Make add_separate_debug_objfile static
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32 #include "bcache.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35
36 #include <sys/types.h>
37 #include <sys/stat.h>
38 #include <fcntl.h>
39 #include "gdb_obstack.h"
40 #include "hashtab.h"
41
42 #include "breakpoint.h"
43 #include "block.h"
44 #include "dictionary.h"
45 #include "source.h"
46 #include "addrmap.h"
47 #include "arch-utils.h"
48 #include "exec.h"
49 #include "observable.h"
50 #include "complaints.h"
51 #include "psymtab.h"
52 #include "solist.h"
53 #include "gdb_bfd.h"
54 #include "btrace.h"
55 #include "gdbsupport/pathstuff.h"
56
57 #include <vector>
58
59 /* Keep a registry of per-objfile data-pointers required by other GDB
60 modules. */
61
62 DEFINE_REGISTRY (objfile, REGISTRY_ACCESS_FIELD)
63
64 /* Externally visible variables that are owned by this module.
65 See declarations in objfile.h for more info. */
66
67 struct objfile_pspace_info
68 {
69 objfile_pspace_info () = default;
70 ~objfile_pspace_info ();
71
72 struct obj_section **sections = nullptr;
73 int num_sections = 0;
74
75 /* Nonzero if object files have been added since the section map
76 was last updated. */
77 int new_objfiles_available = 0;
78
79 /* Nonzero if the section map MUST be updated before use. */
80 int section_map_dirty = 0;
81
82 /* Nonzero if section map updates should be inhibited if possible. */
83 int inhibit_updates = 0;
84 };
85
86 /* Per-program-space data key. */
87 static const struct program_space_key<objfile_pspace_info>
88 objfiles_pspace_data;
89
90 objfile_pspace_info::~objfile_pspace_info ()
91 {
92 xfree (sections);
93 }
94
95 /* Get the current svr4 data. If none is found yet, add it now. This
96 function always returns a valid object. */
97
98 static struct objfile_pspace_info *
99 get_objfile_pspace_data (struct program_space *pspace)
100 {
101 struct objfile_pspace_info *info;
102
103 info = objfiles_pspace_data.get (pspace);
104 if (info == NULL)
105 info = objfiles_pspace_data.emplace (pspace);
106
107 return info;
108 }
109
110 \f
111
112 /* Per-BFD data key. */
113
114 static const struct bfd_key<objfile_per_bfd_storage> objfiles_bfd_data;
115
116 objfile_per_bfd_storage::~objfile_per_bfd_storage ()
117 {
118 }
119
120 /* Create the per-BFD storage object for OBJFILE. If ABFD is not
121 NULL, and it already has a per-BFD storage object, use that.
122 Otherwise, allocate a new per-BFD storage object. Note that it is
123 not safe to call this multiple times for a given OBJFILE -- it can
124 only be called when allocating or re-initializing OBJFILE. */
125
126 static struct objfile_per_bfd_storage *
127 get_objfile_bfd_data (struct objfile *objfile, struct bfd *abfd)
128 {
129 struct objfile_per_bfd_storage *storage = NULL;
130
131 if (abfd != NULL)
132 storage = objfiles_bfd_data.get (abfd);
133
134 if (storage == NULL)
135 {
136 storage = new objfile_per_bfd_storage;
137 /* If the object requires gdb to do relocations, we simply fall
138 back to not sharing data across users. These cases are rare
139 enough that this seems reasonable. */
140 if (abfd != NULL && !gdb_bfd_requires_relocations (abfd))
141 objfiles_bfd_data.set (abfd, storage);
142
143 /* Look up the gdbarch associated with the BFD. */
144 if (abfd != NULL)
145 storage->gdbarch = gdbarch_from_bfd (abfd);
146 }
147
148 return storage;
149 }
150
151 /* See objfiles.h. */
152
153 void
154 set_objfile_per_bfd (struct objfile *objfile)
155 {
156 objfile->per_bfd = get_objfile_bfd_data (objfile, objfile->obfd);
157 }
158
159 /* Set the objfile's per-BFD notion of the "main" name and
160 language. */
161
162 void
163 set_objfile_main_name (struct objfile *objfile,
164 const char *name, enum language lang)
165 {
166 if (objfile->per_bfd->name_of_main == NULL
167 || strcmp (objfile->per_bfd->name_of_main, name) != 0)
168 objfile->per_bfd->name_of_main
169 = obstack_strdup (&objfile->per_bfd->storage_obstack, name);
170 objfile->per_bfd->language_of_main = lang;
171 }
172
173 /* Helper structure to map blocks to static link properties in hash tables. */
174
175 struct static_link_htab_entry
176 {
177 const struct block *block;
178 const struct dynamic_prop *static_link;
179 };
180
181 /* Return a hash code for struct static_link_htab_entry *P. */
182
183 static hashval_t
184 static_link_htab_entry_hash (const void *p)
185 {
186 const struct static_link_htab_entry *e
187 = (const struct static_link_htab_entry *) p;
188
189 return htab_hash_pointer (e->block);
190 }
191
192 /* Return whether P1 an P2 (pointers to struct static_link_htab_entry) are
193 mappings for the same block. */
194
195 static int
196 static_link_htab_entry_eq (const void *p1, const void *p2)
197 {
198 const struct static_link_htab_entry *e1
199 = (const struct static_link_htab_entry *) p1;
200 const struct static_link_htab_entry *e2
201 = (const struct static_link_htab_entry *) p2;
202
203 return e1->block == e2->block;
204 }
205
206 /* Register STATIC_LINK as the static link for BLOCK, which is part of OBJFILE.
