gdb: fix vfork with multiple threads
[deliverable/binutils-gdb.git] / gdb / m68hc11-tdep.c
1 /* Target-dependent code for Motorola 68HC11 & 68HC12
2
3 Copyright (C) 1999-2021 Free Software Foundation, Inc.
4
5 Contributed by Stephane Carrez, stcarrez@nerim.fr
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22
23 #include "defs.h"
24 #include "frame.h"
25 #include "frame-unwind.h"
26 #include "frame-base.h"
27 #include "dwarf2/frame.h"
28 #include "trad-frame.h"
29 #include "symtab.h"
30 #include "gdbtypes.h"
31 #include "gdbcmd.h"
32 #include "gdbcore.h"
33 #include "value.h"
34 #include "inferior.h"
35 #include "dis-asm.h"
36 #include "symfile.h"
37 #include "objfiles.h"
38 #include "arch-utils.h"
39 #include "regcache.h"
40 #include "reggroups.h"
41
42 #include "target.h"
43 #include "opcode/m68hc11.h"
44 #include "elf/m68hc11.h"
45 #include "elf-bfd.h"
46
47 /* Macros for setting and testing a bit in a minimal symbol.
48 For 68HC11/68HC12 we have two flags that tell which return
49 type the function is using. This is used for prologue and frame
50 analysis to compute correct stack frame layout.
51
52 The MSB of the minimal symbol's "info" field is used for this purpose.
53
54 MSYMBOL_SET_RTC Actually sets the "RTC" bit.
55 MSYMBOL_SET_RTI Actually sets the "RTI" bit.
56 MSYMBOL_IS_RTC Tests the "RTC" bit in a minimal symbol.
57 MSYMBOL_IS_RTI Tests the "RTC" bit in a minimal symbol. */
58
59 #define MSYMBOL_SET_RTC(msym) \
60 MSYMBOL_TARGET_FLAG_1 (msym) = 1
61
62 #define MSYMBOL_SET_RTI(msym) \
63 MSYMBOL_TARGET_FLAG_2 (msym) = 1
64
65 #define MSYMBOL_IS_RTC(msym) \
66 MSYMBOL_TARGET_FLAG_1 (msym)
67
68 #define MSYMBOL_IS_RTI(msym) \
69 MSYMBOL_TARGET_FLAG_2 (msym)
70
71 enum insn_return_kind {
72 RETURN_RTS,
73 RETURN_RTC,
74 RETURN_RTI
75 };
76
77
78 /* Register numbers of various important registers. */
79
80 #define HARD_X_REGNUM 0
81 #define HARD_D_REGNUM 1
82 #define HARD_Y_REGNUM 2
83 #define HARD_SP_REGNUM 3
84 #define HARD_PC_REGNUM 4
85
86 #define HARD_A_REGNUM 5
87 #define HARD_B_REGNUM 6
88 #define HARD_CCR_REGNUM 7
89
90 /* 68HC12 page number register.
91 Note: to keep a compatibility with gcc register naming, we must
92 not have to rename FP and other soft registers. The page register
93 is a real hard register and must therefore be counted by gdbarch_num_regs.
94 For this it has the same number as Z register (which is not used). */
95 #define HARD_PAGE_REGNUM 8
96 #define M68HC11_LAST_HARD_REG (HARD_PAGE_REGNUM)
97
98 /* Z is replaced by X or Y by gcc during machine reorg.
99 ??? There is no way to get it and even know whether
100 it's in X or Y or in ZS. */
101 #define SOFT_Z_REGNUM 8
102
103 /* Soft registers. These registers are special. There are treated
104 like normal hard registers by gcc and gdb (ie, within dwarf2 info).
105 They are physically located in memory. */
106 #define SOFT_FP_REGNUM 9
107 #define SOFT_TMP_REGNUM 10
108 #define SOFT_ZS_REGNUM 11
109 #define SOFT_XY_REGNUM 12
110 #define SOFT_UNUSED_REGNUM 13
111 #define SOFT_D1_REGNUM 14
112 #define SOFT_D32_REGNUM (SOFT_D1_REGNUM+31)
113 #define M68HC11_MAX_SOFT_REGS 32
114
115 #define M68HC11_NUM_REGS (M68HC11_LAST_HARD_REG + 1)
116 #define M68HC11_NUM_PSEUDO_REGS (M68HC11_MAX_SOFT_REGS+5)
117 #define M68HC11_ALL_REGS (M68HC11_NUM_REGS+M68HC11_NUM_PSEUDO_REGS)
118
119 #define M68HC11_REG_SIZE (2)
120
121 #define M68HC12_NUM_REGS (9)
122 #define M68HC12_NUM_PSEUDO_REGS ((M68HC11_MAX_SOFT_REGS+5)+1-1)
123 #define M68HC12_HARD_PC_REGNUM (SOFT_D32_REGNUM+1)
124
125 struct insn_sequence;
126 struct gdbarch_tdep
127 {
128 /* Stack pointer correction value. For 68hc11, the stack pointer points
129 to the next push location. An offset of 1 must be applied to obtain
130 the address where the last value is saved. For 68hc12, the stack
131 pointer points to the last value pushed. No offset is necessary. */
132 int stack_correction;
133
134 /* Description of instructions in the prologue. */
135 struct insn_sequence *prologue;
136
137 /* True if the page memory bank register is available
138 and must be used. */
139 int use_page_register;
140
141 /* ELF flags for ABI. */
142 int elf_flags;
143 };
144
145 #define STACK_CORRECTION(gdbarch) (gdbarch_tdep (gdbarch)->stack_correction)
146 #define USE_PAGE_REGISTER(gdbarch) (gdbarch_tdep (gdbarch)->use_page_register)
147
148 struct m68hc11_unwind_cache
149 {
150 /* The previous frame's inner most stack address. Used as this
151 frame ID's stack_addr. */
152 CORE_ADDR prev_sp;
153 /* The frame's base, optionally used by the high-level debug info. */
154 CORE_ADDR base;
155 CORE_ADDR pc;
156 int size;
157 int prologue_type;
158 CORE_ADDR return_pc;
159 CORE_ADDR sp_offset;
160 int frameless;
161 enum insn_return_kind return_kind;
162
163 /* Table indicating the location of each and every register. */
164 trad_frame_saved_reg *saved_regs;
165 };
166
167 /* Table of registers for 68HC11. This includes the hard registers
168 and the soft registers used by GCC. */
169 static const char *
170 m68hc11_register_names[] =
171 {
172 "x", "d", "y", "sp", "pc", "a", "b",
173 "ccr", "page", "frame","tmp", "zs", "xy", 0,
174 "d1", "d2", "d3", "d4", "d5", "d6", "d7",
175 "d8", "d9", "d10", "d11", "d12", "d13", "d14",
176 "d15", "d16", "d17", "d18", "d19", "d20", "d21",
177 "d22", "d23", "d24", "d25", "d26", "d27", "d28",
178 "d29", "d30", "d31", "d32"
179 };
180
181 struct m68hc11_soft_reg
182 {
183 const char *name;
184 CORE_ADDR addr;
185 };
186
187 static struct m68hc11_soft_reg soft_regs[M68HC11_ALL_REGS];
188
189 #define M68HC11_FP_ADDR soft_regs[SOFT_FP_REGNUM].addr
190
191 static int soft_min_addr;
192 static int soft_max_addr;
193 static int soft_reg_initialized = 0;
