Remove symfile_complaints
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992-2018 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32 #include "bcache.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35
36 #include <sys/types.h>
37 #include <sys/stat.h>
38 #include <fcntl.h>
39 #include "gdb_obstack.h"
40 #include "hashtab.h"
41
42 #include "breakpoint.h"
43 #include "block.h"
44 #include "dictionary.h"
45 #include "source.h"
46 #include "addrmap.h"
47 #include "arch-utils.h"
48 #include "exec.h"
49 #include "observable.h"
50 #include "complaints.h"
51 #include "psymtab.h"
52 #include "solist.h"
53 #include "gdb_bfd.h"
54 #include "btrace.h"
55 #include "common/pathstuff.h"
56
57 #include <vector>
58
59 /* Keep a registry of per-objfile data-pointers required by other GDB
60 modules. */
61
62 DEFINE_REGISTRY (objfile, REGISTRY_ACCESS_FIELD)
63
64 /* Externally visible variables that are owned by this module.
65 See declarations in objfile.h for more info. */
66
67 struct objfile_pspace_info
68 {
69 struct obj_section **sections;
70 int num_sections;
71
72 /* Nonzero if object files have been added since the section map
73 was last updated. */
74 int new_objfiles_available;
75
76 /* Nonzero if the section map MUST be updated before use. */
77 int section_map_dirty;
78
79 /* Nonzero if section map updates should be inhibited if possible. */
80 int inhibit_updates;
81 };
82
83 /* Per-program-space data key. */
84 static const struct program_space_data *objfiles_pspace_data;
85
86 static void
87 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
88 {
89 struct objfile_pspace_info *info = (struct objfile_pspace_info *) arg;
90
91 xfree (info->sections);
92 xfree (info);
93 }
94
95 /* Get the current svr4 data. If none is found yet, add it now. This
96 function always returns a valid object. */
97
98 static struct objfile_pspace_info *
99 get_objfile_pspace_data (struct program_space *pspace)
100 {
101 struct objfile_pspace_info *info;
102
103 info = ((struct objfile_pspace_info *)
104 program_space_data (pspace, objfiles_pspace_data));
105 if (info == NULL)
106 {
107 info = XCNEW (struct objfile_pspace_info);
108 set_program_space_data (pspace, objfiles_pspace_data, info);
109 }
110
111 return info;
112 }
113
114 \f
115
116 /* Per-BFD data key. */
117
118 static const struct bfd_data *objfiles_bfd_data;
119
120 /* Create the per-BFD storage object for OBJFILE. If ABFD is not
121 NULL, and it already has a per-BFD storage object, use that.
122 Otherwise, allocate a new per-BFD storage object. If ABFD is not
123 NULL, the object is allocated on the BFD; otherwise it is allocated
124 on OBJFILE's obstack. Note that it is not safe to call this
125 multiple times for a given OBJFILE -- it can only be called when
126 allocating or re-initializing OBJFILE. */
127
128 static struct objfile_per_bfd_storage *
129 get_objfile_bfd_data (struct objfile *objfile, struct bfd *abfd)
130 {
131 struct objfile_per_bfd_storage *storage = NULL;
132
133 if (abfd != NULL)
134 storage = ((struct objfile_per_bfd_storage *)
135 bfd_data (abfd, objfiles_bfd_data));
136
137 if (storage == NULL)
138 {
139 /* If the object requires gdb to do relocations, we simply fall
140 back to not sharing data across users. These cases are rare
141 enough that this seems reasonable. */
142 if (abfd != NULL && !gdb_bfd_requires_relocations (abfd))
143 {
144 storage
145 = ((struct objfile_per_bfd_storage *)
146 bfd_alloc (abfd, sizeof (struct objfile_per_bfd_storage)));
147 /* objfile_per_bfd_storage is not trivially constructible, must
148 call the ctor manually. */
149 storage = new (storage) objfile_per_bfd_storage ();
150 set_bfd_data (abfd, objfiles_bfd_data, storage);
151 }
152 else
153 storage
154 = obstack_new<objfile_per_bfd_storage> (&objfile->objfile_obstack);
155
156 /* Look up the gdbarch associated with the BFD. */
157 if (abfd != NULL)
158 storage->gdbarch = gdbarch_from_bfd (abfd);
159
160 storage->filename_cache = bcache_xmalloc (NULL, NULL);
161 storage->macro_cache = bcache_xmalloc (NULL, NULL);
162 storage->language_of_main = language_unknown;
163 }
164
165 return storage;
166 }
167
168 /* Free STORAGE. */
169
170 static void
171 free_objfile_per_bfd_storage (struct objfile_per_bfd_storage *storage)
172 {
173 bcache_xfree (storage->filename_cache);
174 bcache_xfree (storage->macro_cache);
175 if (storage->demangled_names_hash)
176 htab_delete (storage->demangled_names_hash);
177 storage->~objfile_per_bfd_storage ();
178 }
179
180 /* A wrapper for free_objfile_per_bfd_storage that can be passed as a
181 cleanup function to the BFD registry. */
182
183 static void
184 objfile_bfd_data_free (struct bfd *unused, void *d)
185 {
186 free_objfile_per_bfd_storage ((struct objfile_per_bfd_storage *) d);
187 }
188
189 /* See objfiles.h. */
190
191 void
192 set_objfile_per_bfd (struct objfile *objfile)
193 {
194 objfile->per_bfd = get_objfile_bfd_data (objfile, objfile->obfd);
195 }
196
197 /* Set the objfile's per-BFD notion of the "main" name and
198 language. */
199
200 void
201 set_objfile_main_name (struct objfile *objfile,
202 const char *name, enum language lang)
203 {
204 if (objfile->per_bfd->name_of_main == NULL
205 || strcmp (objfile->per_bfd->name_of_main, name) != 0)
206 objfile->per_bfd->name_of_main
207 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack, name,
208 strlen (name));
209 objfile->per_bfd->language_of_main = lang;
210 }
211
212 /* Helper structure to map blocks to static link properties in hash tables. */
213
214 struct static_link_htab_entry
215 {
216 const struct block *block;
217 const struct dynamic_prop *static_link;
218 };
219
220 /* Return a hash code for struct static_link_htab_entry *P. */
221
222 static hashval_t
223 static_link_htab_entry_hash (const void *p)
224 {
225 const struct static_link_htab_entry *e
226 = (const struct static_link_htab_entry *) p;
227
228 return htab_hash_pointer (e->block);
229 }
230
231 /* Return whether P1 an P2 (pointers to struct static_link_htab_entry) are
232 mappings for the same block. */
233
234 static int
235 static_link_htab_entry_eq (const void *p1, const void *p2)
236 {
237 const struct static_link_htab_entry *e1
238 = (const struct static_link_htab_entry *) p1;
239 const struct static_link_htab_entry *e2
240 = (const struct static_link_htab_entry *) p2;
241
242 return e1->block == e2->block;
243 }
244
245 /* Register STATIC_LINK as the static link for BLOCK, which is part of OBJFILE.
