31265c1653d944e32c9a618faf7e97b22e9a4056
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32 #include "bcache.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35
36 #include <sys/types.h>
37 #include <sys/stat.h>
38 #include <fcntl.h>
39 #include "gdb_obstack.h"
40 #include "hashtab.h"
41
42 #include "breakpoint.h"
43 #include "block.h"
44 #include "dictionary.h"
45 #include "source.h"
46 #include "addrmap.h"
47 #include "arch-utils.h"
48 #include "exec.h"
49 #include "observable.h"
50 #include "complaints.h"
51 #include "psymtab.h"
52 #include "solist.h"
53 #include "gdb_bfd.h"
54 #include "btrace.h"
55 #include "gdbsupport/pathstuff.h"
56
57 #include <algorithm>
58 #include <vector>
59
60 /* Keep a registry of per-objfile data-pointers required by other GDB
61 modules. */
62
63 DEFINE_REGISTRY (objfile, REGISTRY_ACCESS_FIELD)
64
65 /* Externally visible variables that are owned by this module.
66 See declarations in objfile.h for more info. */
67
68 struct objfile_pspace_info
69 {
70 objfile_pspace_info () = default;
71 ~objfile_pspace_info ();
72
73 struct obj_section **sections = nullptr;
74 int num_sections = 0;
75
76 /* Nonzero if object files have been added since the section map
77 was last updated. */
78 int new_objfiles_available = 0;
79
80 /* Nonzero if the section map MUST be updated before use. */
81 int section_map_dirty = 0;
82
83 /* Nonzero if section map updates should be inhibited if possible. */
84 int inhibit_updates = 0;
85 };
86
87 /* Per-program-space data key. */
88 static const struct program_space_key<objfile_pspace_info>
89 objfiles_pspace_data;
90
91 objfile_pspace_info::~objfile_pspace_info ()
92 {
93 xfree (sections);
94 }
95
96 /* Get the current svr4 data. If none is found yet, add it now. This
97 function always returns a valid object. */
98
99 static struct objfile_pspace_info *
100 get_objfile_pspace_data (struct program_space *pspace)
101 {
102 struct objfile_pspace_info *info;
103
104 info = objfiles_pspace_data.get (pspace);
105 if (info == NULL)
106 info = objfiles_pspace_data.emplace (pspace);
107
108 return info;
109 }
110
111 \f
112
113 /* Per-BFD data key. */
114
115 static const struct bfd_key<objfile_per_bfd_storage> objfiles_bfd_data;
116
117 objfile_per_bfd_storage::~objfile_per_bfd_storage ()
118 {
119 }
120
121 /* Create the per-BFD storage object for OBJFILE. If ABFD is not
122 NULL, and it already has a per-BFD storage object, use that.
123 Otherwise, allocate a new per-BFD storage object. Note that it is
124 not safe to call this multiple times for a given OBJFILE -- it can
125 only be called when allocating or re-initializing OBJFILE. */
126
127 static struct objfile_per_bfd_storage *
128 get_objfile_bfd_data (struct objfile *objfile, struct bfd *abfd)
129 {
130 struct objfile_per_bfd_storage *storage = NULL;
131
132 if (abfd != NULL)
133 storage = objfiles_bfd_data.get (abfd);
134
135 if (storage == NULL)
136 {
137 storage = new objfile_per_bfd_storage;
138 /* If the object requires gdb to do relocations, we simply fall
139 back to not sharing data across users. These cases are rare
140 enough that this seems reasonable. */
141 if (abfd != NULL && !gdb_bfd_requires_relocations (abfd))
142 objfiles_bfd_data.set (abfd, storage);
143
144 /* Look up the gdbarch associated with the BFD. */
145 if (abfd != NULL)
146 storage->gdbarch = gdbarch_from_bfd (abfd);
147 }
148
149 return storage;
150 }
151
152 /* See objfiles.h. */
153
154 void
155 set_objfile_per_bfd (struct objfile *objfile)
156 {
157 objfile->per_bfd = get_objfile_bfd_data (objfile, objfile->obfd);
158 }
159
160 /* Set the objfile's per-BFD notion of the "main" name and
161 language. */
162
163 void
164 set_objfile_main_name (struct objfile *objfile,
165 const char *name, enum language lang)
166 {
167 if (objfile->per_bfd->name_of_main == NULL
168 || strcmp (objfile->per_bfd->name_of_main, name) != 0)
169 objfile->per_bfd->name_of_main
170 = obstack_strdup (&objfile->per_bfd->storage_obstack, name);
171 objfile->per_bfd->language_of_main = lang;
172 }
173
174 /* Helper structure to map blocks to static link properties in hash tables. */
175
176 struct static_link_htab_entry
177 {
178 const struct block *block;
179 const struct dynamic_prop *static_link;
180 };
181
182 /* Return a hash code for struct static_link_htab_entry *P. */
183
184 static hashval_t
185 static_link_htab_entry_hash (const void *p)
186 {
187 const struct static_link_htab_entry *e
188 = (const struct static_link_htab_entry *) p;
189
190 return htab_hash_pointer (e->block);
191 }
192
193 /* Return whether P1 an P2 (pointers to struct static_link_htab_entry) are
194 mappings for the same block. */
195
196 static int
197 static_link_htab_entry_eq (const void *p1, const void *p2)
198 {
199 const struct static_link_htab_entry *e1
200 = (const struct static_link_htab_entry *) p1;
201 const struct static_link_htab_entry *e2
202 = (const struct static_link_htab_entry *) p2;
203
204 return e1->block == e2->block;
205 }
206
207 /* Register STATIC_LINK as the static link for BLOCK, which is part of OBJFILE.