194
195 /* Look in the symbol table for the address of a pseudo register
196 in memory. If we don't find it, pretend the register is not used
197 and not available. */
198 static void
199 m68hc11_get_register_info (struct m68hc11_soft_reg *reg, const char *name)
200 {
201 struct bound_minimal_symbol msymbol;
202
203 msymbol = lookup_minimal_symbol (name, NULL, NULL);
204 if (msymbol.minsym)
205 {
206 reg->addr = BMSYMBOL_VALUE_ADDRESS (msymbol);
207 reg->name = xstrdup (name);
208
209 /* Keep track of the address range for soft registers. */
210 if (reg->addr < (CORE_ADDR) soft_min_addr)
211 soft_min_addr = reg->addr;
212 if (reg->addr > (CORE_ADDR) soft_max_addr)
213 soft_max_addr = reg->addr;
214 }
215 else
216 {
217 reg->name = 0;
218 reg->addr = 0;
219 }
220 }
221
222 /* Initialize the table of soft register addresses according
223 to the symbol table. */
224 static void
225 m68hc11_initialize_register_info (void)
226 {
227 int i;
228
229 if (soft_reg_initialized)
230 return;
231
232 soft_min_addr = INT_MAX;
233 soft_max_addr = 0;
234 for (i = 0; i < M68HC11_ALL_REGS; i++)
235 {
236 soft_regs[i].name = 0;
237 }
238
239 m68hc11_get_register_info (&soft_regs[SOFT_FP_REGNUM], "_.frame");
240 m68hc11_get_register_info (&soft_regs[SOFT_TMP_REGNUM], "_.tmp");
241 m68hc11_get_register_info (&soft_regs[SOFT_ZS_REGNUM], "_.z");
242 soft_regs[SOFT_Z_REGNUM] = soft_regs[SOFT_ZS_REGNUM];
243 m68hc11_get_register_info (&soft_regs[SOFT_XY_REGNUM], "_.xy");
244
245 for (i = SOFT_D1_REGNUM; i < M68HC11_MAX_SOFT_REGS; i++)
246 {
247 char buf[10];
248
249 xsnprintf (buf, sizeof (buf), "_.d%d", i - SOFT_D1_REGNUM + 1);
250 m68hc11_get_register_info (&soft_regs[i], buf);
251 }
252
253 if (soft_regs[SOFT_FP_REGNUM].name == 0)
254 warning (_("No frame soft register found in the symbol table.\n"
255 "Stack backtrace will not work."));
256 soft_reg_initialized = 1;
257 }
258
259 /* Given an address in memory, return the soft register number if
260 that address corresponds to a soft register. Returns -1 if not. */
261 static int
262 m68hc11_which_soft_register (CORE_ADDR addr)
263 {
264 int i;
265
266 if (addr < soft_min_addr || addr > soft_max_addr)
267 return -1;
268
269 for (i = SOFT_FP_REGNUM; i < M68HC11_ALL_REGS; i++)
270 {
271 if (soft_regs[i].name && soft_regs[i].addr == addr)
272 return i;
273 }
274 return -1;
275 }
276
277 /* Fetch a pseudo register. The 68hc11 soft registers are treated like
278 pseudo registers. They are located in memory. Translate the register
279 fetch into a memory read. */
280 static enum register_status
281 m68hc11_pseudo_register_read (struct gdbarch *gdbarch,
282 readable_regcache *regcache,
283 int regno, gdb_byte *buf)
284 {
285 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
286
287 /* The PC is a pseudo reg only for 68HC12 with the memory bank
288 addressing mode. */
289 if (regno == M68HC12_HARD_PC_REGNUM)
290 {
291 ULONGEST pc;
292 const int regsize = 4;
293 enum register_status status;
294
295 status = regcache->cooked_read (HARD_PC_REGNUM, &pc);
296 if (status != REG_VALID)
297 return status;
298 if (pc >= 0x8000 && pc < 0xc000)
299 {
300 ULONGEST page;
301
302 regcache->cooked_read (HARD_PAGE_REGNUM, &page);
303 pc -= 0x8000;
304 pc += (page << 14);
305 pc += 0x1000000;
306 }
307 store_unsigned_integer (buf, regsize, byte_order, pc);
308 return REG_VALID;
309 }
310
311 m68hc11_initialize_register_info ();
312
313 /* Fetch a soft register: translate into a memory read. */
314 if (soft_regs[regno].name)
315 {
316 target_read_memory (soft_regs[regno].addr, buf, 2);
317 }
318 else
319 {
320 memset (buf, 0, 2);
321 }
322
323 return REG_VALID;
324 }
325
326 /* Store a pseudo register. Translate the register store
327 into a memory write. */
328 static void
329 m68hc11_pseudo_register_write (struct gdbarch *gdbarch,
330 struct regcache *regcache,
331 int regno, const gdb_byte *buf)
332 {
333 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
334
335 /* The PC is a pseudo reg only for 68HC12 with the memory bank
336 addressing mode. */
337 if (regno == M68HC12_HARD_PC_REGNUM)
338 {
339 const int regsize = 4;
340 gdb_byte *tmp = (gdb_byte *) alloca (regsize);
341 CORE_ADDR pc;
342
343 memcpy (tmp, buf, regsize);
344 pc = extract_unsigned_integer (tmp, regsize, byte_order);
345 if (pc >= 0x1000000)
346 {
347 pc -= 0x1000000;
348 regcache_cooked_write_unsigned (regcache, HARD_PAGE_REGNUM,
349 (pc >> 14) & 0x0ff);
350 pc &= 0x03fff;
351 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM,
352 pc + 0x8000);
353 }
354 else
355 regcache_cooked_write_unsigned (regcache, HARD_PC_REGNUM, pc);
356 return;
357 }
358
359 m68hc11_initialize_register_info ();
360
361 /* Store a soft register: translate into a memory write. */
362 if (soft_regs[regno].name)
363 {
364 const int regsize = 2;
365 gdb_byte *tmp = (gdb_byte *) alloca (regsize);
366 memcpy (tmp, buf, regsize);
367 target_write_memory (soft_regs[regno].addr, tmp, regsize);
368 }
369 }
370
371 static const char *
372 m68hc11_register_name (struct gdbarch *gdbarch, int reg_nr)
373 {
374 if (reg_nr == M68HC12_HARD_PC_REGNUM && USE_PAGE_REGISTER (gdbarch))
375 return "pc";
376 if (reg_nr == HARD_PC_REGNUM && USE_PAGE_REGISTER (gdbarch))
377 return "ppc";
378
379 if (reg_nr < 0)
380 return NULL;
381 if (reg_nr >= M68HC11_ALL_REGS)
382 return NULL;
383
384 m68hc11_initialize_register_info ();
385
386 /* If we don't know the address of a soft register, pretend it
387 does not exist. */
388 if (reg_nr > M68HC11_LAST_HARD_REG && soft_regs[reg_nr].name == 0)
389 return NULL;
390 return m68hc11_register_names[reg_nr];
391 }
392
393 constexpr gdb_byte m68hc11_break_insn[] = {0x0};
394
395 typedef BP_MANIPULATION (m68hc11_break_insn) m68hc11_breakpoint;
