Manage objfiles with shared_ptr
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32 #include "bcache.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35
36 #include <sys/types.h>
37 #include <sys/stat.h>
38 #include <fcntl.h>
39 #include "gdb_obstack.h"
40 #include "hashtab.h"
41
42 #include "breakpoint.h"
43 #include "block.h"
44 #include "dictionary.h"
45 #include "source.h"
46 #include "addrmap.h"
47 #include "arch-utils.h"
48 #include "exec.h"
49 #include "observable.h"
50 #include "complaints.h"
51 #include "psymtab.h"
52 #include "solist.h"
53 #include "gdb_bfd.h"
54 #include "btrace.h"
55 #include "gdbsupport/pathstuff.h"
56
57 #include <algorithm>
58 #include <vector>
59
60 /* Keep a registry of per-objfile data-pointers required by other GDB
61 modules. */
62
63 DEFINE_REGISTRY (objfile, REGISTRY_ACCESS_FIELD)
64
65 /* Externally visible variables that are owned by this module.
66 See declarations in objfile.h for more info. */
67
68 struct objfile_pspace_info
69 {
70 objfile_pspace_info () = default;
71 ~objfile_pspace_info ();
72
73 struct obj_section **sections = nullptr;
74 int num_sections = 0;
75
76 /* Nonzero if object files have been added since the section map
77 was last updated. */
78 int new_objfiles_available = 0;
79
80 /* Nonzero if the section map MUST be updated before use. */
81 int section_map_dirty = 0;
82
83 /* Nonzero if section map updates should be inhibited if possible. */
84 int inhibit_updates = 0;
85 };
86
87 /* Per-program-space data key. */
88 static const struct program_space_key<objfile_pspace_info>
89 objfiles_pspace_data;
90
91 objfile_pspace_info::~objfile_pspace_info ()
92 {
93 xfree (sections);
94 }
95
96 /* Get the current svr4 data. If none is found yet, add it now. This
97 function always returns a valid object. */
98
99 static struct objfile_pspace_info *
100 get_objfile_pspace_data (struct program_space *pspace)
101 {
102 struct objfile_pspace_info *info;
103
104 info = objfiles_pspace_data.get (pspace);
105 if (info == NULL)
106 info = objfiles_pspace_data.emplace (pspace);
107
108 return info;
109 }
110
111 \f
112
113 /* Per-BFD data key. */
114
115 static const struct bfd_key<objfile_per_bfd_storage> objfiles_bfd_data;
116
117 objfile_per_bfd_storage::~objfile_per_bfd_storage ()
118 {
119 }
120
121 /* Create the per-BFD storage object for OBJFILE. If ABFD is not
122 NULL, and it already has a per-BFD storage object, use that.
123 Otherwise, allocate a new per-BFD storage object. Note that it is
124 not safe to call this multiple times for a given OBJFILE -- it can
125 only be called when allocating or re-initializing OBJFILE. */
126
127 static struct objfile_per_bfd_storage *
128 get_objfile_bfd_data (struct objfile *objfile, struct bfd *abfd)
129 {
130 struct objfile_per_bfd_storage *storage = NULL;
131
132 if (abfd != NULL)
133 storage = objfiles_bfd_data.get (abfd);
134
135 if (storage == NULL)
136 {
137 storage = new objfile_per_bfd_storage;
138 /* If the object requires gdb to do relocations, we simply fall
139 back to not sharing data across users. These cases are rare
140 enough that this seems reasonable. */
141 if (abfd != NULL && !gdb_bfd_requires_relocations (abfd))
142 objfiles_bfd_data.set (abfd, storage);
143
144 /* Look up the gdbarch associated with the BFD. */
145 if (abfd != NULL)
146 storage->gdbarch = gdbarch_from_bfd (abfd);
147 }
148
149 return storage;
150 }
151
152 /* See objfiles.h. */
153
154 void
155 set_objfile_per_bfd (struct objfile *objfile)
156 {
157 objfile->per_bfd = get_objfile_bfd_data (objfile, objfile->obfd);
158 }
159
160 /* Set the objfile's per-BFD notion of the "main" name and
161 language. */
162
163 void
164 set_objfile_main_name (struct objfile *objfile,
165 const char *name, enum language lang)
166 {
167 if (objfile->per_bfd->name_of_main == NULL
168 || strcmp (objfile->per_bfd->name_of_main, name) != 0)
169 objfile->per_bfd->name_of_main
170 = obstack_strdup (&objfile->per_bfd->storage_obstack, name);
171 objfile->per_bfd->language_of_main = lang;
172 }
173
174 /* Helper structure to map blocks to static link properties in hash tables. */
175
176 struct static_link_htab_entry
177 {
178 const struct block *block;
179 const struct dynamic_prop *static_link;
180 };
181
182 /* Return a hash code for struct static_link_htab_entry *P. */
183
184 static hashval_t
185 static_link_htab_entry_hash (const void *p)
186 {
187 const struct static_link_htab_entry *e
188 = (const struct static_link_htab_entry *) p;
189
190 return htab_hash_pointer (e->block);
191 }
192
193 /* Return whether P1 an P2 (pointers to struct static_link_htab_entry) are
194 mappings for the same block. */
195
196 static int
197 static_link_htab_entry_eq (const void *p1, const void *p2)
198 {
199 const struct static_link_htab_entry *e1
200 = (const struct static_link_htab_entry *) p1;
201 const struct static_link_htab_entry *e2
202 = (const struct static_link_htab_entry *) p2;
203
204 return e1->block == e2->block;
205 }
206
207 /* Register STATIC_LINK as the static link for BLOCK, which is part of OBJFILE.