208 Must not be called more than once for each BLOCK. */
209
210 void
211 objfile_register_static_link (struct objfile *objfile,
212 const struct block *block,
213 const struct dynamic_prop *static_link)
214 {
215 void **slot;
216 struct static_link_htab_entry lookup_entry;
217 struct static_link_htab_entry *entry;
218
219 if (objfile->static_links == NULL)
220 objfile->static_links.reset (htab_create_alloc
221 (1, &static_link_htab_entry_hash, static_link_htab_entry_eq, NULL,
222 xcalloc, xfree));
223
224 /* Create a slot for the mapping, make sure it's the first mapping for this
225 block and then create the mapping itself. */
226 lookup_entry.block = block;
227 slot = htab_find_slot (objfile->static_links.get (), &lookup_entry, INSERT);
228 gdb_assert (*slot == NULL);
229
230 entry = XOBNEW (&objfile->objfile_obstack, static_link_htab_entry);
231 entry->block = block;
232 entry->static_link = static_link;
233 *slot = (void *) entry;
234 }
235
236 /* Look for a static link for BLOCK, which is part of OBJFILE. Return NULL if
237 none was found. */
238
239 const struct dynamic_prop *
240 objfile_lookup_static_link (struct objfile *objfile,
241 const struct block *block)
242 {
243 struct static_link_htab_entry *entry;
244 struct static_link_htab_entry lookup_entry;
245
246 if (objfile->static_links == NULL)
247 return NULL;
248 lookup_entry.block = block;
249 entry = ((struct static_link_htab_entry *)
250 htab_find (objfile->static_links.get (), &lookup_entry));
251 if (entry == NULL)
252 return NULL;
253
254 gdb_assert (entry->block == block);
255 return entry->static_link;
256 }
257
258 \f
259
260 /* Called via bfd_map_over_sections to build up the section table that
261 the objfile references. The objfile contains pointers to the start
262 of the table (objfile->sections) and to the first location after
263 the end of the table (objfile->sections_end). */
264
265 static void
266 add_to_objfile_sections_full (struct bfd *abfd, struct bfd_section *asect,
267 struct objfile *objfile, int force)
268 {
269 struct obj_section *section;
270
271 if (!force)
272 {
273 flagword aflag;
274
275 aflag = bfd_section_flags (asect);
276 if (!(aflag & SEC_ALLOC))
277 return;
278 }
279
280 section = &objfile->sections[gdb_bfd_section_index (abfd, asect)];
281 section->objfile = objfile;
282 section->the_bfd_section = asect;
283 section->ovly_mapped = 0;
284 }
285
286 static void
287 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
288 void *objfilep)
289 {
290 add_to_objfile_sections_full (abfd, asect, (struct objfile *) objfilep, 0);
291 }
292
293 /* Builds a section table for OBJFILE.
294
295 Note that the OFFSET and OVLY_MAPPED in each table entry are
296 initialized to zero. */
297
298 void
299 build_objfile_section_table (struct objfile *objfile)
300 {
301 int count = gdb_bfd_count_sections (objfile->obfd);
302
303 objfile->sections = OBSTACK_CALLOC (&objfile->objfile_obstack,
304 count,
305 struct obj_section);
306 objfile->sections_end = (objfile->sections + count);
307 bfd_map_over_sections (objfile->obfd,
308 add_to_objfile_sections, (void *) objfile);
309
310 /* See gdb_bfd_section_index. */
311 add_to_objfile_sections_full (objfile->obfd, bfd_com_section_ptr, objfile, 1);
312 add_to_objfile_sections_full (objfile->obfd, bfd_und_section_ptr, objfile, 1);
313 add_to_objfile_sections_full (objfile->obfd, bfd_abs_section_ptr, objfile, 1);
314 add_to_objfile_sections_full (objfile->obfd, bfd_ind_section_ptr, objfile, 1);
315 }
316
317 /* Given a pointer to an initialized bfd (ABFD) and some flag bits,
318 initialize the new objfile as best we can and link it into the list
319 of all known objfiles.
320
321 NAME should contain original non-canonicalized filename or other
322 identifier as entered by user. If there is no better source use
323 bfd_get_filename (ABFD). NAME may be NULL only if ABFD is NULL.
