gdb: add target_ops::supports_displaced_step
[deliverable/binutils-gdb.git] / gdb / opencl-lang.c
1 /* OpenCL language support for GDB, the GNU debugger.
2 Copyright (C) 2010-2020 Free Software Foundation, Inc.
3
4 Contributed by Ken Werner <ken.werner@de.ibm.com>.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22 #include "gdbtypes.h"
23 #include "symtab.h"
24 #include "expression.h"
25 #include "parser-defs.h"
26 #include "language.h"
27 #include "varobj.h"
28 #include "c-lang.h"
29 #include "gdbarch.h"
30
31 /* This macro generates enum values from a given type. */
32
33 #define OCL_P_TYPE(TYPE)\
34 opencl_primitive_type_##TYPE,\
35 opencl_primitive_type_##TYPE##2,\
36 opencl_primitive_type_##TYPE##3,\
37 opencl_primitive_type_##TYPE##4,\
38 opencl_primitive_type_##TYPE##8,\
39 opencl_primitive_type_##TYPE##16
40
41 enum opencl_primitive_types {
42 OCL_P_TYPE (char),
43 OCL_P_TYPE (uchar),
44 OCL_P_TYPE (short),
45 OCL_P_TYPE (ushort),
46 OCL_P_TYPE (int),
47 OCL_P_TYPE (uint),
48 OCL_P_TYPE (long),
49 OCL_P_TYPE (ulong),
50 OCL_P_TYPE (half),
51 OCL_P_TYPE (float),
52 OCL_P_TYPE (double),
53 opencl_primitive_type_bool,
54 opencl_primitive_type_unsigned_char,
55 opencl_primitive_type_unsigned_short,
56 opencl_primitive_type_unsigned_int,
57 opencl_primitive_type_unsigned_long,
58 opencl_primitive_type_size_t,
59 opencl_primitive_type_ptrdiff_t,
60 opencl_primitive_type_intptr_t,
61 opencl_primitive_type_uintptr_t,
62 opencl_primitive_type_void,
63 nr_opencl_primitive_types
64 };
65
66 static struct gdbarch_data *opencl_type_data;
67
68 static struct type **
69 builtin_opencl_type (struct gdbarch *gdbarch)
70 {
71 return (struct type **) gdbarch_data (gdbarch, opencl_type_data);
72 }
73
74 /* Returns the corresponding OpenCL vector type from the given type code,
75 the length of the element type, the unsigned flag and the amount of
76 elements (N). */
77
78 static struct type *
79 lookup_opencl_vector_type (struct gdbarch *gdbarch, enum type_code code,
80 unsigned int el_length, unsigned int flag_unsigned,
81 int n)
82 {
83 int i;
84 unsigned int length;
85 struct type *type = NULL;
86 struct type **types = builtin_opencl_type (gdbarch);
87
88 /* Check if n describes a valid OpenCL vector size (2, 3, 4, 8, 16). */
89 if (n != 2 && n != 3 && n != 4 && n != 8 && n != 16)
90 error (_("Invalid OpenCL vector size: %d"), n);
91
92 /* Triple vectors have the size of a quad vector. */
93 length = (n == 3) ? el_length * 4 : el_length * n;
94
95 for (i = 0; i < nr_opencl_primitive_types; i++)
96 {
97 LONGEST lowb, highb;
98
99 if (types[i]->code () == TYPE_CODE_ARRAY && TYPE_VECTOR (types[i])
100 && get_array_bounds (types[i], &lowb, &highb)
101 && TYPE_TARGET_TYPE (types[i])->code () == code
102 && TYPE_UNSIGNED (TYPE_TARGET_TYPE (types[i])) == flag_unsigned
103 && TYPE_LENGTH (TYPE_TARGET_TYPE (types[i])) == el_length
104 && TYPE_LENGTH (types[i]) == length
105 && highb - lowb + 1 == n)
106 {
107 type = types[i];
108 break;
109 }
110 }
111
112 return type;
113 }
114
115 /* Returns nonzero if the array ARR contains duplicates within
116 the first N elements. */
117
118 static int
119 array_has_dups (int *arr, int n)
120 {
121 int i, j;
122
123 for (i = 0; i < n; i++)
124 {
125 for (j = i + 1; j < n; j++)
126 {
127 if (arr[i] == arr[j])
128 return 1;
129 }
130 }
131
132 return 0;
133 }
134
135 /* The OpenCL component access syntax allows to create lvalues referring to
136 selected elements of an original OpenCL vector in arbitrary order. This
137 structure holds the information to describe such lvalues. */
138
139 struct lval_closure
140 {
141 /* Reference count. */
142 int refc;
143 /* The number of indices. */
144 int n;
145 /* The element indices themselves. */
146 int *indices;
147 /* A pointer to the original value. */
148 struct value *val;
149 };
150
151 /* Allocates an instance of struct lval_closure. */
152
153 static struct lval_closure *
154 allocate_lval_closure (int *indices, int n, struct value *val)
155 {
156 struct lval_closure *c = XCNEW (struct lval_closure);
