b5bc09f41eafc7f335567d6d8cfc4348dc0af82e
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32 #include "bcache.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35
36 #include <sys/types.h>
37 #include <sys/stat.h>
38 #include <fcntl.h>
39 #include "gdb_obstack.h"
40 #include "hashtab.h"
41
42 #include "breakpoint.h"
43 #include "block.h"
44 #include "dictionary.h"
45 #include "source.h"
46 #include "addrmap.h"
47 #include "arch-utils.h"
48 #include "exec.h"
49 #include "observable.h"
50 #include "complaints.h"
51 #include "psymtab.h"
52 #include "solist.h"
53 #include "gdb_bfd.h"
54 #include "btrace.h"
55 #include "gdbsupport/pathstuff.h"
56
57 #include <vector>
58
59 /* Keep a registry of per-objfile data-pointers required by other GDB
60 modules. */
61
62 DEFINE_REGISTRY (objfile, REGISTRY_ACCESS_FIELD)
63
64 /* Externally visible variables that are owned by this module.
65 See declarations in objfile.h for more info. */
66
67 struct objfile_pspace_info
68 {
69 objfile_pspace_info () = default;
70 ~objfile_pspace_info ();
71
72 struct obj_section **sections = nullptr;
73 int num_sections = 0;
74
75 /* Nonzero if object files have been added since the section map
76 was last updated. */
77 int new_objfiles_available = 0;
78
79 /* Nonzero if the section map MUST be updated before use. */
80 int section_map_dirty = 0;
81
82 /* Nonzero if section map updates should be inhibited if possible. */
83 int inhibit_updates = 0;
84 };
85
86 /* Per-program-space data key. */
87 static const struct program_space_key<objfile_pspace_info>
88 objfiles_pspace_data;
89
90 objfile_pspace_info::~objfile_pspace_info ()
91 {
92 xfree (sections);
93 }
94
95 /* Get the current svr4 data. If none is found yet, add it now. This
96 function always returns a valid object. */
97
98 static struct objfile_pspace_info *
99 get_objfile_pspace_data (struct program_space *pspace)
100 {
101 struct objfile_pspace_info *info;
102
103 info = objfiles_pspace_data.get (pspace);
104 if (info == NULL)
105 info = objfiles_pspace_data.emplace (pspace);
106
107 return info;
108 }
109
110 \f
111
112 /* Per-BFD data key. */
113
114 static const struct bfd_key<objfile_per_bfd_storage> objfiles_bfd_data;
115
116 objfile_per_bfd_storage::~objfile_per_bfd_storage ()
117 {
118 }
119
120 /* Create the per-BFD storage object for OBJFILE. If ABFD is not
121 NULL, and it already has a per-BFD storage object, use that.
122 Otherwise, allocate a new per-BFD storage object. Note that it is
123 not safe to call this multiple times for a given OBJFILE -- it can
124 only be called when allocating or re-initializing OBJFILE. */
125
126 static struct objfile_per_bfd_storage *
127 get_objfile_bfd_data (struct objfile *objfile, struct bfd *abfd)
128 {
129 struct objfile_per_bfd_storage *storage = NULL;
130
131 if (abfd != NULL)
132 storage = objfiles_bfd_data.get (abfd);
133
134 if (storage == NULL)
135 {
136 storage = new objfile_per_bfd_storage;
137 /* If the object requires gdb to do relocations, we simply fall
138 back to not sharing data across users. These cases are rare
139 enough that this seems reasonable. */
140 if (abfd != NULL && !gdb_bfd_requires_relocations (abfd))
141 objfiles_bfd_data.set (abfd, storage);
142
143 /* Look up the gdbarch associated with the BFD. */
144 if (abfd != NULL)
145 storage->gdbarch = gdbarch_from_bfd (abfd);
146 }
147
148 return storage;
149 }
150
151 /* See objfiles.h. */
152
153 void
154 set_objfile_per_bfd (struct objfile *objfile)
155 {
156 objfile->per_bfd = get_objfile_bfd_data (objfile, objfile->obfd);
157 }
158
159 /* Set the objfile's per-BFD notion of the "main" name and
160 language. */
161
162 void
163 set_objfile_main_name (struct objfile *objfile,
164 const char *name, enum language lang)
165 {
166 if (objfile->per_bfd->name_of_main == NULL
167 || strcmp (objfile->per_bfd->name_of_main, name) != 0)
168 objfile->per_bfd->name_of_main
169 = obstack_strdup (&objfile->per_bfd->storage_obstack, name);
170 objfile->per_bfd->language_of_main = lang;
171 }
172
173 /* Helper structure to map blocks to static link properties in hash tables. */
174
175 struct static_link_htab_entry
176 {
177 const struct block *block;
178 const struct dynamic_prop *static_link;
179 };
180
181 /* Return a hash code for struct static_link_htab_entry *P. */
182
183 static hashval_t
184 static_link_htab_entry_hash (const void *p)
185 {
186 const struct static_link_htab_entry *e
187 = (const struct static_link_htab_entry *) p;
188
189 return htab_hash_pointer (e->block);
190 }
191
192 /* Return whether P1 an P2 (pointers to struct static_link_htab_entry) are
193 mappings for the same block. */
194
195 static int
196 static_link_htab_entry_eq (const void *p1, const void *p2)
197 {
198 const struct static_link_htab_entry *e1
199 = (const struct static_link_htab_entry *) p1;
200 const struct static_link_htab_entry *e2
201 = (const struct static_link_htab_entry *) p2;
202
203 return e1->block == e2->block;
204 }
205
206 /* Register STATIC_LINK as the static link for BLOCK, which is part of OBJFILE.