324 NAME content is copied into returned objfile.
325
326 The FLAGS word contains various bits (OBJF_*) that can be taken as
327 requests for specific operations. Other bits like OBJF_SHARED are
328 simply copied through to the new objfile flags member. */
329
330 objfile::objfile (bfd *abfd, const char *name, objfile_flags flags_)
331 : flags (flags_),
332 pspace (current_program_space),
333 partial_symtabs (new psymtab_storage ()),
334 obfd (abfd)
335 {
336 const char *expanded_name;
337
338 /* We could use obstack_specify_allocation here instead, but
339 gdb_obstack.h specifies the alloc/dealloc functions. */
340 obstack_init (&objfile_obstack);
341
342 objfile_alloc_data (this);
343
344 gdb::unique_xmalloc_ptr<char> name_holder;
345 if (name == NULL)
346 {
347 gdb_assert (abfd == NULL);
348 gdb_assert ((flags & OBJF_NOT_FILENAME) != 0);
349 expanded_name = "<<anonymous objfile>>";
350 }
351 else if ((flags & OBJF_NOT_FILENAME) != 0
352 || is_target_filename (name))
353 expanded_name = name;
354 else
355 {
356 name_holder = gdb_abspath (name);
357 expanded_name = name_holder.get ();
358 }
359 original_name = obstack_strdup (&objfile_obstack, expanded_name);
360
361 /* Update the per-objfile information that comes from the bfd, ensuring
362 that any data that is reference is saved in the per-objfile data
363 region. */
364
365 gdb_bfd_ref (abfd);
366 if (abfd != NULL)
367 {
368 mtime = bfd_get_mtime (abfd);
369
370 /* Build section table. */
371 build_objfile_section_table (this);
372 }
373
374 per_bfd = get_objfile_bfd_data (this, abfd);
375 }
376
377 /* Retrieve the gdbarch associated with OBJFILE. */
378
379 struct gdbarch *
380 get_objfile_arch (const struct objfile *objfile)
381 {
382 return objfile->per_bfd->gdbarch;
383 }
384
385 /* If there is a valid and known entry point, function fills *ENTRY_P with it
386 and returns non-zero; otherwise it returns zero. */
387
388 int
389 entry_point_address_query (CORE_ADDR *entry_p)
390 {
391 if (symfile_objfile == NULL || !symfile_objfile->per_bfd->ei.entry_point_p)
392 return 0;
393
394 *entry_p = (symfile_objfile->per_bfd->ei.entry_point
395 + ANOFFSET (symfile_objfile->section_offsets,
396 symfile_objfile->per_bfd->ei.the_bfd_section_index));
397
398 return 1;
399 }
400
401 /* Get current entry point address. Call error if it is not known. */
402
403 CORE_ADDR
404 entry_point_address (void)
405 {
406 CORE_ADDR retval;
407
408 if (!entry_point_address_query (&retval))
409 error (_("Entry point address is not known."));
410
411 return retval;
412 }
413
414 separate_debug_iterator &
415 separate_debug_iterator::operator++ ()
416 {
417 gdb_assert (m_objfile != nullptr);
418
419 struct objfile *res;
420
421 /* If any, return the first child. */
422 res = m_objfile->separate_debug_objfile;
423 if (res != nullptr)
424 {
425 m_objfile = res;
426 return *this;
427 }
428
429 /* Common case where there is no separate debug objfile. */
430 if (m_objfile == m_parent)
431 {
432 m_objfile = nullptr;
433 return *this;
434 }
435
436 /* Return the brother if any. Note that we don't iterate on brothers of
437 the parents. */
438 res = m_objfile->separate_debug_objfile_link;
439 if (res != nullptr)
440 {
441 m_objfile = res;
442 return *this;
443 }
444
445 for (res = m_objfile->separate_debug_objfile_backlink;
446 res != m_parent;
447 res = res->separate_debug_objfile_backlink)
448 {
449 gdb_assert (res != nullptr);
450 if (res->separate_debug_objfile_link != nullptr)
451 {
452 m_objfile = res->separate_debug_objfile_link;
453 return *this;
454 }
455 }
456 m_objfile = nullptr;
457 return *this;
458 }
459
460 /* Add OBJFILE as a separate debug objfile of PARENT. */
461
462 static void
463 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
464 {
465 gdb_assert (objfile && parent);
466
467 /* Must not be already in a list. */
468 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
469 gdb_assert (objfile->separate_debug_objfile_link == NULL);
470 gdb_assert (objfile->separate_debug_objfile == NULL);
471 gdb_assert (parent->separate_debug_objfile_backlink == NULL);
472 gdb_assert (parent->separate_debug_objfile_link == NULL);
473
474 objfile->separate_debug_objfile_backlink = parent;
475 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
476 parent->separate_debug_objfile = objfile;
477 }
478
479 /* See objfiles.h. */
480
481 objfile *
482 objfile::make (bfd *bfd_, const char *name_, objfile_flags flags_,
483 objfile *parent)
484 {
485 objfile *result = new objfile (bfd_, name_, flags_);
486 if (parent != nullptr)
487 add_separate_debug_objfile (result, parent);
488
489 current_program_space->add_objfile (result, parent);
490
491 /* Rebuild section map next time we need it. */
492 get_objfile_pspace_data (current_program_space)->new_objfiles_available = 1;
493
494 return result;
495 }
496
497 /* See objfiles.h. */
498
499 void
500 objfile::unlink ()
501 {
502 current_program_space->remove_objfile (this);
503 delete this;
504 }
505
506 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
507 itself. */
508
509 void
510 free_objfile_separate_debug (struct objfile *objfile)
511 {
512 struct objfile *child;
513
514 for (child = objfile->separate_debug_objfile; child;)
515 {
516 struct objfile *next_child = child->separate_debug_objfile_link;
517 child->unlink ();
518 child = next_child;
519 }
520 }
521
522 /* Destroy an objfile and all the symtabs and psymtabs under it. */
523
524 objfile::~objfile ()
525 {
526 /* First notify observers that this objfile is about to be freed. */
527 gdb::observers::free_objfile.notify (this);
528
529 /* Free all separate debug objfiles. */
530 free_objfile_separate_debug (this);
531
532 if (separate_debug_objfile_backlink)
533 {
534 /* We freed the separate debug file, make sure the base objfile
535 doesn't reference it. */
536 struct objfile *child;
537
538 child = separate_debug_objfile_backlink->separate_debug_objfile;
539
540 if (child == this)
541 {
542 /* THIS is the first child. */
543 separate_debug_objfile_backlink->separate_debug_objfile =
544 separate_debug_objfile_link;
545 }
546 else
547 {
548 /* Find THIS in the list. */
549 while (1)
550 {
551 if (child->separate_debug_objfile_link == this)
552 {
553 child->separate_debug_objfile_link =
554 separate_debug_objfile_link;
555 break;
556 }
557 child = child->separate_debug_objfile_link;
558 gdb_assert (child);
559 }
560 }
561 }
562
