gdb: add target_ops::supports_displaced_step
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992-2020 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32 #include "bcache.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35
36 #include <sys/types.h>
37 #include <sys/stat.h>
38 #include <fcntl.h>
39 #include "gdb_obstack.h"
40 #include "hashtab.h"
41
42 #include "breakpoint.h"
43 #include "block.h"
44 #include "dictionary.h"
45 #include "source.h"
46 #include "addrmap.h"
47 #include "arch-utils.h"
48 #include "exec.h"
49 #include "observable.h"
50 #include "complaints.h"
51 #include "psymtab.h"
52 #include "solist.h"
53 #include "gdb_bfd.h"
54 #include "btrace.h"
55 #include "gdbsupport/pathstuff.h"
56
57 #include <algorithm>
58 #include <vector>
59
60 /* Keep a registry of per-objfile data-pointers required by other GDB
61 modules. */
62
63 DEFINE_REGISTRY (objfile, REGISTRY_ACCESS_FIELD)
64
65 /* Externally visible variables that are owned by this module.
66 See declarations in objfile.h for more info. */
67
68 struct objfile_pspace_info
69 {
70 objfile_pspace_info () = default;
71 ~objfile_pspace_info ();
72
73 struct obj_section **sections = nullptr;
74 int num_sections = 0;
75
76 /* Nonzero if object files have been added since the section map
77 was last updated. */
78 int new_objfiles_available = 0;
79
80 /* Nonzero if the section map MUST be updated before use. */
81 int section_map_dirty = 0;
82
83 /* Nonzero if section map updates should be inhibited if possible. */
84 int inhibit_updates = 0;
85 };
86
87 /* Per-program-space data key. */
88 static const struct program_space_key<objfile_pspace_info>
89 objfiles_pspace_data;
90
91 objfile_pspace_info::~objfile_pspace_info ()
92 {
93 xfree (sections);
94 }
95
96 /* Get the current svr4 data. If none is found yet, add it now. This
97 function always returns a valid object. */
98
99 static struct objfile_pspace_info *
100 get_objfile_pspace_data (struct program_space *pspace)
101 {
102 struct objfile_pspace_info *info;
103
104 info = objfiles_pspace_data.get (pspace);
105 if (info == NULL)
106 info = objfiles_pspace_data.emplace (pspace);
107
108 return info;
109 }
110
111 \f
112
113 /* Per-BFD data key. */
114
115 static const struct bfd_key<objfile_per_bfd_storage> objfiles_bfd_data;
116
117 objfile_per_bfd_storage::~objfile_per_bfd_storage ()
118 {
119 }
120
121 /* Create the per-BFD storage object for OBJFILE. If ABFD is not
122 NULL, and it already has a per-BFD storage object, use that.
123 Otherwise, allocate a new per-BFD storage object. Note that it is
124 not safe to call this multiple times for a given OBJFILE -- it can
125 only be called when allocating or re-initializing OBJFILE. */
126
127 static struct objfile_per_bfd_storage *
128 get_objfile_bfd_data (struct objfile *objfile, struct bfd *abfd)
129 {
130 struct objfile_per_bfd_storage *storage = NULL;
131
132 if (abfd != NULL)
133 storage = objfiles_bfd_data.get (abfd);
134
135 if (storage == NULL)
136 {
137 storage = new objfile_per_bfd_storage;
138 /* If the object requires gdb to do relocations, we simply fall
139 back to not sharing data across users. These cases are rare
140 enough that this seems reasonable. */
141 if (abfd != NULL && !gdb_bfd_requires_relocations (abfd))
142 objfiles_bfd_data.set (abfd, storage);
143
144 /* Look up the gdbarch associated with the BFD. */
145 if (abfd != NULL)
146 storage->gdbarch = gdbarch_from_bfd (abfd);
147 }
148
149 return storage;
150 }
151
152 /* See objfiles.h. */
153
154 void
155 set_objfile_per_bfd (struct objfile *objfile)
156 {
157 objfile->per_bfd = get_objfile_bfd_data (objfile, objfile->obfd);
158 }
159
160 /* Set the objfile's per-BFD notion of the "main" name and
161 language. */
162
163 void
164 set_objfile_main_name (struct objfile *objfile,
165 const char *name, enum language lang)
166 {
167 if (objfile->per_bfd->name_of_main == NULL
168 || strcmp (objfile->per_bfd->name_of_main, name) != 0)
169 objfile->per_bfd->name_of_main
170 = obstack_strdup (&objfile->per_bfd->storage_obstack, name);
171 objfile->per_bfd->language_of_main = lang;
172 }
173
174 /* Helper structure to map blocks to static link properties in hash tables. */
175
176 struct static_link_htab_entry
177 {
178 const struct block *block;
179 const struct dynamic_prop *static_link;
180 };
181
182 /* Return a hash code for struct static_link_htab_entry *P. */
183
184 static hashval_t
185 static_link_htab_entry_hash (const void *p)
186 {
187 const struct static_link_htab_entry *e
188 = (const struct static_link_htab_entry *) p;
189
190 return htab_hash_pointer (e->block);
191 }
192
193 /* Return whether P1 an P2 (pointers to struct static_link_htab_entry) are
194 mappings for the same block. */
195
196 static int
197 static_link_htab_entry_eq (const void *p1, const void *p2)
198 {
199 const struct static_link_htab_entry *e1
200 = (const struct static_link_htab_entry *) p1;
201 const struct static_link_htab_entry *e2
202 = (const struct static_link_htab_entry *) p2;
203
204 return e1->block == e2->block;
205 }
206
207 /* Register STATIC_LINK as the static link for BLOCK, which is part of OBJFILE.