157
158 c->refc = 1;
159 c->n = n;
160 c->indices = XCNEWVEC (int, n);
161 memcpy (c->indices, indices, n * sizeof (int));
162 value_incref (val); /* Increment the reference counter of the value. */
163 c->val = val;
164
165 return c;
166 }
167
168 static void
169 lval_func_read (struct value *v)
170 {
171 struct lval_closure *c = (struct lval_closure *) value_computed_closure (v);
172 struct type *type = check_typedef (value_type (v));
173 struct type *eltype = TYPE_TARGET_TYPE (check_typedef (value_type (c->val)));
174 LONGEST offset = value_offset (v);
175 LONGEST elsize = TYPE_LENGTH (eltype);
176 int n, i, j = 0;
177 LONGEST lowb = 0;
178 LONGEST highb = 0;
179
180 if (type->code () == TYPE_CODE_ARRAY
181 && !get_array_bounds (type, &lowb, &highb))
182 error (_("Could not determine the vector bounds"));
183
184 /* Assume elsize aligned offset. */
185 gdb_assert (offset % elsize == 0);
186 offset /= elsize;
187 n = offset + highb - lowb + 1;
188 gdb_assert (n <= c->n);
189
190 for (i = offset; i < n; i++)
191 memcpy (value_contents_raw (v) + j++ * elsize,
192 value_contents (c->val) + c->indices[i] * elsize,
193 elsize);
194 }
195
196 static void
197 lval_func_write (struct value *v, struct value *fromval)
198 {
199 struct value *mark = value_mark ();
200 struct lval_closure *c = (struct lval_closure *) value_computed_closure (v);
201 struct type *type = check_typedef (value_type (v));
202 struct type *eltype = TYPE_TARGET_TYPE (check_typedef (value_type (c->val)));
203 LONGEST offset = value_offset (v);
204 LONGEST elsize = TYPE_LENGTH (eltype);
205 int n, i, j = 0;
206 LONGEST lowb = 0;
207 LONGEST highb = 0;
208
209 if (type->code () == TYPE_CODE_ARRAY
210 && !get_array_bounds (type, &lowb, &highb))
211 error (_("Could not determine the vector bounds"));
212
213 /* Assume elsize aligned offset. */
214 gdb_assert (offset % elsize == 0);
215 offset /= elsize;
216 n = offset + highb - lowb + 1;
217
218 /* Since accesses to the fourth component of a triple vector is undefined we
219 just skip writes to the fourth element. Imagine something like this:
220 int3 i3 = (int3)(0, 1, 2);
221 i3.hi.hi = 5;
222 In this case n would be 4 (offset=12/4 + 1) while c->n would be 3. */
223 if (n > c->n)
224 n = c->n;
225
226 for (i = offset; i < n; i++)
227 {
228 struct value *from_elm_val = allocate_value (eltype);
229 struct value *to_elm_val = value_subscript (c->val, c->indices[i]);
230
231 memcpy (value_contents_writeable (from_elm_val),
232 value_contents (fromval) + j++ * elsize,
233 elsize);
234 value_assign (to_elm_val, from_elm_val);
235 }
236
237 value_free_to_mark (mark);
238 }
239
240 /* Return nonzero if bits in V from OFFSET and LENGTH represent a
241 synthetic pointer. */
242
243 static int
244 lval_func_check_synthetic_pointer (const struct value *v,
245 LONGEST offset, int length)
246 {
247 struct lval_closure *c = (struct lval_closure *) value_computed_closure (v);
248 /* Size of the target type in bits. */
249 int elsize =
250 TYPE_LENGTH (TYPE_TARGET_TYPE (check_typedef (value_type (c->val)))) * 8;
251 int startrest = offset % elsize;
252 int start = offset / elsize;
253 int endrest = (offset + length) % elsize;
254 int end = (offset + length) / elsize;
255 int i;
256
257 if (endrest)
258 end++;
259
260 if (end > c->n)
261 return 0;
262
263 for (i = start; i < end; i++)
264 {
265 int comp_offset = (i == start) ? startrest : 0;
266 int comp_length = (i == end) ? endrest : elsize;
267
268 if (!value_bits_synthetic_pointer (c->val,
269 c->indices[i] * elsize + comp_offset,
270 comp_length))
271 return 0;
272 }
273
274 return 1;
275 }
276
277 static void *
278 lval_func_copy_closure (const struct value *v)
279 {
280 struct lval_closure *c = (struct lval_closure *) value_computed_closure (v);
281
282 ++c->refc;
283
284 return c;
285 }
286
287 static void
288 lval_func_free_closure (struct value *v)
289 {
290 struct lval_closure *c = (struct lval_closure *) value_computed_closure (v);
291
292 --c->refc;
293
294 if (c->refc == 0)