207 Must not be called more than once for each BLOCK. */
208
209 void
210 objfile_register_static_link (struct objfile *objfile,
211 const struct block *block,
212 const struct dynamic_prop *static_link)
213 {
214 void **slot;
215 struct static_link_htab_entry lookup_entry;
216 struct static_link_htab_entry *entry;
217
218 if (objfile->static_links == NULL)
219 objfile->static_links.reset (htab_create_alloc
220 (1, &static_link_htab_entry_hash, static_link_htab_entry_eq, NULL,
221 xcalloc, xfree));
222
223 /* Create a slot for the mapping, make sure it's the first mapping for this
224 block and then create the mapping itself. */
225 lookup_entry.block = block;
226 slot = htab_find_slot (objfile->static_links.get (), &lookup_entry, INSERT);
227 gdb_assert (*slot == NULL);
228
229 entry = XOBNEW (&objfile->objfile_obstack, static_link_htab_entry);
230 entry->block = block;
231 entry->static_link = static_link;
232 *slot = (void *) entry;
233 }
234
235 /* Look for a static link for BLOCK, which is part of OBJFILE. Return NULL if
236 none was found. */
237
238 const struct dynamic_prop *
239 objfile_lookup_static_link (struct objfile *objfile,
240 const struct block *block)
241 {
242 struct static_link_htab_entry *entry;
243 struct static_link_htab_entry lookup_entry;
244
245 if (objfile->static_links == NULL)
246 return NULL;
247 lookup_entry.block = block;
248 entry = ((struct static_link_htab_entry *)
249 htab_find (objfile->static_links.get (), &lookup_entry));
250 if (entry == NULL)
251 return NULL;
252
253 gdb_assert (entry->block == block);
254 return entry->static_link;
255 }
256
257 \f
258
259 /* Called via bfd_map_over_sections to build up the section table that
260 the objfile references. The objfile contains pointers to the start
261 of the table (objfile->sections) and to the first location after
262 the end of the table (objfile->sections_end). */
263
264 static void
265 add_to_objfile_sections_full (struct bfd *abfd, struct bfd_section *asect,
266 struct objfile *objfile, int force)
267 {
268 struct obj_section *section;
269
270 if (!force)
271 {
272 flagword aflag;
273
274 aflag = bfd_section_flags (asect);
275 if (!(aflag & SEC_ALLOC))
276 return;
277 }
278
279 section = &objfile->sections[gdb_bfd_section_index (abfd, asect)];
280 section->objfile = objfile;
281 section->the_bfd_section = asect;
282 section->ovly_mapped = 0;
283 }
284
285 static void
286 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
287 void *objfilep)
288 {
289 add_to_objfile_sections_full (abfd, asect, (struct objfile *) objfilep, 0);
290 }
291
292 /* Builds a section table for OBJFILE.
293
294 Note that the OFFSET and OVLY_MAPPED in each table entry are
295 initialized to zero. */
296
297 void
298 build_objfile_section_table (struct objfile *objfile)
299 {
300 int count = gdb_bfd_count_sections (objfile->obfd);
301
302 objfile->sections = OBSTACK_CALLOC (&objfile->objfile_obstack,
303 count,
304 struct obj_section);
305 objfile->sections_end = (objfile->sections + count);
306 bfd_map_over_sections (objfile->obfd,
307 add_to_objfile_sections, (void *) objfile);
308
309 /* See gdb_bfd_section_index. */
310 add_to_objfile_sections_full (objfile->obfd, bfd_com_section_ptr, objfile, 1);
311 add_to_objfile_sections_full (objfile->obfd, bfd_und_section_ptr, objfile, 1);
312 add_to_objfile_sections_full (objfile->obfd, bfd_abs_section_ptr, objfile, 1);
313 add_to_objfile_sections_full (objfile->obfd, bfd_ind_section_ptr, objfile, 1);
314 }
315
316 /* Given a pointer to an initialized bfd (ABFD) and some flag bits,
317 initialize the new objfile as best we can and link it into the list
318 of all known objfiles.
319
320 NAME should contain original non-canonicalized filename or other
321 identifier as entered by user. If there is no better source use
322 bfd_get_filename (ABFD). NAME may be NULL only if ABFD is NULL.