246 Must not be called more than once for each BLOCK. */
247
248 void
249 objfile_register_static_link (struct objfile *objfile,
250 const struct block *block,
251 const struct dynamic_prop *static_link)
252 {
253 void **slot;
254 struct static_link_htab_entry lookup_entry;
255 struct static_link_htab_entry *entry;
256
257 if (objfile->static_links == NULL)
258 objfile->static_links = htab_create_alloc
259 (1, &static_link_htab_entry_hash, static_link_htab_entry_eq, NULL,
260 xcalloc, xfree);
261
262 /* Create a slot for the mapping, make sure it's the first mapping for this
263 block and then create the mapping itself. */
264 lookup_entry.block = block;
265 slot = htab_find_slot (objfile->static_links, &lookup_entry, INSERT);
266 gdb_assert (*slot == NULL);
267
268 entry = XOBNEW (&objfile->objfile_obstack, static_link_htab_entry);
269 entry->block = block;
270 entry->static_link = static_link;
271 *slot = (void *) entry;
272 }
273
274 /* Look for a static link for BLOCK, which is part of OBJFILE. Return NULL if
275 none was found. */
276
277 const struct dynamic_prop *
278 objfile_lookup_static_link (struct objfile *objfile,
279 const struct block *block)
280 {
281 struct static_link_htab_entry *entry;
282 struct static_link_htab_entry lookup_entry;
283
284 if (objfile->static_links == NULL)
285 return NULL;
286 lookup_entry.block = block;
287 entry
288 = (struct static_link_htab_entry *) htab_find (objfile->static_links,
289 &lookup_entry);
290 if (entry == NULL)
291 return NULL;
292
293 gdb_assert (entry->block == block);
294 return entry->static_link;
295 }
296
297 \f
298
299 /* Called via bfd_map_over_sections to build up the section table that
300 the objfile references. The objfile contains pointers to the start
301 of the table (objfile->sections) and to the first location after
302 the end of the table (objfile->sections_end). */
303
304 static void
305 add_to_objfile_sections_full (struct bfd *abfd, struct bfd_section *asect,
306 struct objfile *objfile, int force)
307 {
308 struct obj_section *section;
309
310 if (!force)
311 {
312 flagword aflag;
313
314 aflag = bfd_get_section_flags (abfd, asect);
315 if (!(aflag & SEC_ALLOC))
316 return;
317 }
318
319 section = &objfile->sections[gdb_bfd_section_index (abfd, asect)];
320 section->objfile = objfile;
321 section->the_bfd_section = asect;
322 section->ovly_mapped = 0;
323 }
324
325 static void
326 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
327 void *objfilep)
328 {
329 add_to_objfile_sections_full (abfd, asect, (struct objfile *) objfilep, 0);
330 }
331
332 /* Builds a section table for OBJFILE.
333
334 Note that the OFFSET and OVLY_MAPPED in each table entry are
335 initialized to zero. */
336
337 void
338 build_objfile_section_table (struct objfile *objfile)
339 {
340 int count = gdb_bfd_count_sections (objfile->obfd);
341
342 objfile->sections = OBSTACK_CALLOC (&objfile->objfile_obstack,
343 count,
344 struct obj_section);
345 objfile->sections_end = (objfile->sections + count);
346 bfd_map_over_sections (objfile->obfd,
347 add_to_objfile_sections, (void *) objfile);
348
349 /* See gdb_bfd_section_index. */
350 add_to_objfile_sections_full (objfile->obfd, bfd_com_section_ptr, objfile, 1);
351 add_to_objfile_sections_full (objfile->obfd, bfd_und_section_ptr, objfile, 1);
352 add_to_objfile_sections_full (objfile->obfd, bfd_abs_section_ptr, objfile, 1);
353 add_to_objfile_sections_full (objfile->obfd, bfd_ind_section_ptr, objfile, 1);
354 }
355
356 /* Given a pointer to an initialized bfd (ABFD) and some flag bits,
357 initialize the new objfile as best we can and link it into the list
358 of all known objfiles.
359
360 NAME should contain original non-canonicalized filename or other
361 identifier as entered by user. If there is no better source use
362 bfd_get_filename (ABFD). NAME may be NULL only if ABFD is NULL.