295 {
296 value_decref (c->val); /* Decrement the reference counter of the value. */
297 xfree (c->indices);
298 xfree (c);
299 }
300 }
301
302 static const struct lval_funcs opencl_value_funcs =
303 {
304 lval_func_read,
305 lval_func_write,
306 NULL, /* indirect */
307 NULL, /* coerce_ref */
308 lval_func_check_synthetic_pointer,
309 lval_func_copy_closure,
310 lval_func_free_closure
311 };
312
313 /* Creates a sub-vector from VAL. The elements are selected by the indices of
314 an array with the length of N. Supported values for NOSIDE are
315 EVAL_NORMAL and EVAL_AVOID_SIDE_EFFECTS. */
316
317 static struct value *
318 create_value (struct gdbarch *gdbarch, struct value *val, enum noside noside,
319 int *indices, int n)
320 {
321 struct type *type = check_typedef (value_type (val));
322 struct type *elm_type = TYPE_TARGET_TYPE (type);
323 struct value *ret;
324
325 /* Check if a single component of a vector is requested which means
326 the resulting type is a (primitive) scalar type. */
327 if (n == 1)
328 {
329 if (noside == EVAL_AVOID_SIDE_EFFECTS)
330 ret = value_zero (elm_type, not_lval);
331 else
332 ret = value_subscript (val, indices[0]);
333 }
334 else
335 {
336 /* Multiple components of the vector are requested which means the
337 resulting type is a vector as well. */
338 struct type *dst_type =
339 lookup_opencl_vector_type (gdbarch, elm_type->code (),
340 TYPE_LENGTH (elm_type),
341 TYPE_UNSIGNED (elm_type), n);
342
343 if (dst_type == NULL)
344 dst_type = init_vector_type (elm_type, n);
345
346 make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type), dst_type, NULL);
347
348 if (noside == EVAL_AVOID_SIDE_EFFECTS)
349 ret = allocate_value (dst_type);
350 else
351 {
352 /* Check whether to create a lvalue or not. */
353 if (VALUE_LVAL (val) != not_lval && !array_has_dups (indices, n))
354 {
355 struct lval_closure *c = allocate_lval_closure (indices, n, val);
356 ret = allocate_computed_value (dst_type, &opencl_value_funcs, c);
357 }
358 else
359 {
360 int i;
361
362 ret = allocate_value (dst_type);
363
364 /* Copy src val contents into the destination value. */
365 for (i = 0; i < n; i++)
366 memcpy (value_contents_writeable (ret)
367 + (i * TYPE_LENGTH (elm_type)),
368 value_contents (val)
369 + (indices[i] * TYPE_LENGTH (elm_type)),
370 TYPE_LENGTH (elm_type));
371 }
372 }
373 }
374 return ret;
375 }
376
377 /* OpenCL vector component access. */
378
379 static struct value *
380 opencl_component_ref (struct expression *exp, struct value *val, char *comps,
381 enum noside noside)
382 {
383 LONGEST lowb, highb;
384 int src_len;
385 struct value *v;
386 int indices[16], i;
387 int dst_len;
388
389 if (!get_array_bounds (check_typedef (value_type (val)), &lowb, &highb))
390 error (_("Could not determine the vector bounds"));
391
392 src_len = highb - lowb + 1;
393
394 /* Throw an error if the amount of array elements does not fit a
395 valid OpenCL vector size (2, 3, 4, 8, 16). */
396 if (src_len != 2 && src_len != 3 && src_len != 4 && src_len != 8
397 && src_len != 16)
398 error (_("Invalid OpenCL vector size"));
399
400 if (strcmp (comps, "lo") == 0 )
401 {
402 dst_len = (src_len == 3) ? 2 : src_len / 2;
403
404 for (i = 0; i < dst_len; i++)
405 indices[i] = i;
406 }
407 else if (strcmp (comps, "hi") == 0)
408 {
409 dst_len = (src_len == 3) ? 2 : src_len / 2;
410
411 for (i = 0; i < dst_len; i++)
412 indices[i] = dst_len + i;
413 }
414 else if (strcmp (comps, "even") == 0)
415 {
416 dst_len = (src_len == 3) ? 2 : src_len / 2;
417
418 for (i = 0; i < dst_len; i++)
419 indices[i] = i*2;
420 }
421 else if (strcmp (comps, "odd") == 0)
422 {
423 dst_len = (src_len == 3) ? 2 : src_len / 2;
424
425 for (i = 0; i < dst_len; i++)
426 indices[i] = i*2+1;
427 }
428 else if (strncasecmp (comps, "s", 1) == 0)
429 {
430 #define HEXCHAR_TO_INT(C) ((C >= '0' && C <= '9') ? \
431 C-'0' : ((C >= 'A' && C <= 'F') ? \
432 C-'A'+10 : ((C >= 'a' && C <= 'f') ? \
433 C-'a'+10 : -1)))
434
435 dst_len = strlen (comps);
436 /* Skip the s/S-prefix. */
