Use std::sort instead of qsort in minsyms.c
[deliverable/binutils-gdb.git] / gdb / minsyms.c
1 /* GDB routines for manipulating the minimal symbol tables.
2 Copyright (C) 1992-2019 Free Software Foundation, Inc.
3 Contributed by Cygnus Support, using pieces from other GDB modules.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20
21 /* This file contains support routines for creating, manipulating, and
22 destroying minimal symbol tables.
23
24 Minimal symbol tables are used to hold some very basic information about
25 all defined global symbols (text, data, bss, abs, etc). The only two
26 required pieces of information are the symbol's name and the address
27 associated with that symbol.
28
29 In many cases, even if a file was compiled with no special options for
30 debugging at all, as long as was not stripped it will contain sufficient
31 information to build useful minimal symbol tables using this structure.
32
33 Even when a file contains enough debugging information to build a full
34 symbol table, these minimal symbols are still useful for quickly mapping
35 between names and addresses, and vice versa. They are also sometimes used
36 to figure out what full symbol table entries need to be read in. */
37
38
39 #include "defs.h"
40 #include <ctype.h>
41 #include "symtab.h"
42 #include "bfd.h"
43 #include "filenames.h"
44 #include "symfile.h"
45 #include "objfiles.h"
46 #include "demangle.h"
47 #include "value.h"
48 #include "cp-abi.h"
49 #include "target.h"
50 #include "cp-support.h"
51 #include "language.h"
52 #include "cli/cli-utils.h"
53 #include "gdbsupport/symbol.h"
54 #include <algorithm>
55 #include "safe-ctype.h"
56
57 /* See minsyms.h. */
58
59 bool
60 msymbol_is_function (struct objfile *objfile, minimal_symbol *minsym,
61 CORE_ADDR *func_address_p)
62 {
63 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
64
65 switch (minsym->type)
66 {
67 case mst_slot_got_plt:
68 case mst_data:
69 case mst_bss:
70 case mst_abs:
71 case mst_file_data:
72 case mst_file_bss:
73 case mst_data_gnu_ifunc:
74 {
75 struct gdbarch *gdbarch = get_objfile_arch (objfile);
76 CORE_ADDR pc
77 = gdbarch_convert_from_func_ptr_addr (gdbarch, msym_addr,
78 current_top_target ());
79 if (pc != msym_addr)
80 {
81 if (func_address_p != NULL)
82 *func_address_p = pc;
83 return true;
84 }
85 return false;
86 }
87 default:
88 if (func_address_p != NULL)
89 *func_address_p = msym_addr;
90 return true;
91 }
92 }
93
94 /* Accumulate the minimal symbols for each objfile in bunches of BUNCH_SIZE.
95 At the end, copy them all into one newly allocated array. */
96
97 #define BUNCH_SIZE 127
98
99 struct msym_bunch
100 {
101 struct msym_bunch *next;
102 struct minimal_symbol contents[BUNCH_SIZE];
103 };
104
105 /* See minsyms.h. */
106
107 unsigned int
108 msymbol_hash_iw (const char *string)
109 {
110 unsigned int hash = 0;
111
112 while (*string && *string != '(')
113 {
114 string = skip_spaces (string);
115 if (*string && *string != '(')
116 {
117 hash = SYMBOL_HASH_NEXT (hash, *string);
118 ++string;
119 }
120 }
121 return hash;
122 }
123
124 /* See minsyms.h. */
125
126 unsigned int
127 msymbol_hash (const char *string)
128 {
129 unsigned int hash = 0;
130
131 for (; *string; ++string)
132 hash = SYMBOL_HASH_NEXT (hash, *string);
133 return hash;
134 }
135
136 /* Add the minimal symbol SYM to an objfile's minsym hash table, TABLE. */
137 static void
138 add_minsym_to_hash_table (struct minimal_symbol *sym,
139 struct minimal_symbol **table)
140 {
141 if (sym->hash_next == NULL)
142 {
143 unsigned int hash
144 = msymbol_hash (MSYMBOL_LINKAGE_NAME (sym)) % MINIMAL_SYMBOL_HASH_SIZE;
145
146 sym->hash_next = table[hash];
147 table[hash] = sym;
148 }
149 }
150
151 /* Add the minimal symbol SYM to an objfile's minsym demangled hash table,
152 TABLE. */
153 static void
154 add_minsym_to_demangled_hash_table (struct minimal_symbol *sym,
155 struct objfile *objfile)
156 {
157 if (sym->demangled_hash_next == NULL)
158 {
159 unsigned int hash = search_name_hash (MSYMBOL_LANGUAGE (sym),
160 MSYMBOL_SEARCH_NAME (sym));
161
162 objfile->per_bfd->demangled_hash_languages.set (MSYMBOL_LANGUAGE (sym));
163
164 struct minimal_symbol **table
165 = objfile->per_bfd->msymbol_demangled_hash;
166 unsigned int hash_index = hash % MINIMAL_SYMBOL_HASH_SIZE;
167 sym->demangled_hash_next = table[hash_index];
168 table[hash_index] = sym;
169 }
170 }
171
172 /* Worker object for lookup_minimal_symbol. Stores temporary results
173 while walking the symbol tables. */
174
175 struct found_minimal_symbols
176 {
177 /* External symbols are best. */
178 bound_minimal_symbol external_symbol {};
179
180 /* File-local symbols are next best. */
181 bound_minimal_symbol file_symbol {};
182
183 /* Symbols for shared library trampolines are next best. */
184 bound_minimal_symbol trampoline_symbol {};
185
186 /* Called when a symbol name matches. Check if the minsym is a
187 better type than what we had already found, and record it in one
188 of the members fields if so. Returns true if we collected the
189 real symbol, in which case we can stop searching. */
190 bool maybe_collect (const char *sfile, objfile *objf,
191 minimal_symbol *msymbol);
192 };
193
194 /* See declaration above. */
195
196 bool
197 found_minimal_symbols::maybe_collect (const char *sfile,
198 struct objfile *objfile,
199 minimal_symbol *msymbol)
200 {
201 switch (MSYMBOL_TYPE (msymbol))
202 {
203 case mst_file_text:
204 case mst_file_data:
205 case mst_file_bss:
206 if (sfile == NULL
207 || filename_cmp (msymbol->filename, sfile) == 0)
208 {
209 file_symbol.minsym = msymbol;
210 file_symbol.objfile = objfile;
211 }
212 break;
213
214 case mst_solib_trampoline:
215
216 /* If a trampoline symbol is found, we prefer to keep
217 looking for the *real* symbol. If the actual symbol
218 is not found, then we'll use the trampoline
219 entry. */
220 if (trampoline_symbol.minsym == NULL)
221 {
222 trampoline_symbol.minsym = msymbol;
223 trampoline_symbol.objfile = objfile;
224 }
225 break;
226
227 case mst_unknown:
228 default:
229 external_symbol.minsym = msymbol;
230 external_symbol.objfile = objfile;
231 /* We have the real symbol. No use looking further. */
232 return true;
233 }
234