207 Must not be called more than once for each BLOCK. */
208
209 void
210 objfile_register_static_link (struct objfile *objfile,
211 const struct block *block,
212 const struct dynamic_prop *static_link)
213 {
214 void **slot;
215 struct static_link_htab_entry lookup_entry;
216 struct static_link_htab_entry *entry;
217
218 if (objfile->static_links == NULL)
219 objfile->static_links.reset (htab_create_alloc
220 (1, &static_link_htab_entry_hash, static_link_htab_entry_eq, NULL,
221 xcalloc, xfree));
222
223 /* Create a slot for the mapping, make sure it's the first mapping for this
224 block and then create the mapping itself. */
225 lookup_entry.block = block;
226 slot = htab_find_slot (objfile->static_links.get (), &lookup_entry, INSERT);
227 gdb_assert (*slot == NULL);
228
229 entry = XOBNEW (&objfile->objfile_obstack, static_link_htab_entry);
230 entry->block = block;
231 entry->static_link = static_link;
232 *slot = (void *) entry;
233 }
234
235 /* Look for a static link for BLOCK, which is part of OBJFILE. Return NULL if
236 none was found. */
237
238 const struct dynamic_prop *
239 objfile_lookup_static_link (struct objfile *objfile,
240 const struct block *block)
241 {
242 struct static_link_htab_entry *entry;
243 struct static_link_htab_entry lookup_entry;
244
245 if (objfile->static_links == NULL)
246 return NULL;
247 lookup_entry.block = block;
248 entry = ((struct static_link_htab_entry *)
249 htab_find (objfile->static_links.get (), &lookup_entry));
250 if (entry == NULL)
251 return NULL;
252
253 gdb_assert (entry->block == block);
254 return entry->static_link;
255 }
256
257 \f
258
259 /* Called via bfd_map_over_sections to build up the section table that
260 the objfile references. The objfile contains pointers to the start
261 of the table (objfile->sections) and to the first location after
262 the end of the table (objfile->sections_end). */
263
264 static void
265 add_to_objfile_sections_full (struct bfd *abfd, struct bfd_section *asect,
266 struct objfile *objfile, int force)
267 {
268 struct obj_section *section;
269
270 if (!force)
271 {
272 flagword aflag;
273
274 aflag = bfd_section_flags (asect);
275 if (!(aflag & SEC_ALLOC))
276 return;
277 }
278
279 section = &objfile->sections[gdb_bfd_section_index (abfd, asect)];
280 section->objfile = objfile;
281 section->the_bfd_section = asect;
282 section->ovly_mapped = 0;
283 }
284
285 static void
286 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
287 void *objfilep)
288 {
289 add_to_objfile_sections_full (abfd, asect, (struct objfile *) objfilep, 0);
290 }
291
292 /* Builds a section table for OBJFILE.
293
294 Note that the OFFSET and OVLY_MAPPED in each table entry are
295 initialized to zero. */
296
297 void
298 build_objfile_section_table (struct objfile *objfile)
299 {
300 int count = gdb_bfd_count_sections (objfile->obfd);
301
302 objfile->sections = OBSTACK_CALLOC (&objfile->objfile_obstack,
303 count,
304 struct obj_section);
305 objfile->sections_end = (objfile->sections + count);
306 bfd_map_over_sections (objfile->obfd,
307 add_to_objfile_sections, (void *) objfile);
308
309 /* See gdb_bfd_section_index. */
310 add_to_objfile_sections_full (objfile->obfd, bfd_com_section_ptr, objfile, 1);
311 add_to_objfile_sections_full (objfile->obfd, bfd_und_section_ptr, objfile, 1);
312 add_to_objfile_sections_full (objfile->obfd, bfd_abs_section_ptr, objfile, 1);
313 add_to_objfile_sections_full (objfile->obfd, bfd_ind_section_ptr, objfile, 1);
314 }
315
316 /* Given a pointer to an initialized bfd (ABFD) and some flag bits,
317 initialize the new objfile as best we can and link it into the list
318 of all known objfiles.
319
320 NAME should contain original non-canonicalized filename or other
321 identifier as entered by user. If there is no better source use
322 bfd_get_filename (ABFD). NAME may be NULL only if ABFD is NULL.