208 Must not be called more than once for each BLOCK. */
209
210 void
211 objfile_register_static_link (struct objfile *objfile,
212 const struct block *block,
213 const struct dynamic_prop *static_link)
214 {
215 void **slot;
216 struct static_link_htab_entry lookup_entry;
217 struct static_link_htab_entry *entry;
218
219 if (objfile->static_links == NULL)
220 objfile->static_links.reset (htab_create_alloc
221 (1, &static_link_htab_entry_hash, static_link_htab_entry_eq, NULL,
222 xcalloc, xfree));
223
224 /* Create a slot for the mapping, make sure it's the first mapping for this
225 block and then create the mapping itself. */
226 lookup_entry.block = block;
227 slot = htab_find_slot (objfile->static_links.get (), &lookup_entry, INSERT);
228 gdb_assert (*slot == NULL);
229
230 entry = XOBNEW (&objfile->objfile_obstack, static_link_htab_entry);
231 entry->block = block;
232 entry->static_link = static_link;
233 *slot = (void *) entry;
234 }
235
236 /* Look for a static link for BLOCK, which is part of OBJFILE. Return NULL if
237 none was found. */
238
239 const struct dynamic_prop *
240 objfile_lookup_static_link (struct objfile *objfile,
241 const struct block *block)
242 {
243 struct static_link_htab_entry *entry;
244 struct static_link_htab_entry lookup_entry;
245
246 if (objfile->static_links == NULL)
247 return NULL;
248 lookup_entry.block = block;
249 entry = ((struct static_link_htab_entry *)
250 htab_find (objfile->static_links.get (), &lookup_entry));
251 if (entry == NULL)
252 return NULL;
253
254 gdb_assert (entry->block == block);
255 return entry->static_link;
256 }
257
258 \f
259
260 /* Called via bfd_map_over_sections to build up the section table that
261 the objfile references. The objfile contains pointers to the start
262 of the table (objfile->sections) and to the first location after
263 the end of the table (objfile->sections_end). */
264
265 static void
266 add_to_objfile_sections_full (struct bfd *abfd, struct bfd_section *asect,
267 struct objfile *objfile, int force)
268 {
269 struct obj_section *section;
270
271 if (!force)
272 {
273 flagword aflag;
274
275 aflag = bfd_section_flags (asect);
276 if (!(aflag & SEC_ALLOC))
277 return;
278 }
279
280 section = &objfile->sections[gdb_bfd_section_index (abfd, asect)];
281 section->objfile = objfile;
282 section->the_bfd_section = asect;
283 section->ovly_mapped = 0;
284 }
285
286 static void
287 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
288 void *objfilep)
289 {
290 add_to_objfile_sections_full (abfd, asect, (struct objfile *) objfilep, 0);
291 }
292
293 /* Builds a section table for OBJFILE.
294
295 Note that the OFFSET and OVLY_MAPPED in each table entry are
296 initialized to zero. */
297
298 void
299 build_objfile_section_table (struct objfile *objfile)
300 {
301 int count = gdb_bfd_count_sections (objfile->obfd);
302
303 objfile->sections = OBSTACK_CALLOC (&objfile->objfile_obstack,
304 count,
305 struct obj_section);
306 objfile->sections_end = (objfile->sections + count);
307 bfd_map_over_sections (objfile->obfd,
308 add_to_objfile_sections, (void *) objfile);
309
310 /* See gdb_bfd_section_index. */
311 add_to_objfile_sections_full (objfile->obfd, bfd_com_section_ptr, objfile, 1);
312 add_to_objfile_sections_full (objfile->obfd, bfd_und_section_ptr, objfile, 1);
313 add_to_objfile_sections_full (objfile->obfd, bfd_abs_section_ptr, objfile, 1);
314 add_to_objfile_sections_full (objfile->obfd, bfd_ind_section_ptr, objfile, 1);
315 }
316
317 /* Given a pointer to an initialized bfd (ABFD) and some flag bits,
318 initialize the new objfile as best we can and link it into the list
319 of all known objfiles.
320
321 NAME should contain original non-canonicalized filename or other
322 identifier as entered by user. If there is no better source use
323 bfd_get_filename (ABFD). NAME may be NULL only if ABFD is NULL.
