Defer minimal symbol name-setting
[deliverable/binutils-gdb.git] / gdb / minsyms.c
1 /* GDB routines for manipulating the minimal symbol tables.
2 Copyright (C) 1992-2019 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 /* This file contains support routines for creating, manipulating, and
22 destroying minimal symbol tables.
23
24 Minimal symbol tables are used to hold some very basic information about
25 all defined global symbols (text, data, bss, abs, etc). The only two
26 required pieces of information are the symbol's name and the address
27 associated with that symbol.
28
29 In many cases, even if a file was compiled with no special options for
30 debugging at all, as long as was not stripped it will contain sufficient
31 information to build useful minimal symbol tables using this structure.
32
33 Even when a file contains enough debugging information to build a full
34 symbol table, these minimal symbols are still useful for quickly mapping
35 between names and addresses, and vice versa. They are also sometimes used
36 to figure out what full symbol table entries need to be read in. */
37
38
39 #include "defs.h"
40 #include <ctype.h>
41 #include "symtab.h"
42 #include "bfd.h"
43 #include "filenames.h"
44 #include "symfile.h"
45 #include "objfiles.h"
46 #include "demangle.h"
47 #include "value.h"
48 #include "cp-abi.h"
49 #include "target.h"
50 #include "cp-support.h"
51 #include "language.h"
52 #include "cli/cli-utils.h"
53 #include "gdbsupport/symbol.h"
54 #include <algorithm>
55 #include "safe-ctype.h"
56
57 /* See minsyms.h. */
58
59 bool
60 msymbol_is_function (struct objfile *objfile, minimal_symbol *minsym,
61 CORE_ADDR *func_address_p)
62 {
63 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
64
65 switch (minsym->type)
66 {
67 case mst_slot_got_plt:
68 case mst_data:
69 case mst_bss:
70 case mst_abs:
71 case mst_file_data:
72 case mst_file_bss:
73 case mst_data_gnu_ifunc:
74 {
75 struct gdbarch *gdbarch = get_objfile_arch (objfile);
76 CORE_ADDR pc
77 = gdbarch_convert_from_func_ptr_addr (gdbarch, msym_addr,
78 current_top_target ());
79 if (pc != msym_addr)
80 {
81 if (func_address_p != NULL)
82 *func_address_p = pc;
83 return true;
84 }
85 return false;
86 }
87 default:
88 if (func_address_p != NULL)
89 *func_address_p = msym_addr;
90 return true;
91 }
92 }
93
94 /* Accumulate the minimal symbols for each objfile in bunches of BUNCH_SIZE.
95 At the end, copy them all into one newly allocated array. */
96
97 #define BUNCH_SIZE 127
98
99 struct msym_bunch
100 {
101 struct msym_bunch *next;
102 struct minimal_symbol contents[BUNCH_SIZE];
103 };
104
105 /* See minsyms.h. */
106
107 unsigned int
108 msymbol_hash_iw (const char *string)
109 {
110 unsigned int hash = 0;
111
112 while (*string && *string != '(')
113 {
114 string = skip_spaces (string);
115 if (*string && *string != '(')
116 {
117 hash = SYMBOL_HASH_NEXT (hash, *string);
118 ++string;
119 }
120 }
121 return hash;
122 }
123
124 /* See minsyms.h. */
125
126 unsigned int
127 msymbol_hash (const char *string)
128 {
129 unsigned int hash = 0;
130
131 for (; *string; ++string)
132 hash = SYMBOL_HASH_NEXT (hash, *string);
133 return hash;
134 }
135
136 /* Add the minimal symbol SYM to an objfile's minsym hash table, TABLE. */
137 static void
138 add_minsym_to_hash_table (struct minimal_symbol *sym,
139 struct minimal_symbol **table)
140 {
141 if (sym->hash_next == NULL)
142 {
143 unsigned int hash
144 = msymbol_hash (sym->linkage_name ()) % MINIMAL_SYMBOL_HASH_SIZE;
145
146 sym->hash_next = table[hash];
147 table[hash] = sym;
148 }
149 }
150
151 /* Add the minimal symbol SYM to an objfile's minsym demangled hash table,
152 TABLE. */
153 static void
154 add_minsym_to_demangled_hash_table (struct minimal_symbol *sym,
155 struct objfile *objfile)
156 {
157 if (sym->demangled_hash_next == NULL)
158 {
159 unsigned int hash = search_name_hash (MSYMBOL_LANGUAGE (sym),
160 sym->search_name ());
161
162 objfile->per_bfd->demangled_hash_languages.set (MSYMBOL_LANGUAGE (sym));
163
164 struct minimal_symbol **table
165 = objfile->per_bfd->msymbol_demangled_hash;
166 unsigned int hash_index = hash % MINIMAL_SYMBOL_HASH_SIZE;
167 sym->demangled_hash_next = table[hash_index];
168 table[hash_index] = sym;
169 }
170 }
171
172 /* Worker object for lookup_minimal_symbol. Stores temporary results
173 while walking the symbol tables. */
174
175 struct found_minimal_symbols
176 {
177 /* External symbols are best. */
178 bound_minimal_symbol external_symbol {};
179
180 /* File-local symbols are next best. */
181 bound_minimal_symbol file_symbol {};
182
183 /* Symbols for shared library trampolines are next best. */
184 bound_minimal_symbol trampoline_symbol {};
185
186 /* Called when a symbol name matches. Check if the minsym is a
187 better type than what we had already found, and record it in one
188 of the members fields if so. Returns true if we collected the
189 real symbol, in which case we can stop searching. */
190 bool maybe_collect (const char *sfile, objfile *objf,
191 minimal_symbol *msymbol);
192 };
193
194 /* See declaration above. */
195
196 bool
197 found_minimal_symbols::maybe_collect (const char *sfile,
198 struct objfile *objfile,
199 minimal_symbol *msymbol)
200 {
201 switch (MSYMBOL_TYPE (msymbol))
202 {
203 case mst_file_text:
204 case mst_file_data:
205 case mst_file_bss:
206 if (sfile == NULL
207 || filename_cmp (msymbol->filename, sfile) == 0)
208 {
209 file_symbol.minsym = msymbol;
210 file_symbol.objfile = objfile;
211 }
212 break;
213
214 case mst_solib_trampoline:
215
216 /* If a trampoline symbol is found, we prefer to keep
217 looking for the *real* symbol. If the actual symbol
218 is not found, then we'll use the trampoline
219 entry. */
220 if (trampoline_symbol.minsym == NULL)
221 {
222 trampoline_symbol.minsym = msymbol;
223 trampoline_symbol.objfile = objfile;
224 }
225 break;
226
227 case mst_unknown:
228 default:
229 external_symbol.minsym = msymbol;
230 external_symbol.objfile = objfile;
231 /* We have the real symbol. No use looking further. */
232 return true;
233 }
234
235 /* Keep looking. */
236 return false;
237 }
238
239 /* Walk the mangled name hash table, and pass each symbol whose name
240 matches LOOKUP_NAME according to NAMECMP to FOUND. */
241
242 static void
243 lookup_minimal_symbol_mangled (const char *lookup_name,
244 const char *sfile,