323 NAME content is copied into returned objfile.
324
325 The FLAGS word contains various bits (OBJF_*) that can be taken as
326 requests for specific operations. Other bits like OBJF_SHARED are
327 simply copied through to the new objfile flags member. */
328
329 objfile::objfile (bfd *abfd, const char *name, objfile_flags flags_)
330 : flags (flags_),
331 pspace (current_program_space),
332 partial_symtabs (new psymtab_storage ()),
333 obfd (abfd)
334 {
335 const char *expanded_name;
336
337 /* We could use obstack_specify_allocation here instead, but
338 gdb_obstack.h specifies the alloc/dealloc functions. */
339 obstack_init (&objfile_obstack);
340
341 objfile_alloc_data (this);
342
343 gdb::unique_xmalloc_ptr<char> name_holder;
344 if (name == NULL)
345 {
346 gdb_assert (abfd == NULL);
347 gdb_assert ((flags & OBJF_NOT_FILENAME) != 0);
348 expanded_name = "<<anonymous objfile>>";
349 }
350 else if ((flags & OBJF_NOT_FILENAME) != 0
351 || is_target_filename (name))
352 expanded_name = name;
353 else
354 {
355 name_holder = gdb_abspath (name);
356 expanded_name = name_holder.get ();
357 }
358 original_name = obstack_strdup (&objfile_obstack, expanded_name);
359
360 /* Update the per-objfile information that comes from the bfd, ensuring
361 that any data that is reference is saved in the per-objfile data
362 region. */
363
364 gdb_bfd_ref (abfd);
365 if (abfd != NULL)
366 {
367 mtime = bfd_get_mtime (abfd);
368
369 /* Build section table. */
370 build_objfile_section_table (this);
371 }
372
373 per_bfd = get_objfile_bfd_data (this, abfd);
374
375 /* Add this file onto the tail of the linked list of other such files. */
376
377 if (object_files == NULL)
378 object_files = this;
379 else
380 {
381 struct objfile *last_one;
382
383 for (last_one = object_files;
384 last_one->next;
385 last_one = last_one->next);
386 last_one->next = this;
387 }
388
389 /* Rebuild section map next time we need it. */
390 get_objfile_pspace_data (pspace)->new_objfiles_available = 1;
391 }
392
393 /* Retrieve the gdbarch associated with OBJFILE. */
394
395 struct gdbarch *
396 get_objfile_arch (const struct objfile *objfile)
397 {
398 return objfile->per_bfd->gdbarch;
399 }
400
401 /* If there is a valid and known entry point, function fills *ENTRY_P with it
402 and returns non-zero; otherwise it returns zero. */
403
404 int
405 entry_point_address_query (CORE_ADDR *entry_p)
406 {
407 if (symfile_objfile == NULL || !symfile_objfile->per_bfd->ei.entry_point_p)
408 return 0;
409
410 *entry_p = (symfile_objfile->per_bfd->ei.entry_point
411 + ANOFFSET (symfile_objfile->section_offsets,
412 symfile_objfile->per_bfd->ei.the_bfd_section_index));
413
414 return 1;
415 }
416
417 /* Get current entry point address. Call error if it is not known. */
418
419 CORE_ADDR
420 entry_point_address (void)
421 {
422 CORE_ADDR retval;
423
424 if (!entry_point_address_query (&retval))
425 error (_("Entry point address is not known."));
426
427 return retval;
428 }
429
430 separate_debug_iterator &
431 separate_debug_iterator::operator++ ()
432 {
433 gdb_assert (m_objfile != nullptr);
434
435 struct objfile *res;
436
437 /* If any, return the first child. */
438 res = m_objfile->separate_debug_objfile;
439 if (res != nullptr)
440 {
441 m_objfile = res;
442 return *this;
443 }
444
445 /* Common case where there is no separate debug objfile. */
446 if (m_objfile == m_parent)
447 {
448 m_objfile = nullptr;
449 return *this;
450 }
451
452 /* Return the brother if any. Note that we don't iterate on brothers of
453 the parents. */
454 res = m_objfile->separate_debug_objfile_link;
455 if (res != nullptr)
456 {
457 m_objfile = res;
458 return *this;
459 }
460
461 for (res = m_objfile->separate_debug_objfile_backlink;
462 res != m_parent;
463 res = res->separate_debug_objfile_backlink)
464 {
465 gdb_assert (res != nullptr);
466 if (res->separate_debug_objfile_link != nullptr)
467 {
468 m_objfile = res->separate_debug_objfile_link;
469 return *this;
470 }
471 }
472 m_objfile = nullptr;
473 return *this;
474 }
475
476 /* Unlink OBJFILE from the list of known objfiles. */
477
478 static void
479 unlink_objfile (struct objfile *objfile)
480 {
481 struct objfile **objpp;
482
483 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
484 {
485 if (*objpp == objfile)
486 {
487 *objpp = (*objpp)->next;
488 objfile->next = NULL;
489 return;
490 }
491 }
492
493 internal_error (__FILE__, __LINE__,
494 _("unlink_objfile: objfile already unlinked"));
495 }
496
497 /* Put one object file before a specified on in the global list.
498 This can be used to make sure an object file is destroyed before
499 another when using objfiles_safe to free all objfiles. */
500 static void
501 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
502 {
503 struct objfile **objp;
504
505 unlink_objfile (objfile);
506
507 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
508 {
509 if (*objp == before_this)
510 {
511 objfile->next = *objp;
512 *objp = objfile;
513 return;
514 }
515 }
516
517 internal_error (__FILE__, __LINE__,
518 _("put_objfile_before: before objfile not in list"));
519 }
520
521 /* Add OBJFILE as a separate debug objfile of PARENT. */
522
523 static void
524 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
525 {
526 gdb_assert (objfile && parent);
527
528 /* Must not be already in a list. */
529 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
530 gdb_assert (objfile->separate_debug_objfile_link == NULL);
531 gdb_assert (objfile->separate_debug_objfile == NULL);
532 gdb_assert (parent->separate_debug_objfile_backlink == NULL);
533 gdb_assert (parent->separate_debug_objfile_link == NULL);
534
535 objfile->separate_debug_objfile_backlink = parent;
536 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
537 parent->separate_debug_objfile = objfile;
538
539 /* Put the separate debug object before the normal one, this is so that
540 usage of objfiles_safe will stay safe. */
541 put_objfile_before (objfile, parent);
542 }
543
544 /* See objfiles.h. */
545
546 objfile *