437 dst_len--;
438
439 for (i = 0; i < dst_len; i++)
440 {
441 indices[i] = HEXCHAR_TO_INT(comps[i+1]);
442 /* Check if the requested component is invalid or exceeds
443 the vector. */
444 if (indices[i] < 0 || indices[i] >= src_len)
445 error (_("Invalid OpenCL vector component accessor %s"), comps);
446 }
447 }
448 else
449 {
450 dst_len = strlen (comps);
451
452 for (i = 0; i < dst_len; i++)
453 {
454 /* x, y, z, w */
455 switch (comps[i])
456 {
457 case 'x':
458 indices[i] = 0;
459 break;
460 case 'y':
461 indices[i] = 1;
462 break;
463 case 'z':
464 if (src_len < 3)
465 error (_("Invalid OpenCL vector component accessor %s"), comps);
466 indices[i] = 2;
467 break;
468 case 'w':
469 if (src_len < 4)
470 error (_("Invalid OpenCL vector component accessor %s"), comps);
471 indices[i] = 3;
472 break;
473 default:
474 error (_("Invalid OpenCL vector component accessor %s"), comps);
475 break;
476 }
477 }
478 }
479
480 /* Throw an error if the amount of requested components does not
481 result in a valid length (1, 2, 3, 4, 8, 16). */
482 if (dst_len != 1 && dst_len != 2 && dst_len != 3 && dst_len != 4
483 && dst_len != 8 && dst_len != 16)
484 error (_("Invalid OpenCL vector component accessor %s"), comps);
485
486 v = create_value (exp->gdbarch, val, noside, indices, dst_len);
487
488 return v;
489 }
490
491 /* Perform the unary logical not (!) operation. */
492
493 static struct value *
494 opencl_logical_not (struct expression *exp, struct value *arg)
495 {
496 struct type *type = check_typedef (value_type (arg));
497 struct type *rettype;
498 struct value *ret;
499
500 if (type->code () == TYPE_CODE_ARRAY && TYPE_VECTOR (type))
501 {
502 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type));
503 LONGEST lowb, highb;
504 int i;
505
506 if (!get_array_bounds (type, &lowb, &highb))
507 error (_("Could not determine the vector bounds"));
508
509 /* Determine the resulting type of the operation and allocate the
510 value. */
511 rettype = lookup_opencl_vector_type (exp->gdbarch, TYPE_CODE_INT,
512 TYPE_LENGTH (eltype), 0,
513 highb - lowb + 1);
514 ret = allocate_value (rettype);
515
516 for (i = 0; i < highb - lowb + 1; i++)
517 {
518 /* For vector types, the unary operator shall return a 0 if the
519 value of its operand compares unequal to 0, and -1 (i.e. all bits
520 set) if the value of its operand compares equal to 0. */
521 int tmp = value_logical_not (value_subscript (arg, i)) ? -1 : 0;
522 memset (value_contents_writeable (ret) + i * TYPE_LENGTH (eltype),
523 tmp, TYPE_LENGTH (eltype));
524 }
525 }
526 else
527 {
528 rettype = language_bool_type (exp->language_defn, exp->gdbarch);
529 ret = value_from_longest (rettype, value_logical_not (arg));
530 }
531
532 return ret;
533 }
534
535 /* Perform a relational operation on two scalar operands. */
536
537 static int
538 scalar_relop (struct value *val1, struct value *val2, enum exp_opcode op)
539 {
540 int ret;
541
542 switch (op)
543 {
544 case BINOP_EQUAL:
545 ret = value_equal (val1, val2);
546 break;
547 case BINOP_NOTEQUAL:
548 ret = !value_equal (val1, val2);
549 break;
550 case BINOP_LESS:
551 ret = value_less (val1, val2);
552 break;
553 case BINOP_GTR:
554 ret = value_less (val2, val1);
555 break;
556 case BINOP_GEQ:
557 ret = value_less (val2, val1) || value_equal (val1, val2);
558 break;
559 case BINOP_LEQ:
560 ret = value_less (val1, val2) || value_equal (val1, val2);
561 break;
562 case BINOP_LOGICAL_AND:
563 ret = !value_logical_not (val1) && !value_logical_not (val2);
564 break;
565 case BINOP_LOGICAL_OR:
566 ret = !value_logical_not (val1) || !value_logical_not (val2);
567 break;
568 default:
569 error (_("Attempt to perform an unsupported operation"));
570 break;
571 }
572 return ret;
573 }
574
575 /* Perform a relational operation on two vector operands. */
576
577 static struct value *
578 vector_relop (struct expression *exp, struct value *val1, struct value *val2,
579 enum exp_opcode op)
580 {
581 struct value *ret;
582 struct type *type1, *type2, *eltype1, *eltype2, *rettype;