563 /* Remove any references to this objfile in the global value
564 lists. */
565 preserve_values (this);
566
567 /* It still may reference data modules have associated with the objfile and
568 the symbol file data. */
569 forget_cached_source_info_for_objfile (this);
570
571 breakpoint_free_objfile (this);
572 btrace_free_objfile (this);
573
574 /* First do any symbol file specific actions required when we are
575 finished with a particular symbol file. Note that if the objfile
576 is using reusable symbol information (via mmalloc) then each of
577 these routines is responsible for doing the correct thing, either
578 freeing things which are valid only during this particular gdb
579 execution, or leaving them to be reused during the next one. */
580
581 if (sf != NULL)
582 (*sf->sym_finish) (this);
583
584 /* Discard any data modules have associated with the objfile. The function
585 still may reference obfd. */
586 objfile_free_data (this);
587
588 if (obfd)
589 gdb_bfd_unref (obfd);
590 else
591 delete per_bfd;
592
593 /* Before the symbol table code was redone to make it easier to
594 selectively load and remove information particular to a specific
595 linkage unit, gdb used to do these things whenever the monolithic
596 symbol table was blown away. How much still needs to be done
597 is unknown, but we play it safe for now and keep each action until
598 it is shown to be no longer needed. */
599
600 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
601 for example), so we need to call this here. */
602 clear_pc_function_cache ();
603
604 /* Check to see if the current_source_symtab belongs to this objfile,
605 and if so, call clear_current_source_symtab_and_line. */
606
607 {
608 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
609
610 if (cursal.symtab && SYMTAB_OBJFILE (cursal.symtab) == this)
611 clear_current_source_symtab_and_line ();
612 }
613
614 /* Free the obstacks for non-reusable objfiles. */
615 obstack_free (&objfile_obstack, 0);
616
617 /* Rebuild section map next time we need it. */
618 get_objfile_pspace_data (pspace)->section_map_dirty = 1;
619 }
620
621 /* Free all the object files at once and clean up their users. */
622
623 void
624 free_all_objfiles (void)
625 {
626 struct so_list *so;
627
628 /* Any objfile reference would become stale. */
629 for (so = master_so_list (); so; so = so->next)
630 gdb_assert (so->objfile == NULL);
631
632 for (objfile *objfile : current_program_space->objfiles_safe ())
633 objfile->unlink ();
634 clear_symtab_users (0);
635 }
636 \f
637 /* A helper function for objfile_relocate1 that relocates a single
638 symbol. */
639
640 static void
641 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
642 struct section_offsets *delta)
643 {
644 fixup_symbol_section (sym, objfile);
645
646 /* The RS6000 code from which this was taken skipped
647 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
648 But I'm leaving out that test, on the theory that
649 they can't possibly pass the tests below. */
650 if ((SYMBOL_CLASS (sym) == LOC_LABEL
651 || SYMBOL_CLASS (sym) == LOC_STATIC)
652 && SYMBOL_SECTION (sym) >= 0)
653 {
654 SET_SYMBOL_VALUE_ADDRESS (sym,
655 SYMBOL_VALUE_ADDRESS (sym)
656 + ANOFFSET (delta, SYMBOL_SECTION (sym)));
657 }
658 }
659
660 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
661 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
662 Return non-zero iff any change happened. */
663
664 static int
665 objfile_relocate1 (struct objfile *objfile,
666 const struct section_offsets *new_offsets)
667 {
668 struct section_offsets *delta =
669 ((struct section_offsets *)
670 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
671
672 int something_changed = 0;
673
674 for (int i = 0; i < objfile->num_sections; ++i)
675 {
676 delta->offsets[i] =
677 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
678 if (ANOFFSET (delta, i) != 0)
679 something_changed = 1;
680 }
681 if (!something_changed)
682 return 0;
683
684 /* OK, get all the symtabs. */
685 {
686 for (compunit_symtab *cust : objfile->compunits ())
687 {
688 for (symtab *s : compunit_filetabs (cust))
689 {
690 struct linetable *l;
691
692 /* First the line table. */
693 l = SYMTAB_LINETABLE (s);
694 if (l)
695 {
696 for (int i = 0; i < l->nitems; ++i)
697 l->item[i].pc += ANOFFSET (delta,
698 COMPUNIT_BLOCK_LINE_SECTION
699 (cust));
700 }
701 }
702 }
703
704 for (compunit_symtab *cust : objfile->compunits ())
705 {
706 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
707 int block_line_section = COMPUNIT_BLOCK_LINE_SECTION (cust);
708
709 if (BLOCKVECTOR_MAP (bv))
710 addrmap_relocate (BLOCKVECTOR_MAP (bv),
711 ANOFFSET (delta, block_line_section));
712
713 for (int i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
714 {
715 struct block *b;
716 struct symbol *sym;
717 struct mdict_iterator miter;
718
719 b = BLOCKVECTOR_BLOCK (bv, i);
720 BLOCK_START (b) += ANOFFSET (delta, block_line_section);
721 BLOCK_END (b) += ANOFFSET (delta, block_line_section);
722
723 if (BLOCK_RANGES (b) != nullptr)
724 for (int j = 0; j < BLOCK_NRANGES (b); j++)
725 {
726 BLOCK_RANGE_START (b, j)
727 += ANOFFSET (delta, block_line_section);
728 BLOCK_RANGE_END (b, j) += ANOFFSET (delta,
729 block_line_section);
730 }
731
732 /* We only want to iterate over the local symbols, not any
733 symbols in included symtabs. */
734 ALL_DICT_SYMBOLS (BLOCK_MULTIDICT (b), miter, sym)
735 {
736 relocate_one_symbol (sym, objfile, delta);
737 }
738 }
739 }
740 }
741
742 /* This stores relocated addresses and so must be cleared. This
743 will cause it to be recreated on demand. */
744 objfile->psymbol_map.clear ();
745
746 /* Relocate isolated symbols. */
747 {
748 struct symbol *iter;
749
750 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
751 relocate_one_symbol (iter, objfile, delta);
752 }
753
754 {
755 int i;
756
757 for (i = 0; i < objfile->num_sections; ++i)
758 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
759 }
760
761 /* Rebuild section map next time we need it. */
762 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
763
764 /* Update the table in exec_ops, used to read memory. */
765 struct obj_section *s;
766 ALL_OBJFILE_OSECTIONS (objfile, s)
767 {
768 int idx = s - objfile->sections;
769
770 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
771 obj_section_addr (s));
772 }
773
774 /* Data changed. */
775 return 1;