363 NAME content is copied into returned objfile.
364
365 The FLAGS word contains various bits (OBJF_*) that can be taken as
366 requests for specific operations. Other bits like OBJF_SHARED are
367 simply copied through to the new objfile flags member. */
368
369 objfile::objfile (bfd *abfd, const char *name, objfile_flags flags_)
370 : flags (flags_),
371 pspace (current_program_space),
372 obfd (abfd),
373 psymbol_cache (psymbol_bcache_init ())
374 {
375 const char *expanded_name;
376
377 /* We could use obstack_specify_allocation here instead, but
378 gdb_obstack.h specifies the alloc/dealloc functions. */
379 obstack_init (&objfile_obstack);
380
381 objfile_alloc_data (this);
382
383 gdb::unique_xmalloc_ptr<char> name_holder;
384 if (name == NULL)
385 {
386 gdb_assert (abfd == NULL);
387 gdb_assert ((flags & OBJF_NOT_FILENAME) != 0);
388 expanded_name = "<<anonymous objfile>>";
389 }
390 else if ((flags & OBJF_NOT_FILENAME) != 0
391 || is_target_filename (name))
392 expanded_name = name;
393 else
394 {
395 name_holder = gdb_abspath (name);
396 expanded_name = name_holder.get ();
397 }
398 original_name
399 = (char *) obstack_copy0 (&objfile_obstack,
400 expanded_name,
401 strlen (expanded_name));
402
403 /* Update the per-objfile information that comes from the bfd, ensuring
404 that any data that is reference is saved in the per-objfile data
405 region. */
406
407 gdb_bfd_ref (abfd);
408 if (abfd != NULL)
409 {
410 mtime = bfd_get_mtime (abfd);
411
412 /* Build section table. */
413 build_objfile_section_table (this);
414 }
415
416 per_bfd = get_objfile_bfd_data (this, abfd);
417
418 terminate_minimal_symbol_table (this);
419
420 /* Add this file onto the tail of the linked list of other such files. */
421
422 if (object_files == NULL)
423 object_files = this;
424 else
425 {
426 struct objfile *last_one;
427
428 for (last_one = object_files;
429 last_one->next;
430 last_one = last_one->next);
431 last_one->next = this;
432 }
433
434 /* Rebuild section map next time we need it. */
435 get_objfile_pspace_data (pspace)->new_objfiles_available = 1;
436 }
437
438 /* Retrieve the gdbarch associated with OBJFILE. */
439
440 struct gdbarch *
441 get_objfile_arch (const struct objfile *objfile)
442 {
443 return objfile->per_bfd->gdbarch;
444 }
445
446 /* If there is a valid and known entry point, function fills *ENTRY_P with it
447 and returns non-zero; otherwise it returns zero. */
448
449 int
450 entry_point_address_query (CORE_ADDR *entry_p)
451 {
452 if (symfile_objfile == NULL || !symfile_objfile->per_bfd->ei.entry_point_p)
453 return 0;
454
455 *entry_p = (symfile_objfile->per_bfd->ei.entry_point
456 + ANOFFSET (symfile_objfile->section_offsets,
457 symfile_objfile->per_bfd->ei.the_bfd_section_index));
458
459 return 1;
460 }
461
462 /* Get current entry point address. Call error if it is not known. */
463
464 CORE_ADDR
465 entry_point_address (void)
466 {
467 CORE_ADDR retval;
468
469 if (!entry_point_address_query (&retval))
470 error (_("Entry point address is not known."));
471
472 return retval;
473 }
474
475 /* Iterator on PARENT and every separate debug objfile of PARENT.
476 The usage pattern is:
477 for (objfile = parent;
478 objfile;
479 objfile = objfile_separate_debug_iterate (parent, objfile))
480 ...
481 */
482
483 struct objfile *
484 objfile_separate_debug_iterate (const struct objfile *parent,
485 const struct objfile *objfile)
486 {
487 struct objfile *res;
488
489 /* If any, return the first child. */
490 res = objfile->separate_debug_objfile;
491 if (res)
492 return res;
493
494 /* Common case where there is no separate debug objfile. */
495 if (objfile == parent)
496 return NULL;
497
498 /* Return the brother if any. Note that we don't iterate on brothers of
499 the parents. */
500 res = objfile->separate_debug_objfile_link;
501 if (res)
502 return res;
503
504 for (res = objfile->separate_debug_objfile_backlink;
505 res != parent;
506 res = res->separate_debug_objfile_backlink)
507 {
508 gdb_assert (res != NULL);
509 if (res->separate_debug_objfile_link)
510 return res->separate_debug_objfile_link;
511 }
512 return NULL;
513 }
514
515 /* Put one object file before a specified on in the global list.
516 This can be used to make sure an object file is destroyed before
517 another when using ALL_OBJFILES_SAFE to free all objfiles. */
518 void
519 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
520 {
521 struct objfile **objp;
522
523 unlink_objfile (objfile);
524
525 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
526 {
527 if (*objp == before_this)
528 {
529 objfile->next = *objp;
530 *objp = objfile;
531 return;
532 }
533 }
534
535 internal_error (__FILE__, __LINE__,
536 _("put_objfile_before: before objfile not in list"));
537 }
538
539 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
540 list.
541
542 It is not a bug, or error, to call this function if OBJFILE is not known
543 to be in the current list. This is done in the case of mapped objfiles,
544 for example, just to ensure that the mapped objfile doesn't appear twice
545 in the list. Since the list is threaded, linking in a mapped objfile
546 twice would create a circular list.