208 Must not be called more than once for each BLOCK. */
209
210 void
211 objfile_register_static_link (struct objfile *objfile,
212 const struct block *block,
213 const struct dynamic_prop *static_link)
214 {
215 void **slot;
216 struct static_link_htab_entry lookup_entry;
217 struct static_link_htab_entry *entry;
218
219 if (objfile->static_links == NULL)
220 objfile->static_links.reset (htab_create_alloc
221 (1, &static_link_htab_entry_hash, static_link_htab_entry_eq, NULL,
222 xcalloc, xfree));
223
224 /* Create a slot for the mapping, make sure it's the first mapping for this
225 block and then create the mapping itself. */
226 lookup_entry.block = block;
227 slot = htab_find_slot (objfile->static_links.get (), &lookup_entry, INSERT);
228 gdb_assert (*slot == NULL);
229
230 entry = XOBNEW (&objfile->objfile_obstack, static_link_htab_entry);
231 entry->block = block;
232 entry->static_link = static_link;
233 *slot = (void *) entry;
234 }
235
236 /* Look for a static link for BLOCK, which is part of OBJFILE. Return NULL if
237 none was found. */
238
239 const struct dynamic_prop *
240 objfile_lookup_static_link (struct objfile *objfile,
241 const struct block *block)
242 {
243 struct static_link_htab_entry *entry;
244 struct static_link_htab_entry lookup_entry;
245
246 if (objfile->static_links == NULL)
247 return NULL;
248 lookup_entry.block = block;
249 entry = ((struct static_link_htab_entry *)
250 htab_find (objfile->static_links.get (), &lookup_entry));
251 if (entry == NULL)
252 return NULL;
253
254 gdb_assert (entry->block == block);
255 return entry->static_link;
256 }
257
258 \f
259
260 /* Called via bfd_map_over_sections to build up the section table that
261 the objfile references. The objfile contains pointers to the start
262 of the table (objfile->sections) and to the first location after
263 the end of the table (objfile->sections_end). */
264
265 static void
266 add_to_objfile_sections_full (struct bfd *abfd, struct bfd_section *asect,
267 struct objfile *objfile, int force)
268 {
269 struct obj_section *section;
270
271 if (!force)
272 {
273 flagword aflag;
274
275 aflag = bfd_section_flags (asect);
276 if (!(aflag & SEC_ALLOC))
277 return;
278 }
279
280 section = &objfile->sections[gdb_bfd_section_index (abfd, asect)];
281 section->objfile = objfile;
282 section->the_bfd_section = asect;
283 section->ovly_mapped = 0;
284 }
285
286 static void
287 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
288 void *objfilep)
289 {
290 add_to_objfile_sections_full (abfd, asect, (struct objfile *) objfilep, 0);
291 }
292
293 /* Builds a section table for OBJFILE.
294
295 Note that the OFFSET and OVLY_MAPPED in each table entry are
296 initialized to zero. */
297
298 void
299 build_objfile_section_table (struct objfile *objfile)
300 {
301 int count = gdb_bfd_count_sections (objfile->obfd);
302
303 objfile->sections = OBSTACK_CALLOC (&objfile->objfile_obstack,
304 count,
305 struct obj_section);
306 objfile->sections_end = (objfile->sections + count);
307 bfd_map_over_sections (objfile->obfd,
308 add_to_objfile_sections, (void *) objfile);
309
310 /* See gdb_bfd_section_index. */
311 add_to_objfile_sections_full (objfile->obfd, bfd_com_section_ptr, objfile, 1);
312 add_to_objfile_sections_full (objfile->obfd, bfd_und_section_ptr, objfile, 1);
313 add_to_objfile_sections_full (objfile->obfd, bfd_abs_section_ptr, objfile, 1);
314 add_to_objfile_sections_full (objfile->obfd, bfd_ind_section_ptr, objfile, 1);
315 }
316
317 /* Given a pointer to an initialized bfd (ABFD) and some flag bits,
318 initialize the new objfile as best we can and link it into the list
319 of all known objfiles.
320
321 NAME should contain original non-canonicalized filename or other
322 identifier as entered by user. If there is no better source use
323 bfd_get_filename (ABFD). NAME may be NULL only if ABFD is NULL.
