a635f7783e6e9e545ae141bb3292592040bc1306
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32 #include "bcache.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35
36 #include <sys/types.h>
37 #include <sys/stat.h>
38 #include <fcntl.h>
39 #include "gdb_obstack.h"
40 #include "hashtab.h"
41
42 #include "breakpoint.h"
43 #include "block.h"
44 #include "dictionary.h"
45 #include "source.h"
46 #include "addrmap.h"
47 #include "arch-utils.h"
48 #include "exec.h"
49 #include "observable.h"
50 #include "complaints.h"
51 #include "psymtab.h"
52 #include "solist.h"
53 #include "gdb_bfd.h"
54 #include "btrace.h"
55 #include "gdbsupport/pathstuff.h"
56
57 #include <vector>
58
59 /* Keep a registry of per-objfile data-pointers required by other GDB
60 modules. */
61
62 DEFINE_REGISTRY (objfile, REGISTRY_ACCESS_FIELD)
63
64 /* Externally visible variables that are owned by this module.
65 See declarations in objfile.h for more info. */
66
67 struct objfile_pspace_info
68 {
69 objfile_pspace_info () = default;
70 ~objfile_pspace_info ();
71
72 struct obj_section **sections = nullptr;
73 int num_sections = 0;
74
75 /* Nonzero if object files have been added since the section map
76 was last updated. */
77 int new_objfiles_available = 0;
78
79 /* Nonzero if the section map MUST be updated before use. */
80 int section_map_dirty = 0;
81
82 /* Nonzero if section map updates should be inhibited if possible. */
83 int inhibit_updates = 0;
84 };
85
86 /* Per-program-space data key. */
87 static const struct program_space_key<objfile_pspace_info>
88 objfiles_pspace_data;
89
90 objfile_pspace_info::~objfile_pspace_info ()
91 {
92 xfree (sections);
93 }
94
95 /* Get the current svr4 data. If none is found yet, add it now. This
96 function always returns a valid object. */
97
98 static struct objfile_pspace_info *
99 get_objfile_pspace_data (struct program_space *pspace)
100 {
101 struct objfile_pspace_info *info;
102
103 info = objfiles_pspace_data.get (pspace);
104 if (info == NULL)
105 info = objfiles_pspace_data.emplace (pspace);
106
107 return info;
108 }
109
110 \f
111
112 /* Per-BFD data key. */
113
114 static const struct bfd_key<objfile_per_bfd_storage> objfiles_bfd_data;
115
116 objfile_per_bfd_storage::~objfile_per_bfd_storage ()
117 {
118 }
119
120 /* Create the per-BFD storage object for OBJFILE. If ABFD is not
121 NULL, and it already has a per-BFD storage object, use that.
122 Otherwise, allocate a new per-BFD storage object. Note that it is
123 not safe to call this multiple times for a given OBJFILE -- it can
124 only be called when allocating or re-initializing OBJFILE. */
125
126 static struct objfile_per_bfd_storage *
127 get_objfile_bfd_data (struct objfile *objfile, struct bfd *abfd)
128 {
129 struct objfile_per_bfd_storage *storage = NULL;
130
131 if (abfd != NULL)
132 storage = objfiles_bfd_data.get (abfd);
133
134 if (storage == NULL)
135 {
136 storage = new objfile_per_bfd_storage;
137 /* If the object requires gdb to do relocations, we simply fall
138 back to not sharing data across users. These cases are rare
139 enough that this seems reasonable. */
140 if (abfd != NULL && !gdb_bfd_requires_relocations (abfd))
141 objfiles_bfd_data.set (abfd, storage);
142
143 /* Look up the gdbarch associated with the BFD. */
144 if (abfd != NULL)
145 storage->gdbarch = gdbarch_from_bfd (abfd);
146 }
147
148 return storage;
149 }
150
151 /* See objfiles.h. */
152
153 void
154 set_objfile_per_bfd (struct objfile *objfile)
155 {
156 objfile->per_bfd = get_objfile_bfd_data (objfile, objfile->obfd);
157 }
158
159 /* Set the objfile's per-BFD notion of the "main" name and
160 language. */
161
162 void
163 set_objfile_main_name (struct objfile *objfile,
164 const char *name, enum language lang)
165 {
166 if (objfile->per_bfd->name_of_main == NULL
167 || strcmp (objfile->per_bfd->name_of_main, name) != 0)
168 objfile->per_bfd->name_of_main
169 = obstack_strdup (&objfile->per_bfd->storage_obstack, name);
170 objfile->per_bfd->language_of_main = lang;
171 }
172
173 /* Helper structure to map blocks to static link properties in hash tables. */
174
175 struct static_link_htab_entry
176 {
177 const struct block *block;
178 const struct dynamic_prop *static_link;
179 };
180
181 /* Return a hash code for struct static_link_htab_entry *P. */
182
183 static hashval_t
184 static_link_htab_entry_hash (const void *p)
185 {
186 const struct static_link_htab_entry *e
187 = (const struct static_link_htab_entry *) p;
188
189 return htab_hash_pointer (e->block);
190 }
191
192 /* Return whether P1 an P2 (pointers to struct static_link_htab_entry) are
193 mappings for the same block. */
194
195 static int
196 static_link_htab_entry_eq (const void *p1, const void *p2)
197 {
198 const struct static_link_htab_entry *e1
199 = (const struct static_link_htab_entry *) p1;
200 const struct static_link_htab_entry *e2
201 = (const struct static_link_htab_entry *) p2;
202
203 return e1->block == e2->block;
204 }
205
206 /* Register STATIC_LINK as the static link for BLOCK, which is part of OBJFILE.