547 objfile::make (bfd *bfd_, const char *name_, objfile_flags flags_,
548 objfile *parent)
549 {
550 objfile *result = new objfile (bfd_, name_, flags_);
551 if (parent != nullptr)
552 add_separate_debug_objfile (result, parent);
553 return result;
554 }
555
556 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
557 itself. */
558
559 void
560 free_objfile_separate_debug (struct objfile *objfile)
561 {
562 struct objfile *child;
563
564 for (child = objfile->separate_debug_objfile; child;)
565 {
566 struct objfile *next_child = child->separate_debug_objfile_link;
567 delete child;
568 child = next_child;
569 }
570 }
571
572 /* Destroy an objfile and all the symtabs and psymtabs under it. */
573
574 objfile::~objfile ()
575 {
576 /* First notify observers that this objfile is about to be freed. */
577 gdb::observers::free_objfile.notify (this);
578
579 /* Free all separate debug objfiles. */
580 free_objfile_separate_debug (this);
581
582 if (separate_debug_objfile_backlink)
583 {
584 /* We freed the separate debug file, make sure the base objfile
585 doesn't reference it. */
586 struct objfile *child;
587
588 child = separate_debug_objfile_backlink->separate_debug_objfile;
589
590 if (child == this)
591 {
592 /* THIS is the first child. */
593 separate_debug_objfile_backlink->separate_debug_objfile =
594 separate_debug_objfile_link;
595 }
596 else
597 {
598 /* Find THIS in the list. */
599 while (1)
600 {
601 if (child->separate_debug_objfile_link == this)
602 {
603 child->separate_debug_objfile_link =
604 separate_debug_objfile_link;
605 break;
606 }
607 child = child->separate_debug_objfile_link;
608 gdb_assert (child);
609 }
610 }
611 }
612
613 /* Remove any references to this objfile in the global value
614 lists. */
615 preserve_values (this);
616
617 /* It still may reference data modules have associated with the objfile and
618 the symbol file data. */
619 forget_cached_source_info_for_objfile (this);
620
621 breakpoint_free_objfile (this);
622 btrace_free_objfile (this);
623
624 /* First do any symbol file specific actions required when we are
625 finished with a particular symbol file. Note that if the objfile
626 is using reusable symbol information (via mmalloc) then each of
627 these routines is responsible for doing the correct thing, either
628 freeing things which are valid only during this particular gdb
629 execution, or leaving them to be reused during the next one. */
630
631 if (sf != NULL)
632 (*sf->sym_finish) (this);
633
634 /* Discard any data modules have associated with the objfile. The function
635 still may reference obfd. */
636 objfile_free_data (this);
637
638 if (obfd)
639 gdb_bfd_unref (obfd);
640 else
641 delete per_bfd;
642
643 /* Remove it from the chain of all objfiles. */
644
645 unlink_objfile (this);
646
647 if (this == symfile_objfile)
648 symfile_objfile = NULL;
649
650 /* Before the symbol table code was redone to make it easier to
651 selectively load and remove information particular to a specific
652 linkage unit, gdb used to do these things whenever the monolithic
653 symbol table was blown away. How much still needs to be done
654 is unknown, but we play it safe for now and keep each action until
655 it is shown to be no longer needed. */
656
657 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
658 for example), so we need to call this here. */
659 clear_pc_function_cache ();
660
661 /* Check to see if the current_source_symtab belongs to this objfile,
662 and if so, call clear_current_source_symtab_and_line. */
663
664 {
665 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
666
667 if (cursal.symtab && SYMTAB_OBJFILE (cursal.symtab) == this)
668 clear_current_source_symtab_and_line ();
669 }
670
671 /* Free the obstacks for non-reusable objfiles. */
672 obstack_free (&objfile_obstack, 0);
673
674 /* Rebuild section map next time we need it. */
675 get_objfile_pspace_data (pspace)->section_map_dirty = 1;
676 }
677
678 /* Free all the object files at once and clean up their users. */
679
680 void
681 free_all_objfiles (void)
682 {
683 struct so_list *so;
684
685 /* Any objfile reference would become stale. */
686 for (so = master_so_list (); so; so = so->next)
687 gdb_assert (so->objfile == NULL);
688
689 for (objfile *objfile : current_program_space->objfiles_safe ())
690 delete objfile;
691 clear_symtab_users (0);
692 }
693 \f
694 /* A helper function for objfile_relocate1 that relocates a single
695 symbol. */
696
697 static void
698 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
699 struct section_offsets *delta)
700 {
701 fixup_symbol_section (sym, objfile);
702
703 /* The RS6000 code from which this was taken skipped
704 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
705 But I'm leaving out that test, on the theory that
706 they can't possibly pass the tests below. */
707 if ((SYMBOL_CLASS (sym) == LOC_LABEL
708 || SYMBOL_CLASS (sym) == LOC_STATIC)
709 && SYMBOL_SECTION (sym) >= 0)
710 {
711 SET_SYMBOL_VALUE_ADDRESS (sym,
712 SYMBOL_VALUE_ADDRESS (sym)
713 + ANOFFSET (delta, SYMBOL_SECTION (sym)));
714 }
715 }
716
717 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
718 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
719 Return non-zero iff any change happened. */
720
721 static int
722 objfile_relocate1 (struct objfile *objfile,
723 const struct section_offsets *new_offsets)
724 {
725 struct section_offsets *delta =
726 ((struct section_offsets *)
727 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
728
729 int something_changed = 0;
730
731 for (int i = 0; i < objfile->num_sections; ++i)
732 {
733 delta->offsets[i] =
734 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
735 if (ANOFFSET (delta, i) != 0)
736 something_changed = 1;
737 }
738 if (!something_changed)
739 return 0;
740
741 /* OK, get all the symtabs. */
742 {
743 for (compunit_symtab *cust : objfile->compunits ())
744 {
745 for (symtab *s : compunit_filetabs (cust))
746 {
747 struct linetable *l;
748
749 /* First the line table. */
750 l = SYMTAB_LINETABLE (s);
751 if (l)
752 {