324 NAME content is copied into returned objfile.
325
326 The FLAGS word contains various bits (OBJF_*) that can be taken as
327 requests for specific operations. Other bits like OBJF_SHARED are
328 simply copied through to the new objfile flags member. */
329
330 objfile::objfile (bfd *abfd, const char *name, objfile_flags flags_)
331 : flags (flags_),
332 pspace (current_program_space),
333 partial_symtabs (new psymtab_storage ()),
334 obfd (abfd)
335 {
336 const char *expanded_name;
337
338 /* We could use obstack_specify_allocation here instead, but
339 gdb_obstack.h specifies the alloc/dealloc functions. */
340 obstack_init (&objfile_obstack);
341
342 objfile_alloc_data (this);
343
344 gdb::unique_xmalloc_ptr<char> name_holder;
345 if (name == NULL)
346 {
347 gdb_assert (abfd == NULL);
348 gdb_assert ((flags & OBJF_NOT_FILENAME) != 0);
349 expanded_name = "<<anonymous objfile>>";
350 }
351 else if ((flags & OBJF_NOT_FILENAME) != 0
352 || is_target_filename (name))
353 expanded_name = name;
354 else
355 {
356 name_holder = gdb_abspath (name);
357 expanded_name = name_holder.get ();
358 }
359 original_name = obstack_strdup (&objfile_obstack, expanded_name);
360
361 /* Update the per-objfile information that comes from the bfd, ensuring
362 that any data that is reference is saved in the per-objfile data
363 region. */
364
365 gdb_bfd_ref (abfd);
366 if (abfd != NULL)
367 {
368 mtime = bfd_get_mtime (abfd);
369
370 /* Build section table. */
371 build_objfile_section_table (this);
372 }
373
374 per_bfd = get_objfile_bfd_data (this, abfd);
375 }
376
377 /* If there is a valid and known entry point, function fills *ENTRY_P with it
378 and returns non-zero; otherwise it returns zero. */
379
380 int
381 entry_point_address_query (CORE_ADDR *entry_p)
382 {
383 if (symfile_objfile == NULL || !symfile_objfile->per_bfd->ei.entry_point_p)
384 return 0;
385
386 int idx = symfile_objfile->per_bfd->ei.the_bfd_section_index;
387 *entry_p = (symfile_objfile->per_bfd->ei.entry_point
388 + symfile_objfile->section_offsets[idx]);
389
390 return 1;
391 }
392
393 /* Get current entry point address. Call error if it is not known. */
394
395 CORE_ADDR
396 entry_point_address (void)
397 {
398 CORE_ADDR retval;
399
400 if (!entry_point_address_query (&retval))
401 error (_("Entry point address is not known."));
402
403 return retval;
404 }
405
406 separate_debug_iterator &
407 separate_debug_iterator::operator++ ()
408 {
409 gdb_assert (m_objfile != nullptr);
410
411 struct objfile *res;
412
413 /* If any, return the first child. */
414 res = m_objfile->separate_debug_objfile;
415 if (res != nullptr)
416 {
417 m_objfile = res;
418 return *this;
419 }
420
421 /* Common case where there is no separate debug objfile. */
422 if (m_objfile == m_parent)
423 {
424 m_objfile = nullptr;
425 return *this;
426 }
427
428 /* Return the brother if any. Note that we don't iterate on brothers of
429 the parents. */
430 res = m_objfile->separate_debug_objfile_link;
431 if (res != nullptr)
432 {
433 m_objfile = res;
434 return *this;
435 }
436
437 for (res = m_objfile->separate_debug_objfile_backlink;
438 res != m_parent;
439 res = res->separate_debug_objfile_backlink)
440 {
441 gdb_assert (res != nullptr);
442 if (res->separate_debug_objfile_link != nullptr)
443 {
444 m_objfile = res->separate_debug_objfile_link;
445 return *this;
446 }
447 }
448 m_objfile = nullptr;
449 return *this;
450 }
451
452 /* Add OBJFILE as a separate debug objfile of PARENT. */
453
454 static void
455 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
456 {
457 gdb_assert (objfile && parent);
458
459 /* Must not be already in a list. */
460 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
461 gdb_assert (objfile->separate_debug_objfile_link == NULL);
462 gdb_assert (objfile->separate_debug_objfile == NULL);
463 gdb_assert (parent->separate_debug_objfile_backlink == NULL);
464 gdb_assert (parent->separate_debug_objfile_link == NULL);
465
466 objfile->separate_debug_objfile_backlink = parent;
467 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
468 parent->separate_debug_objfile = objfile;
469 }
470
471 /* See objfiles.h. */
472
473 objfile *
474 objfile::make (bfd *bfd_, const char *name_, objfile_flags flags_,
475 objfile *parent)
476 {
477 objfile *result = new objfile (bfd_, name_, flags_);
478 if (parent != nullptr)
479 add_separate_debug_objfile (result, parent);
480
481 /* Using std::make_shared might be a bit nicer here, but that would
482 require making the constructor public. */
483 current_program_space->add_objfile (std::shared_ptr<objfile> (result),
484 parent);
485
486 /* Rebuild section map next time we need it. */
487 get_objfile_pspace_data (current_program_space)->new_objfiles_available = 1;
488
489 return result;
490 }
491
492 /* See objfiles.h. */
493
494 void
495 objfile::unlink ()
496 {
497 current_program_space->remove_objfile (this);
498 }
499
500 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
501 itself. */
502
503 void
504 free_objfile_separate_debug (struct objfile *objfile)
505 {
506 struct objfile *child;
507
508 for (child = objfile->separate_debug_objfile; child;)
509 {
510 struct objfile *next_child = child->separate_debug_objfile_link;
511 child->unlink ();
512 child = next_child;
513 }
514 }
515
516 /* Destroy an objfile and all the symtabs and psymtabs under it. */
517
518 objfile::~objfile ()
519 {
520 /* First notify observers that this objfile is about to be freed. */
521 gdb::observers::free_objfile.notify (this);
522
523 /* Free all separate debug objfiles. */
524 free_objfile_separate_debug (this);
525
526 if (separate_debug_objfile_backlink)
527 {
528 /* We freed the separate debug file, make sure the base objfile
529 doesn't reference it. */
530 struct objfile *child;
531
532 child = separate_debug_objfile_backlink->separate_debug_objfile;
533
534 if (child == this)
535 {
536 /* THIS is the first child. */
537 separate_debug_objfile_backlink->separate_debug_objfile =
538 separate_debug_objfile_link;
539 }
540 else
541 {
542 /* Find THIS in the list. */