207 Must not be called more than once for each BLOCK. */
208
209 void
210 objfile_register_static_link (struct objfile *objfile,
211 const struct block *block,
212 const struct dynamic_prop *static_link)
213 {
214 void **slot;
215 struct static_link_htab_entry lookup_entry;
216 struct static_link_htab_entry *entry;
217
218 if (objfile->static_links == NULL)
219 objfile->static_links.reset (htab_create_alloc
220 (1, &static_link_htab_entry_hash, static_link_htab_entry_eq, NULL,
221 xcalloc, xfree));
222
223 /* Create a slot for the mapping, make sure it's the first mapping for this
224 block and then create the mapping itself. */
225 lookup_entry.block = block;
226 slot = htab_find_slot (objfile->static_links.get (), &lookup_entry, INSERT);
227 gdb_assert (*slot == NULL);
228
229 entry = XOBNEW (&objfile->objfile_obstack, static_link_htab_entry);
230 entry->block = block;
231 entry->static_link = static_link;
232 *slot = (void *) entry;
233 }
234
235 /* Look for a static link for BLOCK, which is part of OBJFILE. Return NULL if
236 none was found. */
237
238 const struct dynamic_prop *
239 objfile_lookup_static_link (struct objfile *objfile,
240 const struct block *block)
241 {
242 struct static_link_htab_entry *entry;
243 struct static_link_htab_entry lookup_entry;
244
245 if (objfile->static_links == NULL)
246 return NULL;
247 lookup_entry.block = block;
248 entry = ((struct static_link_htab_entry *)
249 htab_find (objfile->static_links.get (), &lookup_entry));
250 if (entry == NULL)
251 return NULL;
252
253 gdb_assert (entry->block == block);
254 return entry->static_link;
255 }
256
257 \f
258
259 /* Called via bfd_map_over_sections to build up the section table that
260 the objfile references. The objfile contains pointers to the start
261 of the table (objfile->sections) and to the first location after
262 the end of the table (objfile->sections_end). */
263
264 static void
265 add_to_objfile_sections_full (struct bfd *abfd, struct bfd_section *asect,
266 struct objfile *objfile, int force)
267 {
268 struct obj_section *section;
269
270 if (!force)
271 {
272 flagword aflag;
273
274 aflag = bfd_section_flags (asect);
275 if (!(aflag & SEC_ALLOC))
276 return;
277 }
278
279 section = &objfile->sections[gdb_bfd_section_index (abfd, asect)];
280 section->objfile = objfile;
281 section->the_bfd_section = asect;
282 section->ovly_mapped = 0;
283 }
284
285 static void
286 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
287 void *objfilep)
288 {
289 add_to_objfile_sections_full (abfd, asect, (struct objfile *) objfilep, 0);
290 }
291
292 /* Builds a section table for OBJFILE.
293
294 Note that the OFFSET and OVLY_MAPPED in each table entry are
295 initialized to zero. */
296
297 void
298 build_objfile_section_table (struct objfile *objfile)
299 {
300 int count = gdb_bfd_count_sections (objfile->obfd);
301
302 objfile->sections = OBSTACK_CALLOC (&objfile->objfile_obstack,
303 count,
304 struct obj_section);
305 objfile->sections_end = (objfile->sections + count);
306 bfd_map_over_sections (objfile->obfd,
307 add_to_objfile_sections, (void *) objfile);
308
309 /* See gdb_bfd_section_index. */
310 add_to_objfile_sections_full (objfile->obfd, bfd_com_section_ptr, objfile, 1);
311 add_to_objfile_sections_full (objfile->obfd, bfd_und_section_ptr, objfile, 1);
312 add_to_objfile_sections_full (objfile->obfd, bfd_abs_section_ptr, objfile, 1);
313 add_to_objfile_sections_full (objfile->obfd, bfd_ind_section_ptr, objfile, 1);
314 }
315
316 /* Given a pointer to an initialized bfd (ABFD) and some flag bits,
317 initialize the new objfile as best we can and link it into the list
318 of all known objfiles.
319
320 NAME should contain original non-canonicalized filename or other
321 identifier as entered by user. If there is no better source use
322 bfd_get_filename (ABFD). NAME may be NULL only if ABFD is NULL.