324 NAME content is copied into returned objfile.
325
326 The FLAGS word contains various bits (OBJF_*) that can be taken as
327 requests for specific operations. Other bits like OBJF_SHARED are
328 simply copied through to the new objfile flags member. */
329
330 objfile::objfile (bfd *abfd, const char *name, objfile_flags flags_)
331 : flags (flags_),
332 pspace (current_program_space),
333 partial_symtabs (new psymtab_storage ()),
334 obfd (abfd)
335 {
336 const char *expanded_name;
337
338 /* We could use obstack_specify_allocation here instead, but
339 gdb_obstack.h specifies the alloc/dealloc functions. */
340 obstack_init (&objfile_obstack);
341
342 objfile_alloc_data (this);
343
344 gdb::unique_xmalloc_ptr<char> name_holder;
345 if (name == NULL)
346 {
347 gdb_assert (abfd == NULL);
348 gdb_assert ((flags & OBJF_NOT_FILENAME) != 0);
349 expanded_name = "<<anonymous objfile>>";
350 }
351 else if ((flags & OBJF_NOT_FILENAME) != 0
352 || is_target_filename (name))
353 expanded_name = name;
354 else
355 {
356 name_holder = gdb_abspath (name);
357 expanded_name = name_holder.get ();
358 }
359 original_name = obstack_strdup (&objfile_obstack, expanded_name);
360
361 /* Update the per-objfile information that comes from the bfd, ensuring
362 that any data that is reference is saved in the per-objfile data
363 region. */
364
365 gdb_bfd_ref (abfd);
366 if (abfd != NULL)
367 {
368 mtime = bfd_get_mtime (abfd);
369
370 /* Build section table. */
371 build_objfile_section_table (this);
372 }
373
374 per_bfd = get_objfile_bfd_data (this, abfd);
375 }
376
377 /* Retrieve the gdbarch associated with OBJFILE. */
378
379 struct gdbarch *
380 get_objfile_arch (const struct objfile *objfile)
381 {
382 return objfile->per_bfd->gdbarch;
383 }
384
385 /* If there is a valid and known entry point, function fills *ENTRY_P with it
386 and returns non-zero; otherwise it returns zero. */
387
388 int
389 entry_point_address_query (CORE_ADDR *entry_p)
390 {
391 if (symfile_objfile == NULL || !symfile_objfile->per_bfd->ei.entry_point_p)
392 return 0;
393
394 *entry_p = (symfile_objfile->per_bfd->ei.entry_point
395 + ANOFFSET (symfile_objfile->section_offsets,
396 symfile_objfile->per_bfd->ei.the_bfd_section_index));
397
398 return 1;
399 }
400
401 /* Get current entry point address. Call error if it is not known. */
402
403 CORE_ADDR
404 entry_point_address (void)
405 {
406 CORE_ADDR retval;
407
408 if (!entry_point_address_query (&retval))
409 error (_("Entry point address is not known."));
410
411 return retval;
412 }
413
414 separate_debug_iterator &
415 separate_debug_iterator::operator++ ()
416 {
417 gdb_assert (m_objfile != nullptr);
418
419 struct objfile *res;
420
421 /* If any, return the first child. */
422 res = m_objfile->separate_debug_objfile;
423 if (res != nullptr)
424 {
425 m_objfile = res;
426 return *this;
427 }
428
429 /* Common case where there is no separate debug objfile. */
430 if (m_objfile == m_parent)
431 {
432 m_objfile = nullptr;
433 return *this;
434 }
435
436 /* Return the brother if any. Note that we don't iterate on brothers of
437 the parents. */
438 res = m_objfile->separate_debug_objfile_link;
439 if (res != nullptr)
440 {
441 m_objfile = res;
442 return *this;
443 }
444
445 for (res = m_objfile->separate_debug_objfile_backlink;
446 res != m_parent;
447 res = res->separate_debug_objfile_backlink)
448 {
449 gdb_assert (res != nullptr);
450 if (res->separate_debug_objfile_link != nullptr)
451 {
452 m_objfile = res->separate_debug_objfile_link;
453 return *this;
454 }
455 }
456 m_objfile = nullptr;
457 return *this;
458 }
459
460 /* Add OBJFILE as a separate debug objfile of PARENT. */
461
462 static void
463 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
464 {
465 gdb_assert (objfile && parent);
466
467 /* Must not be already in a list. */
468 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
469 gdb_assert (objfile->separate_debug_objfile_link == NULL);
470 gdb_assert (objfile->separate_debug_objfile == NULL);
471 gdb_assert (parent->separate_debug_objfile_backlink == NULL);
472 gdb_assert (parent->separate_debug_objfile_link == NULL);
473
474 objfile->separate_debug_objfile_backlink = parent;
475 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
476 parent->separate_debug_objfile = objfile;
477 }
478
479 /* See objfiles.h. */
480
481 objfile *
482 objfile::make (bfd *bfd_, const char *name_, objfile_flags flags_,
483 objfile *parent)
484 {
485 objfile *result = new objfile (bfd_, name_, flags_);
486 if (parent != nullptr)
487 add_separate_debug_objfile (result, parent);
488
489 /* Using std::make_shared might be a bit nicer here, but that would
490 require making the constructor public. */
491 current_program_space->add_objfile (std::shared_ptr<objfile> (result),
492 parent);
493
494 /* Rebuild section map next time we need it. */
495 get_objfile_pspace_data (current_program_space)->new_objfiles_available = 1;
496
497 return result;
498 }
499
500 /* See objfiles.h. */
501
502 void
503 objfile::unlink ()
504 {
505 current_program_space->remove_objfile (this);
506 }
507
508 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
509 itself. */
510
511 void
512 free_objfile_separate_debug (struct objfile *objfile)
513 {
514 struct objfile *child;
515
516 for (child = objfile->separate_debug_objfile; child;)
517 {
518 struct objfile *next_child = child->separate_debug_objfile_link;
519 child->unlink ();
520 child = next_child;
521 }
522 }
523
524 /* Destroy an objfile and all the symtabs and psymtabs under it. */
525
526 objfile::~objfile ()
527 {
528 /* First notify observers that this objfile is about to be freed. */
529 gdb::observers::free_objfile.notify (this);
530
531 /* Free all separate debug objfiles. */
532 free_objfile_separate_debug (this);
533
534 if (separate_debug_objfile_backlink)
535 {
536 /* We freed the separate debug file, make sure the base objfile
537 doesn't reference it. */
538 struct objfile *child;
539
540 child = separate_debug_objfile_backlink->separate_debug_objfile;
541
542 if (child == this)
543 {
544 /* THIS is the first child. */
545 separate_debug_objfile_backlink->separate_debug_objfile =
546 separate_debug_objfile_link;
547 }
548 else
549 {
550 /* Find THIS in the list. */