396 \f
397 /* 68HC11 & 68HC12 prologue analysis. */
398
399 #define MAX_CODES 12
400
401 /* 68HC11 opcodes. */
402 #undef M6811_OP_PAGE2
403 #define M6811_OP_PAGE2 (0x18)
404 #define M6811_OP_LDX (0xde)
405 #define M6811_OP_LDX_EXT (0xfe)
406 #define M6811_OP_PSHX (0x3c)
407 #define M6811_OP_STS (0x9f)
408 #define M6811_OP_STS_EXT (0xbf)
409 #define M6811_OP_TSX (0x30)
410 #define M6811_OP_XGDX (0x8f)
411 #define M6811_OP_ADDD (0xc3)
412 #define M6811_OP_TXS (0x35)
413 #define M6811_OP_DES (0x34)
414
415 /* 68HC12 opcodes. */
416 #define M6812_OP_PAGE2 (0x18)
417 #define M6812_OP_MOVW (0x01)
418 #define M6812_PB_PSHW (0xae)
419 #define M6812_OP_STS (0x5f)
420 #define M6812_OP_STS_EXT (0x7f)
421 #define M6812_OP_LEAS (0x1b)
422 #define M6812_OP_PSHX (0x34)
423 #define M6812_OP_PSHY (0x35)
424
425 /* Operand extraction. */
426 #define OP_DIRECT (0x100) /* 8-byte direct addressing. */
427 #define OP_IMM_LOW (0x200) /* Low part of 16-bit constant/address. */
428 #define OP_IMM_HIGH (0x300) /* High part of 16-bit constant/address. */
429 #define OP_PBYTE (0x400) /* 68HC12 indexed operand. */
430
431 /* Identification of the sequence. */
432 enum m6811_seq_type
433 {
434 P_LAST = 0,
435 P_SAVE_REG, /* Save a register on the stack. */
436 P_SET_FRAME, /* Setup the frame pointer. */
437 P_LOCAL_1, /* Allocate 1 byte for locals. */
438 P_LOCAL_2, /* Allocate 2 bytes for locals. */
439 P_LOCAL_N /* Allocate N bytes for locals. */
440 };
441
442 struct insn_sequence {
443 enum m6811_seq_type type;
444 unsigned length;
445 unsigned short code[MAX_CODES];
446 };
447
448 /* Sequence of instructions in the 68HC11 function prologue. */
449 static struct insn_sequence m6811_prologue[] = {
450 /* Sequences to save a soft-register. */
451 { P_SAVE_REG, 3, { M6811_OP_LDX, OP_DIRECT,
452 M6811_OP_PSHX } },
453 { P_SAVE_REG, 5, { M6811_OP_PAGE2, M6811_OP_LDX, OP_DIRECT,
454 M6811_OP_PAGE2, M6811_OP_PSHX } },
455 { P_SAVE_REG, 4, { M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
456 M6811_OP_PSHX } },
457 { P_SAVE_REG, 6, { M6811_OP_PAGE2, M6811_OP_LDX_EXT, OP_IMM_HIGH, OP_IMM_LOW,
458 M6811_OP_PAGE2, M6811_OP_PSHX } },
459
460 /* Sequences to allocate local variables. */
461 { P_LOCAL_N, 7, { M6811_OP_TSX,
462 M6811_OP_XGDX,
463 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
464 M6811_OP_XGDX,
465 M6811_OP_TXS } },
466 { P_LOCAL_N, 11, { M6811_OP_PAGE2, M6811_OP_TSX,
467 M6811_OP_PAGE2, M6811_OP_XGDX,
468 M6811_OP_ADDD, OP_IMM_HIGH, OP_IMM_LOW,
469 M6811_OP_PAGE2, M6811_OP_XGDX,
470 M6811_OP_PAGE2, M6811_OP_TXS } },
471 { P_LOCAL_1, 1, { M6811_OP_DES } },
472 { P_LOCAL_2, 1, { M6811_OP_PSHX } },
473 { P_LOCAL_2, 2, { M6811_OP_PAGE2, M6811_OP_PSHX } },
474
475 /* Initialize the frame pointer. */
476 { P_SET_FRAME, 2, { M6811_OP_STS, OP_DIRECT } },
477 { P_SET_FRAME, 3, { M6811_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
478 { P_LAST, 0, { 0 } }
479 };
480
481
482 /* Sequence of instructions in the 68HC12 function prologue. */
483 static struct insn_sequence m6812_prologue[] = {
484 { P_SAVE_REG, 5, { M6812_OP_PAGE2, M6812_OP_MOVW, M6812_PB_PSHW,
485 OP_IMM_HIGH, OP_IMM_LOW } },
486 { P_SET_FRAME, 2, { M6812_OP_STS, OP_DIRECT } },
487 { P_SET_FRAME, 3, { M6812_OP_STS_EXT, OP_IMM_HIGH, OP_IMM_LOW } },
488 { P_LOCAL_N, 2, { M6812_OP_LEAS, OP_PBYTE } },
489 { P_LOCAL_2, 1, { M6812_OP_PSHX } },
490 { P_LOCAL_2, 1, { M6812_OP_PSHY } },
491 { P_LAST, 0 }
492 };
493
494
495 /* Analyze the sequence of instructions starting at the given address.
496 Returns a pointer to the sequence when it is recognized and
497 the optional value (constant/address) associated with it. */
498 static struct insn_sequence *
499 m68hc11_analyze_instruction (struct gdbarch *gdbarch,
500 struct insn_sequence *seq, CORE_ADDR pc,
501 CORE_ADDR *val)
502 {
503 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
504 unsigned char buffer[MAX_CODES];
505 unsigned bufsize;
506 unsigned j;
507 CORE_ADDR cur_val;
508 short v = 0;
509
510 bufsize = 0;
511 for (; seq->type != P_LAST; seq++)
512 {
513 cur_val = 0;
514 for (j = 0; j < seq->length; j++)
515 {
516 if (bufsize < j + 1)
517 {
518 buffer[bufsize] = read_memory_unsigned_integer (pc + bufsize,
519 1, byte_order);
520 bufsize++;
521 }
522 /* Continue while we match the opcode. */
523 if (seq->code[j] == buffer[j])
524 continue;
525
526 if ((seq->code[j] & 0xf00) == 0)
527 break;
528
529 /* Extract a sequence parameter (address or constant). */
530 switch (seq->code[j])
531 {
532 case OP_DIRECT:
533 cur_val = (CORE_ADDR) buffer[j];
534 break;
535
536 case OP_IMM_HIGH:
537 cur_val = cur_val & 0x0ff;
538 cur_val |= (buffer[j] << 8);
539 break;
540
541 case OP_IMM_LOW:
542 cur_val &= 0x0ff00;
543 cur_val |= buffer[j];
544 break;
545
546 case OP_PBYTE:
547 if ((buffer[j] & 0xE0) == 0x80)
548 {
549 v = buffer[j] & 0x1f;
550 if (v & 0x10)
551 v |= 0xfff0;
552 }
553 else if ((buffer[j] & 0xfe) == 0xf0)
554 {
555 v = read_memory_unsigned_integer (pc + j + 1, 1, byte_order);
556 if (buffer[j] & 1)
557 v |= 0xff00;
558 }
559 else if (buffer[j] == 0xf2)
560 {
561 v = read_memory_unsigned_integer (pc + j + 1, 2, byte_order);
562 }
563 cur_val = v;
564 break;
565 }
566 }
567
568 /* We have a full match. */
569 if (j == seq->length)
570 {
571 *val = cur_val;
572 return seq;
573 }
574 }
575 return 0;
576 }
577
578 /* Return the instruction that the function at the PC is using. */
579 static enum insn_return_kind
580 m68hc11_get_return_insn (CORE_ADDR pc)
581 {
582 struct bound_minimal_symbol sym;
583
584 /* A flag indicating that this is a STO_M68HC12_FAR or STO_M68HC12_INTERRUPT
585 function is stored by elfread.c in the high bit of the info field.