323 NAME content is copied into returned objfile.
324
325 The FLAGS word contains various bits (OBJF_*) that can be taken as
326 requests for specific operations. Other bits like OBJF_SHARED are
327 simply copied through to the new objfile flags member. */
328
329 objfile::objfile (bfd *abfd, const char *name, objfile_flags flags_)
330 : flags (flags_),
331 pspace (current_program_space),
332 partial_symtabs (new psymtab_storage ()),
333 obfd (abfd)
334 {
335 const char *expanded_name;
336
337 /* We could use obstack_specify_allocation here instead, but
338 gdb_obstack.h specifies the alloc/dealloc functions. */
339 obstack_init (&objfile_obstack);
340
341 objfile_alloc_data (this);
342
343 gdb::unique_xmalloc_ptr<char> name_holder;
344 if (name == NULL)
345 {
346 gdb_assert (abfd == NULL);
347 gdb_assert ((flags & OBJF_NOT_FILENAME) != 0);
348 expanded_name = "<<anonymous objfile>>";
349 }
350 else if ((flags & OBJF_NOT_FILENAME) != 0
351 || is_target_filename (name))
352 expanded_name = name;
353 else
354 {
355 name_holder = gdb_abspath (name);
356 expanded_name = name_holder.get ();
357 }
358 original_name = obstack_strdup (&objfile_obstack, expanded_name);
359
360 /* Update the per-objfile information that comes from the bfd, ensuring
361 that any data that is reference is saved in the per-objfile data
362 region. */
363
364 gdb_bfd_ref (abfd);
365 if (abfd != NULL)
366 {
367 mtime = bfd_get_mtime (abfd);
368
369 /* Build section table. */
370 build_objfile_section_table (this);
371 }
372
373 per_bfd = get_objfile_bfd_data (this, abfd);
374
375 /* Add this file onto the tail of the linked list of other such files. */
376
377 if (object_files == NULL)
378 object_files = this;
379 else
380 {
381 struct objfile *last_one;
382
383 for (last_one = object_files;
384 last_one->next;
385 last_one = last_one->next);
386 last_one->next = this;
387 }
388
389 /* Rebuild section map next time we need it. */
390 get_objfile_pspace_data (pspace)->new_objfiles_available = 1;
391 }
392
393 /* Retrieve the gdbarch associated with OBJFILE. */
394
395 struct gdbarch *
396 get_objfile_arch (const struct objfile *objfile)
397 {
398 return objfile->per_bfd->gdbarch;
399 }
400
401 /* If there is a valid and known entry point, function fills *ENTRY_P with it
402 and returns non-zero; otherwise it returns zero. */
403
404 int
405 entry_point_address_query (CORE_ADDR *entry_p)
406 {
407 if (symfile_objfile == NULL || !symfile_objfile->per_bfd->ei.entry_point_p)
408 return 0;
409
410 *entry_p = (symfile_objfile->per_bfd->ei.entry_point
411 + ANOFFSET (symfile_objfile->section_offsets,
412 symfile_objfile->per_bfd->ei.the_bfd_section_index));
413
414 return 1;
415 }
416
417 /* Get current entry point address. Call error if it is not known. */
418
419 CORE_ADDR
420 entry_point_address (void)
421 {
422 CORE_ADDR retval;
423
424 if (!entry_point_address_query (&retval))
425 error (_("Entry point address is not known."));
426
427 return retval;
428 }
429
430 separate_debug_iterator &
431 separate_debug_iterator::operator++ ()
432 {
433 gdb_assert (m_objfile != nullptr);
434
435 struct objfile *res;
436
437 /* If any, return the first child. */
438 res = m_objfile->separate_debug_objfile;
439 if (res != nullptr)
440 {
441 m_objfile = res;
442 return *this;
443 }
444
445 /* Common case where there is no separate debug objfile. */
446 if (m_objfile == m_parent)
447 {
448 m_objfile = nullptr;
449 return *this;
450 }
451
452 /* Return the brother if any. Note that we don't iterate on brothers of
453 the parents. */
454 res = m_objfile->separate_debug_objfile_link;
455 if (res != nullptr)
456 {
457 m_objfile = res;
458 return *this;
459 }
460
461 for (res = m_objfile->separate_debug_objfile_backlink;
462 res != m_parent;
463 res = res->separate_debug_objfile_backlink)
464 {
465 gdb_assert (res != nullptr);
466 if (res->separate_debug_objfile_link != nullptr)
467 {
468 m_objfile = res->separate_debug_objfile_link;
469 return *this;
470 }
471 }
472 m_objfile = nullptr;
473 return *this;
474 }
475
476 /* Unlink OBJFILE from the list of known objfiles. */
477
478 static void
479 unlink_objfile (struct objfile *objfile)
480 {
481 struct objfile **objpp;
482
483 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
484 {
485 if (*objpp == objfile)
486 {
487 *objpp = (*objpp)->next;
488 objfile->next = NULL;
489 return;
490 }
491 }
492
493 internal_error (__FILE__, __LINE__,
494 _("unlink_objfile: objfile already unlinked"));
495 }
496
497 /* Put one object file before a specified on in the global list.
498 This can be used to make sure an object file is destroyed before
499 another when using objfiles_safe to free all objfiles. */
500 static void
501 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
502 {
503 struct objfile **objp;
504
505 unlink_objfile (objfile);
506
507 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
508 {
509 if (*objp == before_this)
510 {
511 objfile->next = *objp;
512 *objp = objfile;
513 return;
514 }
515 }
516
517 internal_error (__FILE__, __LINE__,
518 _("put_objfile_before: before objfile not in list"));
519 }
520
521 /* Add OBJFILE as a separate debug objfile of PARENT. */
522
523 static void
524 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
525 {
526 gdb_assert (objfile && parent);
527
528 /* Must not be already in a list. */
529 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
530 gdb_assert (objfile->separate_debug_objfile_link == NULL);
531 gdb_assert (objfile->separate_debug_objfile == NULL);
532 gdb_assert (parent->separate_debug_objfile_backlink == NULL);
533 gdb_assert (parent->separate_debug_objfile_link == NULL);
534
535 objfile->separate_debug_objfile_backlink = parent;
536 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
537 parent->separate_debug_objfile = objfile;
538
539 /* Put the separate debug object before the normal one, this is so that
540 usage of objfiles_safe will stay safe. */
541 put_objfile_before (objfile, parent);
542 }
543
544 /* See objfiles.h. */
545
546 objfile *
547 objfile::make (bfd *bfd_, const char *name_, objfile_flags flags_,