235 /* Keep looking. */
236 return false;
237 }
238
239 /* Walk the mangled name hash table, and pass each symbol whose name
240 matches LOOKUP_NAME according to NAMECMP to FOUND. */
241
242 static void
243 lookup_minimal_symbol_mangled (const char *lookup_name,
244 const char *sfile,
245 struct objfile *objfile,
246 struct minimal_symbol **table,
247 unsigned int hash,
248 int (*namecmp) (const char *, const char *),
249 found_minimal_symbols &found)
250 {
251 for (minimal_symbol *msymbol = table[hash];
252 msymbol != NULL;
253 msymbol = msymbol->hash_next)
254 {
255 const char *symbol_name = MSYMBOL_LINKAGE_NAME (msymbol);
256
257 if (namecmp (symbol_name, lookup_name) == 0
258 && found.maybe_collect (sfile, objfile, msymbol))
259 return;
260 }
261 }
262
263 /* Walk the demangled name hash table, and pass each symbol whose name
264 matches LOOKUP_NAME according to MATCHER to FOUND. */
265
266 static void
267 lookup_minimal_symbol_demangled (const lookup_name_info &lookup_name,
268 const char *sfile,
269 struct objfile *objfile,
270 struct minimal_symbol **table,
271 unsigned int hash,
272 symbol_name_matcher_ftype *matcher,
273 found_minimal_symbols &found)
274 {
275 for (minimal_symbol *msymbol = table[hash];
276 msymbol != NULL;
277 msymbol = msymbol->demangled_hash_next)
278 {
279 const char *symbol_name = MSYMBOL_SEARCH_NAME (msymbol);
280
281 if (matcher (symbol_name, lookup_name, NULL)
282 && found.maybe_collect (sfile, objfile, msymbol))
283 return;
284 }
285 }
286
287 /* Look through all the current minimal symbol tables and find the
288 first minimal symbol that matches NAME. If OBJF is non-NULL, limit
289 the search to that objfile. If SFILE is non-NULL, the only file-scope
290 symbols considered will be from that source file (global symbols are
291 still preferred). Returns a pointer to the minimal symbol that
292 matches, or NULL if no match is found.
293
294 Note: One instance where there may be duplicate minimal symbols with
295 the same name is when the symbol tables for a shared library and the
296 symbol tables for an executable contain global symbols with the same
297 names (the dynamic linker deals with the duplication).
298
299 It's also possible to have minimal symbols with different mangled
300 names, but identical demangled names. For example, the GNU C++ v3
301 ABI requires the generation of two (or perhaps three) copies of
302 constructor functions --- "in-charge", "not-in-charge", and
303 "allocate" copies; destructors may be duplicated as well.
304 Obviously, there must be distinct mangled names for each of these,
305 but the demangled names are all the same: S::S or S::~S. */
306
307 struct bound_minimal_symbol
308 lookup_minimal_symbol (const char *name, const char *sfile,
309 struct objfile *objf)
310 {
311 found_minimal_symbols found;
312
313 unsigned int mangled_hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
314
315 auto *mangled_cmp
316 = (case_sensitivity == case_sensitive_on
317 ? strcmp
318 : strcasecmp);
319
320 if (sfile != NULL)
321 sfile = lbasename (sfile);
322
323 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
324
325 for (objfile *objfile : current_program_space->objfiles ())
326 {
327 if (found.external_symbol.minsym != NULL)
328 break;
329
330 if (objf == NULL || objf == objfile
331 || objf == objfile->separate_debug_objfile_backlink)
332 {
333 if (symbol_lookup_debug)
334 {
335 fprintf_unfiltered (gdb_stdlog,
336 "lookup_minimal_symbol (%s, %s, %s)\n",
337 name, sfile != NULL ? sfile : "NULL",
338 objfile_debug_name (objfile));
339 }
340
341 /* Do two passes: the first over the ordinary hash table,
342 and the second over the demangled hash table. */
343 lookup_minimal_symbol_mangled (name, sfile, objfile,
344 objfile->per_bfd->msymbol_hash,
345 mangled_hash, mangled_cmp, found);
346
347 /* If not found, try the demangled hash table. */
348 if (found.external_symbol.minsym == NULL)
349 {
350 /* Once for each language in the demangled hash names
351 table (usually just zero or one languages). */
352 for (unsigned iter = 0; iter < nr_languages; ++iter)
353 {
354 if (!objfile->per_bfd->demangled_hash_languages.test (iter))
355 continue;
356 enum language lang = (enum language) iter;
357
358 unsigned int hash
359 = (lookup_name.search_name_hash (lang)
360 % MINIMAL_SYMBOL_HASH_SIZE);
361
362 symbol_name_matcher_ftype *match
363 = get_symbol_name_matcher (language_def (lang),
364 lookup_name);
365 struct minimal_symbol **msymbol_demangled_hash
366 = objfile->per_bfd->msymbol_demangled_hash;
367
368 lookup_minimal_symbol_demangled (lookup_name, sfile, objfile,
369 msymbol_demangled_hash,
370 hash, match, found);
371
372 if (found.external_symbol.minsym != NULL)
373 break;
374 }
375 }
376 }
377 }
378
379 /* External symbols are best. */
380 if (found.external_symbol.minsym != NULL)
381 {
382 if (symbol_lookup_debug)
383 {
384 minimal_symbol *minsym = found.external_symbol.minsym;
385
386 fprintf_unfiltered (gdb_stdlog,
387 "lookup_minimal_symbol (...) = %s (external)\n",
388 host_address_to_string (minsym));
389 }
390 return found.external_symbol;
391 }
392
393 /* File-local symbols are next best. */
394 if (found.file_symbol.minsym != NULL)
395 {
396 if (symbol_lookup_debug)
397 {
398 minimal_symbol *minsym = found.file_symbol.minsym;
399
400 fprintf_unfiltered (gdb_stdlog,
401 "lookup_minimal_symbol (...) = %s (file-local)\n",
402 host_address_to_string (minsym));
403 }
404 return found.file_symbol;
405 }
406
407 /* Symbols for shared library trampolines are next best. */
408 if (found.trampoline_symbol.minsym != NULL)
409 {
410 if (symbol_lookup_debug)
411 {
412 minimal_symbol *minsym = found.trampoline_symbol.minsym;
413
414 fprintf_unfiltered (gdb_stdlog,
415 "lookup_minimal_symbol (...) = %s (trampoline)\n",
416 host_address_to_string (minsym));
417 }
418
419 return found.trampoline_symbol;
420 }
421
422 /* Not found. */
423 if (symbol_lookup_debug)
424 fprintf_unfiltered (gdb_stdlog, "lookup_minimal_symbol (...) = NULL\n");
425 return {};
426 }
427
428 /* See minsyms.h. */
429
430 struct bound_minimal_symbol
431 lookup_bound_minimal_symbol (const char *name)
432 {
433 return lookup_minimal_symbol (name, NULL, NULL);
434 }
435
436 /* See gdbsupport/symbol.h. */
