Change section_offsets to a std::vector
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32 #include "bcache.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35
36 #include <sys/types.h>
37 #include <sys/stat.h>
38 #include <fcntl.h>
39 #include "gdb_obstack.h"
40 #include "hashtab.h"
41
42 #include "breakpoint.h"
43 #include "block.h"
44 #include "dictionary.h"
45 #include "source.h"
46 #include "addrmap.h"
47 #include "arch-utils.h"
48 #include "exec.h"
49 #include "observable.h"
50 #include "complaints.h"
51 #include "psymtab.h"
52 #include "solist.h"
53 #include "gdb_bfd.h"
54 #include "btrace.h"
55 #include "gdbsupport/pathstuff.h"
56
57 #include <algorithm>
58 #include <vector>
59
60 /* Keep a registry of per-objfile data-pointers required by other GDB
61 modules. */
62
63 DEFINE_REGISTRY (objfile, REGISTRY_ACCESS_FIELD)
64
65 /* Externally visible variables that are owned by this module.
66 See declarations in objfile.h for more info. */
67
68 struct objfile_pspace_info
69 {
70 objfile_pspace_info () = default;
71 ~objfile_pspace_info ();
72
73 struct obj_section **sections = nullptr;
74 int num_sections = 0;
75
76 /* Nonzero if object files have been added since the section map
77 was last updated. */
78 int new_objfiles_available = 0;
79
80 /* Nonzero if the section map MUST be updated before use. */
81 int section_map_dirty = 0;
82
83 /* Nonzero if section map updates should be inhibited if possible. */
84 int inhibit_updates = 0;
85 };
86
87 /* Per-program-space data key. */
88 static const struct program_space_key<objfile_pspace_info>
89 objfiles_pspace_data;
90
91 objfile_pspace_info::~objfile_pspace_info ()
92 {
93 xfree (sections);
94 }
95
96 /* Get the current svr4 data. If none is found yet, add it now. This
97 function always returns a valid object. */
98
99 static struct objfile_pspace_info *
100 get_objfile_pspace_data (struct program_space *pspace)
101 {
102 struct objfile_pspace_info *info;
103
104 info = objfiles_pspace_data.get (pspace);
105 if (info == NULL)
106 info = objfiles_pspace_data.emplace (pspace);
107
108 return info;
109 }
110
111 \f
112
113 /* Per-BFD data key. */
114
115 static const struct bfd_key<objfile_per_bfd_storage> objfiles_bfd_data;
116
117 objfile_per_bfd_storage::~objfile_per_bfd_storage ()
118 {
119 }
120
121 /* Create the per-BFD storage object for OBJFILE. If ABFD is not
122 NULL, and it already has a per-BFD storage object, use that.
123 Otherwise, allocate a new per-BFD storage object. Note that it is
124 not safe to call this multiple times for a given OBJFILE -- it can
125 only be called when allocating or re-initializing OBJFILE. */
126
127 static struct objfile_per_bfd_storage *
128 get_objfile_bfd_data (struct objfile *objfile, struct bfd *abfd)
129 {
130 struct objfile_per_bfd_storage *storage = NULL;
131
132 if (abfd != NULL)
133 storage = objfiles_bfd_data.get (abfd);
134
135 if (storage == NULL)
136 {
137 storage = new objfile_per_bfd_storage;
138 /* If the object requires gdb to do relocations, we simply fall
139 back to not sharing data across users. These cases are rare
140 enough that this seems reasonable. */
141 if (abfd != NULL && !gdb_bfd_requires_relocations (abfd))
142 objfiles_bfd_data.set (abfd, storage);
143
144 /* Look up the gdbarch associated with the BFD. */
145 if (abfd != NULL)
146 storage->gdbarch = gdbarch_from_bfd (abfd);
147 }
148
149 return storage;
150 }
151
152 /* See objfiles.h. */
153
154 void
155 set_objfile_per_bfd (struct objfile *objfile)
156 {
157 objfile->per_bfd = get_objfile_bfd_data (objfile, objfile->obfd);
158 }
159
160 /* Set the objfile's per-BFD notion of the "main" name and
161 language. */
162
163 void
164 set_objfile_main_name (struct objfile *objfile,
165 const char *name, enum language lang)
166 {
167 if (objfile->per_bfd->name_of_main == NULL
168 || strcmp (objfile->per_bfd->name_of_main, name) != 0)
169 objfile->per_bfd->name_of_main
170 = obstack_strdup (&objfile->per_bfd->storage_obstack, name);
171 objfile->per_bfd->language_of_main = lang;
172 }
173
174 /* Helper structure to map blocks to static link properties in hash tables. */
175
176 struct static_link_htab_entry
177 {
178 const struct block *block;
179 const struct dynamic_prop *static_link;
180 };
181
182 /* Return a hash code for struct static_link_htab_entry *P. */
183
184 static hashval_t
185 static_link_htab_entry_hash (const void *p)
186 {
187 const struct static_link_htab_entry *e
188 = (const struct static_link_htab_entry *) p;
189
190 return htab_hash_pointer (e->block);
191 }
192
193 /* Return whether P1 an P2 (pointers to struct static_link_htab_entry) are
194 mappings for the same block. */
195
196 static int
197 static_link_htab_entry_eq (const void *p1, const void *p2)
198 {
199 const struct static_link_htab_entry *e1
200 = (const struct static_link_htab_entry *) p1;
201 const struct static_link_htab_entry *e2
202 = (const struct static_link_htab_entry *) p2;
203
204 return e1->block == e2->block;
205 }
206
207 /* Register STATIC_LINK as the static link for BLOCK, which is part of OBJFILE.