548 objfile *parent)
549 {
550 objfile *result = new objfile (bfd_, name_, flags_);
551 if (parent != nullptr)
552 add_separate_debug_objfile (result, parent);
553 return result;
554 }
555
556 /* See objfiles.h. */
557
558 void
559 objfile::unlink ()
560 {
561 delete this;
562 }
563
564 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
565 itself. */
566
567 void
568 free_objfile_separate_debug (struct objfile *objfile)
569 {
570 struct objfile *child;
571
572 for (child = objfile->separate_debug_objfile; child;)
573 {
574 struct objfile *next_child = child->separate_debug_objfile_link;
575 child->unlink ();
576 child = next_child;
577 }
578 }
579
580 /* Destroy an objfile and all the symtabs and psymtabs under it. */
581
582 objfile::~objfile ()
583 {
584 /* First notify observers that this objfile is about to be freed. */
585 gdb::observers::free_objfile.notify (this);
586
587 /* Free all separate debug objfiles. */
588 free_objfile_separate_debug (this);
589
590 if (separate_debug_objfile_backlink)
591 {
592 /* We freed the separate debug file, make sure the base objfile
593 doesn't reference it. */
594 struct objfile *child;
595
596 child = separate_debug_objfile_backlink->separate_debug_objfile;
597
598 if (child == this)
599 {
600 /* THIS is the first child. */
601 separate_debug_objfile_backlink->separate_debug_objfile =
602 separate_debug_objfile_link;
603 }
604 else
605 {
606 /* Find THIS in the list. */
607 while (1)
608 {
609 if (child->separate_debug_objfile_link == this)
610 {
611 child->separate_debug_objfile_link =
612 separate_debug_objfile_link;
613 break;
614 }
615 child = child->separate_debug_objfile_link;
616 gdb_assert (child);
617 }
618 }
619 }
620
621 /* Remove any references to this objfile in the global value
622 lists. */
623 preserve_values (this);
624
625 /* It still may reference data modules have associated with the objfile and
626 the symbol file data. */
627 forget_cached_source_info_for_objfile (this);
628
629 breakpoint_free_objfile (this);
630 btrace_free_objfile (this);
631
632 /* First do any symbol file specific actions required when we are
633 finished with a particular symbol file. Note that if the objfile
634 is using reusable symbol information (via mmalloc) then each of
635 these routines is responsible for doing the correct thing, either
636 freeing things which are valid only during this particular gdb
637 execution, or leaving them to be reused during the next one. */
638
639 if (sf != NULL)
640 (*sf->sym_finish) (this);
641
642 /* Discard any data modules have associated with the objfile. The function
643 still may reference obfd. */
644 objfile_free_data (this);
645
646 if (obfd)
647 gdb_bfd_unref (obfd);
648 else
649 delete per_bfd;
650
651 /* Remove it from the chain of all objfiles. */
652
653 unlink_objfile (this);
654
655 if (this == symfile_objfile)
656 symfile_objfile = NULL;
657
658 /* Before the symbol table code was redone to make it easier to
659 selectively load and remove information particular to a specific
660 linkage unit, gdb used to do these things whenever the monolithic
661 symbol table was blown away. How much still needs to be done
662 is unknown, but we play it safe for now and keep each action until
663 it is shown to be no longer needed. */
664
665 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
666 for example), so we need to call this here. */
667 clear_pc_function_cache ();
668
669 /* Check to see if the current_source_symtab belongs to this objfile,
670 and if so, call clear_current_source_symtab_and_line. */
671
672 {
673 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
674
675 if (cursal.symtab && SYMTAB_OBJFILE (cursal.symtab) == this)
676 clear_current_source_symtab_and_line ();
677 }
678
679 /* Free the obstacks for non-reusable objfiles. */
680 obstack_free (&objfile_obstack, 0);
681
682 /* Rebuild section map next time we need it. */
683 get_objfile_pspace_data (pspace)->section_map_dirty = 1;
684 }
685
686 /* Free all the object files at once and clean up their users. */
687
688 void
689 free_all_objfiles (void)
690 {
691 struct so_list *so;
692
693 /* Any objfile reference would become stale. */
694 for (so = master_so_list (); so; so = so->next)
695 gdb_assert (so->objfile == NULL);
696
697 for (objfile *objfile : current_program_space->objfiles_safe ())
698 objfile->unlink ();
699 clear_symtab_users (0);
700 }
701 \f
702 /* A helper function for objfile_relocate1 that relocates a single
703 symbol. */
704
705 static void
706 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
707 struct section_offsets *delta)
708 {
709 fixup_symbol_section (sym, objfile);
710
711 /* The RS6000 code from which this was taken skipped
712 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
713 But I'm leaving out that test, on the theory that
714 they can't possibly pass the tests below. */
715 if ((SYMBOL_CLASS (sym) == LOC_LABEL
716 || SYMBOL_CLASS (sym) == LOC_STATIC)
717 && SYMBOL_SECTION (sym) >= 0)
718 {
719 SET_SYMBOL_VALUE_ADDRESS (sym,
720 SYMBOL_VALUE_ADDRESS (sym)
721 + ANOFFSET (delta, SYMBOL_SECTION (sym)));
722 }
723 }
724
725 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
726 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
727 Return non-zero iff any change happened. */
728
729 static int
730 objfile_relocate1 (struct objfile *objfile,
731 const struct section_offsets *new_offsets)
732 {
733 struct section_offsets *delta =
734 ((struct section_offsets *)
735 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
736
737 int something_changed = 0;
738
739 for (int i = 0; i < objfile->num_sections; ++i)
740 {
741 delta->offsets[i] =
742 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
743 if (ANOFFSET (delta, i) != 0)
744 something_changed = 1;
745 }
746 if (!something_changed)
747 return 0;
748
749 /* OK, get all the symtabs. */
750 {
751 for (compunit_symtab *cust : objfile->compunits ())
752 {
753 for (symtab *s : compunit_filetabs (cust))
754 {
755 struct linetable *l;
756
757 /* First the line table. */
758 l = SYMTAB_LINETABLE (s);