437
438 int
439 find_minimal_symbol_address (const char *name, CORE_ADDR *addr,
440 struct objfile *objfile)
441 {
442 struct bound_minimal_symbol sym
443 = lookup_minimal_symbol (name, NULL, objfile);
444
445 if (sym.minsym != NULL)
446 *addr = BMSYMBOL_VALUE_ADDRESS (sym);
447
448 return sym.minsym == NULL;
449 }
450
451 /* Get the lookup name form best suitable for linkage name
452 matching. */
453
454 static const char *
455 linkage_name_str (const lookup_name_info &lookup_name)
456 {
457 /* Unlike most languages (including C++), Ada uses the
458 encoded/linkage name as the search name recorded in symbols. So
459 if debugging in Ada mode, prefer the Ada-encoded name. This also
460 makes Ada's verbatim match syntax ("<...>") work, because
461 "lookup_name.name()" includes the "<>"s, while
462 "lookup_name.ada().lookup_name()" is the encoded name with "<>"s
463 stripped. */
464 if (current_language->la_language == language_ada)
465 return lookup_name.ada ().lookup_name ().c_str ();
466
467 return lookup_name.name ().c_str ();
468 }
469
470 /* See minsyms.h. */
471
472 void
473 iterate_over_minimal_symbols
474 (struct objfile *objf, const lookup_name_info &lookup_name,
475 gdb::function_view<bool (struct minimal_symbol *)> callback)
476 {
477 /* The first pass is over the ordinary hash table. */
478 {
479 const char *name = linkage_name_str (lookup_name);
480 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
481 auto *mangled_cmp
482 = (case_sensitivity == case_sensitive_on
483 ? strcmp
484 : strcasecmp);
485
486 for (minimal_symbol *iter = objf->per_bfd->msymbol_hash[hash];
487 iter != NULL;
488 iter = iter->hash_next)
489 {
490 if (mangled_cmp (MSYMBOL_LINKAGE_NAME (iter), name) == 0)
491 if (callback (iter))
492 return;
493 }
494 }
495
496 /* The second pass is over the demangled table. Once for each
497 language in the demangled hash names table (usually just zero or
498 one). */
499 for (unsigned liter = 0; liter < nr_languages; ++liter)
500 {
501 if (!objf->per_bfd->demangled_hash_languages.test (liter))
502 continue;
503
504 enum language lang = (enum language) liter;
505 const language_defn *lang_def = language_def (lang);
506 symbol_name_matcher_ftype *name_match
507 = get_symbol_name_matcher (lang_def, lookup_name);
508
509 unsigned int hash
510 = lookup_name.search_name_hash (lang) % MINIMAL_SYMBOL_HASH_SIZE;
511 for (minimal_symbol *iter = objf->per_bfd->msymbol_demangled_hash[hash];
512 iter != NULL;
513 iter = iter->demangled_hash_next)
514 if (name_match (MSYMBOL_SEARCH_NAME (iter), lookup_name, NULL))
515 if (callback (iter))
516 return;
517 }
518 }
519
520 /* See minsyms.h. */
521
522 struct bound_minimal_symbol
523 lookup_minimal_symbol_text (const char *name, struct objfile *objf)
524 {
525 struct minimal_symbol *msymbol;
526 struct bound_minimal_symbol found_symbol = { NULL, NULL };
527 struct bound_minimal_symbol found_file_symbol = { NULL, NULL };
528
529 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
530
531 for (objfile *objfile : current_program_space->objfiles ())
532 {
533 if (found_symbol.minsym != NULL)
534 break;
535
536 if (objf == NULL || objf == objfile
537 || objf == objfile->separate_debug_objfile_backlink)
538 {
539 for (msymbol = objfile->per_bfd->msymbol_hash[hash];
540 msymbol != NULL && found_symbol.minsym == NULL;
541 msymbol = msymbol->hash_next)
542 {
543 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol), name) == 0 &&
544 (MSYMBOL_TYPE (msymbol) == mst_text
545 || MSYMBOL_TYPE (msymbol) == mst_text_gnu_ifunc
546 || MSYMBOL_TYPE (msymbol) == mst_file_text))
547 {
548 switch (MSYMBOL_TYPE (msymbol))
549 {
550 case mst_file_text:
551 found_file_symbol.minsym = msymbol;
552 found_file_symbol.objfile = objfile;
553 break;
554 default:
555 found_symbol.minsym = msymbol;
556 found_symbol.objfile = objfile;
557 break;
558 }
559 }
560 }
561 }
562 }
563 /* External symbols are best. */
564 if (found_symbol.minsym)
565 return found_symbol;
566
567 /* File-local symbols are next best. */
568 return found_file_symbol;
569 }
570
571 /* See minsyms.h. */
572
573 struct minimal_symbol *
574 lookup_minimal_symbol_by_pc_name (CORE_ADDR pc, const char *name,
575 struct objfile *objf)
576 {
577 struct minimal_symbol *msymbol;
578
579 unsigned int hash = msymbol_hash (name) % MINIMAL_SYMBOL_HASH_SIZE;
580
581 for (objfile *objfile : current_program_space->objfiles ())
582 {
583 if (objf == NULL || objf == objfile
584 || objf == objfile->separate_debug_objfile_backlink)
585 {
586 for (msymbol = objfile->per_bfd->msymbol_hash[hash];
587 msymbol != NULL;
588 msymbol = msymbol->hash_next)
589 {
590 if (MSYMBOL_VALUE_ADDRESS (objfile, msymbol) == pc
591 && strcmp (MSYMBOL_LINKAGE_NAME (msymbol), name) == 0)
592 return msymbol;
593 }
594 }
595 }
596
597 return NULL;
598 }
599
600 /* A helper function that makes *PC section-relative. This searches
601 the sections of OBJFILE and if *PC is in a section, it subtracts
602 the section offset and returns true. Otherwise it returns
603 false. */
604
605 static int
606 frob_address (struct objfile *objfile, CORE_ADDR *pc)
607 {
608 struct obj_section *iter;
609
610 ALL_OBJFILE_OSECTIONS (objfile, iter)
611 {
612 if (*pc >= obj_section_addr (iter) && *pc < obj_section_endaddr (iter))
613 {
614 *pc -= obj_section_offset (iter);
615 return 1;
616 }
617 }
618
619 return 0;
620 }
621
622 /* Helper for lookup_minimal_symbol_by_pc_section. Convert a
623 lookup_msym_prefer to a minimal_symbol_type. */
624
625 static minimal_symbol_type
626 msym_prefer_to_msym_type (lookup_msym_prefer prefer)
627 {
628 switch (prefer)
629 {
630 case lookup_msym_prefer::TEXT:
631 return mst_text;
632 case lookup_msym_prefer::TRAMPOLINE:
633 return mst_solib_trampoline;
634 case lookup_msym_prefer::GNU_IFUNC:
635 return mst_text_gnu_ifunc;
636 }
637
638 /* Assert here instead of in a default switch case above so that
639 -Wswitch warns if a new enumerator is added. */
640 gdb_assert_not_reached ("unhandled lookup_msym_prefer");
641 }
642
643 /* Search through the minimal symbol table for each objfile and find
644 the symbol whose address is the largest address that is still less
645 than or equal to PC, and matches SECTION (which is not NULL).