586 Use this to decide which instruction the function uses to return. */
587 sym = lookup_minimal_symbol_by_pc (pc);
588 if (sym.minsym == 0)
589 return RETURN_RTS;
590
591 if (MSYMBOL_IS_RTC (sym.minsym))
592 return RETURN_RTC;
593 else if (MSYMBOL_IS_RTI (sym.minsym))
594 return RETURN_RTI;
595 else
596 return RETURN_RTS;
597 }
598
599 /* Analyze the function prologue to find some information
600 about the function:
601 - the PC of the first line (for m68hc11_skip_prologue)
602 - the offset of the previous frame saved address (from current frame)
603 - the soft registers which are pushed. */
604 static CORE_ADDR
605 m68hc11_scan_prologue (struct gdbarch *gdbarch, CORE_ADDR pc,
606 CORE_ADDR current_pc, struct m68hc11_unwind_cache *info)
607 {
608 LONGEST save_addr;
609 CORE_ADDR func_end;
610 int size;
611 int found_frame_point;
612 int saved_reg;
613 int done = 0;
614 struct insn_sequence *seq_table;
615
616 info->size = 0;
617 info->sp_offset = 0;
618 if (pc >= current_pc)
619 return current_pc;
620
621 size = 0;
622
623 m68hc11_initialize_register_info ();
624 if (pc == 0)
625 {
626 info->size = 0;
627 return pc;
628 }
629
630 seq_table = gdbarch_tdep (gdbarch)->prologue;
631
632 /* The 68hc11 stack is as follows:
633
634
635 | |
636 +-----------+
637 | |
638 | args |
639 | |
640 +-----------+
641 | PC-return |
642 +-----------+
643 | Old frame |
644 +-----------+
645 | |
646 | Locals |
647 | |
648 +-----------+ <--- current frame
649 | |
650
651 With most processors (like 68K) the previous frame can be computed
652 easily because it is always at a fixed offset (see link/unlink).
653 That is, locals are accessed with negative offsets, arguments are
654 accessed with positive ones. Since 68hc11 only supports offsets
655 in the range [0..255], the frame is defined at the bottom of
656 locals (see picture).
657
658 The purpose of the analysis made here is to find out the size
659 of locals in this function. An alternative to this is to use
660 DWARF2 info. This would be better but I don't know how to
661 access dwarf2 debug from this function.
662
663 Walk from the function entry point to the point where we save
664 the frame. While walking instructions, compute the size of bytes
665 which are pushed. This gives us the index to access the previous
666 frame.
667
668 We limit the search to 128 bytes so that the algorithm is bounded
669 in case of random and wrong code. We also stop and abort if
670 we find an instruction which is not supposed to appear in the
671 prologue (as generated by gcc 2.95, 2.96). */
672
673 func_end = pc + 128;
674 found_frame_point = 0;
675 info->size = 0;
676 save_addr = 0;
677 while (!done && pc + 2 < func_end)
678 {
679 struct insn_sequence *seq;
680 CORE_ADDR val;
681
682 seq = m68hc11_analyze_instruction (gdbarch, seq_table, pc, &val);
683 if (seq == 0)
684 break;
685
686 /* If we are within the instruction group, we can't advance the
687 pc nor the stack offset. Otherwise the caller's stack computed
688 from the current stack can be wrong. */
689 if (pc + seq->length > current_pc)
690 break;
691
692 pc = pc + seq->length;
693 if (seq->type == P_SAVE_REG)
694 {
695 if (found_frame_point)
696 {
697 saved_reg = m68hc11_which_soft_register (val);
698 if (saved_reg < 0)
699 break;
700
701 save_addr -= 2;
702 if (info->saved_regs)
703 info->saved_regs[saved_reg].set_addr (save_addr);
704 }
705 else
706 {
707 size += 2;
708 }
709 }
710 else if (seq->type == P_SET_FRAME)
711 {
712 found_frame_point = 1;
713 info->size = size;
714 }
715 else if (seq->type == P_LOCAL_1)
716 {
717 size += 1;
718 }
719 else if (seq->type == P_LOCAL_2)
720 {
721 size += 2;
722 }
723 else if (seq->type == P_LOCAL_N)
724 {
725 /* Stack pointer is decremented for the allocation. */
726 if (val & 0x8000)
727 size -= (int) (val) | 0xffff0000;
728 else
729 size -= val;
730 }
731 }
732 if (found_frame_point == 0)
733 info->sp_offset = size;
734 else
735 info->sp_offset = -1;
736 return pc;
737 }
738
739 static CORE_ADDR
740 m68hc11_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
741 {
742 CORE_ADDR func_addr, func_end;
743 struct symtab_and_line sal;
744 struct m68hc11_unwind_cache tmp_cache = { 0 };
745
746 /* If we have line debugging information, then the end of the
747 prologue should be the first assembly instruction of the
748 first source line. */
749 if (find_pc_partial_function (pc, NULL, &func_addr, &func_end))
750 {
751 sal = find_pc_line (func_addr, 0);
752 if (sal.end && sal.end < func_end)
753 return sal.end;
754 }
755
756 pc = m68hc11_scan_prologue (gdbarch, pc, (CORE_ADDR) -1, &tmp_cache);
757 return pc;
758 }
759
760 /* Put here the code to store, into fi->saved_regs, the addresses of
761 the saved registers of frame described by FRAME_INFO. This
762 includes special registers such as pc and fp saved in special ways
763 in the stack frame. sp is even more special: the address we return
764 for it IS the sp for the next frame. */
765
766 static struct m68hc11_unwind_cache *
767 m68hc11_frame_unwind_cache (struct frame_info *this_frame,
768 void **this_prologue_cache)
769 {
770 struct gdbarch *gdbarch = get_frame_arch (this_frame);
771 ULONGEST prev_sp;
772 ULONGEST this_base;
773 struct m68hc11_unwind_cache *info;
774 CORE_ADDR current_pc;
775 int i;
776
777 if ((*this_prologue_cache))
778 return (struct m68hc11_unwind_cache *) (*this_prologue_cache);