759 if (l)
760 {
761 for (int i = 0; i < l->nitems; ++i)
762 l->item[i].pc += ANOFFSET (delta,
763 COMPUNIT_BLOCK_LINE_SECTION
764 (cust));
765 }
766 }
767 }
768
769 for (compunit_symtab *cust : objfile->compunits ())
770 {
771 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
772 int block_line_section = COMPUNIT_BLOCK_LINE_SECTION (cust);
773
774 if (BLOCKVECTOR_MAP (bv))
775 addrmap_relocate (BLOCKVECTOR_MAP (bv),
776 ANOFFSET (delta, block_line_section));
777
778 for (int i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
779 {
780 struct block *b;
781 struct symbol *sym;
782 struct mdict_iterator miter;
783
784 b = BLOCKVECTOR_BLOCK (bv, i);
785 BLOCK_START (b) += ANOFFSET (delta, block_line_section);
786 BLOCK_END (b) += ANOFFSET (delta, block_line_section);
787
788 if (BLOCK_RANGES (b) != nullptr)
789 for (int j = 0; j < BLOCK_NRANGES (b); j++)
790 {
791 BLOCK_RANGE_START (b, j)
792 += ANOFFSET (delta, block_line_section);
793 BLOCK_RANGE_END (b, j) += ANOFFSET (delta,
794 block_line_section);
795 }
796
797 /* We only want to iterate over the local symbols, not any
798 symbols in included symtabs. */
799 ALL_DICT_SYMBOLS (BLOCK_MULTIDICT (b), miter, sym)
800 {
801 relocate_one_symbol (sym, objfile, delta);
802 }
803 }
804 }
805 }
806
807 /* This stores relocated addresses and so must be cleared. This
808 will cause it to be recreated on demand. */
809 objfile->psymbol_map.clear ();
810
811 /* Relocate isolated symbols. */
812 {
813 struct symbol *iter;
814
815 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
816 relocate_one_symbol (iter, objfile, delta);
817 }
818
819 {
820 int i;
821
822 for (i = 0; i < objfile->num_sections; ++i)
823 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
824 }
825
826 /* Rebuild section map next time we need it. */
827 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
828
829 /* Update the table in exec_ops, used to read memory. */
830 struct obj_section *s;
831 ALL_OBJFILE_OSECTIONS (objfile, s)
832 {
833 int idx = s - objfile->sections;
834
835 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
836 obj_section_addr (s));
837 }
838
839 /* Data changed. */
840 return 1;
841 }
842
843 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
844 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
845
846 The number and ordering of sections does differ between the two objfiles.
847 Only their names match. Also the file offsets will differ (objfile being
848 possibly prelinked but separate_debug_objfile is probably not prelinked) but
849 the in-memory absolute address as specified by NEW_OFFSETS must match both
850 files. */
851
852 void
853 objfile_relocate (struct objfile *objfile,
854 const struct section_offsets *new_offsets)
855 {
856 int changed = 0;
857
858 changed |= objfile_relocate1 (objfile, new_offsets);
859
860 for (::objfile *debug_objfile : objfile->separate_debug_objfiles ())
861 {
862 if (debug_objfile == objfile)
863 continue;
864
865 section_addr_info objfile_addrs
866 = build_section_addr_info_from_objfile (objfile);
867
868 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
869 relative ones must be already created according to debug_objfile. */
870
871 addr_info_make_relative (&objfile_addrs, debug_objfile->obfd);
872
873 gdb_assert (debug_objfile->num_sections
874 == gdb_bfd_count_sections (debug_objfile->obfd));
875 std::vector<struct section_offsets>
876 new_debug_offsets (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections));
877 relative_addr_info_to_section_offsets (new_debug_offsets.data (),
878 debug_objfile->num_sections,
879 objfile_addrs);
880
881 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets.data ());
882 }
883
884 /* Relocate breakpoints as necessary, after things are relocated. */
885 if (changed)
886 breakpoint_re_set ();
887 }
888
889 /* Rebase (add to the offsets) OBJFILE by SLIDE. SEPARATE_DEBUG_OBJFILE is
890 not touched here.
891 Return non-zero iff any change happened. */
892
893 static int
894 objfile_rebase1 (struct objfile *objfile, CORE_ADDR slide)
895 {
896 struct section_offsets *new_offsets =
897 ((struct section_offsets *)
898 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
899 int i;
900
901 for (i = 0; i < objfile->num_sections; ++i)
902 new_offsets->offsets[i] = slide;
903
904 return objfile_relocate1 (objfile, new_offsets);
905 }
906
907 /* Rebase (add to the offsets) OBJFILE by SLIDE. Process also OBJFILE's
908 SEPARATE_DEBUG_OBJFILEs. */
909
910 void
911 objfile_rebase (struct objfile *objfile, CORE_ADDR slide)
912 {
913 int changed = 0;
914
915 for (::objfile *debug_objfile : objfile->separate_debug_objfiles ())
916 changed |= objfile_rebase1 (debug_objfile, slide);
917
918 /* Relocate breakpoints as necessary, after things are relocated. */
919 if (changed)
920 breakpoint_re_set ();
921 }
922 \f
923 /* Return non-zero if OBJFILE has partial symbols. */
924
925 int
926 objfile_has_partial_symbols (struct objfile *objfile)
927 {
928 if (!objfile->sf)
929 return 0;
930
931 /* If we have not read psymbols, but we have a function capable of reading
932 them, then that is an indication that they are in fact available. Without
933 this function the symbols may have been already read in but they also may
934 not be present in this objfile. */
935 if ((objfile->flags & OBJF_PSYMTABS_READ) == 0
936 && objfile->sf->sym_read_psymbols != NULL)
937 return 1;
938
939 return objfile->sf->qf->has_symbols (objfile);
940 }
941
942 /* Return non-zero if OBJFILE has full symbols. */
943
944 int
945 objfile_has_full_symbols (struct objfile *objfile)
946 {
947 return objfile->compunit_symtabs != NULL;
948 }
949
950 /* Return non-zero if OBJFILE has full or partial symbols, either directly
951 or through a separate debug file. */
952
953 int
954 objfile_has_symbols (struct objfile *objfile)
955 {
956 for (::objfile *o : objfile->separate_debug_objfiles ())
957 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
958 return 1;
959 return 0;
960 }
961
962
963 /* Many places in gdb want to test just to see if we have any partial