245 struct objfile *objfile,
246 struct minimal_symbol **table,
247 unsigned int hash,
248 int (*namecmp) (const char *, const char *),
249 found_minimal_symbols &found)
250 {
251 for (minimal_symbol *msymbol = table[hash];
252 msymbol != NULL;
253 msymbol = msymbol->hash_next)
254 {
255 const char *symbol_name = msymbol->linkage_name ();
256
257 if (namecmp (symbol_name, lookup_name) == 0
258 && found.maybe_collect (sfile, objfile, msymbol))
259 return;
260 }
261 }
262
263 /* Walk the demangled name hash table, and pass each symbol whose name
264 matches LOOKUP_NAME according to MATCHER to FOUND. */
265
266 static void
267 lookup_minimal_symbol_demangled (const lookup_name_info &lookup_name,
268 const char *sfile,
269 struct objfile *objfile,
270 struct minimal_symbol **table,
271 unsigned int hash,
272 symbol_name_matcher_ftype *matcher,
273 found_minimal_symbols &found)
274 {
275 for (minimal_symbol *msymbol = table[hash];
276 msymbol != NULL;
277 msymbol = msymbol->demangled_hash_next)
278 {
279 const char *symbol_name = msymbol->search_name ();
280
281 if (matcher (symbol_name, lookup_name, NULL)
282 && found.maybe_collect (sfile, objfile, msymbol))
283 return;
284 }
285 }
286
287 /* Look through all the current minimal symbol tables and find the
288 first minimal symbol that matches NAME. If OBJF is non-NULL, limit
289 the search to that objfile. If SFILE is non-NULL, the only file-scope
290 symbols considered will be from that source file (global symbols are
291 still preferred). Returns a pointer to the minimal symbol that
292 matches, or NULL if no match is found.
293
294 Note: One instance where there may be duplicate minimal symbols with
295 the same name is when the symbol tables for a shared library and the
296 symbol tables for an executable contain global symbols with the same
297 names (the dynamic linker deals with the duplication).
298
299 It's also possible to have minimal symbols with different mangled
300 names, but identical demangled names. For example, the GNU C++ v3
301 ABI requires the generation of two (or perhaps three) copies of
302 constructor functions --- "in-charge", "not-in-charge", and
303 "allocate" copies; destructors may be duplicated as well.
304 Obviously, there must be distinct mangled names for each of these,
305 but the demangled names are all the same: S::S or S::~S. */
306
307 struct bound_minimal_symbol
308 lookup_minimal_symbol (const char *name, const char *sfile,
309 struct objfile *objf)
310 {
311 found_minimal_symbols found;
312
313 unsigned int mangled_hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
314
315 auto *mangled_cmp
316 = (case_sensitivity == case_sensitive_on
317 ? strcmp
318 : strcasecmp);
319
320 if (sfile != NULL)
321 sfile = lbasename (sfile);
322
323 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
324
325 for (objfile *objfile : current_program_space->objfiles ())
326 {
327 if (found.external_symbol.minsym != NULL)
328 break;
329
330 if (objf == NULL || objf == objfile
331 || objf == objfile->separate_debug_objfile_backlink)
332 {
333 if (symbol_lookup_debug)
334 {
335 fprintf_unfiltered (gdb_stdlog,
336 "lookup_minimal_symbol (%s, %s, %s)\n",
337 name, sfile != NULL ? sfile : "NULL",
338 objfile_debug_name (objfile));
339 }
340
341 /* Do two passes: the first over the ordinary hash table,
342 and the second over the demangled hash table. */
343 lookup_minimal_symbol_mangled (name, sfile, objfile,
344 objfile->per_bfd->msymbol_hash,
345 mangled_hash, mangled_cmp, found);
346
347 /* If not found, try the demangled hash table. */
348 if (found.external_symbol.minsym == NULL)
349 {
350 /* Once for each language in the demangled hash names
351 table (usually just zero or one languages). */
352 for (unsigned iter = 0; iter < nr_languages; ++iter)
353 {
354 if (!objfile->per_bfd->demangled_hash_languages.test (iter))
355 continue;
356 enum language lang = (enum language) iter;
357
358 unsigned int hash
359 = (lookup_name.search_name_hash (lang)
360 % MINIMAL_SYMBOL_HASH_SIZE);
361
362 symbol_name_matcher_ftype *match
363 = get_symbol_name_matcher (language_def (lang),
364 lookup_name);
365 struct minimal_symbol **msymbol_demangled_hash
366 = objfile->per_bfd->msymbol_demangled_hash;
367
368 lookup_minimal_symbol_demangled (lookup_name, sfile, objfile,
369 msymbol_demangled_hash,
370 hash, match, found);
371
372 if (found.external_symbol.minsym != NULL)
373 break;
374 }
375 }
376 }
377 }
378
379 /* External symbols are best. */
380 if (found.external_symbol.minsym != NULL)
381 {
382 if (symbol_lookup_debug)
383 {
384 minimal_symbol *minsym = found.external_symbol.minsym;
385
386 fprintf_unfiltered (gdb_stdlog,
387 "lookup_minimal_symbol (...) = %s (external)\n",
388 host_address_to_string (minsym));
389 }
390 return found.external_symbol;
391 }
392
393 /* File-local symbols are next best. */
394 if (found.file_symbol.minsym != NULL)
395 {
396 if (symbol_lookup_debug)
397 {
398 minimal_symbol *minsym = found.file_symbol.minsym;
399
400 fprintf_unfiltered (gdb_stdlog,
401 "lookup_minimal_symbol (...) = %s (file-local)\n",
402 host_address_to_string (minsym));
403 }
404 return found.file_symbol;
405 }
406
407 /* Symbols for shared library trampolines are next best. */
408 if (found.trampoline_symbol.minsym != NULL)
409 {
410 if (symbol_lookup_debug)
411 {
412 minimal_symbol *minsym = found.trampoline_symbol.minsym;
413
414 fprintf_unfiltered (gdb_stdlog,
415 "lookup_minimal_symbol (...) = %s (trampoline)\n",
416 host_address_to_string (minsym));
417 }
418
419 return found.trampoline_symbol;
420 }
421
422 /* Not found. */
423 if (symbol_lookup_debug)
424 fprintf_unfiltered (gdb_stdlog, "lookup_minimal_symbol (...) = NULL\n");
425 return {};
426 }
427
428 /* See minsyms.h. */
429
430 struct bound_minimal_symbol
431 lookup_bound_minimal_symbol (const char *name)
432 {
433 return lookup_minimal_symbol (name, NULL, NULL);
434 }
435
436 /* See gdbsupport/symbol.h. */
437
438 int
439 find_minimal_symbol_address (const char *name, CORE_ADDR *addr,
440 struct objfile *objfile)
441 {
442 struct bound_minimal_symbol sym
443 = lookup_minimal_symbol (name, NULL, objfile);
444
445 if (sym.minsym != NULL)
446 *addr = BMSYMBOL_VALUE_ADDRESS (sym);
447
448 return sym.minsym == NULL;
449 }
450
451 /* Get the lookup name form best suitable for linkage name
452 matching. */
453
