058 fprintf_filtered (file, "< ");
1059
1060 if ((Z | (N ^ V)) == 0)
1061 fprintf_filtered (file, "> ");
1062 else
1063 fprintf_filtered (file, "<= ");
1064 }
1065 }
1066
1067 /* Same as 'info reg' but prints the registers in a different way. */
1068 static void
1069 m68hc11_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1070 struct frame_info *frame, int regno, int cpregs)
1071 {
1072 if (regno >= 0)
1073 {
1074 const char *name = gdbarch_register_name (gdbarch, regno);
1075
1076 if (!name || !*name)
1077 return;
1078
1079 fprintf_filtered (file, "%-10s ", name);
1080 m68hc11_print_register (gdbarch, file, frame, regno);
1081 fprintf_filtered (file, "\n");
1082 }
1083 else
1084 {
1085 int i, nr;
1086
1087 fprintf_filtered (file, "PC=");
1088 m68hc11_print_register (gdbarch, file, frame, HARD_PC_REGNUM);
1089
1090 fprintf_filtered (file, " SP=");
1091 m68hc11_print_register (gdbarch, file, frame, HARD_SP_REGNUM);
1092
1093 fprintf_filtered (file, " FP=");
1094 m68hc11_print_register (gdbarch, file, frame, SOFT_FP_REGNUM);
1095
1096 fprintf_filtered (file, "\nCCR=");
1097 m68hc11_print_register (gdbarch, file, frame, HARD_CCR_REGNUM);
1098
1099 fprintf_filtered (file, "\nD=");
1100 m68hc11_print_register (gdbarch, file, frame, HARD_D_REGNUM);
1101
1102 fprintf_filtered (file, " X=");
1103 m68hc11_print_register (gdbarch, file, frame, HARD_X_REGNUM);
1104
1105 fprintf_filtered (file, " Y=");
1106 m68hc11_print_register (gdbarch, file, frame, HARD_Y_REGNUM);
1107
1108 if (gdbarch_tdep (gdbarch)->use_page_register)
1109 {
1110 fprintf_filtered (file, "\nPage=");
1111 m68hc11_print_register (gdbarch, file, frame, HARD_PAGE_REGNUM);
1112 }
1113 fprintf_filtered (file, "\n");
1114
1115 nr = 0;
1116 for (i = SOFT_D1_REGNUM; i < M68HC11_ALL_REGS; i++)
1117 {
1118 /* Skip registers which are not defined in the symbol table. */
1119 if (soft_regs[i].name == 0)
1120 continue;
1121
1122 fprintf_filtered (file, "D%d=", i - SOFT_D1_REGNUM + 1);
1123 m68hc11_print_register (gdbarch, file, frame, i);
1124 nr++;
1125 if ((nr % 8) == 7)
1126 fprintf_filtered (file, "\n");
1127 else
1128 fprintf_filtered (file, " ");
1129 }
1130 if (nr && (nr % 8) != 7)
1131 fprintf_filtered (file, "\n");
1132 }
1133 }
1134
1135 static CORE_ADDR
1136 m68hc11_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1137 struct regcache *regcache, CORE_ADDR bp_addr,
1138 int nargs, struct value **args, CORE_ADDR sp,
1139 function_call_return_method return_method,
1140 CORE_ADDR struct_addr)
1141 {
1142 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1143 int argnum;
1144 int first_stack_argnum;
1145 struct type *type;
1146 const gdb_byte *val;
1147 gdb_byte buf[2];
1148
1149 first_stack_argnum = 0;
1150 if (return_method == return_method_struct)
1151 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, struct_addr);
1152 else if (nargs > 0)
1153 {
1154 type = value_type (args[0]);
1155
1156 /* First argument is passed in D and X registers. */
1157 if (TYPE_LENGTH (type) <= 4)
1158 {
1159 ULONGEST v;
1160
1161 v = extract_unsigned_integer (value_contents (args[0]),
1162 TYPE_LENGTH (type), byte_order);
1163 first_stack_argnum = 1;
1164
1165 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, v);
1166 if (TYPE_LENGTH (type) > 2)
1167 {
1168 v >>= 16;
1169 regcache_cooked_write_unsigned (regcache, HARD_X_REGNUM, v);
1170 }
1171 }
1172 }
1173
1174 for (argnum = nargs - 1; argnum >= first_stack_argnum; argnum--)
1175 {
1176 type = value_type (args[argnum]);
1177
1178 if (TYPE_LENGTH (type) & 1)
1179 {
1180 static gdb_byte zero = 0;
1181
1182 sp--;
1183 write_memory (sp, &zero, 1);
1184 }
1185 val = value_contents (args[argnum]);
1186 sp -= TYPE_LENGTH (type);
1187 write_memory (sp, val, TYPE_LENGTH (type));
1188 }
1189