547
548 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
549 unlinking it, just to ensure that we have completely severed any linkages
550 between the OBJFILE and the list. */
551
552 void
553 unlink_objfile (struct objfile *objfile)
554 {
555 struct objfile **objpp;
556
557 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
558 {
559 if (*objpp == objfile)
560 {
561 *objpp = (*objpp)->next;
562 objfile->next = NULL;
563 return;
564 }
565 }
566
567 internal_error (__FILE__, __LINE__,
568 _("unlink_objfile: objfile already unlinked"));
569 }
570
571 /* Add OBJFILE as a separate debug objfile of PARENT. */
572
573 void
574 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
575 {
576 gdb_assert (objfile && parent);
577
578 /* Must not be already in a list. */
579 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
580 gdb_assert (objfile->separate_debug_objfile_link == NULL);
581 gdb_assert (objfile->separate_debug_objfile == NULL);
582 gdb_assert (parent->separate_debug_objfile_backlink == NULL);
583 gdb_assert (parent->separate_debug_objfile_link == NULL);
584
585 objfile->separate_debug_objfile_backlink = parent;
586 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
587 parent->separate_debug_objfile = objfile;
588
589 /* Put the separate debug object before the normal one, this is so that
590 usage of the ALL_OBJFILES_SAFE macro will stay safe. */
591 put_objfile_before (objfile, parent);
592 }
593
594 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
595 itself. */
596
597 void
598 free_objfile_separate_debug (struct objfile *objfile)
599 {
600 struct objfile *child;
601
602 for (child = objfile->separate_debug_objfile; child;)
603 {
604 struct objfile *next_child = child->separate_debug_objfile_link;
605 delete child;
606 child = next_child;
607 }
608 }
609
610 /* Destroy an objfile and all the symtabs and psymtabs under it. */
611
612 objfile::~objfile ()
613 {
614 /* First notify observers that this objfile is about to be freed. */
615 gdb::observers::free_objfile.notify (this);
616
617 /* Free all separate debug objfiles. */
618 free_objfile_separate_debug (this);
619
620 if (separate_debug_objfile_backlink)
621 {
622 /* We freed the separate debug file, make sure the base objfile
623 doesn't reference it. */
624 struct objfile *child;
625
626 child = separate_debug_objfile_backlink->separate_debug_objfile;
627
628 if (child == this)
629 {
630 /* THIS is the first child. */
631 separate_debug_objfile_backlink->separate_debug_objfile =
632 separate_debug_objfile_link;
633 }
634 else
635 {
636 /* Find THIS in the list. */
637 while (1)
638 {
639 if (child->separate_debug_objfile_link == this)
640 {
641 child->separate_debug_objfile_link =
642 separate_debug_objfile_link;
643 break;
644 }
645 child = child->separate_debug_objfile_link;
646 gdb_assert (child);
647 }
648 }
649 }
650
651 /* Remove any references to this objfile in the global value
652 lists. */
653 preserve_values (this);
654
655 /* It still may reference data modules have associated with the objfile and
656 the symbol file data. */
657 forget_cached_source_info_for_objfile (this);
658
659 breakpoint_free_objfile (this);
660 btrace_free_objfile (this);
661
662 /* First do any symbol file specific actions required when we are
663 finished with a particular symbol file. Note that if the objfile
664 is using reusable symbol information (via mmalloc) then each of
665 these routines is responsible for doing the correct thing, either
666 freeing things which are valid only during this particular gdb
667 execution, or leaving them to be reused during the next one. */
668
669 if (sf != NULL)
670 (*sf->sym_finish) (this);
671
672 /* Discard any data modules have associated with the objfile. The function
673 still may reference obfd. */
674 objfile_free_data (this);
675
676 if (obfd)
677 gdb_bfd_unref (obfd);
678 else
679 free_objfile_per_bfd_storage (per_bfd);
680
681 /* Remove it from the chain of all objfiles. */
682
683 unlink_objfile (this);
684
685 if (this == symfile_objfile)
686 symfile_objfile = NULL;
687
688 /* Before the symbol table code was redone to make it easier to
689 selectively load and remove information particular to a specific
690 linkage unit, gdb used to do these things whenever the monolithic
691 symbol table was blown away. How much still needs to be done
692 is unknown, but we play it safe for now and keep each action until
693 it is shown to be no longer needed. */
694
695 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
696 for example), so we need to call this here. */
697 clear_pc_function_cache ();
698
699 /* Clear globals which might have pointed into a removed objfile.
700 FIXME: It's not clear which of these are supposed to persist
701 between expressions and which ought to be reset each time. */
702 expression_context_block = NULL;
703 innermost_block.reset ();
704
705 /* Check to see if the current_source_symtab belongs to this objfile,
706 and if so, call clear_current_source_symtab_and_line. */
707
708 {
709 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
710
711 if (cursal.symtab && SYMTAB_OBJFILE (cursal.symtab) == this)
712 clear_current_source_symtab_and_line ();
713 }
714
715 /* Free the obstacks for non-reusable objfiles. */
716 psymbol_bcache_free (psymbol_cache);
717 obstack_free (&objfile_obstack, 0);
718
719 /* Rebuild section map next time we need it. */
720 get_objfile_pspace_data (pspace)->section_map_dirty = 1;
721
722 /* Free the map for static links. There's no need to free static link
723 themselves since they were allocated on the objstack. */
724 if (static_links != NULL)
725 htab_delete (static_links);
726 }
727
728 /* Free all the object files at once and clean up their users. */
729
730 void
731 free_all_objfiles (void)
732 {
733 struct objfile *objfile, *temp;
734 struct so_list *so;
735
736 /* Any objfile referencewould become stale. */
737 for (so = master_so_list (); so; so = so->next)
738 gdb_assert (so->objfile == NULL);
739
740 ALL_OBJFILES_SAFE (objfile, temp)
741 {
742 delete objfile;
743 }
744 clear_symtab_users (0);
745 }
746 \f
747 /* A helper function for objfile_relocate1 that relocates a single
748 symbol. */
749
750 static void
751 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
752 struct section_offsets *delta)
753 {
754 fixup_symbol_section (sym, objfile);
755
756 /* The RS6000 code from which this was taken skipped
757 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
758 But I'm leaving out that test, on the theory that
759 they can't possibly pass the tests below. */