964 symbols available. This function returns zero if none are currently
965 available, nonzero otherwise. */
966
967 int
968 have_partial_symbols (void)
969 {
970 for (objfile *ofp : current_program_space->objfiles ())
971 {
972 if (objfile_has_partial_symbols (ofp))
973 return 1;
974 }
975 return 0;
976 }
977
978 /* Many places in gdb want to test just to see if we have any full
979 symbols available. This function returns zero if none are currently
980 available, nonzero otherwise. */
981
982 int
983 have_full_symbols (void)
984 {
985 for (objfile *ofp : current_program_space->objfiles ())
986 {
987 if (objfile_has_full_symbols (ofp))
988 return 1;
989 }
990 return 0;
991 }
992
993
994 /* This operations deletes all objfile entries that represent solibs that
995 weren't explicitly loaded by the user, via e.g., the add-symbol-file
996 command. */
997
998 void
999 objfile_purge_solibs (void)
1000 {
1001 for (objfile *objf : current_program_space->objfiles_safe ())
1002 {
1003 /* We assume that the solib package has been purged already, or will
1004 be soon. */
1005
1006 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
1007 objf->unlink ();
1008 }
1009 }
1010
1011
1012 /* Many places in gdb want to test just to see if we have any minimal
1013 symbols available. This function returns zero if none are currently
1014 available, nonzero otherwise. */
1015
1016 int
1017 have_minimal_symbols (void)
1018 {
1019 for (objfile *ofp : current_program_space->objfiles ())
1020 {
1021 if (ofp->per_bfd->minimal_symbol_count > 0)
1022 {
1023 return 1;
1024 }
1025 }
1026 return 0;
1027 }
1028
1029 /* Qsort comparison function. */
1030
1031 static bool
1032 sort_cmp (const struct obj_section *sect1, const obj_section *sect2)
1033 {
1034 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1035 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1036
1037 if (sect1_addr < sect2_addr)
1038 return true;
1039 else if (sect1_addr > sect2_addr)
1040 return false;
1041 else
1042 {
1043 /* Sections are at the same address. This could happen if
1044 A) we have an objfile and a separate debuginfo.
1045 B) we are confused, and have added sections without proper relocation,
1046 or something like that. */
1047
1048 const struct objfile *const objfile1 = sect1->objfile;
1049 const struct objfile *const objfile2 = sect2->objfile;
1050
1051 if (objfile1->separate_debug_objfile == objfile2
1052 || objfile2->separate_debug_objfile == objfile1)
1053 {
1054 /* Case A. The ordering doesn't matter: separate debuginfo files
1055 will be filtered out later. */
1056
1057 return false;
1058 }
1059
1060 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
1061 triage. This section could be slow (since we iterate over all
1062 objfiles in each call to sort_cmp), but this shouldn't happen
1063 very often (GDB is already in a confused state; one hopes this
1064 doesn't happen at all). If you discover that significant time is
1065 spent in the loops below, do 'set complaints 100' and examine the
1066 resulting complaints. */
1067 if (objfile1 == objfile2)
1068 {
1069 /* Both sections came from the same objfile. We are really
1070 confused. Sort on sequence order of sections within the
1071 objfile. The order of checks is important here, if we find a
1072 match on SECT2 first then either SECT2 is before SECT1, or,
1073 SECT2 == SECT1, in both cases we should return false. The
1074 second case shouldn't occur during normal use, but std::sort
1075 does check that '!(a < a)' when compiled in debug mode. */
1076
1077 const struct obj_section *osect;
1078
1079 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1080 if (osect == sect2)
1081 return false;
1082 else if (osect == sect1)
1083 return true;
1084
1085 /* We should have found one of the sections before getting here. */
1086 gdb_assert_not_reached ("section not found");
1087 }
1088 else
1089 {
1090 /* Sort on sequence number of the objfile in the chain. */
1091
1092 for (objfile *objfile : current_program_space->objfiles ())
1093 if (objfile == objfile1)
1094 return true;
1095 else if (objfile == objfile2)
1096 return false;
1097
1098 /* We should have found one of the objfiles before getting here. */
1099 gdb_assert_not_reached ("objfile not found");
1100 }
1101 }
1102
1103 /* Unreachable. */
1104 gdb_assert_not_reached ("unexpected code path");
1105 return false;
1106 }
1107
1108 /* Select "better" obj_section to keep. We prefer the one that came from
1109 the real object, rather than the one from separate debuginfo.
1110 Most of the time the two sections are exactly identical, but with
1111 prelinking the .rel.dyn section in the real object may have different
1112 size. */
1113
1114 static struct obj_section *
1115 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1116 {
1117 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1118 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1119 || (b->objfile->separate_debug_objfile == a->objfile));
1120 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1121 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1122
1123 if (a->objfile->separate_debug_objfile != NULL)
1124 return a;
1125 return b;
1126 }
1127
1128 /* Return 1 if SECTION should be inserted into the section map.
1129 We want to insert only non-overlay and non-TLS section. */
1130
1131 static int
1132 insert_section_p (const struct bfd *abfd,
1133 const struct bfd_section *section)
1134 {
1135 const bfd_vma lma = bfd_section_lma (section);
1136
1137 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (section)
1138 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1139 /* This is an overlay section. IN_MEMORY check is needed to avoid
1140 discarding sections from the "system supplied DSO" (aka vdso)
1141 on some Linux systems (e.g. Fedora 11). */
1142 return 0;
1143 if ((bfd_section_flags (section) & SEC_THREAD_LOCAL) != 0)
1144 /* This is a TLS section. */
1145 return 0;
1146
1147 return 1;
1148 }
1149
1150 /* Filter out overlapping sections where one section came from the real
1151 objfile, and the other from a separate debuginfo file.