583 int t1_is_vec, t2_is_vec, i;
584 LONGEST lowb1, lowb2, highb1, highb2;
585
586 type1 = check_typedef (value_type (val1));
587 type2 = check_typedef (value_type (val2));
588
589 t1_is_vec = (type1->code () == TYPE_CODE_ARRAY && TYPE_VECTOR (type1));
590 t2_is_vec = (type2->code () == TYPE_CODE_ARRAY && TYPE_VECTOR (type2));
591
592 if (!t1_is_vec || !t2_is_vec)
593 error (_("Vector operations are not supported on scalar types"));
594
595 eltype1 = check_typedef (TYPE_TARGET_TYPE (type1));
596 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2));
597
598 if (!get_array_bounds (type1,&lowb1, &highb1)
599 || !get_array_bounds (type2, &lowb2, &highb2))
600 error (_("Could not determine the vector bounds"));
601
602 /* Check whether the vector types are compatible. */
603 if (eltype1->code () != eltype2->code ()
604 || TYPE_LENGTH (eltype1) != TYPE_LENGTH (eltype2)
605 || TYPE_UNSIGNED (eltype1) != TYPE_UNSIGNED (eltype2)
606 || lowb1 != lowb2 || highb1 != highb2)
607 error (_("Cannot perform operation on vectors with different types"));
608
609 /* Determine the resulting type of the operation and allocate the value. */
610 rettype = lookup_opencl_vector_type (exp->gdbarch, TYPE_CODE_INT,
611 TYPE_LENGTH (eltype1), 0,
612 highb1 - lowb1 + 1);
613 ret = allocate_value (rettype);
614
615 for (i = 0; i < highb1 - lowb1 + 1; i++)
616 {
617 /* For vector types, the relational, equality and logical operators shall
618 return 0 if the specified relation is false and -1 (i.e. all bits set)
619 if the specified relation is true. */
620 int tmp = scalar_relop (value_subscript (val1, i),
621 value_subscript (val2, i), op) ? -1 : 0;
622 memset (value_contents_writeable (ret) + i * TYPE_LENGTH (eltype1),
623 tmp, TYPE_LENGTH (eltype1));
624 }
625
626 return ret;
627 }
628
629 /* Perform a cast of ARG into TYPE. There's sadly a lot of duplication in
630 here from valops.c:value_cast, opencl is different only in the
631 behaviour of scalar to vector casting. As far as possibly we're going
632 to try and delegate back to the standard value_cast function. */
633
634 static struct value *
635 opencl_value_cast (struct type *type, struct value *arg)
636 {
637 if (type != value_type (arg))
638 {
639 /* Casting scalar to vector is a special case for OpenCL, scalar
640 is cast to element type of vector then replicated into each
641 element of the vector. First though, we need to work out if
642 this is a scalar to vector cast; code lifted from
643 valops.c:value_cast. */
644 enum type_code code1, code2;
645 struct type *to_type;
646 int scalar;
647
648 to_type = check_typedef (type);
649
650 code1 = to_type->code ();
651 code2 = check_typedef (value_type (arg))->code ();
652
653 if (code2 == TYPE_CODE_REF)
654 code2 = check_typedef (value_type (coerce_ref(arg)))->code ();
655
656 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_BOOL
657 || code2 == TYPE_CODE_CHAR || code2 == TYPE_CODE_FLT
658 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
659 || code2 == TYPE_CODE_RANGE);
660
661 if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (to_type) && scalar)
662 {
663 struct type *eltype;
664
665 /* Cast to the element type of the vector here as
666 value_vector_widen will error if the scalar value is
667 truncated by the cast. To avoid the error, cast (and
668 possibly truncate) here. */
669 eltype = check_typedef (TYPE_TARGET_TYPE (to_type));
670 arg = value_cast (eltype, arg);
671
672 return value_vector_widen (arg, type);
673 }
674 else
675 /* Standard cast handler. */
676 arg = value_cast (type, arg);
677 }
678 return arg;
679 }
680
681 /* Perform a relational operation on two operands. */
682
683 static struct value *
684 opencl_relop (struct expression *exp, struct value *arg1, struct value *arg2,
685 enum exp_opcode op)
686 {
687 struct value *val;
688 struct type *type1 = check_typedef (value_type (arg1));
689 struct type *type2 = check_typedef (value_type (arg2));
690 int t1_is_vec = (type1->code () == TYPE_CODE_ARRAY
691 && TYPE_VECTOR (type1));