543 while (1)
544 {
545 if (child->separate_debug_objfile_link == this)
546 {
547 child->separate_debug_objfile_link =
548 separate_debug_objfile_link;
549 break;
550 }
551 child = child->separate_debug_objfile_link;
552 gdb_assert (child);
553 }
554 }
555 }
556
557 /* Remove any references to this objfile in the global value
558 lists. */
559 preserve_values (this);
560
561 /* It still may reference data modules have associated with the objfile and
562 the symbol file data. */
563 forget_cached_source_info_for_objfile (this);
564
565 breakpoint_free_objfile (this);
566 btrace_free_objfile (this);
567
568 /* First do any symbol file specific actions required when we are
569 finished with a particular symbol file. Note that if the objfile
570 is using reusable symbol information (via mmalloc) then each of
571 these routines is responsible for doing the correct thing, either
572 freeing things which are valid only during this particular gdb
573 execution, or leaving them to be reused during the next one. */
574
575 if (sf != NULL)
576 (*sf->sym_finish) (this);
577
578 /* Discard any data modules have associated with the objfile. The function
579 still may reference obfd. */
580 objfile_free_data (this);
581
582 if (obfd)
583 gdb_bfd_unref (obfd);
584 else
585 delete per_bfd;
586
587 /* Before the symbol table code was redone to make it easier to
588 selectively load and remove information particular to a specific
589 linkage unit, gdb used to do these things whenever the monolithic
590 symbol table was blown away. How much still needs to be done
591 is unknown, but we play it safe for now and keep each action until
592 it is shown to be no longer needed. */
593
594 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
595 for example), so we need to call this here. */
596 clear_pc_function_cache ();
597
598 /* Check to see if the current_source_symtab belongs to this objfile,
599 and if so, call clear_current_source_symtab_and_line. */
600
601 {
602 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
603
604 if (cursal.symtab && SYMTAB_OBJFILE (cursal.symtab) == this)
605 clear_current_source_symtab_and_line ();
606 }
607
608 /* Free the obstacks for non-reusable objfiles. */
609 obstack_free (&objfile_obstack, 0);
610
611 /* Rebuild section map next time we need it. */
612 get_objfile_pspace_data (pspace)->section_map_dirty = 1;
613 }
614
615 \f
616 /* A helper function for objfile_relocate1 that relocates a single
617 symbol. */
618
619 static void
620 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
621 const section_offsets &delta)
622 {
623 fixup_symbol_section (sym, objfile);
624
625 /* The RS6000 code from which this was taken skipped
626 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
627 But I'm leaving out that test, on the theory that
628 they can't possibly pass the tests below. */
629 if ((SYMBOL_CLASS (sym) == LOC_LABEL
630 || SYMBOL_CLASS (sym) == LOC_STATIC)
631 && SYMBOL_SECTION (sym) >= 0)
632 {
633 SET_SYMBOL_VALUE_ADDRESS (sym,
634 SYMBOL_VALUE_ADDRESS (sym)
635 + delta[SYMBOL_SECTION (sym)]);
636 }
637 }
638
639 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
640 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
641 Return non-zero iff any change happened. */
642
643 static int
644 objfile_relocate1 (struct objfile *objfile,
645 const section_offsets &new_offsets)
646 {
647 section_offsets delta (objfile->section_offsets.size ());
648
649 int something_changed = 0;
650
651 for (int i = 0; i < objfile->section_offsets.size (); ++i)
652 {
653 delta[i] = new_offsets[i] - objfile->section_offsets[i];
654 if (delta[i] != 0)
655 something_changed = 1;
656 }
657 if (!something_changed)
658 return 0;
659
660 /* OK, get all the symtabs. */
661 {
662 for (compunit_symtab *cust : objfile->compunits ())
663 {
664 for (symtab *s : compunit_filetabs (cust))
665 {
666 struct linetable *l;
667
668 /* First the line table. */
669 l = SYMTAB_LINETABLE (s);
670 if (l)
671 {
672 for (int i = 0; i < l->nitems; ++i)
673 l->item[i].pc += delta[COMPUNIT_BLOCK_LINE_SECTION (cust)];
674 }
675 }
676 }
677
678 for (compunit_symtab *cust : objfile->compunits ())
679 {
680 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
681 int block_line_section = COMPUNIT_BLOCK_LINE_SECTION (cust);
682
683 if (BLOCKVECTOR_MAP (bv))
684 addrmap_relocate (BLOCKVECTOR_MAP (bv), delta[block_line_section]);
685
686 for (int i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
687 {
688 struct block *b;
689 struct symbol *sym;
690 struct mdict_iterator miter;
691
692 b = BLOCKVECTOR_BLOCK (bv, i);
693 BLOCK_START (b) += delta[block_line_section];
694 BLOCK_END (b) += delta[block_line_section];
695
696 if (BLOCK_RANGES (b) != nullptr)
697 for (int j = 0; j < BLOCK_NRANGES (b); j++)
698 {
699 BLOCK_RANGE_START (b, j) += delta[block_line_section];
700 BLOCK_RANGE_END (b, j) += delta[block_line_section];
701 }
702
703 /* We only want to iterate over the local symbols, not any
704 symbols in included symtabs. */
705 ALL_DICT_SYMBOLS (BLOCK_MULTIDICT (b), miter, sym)
706 {
707 relocate_one_symbol (sym, objfile, delta);
708 }
709 }
710 }
711 }
712
713 /* This stores relocated addresses and so must be cleared. This
714 will cause it to be recreated on demand. */
715 objfile->psymbol_map.clear ();
716
717 /* Relocate isolated symbols. */
718 {
719 struct symbol *iter;
720
721 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
722 relocate_one_symbol (iter, objfile, delta);
723 }
724
725 {
726 int i;
727
728 for (i = 0; i < objfile->section_offsets.size (); ++i)
729 objfile->section_offsets[i] = new_offsets[i];
730 }
731
732 /* Rebuild section map next time we need it. */
733 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
734
735 /* Update the table in exec_ops, used to read memory. */
736 struct obj_section *s;
737 ALL_OBJFILE_OSECTIONS (objfile, s)
738 {
739 int idx = s - objfile->sections;
740
741 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
742 obj_section_addr (s));
743 }
744
745 /* Data changed. */
746 return 1;