323 NAME content is copied into returned objfile.
324
325 The FLAGS word contains various bits (OBJF_*) that can be taken as
326 requests for specific operations. Other bits like OBJF_SHARED are
327 simply copied through to the new objfile flags member. */
328
329 objfile::objfile (bfd *abfd, const char *name, objfile_flags flags_)
330 : flags (flags_),
331 pspace (current_program_space),
332 partial_symtabs (new psymtab_storage ()),
333 obfd (abfd)
334 {
335 const char *expanded_name;
336
337 /* We could use obstack_specify_allocation here instead, but
338 gdb_obstack.h specifies the alloc/dealloc functions. */
339 obstack_init (&objfile_obstack);
340
341 objfile_alloc_data (this);
342
343 gdb::unique_xmalloc_ptr<char> name_holder;
344 if (name == NULL)
345 {
346 gdb_assert (abfd == NULL);
347 gdb_assert ((flags & OBJF_NOT_FILENAME) != 0);
348 expanded_name = "<<anonymous objfile>>";
349 }
350 else if ((flags & OBJF_NOT_FILENAME) != 0
351 || is_target_filename (name))
352 expanded_name = name;
353 else
354 {
355 name_holder = gdb_abspath (name);
356 expanded_name = name_holder.get ();
357 }
358 original_name = obstack_strdup (&objfile_obstack, expanded_name);
359
360 /* Update the per-objfile information that comes from the bfd, ensuring
361 that any data that is reference is saved in the per-objfile data
362 region. */
363
364 gdb_bfd_ref (abfd);
365 if (abfd != NULL)
366 {
367 mtime = bfd_get_mtime (abfd);
368
369 /* Build section table. */
370 build_objfile_section_table (this);
371 }
372
373 per_bfd = get_objfile_bfd_data (this, abfd);
374
375 /* Add this file onto the tail of the linked list of other such files. */
376
377 if (object_files == NULL)
378 object_files = this;
379 else
380 {
381 struct objfile *last_one;
382
383 for (last_one = object_files;
384 last_one->next;
385 last_one = last_one->next);
386 last_one->next = this;
387 }
388
389 /* Rebuild section map next time we need it. */
390 get_objfile_pspace_data (pspace)->new_objfiles_available = 1;
391 }
392
393 /* Retrieve the gdbarch associated with OBJFILE. */
394
395 struct gdbarch *
396 get_objfile_arch (const struct objfile *objfile)
397 {
398 return objfile->per_bfd->gdbarch;
399 }
400
401 /* If there is a valid and known entry point, function fills *ENTRY_P with it
402 and returns non-zero; otherwise it returns zero. */
403
404 int
405 entry_point_address_query (CORE_ADDR *entry_p)
406 {
407 if (symfile_objfile == NULL || !symfile_objfile->per_bfd->ei.entry_point_p)
408 return 0;
409
410 *entry_p = (symfile_objfile->per_bfd->ei.entry_point
411 + ANOFFSET (symfile_objfile->section_offsets,
412 symfile_objfile->per_bfd->ei.the_bfd_section_index));
413
414 return 1;
415 }
416
417 /* Get current entry point address. Call error if it is not known. */
418
419 CORE_ADDR
420 entry_point_address (void)
421 {
422 CORE_ADDR retval;
423
424 if (!entry_point_address_query (&retval))
425 error (_("Entry point address is not known."));
426
427 return retval;
428 }
429
430 separate_debug_iterator &
431 separate_debug_iterator::operator++ ()
432 {
433 gdb_assert (m_objfile != nullptr);
434
435 struct objfile *res;
436
437 /* If any, return the first child. */
438 res = m_objfile->separate_debug_objfile;
439 if (res != nullptr)
440 {
441 m_objfile = res;
442 return *this;
443 }
444
445 /* Common case where there is no separate debug objfile. */
446 if (m_objfile == m_parent)
447 {
448 m_objfile = nullptr;
449 return *this;
450 }
451
452 /* Return the brother if any. Note that we don't iterate on brothers of
453 the parents. */
454 res = m_objfile->separate_debug_objfile_link;
455 if (res != nullptr)
456 {
457 m_objfile = res;
458 return *this;
459 }
460
461 for (res = m_objfile->separate_debug_objfile_backlink;
462 res != m_parent;
463 res = res->separate_debug_objfile_backlink)
464 {
465 gdb_assert (res != nullptr);
466 if (res->separate_debug_objfile_link != nullptr)
467 {
468 m_objfile = res->separate_debug_objfile_link;
469 return *this;
470 }
471 }
472 m_objfile = nullptr;
473 return *this;
474 }
475
476 /* Unlink OBJFILE from the list of known objfiles. */
477
478 static void
479 unlink_objfile (struct objfile *objfile)
480 {
481 struct objfile **objpp;
482
483 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
484 {
485 if (*objpp == objfile)
486 {
487 *objpp = (*objpp)->next;
488 objfile->next = NULL;
489 return;
490 }
491 }
492
493 internal_error (__FILE__, __LINE__,
494 _("unlink_objfile: objfile already unlinked"));
495 }
496
497 /* Put one object file before a specified on in the global list.
498 This can be used to make sure an object file is destroyed before
499 another when using objfiles_safe to free all objfiles. */
500 static void
501 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
502 {
503 struct objfile **objp;
504
505 unlink_objfile (objfile);
506
507 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
508 {
509 if (*objp == before_this)
510 {
511 objfile->next = *objp;
512 *objp = objfile;
513 return;
514 }
515 }
516
517 internal_error (__FILE__, __LINE__,
518 _("put_objfile_before: before objfile not in list"));
519 }
520
521 /* Add OBJFILE as a separate debug objfile of PARENT. */
522
523 void
524 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
525 {
526 gdb_assert (objfile && parent);
527
528 /* Must not be already in a list. */
529 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
530 gdb_assert (objfile->separate_debug_objfile_link == NULL);
531 gdb_assert (objfile->separate_debug_objfile == NULL);
532 gdb_assert (parent->separate_debug_objfile_backlink == NULL);
533 gdb_assert (parent->separate_debug_objfile_link == NULL);
534
535 objfile->separate_debug_objfile_backlink = parent;
536 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
537 parent->separate_debug_objfile = objfile;
538
539 /* Put the separate debug object before the normal one, this is so that
540 usage of objfiles_safe will stay safe. */
541 put_objfile_before (objfile, parent);
542 }