551 while (1)
552 {
553 if (child->separate_debug_objfile_link == this)
554 {
555 child->separate_debug_objfile_link =
556 separate_debug_objfile_link;
557 break;
558 }
559 child = child->separate_debug_objfile_link;
560 gdb_assert (child);
561 }
562 }
563 }
564
565 /* Remove any references to this objfile in the global value
566 lists. */
567 preserve_values (this);
568
569 /* It still may reference data modules have associated with the objfile and
570 the symbol file data. */
571 forget_cached_source_info_for_objfile (this);
572
573 breakpoint_free_objfile (this);
574 btrace_free_objfile (this);
575
576 /* First do any symbol file specific actions required when we are
577 finished with a particular symbol file. Note that if the objfile
578 is using reusable symbol information (via mmalloc) then each of
579 these routines is responsible for doing the correct thing, either
580 freeing things which are valid only during this particular gdb
581 execution, or leaving them to be reused during the next one. */
582
583 if (sf != NULL)
584 (*sf->sym_finish) (this);
585
586 /* Discard any data modules have associated with the objfile. The function
587 still may reference obfd. */
588 objfile_free_data (this);
589
590 if (obfd)
591 gdb_bfd_unref (obfd);
592 else
593 delete per_bfd;
594
595 /* Before the symbol table code was redone to make it easier to
596 selectively load and remove information particular to a specific
597 linkage unit, gdb used to do these things whenever the monolithic
598 symbol table was blown away. How much still needs to be done
599 is unknown, but we play it safe for now and keep each action until
600 it is shown to be no longer needed. */
601
602 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
603 for example), so we need to call this here. */
604 clear_pc_function_cache ();
605
606 /* Check to see if the current_source_symtab belongs to this objfile,
607 and if so, call clear_current_source_symtab_and_line. */
608
609 {
610 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
611
612 if (cursal.symtab && SYMTAB_OBJFILE (cursal.symtab) == this)
613 clear_current_source_symtab_and_line ();
614 }
615
616 /* Free the obstacks for non-reusable objfiles. */
617 obstack_free (&objfile_obstack, 0);
618
619 /* Rebuild section map next time we need it. */
620 get_objfile_pspace_data (pspace)->section_map_dirty = 1;
621 }
622
623 \f
624 /* A helper function for objfile_relocate1 that relocates a single
625 symbol. */
626
627 static void
628 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
629 struct section_offsets *delta)
630 {
631 fixup_symbol_section (sym, objfile);
632
633 /* The RS6000 code from which this was taken skipped
634 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
635 But I'm leaving out that test, on the theory that
636 they can't possibly pass the tests below. */
637 if ((SYMBOL_CLASS (sym) == LOC_LABEL
638 || SYMBOL_CLASS (sym) == LOC_STATIC)
639 && SYMBOL_SECTION (sym) >= 0)
640 {
641 SET_SYMBOL_VALUE_ADDRESS (sym,
642 SYMBOL_VALUE_ADDRESS (sym)
643 + ANOFFSET (delta, SYMBOL_SECTION (sym)));
644 }
645 }
646
647 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
648 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
649 Return non-zero iff any change happened. */
650
651 static int
652 objfile_relocate1 (struct objfile *objfile,
653 const struct section_offsets *new_offsets)
654 {
655 struct section_offsets *delta =
656 ((struct section_offsets *)
657 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
658
659 int something_changed = 0;
660
661 for (int i = 0; i < objfile->num_sections; ++i)
662 {
663 delta->offsets[i] =
664 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
665 if (ANOFFSET (delta, i) != 0)
666 something_changed = 1;
667 }
668 if (!something_changed)
669 return 0;
670
671 /* OK, get all the symtabs. */
672 {
673 for (compunit_symtab *cust : objfile->compunits ())
674 {
675 for (symtab *s : compunit_filetabs (cust))
676 {
677 struct linetable *l;
678
679 /* First the line table. */
680 l = SYMTAB_LINETABLE (s);
681 if (l)
682 {
683 for (int i = 0; i < l->nitems; ++i)
684 l->item[i].pc += ANOFFSET (delta,
685 COMPUNIT_BLOCK_LINE_SECTION
686 (cust));
687 }
688 }
689 }
690
691 for (compunit_symtab *cust : objfile->compunits ())
692 {
693 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
694 int block_line_section = COMPUNIT_BLOCK_LINE_SECTION (cust);
695
696 if (BLOCKVECTOR_MAP (bv))
697 addrmap_relocate (BLOCKVECTOR_MAP (bv),
698 ANOFFSET (delta, block_line_section));
699
700 for (int i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
701 {
702 struct block *b;
703 struct symbol *sym;
704 struct mdict_iterator miter;
705
706 b = BLOCKVECTOR_BLOCK (bv, i);
707 BLOCK_START (b) += ANOFFSET (delta, block_line_section);
708 BLOCK_END (b) += ANOFFSET (delta, block_line_section);
709
710 if (BLOCK_RANGES (b) != nullptr)
711 for (int j = 0; j < BLOCK_NRANGES (b); j++)
712 {
713 BLOCK_RANGE_START (b, j)
714 += ANOFFSET (delta, block_line_section);
715 BLOCK_RANGE_END (b, j) += ANOFFSET (delta,
716 block_line_section);
717 }
718
719 /* We only want to iterate over the local symbols, not any
720 symbols in included symtabs. */
721 ALL_DICT_SYMBOLS (BLOCK_MULTIDICT (b), miter, sym)
722 {
723 relocate_one_symbol (sym, objfile, delta);
724 }
725 }
726 }
727 }
728
729 /* This stores relocated addresses and so must be cleared. This
730 will cause it to be recreated on demand. */
731 objfile->psymbol_map.clear ();
732
733 /* Relocate isolated symbols. */
734 {
735 struct symbol *iter;
736
737 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
738 relocate_one_symbol (iter, objfile, delta);
739 }
740
741 {
742 int i;
743
744 for (i = 0; i < objfile->num_sections; ++i)
745 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
746 }
747
748 /* Rebuild section map next time we need it. */
749 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
750
751 /* Update the table in exec_ops, used to read memory. */
752 struct obj_section *s;
753 ALL_OBJFILE_OSECTIONS (objfile, s)
754 {
755 int idx = s - objfile->sections;
756
757 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
758 obj_section_addr (s));
759 }
760
761 /* Data changed. */
762 return 1;