776 }
777
778 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
779 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
780
781 The number and ordering of sections does differ between the two objfiles.
782 Only their names match. Also the file offsets will differ (objfile being
783 possibly prelinked but separate_debug_objfile is probably not prelinked) but
784 the in-memory absolute address as specified by NEW_OFFSETS must match both
785 files. */
786
787 void
788 objfile_relocate (struct objfile *objfile,
789 const struct section_offsets *new_offsets)
790 {
791 int changed = 0;
792
793 changed |= objfile_relocate1 (objfile, new_offsets);
794
795 for (::objfile *debug_objfile : objfile->separate_debug_objfiles ())
796 {
797 if (debug_objfile == objfile)
798 continue;
799
800 section_addr_info objfile_addrs
801 = build_section_addr_info_from_objfile (objfile);
802
803 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
804 relative ones must be already created according to debug_objfile. */
805
806 addr_info_make_relative (&objfile_addrs, debug_objfile->obfd);
807
808 gdb_assert (debug_objfile->num_sections
809 == gdb_bfd_count_sections (debug_objfile->obfd));
810 std::vector<struct section_offsets>
811 new_debug_offsets (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections));
812 relative_addr_info_to_section_offsets (new_debug_offsets.data (),
813 debug_objfile->num_sections,
814 objfile_addrs);
815
816 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets.data ());
817 }
818
819 /* Relocate breakpoints as necessary, after things are relocated. */
820 if (changed)
821 breakpoint_re_set ();
822 }
823
824 /* Rebase (add to the offsets) OBJFILE by SLIDE. SEPARATE_DEBUG_OBJFILE is
825 not touched here.
826 Return non-zero iff any change happened. */
827
828 static int
829 objfile_rebase1 (struct objfile *objfile, CORE_ADDR slide)
830 {
831 struct section_offsets *new_offsets =
832 ((struct section_offsets *)
833 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
834 int i;
835
836 for (i = 0; i < objfile->num_sections; ++i)
837 new_offsets->offsets[i] = slide;
838
839 return objfile_relocate1 (objfile, new_offsets);
840 }
841
842 /* Rebase (add to the offsets) OBJFILE by SLIDE. Process also OBJFILE's
843 SEPARATE_DEBUG_OBJFILEs. */
844
845 void
846 objfile_rebase (struct objfile *objfile, CORE_ADDR slide)
847 {
848 int changed = 0;
849
850 for (::objfile *debug_objfile : objfile->separate_debug_objfiles ())
851 changed |= objfile_rebase1 (debug_objfile, slide);
852
853 /* Relocate breakpoints as necessary, after things are relocated. */
854 if (changed)
855 breakpoint_re_set ();
856 }
857 \f
858 /* Return non-zero if OBJFILE has partial symbols. */
859
860 int
861 objfile_has_partial_symbols (struct objfile *objfile)
862 {
863 if (!objfile->sf)
864 return 0;
865
866 /* If we have not read psymbols, but we have a function capable of reading
867 them, then that is an indication that they are in fact available. Without
868 this function the symbols may have been already read in but they also may
869 not be present in this objfile. */
870 if ((objfile->flags & OBJF_PSYMTABS_READ) == 0
871 && objfile->sf->sym_read_psymbols != NULL)
872 return 1;
873
874 return objfile->sf->qf->has_symbols (objfile);
875 }
876
877 /* Return non-zero if OBJFILE has full symbols. */
878
879 int
880 objfile_has_full_symbols (struct objfile *objfile)
881 {
882 return objfile->compunit_symtabs != NULL;
883 }
884
885 /* Return non-zero if OBJFILE has full or partial symbols, either directly
886 or through a separate debug file. */
887
888 int
889 objfile_has_symbols (struct objfile *objfile)
890 {
891 for (::objfile *o : objfile->separate_debug_objfiles ())
892 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
893 return 1;
894 return 0;
895 }
896
897
898 /* Many places in gdb want to test just to see if we have any partial
899 symbols available. This function returns zero if none are currently
900 available, nonzero otherwise. */
901
902 int
903 have_partial_symbols (void)
904 {
905 for (objfile *ofp : current_program_space->objfiles ())
906 {
907 if (objfile_has_partial_symbols (ofp))
908 return 1;
909 }
910 return 0;
911 }
912
913 /* Many places in gdb want to test just to see if we have any full
914 symbols available. This function returns zero if none are currently
915 available, nonzero otherwise. */
916
917 int
918 have_full_symbols (void)
919 {
920 for (objfile *ofp : current_program_space->objfiles ())
921 {
922 if (objfile_has_full_symbols (ofp))
923 return 1;
924 }
925 return 0;
926 }
927
928
929 /* This operations deletes all objfile entries that represent solibs that
930 weren't explicitly loaded by the user, via e.g., the add-symbol-file
931 command. */
932
933 void
934 objfile_purge_solibs (void)
935 {
936 for (objfile *objf : current_program_space->objfiles_safe ())
937 {
938 /* We assume that the solib package has been purged already, or will
939 be soon. */