646 Returns a pointer to the minimal symbol if such a symbol is found,
647 or NULL if PC is not in a suitable range.
648 Note that we need to look through ALL the minimal symbol tables
649 before deciding on the symbol that comes closest to the specified PC.
650 This is because objfiles can overlap, for example objfile A has .text
651 at 0x100 and .data at 0x40000 and objfile B has .text at 0x234 and
652 .data at 0x40048.
653
654 If WANT_TRAMPOLINE is set, prefer mst_solib_trampoline symbols when
655 there are text and trampoline symbols at the same address.
656 Otherwise prefer mst_text symbols. */
657
658 bound_minimal_symbol
659 lookup_minimal_symbol_by_pc_section (CORE_ADDR pc_in, struct obj_section *section,
660 lookup_msym_prefer prefer)
661 {
662 int lo;
663 int hi;
664 int newobj;
665 struct minimal_symbol *msymbol;
666 struct minimal_symbol *best_symbol = NULL;
667 struct objfile *best_objfile = NULL;
668 struct bound_minimal_symbol result;
669
670 if (section == NULL)
671 {
672 section = find_pc_section (pc_in);
673 if (section == NULL)
674 return {};
675 }
676
677 minimal_symbol_type want_type = msym_prefer_to_msym_type (prefer);
678
679 /* We can not require the symbol found to be in section, because
680 e.g. IRIX 6.5 mdebug relies on this code returning an absolute
681 symbol - but find_pc_section won't return an absolute section and
682 hence the code below would skip over absolute symbols. We can
683 still take advantage of the call to find_pc_section, though - the
684 object file still must match. In case we have separate debug
685 files, search both the file and its separate debug file. There's
686 no telling which one will have the minimal symbols. */
687
688 gdb_assert (section != NULL);
689
690 for (objfile *objfile : section->objfile->separate_debug_objfiles ())
691 {
692 CORE_ADDR pc = pc_in;
693
694 /* If this objfile has a minimal symbol table, go search it
695 using a binary search. */
696
697 if (objfile->per_bfd->minimal_symbol_count > 0)
698 {
699 int best_zero_sized = -1;
700
701 msymbol = objfile->per_bfd->msymbols.get ();
702 lo = 0;
703 hi = objfile->per_bfd->minimal_symbol_count - 1;
704
705 /* This code assumes that the minimal symbols are sorted by
706 ascending address values. If the pc value is greater than or
707 equal to the first symbol's address, then some symbol in this
708 minimal symbol table is a suitable candidate for being the
709 "best" symbol. This includes the last real symbol, for cases
710 where the pc value is larger than any address in this vector.
711
712 By iterating until the address associated with the current
713 hi index (the endpoint of the test interval) is less than
714 or equal to the desired pc value, we accomplish two things:
715 (1) the case where the pc value is larger than any minimal
716 symbol address is trivially solved, (2) the address associated
717 with the hi index is always the one we want when the interation
718 terminates. In essence, we are iterating the test interval
719 down until the pc value is pushed out of it from the high end.
720
721 Warning: this code is trickier than it would appear at first. */
722
723 if (frob_address (objfile, &pc)
724 && pc >= MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[lo]))
725 {
726 while (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi]) > pc)
727 {
728 /* pc is still strictly less than highest address. */
729 /* Note "new" will always be >= lo. */
730 newobj = (lo + hi) / 2;
731 if ((MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[newobj]) >= pc)
732 || (lo == newobj))
733 {
734 hi = newobj;
735 }
736 else
737 {
738 lo = newobj;
739 }
740 }
741
742 /* If we have multiple symbols at the same address, we want
743 hi to point to the last one. That way we can find the
744 right symbol if it has an index greater than hi. */
745 while (hi < objfile->per_bfd->minimal_symbol_count - 1
746 && (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
747 == MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi + 1])))
748 hi++;
749
750 /* Skip various undesirable symbols. */
751 while (hi >= 0)
752 {
753 /* Skip any absolute symbols. This is apparently
754 what adb and dbx do, and is needed for the CM-5.