760 if ((SYMBOL_CLASS (sym) == LOC_LABEL
761 || SYMBOL_CLASS (sym) == LOC_STATIC)
762 && SYMBOL_SECTION (sym) >= 0)
763 {
764 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (delta, SYMBOL_SECTION (sym));
765 }
766 }
767
768 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
769 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
770 Return non-zero iff any change happened. */
771
772 static int
773 objfile_relocate1 (struct objfile *objfile,
774 const struct section_offsets *new_offsets)
775 {
776 struct obj_section *s;
777 struct section_offsets *delta =
778 ((struct section_offsets *)
779 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
780
781 int i;
782 int something_changed = 0;
783
784 for (i = 0; i < objfile->num_sections; ++i)
785 {
786 delta->offsets[i] =
787 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
788 if (ANOFFSET (delta, i) != 0)
789 something_changed = 1;
790 }
791 if (!something_changed)
792 return 0;
793
794 /* OK, get all the symtabs. */
795 {
796 struct compunit_symtab *cust;
797 struct symtab *s;
798
799 ALL_OBJFILE_FILETABS (objfile, cust, s)
800 {
801 struct linetable *l;
802 int i;
803
804 /* First the line table. */
805 l = SYMTAB_LINETABLE (s);
806 if (l)
807 {
808 for (i = 0; i < l->nitems; ++i)
809 l->item[i].pc += ANOFFSET (delta,
810 COMPUNIT_BLOCK_LINE_SECTION
811 (cust));
812 }
813 }
814
815 ALL_OBJFILE_COMPUNITS (objfile, cust)
816 {
817 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
818 int block_line_section = COMPUNIT_BLOCK_LINE_SECTION (cust);
819
820 if (BLOCKVECTOR_MAP (bv))
821 addrmap_relocate (BLOCKVECTOR_MAP (bv),
822 ANOFFSET (delta, block_line_section));
823
824 for (i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
825 {
826 struct block *b;
827 struct symbol *sym;
828 struct dict_iterator iter;
829
830 b = BLOCKVECTOR_BLOCK (bv, i);
831 BLOCK_START (b) += ANOFFSET (delta, block_line_section);
832 BLOCK_END (b) += ANOFFSET (delta, block_line_section);
833
834 /* We only want to iterate over the local symbols, not any
835 symbols in included symtabs. */
836 ALL_DICT_SYMBOLS (BLOCK_DICT (b), iter, sym)
837 {
838 relocate_one_symbol (sym, objfile, delta);
839 }
840 }
841 }
842 }
843
844 /* Relocate isolated symbols. */
845 {
846 struct symbol *iter;
847
848 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
849 relocate_one_symbol (iter, objfile, delta);
850 }
851
852 if (objfile->psymtabs_addrmap)
853 addrmap_relocate (objfile->psymtabs_addrmap,
854 ANOFFSET (delta, SECT_OFF_TEXT (objfile)));
855
856 if (objfile->sf)
857 objfile->sf->qf->relocate (objfile, new_offsets, delta);
858
859 {
860 int i;
861
862 for (i = 0; i < objfile->num_sections; ++i)
863 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
864 }
865
866 /* Rebuild section map next time we need it. */
867 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
868
869 /* Update the table in exec_ops, used to read memory. */
870 ALL_OBJFILE_OSECTIONS (objfile, s)
871 {
872 int idx = s - objfile->sections;
873
874 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
875 obj_section_addr (s));
876 }
877
878 /* Data changed. */
879 return 1;
880 }
881
882 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
883 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
884
885 The number and ordering of sections does differ between the two objfiles.
886 Only their names match. Also the file offsets will differ (objfile being
887 possibly prelinked but separate_debug_objfile is probably not prelinked) but
888 the in-memory absolute address as specified by NEW_OFFSETS must match both
889 files. */
890
891 void
892 objfile_relocate (struct objfile *objfile,
893 const struct section_offsets *new_offsets)
894 {
895 struct objfile *debug_objfile;
896 int changed = 0;
897
898 changed |= objfile_relocate1 (objfile, new_offsets);
899
900 for (debug_objfile = objfile->separate_debug_objfile;
901 debug_objfile;
902 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
903 {
904 section_addr_info objfile_addrs
905 = build_section_addr_info_from_objfile (objfile);
906
907 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
908 relative ones must be already created according to debug_objfile. */
909
910 addr_info_make_relative (&objfile_addrs, debug_objfile->obfd);
911
912 gdb_assert (debug_objfile->num_sections
913 == gdb_bfd_count_sections (debug_objfile->obfd));
914 std::vector<struct section_offsets>
915 new_debug_offsets (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections));
916 relative_addr_info_to_section_offsets (new_debug_offsets.data (),
917 debug_objfile->num_sections,
918 objfile_addrs);
919
920 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets.data ());
921 }
922
923 /* Relocate breakpoints as necessary, after things are relocated. */
924 if (changed)
925 breakpoint_re_set ();
926 }
927
928 /* Rebase (add to the offsets) OBJFILE by SLIDE. SEPARATE_DEBUG_OBJFILE is
929 not touched here.
930 Return non-zero iff any change happened. */
931
932 static int
933 objfile_rebase1 (struct objfile *objfile, CORE_ADDR slide)
934 {
935 struct section_offsets *new_offsets =
936 ((struct section_offsets *)
937 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
938 int i;
939
940 for (i = 0; i < objfile->num_sections; ++i)
941 new_offsets->offsets[i] = slide;
942
943 return objfile_relocate1 (objfile, new_offsets);
944 }
945
946 /* Rebase (add to the offsets) OBJFILE by SLIDE. Process also OBJFILE's
947 SEPARATE_DEBUG_OBJFILEs. */
948
949 void
950 objfile_rebase (struct objfile *objfile, CORE_ADDR slide)
951 {
952 struct objfile *debug_objfile;
953 int changed = 0;
954
955 changed |= objfile_rebase1 (objfile, slide);
956
957 for (debug_objfile = objfile->separate_debug_objfile;
958 debug_objfile;
959 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
960 changed |= objfile_rebase1 (debug_objfile, slide);
961
962 /* Relocate breakpoints as necessary, after things are relocated. */
963 if (changed)
964 breakpoint_re_set ();
965 }
966 \f
967 /* Return non-zero if OBJFILE has partial symbols. */
968
969 int
970 objfile_has_partial_symbols (struct objfile *objfile)
971 {
972 if (!objfile->sf)
973 return 0;
974
975 /* If we have not read psymbols, but we have a function capable of reading
976 them, then that is an indication that they are in fact available. Without
977 this function the symbols may have been already read in but they also may
978 not be present in this objfile. */
979 if ((objfile->flags & OBJF_PSYMTABS_READ) == 0
980 && objfile->sf->sym_read_psymbols != NULL)
981 return 1;
982
983 return objfile->sf->qf->has_symbols (objfile);