692 int t2_is_vec = (type2->code () == TYPE_CODE_ARRAY
693 && TYPE_VECTOR (type2));
694
695 if (!t1_is_vec && !t2_is_vec)
696 {
697 int tmp = scalar_relop (arg1, arg2, op);
698 struct type *type =
699 language_bool_type (exp->language_defn, exp->gdbarch);
700
701 val = value_from_longest (type, tmp);
702 }
703 else if (t1_is_vec && t2_is_vec)
704 {
705 val = vector_relop (exp, arg1, arg2, op);
706 }
707 else
708 {
709 /* Widen the scalar operand to a vector. */
710 struct value **v = t1_is_vec ? &arg2 : &arg1;
711 struct type *t = t1_is_vec ? type2 : type1;
712
713 if (t->code () != TYPE_CODE_FLT && !is_integral_type (t))
714 error (_("Argument to operation not a number or boolean."));
715
716 *v = opencl_value_cast (t1_is_vec ? type1 : type2, *v);
717 val = vector_relop (exp, arg1, arg2, op);
718 }
719
720 return val;
721 }
722
723 /* Expression evaluator for the OpenCL. Most operations are delegated to
724 evaluate_subexp_standard; see that function for a description of the
725 arguments. */
726
727 static struct value *
728 evaluate_subexp_opencl (struct type *expect_type, struct expression *exp,
729 int *pos, enum noside noside)
730 {
731 enum exp_opcode op = exp->elts[*pos].opcode;
732 struct value *arg1 = NULL;
733 struct value *arg2 = NULL;
734 struct type *type1, *type2;
735
736 switch (op)
737 {
738 /* Handle assignment and cast operators to support OpenCL-style
739 scalar-to-vector widening. */
740 case BINOP_ASSIGN:
741 (*pos)++;
742 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
743 type1 = value_type (arg1);
744 arg2 = evaluate_subexp (type1, exp, pos, noside);
745
746 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
747 return arg1;
748
749 if (deprecated_value_modifiable (arg1)
750 && VALUE_LVAL (arg1) != lval_internalvar)
751 arg2 = opencl_value_cast (type1, arg2);
752
753 return value_assign (arg1, arg2);
754
755 case UNOP_CAST:
756 type1 = exp->elts[*pos + 1].type;
757 (*pos) += 2;
758 arg1 = evaluate_subexp (type1, exp, pos, noside);
759
760 if (noside == EVAL_SKIP)
761 return value_from_longest (builtin_type (exp->gdbarch)->
762 builtin_int, 1);
763
764 return opencl_value_cast (type1, arg1);
765
766 case UNOP_CAST_TYPE:
767 (*pos)++;
768 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
769 type1 = value_type (arg1);
770 arg1 = evaluate_subexp (type1, exp, pos, noside);
771
772 if (noside == EVAL_SKIP)
773 return value_from_longest (builtin_type (exp->gdbarch)->
774 builtin_int, 1);
775
776 return opencl_value_cast (type1, arg1);
777
778 /* Handle binary relational and equality operators that are either not
779 or differently defined for GNU vectors. */
780 case BINOP_EQUAL:
781 case BINOP_NOTEQUAL:
782 case BINOP_LESS:
783 case BINOP_GTR:
784 case BINOP_GEQ:
785 case BINOP_LEQ:
786 (*pos)++;
787 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
788 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
789
790 if (noside == EVAL_SKIP)
791 return value_from_longest (builtin_type (exp->gdbarch)->
792 builtin_int, 1);
793
794 return opencl_relop (exp, arg1, arg2, op);
795
796 /* Handle the logical unary operator not(!). */
797 case UNOP_LOGICAL_NOT:
798 (*pos)++;
799 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
800
801 if (noside == EVAL_SKIP)
802 return value_from_longest (builtin_type (exp->gdbarch)->
803 builtin_int, 1);
804
805 return opencl_logical_not (exp, arg1);
806
807 /* Handle the logical operator and(&&) and or(||). */
808 case BINOP_LOGICAL_AND:
809 case BINOP_LOGICAL_OR:
810 (*pos)++;
811 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
812
813 if (noside == EVAL_SKIP)
814 {
815 evaluate_subexp (NULL_TYPE, exp, pos, noside);
816
817 return value_from_longest (builtin_type (exp->gdbarch)->
818 builtin_int, 1);
819 }
820 else
821 {
822 /* For scalar operations we need to avoid evaluating operands
823 unnecessarily. However, for vector operations we always need to
824 evaluate both operands. Unfortunately we only know which of the
825 two cases apply after we know the type of the second operand.