543
544 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
545 itself. */
546
547 void
548 free_objfile_separate_debug (struct objfile *objfile)
549 {
550 struct objfile *child;
551
552 for (child = objfile->separate_debug_objfile; child;)
553 {
554 struct objfile *next_child = child->separate_debug_objfile_link;
555 delete child;
556 child = next_child;
557 }
558 }
559
560 /* Destroy an objfile and all the symtabs and psymtabs under it. */
561
562 objfile::~objfile ()
563 {
564 /* First notify observers that this objfile is about to be freed. */
565 gdb::observers::free_objfile.notify (this);
566
567 /* Free all separate debug objfiles. */
568 free_objfile_separate_debug (this);
569
570 if (separate_debug_objfile_backlink)
571 {
572 /* We freed the separate debug file, make sure the base objfile
573 doesn't reference it. */
574 struct objfile *child;
575
576 child = separate_debug_objfile_backlink->separate_debug_objfile;
577
578 if (child == this)
579 {
580 /* THIS is the first child. */
581 separate_debug_objfile_backlink->separate_debug_objfile =
582 separate_debug_objfile_link;
583 }
584 else
585 {
586 /* Find THIS in the list. */
587 while (1)
588 {
589 if (child->separate_debug_objfile_link == this)
590 {
591 child->separate_debug_objfile_link =
592 separate_debug_objfile_link;
593 break;
594 }
595 child = child->separate_debug_objfile_link;
596 gdb_assert (child);
597 }
598 }
599 }
600
601 /* Remove any references to this objfile in the global value
602 lists. */
603 preserve_values (this);
604
605 /* It still may reference data modules have associated with the objfile and
606 the symbol file data. */
607 forget_cached_source_info_for_objfile (this);
608
609 breakpoint_free_objfile (this);
610 btrace_free_objfile (this);
611
612 /* First do any symbol file specific actions required when we are
613 finished with a particular symbol file. Note that if the objfile
614 is using reusable symbol information (via mmalloc) then each of
615 these routines is responsible for doing the correct thing, either
616 freeing things which are valid only during this particular gdb
617 execution, or leaving them to be reused during the next one. */
618
619 if (sf != NULL)
620 (*sf->sym_finish) (this);
621
622 /* Discard any data modules have associated with the objfile. The function
623 still may reference obfd. */
624 objfile_free_data (this);
625
626 if (obfd)
627 gdb_bfd_unref (obfd);
628 else
629 delete per_bfd;
630
631 /* Remove it from the chain of all objfiles. */
632
633 unlink_objfile (this);
634
635 if (this == symfile_objfile)
636 symfile_objfile = NULL;
637
638 /* Before the symbol table code was redone to make it easier to
639 selectively load and remove information particular to a specific
640 linkage unit, gdb used to do these things whenever the monolithic
641 symbol table was blown away. How much still needs to be done
642 is unknown, but we play it safe for now and keep each action until
643 it is shown to be no longer needed. */
644
645 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
646 for example), so we need to call this here. */
647 clear_pc_function_cache ();
648
649 /* Check to see if the current_source_symtab belongs to this objfile,
650 and if so, call clear_current_source_symtab_and_line. */
651
652 {
653 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
654
655 if (cursal.symtab && SYMTAB_OBJFILE (cursal.symtab) == this)
656 clear_current_source_symtab_and_line ();
657 }
658
659 /* Free the obstacks for non-reusable objfiles. */
660 obstack_free (&objfile_obstack, 0);
661
662 /* Rebuild section map next time we need it. */
663 get_objfile_pspace_data (pspace)->section_map_dirty = 1;
664 }
665
666 /* Free all the object files at once and clean up their users. */
667
668 void
669 free_all_objfiles (void)
670 {
671 struct so_list *so;
672
673 /* Any objfile reference would become stale. */
674 for (so = master_so_list (); so; so = so->next)
675 gdb_assert (so->objfile == NULL);
676
677 for (objfile *objfile : current_program_space->objfiles_safe ())
678 delete objfile;
679 clear_symtab_users (0);
680 }
681 \f
682 /* A helper function for objfile_relocate1 that relocates a single
683 symbol. */
684
685 static void
686 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
687 struct section_offsets *delta)
688 {
689 fixup_symbol_section (sym, objfile);
690
691 /* The RS6000 code from which this was taken skipped
692 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
693 But I'm leaving out that test, on the theory that
694 they can't possibly pass the tests below. */
695 if ((SYMBOL_CLASS (sym) == LOC_LABEL
696 || SYMBOL_CLASS (sym) == LOC_STATIC)
697 && SYMBOL_SECTION (sym) >= 0)
698 {
699 SET_SYMBOL_VALUE_ADDRESS (sym,
700 SYMBOL_VALUE_ADDRESS (sym)
701 + ANOFFSET (delta, SYMBOL_SECTION (sym)));
702 }
703 }
704
705 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
706 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
707 Return non-zero iff any change happened. */
708
709 static int
710 objfile_relocate1 (struct objfile *objfile,
711 const struct section_offsets *new_offsets)
712 {
713 struct section_offsets *delta =
714 ((struct section_offsets *)
715 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
716
717 int something_changed = 0;
718
719 for (int i = 0; i < objfile->num_sections; ++i)
720 {
721 delta->offsets[i] =
722 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
723 if (ANOFFSET (delta, i) != 0)
724 something_changed = 1;
725 }
726 if (!something_changed)
727 return 0;
728
729 /* OK, get all the symtabs. */
730 {
731 for (compunit_symtab *cust : objfile->compunits ())
732 {
733 for (symtab *s : compunit_filetabs (cust))
734 {
735 struct linetable *l;
736
737 /* First the line table. */
738 l = SYMTAB_LINETABLE (s);
739 if (l)
740 {
741 for (int i = 0; i < l->nitems; ++i)
742 l->item[i].pc += ANOFFSET (delta,
743 COMPUNIT_BLOCK_LINE_SECTION
744 (cust));
745 }
746 }
747 }
748