984 }
985
986 /* Return non-zero if OBJFILE has full symbols. */
987
988 int
989 objfile_has_full_symbols (struct objfile *objfile)
990 {
991 return objfile->compunit_symtabs != NULL;
992 }
993
994 /* Return non-zero if OBJFILE has full or partial symbols, either directly
995 or through a separate debug file. */
996
997 int
998 objfile_has_symbols (struct objfile *objfile)
999 {
1000 struct objfile *o;
1001
1002 for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o))
1003 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
1004 return 1;
1005 return 0;
1006 }
1007
1008
1009 /* Many places in gdb want to test just to see if we have any partial
1010 symbols available. This function returns zero if none are currently
1011 available, nonzero otherwise. */
1012
1013 int
1014 have_partial_symbols (void)
1015 {
1016 struct objfile *ofp;
1017
1018 ALL_OBJFILES (ofp)
1019 {
1020 if (objfile_has_partial_symbols (ofp))
1021 return 1;
1022 }
1023 return 0;
1024 }
1025
1026 /* Many places in gdb want to test just to see if we have any full
1027 symbols available. This function returns zero if none are currently
1028 available, nonzero otherwise. */
1029
1030 int
1031 have_full_symbols (void)
1032 {
1033 struct objfile *ofp;
1034
1035 ALL_OBJFILES (ofp)
1036 {
1037 if (objfile_has_full_symbols (ofp))
1038 return 1;
1039 }
1040 return 0;
1041 }
1042
1043
1044 /* This operations deletes all objfile entries that represent solibs that
1045 weren't explicitly loaded by the user, via e.g., the add-symbol-file
1046 command. */
1047
1048 void
1049 objfile_purge_solibs (void)
1050 {
1051 struct objfile *objf;
1052 struct objfile *temp;
1053
1054 ALL_OBJFILES_SAFE (objf, temp)
1055 {
1056 /* We assume that the solib package has been purged already, or will
1057 be soon. */
1058
1059 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
1060 delete objf;
1061 }
1062 }
1063
1064
1065 /* Many places in gdb want to test just to see if we have any minimal
1066 symbols available. This function returns zero if none are currently
1067 available, nonzero otherwise. */
1068
1069 int
1070 have_minimal_symbols (void)
1071 {
1072 struct objfile *ofp;
1073
1074 ALL_OBJFILES (ofp)
1075 {
1076 if (ofp->per_bfd->minimal_symbol_count > 0)
1077 {
1078 return 1;
1079 }
1080 }
1081 return 0;
1082 }
1083
1084 /* Qsort comparison function. */
1085
1086 static int
1087 qsort_cmp (const void *a, const void *b)
1088 {
1089 const struct obj_section *sect1 = *(const struct obj_section **) a;
1090 const struct obj_section *sect2 = *(const struct obj_section **) b;
1091 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1092 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1093
1094 if (sect1_addr < sect2_addr)
1095 return -1;
1096 else if (sect1_addr > sect2_addr)
1097 return 1;
1098 else
1099 {
1100 /* Sections are at the same address. This could happen if
1101 A) we have an objfile and a separate debuginfo.
1102 B) we are confused, and have added sections without proper relocation,
1103 or something like that. */
1104
1105 const struct objfile *const objfile1 = sect1->objfile;
1106 const struct objfile *const objfile2 = sect2->objfile;
1107
1108 if (objfile1->separate_debug_objfile == objfile2
1109 || objfile2->separate_debug_objfile == objfile1)
1110 {
1111 /* Case A. The ordering doesn't matter: separate debuginfo files
1112 will be filtered out later. */
1113
1114 return 0;
1115 }
1116
1117 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
1118 triage. This section could be slow (since we iterate over all
1119 objfiles in each call to qsort_cmp), but this shouldn't happen
1120 very often (GDB is already in a confused state; one hopes this
1121 doesn't happen at all). If you discover that significant time is
1122 spent in the loops below, do 'set complaints 100' and examine the
1123 resulting complaints. */
1124
1125 if (objfile1 == objfile2)
1126 {
1127 /* Both sections came from the same objfile. We are really confused.
1128 Sort on sequence order of sections within the objfile. */
1129
1130 const struct obj_section *osect;
1131
1132 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1133 if (osect == sect1)
1134 return -1;
1135 else if (osect == sect2)
1136 return 1;
1137
1138 /* We should have found one of the sections before getting here. */
1139 gdb_assert_not_reached ("section not found");
1140 }
1141 else
1142 {
1143 /* Sort on sequence number of the objfile in the chain. */
1144
1145 const struct objfile *objfile;
1146
1147 ALL_OBJFILES (objfile)
1148 if (objfile == objfile1)
1149 return -1;
1150 else if (objfile == objfile2)
1151 return 1;
1152
1153 /* We should have found one of the objfiles before getting here. */
1154 gdb_assert_not_reached ("objfile not found");
1155 }
1156 }
1157
1158 /* Unreachable. */
1159 gdb_assert_not_reached ("unexpected code path");
1160 return 0;
1161 }
1162
1163 /* Select "better" obj_section to keep. We prefer the one that came from
1164 the real object, rather than the one from separate debuginfo.
1165 Most of the time the two sections are exactly identical, but with
1166 prelinking the .rel.dyn section in the real object may have different
1167 size. */
1168
1169 static struct obj_section *
1170 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1171 {
1172 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1173 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1174 || (b->objfile->separate_debug_objfile == a->objfile));
1175 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1176 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1177
1178 if (a->objfile->separate_debug_objfile != NULL)
1179 return a;
1180 return b;
1181 }
1182
1183 /* Return 1 if SECTION should be inserted into the section map.
1184 We want to insert only non-overlay and non-TLS section. */
1185
1186 static int
1187 insert_section_p (const struct bfd *abfd,
1188 const struct bfd_section *section)
1189 {
1190 const bfd_vma lma = bfd_section_lma (abfd, section);
1191
1192 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (abfd, section)
1193 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1194 /* This is an overlay section. IN_MEMORY check is needed to avoid
1195 discarding sections from the "system supplied DSO" (aka vdso)
1196 on some Linux systems (e.g. Fedora 11). */
1197 return 0;
1198 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
1199 /* This is a TLS section. */
1200 return 0;
1201
1202 return 1;
1203 }
1204
1205 /* Filter out overlapping sections where one section came from the real
1206 objfile, and the other from a separate debuginfo file.