747 }
748
749 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
750 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
751
752 The number and ordering of sections does differ between the two objfiles.
753 Only their names match. Also the file offsets will differ (objfile being
754 possibly prelinked but separate_debug_objfile is probably not prelinked) but
755 the in-memory absolute address as specified by NEW_OFFSETS must match both
756 files. */
757
758 void
759 objfile_relocate (struct objfile *objfile,
760 const section_offsets &new_offsets)
761 {
762 int changed = 0;
763
764 changed |= objfile_relocate1 (objfile, new_offsets);
765
766 for (::objfile *debug_objfile : objfile->separate_debug_objfiles ())
767 {
768 if (debug_objfile == objfile)
769 continue;
770
771 section_addr_info objfile_addrs
772 = build_section_addr_info_from_objfile (objfile);
773
774 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
775 relative ones must be already created according to debug_objfile. */
776
777 addr_info_make_relative (&objfile_addrs, debug_objfile->obfd);
778
779 gdb_assert (debug_objfile->section_offsets.size ()
780 == gdb_bfd_count_sections (debug_objfile->obfd));
781 section_offsets new_debug_offsets
782 (debug_objfile->section_offsets.size ());
783 relative_addr_info_to_section_offsets (new_debug_offsets, objfile_addrs);
784
785 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets);
786 }
787
788 /* Relocate breakpoints as necessary, after things are relocated. */
789 if (changed)
790 breakpoint_re_set ();
791 }
792
793 /* Rebase (add to the offsets) OBJFILE by SLIDE. SEPARATE_DEBUG_OBJFILE is
794 not touched here.
795 Return non-zero iff any change happened. */
796
797 static int
798 objfile_rebase1 (struct objfile *objfile, CORE_ADDR slide)
799 {
800 section_offsets new_offsets (objfile->section_offsets.size (), slide);
801 return objfile_relocate1 (objfile, new_offsets);
802 }
803
804 /* Rebase (add to the offsets) OBJFILE by SLIDE. Process also OBJFILE's
805 SEPARATE_DEBUG_OBJFILEs. */
806
807 void
808 objfile_rebase (struct objfile *objfile, CORE_ADDR slide)
809 {
810 int changed = 0;
811
812 for (::objfile *debug_objfile : objfile->separate_debug_objfiles ())
813 changed |= objfile_rebase1 (debug_objfile, slide);
814
815 /* Relocate breakpoints as necessary, after things are relocated. */
816 if (changed)
817 breakpoint_re_set ();
818 }
819 \f
820 /* Return non-zero if OBJFILE has partial symbols. */
821
822 int
823 objfile_has_partial_symbols (struct objfile *objfile)
824 {
825 if (!objfile->sf)
826 return 0;
827
828 /* If we have not read psymbols, but we have a function capable of reading
829 them, then that is an indication that they are in fact available. Without
830 this function the symbols may have been already read in but they also may
831 not be present in this objfile. */
832 if ((objfile->flags & OBJF_PSYMTABS_READ) == 0
833 && objfile->sf->sym_read_psymbols != NULL)
834 return 1;
835
836 return objfile->sf->qf->has_symbols (objfile);
837 }
838
839 /* Return non-zero if OBJFILE has full symbols. */
840
841 int
842 objfile_has_full_symbols (struct objfile *objfile)
843 {
844 return objfile->compunit_symtabs != NULL;
845 }
846
847 /* Return non-zero if OBJFILE has full or partial symbols, either directly
848 or through a separate debug file. */
849
850 int
851 objfile_has_symbols (struct objfile *objfile)
852 {
853 for (::objfile *o : objfile->separate_debug_objfiles ())
854 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
855 return 1;
856 return 0;
857 }
858
859
860 /* Many places in gdb want to test just to see if we have any partial
861 symbols available. This function returns zero if none are currently
862 available, nonzero otherwise. */
863
864 int
865 have_partial_symbols (void)
866 {
867 for (objfile *ofp : current_program_space->objfiles ())
868 {
869 if (objfile_has_partial_symbols (ofp))
870 return 1;
871 }
872 return 0;
873 }
874
875 /* Many places in gdb want to test just to see if we have any full
876 symbols available. This function returns zero if none are currently
877 available, nonzero otherwise. */
878
879 int
880 have_full_symbols (void)
881 {
882 for (objfile *ofp : current_program_space->objfiles ())
883 {
884 if (objfile_has_full_symbols (ofp))
885 return 1;
886 }
887 return 0;
888 }
889
890
891 /* This operations deletes all objfile entries that represent solibs that
892 weren't explicitly loaded by the user, via e.g., the add-symbol-file
893 command. */
894
895 void
896 objfile_purge_solibs (void)
897 {
898 for (objfile *objf : current_program_space->objfiles_safe ())
899 {
900 /* We assume that the solib package has been purged already, or will
901 be soon. */
902
903 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
904 objf->unlink ();
905 }
906 }
907
908
909 /* Many places in gdb want to test just to see if we have any minimal
910 symbols available. This function returns zero if none are currently
911 available, nonzero otherwise. */
912
913 int
914 have_minimal_symbols (void)
915 {
916 for (objfile *ofp : current_program_space->objfiles ())
917 {
918 if (ofp->per_bfd->minimal_symbol_count > 0)
919 {
920 return 1;
921 }
922 }
923 return 0;
924 }
925
926 /* Qsort comparison function. */
927
928 static bool
929 sort_cmp (const struct obj_section *sect1, const obj_section *sect2)
930 {
931 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
932 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
933
934 if (sect1_addr < sect2_addr)
935 return true;
936 else if (sect1_addr > sect2_addr)
937 return false;