208 Must not be called more than once for each BLOCK. */
209
210 void
211 objfile_register_static_link (struct objfile *objfile,
212 const struct block *block,
213 const struct dynamic_prop *static_link)
214 {
215 void **slot;
216 struct static_link_htab_entry lookup_entry;
217 struct static_link_htab_entry *entry;
218
219 if (objfile->static_links == NULL)
220 objfile->static_links.reset (htab_create_alloc
221 (1, &static_link_htab_entry_hash, static_link_htab_entry_eq, NULL,
222 xcalloc, xfree));
223
224 /* Create a slot for the mapping, make sure it's the first mapping for this
225 block and then create the mapping itself. */
226 lookup_entry.block = block;
227 slot = htab_find_slot (objfile->static_links.get (), &lookup_entry, INSERT);
228 gdb_assert (*slot == NULL);
229
230 entry = XOBNEW (&objfile->objfile_obstack, static_link_htab_entry);
231 entry->block = block;
232 entry->static_link = static_link;
233 *slot = (void *) entry;
234 }
235
236 /* Look for a static link for BLOCK, which is part of OBJFILE. Return NULL if
237 none was found. */
238
239 const struct dynamic_prop *
240 objfile_lookup_static_link (struct objfile *objfile,
241 const struct block *block)
242 {
243 struct static_link_htab_entry *entry;
244 struct static_link_htab_entry lookup_entry;
245
246 if (objfile->static_links == NULL)
247 return NULL;
248 lookup_entry.block = block;
249 entry = ((struct static_link_htab_entry *)
250 htab_find (objfile->static_links.get (), &lookup_entry));
251 if (entry == NULL)
252 return NULL;
253
254 gdb_assert (entry->block == block);
255 return entry->static_link;
256 }
257
258 \f
259
260 /* Called via bfd_map_over_sections to build up the section table that
261 the objfile references. The objfile contains pointers to the start
262 of the table (objfile->sections) and to the first location after
263 the end of the table (objfile->sections_end). */
264
265 static void
266 add_to_objfile_sections_full (struct bfd *abfd, struct bfd_section *asect,
267 struct objfile *objfile, int force)
268 {
269 struct obj_section *section;
270
271 if (!force)
272 {
273 flagword aflag;
274
275 aflag = bfd_section_flags (asect);
276 if (!(aflag & SEC_ALLOC))
277 return;
278 }
279
280 section = &objfile->sections[gdb_bfd_section_index (abfd, asect)];
281 section->objfile = objfile;
282 section->the_bfd_section = asect;
283 section->ovly_mapped = 0;
284 }
285
286 static void
287 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
288 void *objfilep)
289 {
290 add_to_objfile_sections_full (abfd, asect, (struct objfile *) objfilep, 0);
291 }
292
293 /* Builds a section table for OBJFILE.
294
295 Note that the OFFSET and OVLY_MAPPED in each table entry are
296 initialized to zero. */
297
298 void
299 build_objfile_section_table (struct objfile *objfile)
300 {
301 int count = gdb_bfd_count_sections (objfile->obfd);
302
303 objfile->sections = OBSTACK_CALLOC (&objfile->objfile_obstack,
304 count,
305 struct obj_section);
306 objfile->sections_end = (objfile->sections + count);
307 bfd_map_over_sections (objfile->obfd,
308 add_to_objfile_sections, (void *) objfile);
309
310 /* See gdb_bfd_section_index. */
311 add_to_objfile_sections_full (objfile->obfd, bfd_com_section_ptr, objfile, 1);
312 add_to_objfile_sections_full (objfile->obfd, bfd_und_section_ptr, objfile, 1);
313 add_to_objfile_sections_full (objfile->obfd, bfd_abs_section_ptr, objfile, 1);
314 add_to_objfile_sections_full (objfile->obfd, bfd_ind_section_ptr, objfile, 1);
315 }
316
317 /* Given a pointer to an initialized bfd (ABFD) and some flag bits,
318 initialize the new objfile as best we can and link it into the list
319 of all known objfiles.
320
321 NAME should contain original non-canonicalized filename or other
322 identifier as entered by user. If there is no better source use
323 bfd_get_filename (ABFD). NAME may be NULL only if ABFD is NULL.