749 for (compunit_symtab *cust : objfile->compunits ())
750 {
751 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
752 int block_line_section = COMPUNIT_BLOCK_LINE_SECTION (cust);
753
754 if (BLOCKVECTOR_MAP (bv))
755 addrmap_relocate (BLOCKVECTOR_MAP (bv),
756 ANOFFSET (delta, block_line_section));
757
758 for (int i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
759 {
760 struct block *b;
761 struct symbol *sym;
762 struct mdict_iterator miter;
763
764 b = BLOCKVECTOR_BLOCK (bv, i);
765 BLOCK_START (b) += ANOFFSET (delta, block_line_section);
766 BLOCK_END (b) += ANOFFSET (delta, block_line_section);
767
768 if (BLOCK_RANGES (b) != nullptr)
769 for (int j = 0; j < BLOCK_NRANGES (b); j++)
770 {
771 BLOCK_RANGE_START (b, j)
772 += ANOFFSET (delta, block_line_section);
773 BLOCK_RANGE_END (b, j) += ANOFFSET (delta,
774 block_line_section);
775 }
776
777 /* We only want to iterate over the local symbols, not any
778 symbols in included symtabs. */
779 ALL_DICT_SYMBOLS (BLOCK_MULTIDICT (b), miter, sym)
780 {
781 relocate_one_symbol (sym, objfile, delta);
782 }
783 }
784 }
785 }
786
787 /* This stores relocated addresses and so must be cleared. This
788 will cause it to be recreated on demand. */
789 objfile->psymbol_map.clear ();
790
791 /* Relocate isolated symbols. */
792 {
793 struct symbol *iter;
794
795 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
796 relocate_one_symbol (iter, objfile, delta);
797 }
798
799 {
800 int i;
801
802 for (i = 0; i < objfile->num_sections; ++i)
803 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
804 }
805
806 /* Rebuild section map next time we need it. */
807 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
808
809 /* Update the table in exec_ops, used to read memory. */
810 struct obj_section *s;
811 ALL_OBJFILE_OSECTIONS (objfile, s)
812 {
813 int idx = s - objfile->sections;
814
815 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
816 obj_section_addr (s));
817 }
818
819 /* Data changed. */
820 return 1;
821 }
822
823 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
824 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
825
826 The number and ordering of sections does differ between the two objfiles.
827 Only their names match. Also the file offsets will differ (objfile being
828 possibly prelinked but separate_debug_objfile is probably not prelinked) but
829 the in-memory absolute address as specified by NEW_OFFSETS must match both
830 files. */
831
832 void
833 objfile_relocate (struct objfile *objfile,
834 const struct section_offsets *new_offsets)
835 {
836 int changed = 0;
837
838 changed |= objfile_relocate1 (objfile, new_offsets);
839
840 for (::objfile *debug_objfile : objfile->separate_debug_objfiles ())
841 {
842 if (debug_objfile == objfile)
843 continue;
844
845 section_addr_info objfile_addrs
846 = build_section_addr_info_from_objfile (objfile);
847
848 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
849 relative ones must be already created according to debug_objfile. */
850
851 addr_info_make_relative (&objfile_addrs, debug_objfile->obfd);
852
853 gdb_assert (debug_objfile->num_sections
854 == gdb_bfd_count_sections (debug_objfile->obfd));
855 std::vector<struct section_offsets>
856 new_debug_offsets (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections));
857 relative_addr_info_to_section_offsets (new_debug_offsets.data (),
858 debug_objfile->num_sections,
859 objfile_addrs);
860
861 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets.data ());
862 }
863
864 /* Relocate breakpoints as necessary, after things are relocated. */
865 if (changed)
866 breakpoint_re_set ();
867 }
868
869 /* Rebase (add to the offsets) OBJFILE by SLIDE. SEPARATE_DEBUG_OBJFILE is
870 not touched here.
871 Return non-zero iff any change happened. */
872
873 static int
874 objfile_rebase1 (struct objfile *objfile, CORE_ADDR slide)
875 {
876 struct section_offsets *new_offsets =
877 ((struct section_offsets *)
878 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
879 int i;
880
881 for (i = 0; i < objfile->num_sections; ++i)
882 new_offsets->offsets[i] = slide;
883
884 return objfile_relocate1 (objfile, new_offsets);
885 }
886
887 /* Rebase (add to the offsets) OBJFILE by SLIDE. Process also OBJFILE's
888 SEPARATE_DEBUG_OBJFILEs. */
889
890 void
891 objfile_rebase (struct objfile *objfile, CORE_ADDR slide)
892 {
893 int changed = 0;
894
895 for (::objfile *debug_objfile : objfile->separate_debug_objfiles ())
896 changed |= objfile_rebase1 (debug_objfile, slide);
897
898 /* Relocate breakpoints as necessary, after things are relocated. */
899 if (changed)
900 breakpoint_re_set ();
901 }
902 \f
903 /* Return non-zero if OBJFILE has partial symbols. */
904
905 int
906 objfile_has_partial_symbols (struct objfile *objfile)
907 {
908 if (!objfile->sf)
909 return 0;
910
911 /* If we have not read psymbols, but we have a function capable of reading
912 them, then that is an indication that they are in fact available. Without
913 this function the symbols may have been already read in but they also may
914 not be present in this objfile. */
915 if ((objfile->flags & OBJF_PSYMTABS_READ) == 0
916 && objfile->sf->sym_read_psymbols != NULL)
917 return 1;
918
919 return objfile->sf->qf->has_symbols (objfile);
920 }
921
922 /* Return non-zero if OBJFILE has full symbols. */
923
924 int
925 objfile_has_full_symbols (struct objfile *objfile)
926 {
927 return objfile->compunit_symtabs != NULL;
928 }
929
930 /* Return non-zero if OBJFILE has full or partial symbols, either directly
931 or through a separate debug file. */
932
933 int
934 objfile_has_symbols (struct objfile *objfile)
935 {
936 for (::objfile *o : objfile->separate_debug_objfiles ())
937 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
938 return 1;
939 return 0;
940 }
941
942
943 /* Many places in gdb want to test just to see if we have any partial
944 symbols available. This function returns zero if none are currently
945 available, nonzero otherwise. */