454 static const char *
455 linkage_name_str (const lookup_name_info &lookup_name)
456 {
457 /* Unlike most languages (including C++), Ada uses the
458 encoded/linkage name as the search name recorded in symbols. So
459 if debugging in Ada mode, prefer the Ada-encoded name. This also
460 makes Ada's verbatim match syntax ("<...>") work, because
461 "lookup_name.name()" includes the "<>"s, while
462 "lookup_name.ada().lookup_name()" is the encoded name with "<>"s
463 stripped. */
464 if (current_language->la_language == language_ada)
465 return lookup_name.ada ().lookup_name ().c_str ();
466
467 return lookup_name.name ().c_str ();
468 }
469
470 /* See minsyms.h. */
471
472 void
473 iterate_over_minimal_symbols
474 (struct objfile *objf, const lookup_name_info &lookup_name,
475 gdb::function_view<bool (struct minimal_symbol *)> callback)
476 {
477 /* The first pass is over the ordinary hash table. */
478 {
479 const char *name = linkage_name_str (lookup_name);
480 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
481 auto *mangled_cmp
482 = (case_sensitivity == case_sensitive_on
483 ? strcmp
484 : strcasecmp);
485
486 for (minimal_symbol *iter = objf->per_bfd->msymbol_hash[hash];
487 iter != NULL;
488 iter = iter->hash_next)
489 {
490 if (mangled_cmp (iter->linkage_name (), name) == 0)
491 if (callback (iter))
492 return;
493 }
494 }
495
496 /* The second pass is over the demangled table. Once for each
497 language in the demangled hash names table (usually just zero or
498 one). */
499 for (unsigned liter = 0; liter < nr_languages; ++liter)
500 {
501 if (!objf->per_bfd->demangled_hash_languages.test (liter))
502 continue;
503
504 enum language lang = (enum language) liter;
505 const language_defn *lang_def = language_def (lang);
506 symbol_name_matcher_ftype *name_match
507 = get_symbol_name_matcher (lang_def, lookup_name);
508
509 unsigned int hash
510 = lookup_name.search_name_hash (lang) % MINIMAL_SYMBOL_HASH_SIZE;
511 for (minimal_symbol *iter = objf->per_bfd->msymbol_demangled_hash[hash];
512 iter != NULL;
513 iter = iter->demangled_hash_next)
514 if (name_match (iter->search_name (), lookup_name, NULL))
515 if (callback (iter))
516 return;
517 }
518 }
519
520 /* See minsyms.h. */
521
522 bound_minimal_symbol
523 lookup_minimal_symbol_linkage (const char *name, struct objfile *objf)
524 {
525 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
526
527 for (objfile *objfile : objf->separate_debug_objfiles ())
528 {
529 for (minimal_symbol *msymbol = objfile->per_bfd->msymbol_hash[hash];
530 msymbol != NULL;
531 msymbol = msymbol->hash_next)
532 {
533 if (strcmp (msymbol->linkage_name (), name) == 0
534 && (MSYMBOL_TYPE (msymbol) == mst_data
535 || MSYMBOL_TYPE (msymbol) == mst_bss))
536 return {msymbol, objfile};
537 }
538 }
539
540 return {};
541 }
542
543 /* See minsyms.h. */
544
545 struct bound_minimal_symbol
546 lookup_minimal_symbol_text (const char *name, struct objfile *objf)
547 {
548 struct minimal_symbol *msymbol;
549 struct bound_minimal_symbol found_symbol = { NULL, NULL };
550 struct bound_minimal_symbol found_file_symbol = { NULL, NULL };
551
552 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
553
554 for (objfile *objfile : current_program_space->objfiles ())
555 {
556 if (found_symbol.minsym != NULL)
557 break;
558
559 if (objf == NULL || objf == objfile
560 || objf == objfile->separate_debug_objfile_backlink)
561 {
562 for (msymbol = objfile->per_bfd->msymbol_hash[hash];
563 msymbol != NULL && found_symbol.minsym == NULL;
564 msymbol = msymbol->hash_next)
565 {
566 if (strcmp (msymbol->linkage_name (), name) == 0 &&
567 (MSYMBOL_TYPE (msymbol) == mst_text
568 || MSYMBOL_TYPE (msymbol) == mst_text_gnu_ifunc
569 || MSYMBOL_TYPE (msymbol) == mst_file_text))
570 {
571 switch (MSYMBOL_TYPE (msymbol))
572 {
573 case mst_file_text:
574 found_file_symbol.minsym = msymbol;
575 found_file_symbol.objfile = objfile;
576 break;
577 default:
578 found_symbol.minsym = msymbol;
579 found_symbol.objfile = objfile;
580 break;
581 }
582 }
583 }
584 }
585 }
586 /* External symbols are best. */
587 if (found_symbol.minsym)
588 return found_symbol;
589
590 /* File-local symbols are next best. */
591 return found_file_symbol;
592 }
593
594 /* See minsyms.h. */
595
596 struct minimal_symbol *
597 lookup_minimal_symbol_by_pc_name (CORE_ADDR pc, const char *name,
598 struct objfile *objf)
599 {
600 struct minimal_symbol *msymbol;
601
602 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
603
604 for (objfile *objfile : current_program_space->objfiles ())
605 {
606 if (objf == NULL || objf == objfile
607 || objf == objfile->separate_debug_objfile_backlink)
608 {
609 for (msymbol = objfile->per_bfd->msymbol_hash[hash];
610 msymbol != NULL;
611 msymbol = msymbol->hash_next)
612 {
613 if (MSYMBOL_VALUE_ADDRESS (objfile, msymbol) == pc
614 && strcmp (msymbol->linkage_name (), name) == 0)
615 return msymbol;
616 }
617 }
618 }
619
620 return NULL;
621 }
622
623 /* A helper function that makes *PC section-relative. This searches
624 the sections of OBJFILE and if *PC is in a section, it subtracts
625 the section offset and returns true. Otherwise it returns
626 false. */
627
628 static int
629 frob_address (struct objfile *objfile, CORE_ADDR *pc)
630 {
631 struct obj_section *iter;
632
633 ALL_OBJFILE_OSECTIONS (objfile, iter)
634 {
635 if (*pc >= obj_section_addr (iter) && *pc < obj_section_endaddr (iter))
636 {
637 *pc -= obj_section_offset (iter);
638 return 1;
639 }
640 }
641
642 return 0;
643 }
644
645 /* Helper for lookup_minimal_symbol_by_pc_section. Convert a
646 lookup_msym_prefer to a minimal_symbol_type. */
647
648 static minimal_symbol_type
649 msym_prefer_to_msym_type (lookup_msym_prefer prefer)
650 {
651 switch (prefer)
652 {
653 case lookup_msym_prefer::TEXT:
654 return mst_text;
655 case lookup_msym_prefer::TRAMPOLINE:
656 return mst_solib_trampoline;
657 case lookup_msym_prefer::GNU_IFUNC:
658 return mst_text_gnu_ifunc;
659 }
660
661 /* Assert here instead of in a default switch case above so that
662 -Wswitch warns if a new enumerator is added. */
663 gdb_assert_not_reached ("unhandled lookup_msym_prefer");
664 }
665
666 /* Search through the minimal symbol table for each objfile and find
667 the symbol whose address is the largest address that is still less
668 than or equal to PC, and matches SECTION (which is not NULL).