763 }
764
765 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
766 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
767
768 The number and ordering of sections does differ between the two objfiles.
769 Only their names match. Also the file offsets will differ (objfile being
770 possibly prelinked but separate_debug_objfile is probably not prelinked) but
771 the in-memory absolute address as specified by NEW_OFFSETS must match both
772 files. */
773
774 void
775 objfile_relocate (struct objfile *objfile,
776 const struct section_offsets *new_offsets)
777 {
778 int changed = 0;
779
780 changed |= objfile_relocate1 (objfile, new_offsets);
781
782 for (::objfile *debug_objfile : objfile->separate_debug_objfiles ())
783 {
784 if (debug_objfile == objfile)
785 continue;
786
787 section_addr_info objfile_addrs
788 = build_section_addr_info_from_objfile (objfile);
789
790 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
791 relative ones must be already created according to debug_objfile. */
792
793 addr_info_make_relative (&objfile_addrs, debug_objfile->obfd);
794
795 gdb_assert (debug_objfile->num_sections
796 == gdb_bfd_count_sections (debug_objfile->obfd));
797 std::vector<struct section_offsets>
798 new_debug_offsets (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections));
799 relative_addr_info_to_section_offsets (new_debug_offsets.data (),
800 debug_objfile->num_sections,
801 objfile_addrs);
802
803 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets.data ());
804 }
805
806 /* Relocate breakpoints as necessary, after things are relocated. */
807 if (changed)
808 breakpoint_re_set ();
809 }
810
811 /* Rebase (add to the offsets) OBJFILE by SLIDE. SEPARATE_DEBUG_OBJFILE is
812 not touched here.
813 Return non-zero iff any change happened. */
814
815 static int
816 objfile_rebase1 (struct objfile *objfile, CORE_ADDR slide)
817 {
818 struct section_offsets *new_offsets =
819 ((struct section_offsets *)
820 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
821 int i;
822
823 for (i = 0; i < objfile->num_sections; ++i)
824 new_offsets->offsets[i] = slide;
825
826 return objfile_relocate1 (objfile, new_offsets);
827 }
828
829 /* Rebase (add to the offsets) OBJFILE by SLIDE. Process also OBJFILE's
830 SEPARATE_DEBUG_OBJFILEs. */
831
832 void
833 objfile_rebase (struct objfile *objfile, CORE_ADDR slide)
834 {
835 int changed = 0;
836
837 for (::objfile *debug_objfile : objfile->separate_debug_objfiles ())
838 changed |= objfile_rebase1 (debug_objfile, slide);
839
840 /* Relocate breakpoints as necessary, after things are relocated. */
841 if (changed)
842 breakpoint_re_set ();
843 }
844 \f
845 /* Return non-zero if OBJFILE has partial symbols. */
846
847 int
848 objfile_has_partial_symbols (struct objfile *objfile)
849 {
850 if (!objfile->sf)
851 return 0;
852
853 /* If we have not read psymbols, but we have a function capable of reading
854 them, then that is an indication that they are in fact available. Without
855 this function the symbols may have been already read in but they also may
856 not be present in this objfile. */
857 if ((objfile->flags & OBJF_PSYMTABS_READ) == 0
858 && objfile->sf->sym_read_psymbols != NULL)
859 return 1;
860
861 return objfile->sf->qf->has_symbols (objfile);
862 }
863
864 /* Return non-zero if OBJFILE has full symbols. */
865
866 int
867 objfile_has_full_symbols (struct objfile *objfile)
868 {
869 return objfile->compunit_symtabs != NULL;
870 }
871
872 /* Return non-zero if OBJFILE has full or partial symbols, either directly
873 or through a separate debug file. */
874
875 int
876 objfile_has_symbols (struct objfile *objfile)
877 {
878 for (::objfile *o : objfile->separate_debug_objfiles ())
879 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
880 return 1;
881 return 0;
882 }
883
884
885 /* Many places in gdb want to test just to see if we have any partial
886 symbols available. This function returns zero if none are currently
887 available, nonzero otherwise. */
888
889 int
890 have_partial_symbols (void)
891 {
892 for (objfile *ofp : current_program_space->objfiles ())
893 {
894 if (objfile_has_partial_symbols (ofp))
895 return 1;
896 }
897 return 0;
898 }
899
900 /* Many places in gdb want to test just to see if we have any full
901 symbols available. This function returns zero if none are currently
902 available, nonzero otherwise. */
903
904 int
905 have_full_symbols (void)
906 {
907 for (objfile *ofp : current_program_space->objfiles ())
908 {
909 if (objfile_has_full_symbols (ofp))
910 return 1;
911 }
912 return 0;
913 }
914
915
916 /* This operations deletes all objfile entries that represent solibs that
917 weren't explicitly loaded by the user, via e.g., the add-symbol-file
918 command. */
919
920 void
921 objfile_purge_solibs (void)
922 {
923 for (objfile *objf : current_program_space->objfiles_safe ())
924 {
925 /* We assume that the solib package has been purged already, or will