779
780 info = FRAME_OBSTACK_ZALLOC (struct m68hc11_unwind_cache);
781 (*this_prologue_cache) = info;
782 info->saved_regs = trad_frame_alloc_saved_regs (this_frame);
783
784 info->pc = get_frame_func (this_frame);
785
786 info->size = 0;
787 info->return_kind = m68hc11_get_return_insn (info->pc);
788
789 /* The SP was moved to the FP. This indicates that a new frame
790 was created. Get THIS frame's FP value by unwinding it from
791 the next frame. */
792 this_base = get_frame_register_unsigned (this_frame, SOFT_FP_REGNUM);
793 if (this_base == 0)
794 {
795 info->base = 0;
796 return info;
797 }
798
799 current_pc = get_frame_pc (this_frame);
800 if (info->pc != 0)
801 m68hc11_scan_prologue (gdbarch, info->pc, current_pc, info);
802
803 info->saved_regs[HARD_PC_REGNUM].set_addr (info->size);
804
805 if (info->sp_offset != (CORE_ADDR) -1)
806 {
807 info->saved_regs[HARD_PC_REGNUM].set_addr (info->sp_offset);
808 this_base = get_frame_register_unsigned (this_frame, HARD_SP_REGNUM);
809 prev_sp = this_base + info->sp_offset + 2;
810 this_base += STACK_CORRECTION (gdbarch);
811 }
812 else
813 {
814 /* The FP points at the last saved register. Adjust the FP back
815 to before the first saved register giving the SP. */
816 prev_sp = this_base + info->size + 2;
817
818 this_base += STACK_CORRECTION (gdbarch);
819 if (soft_regs[SOFT_FP_REGNUM].name)
820 info->saved_regs[SOFT_FP_REGNUM].set_addr (info->size - 2);
821 }
822
823 if (info->return_kind == RETURN_RTC)
824 {
825 prev_sp += 1;
826 info->saved_regs[HARD_PAGE_REGNUM].set_addr (info->size);
827 info->saved_regs[HARD_PC_REGNUM].set_addr (info->size + 1);
828 }
829 else if (info->return_kind == RETURN_RTI)
830 {
831 prev_sp += 7;
832 info->saved_regs[HARD_CCR_REGNUM].set_addr (info->size);
833 info->saved_regs[HARD_D_REGNUM].set_addr (info->size + 1);
834 info->saved_regs[HARD_X_REGNUM].set_addr (info->size + 3);
835 info->saved_regs[HARD_Y_REGNUM].set_addr (info->size + 5);
836 info->saved_regs[HARD_PC_REGNUM].set_addr (info->size + 7);
837 }
838
839 /* Add 1 here to adjust for the post-decrement nature of the push
840 instruction. */
841 info->prev_sp = prev_sp;
842
843 info->base = this_base;
844
845 /* Adjust all the saved registers so that they contain addresses and not
846 offsets. */
847 for (i = 0; i < gdbarch_num_cooked_regs (gdbarch); i++)
848 if (info->saved_regs[i].is_addr ())
849 {
850 info->saved_regs[i].set_addr (info->saved_regs[i].addr () + this_base);
851 }
852
853 /* The previous frame's SP needed to be computed. Save the computed
854 value. */
855 info->saved_regs[HARD_SP_REGNUM].set_value (info->prev_sp);
856
857 return info;
858 }
859
860 /* Given a GDB frame, determine the address of the calling function's
861 frame. This will be used to create a new GDB frame struct. */
862
863 static void
864 m68hc11_frame_this_id (struct frame_info *this_frame,
865 void **this_prologue_cache,
866 struct frame_id *this_id)
867 {
868 struct m68hc11_unwind_cache *info
869 = m68hc11_frame_unwind_cache (this_frame, this_prologue_cache);
870 CORE_ADDR base;
871 CORE_ADDR func;
872 struct frame_id id;
873
874 /* The FUNC is easy. */
875 func = get_frame_func (this_frame);
876
877 /* Hopefully the prologue analysis either correctly determined the
878 frame's base (which is the SP from the previous frame), or set
879 that base to "NULL". */
880 base = info->prev_sp;
881 if (base == 0)
882 return;
883
884 id = frame_id_build (base, func);
885 (*this_id) = id;
886 }
887
888 static struct value *
889 m68hc11_frame_prev_register (struct frame_info *this_frame,
890 void **this_prologue_cache, int regnum)
891 {
892 struct value *value;
893 struct m68hc11_unwind_cache *info
894 = m68hc11_frame_unwind_cache (this_frame, this_prologue_cache);
895
896 value = trad_frame_get_prev_register (this_frame, info->saved_regs, regnum);
897
898 /* Take into account the 68HC12 specific call (PC + page). */
899 if (regnum == HARD_PC_REGNUM
900 && info->return_kind == RETURN_RTC
901 && USE_PAGE_REGISTER (get_frame_arch (this_frame)))
902 {
903 CORE_ADDR pc = value_as_long (value);
904 if (pc >= 0x08000 && pc < 0x0c000)
905 {
906 CORE_ADDR page;
907
908 release_value (value);
909
910 value = trad_frame_get_prev_register (this_frame, info->saved_regs,
911 HARD_PAGE_REGNUM);
912 page = value_as_long (value);
913 release_value (value);
914
915 pc -= 0x08000;
916 pc += ((page & 0x0ff) << 14);
917 pc += 0x1000000;
918
919 return frame_unwind_got_constant (this_frame, regnum, pc);
920 }
921 }
922
923 return value;
924 }
925
926 static const struct frame_unwind m68hc11_frame_unwind = {
927 "m68hc11 prologue",
928 NORMAL_FRAME,
929 default_frame_unwind_stop_reason,
930 m68hc11_frame_this_id,
931 m68hc11_frame_prev_register,
932 NULL,
933 default_frame_sniffer
934 };
935
936 static CORE_ADDR
937 m68hc11_frame_base_address (struct frame_info *this_frame, void **this_cache)
938 {
939 struct m68hc11_unwind_cache *info
940 = m68hc11_frame_unwind_cache (this_frame, this_cache);
941
942 return info->base;
943 }
944
945 static CORE_ADDR
946 m68hc11_frame_args_address (struct frame_info *this_frame, void **this_cache)
947 {
948 CORE_ADDR addr;
949 struct m68hc11_unwind_cache *info
950 = m68hc11_frame_unwind_cache (this_frame, this_cache);
951
952 addr = info->base + info->size;
953 if (info->return_kind == RETURN_RTC)