669 Returns a pointer to the minimal symbol if such a symbol is found,
670 or NULL if PC is not in a suitable range.
671 Note that we need to look through ALL the minimal symbol tables
672 before deciding on the symbol that comes closest to the specified PC.
673 This is because objfiles can overlap, for example objfile A has .text
674 at 0x100 and .data at 0x40000 and objfile B has .text at 0x234 and
675 .data at 0x40048.
676
677 If WANT_TRAMPOLINE is set, prefer mst_solib_trampoline symbols when
678 there are text and trampoline symbols at the same address.
679 Otherwise prefer mst_text symbols. */
680
681 bound_minimal_symbol
682 lookup_minimal_symbol_by_pc_section (CORE_ADDR pc_in, struct obj_section *section,
683 lookup_msym_prefer prefer)
684 {
685 int lo;
686 int hi;
687 int newobj;
688 struct minimal_symbol *msymbol;
689 struct minimal_symbol *best_symbol = NULL;
690 struct objfile *best_objfile = NULL;
691 struct bound_minimal_symbol result;
692
693 if (section == NULL)
694 {
695 section = find_pc_section (pc_in);
696 if (section == NULL)
697 return {};
698 }
699
700 minimal_symbol_type want_type = msym_prefer_to_msym_type (prefer);
701
702 /* We can not require the symbol found to be in section, because
703 e.g. IRIX 6.5 mdebug relies on this code returning an absolute
704 symbol - but find_pc_section won't return an absolute section and
705 hence the code below would skip over absolute symbols. We can
706 still take advantage of the call to find_pc_section, though - the
707 object file still must match. In case we have separate debug
708 files, search both the file and its separate debug file. There's
709 no telling which one will have the minimal symbols. */
710
711 gdb_assert (section != NULL);
712
713 for (objfile *objfile : section->objfile->separate_debug_objfiles ())
714 {
715 CORE_ADDR pc = pc_in;
716
717 /* If this objfile has a minimal symbol table, go search it
718 using a binary search. */
719
720 if (objfile->per_bfd->minimal_symbol_count > 0)
721 {
722 int best_zero_sized = -1;
723
724 msymbol = objfile->per_bfd->msymbols.get ();
725 lo = 0;
726 hi = objfile->per_bfd->minimal_symbol_count - 1;
727
728 /* This code assumes that the minimal symbols are sorted by
729 ascending address values. If the pc value is greater than or
730 equal to the first symbol's address, then some symbol in this
731 minimal symbol table is a suitable candidate for being the
732 "best" symbol. This includes the last real symbol, for cases
733 where the pc value is larger than any address in this vector.
734
735 By iterating until the address associated with the current
736 hi index (the endpoint of the test interval) is less than
737 or equal to the desired pc value, we accomplish two things:
738 (1) the case where the pc value is larger than any minimal
739 symbol address is trivially solved, (2) the address associated
740 with the hi index is always the one we want when the iteration
741 terminates. In essence, we are iterating the test interval
742 down until the pc value is pushed out of it from the high end.
743
744 Warning: this code is trickier than it would appear at first. */
745
746 if (frob_address (objfile, &pc)
747 && pc >= MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[lo]))
748 {
749 while (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi]) > pc)
750 {
751 /* pc is still strictly less than highest address. */
752 /* Note "new" will always be >= lo. */
753 newobj = (lo + hi) / 2;
754 if ((MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[newobj]) >= pc)
755 || (lo == newobj))
756 {
757 hi = newobj;
758 }
759 else
760 {
761 lo = newobj;
762 }
763 }
764
765 /* If we have multiple symbols at the same address, we want
766 hi to point to the last one. That way we can find the
767 right symbol if it has an index greater than hi. */
768 while (hi < objfile->per_bfd->minimal_symbol_count - 1
769 && (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
770 == MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi + 1])))
771 hi++;
772
773 /* Skip various undesirable symbols. */
774 while (hi >= 0)
775 {
776 /* Skip any absolute symbols. This is apparently
777 what adb and dbx do, and is needed for the CM-5.