324 NAME content is copied into returned objfile.
325
326 The FLAGS word contains various bits (OBJF_*) that can be taken as
327 requests for specific operations. Other bits like OBJF_SHARED are
328 simply copied through to the new objfile flags member. */
329
330 objfile::objfile (bfd *abfd, const char *name, objfile_flags flags_)
331 : flags (flags_),
332 pspace (current_program_space),
333 partial_symtabs (new psymtab_storage ()),
334 obfd (abfd)
335 {
336 const char *expanded_name;
337
338 /* We could use obstack_specify_allocation here instead, but
339 gdb_obstack.h specifies the alloc/dealloc functions. */
340 obstack_init (&objfile_obstack);
341
342 objfile_alloc_data (this);
343
344 gdb::unique_xmalloc_ptr<char> name_holder;
345 if (name == NULL)
346 {
347 gdb_assert (abfd == NULL);
348 gdb_assert ((flags & OBJF_NOT_FILENAME) != 0);
349 expanded_name = "<<anonymous objfile>>";
350 }
351 else if ((flags & OBJF_NOT_FILENAME) != 0
352 || is_target_filename (name))
353 expanded_name = name;
354 else
355 {
356 name_holder = gdb_abspath (name);
357 expanded_name = name_holder.get ();
358 }
359 original_name = obstack_strdup (&objfile_obstack, expanded_name);
360
361 /* Update the per-objfile information that comes from the bfd, ensuring
362 that any data that is reference is saved in the per-objfile data
363 region. */
364
365 gdb_bfd_ref (abfd);
366 if (abfd != NULL)
367 {
368 mtime = bfd_get_mtime (abfd);
369
370 /* Build section table. */
371 build_objfile_section_table (this);
372 }
373
374 per_bfd = get_objfile_bfd_data (this, abfd);
375 }
376
377 /* Retrieve the gdbarch associated with OBJFILE. */
378
379 struct gdbarch *
380 get_objfile_arch (const struct objfile *objfile)
381 {
382 return objfile->per_bfd->gdbarch;
383 }
384
385 /* If there is a valid and known entry point, function fills *ENTRY_P with it
386 and returns non-zero; otherwise it returns zero. */
387
388 int
389 entry_point_address_query (CORE_ADDR *entry_p)
390 {
391 if (symfile_objfile == NULL || !symfile_objfile->per_bfd->ei.entry_point_p)
392 return 0;
393
394 int idx = symfile_objfile->per_bfd->ei.the_bfd_section_index;
395 *entry_p = (symfile_objfile->per_bfd->ei.entry_point
396 + symfile_objfile->section_offsets[idx]);
397
398 return 1;
399 }
400
401 /* Get current entry point address. Call error if it is not known. */
402
403 CORE_ADDR
404 entry_point_address (void)
405 {
406 CORE_ADDR retval;
407
408 if (!entry_point_address_query (&retval))
409 error (_("Entry point address is not known."));
410
411 return retval;
412 }
413
414 separate_debug_iterator &
415 separate_debug_iterator::operator++ ()
416 {
417 gdb_assert (m_objfile != nullptr);
418
419 struct objfile *res;
420
421 /* If any, return the first child. */
422 res = m_objfile->separate_debug_objfile;
423 if (res != nullptr)
424 {
425 m_objfile = res;
426 return *this;
427 }
428
429 /* Common case where there is no separate debug objfile. */
430 if (m_objfile == m_parent)
431 {
432 m_objfile = nullptr;
433 return *this;
434 }
435
436 /* Return the brother if any. Note that we don't iterate on brothers of
437 the parents. */
438 res = m_objfile->separate_debug_objfile_link;
439 if (res != nullptr)
440 {
441 m_objfile = res;
442 return *this;
443 }
444
445 for (res = m_objfile->separate_debug_objfile_backlink;
446 res != m_parent;
447 res = res->separate_debug_objfile_backlink)
448 {
449 gdb_assert (res != nullptr);
450 if (res->separate_debug_objfile_link != nullptr)
451 {
452 m_objfile = res->separate_debug_objfile_link;
453 return *this;
454 }
455 }
456 m_objfile = nullptr;
457 return *this;
458 }
459
460 /* Add OBJFILE as a separate debug objfile of PARENT. */
461
462 static void
463 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
464 {
465 gdb_assert (objfile && parent);
466
467 /* Must not be already in a list. */
468 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
469 gdb_assert (objfile->separate_debug_objfile_link == NULL);
470 gdb_assert (objfile->separate_debug_objfile == NULL);
471 gdb_assert (parent->separate_debug_objfile_backlink == NULL);
472 gdb_assert (parent->separate_debug_objfile_link == NULL);
473
474 objfile->separate_debug_objfile_backlink = parent;
475 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
476 parent->separate_debug_objfile = objfile;
477 }
478
479 /* See objfiles.h. */
480
481 objfile *
482 objfile::make (bfd *bfd_, const char *name_, objfile_flags flags_,
483 objfile *parent)
484 {
485 objfile *result = new objfile (bfd_, name_, flags_);
486 if (parent != nullptr)
487 add_separate_debug_objfile (result, parent);
488
489 /* Using std::make_shared might be a bit nicer here, but that would
490 require making the constructor public. */
491 current_program_space->add_objfile (std::shared_ptr<objfile> (result),
492 parent);
493
494 /* Rebuild section map next time we need it. */
495 get_objfile_pspace_data (current_program_space)->new_objfiles_available = 1;
496
497 return result;
498 }
499
500 /* See objfiles.h. */
501
502 void
503 objfile::unlink ()
504 {
505 current_program_space->remove_objfile (this);
506 }
507
508 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
509 itself. */
510
511 void
512 free_objfile_separate_debug (struct objfile *objfile)
513 {
514 struct objfile *child;
515
516 for (child = objfile->separate_debug_objfile; child;)
517 {
518 struct objfile *next_child = child->separate_debug_objfile_link;
519 child->unlink ();
520 child = next_child;
521 }
522 }
523
524 /* Destroy an objfile and all the symtabs and psymtabs under it. */
525
526 objfile::~objfile ()
527 {
528 /* First notify observers that this objfile is about to be freed. */
529 gdb::observers::free_objfile.notify (this);
530
531 /* Free all separate debug objfiles. */
532 free_objfile_separate_debug (this);
533
534 if (separate_debug_objfile_backlink)
535 {
536 /* We freed the separate debug file, make sure the base objfile
537 doesn't reference it. */
538 struct objfile *child;
539
540 child = separate_debug_objfile_backlink->separate_debug_objfile;
541
542 if (child == this)
543 {
544 /* THIS is the first child. */
545 separate_debug_objfile_backlink->separate_debug_objfile =