1152 Return the size of table after redundant sections have been eliminated. */
1153
1154 static int
1155 filter_debuginfo_sections (struct obj_section **map, int map_size)
1156 {
1157 int i, j;
1158
1159 for (i = 0, j = 0; i < map_size - 1; i++)
1160 {
1161 struct obj_section *const sect1 = map[i];
1162 struct obj_section *const sect2 = map[i + 1];
1163 const struct objfile *const objfile1 = sect1->objfile;
1164 const struct objfile *const objfile2 = sect2->objfile;
1165 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1166 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1167
1168 if (sect1_addr == sect2_addr
1169 && (objfile1->separate_debug_objfile == objfile2
1170 || objfile2->separate_debug_objfile == objfile1))
1171 {
1172 map[j++] = preferred_obj_section (sect1, sect2);
1173 ++i;
1174 }
1175 else
1176 map[j++] = sect1;
1177 }
1178
1179 if (i < map_size)
1180 {
1181 gdb_assert (i == map_size - 1);
1182 map[j++] = map[i];
1183 }
1184
1185 /* The map should not have shrunk to less than half the original size. */
1186 gdb_assert (map_size / 2 <= j);
1187
1188 return j;
1189 }
1190
1191 /* Filter out overlapping sections, issuing a warning if any are found.
1192 Overlapping sections could really be overlay sections which we didn't
1193 classify as such in insert_section_p, or we could be dealing with a
1194 corrupt binary. */
1195
1196 static int
1197 filter_overlapping_sections (struct obj_section **map, int map_size)
1198 {
1199 int i, j;
1200
1201 for (i = 0, j = 0; i < map_size - 1; )
1202 {
1203 int k;
1204
1205 map[j++] = map[i];
1206 for (k = i + 1; k < map_size; k++)
1207 {
1208 struct obj_section *const sect1 = map[i];
1209 struct obj_section *const sect2 = map[k];
1210 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1211 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1212 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1213
1214 gdb_assert (sect1_addr <= sect2_addr);
1215
1216 if (sect1_endaddr <= sect2_addr)
1217 break;
1218 else
1219 {
1220 /* We have an overlap. Report it. */
1221
1222 struct objfile *const objf1 = sect1->objfile;
1223 struct objfile *const objf2 = sect2->objfile;
1224
1225 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1226 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1227
1228 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1229
1230 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1231
1232 complaint (_("unexpected overlap between:\n"
1233 " (A) section `%s' from `%s' [%s, %s)\n"
1234 " (B) section `%s' from `%s' [%s, %s).\n"
1235 "Will ignore section B"),
1236 bfd_section_name (bfds1), objfile_name (objf1),
1237 paddress (gdbarch, sect1_addr),
1238 paddress (gdbarch, sect1_endaddr),
1239 bfd_section_name (bfds2), objfile_name (objf2),
1240 paddress (gdbarch, sect2_addr),
1241 paddress (gdbarch, sect2_endaddr));
1242 }
1243 }
1244 i = k;
1245 }
1246
1247 if (i < map_size)
1248 {
1249 gdb_assert (i == map_size - 1);
1250 map[j++] = map[i];
1251 }
1252
1253 return j;
1254 }
1255
1256
1257 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1258 TLS, overlay and overlapping sections. */
1259
1260 static void
1261 update_section_map (struct program_space *pspace,
1262 struct obj_section ***pmap, int *pmap_size)
1263 {
1264 struct objfile_pspace_info *pspace_info;
1265 int alloc_size, map_size, i;
1266 struct obj_section *s, **map;
1267
1268 pspace_info = get_objfile_pspace_data (pspace);
1269 gdb_assert (pspace_info->section_map_dirty != 0
1270 || pspace_info->new_objfiles_available != 0);
1271
1272 map = *pmap;
1273 xfree (map);
1274
1275 alloc_size = 0;
1276 for (objfile *objfile : pspace->objfiles ())
1277 ALL_OBJFILE_OSECTIONS (objfile, s)
1278 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1279 alloc_size += 1;
1280
1281 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1282 if (alloc_size == 0)
1283 {
1284 *pmap = NULL;
1285 *pmap_size = 0;
1286 return;
1287 }
1288
1289 map = XNEWVEC (struct obj_section *, alloc_size);
1290
1291 i = 0;
1292 for (objfile *objfile : pspace->objfiles ())
1293 ALL_OBJFILE_OSECTIONS (objfile, s)
1294 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1295 map[i++] = s;
1296
1297 std::sort (map, map + alloc_size, sort_cmp);
1298 map_size = filter_debuginfo_sections(map, alloc_size);
1299 map_size = filter_overlapping_sections(map, map_size);
1300
1301 if (map_size < alloc_size)
1302 /* Some sections were eliminated. Trim excess space. */
1303 map = XRESIZEVEC (struct obj_section *, map, map_size);
1304 else
1305 gdb_assert (alloc_size == map_size);
1306
1307 *pmap = map;
1308 *pmap_size = map_size;
1309 }
1310
1311 /* Bsearch comparison function. */
1312
1313 static int
1314 bsearch_cmp (const void *key, const void *elt)
1315 {
1316 const CORE_ADDR pc = *(CORE_ADDR *) key;
1317 const struct obj_section *section = *(const struct obj_section **) elt;
1318
1319 if (pc < obj_section_addr (section))
1320 return -1;