778 There are two known possible problems: (1) on
779 ELF, apparently end, edata, etc. are absolute.
780 Not sure ignoring them here is a big deal, but if
781 we want to use them, the fix would go in
782 elfread.c. (2) I think shared library entry
783 points on the NeXT are absolute. If we want
784 special handling for this it probably should be
785 triggered by a special mst_abs_or_lib or some
786 such. */
787
788 if (MSYMBOL_TYPE (&msymbol[hi]) == mst_abs)
789 {
790 hi--;
791 continue;
792 }
793
794 /* If SECTION was specified, skip any symbol from
795 wrong section. */
796 if (section
797 /* Some types of debug info, such as COFF,
798 don't fill the bfd_section member, so don't
799 throw away symbols on those platforms. */
800 && MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi]) != NULL
801 && (!matching_obj_sections
802 (MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi]),
803 section)))
804 {
805 hi--;
806 continue;
807 }
808
809 /* If we are looking for a trampoline and this is a
810 text symbol, or the other way around, check the
811 preceding symbol too. If they are otherwise
812 identical prefer that one. */
813 if (hi > 0
814 && MSYMBOL_TYPE (&msymbol[hi]) != want_type
815 && MSYMBOL_TYPE (&msymbol[hi - 1]) == want_type
816 && (MSYMBOL_SIZE (&msymbol[hi])
817 == MSYMBOL_SIZE (&msymbol[hi - 1]))
818 && (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
819 == MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi - 1]))
820 && (MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi])
821 == MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi - 1])))
822 {
823 hi--;
824 continue;
825 }
826
827 /* If the minimal symbol has a zero size, save it
828 but keep scanning backwards looking for one with
829 a non-zero size. A zero size may mean that the
830 symbol isn't an object or function (e.g. a
831 label), or it may just mean that the size was not
832 specified. */
833 if (MSYMBOL_SIZE (&msymbol[hi]) == 0)
834 {
835 if (best_zero_sized == -1)
836 best_zero_sized = hi;
837 hi--;
838 continue;
839 }
840
841 /* If we are past the end of the current symbol, try
842 the previous symbol if it has a larger overlapping
843 size. This happens on i686-pc-linux-gnu with glibc;
844 the nocancel variants of system calls are inside
845 the cancellable variants, but both have sizes. */
846 if (hi > 0
847 && MSYMBOL_SIZE (&msymbol[hi]) != 0
848 && pc >= (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
849 + MSYMBOL_SIZE (&msymbol[hi]))
850 && pc < (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi - 1])
851 + MSYMBOL_SIZE (&msymbol[hi - 1])))
852 {
853 hi--;
854 continue;
855 }
856
857 /* Otherwise, this symbol must be as good as we're going
858 to get. */
859 break;
860 }
861
862 /* If HI has a zero size, and best_zero_sized is set,
863 then we had two or more zero-sized symbols; prefer
864 the first one we found (which may have a higher
865 address). Also, if we ran off the end, be sure
866 to back up. */
867 if (best_zero_sized != -1
868 && (hi < 0 || MSYMBOL_SIZE (&msymbol[hi]) == 0))
869 hi = best_zero_sized;
870
871 /* If the minimal symbol has a non-zero size, and this
872 PC appears to be outside the symbol's contents, then
873 refuse to use this symbol. If we found a zero-sized
874 symbol with an address greater than this symbol's,
875 use that instead. We assume that if symbols have
876 specified sizes, they do not overlap. */
877
878 if (hi >= 0
879 && MSYMBOL_SIZE (&msymbol[hi]) != 0
880 && pc >= (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
881 + MSYMBOL_SIZE (&msymbol[hi])))
882 {
883 if (best_zero_sized != -1)
884 hi = best_zero_sized;
885 else
886 /* Go on to the next object file. */
887 continue;
888 }
889
890 /* The minimal symbol indexed by hi now is the best one in this
891 objfile's minimal symbol table. See if it is the best one
892 overall. */
893
894 if (hi >= 0
895 && ((best_symbol == NULL) ||
896 (MSYMBOL_VALUE_RAW_ADDRESS (best_symbol) <
897 MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi]))))
898 {
899 best_symbol = &msymbol[hi];
900 best_objfile = objfile;
901 }
902 }
903 }
904 }
905
906 result.minsym = best_symbol;
907 result.objfile = best_objfile;
908 return result;
909 }
910
911 /* See minsyms.h. */
912
913 struct bound_minimal_symbol
914 lookup_minimal_symbol_by_pc (CORE_ADDR pc)
915 {
916 return lookup_minimal_symbol_by_pc_section (pc, NULL);
917 }
918
919 /* Return non-zero iff PC is in an STT_GNU_IFUNC function resolver. */
920
921 bool
922 in_gnu_ifunc_stub (CORE_ADDR pc)
923 {
924 bound_minimal_symbol msymbol
925 = lookup_minimal_symbol_by_pc_section (pc, NULL,
926 lookup_msym_prefer::GNU_IFUNC);
927 return msymbol.minsym && MSYMBOL_TYPE (msymbol.minsym) == mst_text_gnu_ifunc;
928 }
929
930 /* See elf_gnu_ifunc_resolve_addr for its real implementation. */
931
932 static CORE_ADDR
933 stub_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
934 {
935 error (_("GDB cannot resolve STT_GNU_IFUNC symbol at address %s without "
936 "the ELF support compiled in."),
937 paddress (gdbarch, pc));
938 }
939
940 /* See elf_gnu_ifunc_resolve_name for its real implementation. */
941
942 static bool
943 stub_gnu_ifunc_resolve_name (const char *function_name,
944 CORE_ADDR *function_address_p)
945 {
946 error (_("GDB cannot resolve STT_GNU_IFUNC symbol \"%s\" without "
947 "the ELF support compiled in."),
948 function_name);
949 }
950
951 /* See elf_gnu_ifunc_resolver_stop for its real implementation. */
952
953 static void
954 stub_gnu_ifunc_resolver_stop (struct breakpoint *b)
955 {
956 internal_error (__FILE__, __LINE__,
957 _("elf_gnu_ifunc_resolver_stop cannot be reached."));
958 }
959