1207 Return the size of table after redundant sections have been eliminated. */
1208
1209 static int
1210 filter_debuginfo_sections (struct obj_section **map, int map_size)
1211 {
1212 int i, j;
1213
1214 for (i = 0, j = 0; i < map_size - 1; i++)
1215 {
1216 struct obj_section *const sect1 = map[i];
1217 struct obj_section *const sect2 = map[i + 1];
1218 const struct objfile *const objfile1 = sect1->objfile;
1219 const struct objfile *const objfile2 = sect2->objfile;
1220 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1221 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1222
1223 if (sect1_addr == sect2_addr
1224 && (objfile1->separate_debug_objfile == objfile2
1225 || objfile2->separate_debug_objfile == objfile1))
1226 {
1227 map[j++] = preferred_obj_section (sect1, sect2);
1228 ++i;
1229 }
1230 else
1231 map[j++] = sect1;
1232 }
1233
1234 if (i < map_size)
1235 {
1236 gdb_assert (i == map_size - 1);
1237 map[j++] = map[i];
1238 }
1239
1240 /* The map should not have shrunk to less than half the original size. */
1241 gdb_assert (map_size / 2 <= j);
1242
1243 return j;
1244 }
1245
1246 /* Filter out overlapping sections, issuing a warning if any are found.
1247 Overlapping sections could really be overlay sections which we didn't
1248 classify as such in insert_section_p, or we could be dealing with a
1249 corrupt binary. */
1250
1251 static int
1252 filter_overlapping_sections (struct obj_section **map, int map_size)
1253 {
1254 int i, j;
1255
1256 for (i = 0, j = 0; i < map_size - 1; )
1257 {
1258 int k;
1259
1260 map[j++] = map[i];
1261 for (k = i + 1; k < map_size; k++)
1262 {
1263 struct obj_section *const sect1 = map[i];
1264 struct obj_section *const sect2 = map[k];
1265 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1266 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1267 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1268
1269 gdb_assert (sect1_addr <= sect2_addr);
1270
1271 if (sect1_endaddr <= sect2_addr)
1272 break;
1273 else
1274 {
1275 /* We have an overlap. Report it. */
1276
1277 struct objfile *const objf1 = sect1->objfile;
1278 struct objfile *const objf2 = sect2->objfile;
1279
1280 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1281 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1282
1283 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1284
1285 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1286
1287 complaint (_("unexpected overlap between:\n"
1288 " (A) section `%s' from `%s' [%s, %s)\n"
1289 " (B) section `%s' from `%s' [%s, %s).\n"
1290 "Will ignore section B"),
1291 bfd_section_name (abfd1, bfds1), objfile_name (objf1),
1292 paddress (gdbarch, sect1_addr),
1293 paddress (gdbarch, sect1_endaddr),
1294 bfd_section_name (abfd2, bfds2), objfile_name (objf2),
1295 paddress (gdbarch, sect2_addr),
1296 paddress (gdbarch, sect2_endaddr));
1297 }
1298 }
1299 i = k;
1300 }
1301
1302 if (i < map_size)
1303 {
1304 gdb_assert (i == map_size - 1);
1305 map[j++] = map[i];
1306 }
1307
1308 return j;
1309 }
1310
1311
1312 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1313 TLS, overlay and overlapping sections. */
1314
1315 static void
1316 update_section_map (struct program_space *pspace,
1317 struct obj_section ***pmap, int *pmap_size)
1318 {
1319 struct objfile_pspace_info *pspace_info;
1320 int alloc_size, map_size, i;
1321 struct obj_section *s, **map;
1322 struct objfile *objfile;
1323
1324 pspace_info = get_objfile_pspace_data (pspace);
1325 gdb_assert (pspace_info->section_map_dirty != 0
1326 || pspace_info->new_objfiles_available != 0);
1327
1328 map = *pmap;
1329 xfree (map);
1330
1331 alloc_size = 0;
1332 ALL_PSPACE_OBJFILES (pspace, objfile)
1333 ALL_OBJFILE_OSECTIONS (objfile, s)
1334 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1335 alloc_size += 1;
1336
1337 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1338 if (alloc_size == 0)
1339 {
1340 *pmap = NULL;
1341 *pmap_size = 0;
1342 return;
1343 }
1344
1345 map = XNEWVEC (struct obj_section *, alloc_size);
1346
1347 i = 0;
1348 ALL_PSPACE_OBJFILES (pspace, objfile)
1349 ALL_OBJFILE_OSECTIONS (objfile, s)
1350 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1351 map[i++] = s;
1352
1353 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1354 map_size = filter_debuginfo_sections(map, alloc_size);
1355 map_size = filter_overlapping_sections(map, map_size);
1356
1357 if (map_size < alloc_size)
1358 /* Some sections were eliminated. Trim excess space. */
1359 map = XRESIZEVEC (struct obj_section *, map, map_size);
1360 else
1361 gdb_assert (alloc_size == map_size);
1362
1363 *pmap = map;
1364 *pmap_size = map_size;
1365 }
1366
1367 /* Bsearch comparison function. */
1368
1369 static int
1370 bsearch_cmp (const void *key, const void *elt)
1371 {
1372 const CORE_ADDR pc = *(CORE_ADDR *) key;
1373 const struct obj_section *section = *(const struct obj_section **) elt;
1374
1375 if (pc < obj_section_addr (section))
1376 return -1;
1377 if (pc < obj_section_endaddr (section))
1378 return 0;
1379 return 1;
1380 }
1381
1382 /* Returns a section whose range includes PC or NULL if none found. */
1383
1384 struct obj_section *
1385 find_pc_section (CORE_ADDR pc)
1386 {
1387 struct objfile_pspace_info *pspace_info;