826 Therefore we evaluate it once using EVAL_AVOID_SIDE_EFFECTS. */
827 int oldpos = *pos;
828
829 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
830 EVAL_AVOID_SIDE_EFFECTS);
831 *pos = oldpos;
832 type1 = check_typedef (value_type (arg1));
833 type2 = check_typedef (value_type (arg2));
834
835 if ((type1->code () == TYPE_CODE_ARRAY && TYPE_VECTOR (type1))
836 || (type2->code () == TYPE_CODE_ARRAY && TYPE_VECTOR (type2)))
837 {
838 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
839
840 return opencl_relop (exp, arg1, arg2, op);
841 }
842 else
843 {
844 /* For scalar built-in types, only evaluate the right
845 hand operand if the left hand operand compares
846 unequal(&&)/equal(||) to 0. */
847 int res;
848 int tmp = value_logical_not (arg1);
849
850 if (op == BINOP_LOGICAL_OR)
851 tmp = !tmp;
852
853 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
854 tmp ? EVAL_SKIP : noside);
855 type1 = language_bool_type (exp->language_defn, exp->gdbarch);
856
857 if (op == BINOP_LOGICAL_AND)
858 res = !tmp && !value_logical_not (arg2);
859 else /* BINOP_LOGICAL_OR */
860 res = tmp || !value_logical_not (arg2);
861
862 return value_from_longest (type1, res);
863 }
864 }
865
866 /* Handle the ternary selection operator. */
867 case TERNOP_COND:
868 (*pos)++;
869 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
870 type1 = check_typedef (value_type (arg1));
871 if (type1->code () == TYPE_CODE_ARRAY && TYPE_VECTOR (type1))
872 {
873 struct value *arg3, *tmp, *ret;
874 struct type *eltype2, *type3, *eltype3;
875 int t2_is_vec, t3_is_vec, i;
876 LONGEST lowb1, lowb2, lowb3, highb1, highb2, highb3;
877
878 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
879 arg3 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
880 type2 = check_typedef (value_type (arg2));
881 type3 = check_typedef (value_type (arg3));
882 t2_is_vec
883 = type2->code () == TYPE_CODE_ARRAY && TYPE_VECTOR (type2);
884 t3_is_vec
885 = type3->code () == TYPE_CODE_ARRAY && TYPE_VECTOR (type3);
886
887 /* Widen the scalar operand to a vector if necessary. */
888 if (t2_is_vec || !t3_is_vec)
889 {
890 arg3 = opencl_value_cast (type2, arg3);
891 type3 = value_type (arg3);
892 }
893 else if (!t2_is_vec || t3_is_vec)
894 {
895 arg2 = opencl_value_cast (type3, arg2);
896 type2 = value_type (arg2);
897 }
898 else if (!t2_is_vec || !t3_is_vec)
899 {
900 /* Throw an error if arg2 or arg3 aren't vectors. */
901 error (_("\
902 Cannot perform conditional operation on incompatible types"));
903 }
904
905 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2));
906 eltype3 = check_typedef (TYPE_TARGET_TYPE (type3));
907
908 if (!get_array_bounds (type1, &lowb1, &highb1)
909 || !get_array_bounds (type2, &lowb2, &highb2)
910 || !get_array_bounds (type3, &lowb3, &highb3))
911 error (_("Could not determine the vector bounds"));
912
913 /* Throw an error if the types of arg2 or arg3 are incompatible. */
914 if (eltype2->code () != eltype3->code ()
915 || TYPE_LENGTH (eltype2) != TYPE_LENGTH (eltype3)
916 || TYPE_UNSIGNED (eltype2) != TYPE_UNSIGNED (eltype3)
917 || lowb2 != lowb3 || highb2 != highb3)
918 error (_("\
919 Cannot perform operation on vectors with different types"));
920
921 /* Throw an error if the sizes of arg1 and arg2/arg3 differ. */
922 if (lowb1 != lowb2 || lowb1 != lowb3
923 || highb1 != highb2 || highb1 != highb3)
924 error (_("\
925 Cannot perform conditional operation on vectors with different sizes"));
926
927 ret = allocate_value (type2);
928
929 for (i = 0; i < highb1 - lowb1 + 1; i++)
930 {
931 tmp = value_logical_not (value_subscript (arg1, i)) ?
932 value_subscript (arg3, i) : value_subscript (arg2, i);
933 memcpy (value_contents_writeable (ret) +
934 i * TYPE_LENGTH (eltype2), value_contents_all (tmp),
935 TYPE_LENGTH (eltype2));
936 }
937
938 return ret;
939 }
940 else
941 {
942 if (value_logical_not (arg1))
943 {
944 /* Skip the second operand. */
945 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
946
947 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
948 }
949 else
950 {
951 /* Skip the third operand. */
952 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
953 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
954
955 return arg2;
956 }
957 }
958
959 /* Handle STRUCTOP_STRUCT to allow component access on OpenCL vectors. */
960 case STRUCTOP_STRUCT:
961 {
962 int pc = (*pos)++;
963 int tem = longest_to_int (exp->elts[pc + 1].longconst);
964
965 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
966 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
967 type1 = check_typedef (value_type (arg1));
968
969 if (noside == EVAL_SKIP)
970 {
971 return value_from_longest (builtin_type (exp->gdbarch)->
972 builtin_int, 1);
973 }
974 else if (type1->code () == TYPE_CODE_ARRAY && TYPE_VECTOR (type1))
975 {
976 return opencl_component_ref (exp, arg1, &exp->elts[pc + 2].string,