960 /* See elf_gnu_ifunc_resolver_return_stop for its real implementation. */
961
962 static void
963 stub_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
964 {
965 internal_error (__FILE__, __LINE__,
966 _("elf_gnu_ifunc_resolver_return_stop cannot be reached."));
967 }
968
969 /* See elf_gnu_ifunc_fns for its real implementation. */
970
971 static const struct gnu_ifunc_fns stub_gnu_ifunc_fns =
972 {
973 stub_gnu_ifunc_resolve_addr,
974 stub_gnu_ifunc_resolve_name,
975 stub_gnu_ifunc_resolver_stop,
976 stub_gnu_ifunc_resolver_return_stop,
977 };
978
979 /* A placeholder for &elf_gnu_ifunc_fns. */
980
981 const struct gnu_ifunc_fns *gnu_ifunc_fns_p = &stub_gnu_ifunc_fns;
982
983 \f
984
985 /* Return leading symbol character for a BFD. If BFD is NULL,
986 return the leading symbol character from the main objfile. */
987
988 static int
989 get_symbol_leading_char (bfd *abfd)
990 {
991 if (abfd != NULL)
992 return bfd_get_symbol_leading_char (abfd);
993 if (symfile_objfile != NULL && symfile_objfile->obfd != NULL)
994 return bfd_get_symbol_leading_char (symfile_objfile->obfd);
995 return 0;
996 }
997
998 /* See minsyms.h. */
999
1000 minimal_symbol_reader::minimal_symbol_reader (struct objfile *obj)
1001 : m_objfile (obj),
1002 m_msym_bunch (NULL),
1003 /* Note that presetting m_msym_bunch_index to BUNCH_SIZE causes the
1004 first call to save a minimal symbol to allocate the memory for
1005 the first bunch. */
1006 m_msym_bunch_index (BUNCH_SIZE),
1007 m_msym_count (0)
1008 {
1009 }
1010
1011 /* Discard the currently collected minimal symbols, if any. If we wish
1012 to save them for later use, we must have already copied them somewhere
1013 else before calling this function. */
1014
1015 minimal_symbol_reader::~minimal_symbol_reader ()
1016 {
1017 struct msym_bunch *next;
1018
1019 while (m_msym_bunch != NULL)
1020 {
1021 next = m_msym_bunch->next;
1022 xfree (m_msym_bunch);
1023 m_msym_bunch = next;
1024 }
1025 }
1026
1027 /* See minsyms.h. */
1028
1029 void
1030 minimal_symbol_reader::record (const char *name, CORE_ADDR address,
1031 enum minimal_symbol_type ms_type)
1032 {
1033 int section;
1034
1035 switch (ms_type)
1036 {
1037 case mst_text:
1038 case mst_text_gnu_ifunc:
1039 case mst_file_text:
1040 case mst_solib_trampoline:
1041 section = SECT_OFF_TEXT (m_objfile);
1042 break;
1043 case mst_data:
1044 case mst_data_gnu_ifunc:
1045 case mst_file_data:
1046 section = SECT_OFF_DATA (m_objfile);
1047 break;
1048 case mst_bss:
1049 case mst_file_bss:
1050 section = SECT_OFF_BSS (m_objfile);
1051 break;
1052 default:
1053 section = -1;
1054 }
1055
1056 record_with_info (name, address, ms_type, section);
1057 }
1058
1059 /* Convert an enumerator of type minimal_symbol_type to its string
1060 representation. */
1061
1062 static const char *
1063 mst_str (minimal_symbol_type t)
1064 {
1065 #define MST_TO_STR(x) case x: return #x;
1066 switch (t)
1067 {
1068 MST_TO_STR (mst_unknown);
1069 MST_TO_STR (mst_text);
1070 MST_TO_STR (mst_text_gnu_ifunc);
1071 MST_TO_STR (mst_slot_got_plt);
1072 MST_TO_STR (mst_data);
1073 MST_TO_STR (mst_bss);
1074 MST_TO_STR (mst_abs);
1075 MST_TO_STR (mst_solib_trampoline);
1076 MST_TO_STR (mst_file_text);
1077 MST_TO_STR (mst_file_data);
1078 MST_TO_STR (mst_file_bss);
1079
1080 default:
1081 return "mst_???";
1082 }
1083 #undef MST_TO_STR
1084 }
1085
1086 /* See minsyms.h. */
1087
1088 struct minimal_symbol *
1089 minimal_symbol_reader::record_full (gdb::string_view name,
1090 bool copy_name, CORE_ADDR address,
1091 enum minimal_symbol_type ms_type,
1092 int section)
1093 {
1094 struct msym_bunch *newobj;
1095 struct minimal_symbol *msymbol;
1096
1097 /* Don't put gcc_compiled, __gnu_compiled_cplus, and friends into
1098 the minimal symbols, because if there is also another symbol
1099 at the same address (e.g. the first function of the file),
1100 lookup_minimal_symbol_by_pc would have no way of getting the
1101 right one. */
1102 if (ms_type == mst_file_text && name[0] == 'g'
1103 && (name == GCC_COMPILED_FLAG_SYMBOL
1104 || name == GCC2_COMPILED_FLAG_SYMBOL))
1105 return (NULL);
1106
1107 /* It's safe to strip the leading char here once, since the name
1108 is also stored stripped in the minimal symbol table. */
1109 if (name[0] == get_symbol_leading_char (m_objfile->obfd))
1110 name = name.substr (1);
1111
1112 if (ms_type == mst_file_text && startswith (name, "__gnu_compiled"))
1113 return (NULL);
1114
1115 if (symtab_create_debug >= 2)
1116 printf_unfiltered ("Recording minsym: %-21s %18s %4d %.*s\n",
1117 mst_str (ms_type), hex_string (address), section,
1118 (int) name.size (), name.data ());
1119
1120 if (m_msym_bunch_index == BUNCH_SIZE)
1121 {
1122 newobj = XCNEW (struct msym_bunch);
1123 m_msym_bunch_index = 0;
1124 newobj->next = m_msym_bunch;
1125 m_msym_bunch = newobj;
1126 }
1127 msymbol = &m_msym_bunch->contents[m_msym_bunch_index];
1128 symbol_set_language (msymbol, language_auto,
1129 &m_objfile->per_bfd->storage_obstack);
1130
1131 if (copy_name)
1132 msymbol->name = obstack_strndup (&m_objfile->per_bfd->storage_obstack,
1133 name.data (), name.size ());
1134 else
1135 msymbol->name = name.data ();
1136
1137 SET_MSYMBOL_VALUE_ADDRESS (msymbol, address);
1138 MSYMBOL_SECTION (msymbol) = section;
1139
1140 MSYMBOL_TYPE (msymbol) = ms_type;
1141
1142 /* If we already read minimal symbols for this objfile, then don't
1143 ever allocate a new one. */
1144 if (!m_objfile->per_bfd->minsyms_read)
1145 {
1146 m_msym_bunch_index++;
1147 m_objfile->per_bfd->n_minsyms++;
1148 }
1149 m_msym_count++;
1150 return msymbol;
1151 }
1152
1153 /* Compare two minimal symbols by address and return true if FN1's address
1154 is less than FN2's, so that we sort into unsigned numeric order.