755 There are two known possible problems: (1) on
756 ELF, apparently end, edata, etc. are absolute.
757 Not sure ignoring them here is a big deal, but if
758 we want to use them, the fix would go in
759 elfread.c. (2) I think shared library entry
760 points on the NeXT are absolute. If we want
761 special handling for this it probably should be
762 triggered by a special mst_abs_or_lib or some
763 such. */
764
765 if (MSYMBOL_TYPE (&msymbol[hi]) == mst_abs)
766 {
767 hi--;
768 continue;
769 }
770
771 /* If SECTION was specified, skip any symbol from
772 wrong section. */
773 if (section
774 /* Some types of debug info, such as COFF,
775 don't fill the bfd_section member, so don't
776 throw away symbols on those platforms. */
777 && MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi]) != NULL
778 && (!matching_obj_sections
779 (MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi]),
780 section)))
781 {
782 hi--;
783 continue;
784 }
785
786 /* If we are looking for a trampoline and this is a
787 text symbol, or the other way around, check the
788 preceding symbol too. If they are otherwise
789 identical prefer that one. */
790 if (hi > 0
791 && MSYMBOL_TYPE (&msymbol[hi]) != want_type
792 && MSYMBOL_TYPE (&msymbol[hi - 1]) == want_type
793 && (MSYMBOL_SIZE (&msymbol[hi])
794 == MSYMBOL_SIZE (&msymbol[hi - 1]))
795 && (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
796 == MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi - 1]))
797 && (MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi])
798 == MSYMBOL_OBJ_SECTION (objfile, &msymbol[hi - 1])))
799 {
800 hi--;
801 continue;
802 }
803
804 /* If the minimal symbol has a zero size, save it
805 but keep scanning backwards looking for one with
806 a non-zero size. A zero size may mean that the
807 symbol isn't an object or function (e.g. a
808 label), or it may just mean that the size was not
809 specified. */
810 if (MSYMBOL_SIZE (&msymbol[hi]) == 0)
811 {
812 if (best_zero_sized == -1)
813 best_zero_sized = hi;
814 hi--;
815 continue;
816 }
817
818 /* If we are past the end of the current symbol, try
819 the previous symbol if it has a larger overlapping
820 size. This happens on i686-pc-linux-gnu with glibc;
821 the nocancel variants of system calls are inside
822 the cancellable variants, but both have sizes. */
823 if (hi > 0
824 && MSYMBOL_SIZE (&msymbol[hi]) != 0
825 && pc >= (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
826 + MSYMBOL_SIZE (&msymbol[hi]))
827 && pc < (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi - 1])
828 + MSYMBOL_SIZE (&msymbol[hi - 1])))
829 {
830 hi--;
831 continue;
832 }
833
834 /* Otherwise, this symbol must be as good as we're going
835 to get. */
836 break;
837 }
838
839 /* If HI has a zero size, and best_zero_sized is set,
840 then we had two or more zero-sized symbols; prefer
841 the first one we found (which may have a higher
842 address). Also, if we ran off the end, be sure
843 to back up. */
844 if (best_zero_sized != -1
845 && (hi < 0 || MSYMBOL_SIZE (&msymbol[hi]) == 0))
846 hi = best_zero_sized;
847
848 /* If the minimal symbol has a non-zero size, and this
849 PC appears to be outside the symbol's contents, then
850 refuse to use this symbol. If we found a zero-sized
851 symbol with an address greater than this symbol's,
852 use that instead. We assume that if symbols have
853 specified sizes, they do not overlap. */
854
855 if (hi >= 0
856 && MSYMBOL_SIZE (&msymbol[hi]) != 0
857 && pc >= (MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi])
858 + MSYMBOL_SIZE (&msymbol[hi])))
859 {
860 if (best_zero_sized != -1)
861 hi = best_zero_sized;
862 else
863 /* Go on to the next object file. */
864 continue;
865 }
866
867 /* The minimal symbol indexed by hi now is the best one in this
868 objfile's minimal symbol table. See if it is the best one
869 overall. */
870
871 if (hi >= 0
872 && ((best_symbol == NULL) ||
873 (MSYMBOL_VALUE_RAW_ADDRESS (best_symbol) <
874 MSYMBOL_VALUE_RAW_ADDRESS (&msymbol[hi]))))
875 {
876 best_symbol = &msymbol[hi];
877 best_objfile = objfile;
878 }
879 }
880 }
881 }
882
883 result.minsym = best_symbol;
884 result.objfile = best_objfile;
885 return result;
886 }
887
888 /* See minsyms.h. */
889
890 struct bound_minimal_symbol
891 lookup_minimal_symbol_by_pc (CORE_ADDR pc)
892 {
893 return lookup_minimal_symbol_by_pc_section (pc, NULL);
894 }
895
896 /* Return non-zero iff PC is in an STT_GNU_IFUNC function resolver. */
897
898 bool
899 in_gnu_ifunc_stub (CORE_ADDR pc)
900 {
901 bound_minimal_symbol msymbol
902 = lookup_minimal_symbol_by_pc_section (pc, NULL,
903 lookup_msym_prefer::GNU_IFUNC);
904 return msymbol.minsym && MSYMBOL_TYPE (msymbol.minsym) == mst_text_gnu_ifunc;
905 }
906
907 /* See elf_gnu_ifunc_resolve_addr for its real implementation. */
908
909 static CORE_ADDR
910 stub_gnu_ifunc_resolve_addr (struct gdbarch *gdbarch, CORE_ADDR pc)
911 {
912 error (_("GDB cannot resolve STT_GNU_IFUNC symbol at address %s without "
913 "the ELF support compiled in."),
914 paddress (gdbarch, pc));
915 }
916
917 /* See elf_gnu_ifunc_resolve_name for its real implementation. */
918
919 static bool
920 stub_gnu_ifunc_resolve_name (const char *function_name,
921 CORE_ADDR *function_address_p)
922 {
923 error (_("GDB cannot resolve STT_GNU_IFUNC symbol \"%s\" without "
924 "the ELF support compiled in."),
925 function_name);
926 }
927
928 /* See elf_gnu_ifunc_resolver_stop for its real implementation. */
929
930 static void
931 stub_gnu_ifunc_resolver_stop (struct breakpoint *b)
932 {
933 internal_error (__FILE__, __LINE__,
934 _("elf_gnu_ifunc_resolver_stop cannot be reached."));