946
947 int
948 have_partial_symbols (void)
949 {
950 for (objfile *ofp : current_program_space->objfiles ())
951 {
952 if (objfile_has_partial_symbols (ofp))
953 return 1;
954 }
955 return 0;
956 }
957
958 /* Many places in gdb want to test just to see if we have any full
959 symbols available. This function returns zero if none are currently
960 available, nonzero otherwise. */
961
962 int
963 have_full_symbols (void)
964 {
965 for (objfile *ofp : current_program_space->objfiles ())
966 {
967 if (objfile_has_full_symbols (ofp))
968 return 1;
969 }
970 return 0;
971 }
972
973
974 /* This operations deletes all objfile entries that represent solibs that
975 weren't explicitly loaded by the user, via e.g., the add-symbol-file
976 command. */
977
978 void
979 objfile_purge_solibs (void)
980 {
981 for (objfile *objf : current_program_space->objfiles_safe ())
982 {
983 /* We assume that the solib package has been purged already, or will
984 be soon. */
985
986 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
987 delete objf;
988 }
989 }
990
991
992 /* Many places in gdb want to test just to see if we have any minimal
993 symbols available. This function returns zero if none are currently
994 available, nonzero otherwise. */
995
996 int
997 have_minimal_symbols (void)
998 {
999 for (objfile *ofp : current_program_space->objfiles ())
1000 {
1001 if (ofp->per_bfd->minimal_symbol_count > 0)
1002 {
1003 return 1;
1004 }
1005 }
1006 return 0;
1007 }
1008
1009 /* Qsort comparison function. */
1010
1011 static bool
1012 sort_cmp (const struct obj_section *sect1, const obj_section *sect2)
1013 {
1014 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1015 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1016
1017 if (sect1_addr < sect2_addr)
1018 return true;
1019 else if (sect1_addr > sect2_addr)
1020 return false;
1021 else
1022 {
1023 /* Sections are at the same address. This could happen if
1024 A) we have an objfile and a separate debuginfo.
1025 B) we are confused, and have added sections without proper relocation,
1026 or something like that. */
1027
1028 const struct objfile *const objfile1 = sect1->objfile;
1029 const struct objfile *const objfile2 = sect2->objfile;
1030
1031 if (objfile1->separate_debug_objfile == objfile2
1032 || objfile2->separate_debug_objfile == objfile1)
1033 {
1034 /* Case A. The ordering doesn't matter: separate debuginfo files
1035 will be filtered out later. */
1036
1037 return false;
1038 }
1039
1040 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
1041 triage. This section could be slow (since we iterate over all
1042 objfiles in each call to sort_cmp), but this shouldn't happen
1043 very often (GDB is already in a confused state; one hopes this
1044 doesn't happen at all). If you discover that significant time is
1045 spent in the loops below, do 'set complaints 100' and examine the
1046 resulting complaints. */
1047 if (objfile1 == objfile2)
1048 {
1049 /* Both sections came from the same objfile. We are really
1050 confused. Sort on sequence order of sections within the
1051 objfile. The order of checks is important here, if we find a
1052 match on SECT2 first then either SECT2 is before SECT1, or,
1053 SECT2 == SECT1, in both cases we should return false. The
1054 second case shouldn't occur during normal use, but std::sort
1055 does check that '!(a < a)' when compiled in debug mode. */
1056
1057 const struct obj_section *osect;
1058
1059 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1060 if (osect == sect2)
1061 return false;
1062 else if (osect == sect1)
1063 return true;
1064
1065 /* We should have found one of the sections before getting here. */
1066 gdb_assert_not_reached ("section not found");
1067 }
1068 else
1069 {
1070 /* Sort on sequence number of the objfile in the chain. */
1071
1072 for (objfile *objfile : current_program_space->objfiles ())
1073 if (objfile == objfile1)
1074 return true;
1075 else if (objfile == objfile2)
1076 return false;
1077
1078 /* We should have found one of the objfiles before getting here. */
1079 gdb_assert_not_reached ("objfile not found");
1080 }
1081 }
1082
1083 /* Unreachable. */
1084 gdb_assert_not_reached ("unexpected code path");
1085 return false;
1086 }
1087
1088 /* Select "better" obj_section to keep. We prefer the one that came from
1089 the real object, rather than the one from separate debuginfo.
1090 Most of the time the two sections are exactly identical, but with
1091 prelinking the .rel.dyn section in the real object may have different
1092 size. */
1093
1094 static struct obj_section *
1095 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1096 {
1097 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1098 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1099 || (b->objfile->separate_debug_objfile == a->objfile));
1100 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1101 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1102
1103 if (a->objfile->separate_debug_objfile != NULL)
1104 return a;
1105 return b;
1106 }
1107
1108 /* Return 1 if SECTION should be inserted into the section map.
1109 We want to insert only non-overlay and non-TLS section. */
1110
1111 static int
1112 insert_section_p (const struct bfd *abfd,
1113 const struct bfd_section *section)
1114 {
1115 const bfd_vma lma = bfd_section_lma (section);
1116
1117 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (section)
1118 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1119 /* This is an overlay section. IN_MEMORY check is needed to avoid
1120 discarding sections from the "system supplied DSO" (aka vdso)
1121 on some Linux systems (e.g. Fedora 11). */
1122 return 0;
1123 if ((bfd_section_flags (section) & SEC_THREAD_LOCAL) != 0)
1124 /* This is a TLS section. */
1125 return 0;
1126
1127 return 1;
1128 }
1129
1130 /* Filter out overlapping sections where one section came from the real
1131 objfile, and the other from a separate debuginfo file.