954 addr += 1;
955 else if (info->return_kind == RETURN_RTI)
956 addr += 7;
957
958 return addr;
959 }
960
961 static const struct frame_base m68hc11_frame_base = {
962 &m68hc11_frame_unwind,
963 m68hc11_frame_base_address,
964 m68hc11_frame_base_address,
965 m68hc11_frame_args_address
966 };
967
968 /* Assuming THIS_FRAME is a dummy, return the frame ID of that dummy
969 frame. The frame ID's base needs to match the TOS value saved by
970 save_dummy_frame_tos(), and the PC match the dummy frame's breakpoint. */
971
972 static struct frame_id
973 m68hc11_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
974 {
975 ULONGEST tos;
976 CORE_ADDR pc = get_frame_pc (this_frame);
977
978 tos = get_frame_register_unsigned (this_frame, SOFT_FP_REGNUM);
979 tos += 2;
980 return frame_id_build (tos, pc);
981 }
982
983 \f
984 /* Get and print the register from the given frame. */
985 static void
986 m68hc11_print_register (struct gdbarch *gdbarch, struct ui_file *file,
987 struct frame_info *frame, int regno)
988 {
989 LONGEST rval;
990
991 if (regno == HARD_PC_REGNUM || regno == HARD_SP_REGNUM
992 || regno == SOFT_FP_REGNUM || regno == M68HC12_HARD_PC_REGNUM)
993 rval = get_frame_register_unsigned (frame, regno);
994 else
995 rval = get_frame_register_signed (frame, regno);
996
997 if (regno == HARD_A_REGNUM || regno == HARD_B_REGNUM
998 || regno == HARD_CCR_REGNUM || regno == HARD_PAGE_REGNUM)
999 {
1000 fprintf_filtered (file, "0x%02x ", (unsigned char) rval);
1001 if (regno != HARD_CCR_REGNUM)
1002 print_longest (file, 'd', 1, rval);
1003 }
1004 else
1005 {
1006 if (regno == HARD_PC_REGNUM && gdbarch_tdep (gdbarch)->use_page_register)
1007 {
1008 ULONGEST page;
1009
1010 page = get_frame_register_unsigned (frame, HARD_PAGE_REGNUM);
1011 fprintf_filtered (file, "0x%02x:%04x ", (unsigned) page,
1012 (unsigned) rval);
1013 }
1014 else
1015 {
1016 fprintf_filtered (file, "0x%04x ", (unsigned) rval);
1017 if (regno != HARD_PC_REGNUM && regno != HARD_SP_REGNUM
1018 && regno != SOFT_FP_REGNUM && regno != M68HC12_HARD_PC_REGNUM)
1019 print_longest (file, 'd', 1, rval);
1020 }
1021 }
1022
1023 if (regno == HARD_CCR_REGNUM)
1024 {
1025 /* CCR register */
1026 int C, Z, N, V;
1027 unsigned char l = rval & 0xff;
1028
1029 fprintf_filtered (file, "%c%c%c%c%c%c%c%c ",
1030 l & M6811_S_BIT ? 'S' : '-',
1031 l & M6811_X_BIT ? 'X' : '-',
1032 l & M6811_H_BIT ? 'H' : '-',
1033 l & M6811_I_BIT ? 'I' : '-',
1034 l & M6811_N_BIT ? 'N' : '-',
1035 l & M6811_Z_BIT ? 'Z' : '-',
1036 l & M6811_V_BIT ? 'V' : '-',
1037 l & M6811_C_BIT ? 'C' : '-');
1038 N = (l & M6811_N_BIT) != 0;
1039 Z = (l & M6811_Z_BIT) != 0;
1040 V = (l & M6811_V_BIT) != 0;
1041 C = (l & M6811_C_BIT) != 0;
1042
1043 /* Print flags following the h8300. */
1044 if ((C | Z) == 0)
1045 fprintf_filtered (file, "u> ");
1046 else if ((C | Z) == 1)
1047 fprintf_filtered (file, "u<= ");
1048 else if (C == 0)
1049 fprintf_filtered (file, "u< ");
1050
1051 if (Z == 0)
1052 fprintf_filtered (file, "!= ");
1053 else
1054 fprintf_filtered (file, "== ");
1055
1056 if ((N ^ V) == 0)
1057 fprintf_filtered (file, ">= ");
1058 else
1059 fprintf_filtered (file, "< ");
1060
1061 if ((Z | (N ^ V)) == 0)
1062 fprintf_filtered (file, "> ");
1063 else
1064 fprintf_filtered (file, "<= ");
1065 }
1066 }
1067
1068 /* Same as 'info reg' but prints the registers in a different way. */
1069 static void
1070 m68hc11_print_registers_info (struct gdbarch *gdbarch, struct ui_file *file,
1071 struct frame_info *frame, int regno, int cpregs)
1072 {
1073 if (regno >= 0)
1074 {
1075 const char *name = gdbarch_register_name (gdbarch, regno);
1076
1077 if (!name || !*name)
1078 return;
1079
1080 fprintf_filtered (file, "%-10s ", name);
1081 m68hc11_print_register (gdbarch, file, frame, regno);
1082 fprintf_filtered (file, "\n");
1083 }
1084 else
1085 {
1086 int i, nr;
1087
1088 fprintf_filtered (file, "PC=");
1089 m68hc11_print_register (gdbarch, file, frame, HARD_PC_REGNUM);
1090
1091 fprintf_filtered (file, " SP=");
1092 m68hc11_print_register (gdbarch, file, frame, HARD_SP_REGNUM);
1093
1094 fprintf_filtered (file, " FP=");
1095 m68hc11_print_register (gdbarch, file, frame, SOFT_FP_REGNUM);
1096
1097 fprintf_filtered (file, "\nCCR=");
1098 m68hc11_print_register (gdbarch, file, frame, HARD_CCR_REGNUM);
1099
1100 fprintf_filtered (file, "\nD=");
1101 m68hc11_print_register (gdbarch, file, frame, HARD_D_REGNUM);
1102
1103 fprintf_filtered (file, " X=");
1104 m68hc11_print_register (gdbarch, file, frame, HARD_X_REGNUM);
1105
1106 fprintf_filtered (file, " Y=");
1107 m68hc11_print_register (gdbarch, file, frame, HARD_Y_REGNUM);
1108
1109 if (gdbarch_tdep (gdbarch)->use_page_register)
1110 {
1111 fprintf_filtered (file, "\nPage=");
1112 m68hc11_print_register (gdbarch, file, frame, HARD_PAGE_REGNUM);
1113 }
1114 fprintf_filtered (file, "\n");
1115
1116 nr = 0;
1117 for (i = SOFT_D1_REGNUM; i < M68HC11_ALL_REGS; i++)
1118 {
1119 /* Skip registers which are not defined in the symbol table. */
1120 if (soft_regs[i].name == 0)
1121 continue;
1122
1123 fprintf_filtered (file, "D%d=", i - SOFT_D1_REGNUM + 1);
1124 m68hc11_print_register (gdbarch, file, frame, i);
1125 nr++;
1126 if ((nr % 8) == 7)
1127 fprintf_filtered (file, "\n");
1128 else
1129 fprintf_filtered (file, " ");
1130 }
1131 if (nr && (nr % 8) != 7)