938 else
939 {
940 /* Sections are at the same address. This could happen if
941 A) we have an objfile and a separate debuginfo.
942 B) we are confused, and have added sections without proper relocation,
943 or something like that. */
944
945 const struct objfile *const objfile1 = sect1->objfile;
946 const struct objfile *const objfile2 = sect2->objfile;
947
948 if (objfile1->separate_debug_objfile == objfile2
949 || objfile2->separate_debug_objfile == objfile1)
950 {
951 /* Case A. The ordering doesn't matter: separate debuginfo files
952 will be filtered out later. */
953
954 return false;
955 }
956
957 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
958 triage. This section could be slow (since we iterate over all
959 objfiles in each call to sort_cmp), but this shouldn't happen
960 very often (GDB is already in a confused state; one hopes this
961 doesn't happen at all). If you discover that significant time is
962 spent in the loops below, do 'set complaints 100' and examine the
963 resulting complaints. */
964 if (objfile1 == objfile2)
965 {
966 /* Both sections came from the same objfile. We are really
967 confused. Sort on sequence order of sections within the
968 objfile. The order of checks is important here, if we find a
969 match on SECT2 first then either SECT2 is before SECT1, or,
970 SECT2 == SECT1, in both cases we should return false. The
971 second case shouldn't occur during normal use, but std::sort
972 does check that '!(a < a)' when compiled in debug mode. */
973
974 const struct obj_section *osect;
975
976 ALL_OBJFILE_OSECTIONS (objfile1, osect)
977 if (osect == sect2)
978 return false;
979 else if (osect == sect1)
980 return true;
981
982 /* We should have found one of the sections before getting here. */
983 gdb_assert_not_reached ("section not found");
984 }
985 else
986 {
987 /* Sort on sequence number of the objfile in the chain. */
988
989 for (objfile *objfile : current_program_space->objfiles ())
990 if (objfile == objfile1)
991 return true;
992 else if (objfile == objfile2)
993 return false;
994
995 /* We should have found one of the objfiles before getting here. */
996 gdb_assert_not_reached ("objfile not found");
997 }
998 }
999
1000 /* Unreachable. */
1001 gdb_assert_not_reached ("unexpected code path");
1002 return false;
1003 }
1004
1005 /* Select "better" obj_section to keep. We prefer the one that came from
1006 the real object, rather than the one from separate debuginfo.
1007 Most of the time the two sections are exactly identical, but with
1008 prelinking the .rel.dyn section in the real object may have different
1009 size. */
1010
1011 static struct obj_section *
1012 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1013 {
1014 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1015 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1016 || (b->objfile->separate_debug_objfile == a->objfile));
1017 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1018 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1019
1020 if (a->objfile->separate_debug_objfile != NULL)
1021 return a;
1022 return b;
1023 }
1024
1025 /* Return 1 if SECTION should be inserted into the section map.
1026 We want to insert only non-overlay and non-TLS section. */
1027
1028 static int
1029 insert_section_p (const struct bfd *abfd,
1030 const struct bfd_section *section)
1031 {
1032 const bfd_vma lma = bfd_section_lma (section);
1033
1034 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (section)
1035 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1036 /* This is an overlay section. IN_MEMORY check is needed to avoid
1037 discarding sections from the "system supplied DSO" (aka vdso)
1038 on some Linux systems (e.g. Fedora 11). */
1039 return 0;
1040 if ((bfd_section_flags (section) & SEC_THREAD_LOCAL) != 0)
1041 /* This is a TLS section. */
1042 return 0;
1043
1044 return 1;
1045 }
1046
1047 /* Filter out overlapping sections where one section came from the real
1048 objfile, and the other from a separate debuginfo file.