926 be soon. */
927
928 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
929 objf->unlink ();
930 }
931 }
932
933
934 /* Many places in gdb want to test just to see if we have any minimal
935 symbols available. This function returns zero if none are currently
936 available, nonzero otherwise. */
937
938 int
939 have_minimal_symbols (void)
940 {
941 for (objfile *ofp : current_program_space->objfiles ())
942 {
943 if (ofp->per_bfd->minimal_symbol_count > 0)
944 {
945 return 1;
946 }
947 }
948 return 0;
949 }
950
951 /* Qsort comparison function. */
952
953 static bool
954 sort_cmp (const struct obj_section *sect1, const obj_section *sect2)
955 {
956 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
957 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
958
959 if (sect1_addr < sect2_addr)
960 return true;
961 else if (sect1_addr > sect2_addr)
962 return false;
963 else
964 {
965 /* Sections are at the same address. This could happen if
966 A) we have an objfile and a separate debuginfo.
967 B) we are confused, and have added sections without proper relocation,
968 or something like that. */
969
970 const struct objfile *const objfile1 = sect1->objfile;
971 const struct objfile *const objfile2 = sect2->objfile;
972
973 if (objfile1->separate_debug_objfile == objfile2
974 || objfile2->separate_debug_objfile == objfile1)
975 {
976 /* Case A. The ordering doesn't matter: separate debuginfo files
977 will be filtered out later. */
978
979 return false;
980 }
981
982 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
983 triage. This section could be slow (since we iterate over all
984 objfiles in each call to sort_cmp), but this shouldn't happen
985 very often (GDB is already in a confused state; one hopes this
986 doesn't happen at all). If you discover that significant time is
987 spent in the loops below, do 'set complaints 100' and examine the
988 resulting complaints. */
989 if (objfile1 == objfile2)
990 {
991 /* Both sections came from the same objfile. We are really
992 confused. Sort on sequence order of sections within the
993 objfile. The order of checks is important here, if we find a
994 match on SECT2 first then either SECT2 is before SECT1, or,
995 SECT2 == SECT1, in both cases we should return false. The
996 second case shouldn't occur during normal use, but std::sort
997 does check that '!(a < a)' when compiled in debug mode. */
998
999 const struct obj_section *osect;
1000
1001 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1002 if (osect == sect2)
1003 return false;
1004 else if (osect == sect1)
1005 return true;
1006
1007 /* We should have found one of the sections before getting here. */
1008 gdb_assert_not_reached ("section not found");
1009 }
1010 else
1011 {
1012 /* Sort on sequence number of the objfile in the chain. */
1013
1014 for (objfile *objfile : current_program_space->objfiles ())
1015 if (objfile == objfile1)
1016 return true;
1017 else if (objfile == objfile2)
1018 return false;
1019
1020 /* We should have found one of the objfiles before getting here. */
1021 gdb_assert_not_reached ("objfile not found");
1022 }
1023 }
1024
1025 /* Unreachable. */
1026 gdb_assert_not_reached ("unexpected code path");
1027 return false;
1028 }
1029
1030 /* Select "better" obj_section to keep. We prefer the one that came from
1031 the real object, rather than the one from separate debuginfo.
1032 Most of the time the two sections are exactly identical, but with
1033 prelinking the .rel.dyn section in the real object may have different
1034 size. */
1035
1036 static struct obj_section *
1037 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1038 {
1039 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1040 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1041 || (b->objfile->separate_debug_objfile == a->objfile));
1042 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1043 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1044
1045 if (a->objfile->separate_debug_objfile != NULL)
1046 return a;
1047 return b;
1048 }
1049
1050 /* Return 1 if SECTION should be inserted into the section map.
1051 We want to insert only non-overlay and non-TLS section. */
1052
1053 static int
1054 insert_section_p (const struct bfd *abfd,
1055 const struct bfd_section *section)
1056 {
1057 const bfd_vma lma = bfd_section_lma (section);
1058
1059 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (section)
1060 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1061 /* This is an overlay section. IN_MEMORY check is needed to avoid
1062 discarding sections from the "system supplied DSO" (aka vdso)
1063 on some Linux systems (e.g. Fedora 11). */
1064 return 0;
1065 if ((bfd_section_flags (section) & SEC_THREAD_LOCAL) != 0)
1066 /* This is a TLS section. */
1067 return 0;
1068
1069 return 1;
1070 }
1071
1072 /* Filter out overlapping sections where one section came from the real
1073 objfile, and the other from a separate debuginfo file.