1190 /* Store return address. */
1191 sp -= 2;
1192 store_unsigned_integer (buf, 2, byte_order, bp_addr);
1193 write_memory (sp, buf, 2);
1194
1195 /* Finally, update the stack pointer... */
1196 sp -= STACK_CORRECTION (gdbarch);
1197 regcache_cooked_write_unsigned (regcache, HARD_SP_REGNUM, sp);
1198
1199 /* ...and fake a frame pointer. */
1200 regcache_cooked_write_unsigned (regcache, SOFT_FP_REGNUM, sp);
1201
1202 /* DWARF2/GCC uses the stack address *before* the function call as a
1203 frame's CFA. */
1204 return sp + 2;
1205 }
1206
1207
1208 /* Return the GDB type object for the "standard" data type
1209 of data in register N. */
1210
1211 static struct type *
1212 m68hc11_register_type (struct gdbarch *gdbarch, int reg_nr)
1213 {
1214 switch (reg_nr)
1215 {
1216 case HARD_PAGE_REGNUM:
1217 case HARD_A_REGNUM:
1218 case HARD_B_REGNUM:
1219 case HARD_CCR_REGNUM:
1220 return builtin_type (gdbarch)->builtin_uint8;
1221
1222 case M68HC12_HARD_PC_REGNUM:
1223 return builtin_type (gdbarch)->builtin_uint32;
1224
1225 default:
1226 return builtin_type (gdbarch)->builtin_uint16;
1227 }
1228 }
1229
1230 static void
1231 m68hc11_store_return_value (struct type *type, struct regcache *regcache,
1232 const gdb_byte *valbuf)
1233 {
1234 int len;
1235
1236 len = TYPE_LENGTH (type);
1237
1238 /* First argument is passed in D and X registers. */
1239 if (len <= 2)
1240 regcache->raw_write_part (HARD_D_REGNUM, 2 - len, len, valbuf);
1241 else if (len <= 4)
1242 {
1243 regcache->raw_write_part (HARD_X_REGNUM, 4 - len, len - 2, valbuf);
1244 regcache->raw_write (HARD_D_REGNUM, valbuf + (len - 2));
1245 }
1246 else
1247 error (_("return of value > 4 is not supported."));
1248 }
1249
1250
1251 /* Given a return value in `regcache' with a type `type',
1252 extract and copy its value into `valbuf'. */
1253
1254 static void
1255 m68hc11_extract_return_value (struct type *type, struct regcache *regcache,
1256 void *valbuf)
1257 {
1258 gdb_byte buf[M68HC11_REG_SIZE];
1259
1260 regcache->raw_read (HARD_D_REGNUM, buf);
1261 switch (TYPE_LENGTH (type))
1262 {
1263 case 1:
1264 memcpy (valbuf, buf + 1, 1);
1265 break;
1266
1267 case 2:
1268 memcpy (valbuf, buf, 2);
1269 break;
1270
1271 case 3:
1272 memcpy ((char*) valbuf + 1, buf, 2);
1273 regcache->raw_read (HARD_X_REGNUM, buf);
1274 memcpy (valbuf, buf + 1, 1);
1275 break;
1276
1277 case 4:
1278 memcpy ((char*) valbuf + 2, buf, 2);
1279 regcache->raw_read (HARD_X_REGNUM, buf);
1280 memcpy (valbuf, buf, 2);
1281 break;
1282
1283 default:
1284 error (_("bad size for return value"));
1285 }
1286 }
1287
1288 static enum return_value_convention
1289 m68hc11_return_value (struct gdbarch *gdbarch, struct value *function,
1290 struct type *valtype, struct regcache *regcache,
1291 gdb_byte *readbuf, const gdb_byte *writebuf)
1292 {
1293 if (valtype->code () == TYPE_CODE_STRUCT
1294 || valtype->code () == TYPE_CODE_UNION
1295 || valtype->code () == TYPE_CODE_ARRAY
1296 || TYPE_LENGTH (valtype) > 4)
1297 return RETURN_VALUE_STRUCT_CONVENTION;
1298 else
1299 {
1300 if (readbuf != NULL)
1301 m68hc11_extract_return_value (valtype, regcache, readbuf);
1302 if (writebuf != NULL)
1303 m68hc11_store_return_value (valtype, regcache, writebuf);
1304 return RETURN_VALUE_REGISTER_CONVENTION;
1305 }
1306 }
1307
1308 /* Test whether the ELF symbol corresponds to a function using rtc or
1309 rti to return. */
1310
1311 static void
1312 m68hc11_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
1313 {
1314 unsigned char flags;
1315
1316 flags = ((elf_symbol_type *)sym)->internal_elf_sym.st_other;
1317 if (flags & STO_M68HC12_FAR)
1318 MSYMBOL_SET_RTC (msym);
1319 if (flags & STO_M68HC12_INTERRUPT)
1320 MSYMBOL_SET_RTI (msym);
1321 }
1322 \f
1323
1324 /* 68HC11/68HC12 register groups.