1049 Return the size of table after redundant sections have been eliminated. */
1050
1051 static int
1052 filter_debuginfo_sections (struct obj_section **map, int map_size)
1053 {
1054 int i, j;
1055
1056 for (i = 0, j = 0; i < map_size - 1; i++)
1057 {
1058 struct obj_section *const sect1 = map[i];
1059 struct obj_section *const sect2 = map[i + 1];
1060 const struct objfile *const objfile1 = sect1->objfile;
1061 const struct objfile *const objfile2 = sect2->objfile;
1062 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1063 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1064
1065 if (sect1_addr == sect2_addr
1066 && (objfile1->separate_debug_objfile == objfile2
1067 || objfile2->separate_debug_objfile == objfile1))
1068 {
1069 map[j++] = preferred_obj_section (sect1, sect2);
1070 ++i;
1071 }
1072 else
1073 map[j++] = sect1;
1074 }
1075
1076 if (i < map_size)
1077 {
1078 gdb_assert (i == map_size - 1);
1079 map[j++] = map[i];
1080 }
1081
1082 /* The map should not have shrunk to less than half the original size. */
1083 gdb_assert (map_size / 2 <= j);
1084
1085 return j;
1086 }
1087
1088 /* Filter out overlapping sections, issuing a warning if any are found.
1089 Overlapping sections could really be overlay sections which we didn't
1090 classify as such in insert_section_p, or we could be dealing with a
1091 corrupt binary. */
1092
1093 static int
1094 filter_overlapping_sections (struct obj_section **map, int map_size)
1095 {
1096 int i, j;
1097
1098 for (i = 0, j = 0; i < map_size - 1; )
1099 {
1100 int k;
1101
1102 map[j++] = map[i];
1103 for (k = i + 1; k < map_size; k++)
1104 {
1105 struct obj_section *const sect1 = map[i];
1106 struct obj_section *const sect2 = map[k];
1107 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1108 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1109 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1110
1111 gdb_assert (sect1_addr <= sect2_addr);
1112
1113 if (sect1_endaddr <= sect2_addr)
1114 break;
1115 else
1116 {
1117 /* We have an overlap. Report it. */
1118
1119 struct objfile *const objf1 = sect1->objfile;
1120 struct objfile *const objf2 = sect2->objfile;
1121
1122 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1123 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1124
1125 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1126
1127 struct gdbarch *const gdbarch = objf1->arch ();
1128
1129 complaint (_("unexpected overlap between:\n"
1130 " (A) section `%s' from `%s' [%s, %s)\n"
1131 " (B) section `%s' from `%s' [%s, %s).\n"
1132 "Will ignore section B"),
1133 bfd_section_name (bfds1), objfile_name (objf1),
1134 paddress (gdbarch, sect1_addr),
1135 paddress (gdbarch, sect1_endaddr),
1136 bfd_section_name (bfds2), objfile_name (objf2),
1137 paddress (gdbarch, sect2_addr),
1138 paddress (gdbarch, sect2_endaddr));
1139 }
1140 }
1141 i = k;
1142 }
1143
1144 if (i < map_size)
1145 {
1146 gdb_assert (i == map_size - 1);
1147 map[j++] = map[i];
1148 }
1149
1150 return j;
1151 }
1152
1153
1154 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1155 TLS, overlay and overlapping sections. */
1156
1157 static void
1158 update_section_map (struct program_space *pspace,
1159 struct obj_section ***pmap, int *pmap_size)
1160 {
1161 struct objfile_pspace_info *pspace_info;
1162 int alloc_size, map_size, i;
1163 struct obj_section *s, **map;
1164
1165 pspace_info = get_objfile_pspace_data (pspace);
1166 gdb_assert (pspace_info->section_map_dirty != 0
1167 || pspace_info->new_objfiles_available != 0);
1168
1169 map = *pmap;
1170 xfree (map);
1171
1172 alloc_size = 0;
1173 for (objfile *objfile : pspace->objfiles ())
1174 ALL_OBJFILE_OSECTIONS (objfile, s)
1175 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1176 alloc_size += 1;
1177
1178 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1179 if (alloc_size == 0)
1180 {
1181 *pmap = NULL;
1182 *pmap_size = 0;
1183 return;
1184 }
1185
1186 map = XNEWVEC (struct obj_section *, alloc_size);
1187
1188 i = 0;
1189 for (objfile *objfile : pspace->objfiles ())
1190 ALL_OBJFILE_OSECTIONS (objfile, s)
1191 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1192 map[i++] = s;
1193
1194 std::sort (map, map + alloc_size, sort_cmp);
1195 map_size = filter_debuginfo_sections(map, alloc_size);
1196 map_size = filter_overlapping_sections(map, map_size);
1197
1198 if (map_size < alloc_size)
1199 /* Some sections were eliminated. Trim excess space. */
1200 map = XRESIZEVEC (struct obj_section *, map, map_size);
1201 else
1202 gdb_assert (alloc_size == map_size);
1203
1204 *pmap = map;
1205 *pmap_size = map_size;
1206 }
1207
1208 /* Bsearch comparison function. */
1209
1210 static int
1211 bsearch_cmp (const void *key, const void *elt)
1212 {
1213 const CORE_ADDR pc = *(CORE_ADDR *) key;
1214 const struct obj_section *section = *(const struct obj_section **) elt;
1215
1216 if (pc < obj_section_addr (section))
1217 return -1;