546 separate_debug_objfile_link;
547 }
548 else
549 {
550 /* Find THIS in the list. */
551 while (1)
552 {
553 if (child->separate_debug_objfile_link == this)
554 {
555 child->separate_debug_objfile_link =
556 separate_debug_objfile_link;
557 break;
558 }
559 child = child->separate_debug_objfile_link;
560 gdb_assert (child);
561 }
562 }
563 }
564
565 /* Remove any references to this objfile in the global value
566 lists. */
567 preserve_values (this);
568
569 /* It still may reference data modules have associated with the objfile and
570 the symbol file data. */
571 forget_cached_source_info_for_objfile (this);
572
573 breakpoint_free_objfile (this);
574 btrace_free_objfile (this);
575
576 /* First do any symbol file specific actions required when we are
577 finished with a particular symbol file. Note that if the objfile
578 is using reusable symbol information (via mmalloc) then each of
579 these routines is responsible for doing the correct thing, either
580 freeing things which are valid only during this particular gdb
581 execution, or leaving them to be reused during the next one. */
582
583 if (sf != NULL)
584 (*sf->sym_finish) (this);
585
586 /* Discard any data modules have associated with the objfile. The function
587 still may reference obfd. */
588 objfile_free_data (this);
589
590 if (obfd)
591 gdb_bfd_unref (obfd);
592 else
593 delete per_bfd;
594
595 /* Before the symbol table code was redone to make it easier to
596 selectively load and remove information particular to a specific
597 linkage unit, gdb used to do these things whenever the monolithic
598 symbol table was blown away. How much still needs to be done
599 is unknown, but we play it safe for now and keep each action until
600 it is shown to be no longer needed. */
601
602 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
603 for example), so we need to call this here. */
604 clear_pc_function_cache ();
605
606 /* Check to see if the current_source_symtab belongs to this objfile,
607 and if so, call clear_current_source_symtab_and_line. */
608
609 {
610 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
611
612 if (cursal.symtab && SYMTAB_OBJFILE (cursal.symtab) == this)
613 clear_current_source_symtab_and_line ();
614 }
615
616 /* Free the obstacks for non-reusable objfiles. */
617 obstack_free (&objfile_obstack, 0);
618
619 /* Rebuild section map next time we need it. */
620 get_objfile_pspace_data (pspace)->section_map_dirty = 1;
621 }
622
623 \f
624 /* A helper function for objfile_relocate1 that relocates a single
625 symbol. */
626
627 static void
628 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
629 const section_offsets &delta)
630 {
631 fixup_symbol_section (sym, objfile);
632
633 /* The RS6000 code from which this was taken skipped
634 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
635 But I'm leaving out that test, on the theory that
636 they can't possibly pass the tests below. */
637 if ((SYMBOL_CLASS (sym) == LOC_LABEL
638 || SYMBOL_CLASS (sym) == LOC_STATIC)
639 && SYMBOL_SECTION (sym) >= 0)
640 {
641 SET_SYMBOL_VALUE_ADDRESS (sym,
642 SYMBOL_VALUE_ADDRESS (sym)
643 + delta[SYMBOL_SECTION (sym)]);
644 }
645 }
646
647 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
648 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
649 Return non-zero iff any change happened. */
650
651 static int
652 objfile_relocate1 (struct objfile *objfile,
653 const section_offsets &new_offsets)
654 {
655 section_offsets delta (objfile->section_offsets.size ());
656
657 int something_changed = 0;
658
659 for (int i = 0; i < objfile->section_offsets.size (); ++i)
660 {
661 delta[i] = new_offsets[i] - objfile->section_offsets[i];
662 if (delta[i] != 0)
663 something_changed = 1;
664 }
665 if (!something_changed)
666 return 0;
667
668 /* OK, get all the symtabs. */
669 {
670 for (compunit_symtab *cust : objfile->compunits ())
671 {
672 for (symtab *s : compunit_filetabs (cust))
673 {
674 struct linetable *l;
675
676 /* First the line table. */
677 l = SYMTAB_LINETABLE (s);
678 if (l)
679 {
680 for (int i = 0; i < l->nitems; ++i)
681 l->item[i].pc += delta[COMPUNIT_BLOCK_LINE_SECTION (cust)];
682 }
683 }
684 }
685
686 for (compunit_symtab *cust : objfile->compunits ())
687 {
688 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
689 int block_line_section = COMPUNIT_BLOCK_LINE_SECTION (cust);
690
691 if (BLOCKVECTOR_MAP (bv))
692 addrmap_relocate (BLOCKVECTOR_MAP (bv), delta[block_line_section]);
693
694 for (int i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
695 {
696 struct block *b;
697 struct symbol *sym;
698 struct mdict_iterator miter;
699
700 b = BLOCKVECTOR_BLOCK (bv, i);
701 BLOCK_START (b) += delta[block_line_section];
702 BLOCK_END (b) += delta[block_line_section];
703
704 if (BLOCK_RANGES (b) != nullptr)
705 for (int j = 0; j < BLOCK_NRANGES (b); j++)
706 {
707 BLOCK_RANGE_START (b, j) += delta[block_line_section];
708 BLOCK_RANGE_END (b, j) += delta[block_line_section];
709 }
710
711 /* We only want to iterate over the local symbols, not any
712 symbols in included symtabs. */
713 ALL_DICT_SYMBOLS (BLOCK_MULTIDICT (b), miter, sym)
714 {
715 relocate_one_symbol (sym, objfile, delta);
716 }
717 }
718 }
719 }
720
721 /* This stores relocated addresses and so must be cleared. This
722 will cause it to be recreated on demand. */
723 objfile->psymbol_map.clear ();
724
725 /* Relocate isolated symbols. */
726 {
727 struct symbol *iter;
728
729 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
730 relocate_one_symbol (iter, objfile, delta);
731 }
732
733 {
734 int i;
735
736 for (i = 0; i < objfile->section_offsets.size (); ++i)
737 objfile->section_offsets[i] = new_offsets[i];
738 }
739
740 /* Rebuild section map next time we need it. */
741 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
742
743 /* Update the table in exec_ops, used to read memory. */
744 struct obj_section *s;
745 ALL_OBJFILE_OSECTIONS (objfile, s)
746 {
747 int idx = s - objfile->sections;
748
749 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
750 obj_section_addr (s));
751 }
752
753 /* Data changed. */
754 return 1;