940
941 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
942 objf->unlink ();
943 }
944 }
945
946
947 /* Many places in gdb want to test just to see if we have any minimal
948 symbols available. This function returns zero if none are currently
949 available, nonzero otherwise. */
950
951 int
952 have_minimal_symbols (void)
953 {
954 for (objfile *ofp : current_program_space->objfiles ())
955 {
956 if (ofp->per_bfd->minimal_symbol_count > 0)
957 {
958 return 1;
959 }
960 }
961 return 0;
962 }
963
964 /* Qsort comparison function. */
965
966 static bool
967 sort_cmp (const struct obj_section *sect1, const obj_section *sect2)
968 {
969 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
970 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
971
972 if (sect1_addr < sect2_addr)
973 return true;
974 else if (sect1_addr > sect2_addr)
975 return false;
976 else
977 {
978 /* Sections are at the same address. This could happen if
979 A) we have an objfile and a separate debuginfo.
980 B) we are confused, and have added sections without proper relocation,
981 or something like that. */
982
983 const struct objfile *const objfile1 = sect1->objfile;
984 const struct objfile *const objfile2 = sect2->objfile;
985
986 if (objfile1->separate_debug_objfile == objfile2
987 || objfile2->separate_debug_objfile == objfile1)
988 {
989 /* Case A. The ordering doesn't matter: separate debuginfo files
990 will be filtered out later. */
991
992 return false;
993 }
994
995 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
996 triage. This section could be slow (since we iterate over all
997 objfiles in each call to sort_cmp), but this shouldn't happen
998 very often (GDB is already in a confused state; one hopes this
999 doesn't happen at all). If you discover that significant time is
1000 spent in the loops below, do 'set complaints 100' and examine the
1001 resulting complaints. */
1002 if (objfile1 == objfile2)
1003 {
1004 /* Both sections came from the same objfile. We are really
1005 confused. Sort on sequence order of sections within the
1006 objfile. The order of checks is important here, if we find a
1007 match on SECT2 first then either SECT2 is before SECT1, or,
1008 SECT2 == SECT1, in both cases we should return false. The
1009 second case shouldn't occur during normal use, but std::sort
1010 does check that '!(a < a)' when compiled in debug mode. */
1011
1012 const struct obj_section *osect;
1013
1014 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1015 if (osect == sect2)
1016 return false;
1017 else if (osect == sect1)
1018 return true;
1019
1020 /* We should have found one of the sections before getting here. */
1021 gdb_assert_not_reached ("section not found");
1022 }
1023 else
1024 {
1025 /* Sort on sequence number of the objfile in the chain. */
1026
1027 for (objfile *objfile : current_program_space->objfiles ())
1028 if (objfile == objfile1)
1029 return true;
1030 else if (objfile == objfile2)
1031 return false;
1032
1033 /* We should have found one of the objfiles before getting here. */
1034 gdb_assert_not_reached ("objfile not found");
1035 }
1036 }
1037
1038 /* Unreachable. */
1039 gdb_assert_not_reached ("unexpected code path");
1040 return false;
1041 }
1042
1043 /* Select "better" obj_section to keep. We prefer the one that came from
1044 the real object, rather than the one from separate debuginfo.
1045 Most of the time the two sections are exactly identical, but with
1046 prelinking the .rel.dyn section in the real object may have different
1047 size. */
1048
1049 static struct obj_section *
1050 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1051 {
1052 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1053 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1054 || (b->objfile->separate_debug_objfile == a->objfile));
1055 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1056 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1057
1058 if (a->objfile->separate_debug_objfile != NULL)
1059 return a;
1060 return b;
1061 }
1062
1063 /* Return 1 if SECTION should be inserted into the section map.
1064 We want to insert only non-overlay and non-TLS section. */
1065
1066 static int
1067 insert_section_p (const struct bfd *abfd,
1068 const struct bfd_section *section)
1069 {
1070 const bfd_vma lma = bfd_section_lma (section);
1071
1072 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (section)
1073 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1074 /* This is an overlay section. IN_MEMORY check is needed to avoid
1075 discarding sections from the "system supplied DSO" (aka vdso)
1076 on some Linux systems (e.g. Fedora 11). */
1077 return 0;
1078 if ((bfd_section_flags (section) & SEC_THREAD_LOCAL) != 0)
1079 /* This is a TLS section. */
1080 return 0;
1081
1082 return 1;
1083 }
1084
1085 /* Filter out overlapping sections where one section came from the real
1086 objfile, and the other from a separate debuginfo file.