1074 Return the size of table after redundant sections have been eliminated. */
1075
1076 static int
1077 filter_debuginfo_sections (struct obj_section **map, int map_size)
1078 {
1079 int i, j;
1080
1081 for (i = 0, j = 0; i < map_size - 1; i++)
1082 {
1083 struct obj_section *const sect1 = map[i];
1084 struct obj_section *const sect2 = map[i + 1];
1085 const struct objfile *const objfile1 = sect1->objfile;
1086 const struct objfile *const objfile2 = sect2->objfile;
1087 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1088 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1089
1090 if (sect1_addr == sect2_addr
1091 && (objfile1->separate_debug_objfile == objfile2
1092 || objfile2->separate_debug_objfile == objfile1))
1093 {
1094 map[j++] = preferred_obj_section (sect1, sect2);
1095 ++i;
1096 }
1097 else
1098 map[j++] = sect1;
1099 }
1100
1101 if (i < map_size)
1102 {
1103 gdb_assert (i == map_size - 1);
1104 map[j++] = map[i];
1105 }
1106
1107 /* The map should not have shrunk to less than half the original size. */
1108 gdb_assert (map_size / 2 <= j);
1109
1110 return j;
1111 }
1112
1113 /* Filter out overlapping sections, issuing a warning if any are found.
1114 Overlapping sections could really be overlay sections which we didn't
1115 classify as such in insert_section_p, or we could be dealing with a
1116 corrupt binary. */
1117
1118 static int
1119 filter_overlapping_sections (struct obj_section **map, int map_size)
1120 {
1121 int i, j;
1122
1123 for (i = 0, j = 0; i < map_size - 1; )
1124 {
1125 int k;
1126
1127 map[j++] = map[i];
1128 for (k = i + 1; k < map_size; k++)
1129 {
1130 struct obj_section *const sect1 = map[i];
1131 struct obj_section *const sect2 = map[k];
1132 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1133 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1134 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1135
1136 gdb_assert (sect1_addr <= sect2_addr);
1137
1138 if (sect1_endaddr <= sect2_addr)
1139 break;
1140 else
1141 {
1142 /* We have an overlap. Report it. */
1143
1144 struct objfile *const objf1 = sect1->objfile;
1145 struct objfile *const objf2 = sect2->objfile;
1146
1147 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1148 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1149
1150 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1151
1152 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1153
1154 complaint (_("unexpected overlap between:\n"
1155 " (A) section `%s' from `%s' [%s, %s)\n"
1156 " (B) section `%s' from `%s' [%s, %s).\n"
1157 "Will ignore section B"),
1158 bfd_section_name (bfds1), objfile_name (objf1),
1159 paddress (gdbarch, sect1_addr),
1160 paddress (gdbarch, sect1_endaddr),
1161 bfd_section_name (bfds2), objfile_name (objf2),
1162 paddress (gdbarch, sect2_addr),
1163 paddress (gdbarch, sect2_endaddr));
1164 }
1165 }
1166 i = k;
1167 }
1168
1169 if (i < map_size)
1170 {
1171 gdb_assert (i == map_size - 1);
1172 map[j++] = map[i];
1173 }
1174
1175 return j;
1176 }
1177
1178
1179 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1180 TLS, overlay and overlapping sections. */
1181
1182 static void
1183 update_section_map (struct program_space *pspace,
1184 struct obj_section ***pmap, int *pmap_size)
1185 {
1186 struct objfile_pspace_info *pspace_info;
1187 int alloc_size, map_size, i;
1188 struct obj_section *s, **map;
1189
1190 pspace_info = get_objfile_pspace_data (pspace);
1191 gdb_assert (pspace_info->section_map_dirty != 0
1192 || pspace_info->new_objfiles_available != 0);
1193
1194 map = *pmap;
1195 xfree (map);
1196
1197 alloc_size = 0;
1198 for (objfile *objfile : pspace->objfiles ())
1199 ALL_OBJFILE_OSECTIONS (objfile, s)
1200 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1201 alloc_size += 1;
1202
1203 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1204 if (alloc_size == 0)
1205 {
1206 *pmap = NULL;
1207 *pmap_size = 0;
1208 return;
1209 }
1210
1211 map = XNEWVEC (struct obj_section *, alloc_size);
1212
1213 i = 0;
1214 for (objfile *objfile : pspace->objfiles ())
1215 ALL_OBJFILE_OSECTIONS (objfile, s)
1216 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1217 map[i++] = s;
1218
1219 std::sort (map, map + alloc_size, sort_cmp);
1220 map_size = filter_debuginfo_sections(map, alloc_size);
1221 map_size = filter_overlapping_sections(map, map_size);
1222
1223 if (map_size < alloc_size)
1224 /* Some sections were eliminated. Trim excess space. */
1225 map = XRESIZEVEC (struct obj_section *, map, map_size);
1226 else
1227 gdb_assert (alloc_size == map_size);
1228
1229 *pmap = map;
1230 *pmap_size = map_size;
1231 }
1232
1233 /* Bsearch comparison function. */
1234
1235 static int
1236 bsearch_cmp (const void *key, const void *elt)
1237 {
1238 const CORE_ADDR pc = *(CORE_ADDR *) key;
1239 const struct obj_section *section = *(const struct obj_section **) elt;
1240
1241 if (pc < obj_section_addr (section))
1242 return -1;