755 }
756
757 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
758 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
759
760 The number and ordering of sections does differ between the two objfiles.
761 Only their names match. Also the file offsets will differ (objfile being
762 possibly prelinked but separate_debug_objfile is probably not prelinked) but
763 the in-memory absolute address as specified by NEW_OFFSETS must match both
764 files. */
765
766 void
767 objfile_relocate (struct objfile *objfile,
768 const section_offsets &new_offsets)
769 {
770 int changed = 0;
771
772 changed |= objfile_relocate1 (objfile, new_offsets);
773
774 for (::objfile *debug_objfile : objfile->separate_debug_objfiles ())
775 {
776 if (debug_objfile == objfile)
777 continue;
778
779 section_addr_info objfile_addrs
780 = build_section_addr_info_from_objfile (objfile);
781
782 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
783 relative ones must be already created according to debug_objfile. */
784
785 addr_info_make_relative (&objfile_addrs, debug_objfile->obfd);
786
787 gdb_assert (debug_objfile->section_offsets.size ()
788 == gdb_bfd_count_sections (debug_objfile->obfd));
789 section_offsets new_debug_offsets
790 (debug_objfile->section_offsets.size ());
791 relative_addr_info_to_section_offsets (new_debug_offsets, objfile_addrs);
792
793 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets);
794 }
795
796 /* Relocate breakpoints as necessary, after things are relocated. */
797 if (changed)
798 breakpoint_re_set ();
799 }
800
801 /* Rebase (add to the offsets) OBJFILE by SLIDE. SEPARATE_DEBUG_OBJFILE is
802 not touched here.
803 Return non-zero iff any change happened. */
804
805 static int
806 objfile_rebase1 (struct objfile *objfile, CORE_ADDR slide)
807 {
808 section_offsets new_offsets (objfile->section_offsets.size (), slide);
809 return objfile_relocate1 (objfile, new_offsets);
810 }
811
812 /* Rebase (add to the offsets) OBJFILE by SLIDE. Process also OBJFILE's
813 SEPARATE_DEBUG_OBJFILEs. */
814
815 void
816 objfile_rebase (struct objfile *objfile, CORE_ADDR slide)
817 {
818 int changed = 0;
819
820 for (::objfile *debug_objfile : objfile->separate_debug_objfiles ())
821 changed |= objfile_rebase1 (debug_objfile, slide);
822
823 /* Relocate breakpoints as necessary, after things are relocated. */
824 if (changed)
825 breakpoint_re_set ();
826 }
827 \f
828 /* Return non-zero if OBJFILE has partial symbols. */
829
830 int
831 objfile_has_partial_symbols (struct objfile *objfile)
832 {
833 if (!objfile->sf)
834 return 0;
835
836 /* If we have not read psymbols, but we have a function capable of reading
837 them, then that is an indication that they are in fact available. Without
838 this function the symbols may have been already read in but they also may
839 not be present in this objfile. */
840 if ((objfile->flags & OBJF_PSYMTABS_READ) == 0
841 && objfile->sf->sym_read_psymbols != NULL)
842 return 1;
843
844 return objfile->sf->qf->has_symbols (objfile);
845 }
846
847 /* Return non-zero if OBJFILE has full symbols. */
848
849 int
850 objfile_has_full_symbols (struct objfile *objfile)
851 {
852 return objfile->compunit_symtabs != NULL;
853 }
854
855 /* Return non-zero if OBJFILE has full or partial symbols, either directly
856 or through a separate debug file. */
857
858 int
859 objfile_has_symbols (struct objfile *objfile)
860 {
861 for (::objfile *o : objfile->separate_debug_objfiles ())
862 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
863 return 1;
864 return 0;
865 }
866
867
868 /* Many places in gdb want to test just to see if we have any partial
869 symbols available. This function returns zero if none are currently
870 available, nonzero otherwise. */
871
872 int
873 have_partial_symbols (void)
874 {
875 for (objfile *ofp : current_program_space->objfiles ())
876 {
877 if (objfile_has_partial_symbols (ofp))
878 return 1;
879 }
880 return 0;
881 }
882
883 /* Many places in gdb want to test just to see if we have any full
884 symbols available. This function returns zero if none are currently
885 available, nonzero otherwise. */
886
887 int
888 have_full_symbols (void)
889 {
890 for (objfile *ofp : current_program_space->objfiles ())
891 {
892 if (objfile_has_full_symbols (ofp))
893 return 1;
894 }
895 return 0;
896 }
897
898
899 /* This operations deletes all objfile entries that represent solibs that
900 weren't explicitly loaded by the user, via e.g., the add-symbol-file
901 command. */
902
903 void
904 objfile_purge_solibs (void)
905 {
906 for (objfile *objf : current_program_space->objfiles_safe ())
907 {
908 /* We assume that the solib package has been purged already, or will
909 be soon. */
910
911 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
912 objf->unlink ();
913 }
914 }
915
916
917 /* Many places in gdb want to test just to see if we have any minimal
918 symbols available. This function returns zero if none are currently
919 available, nonzero otherwise. */
920
921 int
922 have_minimal_symbols (void)
923 {
924 for (objfile *ofp : current_program_space->objfiles ())
925 {
926 if (ofp->per_bfd->minimal_symbol_count > 0)
927 {
928 return 1;
929 }
930 }
931 return 0;
932 }
933
934 /* Qsort comparison function. */
935
936 static bool
937 sort_cmp (const struct obj_section *sect1, const obj_section *sect2)
938 {
939 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
940 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
941
942 if (sect1_addr < sect2_addr)
943 return true;
944 else if (sect1_addr > sect2_addr)
945 return false;