1087 Return the size of table after redundant sections have been eliminated. */
1088
1089 static int
1090 filter_debuginfo_sections (struct obj_section **map, int map_size)
1091 {
1092 int i, j;
1093
1094 for (i = 0, j = 0; i < map_size - 1; i++)
1095 {
1096 struct obj_section *const sect1 = map[i];
1097 struct obj_section *const sect2 = map[i + 1];
1098 const struct objfile *const objfile1 = sect1->objfile;
1099 const struct objfile *const objfile2 = sect2->objfile;
1100 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1101 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1102
1103 if (sect1_addr == sect2_addr
1104 && (objfile1->separate_debug_objfile == objfile2
1105 || objfile2->separate_debug_objfile == objfile1))
1106 {
1107 map[j++] = preferred_obj_section (sect1, sect2);
1108 ++i;
1109 }
1110 else
1111 map[j++] = sect1;
1112 }
1113
1114 if (i < map_size)
1115 {
1116 gdb_assert (i == map_size - 1);
1117 map[j++] = map[i];
1118 }
1119
1120 /* The map should not have shrunk to less than half the original size. */
1121 gdb_assert (map_size / 2 <= j);
1122
1123 return j;
1124 }
1125
1126 /* Filter out overlapping sections, issuing a warning if any are found.
1127 Overlapping sections could really be overlay sections which we didn't
1128 classify as such in insert_section_p, or we could be dealing with a
1129 corrupt binary. */
1130
1131 static int
1132 filter_overlapping_sections (struct obj_section **map, int map_size)
1133 {
1134 int i, j;
1135
1136 for (i = 0, j = 0; i < map_size - 1; )
1137 {
1138 int k;
1139
1140 map[j++] = map[i];
1141 for (k = i + 1; k < map_size; k++)
1142 {
1143 struct obj_section *const sect1 = map[i];
1144 struct obj_section *const sect2 = map[k];
1145 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1146 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1147 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1148
1149 gdb_assert (sect1_addr <= sect2_addr);
1150
1151 if (sect1_endaddr <= sect2_addr)
1152 break;
1153 else
1154 {
1155 /* We have an overlap. Report it. */
1156
1157 struct objfile *const objf1 = sect1->objfile;
1158 struct objfile *const objf2 = sect2->objfile;
1159
1160 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1161 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1162
1163 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1164
1165 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1166
1167 complaint (_("unexpected overlap between:\n"
1168 " (A) section `%s' from `%s' [%s, %s)\n"
1169 " (B) section `%s' from `%s' [%s, %s).\n"
1170 "Will ignore section B"),
1171 bfd_section_name (bfds1), objfile_name (objf1),
1172 paddress (gdbarch, sect1_addr),
1173 paddress (gdbarch, sect1_endaddr),
1174 bfd_section_name (bfds2), objfile_name (objf2),
1175 paddress (gdbarch, sect2_addr),
1176 paddress (gdbarch, sect2_endaddr));
1177 }
1178 }
1179 i = k;
1180 }
1181
1182 if (i < map_size)
1183 {
1184 gdb_assert (i == map_size - 1);
1185 map[j++] = map[i];
1186 }
1187
1188 return j;
1189 }
1190
1191
1192 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1193 TLS, overlay and overlapping sections. */
1194
1195 static void
1196 update_section_map (struct program_space *pspace,
1197 struct obj_section ***pmap, int *pmap_size)
1198 {
1199 struct objfile_pspace_info *pspace_info;
1200 int alloc_size, map_size, i;
1201 struct obj_section *s, **map;
1202
1203 pspace_info = get_objfile_pspace_data (pspace);
1204 gdb_assert (pspace_info->section_map_dirty != 0
1205 || pspace_info->new_objfiles_available != 0);
1206
1207 map = *pmap;
1208 xfree (map);
1209
1210 alloc_size = 0;
1211 for (objfile *objfile : pspace->objfiles ())
1212 ALL_OBJFILE_OSECTIONS (objfile, s)
1213 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1214 alloc_size += 1;
1215
1216 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1217 if (alloc_size == 0)
1218 {
1219 *pmap = NULL;
1220 *pmap_size = 0;
1221 return;
1222 }
1223
1224 map = XNEWVEC (struct obj_section *, alloc_size);
1225
1226 i = 0;
1227 for (objfile *objfile : pspace->objfiles ())
1228 ALL_OBJFILE_OSECTIONS (objfile, s)
1229 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1230 map[i++] = s;
1231
1232 std::sort (map, map + alloc_size, sort_cmp);
1233 map_size = filter_debuginfo_sections(map, alloc_size);
1234 map_size = filter_overlapping_sections(map, map_size);
1235
1236 if (map_size < alloc_size)
1237 /* Some sections were eliminated. Trim excess space. */
1238 map = XRESIZEVEC (struct obj_section *, map, map_size);
1239 else
1240 gdb_assert (alloc_size == map_size);
1241
1242 *pmap = map;
1243 *pmap_size = map_size;
1244 }
1245
1246 /* Bsearch comparison function. */
1247
1248 static int
1249 bsearch_cmp (const void *key, const void *elt)
1250 {
1251 const CORE_ADDR pc = *(CORE_ADDR *) key;
1252 const struct obj_section *section = *(const struct obj_section **) elt;
1253
1254 if (pc < obj_section_addr (section))
1255 return -1;