1218 if (pc < obj_section_endaddr (section))
1219 return 0;
1220 return 1;
1221 }
1222
1223 /* Returns a section whose range includes PC or NULL if none found. */
1224
1225 struct obj_section *
1226 find_pc_section (CORE_ADDR pc)
1227 {
1228 struct objfile_pspace_info *pspace_info;
1229 struct obj_section *s, **sp;
1230
1231 /* Check for mapped overlay section first. */
1232 s = find_pc_mapped_section (pc);
1233 if (s)
1234 return s;
1235
1236 pspace_info = get_objfile_pspace_data (current_program_space);
1237 if (pspace_info->section_map_dirty
1238 || (pspace_info->new_objfiles_available
1239 && !pspace_info->inhibit_updates))
1240 {
1241 update_section_map (current_program_space,
1242 &pspace_info->sections,
1243 &pspace_info->num_sections);
1244
1245 /* Don't need updates to section map until objfiles are added,
1246 removed or relocated. */
1247 pspace_info->new_objfiles_available = 0;
1248 pspace_info->section_map_dirty = 0;
1249 }
1250
1251 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1252 bsearch be non-NULL. */
1253 if (pspace_info->sections == NULL)
1254 {
1255 gdb_assert (pspace_info->num_sections == 0);
1256 return NULL;
1257 }
1258
1259 sp = (struct obj_section **) bsearch (&pc,
1260 pspace_info->sections,
1261 pspace_info->num_sections,
1262 sizeof (*pspace_info->sections),
1263 bsearch_cmp);
1264 if (sp != NULL)
1265 return *sp;
1266 return NULL;
1267 }
1268
1269
1270 /* Return non-zero if PC is in a section called NAME. */
1271
1272 int
1273 pc_in_section (CORE_ADDR pc, const char *name)
1274 {
1275 struct obj_section *s;
1276 int retval = 0;
1277
1278 s = find_pc_section (pc);
1279
1280 retval = (s != NULL
1281 && s->the_bfd_section->name != NULL
1282 && strcmp (s->the_bfd_section->name, name) == 0);
1283 return (retval);
1284 }
1285 \f
1286
1287 /* Set section_map_dirty so section map will be rebuilt next time it
1288 is used. Called by reread_symbols. */
1289
1290 void
1291 objfiles_changed (void)
1292 {
1293 /* Rebuild section map next time we need it. */
1294 get_objfile_pspace_data (current_program_space)->section_map_dirty = 1;
1295 }
1296
1297 /* See comments in objfiles.h. */
1298
1299 scoped_restore_tmpl<int>
1300 inhibit_section_map_updates (struct program_space *pspace)
1301 {
1302 return scoped_restore_tmpl<int>
1303 (&get_objfile_pspace_data (pspace)->inhibit_updates, 1);
1304 }
1305
1306 /* See objfiles.h. */
1307
1308 bool
1309 is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile)
1310 {
1311 struct obj_section *osect;
1312
1313 if (objfile == NULL)
1314 return false;
1315
1316 ALL_OBJFILE_OSECTIONS (objfile, osect)
1317 {
1318 if (section_is_overlay (osect) && !section_is_mapped (osect))
1319 continue;
1320
1321 if (obj_section_addr (osect) <= addr
1322 && addr < obj_section_endaddr (osect))
1323 return true;
1324 }
1325 return false;
1326 }
1327
1328 /* See objfiles.h. */
1329
1330 bool
1331 shared_objfile_contains_address_p (struct program_space *pspace,
1332 CORE_ADDR address)
1333 {
1334 for (objfile *objfile : pspace->objfiles ())
1335 {
1336 if ((objfile->flags & OBJF_SHARED) != 0
1337 && is_addr_in_objfile (address, objfile))
1338 return true;
1339 }
1340
1341 return false;
1342 }
1343
1344 /* The default implementation for the "iterate_over_objfiles_in_search_order"
1345 gdbarch method. It is equivalent to use the objfiles iterable,
1346 searching the objfiles in the order they are stored internally,
1347 ignoring CURRENT_OBJFILE.
1348
1349 On most platforms, it should be close enough to doing the best
1350 we can without some knowledge specific to the architecture. */
1351
1352 void
1353 default_iterate_over_objfiles_in_search_order
1354 (struct gdbarch *gdbarch,
1355 iterate_over_objfiles_in_search_order_cb_ftype *cb,
1356 void *cb_data, struct objfile *current_objfile)
1357 {
1358 int stop = 0;
1359
1360 for (objfile *objfile : current_program_space->objfiles ())
1361 {
1362 stop = cb (objfile, cb_data);
1363 if (stop)
1364 return;
1365 }
1366 }
1367
1368 /* See objfiles.h. */
1369
1370 const char *
1371 objfile_name (const struct objfile *objfile)
1372 {
1373 if (objfile->obfd != NULL)
1374 return bfd_get_filename (objfile->obfd);
1375
1376 return objfile->original_name;
1377 }
1378
1379 /* See objfiles.h. */
1380
1381 const char *
1382 objfile_filename (const struct objfile *objfile)
1383 {
1384 if (objfile->obfd != NULL)
1385 return bfd_get_filename (objfile->obfd);
1386
1387 return NULL;
1388 }
1389
1390 /* See objfiles.h. */
1391
1392 const char *
1393 objfile_debug_name (const struct objfile *objfile)
1394 {
1395 return lbasename (objfile->original_name);
1396 }
1397
1398 /* See objfiles.h. */
1399
1400 const char *
1401 objfile_flavour_name (struct objfile *objfile)
1402 {
1403 if (objfile->obfd != NULL)
1404 return bfd_flavour_name (bfd_get_flavour (objfile->obfd));
1405 return NULL;
1406 }
This page took 0.058296 seconds and 4 git commands to generate.