935 }
936
937 /* See elf_gnu_ifunc_resolver_return_stop for its real implementation. */
938
939 static void
940 stub_gnu_ifunc_resolver_return_stop (struct breakpoint *b)
941 {
942 internal_error (__FILE__, __LINE__,
943 _("elf_gnu_ifunc_resolver_return_stop cannot be reached."));
944 }
945
946 /* See elf_gnu_ifunc_fns for its real implementation. */
947
948 static const struct gnu_ifunc_fns stub_gnu_ifunc_fns =
949 {
950 stub_gnu_ifunc_resolve_addr,
951 stub_gnu_ifunc_resolve_name,
952 stub_gnu_ifunc_resolver_stop,
953 stub_gnu_ifunc_resolver_return_stop,
954 };
955
956 /* A placeholder for &elf_gnu_ifunc_fns. */
957
958 const struct gnu_ifunc_fns *gnu_ifunc_fns_p = &stub_gnu_ifunc_fns;
959
960 \f
961
962 /* Return leading symbol character for a BFD. If BFD is NULL,
963 return the leading symbol character from the main objfile. */
964
965 static int
966 get_symbol_leading_char (bfd *abfd)
967 {
968 if (abfd != NULL)
969 return bfd_get_symbol_leading_char (abfd);
970 if (symfile_objfile != NULL && symfile_objfile->obfd != NULL)
971 return bfd_get_symbol_leading_char (symfile_objfile->obfd);
972 return 0;
973 }
974
975 /* See minsyms.h. */
976
977 minimal_symbol_reader::minimal_symbol_reader (struct objfile *obj)
978 : m_objfile (obj),
979 m_msym_bunch (NULL),
980 /* Note that presetting m_msym_bunch_index to BUNCH_SIZE causes the
981 first call to save a minimal symbol to allocate the memory for
982 the first bunch. */
983 m_msym_bunch_index (BUNCH_SIZE),
984 m_msym_count (0)
985 {
986 }
987
988 /* Discard the currently collected minimal symbols, if any. If we wish
989 to save them for later use, we must have already copied them somewhere
990 else before calling this function. */
991
992 minimal_symbol_reader::~minimal_symbol_reader ()
993 {
994 struct msym_bunch *next;
995
996 while (m_msym_bunch != NULL)
997 {
998 next = m_msym_bunch->next;
999 xfree (m_msym_bunch);
1000 m_msym_bunch = next;
1001 }
1002 }
1003
1004 /* See minsyms.h. */
1005
1006 void
1007 minimal_symbol_reader::record (const char *name, CORE_ADDR address,
1008 enum minimal_symbol_type ms_type)
1009 {
1010 int section;
1011
1012 switch (ms_type)
1013 {
1014 case mst_text:
1015 case mst_text_gnu_ifunc:
1016 case mst_file_text:
1017 case mst_solib_trampoline:
1018 section = SECT_OFF_TEXT (m_objfile);
1019 break;
1020 case mst_data:
1021 case mst_data_gnu_ifunc:
1022 case mst_file_data:
1023 section = SECT_OFF_DATA (m_objfile);
1024 break;
1025 case mst_bss:
1026 case mst_file_bss:
1027 section = SECT_OFF_BSS (m_objfile);
1028 break;
1029 default:
1030 section = -1;
1031 }
1032
1033 record_with_info (name, address, ms_type, section);
1034 }
1035
1036 /* Convert an enumerator of type minimal_symbol_type to its string
1037 representation. */
1038
1039 static const char *
1040 mst_str (minimal_symbol_type t)
1041 {
1042 #define MST_TO_STR(x) case x: return #x;
1043 switch (t)
1044 {
1045 MST_TO_STR (mst_unknown);
1046 MST_TO_STR (mst_text);
1047 MST_TO_STR (mst_text_gnu_ifunc);
1048 MST_TO_STR (mst_slot_got_plt);
1049 MST_TO_STR (mst_data);
1050 MST_TO_STR (mst_bss);
1051 MST_TO_STR (mst_abs);
1052 MST_TO_STR (mst_solib_trampoline);
1053 MST_TO_STR (mst_file_text);
1054 MST_TO_STR (mst_file_data);
1055 MST_TO_STR (mst_file_bss);
1056
1057 default:
1058 return "mst_???";
1059 }
1060 #undef MST_TO_STR
1061 }
1062
1063 /* See minsyms.h. */
1064
1065 struct minimal_symbol *
1066 minimal_symbol_reader::record_full (const char *name, int name_len,
1067 bool copy_name, CORE_ADDR address,
1068 enum minimal_symbol_type ms_type,
1069 int section)
1070 {
1071 struct msym_bunch *newobj;
1072 struct minimal_symbol *msymbol;
1073
1074 /* Don't put gcc_compiled, __gnu_compiled_cplus, and friends into
1075 the minimal symbols, because if there is also another symbol
1076 at the same address (e.g. the first function of the file),
1077 lookup_minimal_symbol_by_pc would have no way of getting the
1078 right one. */
1079 if (ms_type == mst_file_text && name[0] == 'g'
1080 && (strcmp (name, GCC_COMPILED_FLAG_SYMBOL) == 0
1081 || strcmp (name, GCC2_COMPILED_FLAG_SYMBOL) == 0))
1082 return (NULL);
1083
1084 /* It's safe to strip the leading char here once, since the name
1085 is also stored stripped in the minimal symbol table. */
1086 if (name[0] == get_symbol_leading_char (m_objfile->obfd))
1087 {
1088 ++name;
1089 --name_len;
1090 }
1091
1092 if (ms_type == mst_file_text && startswith (name, "__gnu_compiled"))
1093 return (NULL);
1094
1095 if (symtab_create_debug >= 2)
1096 printf_unfiltered ("Recording minsym: %-21s %18s %4d %s\n",
1097 mst_str (ms_type), hex_string (address), section, name);
1098
1099 if (m_msym_bunch_index == BUNCH_SIZE)
1100 {
1101 newobj = XCNEW (struct msym_bunch);
1102 m_msym_bunch_index = 0;
1103 newobj->next = m_msym_bunch;
1104 m_msym_bunch = newobj;
1105 }
1106 msymbol = &m_msym_bunch->contents[m_msym_bunch_index];
1107 symbol_set_language (msymbol, language_auto,
1108 &m_objfile->per_bfd->storage_obstack);
1109 symbol_set_names (msymbol, name, name_len, copy_name, m_objfile->per_bfd);
1110
1111 SET_MSYMBOL_VALUE_ADDRESS (msymbol, address);
1112 MSYMBOL_SECTION (msymbol) = section;
1113
1114 MSYMBOL_TYPE (msymbol) = ms_type;
1115
1116 /* If we already read minimal symbols for this objfile, then don't
1117 ever allocate a new one. */
1118 if (!m_objfile->per_bfd->minsyms_read)
1119 {
1120 m_msym_bunch_index++;
1121 m_objfile->per_bfd->n_minsyms++;
1122 }
1123 m_msym_count++;
1124 return msymbol;
1125 }
1126
1127 /* Compare two minimal symbols by address and return true if FN1's address
1128 is less than FN2's, so that we sort into unsigned numeric order.