1243 if (pc < obj_section_endaddr (section))
1244 return 0;
1245 return 1;
1246 }
1247
1248 /* Returns a section whose range includes PC or NULL if none found. */
1249
1250 struct obj_section *
1251 find_pc_section (CORE_ADDR pc)
1252 {
1253 struct objfile_pspace_info *pspace_info;
1254 struct obj_section *s, **sp;
1255
1256 /* Check for mapped overlay section first. */
1257 s = find_pc_mapped_section (pc);
1258 if (s)
1259 return s;
1260
1261 pspace_info = get_objfile_pspace_data (current_program_space);
1262 if (pspace_info->section_map_dirty
1263 || (pspace_info->new_objfiles_available
1264 && !pspace_info->inhibit_updates))
1265 {
1266 update_section_map (current_program_space,
1267 &pspace_info->sections,
1268 &pspace_info->num_sections);
1269
1270 /* Don't need updates to section map until objfiles are added,
1271 removed or relocated. */
1272 pspace_info->new_objfiles_available = 0;
1273 pspace_info->section_map_dirty = 0;
1274 }
1275
1276 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1277 bsearch be non-NULL. */
1278 if (pspace_info->sections == NULL)
1279 {
1280 gdb_assert (pspace_info->num_sections == 0);
1281 return NULL;
1282 }
1283
1284 sp = (struct obj_section **) bsearch (&pc,
1285 pspace_info->sections,
1286 pspace_info->num_sections,
1287 sizeof (*pspace_info->sections),
1288 bsearch_cmp);
1289 if (sp != NULL)
1290 return *sp;
1291 return NULL;
1292 }
1293
1294
1295 /* Return non-zero if PC is in a section called NAME. */
1296
1297 int
1298 pc_in_section (CORE_ADDR pc, const char *name)
1299 {
1300 struct obj_section *s;
1301 int retval = 0;
1302
1303 s = find_pc_section (pc);
1304
1305 retval = (s != NULL
1306 && s->the_bfd_section->name != NULL
1307 && strcmp (s->the_bfd_section->name, name) == 0);
1308 return (retval);
1309 }
1310 \f
1311
1312 /* Set section_map_dirty so section map will be rebuilt next time it
1313 is used. Called by reread_symbols. */
1314
1315 void
1316 objfiles_changed (void)
1317 {
1318 /* Rebuild section map next time we need it. */
1319 get_objfile_pspace_data (current_program_space)->section_map_dirty = 1;
1320 }
1321
1322 /* See comments in objfiles.h. */
1323
1324 scoped_restore_tmpl<int>
1325 inhibit_section_map_updates (struct program_space *pspace)
1326 {
1327 return scoped_restore_tmpl<int>
1328 (&get_objfile_pspace_data (pspace)->inhibit_updates, 1);
1329 }
1330
1331 /* Return 1 if ADDR maps into one of the sections of OBJFILE and 0
1332 otherwise. */
1333
1334 int
1335 is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile)
1336 {
1337 struct obj_section *osect;
1338
1339 if (objfile == NULL)
1340 return 0;
1341
1342 ALL_OBJFILE_OSECTIONS (objfile, osect)
1343 {
1344 if (section_is_overlay (osect) && !section_is_mapped (osect))
1345 continue;
1346
1347 if (obj_section_addr (osect) <= addr
1348 && addr < obj_section_endaddr (osect))
1349 return 1;
1350 }
1351 return 0;
1352 }
1353
1354 int
1355 shared_objfile_contains_address_p (struct program_space *pspace,
1356 CORE_ADDR address)
1357 {
1358 for (objfile *objfile : pspace->objfiles ())
1359 {
1360 if ((objfile->flags & OBJF_SHARED) != 0
1361 && is_addr_in_objfile (address, objfile))
1362 return 1;
1363 }
1364
1365 return 0;
1366 }
1367
1368 /* The default implementation for the "iterate_over_objfiles_in_search_order"
1369 gdbarch method. It is equivalent to use the objfiles iterable,
1370 searching the objfiles in the order they are stored internally,
1371 ignoring CURRENT_OBJFILE.
1372
1373 On most platforms, it should be close enough to doing the best
1374 we can without some knowledge specific to the architecture. */
1375
1376 void
1377 default_iterate_over_objfiles_in_search_order
1378 (struct gdbarch *gdbarch,
1379 iterate_over_objfiles_in_search_order_cb_ftype *cb,
1380 void *cb_data, struct objfile *current_objfile)
1381 {
1382 int stop = 0;
1383
1384 for (objfile *objfile : current_program_space->objfiles ())
1385 {
1386 stop = cb (objfile, cb_data);
1387 if (stop)
1388 return;
1389 }
1390 }
1391
1392 /* See objfiles.h. */
1393
1394 const char *
1395 objfile_name (const struct objfile *objfile)
1396 {
1397 if (objfile->obfd != NULL)
1398 return bfd_get_filename (objfile->obfd);
1399
1400 return objfile->original_name;
1401 }
1402
1403 /* See objfiles.h. */
1404
1405 const char *
1406 objfile_filename (const struct objfile *objfile)
1407 {
1408 if (objfile->obfd != NULL)
1409 return bfd_get_filename (objfile->obfd);
1410
1411 return NULL;
1412 }
1413
1414 /* See objfiles.h. */
1415
1416 const char *
1417 objfile_debug_name (const struct objfile *objfile)
1418 {
1419 return lbasename (objfile->original_name);
1420 }
1421
1422 /* See objfiles.h. */
1423
1424 const char *
1425 objfile_flavour_name (struct objfile *objfile)
1426 {
1427 if (objfile->obfd != NULL)
1428 return bfd_flavour_name (bfd_get_flavour (objfile->obfd));
1429 return NULL;
1430 }
This page took 0.087547 seconds and 4 git commands to generate.