1132 Return the size of table after redundant sections have been eliminated. */
1133
1134 static int
1135 filter_debuginfo_sections (struct obj_section **map, int map_size)
1136 {
1137 int i, j;
1138
1139 for (i = 0, j = 0; i < map_size - 1; i++)
1140 {
1141 struct obj_section *const sect1 = map[i];
1142 struct obj_section *const sect2 = map[i + 1];
1143 const struct objfile *const objfile1 = sect1->objfile;
1144 const struct objfile *const objfile2 = sect2->objfile;
1145 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1146 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1147
1148 if (sect1_addr == sect2_addr
1149 && (objfile1->separate_debug_objfile == objfile2
1150 || objfile2->separate_debug_objfile == objfile1))
1151 {
1152 map[j++] = preferred_obj_section (sect1, sect2);
1153 ++i;
1154 }
1155 else
1156 map[j++] = sect1;
1157 }
1158
1159 if (i < map_size)
1160 {
1161 gdb_assert (i == map_size - 1);
1162 map[j++] = map[i];
1163 }
1164
1165 /* The map should not have shrunk to less than half the original size. */
1166 gdb_assert (map_size / 2 <= j);
1167
1168 return j;
1169 }
1170
1171 /* Filter out overlapping sections, issuing a warning if any are found.
1172 Overlapping sections could really be overlay sections which we didn't
1173 classify as such in insert_section_p, or we could be dealing with a
1174 corrupt binary. */
1175
1176 static int
1177 filter_overlapping_sections (struct obj_section **map, int map_size)
1178 {
1179 int i, j;
1180
1181 for (i = 0, j = 0; i < map_size - 1; )
1182 {
1183 int k;
1184
1185 map[j++] = map[i];
1186 for (k = i + 1; k < map_size; k++)
1187 {
1188 struct obj_section *const sect1 = map[i];
1189 struct obj_section *const sect2 = map[k];
1190 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1191 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1192 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1193
1194 gdb_assert (sect1_addr <= sect2_addr);
1195
1196 if (sect1_endaddr <= sect2_addr)
1197 break;
1198 else
1199 {
1200 /* We have an overlap. Report it. */
1201
1202 struct objfile *const objf1 = sect1->objfile;
1203 struct objfile *const objf2 = sect2->objfile;
1204
1205 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1206 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1207
1208 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1209
1210 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1211
1212 complaint (_("unexpected overlap between:\n"
1213 " (A) section `%s' from `%s' [%s, %s)\n"
1214 " (B) section `%s' from `%s' [%s, %s).\n"
1215 "Will ignore section B"),
1216 bfd_section_name (bfds1), objfile_name (objf1),
1217 paddress (gdbarch, sect1_addr),
1218 paddress (gdbarch, sect1_endaddr),
1219 bfd_section_name (bfds2), objfile_name (objf2),
1220 paddress (gdbarch, sect2_addr),
1221 paddress (gdbarch, sect2_endaddr));
1222 }
1223 }
1224 i = k;
1225 }
1226
1227 if (i < map_size)
1228 {
1229 gdb_assert (i == map_size - 1);
1230 map[j++] = map[i];
1231 }
1232
1233 return j;
1234 }
1235
1236
1237 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1238 TLS, overlay and overlapping sections. */
1239
1240 static void
1241 update_section_map (struct program_space *pspace,
1242 struct obj_section ***pmap, int *pmap_size)
1243 {
1244 struct objfile_pspace_info *pspace_info;
1245 int alloc_size, map_size, i;
1246 struct obj_section *s, **map;
1247
1248 pspace_info = get_objfile_pspace_data (pspace);
1249 gdb_assert (pspace_info->section_map_dirty != 0
1250 || pspace_info->new_objfiles_available != 0);
1251
1252 map = *pmap;
1253 xfree (map);
1254
1255 alloc_size = 0;
1256 for (objfile *objfile : pspace->objfiles ())
1257 ALL_OBJFILE_OSECTIONS (objfile, s)
1258 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1259 alloc_size += 1;
1260
1261 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1262 if (alloc_size == 0)
1263 {
1264 *pmap = NULL;
1265 *pmap_size = 0;
1266 return;
1267 }
1268
1269 map = XNEWVEC (struct obj_section *, alloc_size);
1270
1271 i = 0;
1272 for (objfile *objfile : pspace->objfiles ())
1273 ALL_OBJFILE_OSECTIONS (objfile, s)
1274 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1275 map[i++] = s;
1276
1277 std::sort (map, map + alloc_size, sort_cmp);
1278 map_size = filter_debuginfo_sections(map, alloc_size);
1279 map_size = filter_overlapping_sections(map, map_size);
1280
1281 if (map_size < alloc_size)
1282 /* Some sections were eliminated. Trim excess space. */
1283 map = XRESIZEVEC (struct obj_section *, map, map_size);
1284 else
1285 gdb_assert (alloc_size == map_size);
1286
1287 *pmap = map;
1288 *pmap_size = map_size;
1289 }
1290
1291 /* Bsearch comparison function. */
1292
1293 static int
1294 bsearch_cmp (const void *key, const void *elt)
1295 {
1296 const CORE_ADDR pc = *(CORE_ADDR *) key;
1297 const struct obj_section *section = *(const struct obj_section **) elt;
1298
1299 if (pc < obj_section_addr (section))
1300 return -1;