1325 Identify real hard registers and soft registers used by gcc. */
1326
1327 static struct reggroup *m68hc11_soft_reggroup;
1328 static struct reggroup *m68hc11_hard_reggroup;
1329
1330 static void
1331 m68hc11_init_reggroups (void)
1332 {
1333 m68hc11_hard_reggroup = reggroup_new ("hard", USER_REGGROUP);
1334 m68hc11_soft_reggroup = reggroup_new ("soft", USER_REGGROUP);
1335 }
1336
1337 static void
1338 m68hc11_add_reggroups (struct gdbarch *gdbarch)
1339 {
1340 reggroup_add (gdbarch, m68hc11_hard_reggroup);
1341 reggroup_add (gdbarch, m68hc11_soft_reggroup);
1342 reggroup_add (gdbarch, general_reggroup);
1343 reggroup_add (gdbarch, float_reggroup);
1344 reggroup_add (gdbarch, all_reggroup);
1345 reggroup_add (gdbarch, save_reggroup);
1346 reggroup_add (gdbarch, restore_reggroup);
1347 reggroup_add (gdbarch, vector_reggroup);
1348 reggroup_add (gdbarch, system_reggroup);
1349 }
1350
1351 static int
1352 m68hc11_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1353 struct reggroup *group)
1354 {
1355 /* We must save the real hard register as well as gcc
1356 soft registers including the frame pointer. */
1357 if (group == save_reggroup || group == restore_reggroup)
1358 {
1359 return (regnum <= gdbarch_num_regs (gdbarch)
1360 || ((regnum == SOFT_FP_REGNUM
1361 || regnum == SOFT_TMP_REGNUM
1362 || regnum == SOFT_ZS_REGNUM
1363 || regnum == SOFT_XY_REGNUM)
1364 && m68hc11_register_name (gdbarch, regnum)));
1365 }
1366
1367 /* Group to identify gcc soft registers (d1..dN). */
1368 if (group == m68hc11_soft_reggroup)
1369 {
1370 return regnum >= SOFT_D1_REGNUM
1371 && m68hc11_register_name (gdbarch, regnum);
1372 }
1373
1374 if (group == m68hc11_hard_reggroup)
1375 {
1376 return regnum == HARD_PC_REGNUM || regnum == HARD_SP_REGNUM
1377 || regnum == HARD_X_REGNUM || regnum == HARD_D_REGNUM
1378 || regnum == HARD_Y_REGNUM || regnum == HARD_CCR_REGNUM;
1379 }
1380 return default_register_reggroup_p (gdbarch, regnum, group);
1381 }
1382
1383 static struct gdbarch *
1384 m68hc11_gdbarch_init (struct gdbarch_info info,
1385 struct gdbarch_list *arches)
1386 {
1387 struct gdbarch *gdbarch;
1388 struct gdbarch_tdep *tdep;
1389 int elf_flags;
1390
1391 soft_reg_initialized = 0;
1392
1393 /* Extract the elf_flags if available. */
1394 if (info.abfd != NULL
1395 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1396 elf_flags = elf_elfheader (info.abfd)->e_flags;
1397 else
1398 elf_flags = 0;
1399
1400 /* Try to find a pre-existing architecture. */
1401 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1402 arches != NULL;
1403 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1404 {
1405 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
1406 continue;
1407
1408 return arches->gdbarch;
1409 }
1410
1411 /* Need a new architecture. Fill in a target specific vector. */
1412 tdep = XCNEW (struct gdbarch_tdep);
1413 gdbarch = gdbarch_alloc (&info, tdep);
1414 tdep->elf_flags = elf_flags;
1415
1416 switch (info.bfd_arch_info->arch)
1417 {
1418 case bfd_arch_m68hc11:
1419 tdep->stack_correction = 1;
1420 tdep->use_page_register = 0;
1421 tdep->prologue = m6811_prologue;
1422 set_gdbarch_addr_bit (gdbarch, 16);
1423 set_gdbarch_num_pseudo_regs (gdbarch, M68HC11_NUM_PSEUDO_REGS);
1424 set_gdbarch_pc_regnum (gdbarch, HARD_PC_REGNUM);
1425 set_gdbarch_num_regs (gdbarch, M68HC11_NUM_REGS);
1426 break;
1427
1428 case bfd_arch_m68hc12:
1429 tdep->stack_correction = 0;
1430 tdep->use_page_register = elf_flags & E_M68HC12_BANKS;
1431 tdep->prologue = m6812_prologue;
1432 set_gdbarch_addr_bit (gdbarch, elf_flags & E_M68HC12_BANKS ? 32 : 16);
1433 set_gdbarch_num_pseudo_regs (gdbarch,
1434 elf_flags & E_M68HC12_BANKS
1435 ? M68HC12_NUM_PSEUDO_REGS
1436 : M68HC11_NUM_PSEUDO_REGS);
1437 set_gdbarch_pc_regnum (gdbarch, elf_flags & E_M68HC12_BANKS
1438 ? M68HC12_HARD_PC_REGNUM : HARD_PC_REGNUM);
1439 set_gdbarch_num_regs (gdbarch, elf_flags & E_M68HC12_BANKS
1440 ? M68HC12_NUM_REGS : M68HC11_NUM_REGS);
1441 break;
1442
1443 default:
1444 break;
1445 }
1446
1447 /* Initially set everything according to the ABI.