753 for (int i = 0; i < l->nitems; ++i)
754 l->item[i].pc += ANOFFSET (delta,
755 COMPUNIT_BLOCK_LINE_SECTION
756 (cust));
757 }
758 }
759 }
760
761 for (compunit_symtab *cust : objfile->compunits ())
762 {
763 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
764 int block_line_section = COMPUNIT_BLOCK_LINE_SECTION (cust);
765
766 if (BLOCKVECTOR_MAP (bv))
767 addrmap_relocate (BLOCKVECTOR_MAP (bv),
768 ANOFFSET (delta, block_line_section));
769
770 for (int i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
771 {
772 struct block *b;
773 struct symbol *sym;
774 struct mdict_iterator miter;
775
776 b = BLOCKVECTOR_BLOCK (bv, i);
777 BLOCK_START (b) += ANOFFSET (delta, block_line_section);
778 BLOCK_END (b) += ANOFFSET (delta, block_line_section);
779
780 if (BLOCK_RANGES (b) != nullptr)
781 for (int j = 0; j < BLOCK_NRANGES (b); j++)
782 {
783 BLOCK_RANGE_START (b, j)
784 += ANOFFSET (delta, block_line_section);
785 BLOCK_RANGE_END (b, j) += ANOFFSET (delta,
786 block_line_section);
787 }
788
789 /* We only want to iterate over the local symbols, not any
790 symbols in included symtabs. */
791 ALL_DICT_SYMBOLS (BLOCK_MULTIDICT (b), miter, sym)
792 {
793 relocate_one_symbol (sym, objfile, delta);
794 }
795 }
796 }
797 }
798
799 /* This stores relocated addresses and so must be cleared. This
800 will cause it to be recreated on demand. */
801 objfile->psymbol_map.clear ();
802
803 /* Relocate isolated symbols. */
804 {
805 struct symbol *iter;
806
807 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
808 relocate_one_symbol (iter, objfile, delta);
809 }
810
811 {
812 int i;
813
814 for (i = 0; i < objfile->num_sections; ++i)
815 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
816 }
817
818 /* Rebuild section map next time we need it. */
819 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
820
821 /* Update the table in exec_ops, used to read memory. */
822 struct obj_section *s;
823 ALL_OBJFILE_OSECTIONS (objfile, s)
824 {
825 int idx = s - objfile->sections;
826
827 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
828 obj_section_addr (s));
829 }
830
831 /* Data changed. */
832 return 1;
833 }
834
835 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
836 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
837
838 The number and ordering of sections does differ between the two objfiles.
839 Only their names match. Also the file offsets will differ (objfile being
840 possibly prelinked but separate_debug_objfile is probably not prelinked) but
841 the in-memory absolute address as specified by NEW_OFFSETS must match both
842 files. */
843
844 void
845 objfile_relocate (struct objfile *objfile,
846 const struct section_offsets *new_offsets)
847 {
848 int changed = 0;
849
850 changed |= objfile_relocate1 (objfile, new_offsets);
851
852 for (::objfile *debug_objfile : objfile->separate_debug_objfiles ())
853 {
854 if (debug_objfile == objfile)
855 continue;
856
857 section_addr_info objfile_addrs
858 = build_section_addr_info_from_objfile (objfile);
859
860 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
861 relative ones must be already created according to debug_objfile. */
862
863 addr_info_make_relative (&objfile_addrs, debug_objfile->obfd);
864
865 gdb_assert (debug_objfile->num_sections
866 == gdb_bfd_count_sections (debug_objfile->obfd));
867 std::vector<struct section_offsets>
868 new_debug_offsets (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections));
869 relative_addr_info_to_section_offsets (new_debug_offsets.data (),
870 debug_objfile->num_sections,
871 objfile_addrs);
872
873 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets.data ());
874 }
875
876 /* Relocate breakpoints as necessary, after things are relocated. */
877 if (changed)
878 breakpoint_re_set ();
879 }
880
881 /* Rebase (add to the offsets) OBJFILE by SLIDE. SEPARATE_DEBUG_OBJFILE is
882 not touched here.
883 Return non-zero iff any change happened. */
884
885 static int
886 objfile_rebase1 (struct objfile *objfile, CORE_ADDR slide)
887 {
888 struct section_offsets *new_offsets =
889 ((struct section_offsets *)
890 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
891 int i;
892
893 for (i = 0; i < objfile->num_sections; ++i)
894 new_offsets->offsets[i] = slide;
895
896 return objfile_relocate1 (objfile, new_offsets);
897 }
898
899 /* Rebase (add to the offsets) OBJFILE by SLIDE. Process also OBJFILE's
900 SEPARATE_DEBUG_OBJFILEs. */
901
902 void
903 objfile_rebase (struct objfile *objfile, CORE_ADDR slide)
904 {
905 int changed = 0;
906
907 for (::objfile *debug_objfile : objfile->separate_debug_objfiles ())
908 changed |= objfile_rebase1 (debug_objfile, slide);
909
910 /* Relocate breakpoints as necessary, after things are relocated. */
911 if (changed)
912 breakpoint_re_set ();
913 }
914 \f
915 /* Return non-zero if OBJFILE has partial symbols. */
916
917 int
918 objfile_has_partial_symbols (struct objfile *objfile)
919 {
920 if (!objfile->sf)
921 return 0;
922
923 /* If we have not read psymbols, but we have a function capable of reading
924 them, then that is an indication that they are in fact available. Without
925 this function the symbols may have been already read in but they also may
926 not be present in this objfile. */
927 if ((objfile->flags & OBJF_PSYMTABS_READ) == 0
928 && objfile->sf->sym_read_psymbols != NULL)
929 return 1;
930
931 return objfile->sf->qf->has_symbols (objfile);
932 }
933
934 /* Return non-zero if OBJFILE has full symbols. */
935
936 int
937 objfile_has_full_symbols (struct objfile *objfile)
938 {
939 return objfile->compunit_symtabs != NULL;
940 }
941
942 /* Return non-zero if OBJFILE has full or partial symbols, either directly
943 or through a separate debug file. */
944
945 int
946 objfile_has_symbols (struct objfile *objfile)
947 {
948 for (::objfile *o : objfile->separate_debug_objfiles ())
949 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
950 return 1;
951 return 0;
952 }
953
954
955 /* Many places in gdb want to test just to see if we have any partial