1155 Within groups with the same address, sort by name. */
1156
1157 static inline bool
1158 minimal_symbol_is_less_than (const minimal_symbol &fn1,
1159 const minimal_symbol &fn2)
1160 {
1161 if (MSYMBOL_VALUE_RAW_ADDRESS (&fn1) < MSYMBOL_VALUE_RAW_ADDRESS (&fn2))
1162 {
1163 return true; /* addr 1 is less than addr 2. */
1164 }
1165 else if (MSYMBOL_VALUE_RAW_ADDRESS (&fn1) > MSYMBOL_VALUE_RAW_ADDRESS (&fn2))
1166 {
1167 return false; /* addr 1 is greater than addr 2. */
1168 }
1169 else
1170 /* addrs are equal: sort by name */
1171 {
1172 const char *name1 = fn1.linkage_name ();
1173 const char *name2 = fn2.linkage_name ();
1174
1175 if (name1 && name2) /* both have names */
1176 return strcmp (name1, name2) < 0;
1177 else if (name2)
1178 return true; /* fn1 has no name, so it is "less". */
1179 else if (name1) /* fn2 has no name, so it is "less". */
1180 return false;
1181 else
1182 return false; /* Neither has a name, so they're equal. */
1183 }
1184 }
1185
1186 /* Compact duplicate entries out of a minimal symbol table by walking
1187 through the table and compacting out entries with duplicate addresses
1188 and matching names. Return the number of entries remaining.
1189
1190 On entry, the table resides between msymbol[0] and msymbol[mcount].
1191 On exit, it resides between msymbol[0] and msymbol[result_count].
1192
1193 When files contain multiple sources of symbol information, it is
1194 possible for the minimal symbol table to contain many duplicate entries.
1195 As an example, SVR4 systems use ELF formatted object files, which
1196 usually contain at least two different types of symbol tables (a
1197 standard ELF one and a smaller dynamic linking table), as well as
1198 DWARF debugging information for files compiled with -g.
1199
1200 Without compacting, the minimal symbol table for gdb itself contains
1201 over a 1000 duplicates, about a third of the total table size. Aside
1202 from the potential trap of not noticing that two successive entries
1203 identify the same location, this duplication impacts the time required
1204 to linearly scan the table, which is done in a number of places. So we
1205 just do one linear scan here and toss out the duplicates.
1206
1207 Since the different sources of information for each symbol may
1208 have different levels of "completeness", we may have duplicates
1209 that have one entry with type "mst_unknown" and the other with a
1210 known type. So if the one we are leaving alone has type mst_unknown,
1211 overwrite its type with the type from the one we are compacting out. */
1212
1213 static int
1214 compact_minimal_symbols (struct minimal_symbol *msymbol, int mcount,
1215 struct objfile *objfile)
1216 {
1217 struct minimal_symbol *copyfrom;
1218 struct minimal_symbol *copyto;
1219
1220 if (mcount > 0)
1221 {
1222 copyfrom = copyto = msymbol;
1223 while (copyfrom < msymbol + mcount - 1)
1224 {
1225 if (MSYMBOL_VALUE_RAW_ADDRESS (copyfrom)
1226 == MSYMBOL_VALUE_RAW_ADDRESS ((copyfrom + 1))
1227 && MSYMBOL_SECTION (copyfrom) == MSYMBOL_SECTION (copyfrom + 1)
1228 && strcmp (copyfrom->linkage_name (),
1229 (copyfrom + 1)->linkage_name ()) == 0)
1230 {
1231 if (MSYMBOL_TYPE ((copyfrom + 1)) == mst_unknown)
1232 {
1233 MSYMBOL_TYPE ((copyfrom + 1)) = MSYMBOL_TYPE (copyfrom);
1234 }
1235 copyfrom++;
1236 }
1237 else
1238 *copyto++ = *copyfrom++;
1239 }
1240 *copyto++ = *copyfrom++;
1241 mcount = copyto - msymbol;
1242 }
1243 return (mcount);
1244 }
1245
1246 static void
1247 clear_minimal_symbol_hash_tables (struct objfile *objfile)
1248 {
1249 for (size_t i = 0; i < MINIMAL_SYMBOL_HASH_SIZE; i++)
1250 {
1251 objfile->per_bfd->msymbol_hash[i] = 0;
1252 objfile->per_bfd->msymbol_demangled_hash[i] = 0;
1253 }
1254 }
1255
1256 /* Build (or rebuild) the minimal symbol hash tables. This is necessary
1257 after compacting or sorting the table since the entries move around
1258 thus causing the internal minimal_symbol pointers to become jumbled. */
1259
1260 static void
1261 build_minimal_symbol_hash_tables (struct objfile *objfile)
1262 {
1263 int i;
1264 struct minimal_symbol *msym;
1265
1266 /* (Re)insert the actual entries. */
1267 for ((i = objfile->per_bfd->minimal_symbol_count,
1268 msym = objfile->per_bfd->msymbols.get ());
1269 i > 0;
1270 i--, msym++)
1271 {
1272 msym->hash_next = 0;
1273 add_minsym_to_hash_table (msym, objfile->per_bfd->msymbol_hash);
1274
1275 msym->demangled_hash_next = 0;
1276 if (msym->search_name () != msym->linkage_name ())
1277 add_minsym_to_demangled_hash_table (msym, objfile);
1278 }
1279 }
1280
1281 /* Add the minimal symbols in the existing bunches to the objfile's official
1282 minimal symbol table. In most cases there is no minimal symbol table yet
1283 for this objfile, and the existing bunches are used to create one. Once
1284 in a while (for shared libraries for example), we add symbols (e.g. common
1285 symbols) to an existing objfile. */
1286
1287 void
1288 minimal_symbol_reader::install ()
1289 {
1290 int mcount;
1291 struct msym_bunch *bunch;
1292 struct minimal_symbol *msymbols;
1293 int alloc_count;
1294
1295 if (m_objfile->per_bfd->minsyms_read)
1296 return;
1297
1298 if (m_msym_count > 0)
1299 {
1300 if (symtab_create_debug)
1301 {
1302 fprintf_unfiltered (gdb_stdlog,
1303 "Installing %d minimal symbols of objfile %s.\n",
1304 m_msym_count, objfile_name (m_objfile));
1305 }
1306
1307 /* Allocate enough space, into which we will gather the bunches
1308 of new and existing minimal symbols, sort them, and then
1309 compact out the duplicate entries. Once we have a final
1310 table, we will give back the excess space. */
1311
1312 alloc_count = m_msym_count + m_objfile->per_bfd->minimal_symbol_count;
1313 gdb::unique_xmalloc_ptr<minimal_symbol>
1314 msym_holder (XNEWVEC (minimal_symbol, alloc_count));
1315 msymbols = msym_holder.get ();
1316
1317 /* Copy in the existing minimal symbols, if there are any. */
1318
1319 if (m_objfile->per_bfd->minimal_symbol_count)
1320 memcpy (msymbols, m_objfile->per_bfd->msymbols.get (),
1321 m_objfile->per_bfd->minimal_symbol_count
1322 * sizeof (struct minimal_symbol));
1323
1324 /* Walk through the list of minimal symbol bunches, adding each symbol
1325 to the new contiguous array of symbols. Note that we start with the
1326 current, possibly partially filled bunch (thus we use the current
1327 msym_bunch_index for the first bunch we copy over), and thereafter
1328 each bunch is full. */
1329
1330 mcount = m_objfile->per_bfd->minimal_symbol_count;
1331
1332 for (bunch = m_msym_bunch; bunch != NULL; bunch = bunch->next)
1333 {
1334 memcpy (&msymbols[mcount], &bunch->contents[0],
1335 m_msym_bunch_index * sizeof (struct minimal_symbol));
1336 mcount += m_msym_bunch_index;
1337 m_msym_bunch_index = BUNCH_SIZE;
1338 }
1339
1340 /* Sort the minimal symbols by address. */
1341
1342 std::sort (msymbols, msymbols + mcount, minimal_symbol_is_less_than);
1343
1344 /* Compact out any duplicates, and free up whatever space we are
1345 no longer using. */
1346
1347 mcount = compact_minimal_symbols (msymbols, mcount, m_objfile);
1348 msym_holder.reset (XRESIZEVEC (struct minimal_symbol,
1349 msym_holder.release (),
1350 mcount));
1351
1352 /* Attach the minimal symbol table to the specified objfile.