1301 if (pc < obj_section_endaddr (section))
1302 return 0;
1303 return 1;
1304 }
1305
1306 /* Returns a section whose range includes PC or NULL if none found. */
1307
1308 struct obj_section *
1309 find_pc_section (CORE_ADDR pc)
1310 {
1311 struct objfile_pspace_info *pspace_info;
1312 struct obj_section *s, **sp;
1313
1314 /* Check for mapped overlay section first. */
1315 s = find_pc_mapped_section (pc);
1316 if (s)
1317 return s;
1318
1319 pspace_info = get_objfile_pspace_data (current_program_space);
1320 if (pspace_info->section_map_dirty
1321 || (pspace_info->new_objfiles_available
1322 && !pspace_info->inhibit_updates))
1323 {
1324 update_section_map (current_program_space,
1325 &pspace_info->sections,
1326 &pspace_info->num_sections);
1327
1328 /* Don't need updates to section map until objfiles are added,
1329 removed or relocated. */
1330 pspace_info->new_objfiles_available = 0;
1331 pspace_info->section_map_dirty = 0;
1332 }
1333
1334 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1335 bsearch be non-NULL. */
1336 if (pspace_info->sections == NULL)
1337 {
1338 gdb_assert (pspace_info->num_sections == 0);
1339 return NULL;
1340 }
1341
1342 sp = (struct obj_section **) bsearch (&pc,
1343 pspace_info->sections,
1344 pspace_info->num_sections,
1345 sizeof (*pspace_info->sections),
1346 bsearch_cmp);
1347 if (sp != NULL)
1348 return *sp;
1349 return NULL;
1350 }
1351
1352
1353 /* Return non-zero if PC is in a section called NAME. */
1354
1355 int
1356 pc_in_section (CORE_ADDR pc, const char *name)
1357 {
1358 struct obj_section *s;
1359 int retval = 0;
1360
1361 s = find_pc_section (pc);
1362
1363 retval = (s != NULL
1364 && s->the_bfd_section->name != NULL
1365 && strcmp (s->the_bfd_section->name, name) == 0);
1366 return (retval);
1367 }
1368 \f
1369
1370 /* Set section_map_dirty so section map will be rebuilt next time it
1371 is used. Called by reread_symbols. */
1372
1373 void
1374 objfiles_changed (void)
1375 {
1376 /* Rebuild section map next time we need it. */
1377 get_objfile_pspace_data (current_program_space)->section_map_dirty = 1;
1378 }
1379
1380 /* See comments in objfiles.h. */
1381
1382 scoped_restore_tmpl<int>
1383 inhibit_section_map_updates (struct program_space *pspace)
1384 {
1385 return scoped_restore_tmpl<int>
1386 (&get_objfile_pspace_data (pspace)->inhibit_updates, 1);
1387 }
1388
1389 /* Return 1 if ADDR maps into one of the sections of OBJFILE and 0
1390 otherwise. */
1391
1392 int
1393 is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile)
1394 {
1395 struct obj_section *osect;
1396
1397 if (objfile == NULL)
1398 return 0;
1399
1400 ALL_OBJFILE_OSECTIONS (objfile, osect)
1401 {
1402 if (section_is_overlay (osect) && !section_is_mapped (osect))
1403 continue;
1404
1405 if (obj_section_addr (osect) <= addr
1406 && addr < obj_section_endaddr (osect))
1407 return 1;
1408 }
1409 return 0;
1410 }
1411
1412 int
1413 shared_objfile_contains_address_p (struct program_space *pspace,
1414 CORE_ADDR address)
1415 {
1416 for (objfile *objfile : pspace->objfiles ())
1417 {
1418 if ((objfile->flags & OBJF_SHARED) != 0
1419 && is_addr_in_objfile (address, objfile))
1420 return 1;
1421 }
1422
1423 return 0;
1424 }
1425
1426 /* The default implementation for the "iterate_over_objfiles_in_search_order"
1427 gdbarch method. It is equivalent to use the objfiles iterable,
1428 searching the objfiles in the order they are stored internally,
1429 ignoring CURRENT_OBJFILE.
1430
1431 On most platforms, it should be close enough to doing the best
1432 we can without some knowledge specific to the architecture. */
1433
1434 void
1435 default_iterate_over_objfiles_in_search_order
1436 (struct gdbarch *gdbarch,
1437 iterate_over_objfiles_in_search_order_cb_ftype *cb,
1438 void *cb_data, struct objfile *current_objfile)
1439 {
1440 int stop = 0;
1441
1442 for (objfile *objfile : current_program_space->objfiles ())
1443 {
1444 stop = cb (objfile, cb_data);
1445 if (stop)
1446 return;
1447 }
1448 }
1449
1450 /* See objfiles.h. */
1451
1452 const char *
1453 objfile_name (const struct objfile *objfile)
1454 {
1455 if (objfile->obfd != NULL)
1456 return bfd_get_filename (objfile->obfd);
1457
1458 return objfile->original_name;
1459 }
1460
1461 /* See objfiles.h. */
1462
1463 const char *
1464 objfile_filename (const struct objfile *objfile)
1465 {
1466 if (objfile->obfd != NULL)
1467 return bfd_get_filename (objfile->obfd);
1468
1469 return NULL;
1470 }
1471
1472 /* See objfiles.h. */
1473
1474 const char *
1475 objfile_debug_name (const struct objfile *objfile)
1476 {
1477 return lbasename (objfile->original_name);
1478 }
1479
1480 /* See objfiles.h. */
1481
1482 const char *
1483 objfile_flavour_name (struct objfile *objfile)
1484 {
1485 if (objfile->obfd != NULL)
1486 return bfd_flavour_name (bfd_get_flavour (objfile->obfd));
1487 return NULL;
1488 }
This page took 0.059703 seconds and 3 git commands to generate.