946 else
947 {
948 /* Sections are at the same address. This could happen if
949 A) we have an objfile and a separate debuginfo.
950 B) we are confused, and have added sections without proper relocation,
951 or something like that. */
952
953 const struct objfile *const objfile1 = sect1->objfile;
954 const struct objfile *const objfile2 = sect2->objfile;
955
956 if (objfile1->separate_debug_objfile == objfile2
957 || objfile2->separate_debug_objfile == objfile1)
958 {
959 /* Case A. The ordering doesn't matter: separate debuginfo files
960 will be filtered out later. */
961
962 return false;
963 }
964
965 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
966 triage. This section could be slow (since we iterate over all
967 objfiles in each call to sort_cmp), but this shouldn't happen
968 very often (GDB is already in a confused state; one hopes this
969 doesn't happen at all). If you discover that significant time is
970 spent in the loops below, do 'set complaints 100' and examine the
971 resulting complaints. */
972 if (objfile1 == objfile2)
973 {
974 /* Both sections came from the same objfile. We are really
975 confused. Sort on sequence order of sections within the
976 objfile. The order of checks is important here, if we find a
977 match on SECT2 first then either SECT2 is before SECT1, or,
978 SECT2 == SECT1, in both cases we should return false. The
979 second case shouldn't occur during normal use, but std::sort
980 does check that '!(a < a)' when compiled in debug mode. */
981
982 const struct obj_section *osect;
983
984 ALL_OBJFILE_OSECTIONS (objfile1, osect)
985 if (osect == sect2)
986 return false;
987 else if (osect == sect1)
988 return true;
989
990 /* We should have found one of the sections before getting here. */
991 gdb_assert_not_reached ("section not found");
992 }
993 else
994 {
995 /* Sort on sequence number of the objfile in the chain. */
996
997 for (objfile *objfile : current_program_space->objfiles ())
998 if (objfile == objfile1)
999 return true;
1000 else if (objfile == objfile2)
1001 return false;
1002
1003 /* We should have found one of the objfiles before getting here. */
1004 gdb_assert_not_reached ("objfile not found");
1005 }
1006 }
1007
1008 /* Unreachable. */
1009 gdb_assert_not_reached ("unexpected code path");
1010 return false;
1011 }
1012
1013 /* Select "better" obj_section to keep. We prefer the one that came from
1014 the real object, rather than the one from separate debuginfo.
1015 Most of the time the two sections are exactly identical, but with
1016 prelinking the .rel.dyn section in the real object may have different
1017 size. */
1018
1019 static struct obj_section *
1020 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1021 {
1022 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1023 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1024 || (b->objfile->separate_debug_objfile == a->objfile));
1025 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1026 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1027
1028 if (a->objfile->separate_debug_objfile != NULL)
1029 return a;
1030 return b;
1031 }
1032
1033 /* Return 1 if SECTION should be inserted into the section map.
1034 We want to insert only non-overlay and non-TLS section. */
1035
1036 static int
1037 insert_section_p (const struct bfd *abfd,
1038 const struct bfd_section *section)
1039 {
1040 const bfd_vma lma = bfd_section_lma (section);
1041
1042 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (section)
1043 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1044 /* This is an overlay section. IN_MEMORY check is needed to avoid
1045 discarding sections from the "system supplied DSO" (aka vdso)
1046 on some Linux systems (e.g. Fedora 11). */
1047 return 0;
1048 if ((bfd_section_flags (section) & SEC_THREAD_LOCAL) != 0)
1049 /* This is a TLS section. */
1050 return 0;
1051
1052 return 1;
1053 }
1054
1055 /* Filter out overlapping sections where one section came from the real
1056 objfile, and the other from a separate debuginfo file.