1132 fprintf_filtered (file, "\n");
1133 }
1134 }
1135
1136 static CORE_ADDR
1137 m68hc11_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1138 struct regcache *regcache, CORE_ADDR bp_addr,
1139 int nargs, struct value **args, CORE_ADDR sp,
1140 function_call_return_method return_method,
1141 CORE_ADDR struct_addr)
1142 {
1143 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1144 int argnum;
1145 int first_stack_argnum;
1146 struct type *type;
1147 const gdb_byte *val;
1148 gdb_byte buf[2];
1149
1150 first_stack_argnum = 0;
1151 if (return_method == return_method_struct)
1152 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, struct_addr);
1153 else if (nargs > 0)
1154 {
1155 type = value_type (args[0]);
1156
1157 /* First argument is passed in D and X registers. */
1158 if (TYPE_LENGTH (type) <= 4)
1159 {
1160 ULONGEST v;
1161
1162 v = extract_unsigned_integer (value_contents (args[0]),
1163 TYPE_LENGTH (type), byte_order);
1164 first_stack_argnum = 1;
1165
1166 regcache_cooked_write_unsigned (regcache, HARD_D_REGNUM, v);
1167 if (TYPE_LENGTH (type) > 2)
1168 {
1169 v >>= 16;
1170 regcache_cooked_write_unsigned (regcache, HARD_X_REGNUM, v);
1171 }
1172 }
1173 }
1174
1175 for (argnum = nargs - 1; argnum >= first_stack_argnum; argnum--)
1176 {
1177 type = value_type (args[argnum]);
1178
1179 if (TYPE_LENGTH (type) & 1)
1180 {
1181 static gdb_byte zero = 0;
1182
1183 sp--;
1184 write_memory (sp, &zero, 1);
1185 }
1186 val = value_contents (args[argnum]);
1187 sp -= TYPE_LENGTH (type);
1188 write_memory (sp, val, TYPE_LENGTH (type));
1189 }
1190
1191 /* Store return address. */
1192 sp -= 2;
1193 store_unsigned_integer (buf, 2, byte_order, bp_addr);
1194 write_memory (sp, buf, 2);
1195
1196 /* Finally, update the stack pointer... */
1197 sp -= STACK_CORRECTION (gdbarch);
1198 regcache_cooked_write_unsigned (regcache, HARD_SP_REGNUM, sp);
1199
1200 /* ...and fake a frame pointer. */
1201 regcache_cooked_write_unsigned (regcache, SOFT_FP_REGNUM, sp);
1202
1203 /* DWARF2/GCC uses the stack address *before* the function call as a
1204 frame's CFA. */
1205 return sp + 2;
1206 }
1207
1208
1209 /* Return the GDB type object for the "standard" data type
1210 of data in register N. */
1211
1212 static struct type *
1213 m68hc11_register_type (struct gdbarch *gdbarch, int reg_nr)
1214 {
1215 switch (reg_nr)
1216 {
1217 case HARD_PAGE_REGNUM:
1218 case HARD_A_REGNUM:
1219 case HARD_B_REGNUM:
1220 case HARD_CCR_REGNUM:
1221 return builtin_type (gdbarch)->builtin_uint8;
1222
1223 case M68HC12_HARD_PC_REGNUM:
1224 return builtin_type (gdbarch)->builtin_uint32;
1225
1226 default:
1227 return builtin_type (gdbarch)->builtin_uint16;
1228 }
1229 }
1230
1231 static void
1232 m68hc11_store_return_value (struct type *type, struct regcache *regcache,
1233 const gdb_byte *valbuf)
1234 {
1235 int len;
1236
1237 len = TYPE_LENGTH (type);
1238
1239 /* First argument is passed in D and X registers. */
1240 if (len <= 2)
1241 regcache->raw_write_part (HARD_D_REGNUM, 2 - len, len, valbuf);
1242 else if (len <= 4)
1243 {
1244 regcache->raw_write_part (HARD_X_REGNUM, 4 - len, len - 2, valbuf);
1245 regcache->raw_write (HARD_D_REGNUM, valbuf + (len - 2));
1246 }
1247 else
1248 error (_("return of value > 4 is not supported."));
1249 }
1250
1251
1252 /* Given a return value in `regcache' with a type `type',
1253 extract and copy its value into `valbuf'. */
1254
1255 static void
1256 m68hc11_extract_return_value (struct type *type, struct regcache *regcache,
1257 void *valbuf)
1258 {
1259 gdb_byte buf[M68HC11_REG_SIZE];
1260
1261 regcache->raw_read (HARD_D_REGNUM, buf);
1262 switch (TYPE_LENGTH (type))
1263 {
1264 case 1:
1265 memcpy (valbuf, buf + 1, 1);
1266 break;
1267
1268 case 2:
1269 memcpy (valbuf, buf, 2);
1270 break;
1271
1272 case 3:
1273 memcpy ((char*) valbuf + 1, buf, 2);
1274 regcache->raw_read (HARD_X_REGNUM, buf);
1275 memcpy (valbuf, buf + 1, 1);
1276 break;
1277
1278 case 4:
1279 memcpy ((char*) valbuf + 2, buf, 2);
1280 regcache->raw_read (HARD_X_REGNUM, buf);
1281 memcpy (valbuf, buf, 2);
1282 break;
1283
1284 default:
1285 error (_("bad size for return value"));
1286 }
1287 }
1288
1289 static enum return_value_convention
1290 m68hc11_return_value (struct gdbarch *gdbarch, struct value *function,
1291 struct type *valtype, struct regcache *regcache,
1292 gdb_byte *readbuf, const gdb_byte *writebuf)
1293 {
1294 if (valtype->code () == TYPE_CODE_STRUCT
1295 || valtype->code () == TYPE_CODE_UNION
1296 || valtype->code () == TYPE_CODE_ARRAY
1297 || TYPE_LENGTH (valtype) > 4)
1298 return RETURN_VALUE_STRUCT_CONVENTION;
1299 else
1300 {
1301 if (readbuf != NULL)
1302 m68hc11_extract_return_value (valtype, regcache, readbuf);
1303 if (writebuf != NULL)
1304 m68hc11_store_return_value (valtype, regcache, writebuf);
1305 return RETURN_VALUE_REGISTER_CONVENTION;
1306 }
1307 }
1308
1309 /* Test whether the ELF symbol corresponds to a function using rtc or
1310 rti to return. */
1311
1312 static void
1313 m68hc11_elf_make_msymbol_special (asymbol *sym, struct minimal_symbol *msym)
1314 {
1315 unsigned char flags;
1316
1317 flags = ((elf_symbol_type *)sym)->internal_elf_sym.st_other;
1318 if (flags & STO_M68HC12_FAR)
1319 MSYMBOL_SET_RTC (msym);
1320 if (flags & STO_M68HC12_INTERRUPT)
1321 MSYMBOL_SET_RTI (msym);
1322 }
1323 \f
1324
1325 /* 68HC11/68HC12 register groups.