1129 Within groups with the same address, sort by name. */
1130
1131 static inline bool
1132 minimal_symbol_is_less_than (const minimal_symbol &fn1,
1133 const minimal_symbol &fn2)
1134 {
1135 if (MSYMBOL_VALUE_RAW_ADDRESS (&fn1) < MSYMBOL_VALUE_RAW_ADDRESS (&fn2))
1136 {
1137 return true; /* addr 1 is less than addr 2. */
1138 }
1139 else if (MSYMBOL_VALUE_RAW_ADDRESS (&fn1) > MSYMBOL_VALUE_RAW_ADDRESS (&fn2))
1140 {
1141 return false; /* addr 1 is greater than addr 2. */
1142 }
1143 else
1144 /* addrs are equal: sort by name */
1145 {
1146 const char *name1 = MSYMBOL_LINKAGE_NAME (&fn1);
1147 const char *name2 = MSYMBOL_LINKAGE_NAME (&fn2);
1148
1149 if (name1 && name2) /* both have names */
1150 return strcmp (name1, name2) < 0;
1151 else if (name2)
1152 return true; /* fn1 has no name, so it is "less". */
1153 else if (name1) /* fn2 has no name, so it is "less". */
1154 return false;
1155 else
1156 return false; /* Neither has a name, so they're equal. */
1157 }
1158 }
1159
1160 /* Compact duplicate entries out of a minimal symbol table by walking
1161 through the table and compacting out entries with duplicate addresses
1162 and matching names. Return the number of entries remaining.
1163
1164 On entry, the table resides between msymbol[0] and msymbol[mcount].
1165 On exit, it resides between msymbol[0] and msymbol[result_count].
1166
1167 When files contain multiple sources of symbol information, it is
1168 possible for the minimal symbol table to contain many duplicate entries.
1169 As an example, SVR4 systems use ELF formatted object files, which
1170 usually contain at least two different types of symbol tables (a
1171 standard ELF one and a smaller dynamic linking table), as well as
1172 DWARF debugging information for files compiled with -g.
1173
1174 Without compacting, the minimal symbol table for gdb itself contains
1175 over a 1000 duplicates, about a third of the total table size. Aside
1176 from the potential trap of not noticing that two successive entries
1177 identify the same location, this duplication impacts the time required
1178 to linearly scan the table, which is done in a number of places. So we
1179 just do one linear scan here and toss out the duplicates.
1180
1181 Since the different sources of information for each symbol may
1182 have different levels of "completeness", we may have duplicates
1183 that have one entry with type "mst_unknown" and the other with a
1184 known type. So if the one we are leaving alone has type mst_unknown,
1185 overwrite its type with the type from the one we are compacting out. */
1186
1187 static int
1188 compact_minimal_symbols (struct minimal_symbol *msymbol, int mcount,
1189 struct objfile *objfile)
1190 {
1191 struct minimal_symbol *copyfrom;
1192 struct minimal_symbol *copyto;
1193
1194 if (mcount > 0)
1195 {
1196 copyfrom = copyto = msymbol;
1197 while (copyfrom < msymbol + mcount - 1)
1198 {
1199 if (MSYMBOL_VALUE_RAW_ADDRESS (copyfrom)
1200 == MSYMBOL_VALUE_RAW_ADDRESS ((copyfrom + 1))
1201 && MSYMBOL_SECTION (copyfrom) == MSYMBOL_SECTION (copyfrom + 1)
1202 && strcmp (MSYMBOL_LINKAGE_NAME (copyfrom),
1203 MSYMBOL_LINKAGE_NAME ((copyfrom + 1))) == 0)
1204 {
1205 if (MSYMBOL_TYPE ((copyfrom + 1)) == mst_unknown)
1206 {
1207 MSYMBOL_TYPE ((copyfrom + 1)) = MSYMBOL_TYPE (copyfrom);
1208 }
1209 copyfrom++;
1210 }
1211 else
1212 *copyto++ = *copyfrom++;
1213 }
1214 *copyto++ = *copyfrom++;
1215 mcount = copyto - msymbol;
1216 }
1217 return (mcount);
1218 }
1219
1220 /* Build (or rebuild) the minimal symbol hash tables. This is necessary
1221 after compacting or sorting the table since the entries move around
1222 thus causing the internal minimal_symbol pointers to become jumbled. */
1223
1224 static void
1225 build_minimal_symbol_hash_tables (struct objfile *objfile)
1226 {
1227 int i;
1228 struct minimal_symbol *msym;
1229
1230 /* Clear the hash tables. */
1231 for (i = 0; i < MINIMAL_SYMBOL_HASH_SIZE; i++)
1232 {
1233 objfile->per_bfd->msymbol_hash[i] = 0;
1234 objfile->per_bfd->msymbol_demangled_hash[i] = 0;
1235 }
1236
1237 /* Now, (re)insert the actual entries. */
1238 for ((i = objfile->per_bfd->minimal_symbol_count,
1239 msym = objfile->per_bfd->msymbols.get ());
1240 i > 0;
1241 i--, msym++)
1242 {
1243 msym->hash_next = 0;
1244 add_minsym_to_hash_table (msym, objfile->per_bfd->msymbol_hash);
1245
1246 msym->demangled_hash_next = 0;
1247 if (MSYMBOL_SEARCH_NAME (msym) != MSYMBOL_LINKAGE_NAME (msym))
1248 add_minsym_to_demangled_hash_table (msym, objfile);
1249 }
1250 }
1251
1252 /* Add the minimal symbols in the existing bunches to the objfile's official
1253 minimal symbol table. In most cases there is no minimal symbol table yet
1254 for this objfile, and the existing bunches are used to create one. Once
1255 in a while (for shared libraries for example), we add symbols (e.g. common
1256 symbols) to an existing objfile. */
1257
1258 void
1259 minimal_symbol_reader::install ()
1260 {
1261 int mcount;
1262 struct msym_bunch *bunch;
1263 struct minimal_symbol *msymbols;
1264 int alloc_count;
1265
1266 if (m_objfile->per_bfd->minsyms_read)
1267 return;
1268
1269 if (m_msym_count > 0)
1270 {
1271 if (symtab_create_debug)
1272 {
1273 fprintf_unfiltered (gdb_stdlog,
1274 "Installing %d minimal symbols of objfile %s.\n",
1275 m_msym_count, objfile_name (m_objfile));
1276 }
1277
1278 /* Allocate enough space, into which we will gather the bunches
1279 of new and existing minimal symbols, sort them, and then
1280 compact out the duplicate entries. Once we have a final
1281 table, we will give back the excess space. */
1282
1283 alloc_count = m_msym_count + m_objfile->per_bfd->minimal_symbol_count;
1284 gdb::unique_xmalloc_ptr<minimal_symbol>
1285 msym_holder (XNEWVEC (minimal_symbol, alloc_count));
1286 msymbols = msym_holder.get ();
1287
1288 /* Copy in the existing minimal symbols, if there are any. */
1289
1290 if (m_objfile->per_bfd->minimal_symbol_count)
1291 memcpy (msymbols, m_objfile->per_bfd->msymbols.get (),
1292 m_objfile->per_bfd->minimal_symbol_count
1293 * sizeof (struct minimal_symbol));
1294
1295 /* Walk through the list of minimal symbol bunches, adding each symbol
1296 to the new contiguous array of symbols. Note that we start with the
1297 current, possibly partially filled bunch (thus we use the current
1298 msym_bunch_index for the first bunch we copy over), and thereafter
1299 each bunch is full. */
1300
1301 mcount = m_objfile->per_bfd->minimal_symbol_count;
1302
1303 for (bunch = m_msym_bunch; bunch != NULL; bunch = bunch->next)
1304 {
1305 memcpy (&msymbols[mcount], &bunch->contents[0],
1306 m_msym_bunch_index * sizeof (struct minimal_symbol));
1307 mcount += m_msym_bunch_index;
1308 m_msym_bunch_index = BUNCH_SIZE;
1309 }
1310
1311 /* Sort the minimal symbols by address. */
1312
1313 std::sort (msymbols, msymbols + mcount, minimal_symbol_is_less_than);
1314
1315 /* Compact out any duplicates, and free up whatever space we are
1316 no longer using. */
1317
1318 mcount = compact_minimal_symbols (msymbols, mcount, m_objfile);
1319 msym_holder.reset (XRESIZEVEC (struct minimal_symbol,
1320 msym_holder.release (),
1321 mcount));
1322
1323 /* Attach the minimal symbol table to the specified objfile.