956 symbols available. This function returns zero if none are currently
957 available, nonzero otherwise. */
958
959 int
960 have_partial_symbols (void)
961 {
962 for (objfile *ofp : current_program_space->objfiles ())
963 {
964 if (objfile_has_partial_symbols (ofp))
965 return 1;
966 }
967 return 0;
968 }
969
970 /* Many places in gdb want to test just to see if we have any full
971 symbols available. This function returns zero if none are currently
972 available, nonzero otherwise. */
973
974 int
975 have_full_symbols (void)
976 {
977 for (objfile *ofp : current_program_space->objfiles ())
978 {
979 if (objfile_has_full_symbols (ofp))
980 return 1;
981 }
982 return 0;
983 }
984
985
986 /* This operations deletes all objfile entries that represent solibs that
987 weren't explicitly loaded by the user, via e.g., the add-symbol-file
988 command. */
989
990 void
991 objfile_purge_solibs (void)
992 {
993 for (objfile *objf : current_program_space->objfiles_safe ())
994 {
995 /* We assume that the solib package has been purged already, or will
996 be soon. */
997
998 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
999 delete objf;
1000 }
1001 }
1002
1003
1004 /* Many places in gdb want to test just to see if we have any minimal
1005 symbols available. This function returns zero if none are currently
1006 available, nonzero otherwise. */
1007
1008 int
1009 have_minimal_symbols (void)
1010 {
1011 for (objfile *ofp : current_program_space->objfiles ())
1012 {
1013 if (ofp->per_bfd->minimal_symbol_count > 0)
1014 {
1015 return 1;
1016 }
1017 }
1018 return 0;
1019 }
1020
1021 /* Qsort comparison function. */
1022
1023 static bool
1024 sort_cmp (const struct obj_section *sect1, const obj_section *sect2)
1025 {
1026 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1027 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1028
1029 if (sect1_addr < sect2_addr)
1030 return true;
1031 else if (sect1_addr > sect2_addr)
1032 return false;
1033 else
1034 {
1035 /* Sections are at the same address. This could happen if
1036 A) we have an objfile and a separate debuginfo.
1037 B) we are confused, and have added sections without proper relocation,
1038 or something like that. */
1039
1040 const struct objfile *const objfile1 = sect1->objfile;
1041 const struct objfile *const objfile2 = sect2->objfile;
1042
1043 if (objfile1->separate_debug_objfile == objfile2
1044 || objfile2->separate_debug_objfile == objfile1)
1045 {
1046 /* Case A. The ordering doesn't matter: separate debuginfo files
1047 will be filtered out later. */
1048
1049 return false;
1050 }
1051
1052 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
1053 triage. This section could be slow (since we iterate over all
1054 objfiles in each call to sort_cmp), but this shouldn't happen
1055 very often (GDB is already in a confused state; one hopes this
1056 doesn't happen at all). If you discover that significant time is
1057 spent in the loops below, do 'set complaints 100' and examine the
1058 resulting complaints. */
1059 if (objfile1 == objfile2)
1060 {
1061 /* Both sections came from the same objfile. We are really
1062 confused. Sort on sequence order of sections within the
1063 objfile. The order of checks is important here, if we find a
1064 match on SECT2 first then either SECT2 is before SECT1, or,
1065 SECT2 == SECT1, in both cases we should return false. The
1066 second case shouldn't occur during normal use, but std::sort
1067 does check that '!(a < a)' when compiled in debug mode. */
1068
1069 const struct obj_section *osect;
1070
1071 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1072 if (osect == sect2)
1073 return false;
1074 else if (osect == sect1)
1075 return true;
1076
1077 /* We should have found one of the sections before getting here. */
1078 gdb_assert_not_reached ("section not found");
1079 }
1080 else
1081 {
1082 /* Sort on sequence number of the objfile in the chain. */
1083
1084 for (objfile *objfile : current_program_space->objfiles ())
1085 if (objfile == objfile1)
1086 return true;
1087 else if (objfile == objfile2)
1088 return false;
1089
1090 /* We should have found one of the objfiles before getting here. */
1091 gdb_assert_not_reached ("objfile not found");
1092 }
1093 }
1094
1095 /* Unreachable. */
1096 gdb_assert_not_reached ("unexpected code path");
1097 return false;
1098 }
1099
1100 /* Select "better" obj_section to keep. We prefer the one that came from
1101 the real object, rather than the one from separate debuginfo.
1102 Most of the time the two sections are exactly identical, but with
1103 prelinking the .rel.dyn section in the real object may have different
1104 size. */
1105
1106 static struct obj_section *
1107 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1108 {
1109 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1110 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1111 || (b->objfile->separate_debug_objfile == a->objfile));
1112 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1113 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1114
1115 if (a->objfile->separate_debug_objfile != NULL)
1116 return a;
1117 return b;
1118 }
1119
1120 /* Return 1 if SECTION should be inserted into the section map.
1121 We want to insert only non-overlay and non-TLS section. */
1122
1123 static int
1124 insert_section_p (const struct bfd *abfd,
1125 const struct bfd_section *section)
1126 {
1127 const bfd_vma lma = bfd_section_lma (section);
1128
1129 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (section)
1130 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1131 /* This is an overlay section. IN_MEMORY check is needed to avoid
1132 discarding sections from the "system supplied DSO" (aka vdso)
1133 on some Linux systems (e.g. Fedora 11). */
1134 return 0;
1135 if ((bfd_section_flags (section) & SEC_THREAD_LOCAL) != 0)
1136 /* This is a TLS section. */
1137 return 0;
1138
1139 return 1;
1140 }
1141
1142 /* Filter out overlapping sections where one section came from the real
1143 objfile, and the other from a separate debuginfo file.