1353 The strings themselves are also located in the storage_obstack
1354 of this objfile. */
1355
1356 if (m_objfile->per_bfd->minimal_symbol_count != 0)
1357 clear_minimal_symbol_hash_tables (m_objfile);
1358
1359 m_objfile->per_bfd->minimal_symbol_count = mcount;
1360 m_objfile->per_bfd->msymbols = std::move (msym_holder);
1361
1362 msymbols = m_objfile->per_bfd->msymbols.get ();
1363 for (int i = 0; i < mcount; ++i)
1364 {
1365 if (!msymbols[i].name_set)
1366 {
1367 symbol_set_names (&msymbols[i], msymbols[i].name,
1368 false, m_objfile->per_bfd);
1369 msymbols[i].name_set = 1;
1370 }
1371 }
1372
1373 build_minimal_symbol_hash_tables (m_objfile);
1374 }
1375 }
1376
1377 /* Check if PC is in a shared library trampoline code stub.
1378 Return minimal symbol for the trampoline entry or NULL if PC is not
1379 in a trampoline code stub. */
1380
1381 static struct minimal_symbol *
1382 lookup_solib_trampoline_symbol_by_pc (CORE_ADDR pc)
1383 {
1384 bound_minimal_symbol msymbol
1385 = lookup_minimal_symbol_by_pc_section (pc, NULL,
1386 lookup_msym_prefer::TRAMPOLINE);
1387
1388 if (msymbol.minsym != NULL
1389 && MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
1390 return msymbol.minsym;
1391 return NULL;
1392 }
1393
1394 /* If PC is in a shared library trampoline code stub, return the
1395 address of the `real' function belonging to the stub.
1396 Return 0 if PC is not in a trampoline code stub or if the real
1397 function is not found in the minimal symbol table.
1398
1399 We may fail to find the right function if a function with the
1400 same name is defined in more than one shared library, but this
1401 is considered bad programming style. We could return 0 if we find
1402 a duplicate function in case this matters someday. */
1403
1404 CORE_ADDR
1405 find_solib_trampoline_target (struct frame_info *frame, CORE_ADDR pc)
1406 {
1407 struct minimal_symbol *tsymbol = lookup_solib_trampoline_symbol_by_pc (pc);
1408
1409 if (tsymbol != NULL)
1410 {
1411 for (objfile *objfile : current_program_space->objfiles ())
1412 {
1413 for (minimal_symbol *msymbol : objfile->msymbols ())
1414 {
1415 /* Also handle minimal symbols pointing to function
1416 descriptors. */
1417 if ((MSYMBOL_TYPE (msymbol) == mst_text
1418 || MSYMBOL_TYPE (msymbol) == mst_text_gnu_ifunc
1419 || MSYMBOL_TYPE (msymbol) == mst_data
1420 || MSYMBOL_TYPE (msymbol) == mst_data_gnu_ifunc)
1421 && strcmp (msymbol->linkage_name (),
1422 tsymbol->linkage_name ()) == 0)
1423 {
1424 CORE_ADDR func;
1425
1426 /* Ignore data symbols that are not function
1427 descriptors. */
1428 if (msymbol_is_function (objfile, msymbol, &func))
1429 return func;
1430 }
1431 }
1432 }
1433 }
1434 return 0;
1435 }
1436
1437 /* See minsyms.h. */
1438
1439 CORE_ADDR
1440 minimal_symbol_upper_bound (struct bound_minimal_symbol minsym)
1441 {
1442 short section;
1443 struct obj_section *obj_section;
1444 CORE_ADDR result;
1445 struct minimal_symbol *iter, *msymbol;
1446
1447 gdb_assert (minsym.minsym != NULL);
1448
1449 /* If the minimal symbol has a size, use it. Otherwise use the
1450 lesser of the next minimal symbol in the same section, or the end
1451 of the section, as the end of the function. */
1452
1453 if (MSYMBOL_SIZE (minsym.minsym) != 0)
1454 return BMSYMBOL_VALUE_ADDRESS (minsym) + MSYMBOL_SIZE (minsym.minsym);
1455
1456 /* Step over other symbols at this same address, and symbols in
1457 other sections, to find the next symbol in this section with a
1458 different address. */
1459
1460 struct minimal_symbol *past_the_end
1461 = (minsym.objfile->per_bfd->msymbols.get ()
1462 + minsym.objfile->per_bfd->minimal_symbol_count);
1463 msymbol = minsym.minsym;
1464 section = MSYMBOL_SECTION (msymbol);
1465 for (iter = msymbol + 1; iter != past_the_end; ++iter)
1466 {
1467 if ((MSYMBOL_VALUE_RAW_ADDRESS (iter)
1468 != MSYMBOL_VALUE_RAW_ADDRESS (msymbol))
1469 && MSYMBOL_SECTION (iter) == section)
1470 break;
1471 }
1472
1473 obj_section = MSYMBOL_OBJ_SECTION (minsym.objfile, minsym.minsym);
1474 if (iter != past_the_end
1475 && (MSYMBOL_VALUE_ADDRESS (minsym.objfile, iter)
1476 < obj_section_endaddr (obj_section)))
1477 result = MSYMBOL_VALUE_ADDRESS (minsym.objfile, iter);
1478 else
1479 /* We got the start address from the last msymbol in the objfile.
1480 So the end address is the end of the section. */
1481 result = obj_section_endaddr (obj_section);
1482
1483 return result;
1484 }
This page took 0.059162 seconds and 5 git commands to generate.