1256 if (pc < obj_section_endaddr (section))
1257 return 0;
1258 return 1;
1259 }
1260
1261 /* Returns a section whose range includes PC or NULL if none found. */
1262
1263 struct obj_section *
1264 find_pc_section (CORE_ADDR pc)
1265 {
1266 struct objfile_pspace_info *pspace_info;
1267 struct obj_section *s, **sp;
1268
1269 /* Check for mapped overlay section first. */
1270 s = find_pc_mapped_section (pc);
1271 if (s)
1272 return s;
1273
1274 pspace_info = get_objfile_pspace_data (current_program_space);
1275 if (pspace_info->section_map_dirty
1276 || (pspace_info->new_objfiles_available
1277 && !pspace_info->inhibit_updates))
1278 {
1279 update_section_map (current_program_space,
1280 &pspace_info->sections,
1281 &pspace_info->num_sections);
1282
1283 /* Don't need updates to section map until objfiles are added,
1284 removed or relocated. */
1285 pspace_info->new_objfiles_available = 0;
1286 pspace_info->section_map_dirty = 0;
1287 }
1288
1289 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1290 bsearch be non-NULL. */
1291 if (pspace_info->sections == NULL)
1292 {
1293 gdb_assert (pspace_info->num_sections == 0);
1294 return NULL;
1295 }
1296
1297 sp = (struct obj_section **) bsearch (&pc,
1298 pspace_info->sections,
1299 pspace_info->num_sections,
1300 sizeof (*pspace_info->sections),
1301 bsearch_cmp);
1302 if (sp != NULL)
1303 return *sp;
1304 return NULL;
1305 }
1306
1307
1308 /* Return non-zero if PC is in a section called NAME. */
1309
1310 int
1311 pc_in_section (CORE_ADDR pc, const char *name)
1312 {
1313 struct obj_section *s;
1314 int retval = 0;
1315
1316 s = find_pc_section (pc);
1317
1318 retval = (s != NULL
1319 && s->the_bfd_section->name != NULL
1320 && strcmp (s->the_bfd_section->name, name) == 0);
1321 return (retval);
1322 }
1323 \f
1324
1325 /* Set section_map_dirty so section map will be rebuilt next time it
1326 is used. Called by reread_symbols. */
1327
1328 void
1329 objfiles_changed (void)
1330 {
1331 /* Rebuild section map next time we need it. */
1332 get_objfile_pspace_data (current_program_space)->section_map_dirty = 1;
1333 }
1334
1335 /* See comments in objfiles.h. */
1336
1337 scoped_restore_tmpl<int>
1338 inhibit_section_map_updates (struct program_space *pspace)
1339 {
1340 return scoped_restore_tmpl<int>
1341 (&get_objfile_pspace_data (pspace)->inhibit_updates, 1);
1342 }
1343
1344 /* Return 1 if ADDR maps into one of the sections of OBJFILE and 0
1345 otherwise. */
1346
1347 int
1348 is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile)
1349 {
1350 struct obj_section *osect;
1351
1352 if (objfile == NULL)
1353 return 0;
1354
1355 ALL_OBJFILE_OSECTIONS (objfile, osect)
1356 {
1357 if (section_is_overlay (osect) && !section_is_mapped (osect))
1358 continue;
1359
1360 if (obj_section_addr (osect) <= addr
1361 && addr < obj_section_endaddr (osect))
1362 return 1;
1363 }
1364 return 0;
1365 }
1366
1367 int
1368 shared_objfile_contains_address_p (struct program_space *pspace,
1369 CORE_ADDR address)
1370 {
1371 for (objfile *objfile : pspace->objfiles ())
1372 {
1373 if ((objfile->flags & OBJF_SHARED) != 0
1374 && is_addr_in_objfile (address, objfile))
1375 return 1;
1376 }
1377
1378 return 0;
1379 }
1380
1381 /* The default implementation for the "iterate_over_objfiles_in_search_order"
1382 gdbarch method. It is equivalent to use the objfiles iterable,
1383 searching the objfiles in the order they are stored internally,
1384 ignoring CURRENT_OBJFILE.
1385
1386 On most platforms, it should be close enough to doing the best
1387 we can without some knowledge specific to the architecture. */
1388
1389 void
1390 default_iterate_over_objfiles_in_search_order
1391 (struct gdbarch *gdbarch,
1392 iterate_over_objfiles_in_search_order_cb_ftype *cb,
1393 void *cb_data, struct objfile *current_objfile)
1394 {
1395 int stop = 0;
1396
1397 for (objfile *objfile : current_program_space->objfiles ())
1398 {
1399 stop = cb (objfile, cb_data);
1400 if (stop)
1401 return;
1402 }
1403 }
1404
1405 /* See objfiles.h. */
1406
1407 const char *
1408 objfile_name (const struct objfile *objfile)
1409 {
1410 if (objfile->obfd != NULL)
1411 return bfd_get_filename (objfile->obfd);
1412
1413 return objfile->original_name;
1414 }
1415
1416 /* See objfiles.h. */
1417
1418 const char *
1419 objfile_filename (const struct objfile *objfile)
1420 {
1421 if (objfile->obfd != NULL)
1422 return bfd_get_filename (objfile->obfd);
1423
1424 return NULL;
1425 }
1426
1427 /* See objfiles.h. */
1428
1429 const char *
1430 objfile_debug_name (const struct objfile *objfile)
1431 {
1432 return lbasename (objfile->original_name);
1433 }
1434
1435 /* See objfiles.h. */
1436
1437 const char *
1438 objfile_flavour_name (struct objfile *objfile)
1439 {
1440 if (objfile->obfd != NULL)
1441 return bfd_flavour_name (bfd_get_flavour (objfile->obfd));
1442 return NULL;
1443 }
This page took 0.056695 seconds and 3 git commands to generate.