1144 Return the size of table after redundant sections have been eliminated. */
1145
1146 static int
1147 filter_debuginfo_sections (struct obj_section **map, int map_size)
1148 {
1149 int i, j;
1150
1151 for (i = 0, j = 0; i < map_size - 1; i++)
1152 {
1153 struct obj_section *const sect1 = map[i];
1154 struct obj_section *const sect2 = map[i + 1];
1155 const struct objfile *const objfile1 = sect1->objfile;
1156 const struct objfile *const objfile2 = sect2->objfile;
1157 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1158 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1159
1160 if (sect1_addr == sect2_addr
1161 && (objfile1->separate_debug_objfile == objfile2
1162 || objfile2->separate_debug_objfile == objfile1))
1163 {
1164 map[j++] = preferred_obj_section (sect1, sect2);
1165 ++i;
1166 }
1167 else
1168 map[j++] = sect1;
1169 }
1170
1171 if (i < map_size)
1172 {
1173 gdb_assert (i == map_size - 1);
1174 map[j++] = map[i];
1175 }
1176
1177 /* The map should not have shrunk to less than half the original size. */
1178 gdb_assert (map_size / 2 <= j);
1179
1180 return j;
1181 }
1182
1183 /* Filter out overlapping sections, issuing a warning if any are found.
1184 Overlapping sections could really be overlay sections which we didn't
1185 classify as such in insert_section_p, or we could be dealing with a
1186 corrupt binary. */
1187
1188 static int
1189 filter_overlapping_sections (struct obj_section **map, int map_size)
1190 {
1191 int i, j;
1192
1193 for (i = 0, j = 0; i < map_size - 1; )
1194 {
1195 int k;
1196
1197 map[j++] = map[i];
1198 for (k = i + 1; k < map_size; k++)
1199 {
1200 struct obj_section *const sect1 = map[i];
1201 struct obj_section *const sect2 = map[k];
1202 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1203 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1204 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1205
1206 gdb_assert (sect1_addr <= sect2_addr);
1207
1208 if (sect1_endaddr <= sect2_addr)
1209 break;
1210 else
1211 {
1212 /* We have an overlap. Report it. */
1213
1214 struct objfile *const objf1 = sect1->objfile;
1215 struct objfile *const objf2 = sect2->objfile;
1216
1217 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1218 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1219
1220 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1221
1222 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1223
1224 complaint (_("unexpected overlap between:\n"
1225 " (A) section `%s' from `%s' [%s, %s)\n"
1226 " (B) section `%s' from `%s' [%s, %s).\n"
1227 "Will ignore section B"),
1228 bfd_section_name (bfds1), objfile_name (objf1),
1229 paddress (gdbarch, sect1_addr),
1230 paddress (gdbarch, sect1_endaddr),
1231 bfd_section_name (bfds2), objfile_name (objf2),
1232 paddress (gdbarch, sect2_addr),
1233 paddress (gdbarch, sect2_endaddr));
1234 }
1235 }
1236 i = k;
1237 }
1238
1239 if (i < map_size)
1240 {
1241 gdb_assert (i == map_size - 1);
1242 map[j++] = map[i];
1243 }
1244
1245 return j;
1246 }
1247
1248
1249 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1250 TLS, overlay and overlapping sections. */
1251
1252 static void
1253 update_section_map (struct program_space *pspace,
1254 struct obj_section ***pmap, int *pmap_size)
1255 {
1256 struct objfile_pspace_info *pspace_info;
1257 int alloc_size, map_size, i;
1258 struct obj_section *s, **map;
1259
1260 pspace_info = get_objfile_pspace_data (pspace);
1261 gdb_assert (pspace_info->section_map_dirty != 0
1262 || pspace_info->new_objfiles_available != 0);
1263
1264 map = *pmap;
1265 xfree (map);
1266
1267 alloc_size = 0;
1268 for (objfile *objfile : pspace->objfiles ())
1269 ALL_OBJFILE_OSECTIONS (objfile, s)
1270 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1271 alloc_size += 1;
1272
1273 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1274 if (alloc_size == 0)
1275 {
1276 *pmap = NULL;
1277 *pmap_size = 0;
1278 return;
1279 }
1280
1281 map = XNEWVEC (struct obj_section *, alloc_size);
1282
1283 i = 0;
1284 for (objfile *objfile : pspace->objfiles ())
1285 ALL_OBJFILE_OSECTIONS (objfile, s)
1286 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1287 map[i++] = s;
1288
1289 std::sort (map, map + alloc_size, sort_cmp);
1290 map_size = filter_debuginfo_sections(map, alloc_size);
1291 map_size = filter_overlapping_sections(map, map_size);
1292
1293 if (map_size < alloc_size)
1294 /* Some sections were eliminated. Trim excess space. */
1295 map = XRESIZEVEC (struct obj_section *, map, map_size);
1296 else
1297 gdb_assert (alloc_size == map_size);
1298
1299 *pmap = map;
1300 *pmap_size = map_size;
1301 }
1302
1303 /* Bsearch comparison function. */
1304
1305 static int
1306 bsearch_cmp (const void *key, const void *elt)
1307 {
1308 const CORE_ADDR pc = *(CORE_ADDR *) key;
1309 const struct obj_section *section = *(const struct obj_section **) elt;
1310
1311 if (pc < obj_section_addr (section))
1312 return -1;