1057 Return the size of table after redundant sections have been eliminated. */
1058
1059 static int
1060 filter_debuginfo_sections (struct obj_section **map, int map_size)
1061 {
1062 int i, j;
1063
1064 for (i = 0, j = 0; i < map_size - 1; i++)
1065 {
1066 struct obj_section *const sect1 = map[i];
1067 struct obj_section *const sect2 = map[i + 1];
1068 const struct objfile *const objfile1 = sect1->objfile;
1069 const struct objfile *const objfile2 = sect2->objfile;
1070 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1071 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1072
1073 if (sect1_addr == sect2_addr
1074 && (objfile1->separate_debug_objfile == objfile2
1075 || objfile2->separate_debug_objfile == objfile1))
1076 {
1077 map[j++] = preferred_obj_section (sect1, sect2);
1078 ++i;
1079 }
1080 else
1081 map[j++] = sect1;
1082 }
1083
1084 if (i < map_size)
1085 {
1086 gdb_assert (i == map_size - 1);
1087 map[j++] = map[i];
1088 }
1089
1090 /* The map should not have shrunk to less than half the original size. */
1091 gdb_assert (map_size / 2 <= j);
1092
1093 return j;
1094 }
1095
1096 /* Filter out overlapping sections, issuing a warning if any are found.
1097 Overlapping sections could really be overlay sections which we didn't
1098 classify as such in insert_section_p, or we could be dealing with a
1099 corrupt binary. */
1100
1101 static int
1102 filter_overlapping_sections (struct obj_section **map, int map_size)
1103 {
1104 int i, j;
1105
1106 for (i = 0, j = 0; i < map_size - 1; )
1107 {
1108 int k;
1109
1110 map[j++] = map[i];
1111 for (k = i + 1; k < map_size; k++)
1112 {
1113 struct obj_section *const sect1 = map[i];
1114 struct obj_section *const sect2 = map[k];
1115 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1116 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1117 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1118
1119 gdb_assert (sect1_addr <= sect2_addr);
1120
1121 if (sect1_endaddr <= sect2_addr)
1122 break;
1123 else
1124 {
1125 /* We have an overlap. Report it. */
1126
1127 struct objfile *const objf1 = sect1->objfile;
1128 struct objfile *const objf2 = sect2->objfile;
1129
1130 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1131 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1132
1133 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1134
1135 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1136
1137 complaint (_("unexpected overlap between:\n"
1138 " (A) section `%s' from `%s' [%s, %s)\n"
1139 " (B) section `%s' from `%s' [%s, %s).\n"
1140 "Will ignore section B"),
1141 bfd_section_name (bfds1), objfile_name (objf1),
1142 paddress (gdbarch, sect1_addr),
1143 paddress (gdbarch, sect1_endaddr),
1144 bfd_section_name (bfds2), objfile_name (objf2),
1145 paddress (gdbarch, sect2_addr),
1146 paddress (gdbarch, sect2_endaddr));
1147 }
1148 }
1149 i = k;
1150 }
1151
1152 if (i < map_size)
1153 {
1154 gdb_assert (i == map_size - 1);
1155 map[j++] = map[i];
1156 }
1157
1158 return j;
1159 }
1160
1161
1162 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1163 TLS, overlay and overlapping sections. */
1164
1165 static void
1166 update_section_map (struct program_space *pspace,
1167 struct obj_section ***pmap, int *pmap_size)
1168 {
1169 struct objfile_pspace_info *pspace_info;
1170 int alloc_size, map_size, i;
1171 struct obj_section *s, **map;
1172
1173 pspace_info = get_objfile_pspace_data (pspace);
1174 gdb_assert (pspace_info->section_map_dirty != 0
1175 || pspace_info->new_objfiles_available != 0);
1176
1177 map = *pmap;
1178 xfree (map);
1179
1180 alloc_size = 0;
1181 for (objfile *objfile : pspace->objfiles ())
1182 ALL_OBJFILE_OSECTIONS (objfile, s)
1183 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1184 alloc_size += 1;
1185
1186 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1187 if (alloc_size == 0)
1188 {
1189 *pmap = NULL;
1190 *pmap_size = 0;
1191 return;
1192 }
1193
1194 map = XNEWVEC (struct obj_section *, alloc_size);
1195
1196 i = 0;
1197 for (objfile *objfile : pspace->objfiles ())
1198 ALL_OBJFILE_OSECTIONS (objfile, s)
1199 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1200 map[i++] = s;
1201
1202 std::sort (map, map + alloc_size, sort_cmp);
1203 map_size = filter_debuginfo_sections(map, alloc_size);
1204 map_size = filter_overlapping_sections(map, map_size);
1205
1206 if (map_size < alloc_size)
1207 /* Some sections were eliminated. Trim excess space. */
1208 map = XRESIZEVEC (struct obj_section *, map, map_size);
1209 else
1210 gdb_assert (alloc_size == map_size);
1211
1212 *pmap = map;
1213 *pmap_size = map_size;
1214 }
1215
1216 /* Bsearch comparison function. */
1217
1218 static int
1219 bsearch_cmp (const void *key, const void *elt)
1220 {
1221 const CORE_ADDR pc = *(CORE_ADDR *) key;
1222 const struct obj_section *section = *(const struct obj_section **) elt;
1223
1224 if (pc < obj_section_addr (section))
1225 return -1;