1448 Use 16-bit integers since it will be the case for most
1449 programs. The size of these types should normally be set
1450 according to the dwarf2 debug information. */
1451 set_gdbarch_short_bit (gdbarch, 16);
1452 set_gdbarch_int_bit (gdbarch, elf_flags & E_M68HC11_I32 ? 32 : 16);
1453 set_gdbarch_float_bit (gdbarch, 32);
1454 if (elf_flags & E_M68HC11_F64)
1455 {
1456 set_gdbarch_double_bit (gdbarch, 64);
1457 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1458 }
1459 else
1460 {
1461 set_gdbarch_double_bit (gdbarch, 32);
1462 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1463 }
1464 set_gdbarch_long_double_bit (gdbarch, 64);
1465 set_gdbarch_long_bit (gdbarch, 32);
1466 set_gdbarch_ptr_bit (gdbarch, 16);
1467 set_gdbarch_long_long_bit (gdbarch, 64);
1468
1469 /* Characters are unsigned. */
1470 set_gdbarch_char_signed (gdbarch, 0);
1471
1472 /* Set register info. */
1473 set_gdbarch_fp0_regnum (gdbarch, -1);
1474
1475 set_gdbarch_sp_regnum (gdbarch, HARD_SP_REGNUM);
1476 set_gdbarch_register_name (gdbarch, m68hc11_register_name);
1477 set_gdbarch_register_type (gdbarch, m68hc11_register_type);
1478 set_gdbarch_pseudo_register_read (gdbarch, m68hc11_pseudo_register_read);
1479 set_gdbarch_pseudo_register_write (gdbarch, m68hc11_pseudo_register_write);
1480
1481 set_gdbarch_push_dummy_call (gdbarch, m68hc11_push_dummy_call);
1482
1483 set_gdbarch_return_value (gdbarch, m68hc11_return_value);
1484 set_gdbarch_skip_prologue (gdbarch, m68hc11_skip_prologue);
1485 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1486 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1487 m68hc11_breakpoint::kind_from_pc);
1488 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1489 m68hc11_breakpoint::bp_from_kind);
1490
1491 m68hc11_add_reggroups (gdbarch);
1492 set_gdbarch_register_reggroup_p (gdbarch, m68hc11_register_reggroup_p);
1493 set_gdbarch_print_registers_info (gdbarch, m68hc11_print_registers_info);
1494
1495 /* Hook in the DWARF CFI frame unwinder. */
1496 dwarf2_append_unwinders (gdbarch);
1497
1498 frame_unwind_append_unwinder (gdbarch, &m68hc11_frame_unwind);
1499 frame_base_set_default (gdbarch, &m68hc11_frame_base);
1500
1501 /* Methods for saving / extracting a dummy frame's ID. The ID's
1502 stack address must match the SP value returned by
1503 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
1504 set_gdbarch_dummy_id (gdbarch, m68hc11_dummy_id);
1505
1506 /* Minsymbol frobbing. */
1507 set_gdbarch_elf_make_msymbol_special (gdbarch,
1508 m68hc11_elf_make_msymbol_special);
1509
1510 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1511
1512 return gdbarch;
1513 }
1514
1515 void _initialize_m68hc11_tdep ();
1516 void
1517 _initialize_m68hc11_tdep ()
1518 {
1519 register_gdbarch_init (bfd_arch_m68hc11, m68hc11_gdbarch_init);
1520 register_gdbarch_init (bfd_arch_m68hc12, m68hc11_gdbarch_init);
1521 m68hc11_init_reggroups ();
1522 }
1523
This page took 0.061594 seconds and 4 git commands to generate.