1313 if (pc < obj_section_endaddr (section))
1314 return 0;
1315 return 1;
1316 }
1317
1318 /* Returns a section whose range includes PC or NULL if none found. */
1319
1320 struct obj_section *
1321 find_pc_section (CORE_ADDR pc)
1322 {
1323 struct objfile_pspace_info *pspace_info;
1324 struct obj_section *s, **sp;
1325
1326 /* Check for mapped overlay section first. */
1327 s = find_pc_mapped_section (pc);
1328 if (s)
1329 return s;
1330
1331 pspace_info = get_objfile_pspace_data (current_program_space);
1332 if (pspace_info->section_map_dirty
1333 || (pspace_info->new_objfiles_available
1334 && !pspace_info->inhibit_updates))
1335 {
1336 update_section_map (current_program_space,
1337 &pspace_info->sections,
1338 &pspace_info->num_sections);
1339
1340 /* Don't need updates to section map until objfiles are added,
1341 removed or relocated. */
1342 pspace_info->new_objfiles_available = 0;
1343 pspace_info->section_map_dirty = 0;
1344 }
1345
1346 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1347 bsearch be non-NULL. */
1348 if (pspace_info->sections == NULL)
1349 {
1350 gdb_assert (pspace_info->num_sections == 0);
1351 return NULL;
1352 }
1353
1354 sp = (struct obj_section **) bsearch (&pc,
1355 pspace_info->sections,
1356 pspace_info->num_sections,
1357 sizeof (*pspace_info->sections),
1358 bsearch_cmp);
1359 if (sp != NULL)
1360 return *sp;
1361 return NULL;
1362 }
1363
1364
1365 /* Return non-zero if PC is in a section called NAME. */
1366
1367 int
1368 pc_in_section (CORE_ADDR pc, const char *name)
1369 {
1370 struct obj_section *s;
1371 int retval = 0;
1372
1373 s = find_pc_section (pc);
1374
1375 retval = (s != NULL
1376 && s->the_bfd_section->name != NULL
1377 && strcmp (s->the_bfd_section->name, name) == 0);
1378 return (retval);
1379 }
1380 \f
1381
1382 /* Set section_map_dirty so section map will be rebuilt next time it
1383 is used. Called by reread_symbols. */
1384
1385 void
1386 objfiles_changed (void)
1387 {
1388 /* Rebuild section map next time we need it. */
1389 get_objfile_pspace_data (current_program_space)->section_map_dirty = 1;
1390 }
1391
1392 /* See comments in objfiles.h. */
1393
1394 scoped_restore_tmpl<int>
1395 inhibit_section_map_updates (struct program_space *pspace)
1396 {
1397 return scoped_restore_tmpl<int>
1398 (&get_objfile_pspace_data (pspace)->inhibit_updates, 1);
1399 }
1400
1401 /* Return 1 if ADDR maps into one of the sections of OBJFILE and 0
1402 otherwise. */
1403
1404 int
1405 is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile)
1406 {
1407 struct obj_section *osect;
1408
1409 if (objfile == NULL)
1410 return 0;
1411
1412 ALL_OBJFILE_OSECTIONS (objfile, osect)
1413 {
1414 if (section_is_overlay (osect) && !section_is_mapped (osect))
1415 continue;
1416
1417 if (obj_section_addr (osect) <= addr
1418 && addr < obj_section_endaddr (osect))
1419 return 1;
1420 }
1421 return 0;
1422 }
1423
1424 int
1425 shared_objfile_contains_address_p (struct program_space *pspace,
1426 CORE_ADDR address)
1427 {
1428 for (objfile *objfile : pspace->objfiles ())
1429 {
1430 if ((objfile->flags & OBJF_SHARED) != 0
1431 && is_addr_in_objfile (address, objfile))
1432 return 1;
1433 }
1434
1435 return 0;
1436 }
1437
1438 /* The default implementation for the "iterate_over_objfiles_in_search_order"
1439 gdbarch method. It is equivalent to use the objfiles iterable,
1440 searching the objfiles in the order they are stored internally,
1441 ignoring CURRENT_OBJFILE.
1442
1443 On most platforms, it should be close enough to doing the best
1444 we can without some knowledge specific to the architecture. */
1445
1446 void
1447 default_iterate_over_objfiles_in_search_order
1448 (struct gdbarch *gdbarch,
1449 iterate_over_objfiles_in_search_order_cb_ftype *cb,
1450 void *cb_data, struct objfile *current_objfile)
1451 {
1452 int stop = 0;
1453
1454 for (objfile *objfile : current_program_space->objfiles ())
1455 {
1456 stop = cb (objfile, cb_data);
1457 if (stop)
1458 return;
1459 }
1460 }
1461
1462 /* See objfiles.h. */
1463
1464 const char *
1465 objfile_name (const struct objfile *objfile)
1466 {
1467 if (objfile->obfd != NULL)
1468 return bfd_get_filename (objfile->obfd);
1469
1470 return objfile->original_name;
1471 }
1472
1473 /* See objfiles.h. */
1474
1475 const char *
1476 objfile_filename (const struct objfile *objfile)
1477 {
1478 if (objfile->obfd != NULL)
1479 return bfd_get_filename (objfile->obfd);
1480
1481 return NULL;
1482 }
1483
1484 /* See objfiles.h. */
1485
1486 const char *
1487 objfile_debug_name (const struct objfile *objfile)
1488 {
1489 return lbasename (objfile->original_name);
1490 }
1491
1492 /* See objfiles.h. */
1493
1494 const char *
1495 objfile_flavour_name (struct objfile *objfile)
1496 {
1497 if (objfile->obfd != NULL)
1498 return bfd_flavour_name (bfd_get_flavour (objfile->obfd));
1499 return NULL;
1500 }
This page took 0.058924 seconds and 4 git commands to generate.