1388 struct obj_section *s, **sp;
1389
1390 /* Check for mapped overlay section first. */
1391 s = find_pc_mapped_section (pc);
1392 if (s)
1393 return s;
1394
1395 pspace_info = get_objfile_pspace_data (current_program_space);
1396 if (pspace_info->section_map_dirty
1397 || (pspace_info->new_objfiles_available
1398 && !pspace_info->inhibit_updates))
1399 {
1400 update_section_map (current_program_space,
1401 &pspace_info->sections,
1402 &pspace_info->num_sections);
1403
1404 /* Don't need updates to section map until objfiles are added,
1405 removed or relocated. */
1406 pspace_info->new_objfiles_available = 0;
1407 pspace_info->section_map_dirty = 0;
1408 }
1409
1410 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1411 bsearch be non-NULL. */
1412 if (pspace_info->sections == NULL)
1413 {
1414 gdb_assert (pspace_info->num_sections == 0);
1415 return NULL;
1416 }
1417
1418 sp = (struct obj_section **) bsearch (&pc,
1419 pspace_info->sections,
1420 pspace_info->num_sections,
1421 sizeof (*pspace_info->sections),
1422 bsearch_cmp);
1423 if (sp != NULL)
1424 return *sp;
1425 return NULL;
1426 }
1427
1428
1429 /* Return non-zero if PC is in a section called NAME. */
1430
1431 int
1432 pc_in_section (CORE_ADDR pc, const char *name)
1433 {
1434 struct obj_section *s;
1435 int retval = 0;
1436
1437 s = find_pc_section (pc);
1438
1439 retval = (s != NULL
1440 && s->the_bfd_section->name != NULL
1441 && strcmp (s->the_bfd_section->name, name) == 0);
1442 return (retval);
1443 }
1444 \f
1445
1446 /* Set section_map_dirty so section map will be rebuilt next time it
1447 is used. Called by reread_symbols. */
1448
1449 void
1450 objfiles_changed (void)
1451 {
1452 /* Rebuild section map next time we need it. */
1453 get_objfile_pspace_data (current_program_space)->section_map_dirty = 1;
1454 }
1455
1456 /* See comments in objfiles.h. */
1457
1458 void
1459 inhibit_section_map_updates (struct program_space *pspace)
1460 {
1461 get_objfile_pspace_data (pspace)->inhibit_updates = 1;
1462 }
1463
1464 /* See comments in objfiles.h. */
1465
1466 void
1467 resume_section_map_updates (struct program_space *pspace)
1468 {
1469 get_objfile_pspace_data (pspace)->inhibit_updates = 0;
1470 }
1471
1472 /* See comments in objfiles.h. */
1473
1474 void
1475 resume_section_map_updates_cleanup (void *arg)
1476 {
1477 resume_section_map_updates ((struct program_space *) arg);
1478 }
1479
1480 /* Return 1 if ADDR maps into one of the sections of OBJFILE and 0
1481 otherwise. */
1482
1483 int
1484 is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile)
1485 {
1486 struct obj_section *osect;
1487
1488 if (objfile == NULL)
1489 return 0;
1490
1491 ALL_OBJFILE_OSECTIONS (objfile, osect)
1492 {
1493 if (section_is_overlay (osect) && !section_is_mapped (osect))
1494 continue;
1495
1496 if (obj_section_addr (osect) <= addr
1497 && addr < obj_section_endaddr (osect))
1498 return 1;
1499 }
1500 return 0;
1501 }
1502
1503 int
1504 shared_objfile_contains_address_p (struct program_space *pspace,
1505 CORE_ADDR address)
1506 {
1507 struct objfile *objfile;
1508
1509 ALL_PSPACE_OBJFILES (pspace, objfile)
1510 {
1511 if ((objfile->flags & OBJF_SHARED) != 0
1512 && is_addr_in_objfile (address, objfile))
1513 return 1;
1514 }
1515
1516 return 0;
1517 }
1518
1519 /* The default implementation for the "iterate_over_objfiles_in_search_order"
1520 gdbarch method. It is equivalent to use the ALL_OBJFILES macro,
1521 searching the objfiles in the order they are stored internally,
1522 ignoring CURRENT_OBJFILE.
1523
1524 On most platorms, it should be close enough to doing the best
1525 we can without some knowledge specific to the architecture. */
1526
1527 void
1528 default_iterate_over_objfiles_in_search_order
1529 (struct gdbarch *gdbarch,
1530 iterate_over_objfiles_in_search_order_cb_ftype *cb,
1531 void *cb_data, struct objfile *current_objfile)
1532 {
1533 int stop = 0;
1534 struct objfile *objfile;
1535
1536 ALL_OBJFILES (objfile)
1537 {
1538 stop = cb (objfile, cb_data);
1539 if (stop)
1540 return;
1541 }
1542 }
1543
1544 /* See objfiles.h. */
1545
1546 const char *
1547 objfile_name (const struct objfile *objfile)
1548 {
1549 if (objfile->obfd != NULL)
1550 return bfd_get_filename (objfile->obfd);
1551
1552 return objfile->original_name;
1553 }
1554
1555 /* See objfiles.h. */
1556
1557 const char *
1558 objfile_filename (const struct objfile *objfile)
1559 {
1560 if (objfile->obfd != NULL)
1561 return bfd_get_filename (objfile->obfd);
1562
1563 return NULL;
1564 }
1565
1566 /* See objfiles.h. */
1567
1568 const char *
1569 objfile_debug_name (const struct objfile *objfile)
1570 {
1571 return lbasename (objfile->original_name);
1572 }
1573
1574 /* See objfiles.h. */
1575
1576 const char *
1577 objfile_flavour_name (struct objfile *objfile)
1578 {
1579 if (objfile->obfd != NULL)
1580 return bfd_flavour_name (bfd_get_flavour (objfile->obfd));
1581 return NULL;
1582 }
1583
1584 void
1585 _initialize_objfiles (void)
1586 {
1587 objfiles_pspace_data
1588 = register_program_space_data_with_cleanup (NULL,
1589 objfiles_pspace_data_cleanup);
1590
1591 objfiles_bfd_data = register_bfd_data_with_cleanup (NULL,
1592 objfile_bfd_data_free);
1593 }
This page took 0.060357 seconds and 5 git commands to generate.