1326 Identify real hard registers and soft registers used by gcc. */
1327
1328 static struct reggroup *m68hc11_soft_reggroup;
1329 static struct reggroup *m68hc11_hard_reggroup;
1330
1331 static void
1332 m68hc11_init_reggroups (void)
1333 {
1334 m68hc11_hard_reggroup = reggroup_new ("hard", USER_REGGROUP);
1335 m68hc11_soft_reggroup = reggroup_new ("soft", USER_REGGROUP);
1336 }
1337
1338 static void
1339 m68hc11_add_reggroups (struct gdbarch *gdbarch)
1340 {
1341 reggroup_add (gdbarch, m68hc11_hard_reggroup);
1342 reggroup_add (gdbarch, m68hc11_soft_reggroup);
1343 reggroup_add (gdbarch, general_reggroup);
1344 reggroup_add (gdbarch, float_reggroup);
1345 reggroup_add (gdbarch, all_reggroup);
1346 reggroup_add (gdbarch, save_reggroup);
1347 reggroup_add (gdbarch, restore_reggroup);
1348 reggroup_add (gdbarch, vector_reggroup);
1349 reggroup_add (gdbarch, system_reggroup);
1350 }
1351
1352 static int
1353 m68hc11_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
1354 struct reggroup *group)
1355 {
1356 /* We must save the real hard register as well as gcc
1357 soft registers including the frame pointer. */
1358 if (group == save_reggroup || group == restore_reggroup)
1359 {
1360 return (regnum <= gdbarch_num_regs (gdbarch)
1361 || ((regnum == SOFT_FP_REGNUM
1362 || regnum == SOFT_TMP_REGNUM
1363 || regnum == SOFT_ZS_REGNUM
1364 || regnum == SOFT_XY_REGNUM)
1365 && m68hc11_register_name (gdbarch, regnum)));
1366 }
1367
1368 /* Group to identify gcc soft registers (d1..dN). */
1369 if (group == m68hc11_soft_reggroup)
1370 {
1371 return regnum >= SOFT_D1_REGNUM
1372 && m68hc11_register_name (gdbarch, regnum);
1373 }
1374
1375 if (group == m68hc11_hard_reggroup)
1376 {
1377 return regnum == HARD_PC_REGNUM || regnum == HARD_SP_REGNUM
1378 || regnum == HARD_X_REGNUM || regnum == HARD_D_REGNUM
1379 || regnum == HARD_Y_REGNUM || regnum == HARD_CCR_REGNUM;
1380 }
1381 return default_register_reggroup_p (gdbarch, regnum, group);
1382 }
1383
1384 static struct gdbarch *
1385 m68hc11_gdbarch_init (struct gdbarch_info info,
1386 struct gdbarch_list *arches)
1387 {
1388 struct gdbarch *gdbarch;
1389 struct gdbarch_tdep *tdep;
1390 int elf_flags;
1391
1392 soft_reg_initialized = 0;
1393
1394 /* Extract the elf_flags if available. */
1395 if (info.abfd != NULL
1396 && bfd_get_flavour (info.abfd) == bfd_target_elf_flavour)
1397 elf_flags = elf_elfheader (info.abfd)->e_flags;
1398 else
1399 elf_flags = 0;
1400
1401 /* Try to find a pre-existing architecture. */
1402 for (arches = gdbarch_list_lookup_by_info (arches, &info);
1403 arches != NULL;
1404 arches = gdbarch_list_lookup_by_info (arches->next, &info))
1405 {
1406 if (gdbarch_tdep (arches->gdbarch)->elf_flags != elf_flags)
1407 continue;
1408
1409 return arches->gdbarch;
1410 }
1411
1412 /* Need a new architecture. Fill in a target specific vector. */
1413 tdep = XCNEW (struct gdbarch_tdep);
1414 gdbarch = gdbarch_alloc (&info, tdep);
1415 tdep->elf_flags = elf_flags;
1416
1417 switch (info.bfd_arch_info->arch)
1418 {
1419 case bfd_arch_m68hc11:
1420 tdep->stack_correction = 1;
1421 tdep->use_page_register = 0;
1422 tdep->prologue = m6811_prologue;
1423 set_gdbarch_addr_bit (gdbarch, 16);
1424 set_gdbarch_num_pseudo_regs (gdbarch, M68HC11_NUM_PSEUDO_REGS);
1425 set_gdbarch_pc_regnum (gdbarch, HARD_PC_REGNUM);
1426 set_gdbarch_num_regs (gdbarch, M68HC11_NUM_REGS);
1427 break;
1428
1429 case bfd_arch_m68hc12:
1430 tdep->stack_correction = 0;
1431 tdep->use_page_register = elf_flags & E_M68HC12_BANKS;
1432 tdep->prologue = m6812_prologue;
1433 set_gdbarch_addr_bit (gdbarch, elf_flags & E_M68HC12_BANKS ? 32 : 16);
1434 set_gdbarch_num_pseudo_regs (gdbarch,
1435 elf_flags & E_M68HC12_BANKS
1436 ? M68HC12_NUM_PSEUDO_REGS
1437 : M68HC11_NUM_PSEUDO_REGS);
1438 set_gdbarch_pc_regnum (gdbarch, elf_flags & E_M68HC12_BANKS
1439 ? M68HC12_HARD_PC_REGNUM : HARD_PC_REGNUM);
1440 set_gdbarch_num_regs (gdbarch, elf_flags & E_M68HC12_BANKS
1441 ? M68HC12_NUM_REGS : M68HC11_NUM_REGS);
1442 break;
1443
1444 default:
1445 break;
1446 }
1447
1448 /* Initially set everything according to the ABI.
1449 Use 16-bit integers since it will be the case for most
1450 programs. The size of these types should normally be set
1451 according to the dwarf2 debug information. */
1452 set_gdbarch_short_bit (gdbarch, 16);
1453 set_gdbarch_int_bit (gdbarch, elf_flags & E_M68HC11_I32 ? 32 : 16);
1454 set_gdbarch_float_bit (gdbarch, 32);
1455 if (elf_flags & E_M68HC11_F64)
1456 {
1457 set_gdbarch_double_bit (gdbarch, 64);
1458 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
1459 }
1460 else
1461 {
1462 set_gdbarch_double_bit (gdbarch, 32);
1463 set_gdbarch_double_format (gdbarch, floatformats_ieee_single);
1464 }
1465 set_gdbarch_long_double_bit (gdbarch, 64);
1466 set_gdbarch_long_bit (gdbarch, 32);
1467 set_gdbarch_ptr_bit (gdbarch, 16);
1468 set_gdbarch_long_long_bit (gdbarch, 64);
1469
1470 /* Characters are unsigned. */
1471 set_gdbarch_char_signed (gdbarch, 0);
1472
1473 /* Set register info. */
1474 set_gdbarch_fp0_regnum (gdbarch, -1);
1475
1476 set_gdbarch_sp_regnum (gdbarch, HARD_SP_REGNUM);
1477 set_gdbarch_register_name (gdbarch, m68hc11_register_name);
1478 set_gdbarch_register_type (gdbarch, m68hc11_register_type);
1479 set_gdbarch_pseudo_register_read (gdbarch, m68hc11_pseudo_register_read);
1480 set_gdbarch_pseudo_register_write (gdbarch, m68hc11_pseudo_register_write);
1481
1482 set_gdbarch_push_dummy_call (gdbarch, m68hc11_push_dummy_call);
1483
1484 set_gdbarch_return_value (gdbarch, m68hc11_return_value);
1485 set_gdbarch_skip_prologue (gdbarch, m68hc11_skip_prologue);
1486 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
1487 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
1488 m68hc11_breakpoint::kind_from_pc);
1489 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
1490 m68hc11_breakpoint::bp_from_kind);
1491
1492 m68hc11_add_reggroups (gdbarch);
1493 set_gdbarch_register_reggroup_p (gdbarch, m68hc11_register_reggroup_p);
1494 set_gdbarch_print_registers_info (gdbarch, m68hc11_print_registers_info);
1495
1496 /* Hook in the DWARF CFI frame unwinder. */
1497 dwarf2_append_unwinders (gdbarch);
1498
1499 frame_unwind_append_unwinder (gdbarch, &m68hc11_frame_unwind);
1500 frame_base_set_default (gdbarch, &m68hc11_frame_base);
1501
1502 /* Methods for saving / extracting a dummy frame's ID. The ID's
1503 stack address must match the SP value returned by
1504 PUSH_DUMMY_CALL, and saved by generic_save_dummy_frame_tos. */
1505 set_gdbarch_dummy_id (gdbarch, m68hc11_dummy_id);
1506
1507 /* Minsymbol frobbing. */
1508 set_gdbarch_elf_make_msymbol_special (gdbarch,
1509 m68hc11_elf_make_msymbol_special);
1510
1511 set_gdbarch_believe_pcc_promotion (gdbarch, 1);
1512
1513 return gdbarch;
1514 }
1515
1516 void _initialize_m68hc11_tdep ();
1517 void
1518 _initialize_m68hc11_tdep ()
1519 {
1520 register_gdbarch_init (bfd_arch_m68hc11, m68hc11_gdbarch_init);
1521 register_gdbarch_init (bfd_arch_m68hc12, m68hc11_gdbarch_init);
1522 m68hc11_init_reggroups ();
1523 }
1524
This page took 0.060808 seconds and 4 git commands to generate.