1226 if (pc < obj_section_endaddr (section))
1227 return 0;
1228 return 1;
1229 }
1230
1231 /* Returns a section whose range includes PC or NULL if none found. */
1232
1233 struct obj_section *
1234 find_pc_section (CORE_ADDR pc)
1235 {
1236 struct objfile_pspace_info *pspace_info;
1237 struct obj_section *s, **sp;
1238
1239 /* Check for mapped overlay section first. */
1240 s = find_pc_mapped_section (pc);
1241 if (s)
1242 return s;
1243
1244 pspace_info = get_objfile_pspace_data (current_program_space);
1245 if (pspace_info->section_map_dirty
1246 || (pspace_info->new_objfiles_available
1247 && !pspace_info->inhibit_updates))
1248 {
1249 update_section_map (current_program_space,
1250 &pspace_info->sections,
1251 &pspace_info->num_sections);
1252
1253 /* Don't need updates to section map until objfiles are added,
1254 removed or relocated. */
1255 pspace_info->new_objfiles_available = 0;
1256 pspace_info->section_map_dirty = 0;
1257 }
1258
1259 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1260 bsearch be non-NULL. */
1261 if (pspace_info->sections == NULL)
1262 {
1263 gdb_assert (pspace_info->num_sections == 0);
1264 return NULL;
1265 }
1266
1267 sp = (struct obj_section **) bsearch (&pc,
1268 pspace_info->sections,
1269 pspace_info->num_sections,
1270 sizeof (*pspace_info->sections),
1271 bsearch_cmp);
1272 if (sp != NULL)
1273 return *sp;
1274 return NULL;
1275 }
1276
1277
1278 /* Return non-zero if PC is in a section called NAME. */
1279
1280 int
1281 pc_in_section (CORE_ADDR pc, const char *name)
1282 {
1283 struct obj_section *s;
1284 int retval = 0;
1285
1286 s = find_pc_section (pc);
1287
1288 retval = (s != NULL
1289 && s->the_bfd_section->name != NULL
1290 && strcmp (s->the_bfd_section->name, name) == 0);
1291 return (retval);
1292 }
1293 \f
1294
1295 /* Set section_map_dirty so section map will be rebuilt next time it
1296 is used. Called by reread_symbols. */
1297
1298 void
1299 objfiles_changed (void)
1300 {
1301 /* Rebuild section map next time we need it. */
1302 get_objfile_pspace_data (current_program_space)->section_map_dirty = 1;
1303 }
1304
1305 /* See comments in objfiles.h. */
1306
1307 scoped_restore_tmpl<int>
1308 inhibit_section_map_updates (struct program_space *pspace)
1309 {
1310 return scoped_restore_tmpl<int>
1311 (&get_objfile_pspace_data (pspace)->inhibit_updates, 1);
1312 }
1313
1314 /* Return 1 if ADDR maps into one of the sections of OBJFILE and 0
1315 otherwise. */
1316
1317 int
1318 is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile)
1319 {
1320 struct obj_section *osect;
1321
1322 if (objfile == NULL)
1323 return 0;
1324
1325 ALL_OBJFILE_OSECTIONS (objfile, osect)
1326 {
1327 if (section_is_overlay (osect) && !section_is_mapped (osect))
1328 continue;
1329
1330 if (obj_section_addr (osect) <= addr
1331 && addr < obj_section_endaddr (osect))
1332 return 1;
1333 }
1334 return 0;
1335 }
1336
1337 int
1338 shared_objfile_contains_address_p (struct program_space *pspace,
1339 CORE_ADDR address)
1340 {
1341 for (objfile *objfile : pspace->objfiles ())
1342 {
1343 if ((objfile->flags & OBJF_SHARED) != 0
1344 && is_addr_in_objfile (address, objfile))
1345 return 1;
1346 }
1347
1348 return 0;
1349 }
1350
1351 /* The default implementation for the "iterate_over_objfiles_in_search_order"
1352 gdbarch method. It is equivalent to use the objfiles iterable,
1353 searching the objfiles in the order they are stored internally,
1354 ignoring CURRENT_OBJFILE.
1355
1356 On most platforms, it should be close enough to doing the best
1357 we can without some knowledge specific to the architecture. */
1358
1359 void
1360 default_iterate_over_objfiles_in_search_order
1361 (struct gdbarch *gdbarch,
1362 iterate_over_objfiles_in_search_order_cb_ftype *cb,
1363 void *cb_data, struct objfile *current_objfile)
1364 {
1365 int stop = 0;
1366
1367 for (objfile *objfile : current_program_space->objfiles ())
1368 {
1369 stop = cb (objfile, cb_data);
1370 if (stop)
1371 return;
1372 }
1373 }
1374
1375 /* See objfiles.h. */
1376
1377 const char *
1378 objfile_name (const struct objfile *objfile)
1379 {
1380 if (objfile->obfd != NULL)
1381 return bfd_get_filename (objfile->obfd);
1382
1383 return objfile->original_name;
1384 }
1385
1386 /* See objfiles.h. */
1387
1388 const char *
1389 objfile_filename (const struct objfile *objfile)
1390 {
1391 if (objfile->obfd != NULL)
1392 return bfd_get_filename (objfile->obfd);
1393
1394 return NULL;
1395 }
1396
1397 /* See objfiles.h. */
1398
1399 const char *
1400 objfile_debug_name (const struct objfile *objfile)
1401 {
1402 return lbasename (objfile->original_name);
1403 }
1404
1405 /* See objfiles.h. */
1406
1407 const char *
1408 objfile_flavour_name (struct objfile *objfile)
1409 {
1410 if (objfile->obfd != NULL)
1411 return bfd_flavour_name (bfd_get_flavour (objfile->obfd));
1412 return NULL;
1413 }
This page took 0.078591 seconds and 4 git commands to generate.