1321 if (pc < obj_section_endaddr (section))
1322 return 0;
1323 return 1;
1324 }
1325
1326 /* Returns a section whose range includes PC or NULL if none found. */
1327
1328 struct obj_section *
1329 find_pc_section (CORE_ADDR pc)
1330 {
1331 struct objfile_pspace_info *pspace_info;
1332 struct obj_section *s, **sp;
1333
1334 /* Check for mapped overlay section first. */
1335 s = find_pc_mapped_section (pc);
1336 if (s)
1337 return s;
1338
1339 pspace_info = get_objfile_pspace_data (current_program_space);
1340 if (pspace_info->section_map_dirty
1341 || (pspace_info->new_objfiles_available
1342 && !pspace_info->inhibit_updates))
1343 {
1344 update_section_map (current_program_space,
1345 &pspace_info->sections,
1346 &pspace_info->num_sections);
1347
1348 /* Don't need updates to section map until objfiles are added,
1349 removed or relocated. */
1350 pspace_info->new_objfiles_available = 0;
1351 pspace_info->section_map_dirty = 0;
1352 }
1353
1354 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1355 bsearch be non-NULL. */
1356 if (pspace_info->sections == NULL)
1357 {
1358 gdb_assert (pspace_info->num_sections == 0);
1359 return NULL;
1360 }
1361
1362 sp = (struct obj_section **) bsearch (&pc,
1363 pspace_info->sections,
1364 pspace_info->num_sections,
1365 sizeof (*pspace_info->sections),
1366 bsearch_cmp);
1367 if (sp != NULL)
1368 return *sp;
1369 return NULL;
1370 }
1371
1372
1373 /* Return non-zero if PC is in a section called NAME. */
1374
1375 int
1376 pc_in_section (CORE_ADDR pc, const char *name)
1377 {
1378 struct obj_section *s;
1379 int retval = 0;
1380
1381 s = find_pc_section (pc);
1382
1383 retval = (s != NULL
1384 && s->the_bfd_section->name != NULL
1385 && strcmp (s->the_bfd_section->name, name) == 0);
1386 return (retval);
1387 }
1388 \f
1389
1390 /* Set section_map_dirty so section map will be rebuilt next time it
1391 is used. Called by reread_symbols. */
1392
1393 void
1394 objfiles_changed (void)
1395 {
1396 /* Rebuild section map next time we need it. */
1397 get_objfile_pspace_data (current_program_space)->section_map_dirty = 1;
1398 }
1399
1400 /* See comments in objfiles.h. */
1401
1402 scoped_restore_tmpl<int>
1403 inhibit_section_map_updates (struct program_space *pspace)
1404 {
1405 return scoped_restore_tmpl<int>
1406 (&get_objfile_pspace_data (pspace)->inhibit_updates, 1);
1407 }
1408
1409 /* Return 1 if ADDR maps into one of the sections of OBJFILE and 0
1410 otherwise. */
1411
1412 int
1413 is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile)
1414 {
1415 struct obj_section *osect;
1416
1417 if (objfile == NULL)
1418 return 0;
1419
1420 ALL_OBJFILE_OSECTIONS (objfile, osect)
1421 {
1422 if (section_is_overlay (osect) && !section_is_mapped (osect))
1423 continue;
1424
1425 if (obj_section_addr (osect) <= addr
1426 && addr < obj_section_endaddr (osect))
1427 return 1;
1428 }
1429 return 0;
1430 }
1431
1432 int
1433 shared_objfile_contains_address_p (struct program_space *pspace,
1434 CORE_ADDR address)
1435 {
1436 for (objfile *objfile : pspace->objfiles ())
1437 {
1438 if ((objfile->flags & OBJF_SHARED) != 0
1439 && is_addr_in_objfile (address, objfile))
1440 return 1;
1441 }
1442
1443 return 0;
1444 }
1445
1446 /* The default implementation for the "iterate_over_objfiles_in_search_order"
1447 gdbarch method. It is equivalent to use the objfiles iterable,
1448 searching the objfiles in the order they are stored internally,
1449 ignoring CURRENT_OBJFILE.
1450
1451 On most platforms, it should be close enough to doing the best
1452 we can without some knowledge specific to the architecture. */
1453
1454 void
1455 default_iterate_over_objfiles_in_search_order
1456 (struct gdbarch *gdbarch,
1457 iterate_over_objfiles_in_search_order_cb_ftype *cb,
1458 void *cb_data, struct objfile *current_objfile)
1459 {
1460 int stop = 0;
1461
1462 for (objfile *objfile : current_program_space->objfiles ())
1463 {
1464 stop = cb (objfile, cb_data);
1465 if (stop)
1466 return;
1467 }
1468 }
1469
1470 /* See objfiles.h. */
1471
1472 const char *
1473 objfile_name (const struct objfile *objfile)
1474 {
1475 if (objfile->obfd != NULL)
1476 return bfd_get_filename (objfile->obfd);
1477
1478 return objfile->original_name;
1479 }
1480
1481 /* See objfiles.h. */
1482
1483 const char *
1484 objfile_filename (const struct objfile *objfile)
1485 {
1486 if (objfile->obfd != NULL)
1487 return bfd_get_filename (objfile->obfd);
1488
1489 return NULL;
1490 }
1491
1492 /* See objfiles.h. */
1493
1494 const char *
1495 objfile_debug_name (const struct objfile *objfile)
1496 {
1497 return lbasename (objfile->original_name);
1498 }
1499
1500 /* See objfiles.h. */
1501
1502 const char *
1503 objfile_flavour_name (struct objfile *objfile)
1504 {
1505 if (objfile->obfd != NULL)
1506 return bfd_flavour_name (bfd_get_flavour (objfile->obfd));
1507 return NULL;
1508 }
This page took 0.057161 seconds and 3 git commands to generate.