1324 The strings themselves are also located in the storage_obstack
1325 of this objfile. */
1326
1327 m_objfile->per_bfd->minimal_symbol_count = mcount;
1328 m_objfile->per_bfd->msymbols = std::move (msym_holder);
1329
1330 build_minimal_symbol_hash_tables (m_objfile);
1331 }
1332 }
1333
1334 /* Check if PC is in a shared library trampoline code stub.
1335 Return minimal symbol for the trampoline entry or NULL if PC is not
1336 in a trampoline code stub. */
1337
1338 static struct minimal_symbol *
1339 lookup_solib_trampoline_symbol_by_pc (CORE_ADDR pc)
1340 {
1341 bound_minimal_symbol msymbol
1342 = lookup_minimal_symbol_by_pc_section (pc, NULL,
1343 lookup_msym_prefer::TRAMPOLINE);
1344
1345 if (msymbol.minsym != NULL
1346 && MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
1347 return msymbol.minsym;
1348 return NULL;
1349 }
1350
1351 /* If PC is in a shared library trampoline code stub, return the
1352 address of the `real' function belonging to the stub.
1353 Return 0 if PC is not in a trampoline code stub or if the real
1354 function is not found in the minimal symbol table.
1355
1356 We may fail to find the right function if a function with the
1357 same name is defined in more than one shared library, but this
1358 is considered bad programming style. We could return 0 if we find
1359 a duplicate function in case this matters someday. */
1360
1361 CORE_ADDR
1362 find_solib_trampoline_target (struct frame_info *frame, CORE_ADDR pc)
1363 {
1364 struct minimal_symbol *tsymbol = lookup_solib_trampoline_symbol_by_pc (pc);
1365
1366 if (tsymbol != NULL)
1367 {
1368 for (objfile *objfile : current_program_space->objfiles ())
1369 {
1370 for (minimal_symbol *msymbol : objfile->msymbols ())
1371 {
1372 /* Also handle minimal symbols pointing to function
1373 descriptors. */
1374 if ((MSYMBOL_TYPE (msymbol) == mst_text
1375 || MSYMBOL_TYPE (msymbol) == mst_text_gnu_ifunc
1376 || MSYMBOL_TYPE (msymbol) == mst_data
1377 || MSYMBOL_TYPE (msymbol) == mst_data_gnu_ifunc)
1378 && strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
1379 MSYMBOL_LINKAGE_NAME (tsymbol)) == 0)
1380 {
1381 CORE_ADDR func;
1382
1383 /* Ignore data symbols that are not function
1384 descriptors. */
1385 if (msymbol_is_function (objfile, msymbol, &func))
1386 return func;
1387 }
1388 }
1389 }
1390 }
1391 return 0;
1392 }
1393
1394 /* See minsyms.h. */
1395
1396 CORE_ADDR
1397 minimal_symbol_upper_bound (struct bound_minimal_symbol minsym)
1398 {
1399 short section;
1400 struct obj_section *obj_section;
1401 CORE_ADDR result;
1402 struct minimal_symbol *iter, *msymbol;
1403
1404 gdb_assert (minsym.minsym != NULL);
1405
1406 /* If the minimal symbol has a size, use it. Otherwise use the
1407 lesser of the next minimal symbol in the same section, or the end
1408 of the section, as the end of the function. */
1409
1410 if (MSYMBOL_SIZE (minsym.minsym) != 0)
1411 return BMSYMBOL_VALUE_ADDRESS (minsym) + MSYMBOL_SIZE (minsym.minsym);
1412
1413 /* Step over other symbols at this same address, and symbols in
1414 other sections, to find the next symbol in this section with a
1415 different address. */
1416
1417 struct minimal_symbol *past_the_end
1418 = (minsym.objfile->per_bfd->msymbols.get ()
1419 + minsym.objfile->per_bfd->minimal_symbol_count);
1420 msymbol = minsym.minsym;
1421 section = MSYMBOL_SECTION (msymbol);
1422 for (iter = msymbol + 1; iter != past_the_end; ++iter)
1423 {
1424 if ((MSYMBOL_VALUE_RAW_ADDRESS (iter)
1425 != MSYMBOL_VALUE_RAW_ADDRESS (msymbol))
1426 && MSYMBOL_SECTION (iter) == section)
1427 break;
1428 }
1429
1430 obj_section = MSYMBOL_OBJ_SECTION (minsym.objfile, minsym.minsym);
1431 if (iter != past_the_end
1432 && (MSYMBOL_VALUE_ADDRESS (minsym.objfile, iter)
1433 < obj_section_endaddr (obj_section)))
1434 result = MSYMBOL_VALUE_ADDRESS (minsym.objfile, iter);
1435 else
1436 /* We got the start address from the last msymbol in the objfile.
1437 So the end address is the end of the section. */
1438 result = obj_section_endaddr (obj_section);
1439
1440 return result;
1441 }
This page took 0.056664 seconds and 5 git commands to generate.