977 noside);
978 }
979 else
980 {
981 struct value *v = value_struct_elt (&arg1, NULL,
982 &exp->elts[pc + 2].string, NULL,
983 "structure");
984
985 if (noside == EVAL_AVOID_SIDE_EFFECTS)
986 v = value_zero (value_type (v), VALUE_LVAL (v));
987 return v;
988 }
989 }
990 default:
991 break;
992 }
993
994 return evaluate_subexp_c (expect_type, exp, pos, noside);
995 }
996
997 const struct exp_descriptor exp_descriptor_opencl =
998 {
999 print_subexp_standard,
1000 operator_length_standard,
1001 operator_check_standard,
1002 op_name_standard,
1003 dump_subexp_body_standard,
1004 evaluate_subexp_opencl
1005 };
1006
1007 /* Constant data representing the OpenCL language. */
1008 extern const struct language_data opencl_language_data =
1009 {
1010 "opencl", /* Language name */
1011 "OpenCL C",
1012 language_opencl,
1013 range_check_off,
1014 case_sensitive_on,
1015 array_row_major,
1016 macro_expansion_c,
1017 NULL,
1018 &exp_descriptor_opencl,
1019 c_parse,
1020 null_post_parser,
1021 c_printchar, /* Print a character constant */
1022 c_printstr, /* Function to print string constant */
1023 c_emit_char, /* Print a single char */
1024 c_print_typedef, /* Print a typedef using appropriate syntax */
1025 c_value_print_inner, /* la_value_print_inner */
1026 c_value_print, /* Print a top-level value */
1027 NULL, /* name_of_this */
1028 false, /* la_store_sym_names_in_linkage_form_p */
1029 basic_lookup_symbol_nonlocal, /* lookup_symbol_nonlocal */
1030 NULL, /* Language specific
1031 class_name_from_physname */
1032 c_op_print_tab, /* expression operators for printing */
1033 1, /* c-style arrays */
1034 0, /* String lower bound */
1035 default_word_break_characters,
1036 default_collect_symbol_completion_matches,
1037 c_watch_location_expression,
1038 NULL, /* la_get_symbol_name_matcher */
1039 &default_varobj_ops,
1040 NULL,
1041 c_is_string_type_p,
1042 "{...}" /* la_struct_too_deep_ellipsis */
1043 };
1044
1045 /* Class representing the OpenCL language. */
1046
1047 class opencl_language : public language_defn
1048 {
1049 public:
1050 opencl_language ()
1051 : language_defn (language_opencl, opencl_language_data)
1052 { /* Nothing. */ }
1053
1054 /* See language.h. */
1055 void language_arch_info (struct gdbarch *gdbarch,
1056 struct language_arch_info *lai) const override
1057 {
1058 struct type **types = builtin_opencl_type (gdbarch);
1059
1060 /* Copy primitive types vector from gdbarch. */
1061 lai->primitive_type_vector = types;
1062
1063 /* Type of elements of strings. */
1064 lai->string_char_type = types [opencl_primitive_type_char];
1065
1066 /* Specifies the return type of logical and relational operations. */
1067 lai->bool_type_symbol = "int";
1068 lai->bool_type_default = types [opencl_primitive_type_int];
1069 }
1070
1071 /* See language.h. */
1072
1073 void print_type (struct type *type, const char *varstring,
1074 struct ui_file *stream, int show, int level,
1075 const struct type_print_options *flags) const override
1076 {
1077 /* We nearly always defer to C type printing, except that vector types
1078 are considered primitive in OpenCL, and should always be printed
1079 using their TYPE_NAME. */
1080 if (show > 0)
1081 {
1082 type = check_typedef (type);
1083 if (type->code () == TYPE_CODE_ARRAY && TYPE_VECTOR (type)
1084 && type->name () != NULL)
1085 show = 0;
1086 }
1087
1088 c_print_type (type, varstring, stream, show, level, flags);
1089 }
1090 };
1091
1092 /* Single instance of the OpenCL language class. */
1093
1094 static opencl_language opencl_language_defn;
1095
1096 static void *
1097 build_opencl_types (struct gdbarch *gdbarch)
1098 {
1099 struct type **types
1100 = GDBARCH_OBSTACK_CALLOC (gdbarch, nr_opencl_primitive_types + 1,
1101 struct type *);
1102
1103 /* Helper macro to create strings. */
1104 #define OCL_STRING(S) #S
1105 /* This macro allocates and assigns the type struct pointers
1106 for the vector types. */
1107 #define BUILD_OCL_VTYPES(TYPE)\
1108 types[opencl_primitive_type_##TYPE##2] \
1109 = init_vector_type (types[opencl_primitive_type_##TYPE], 2); \
1110 types[opencl_primitive_type_##TYPE##2]->set_name (OCL_STRING(TYPE ## 2)); \
1111 types[opencl_primitive_type_##TYPE##3] \
1112 = init_vector_type (types[opencl_primitive_type_##TYPE], 3); \
1113 types[opencl_primitive_type_##TYPE##3]->set_name (OCL_STRING(TYPE ## 3)); \
1114 TYPE_LENGTH (types[opencl_primitive_type_##TYPE##3]) \
1115 = 4 * TYPE_LENGTH (types[opencl_primitive_type_##TYPE]); \
1116 types[opencl_primitive_type_##TYPE##4] \
1117 = init_vector_type (types[opencl_primitive_type_##TYPE], 4); \
1118 types[opencl_primitive_type_##TYPE##4]->set_name (OCL_STRING(TYPE ## 4)); \
1119 types[opencl_primitive_type_##TYPE##8] \
1120 = init_vector_type (types[opencl_primitive_type_##TYPE], 8); \
1121 types[opencl_primitive_type_##TYPE##8]->set_name (OCL_STRING(TYPE ## 8)); \
1122 types[opencl_primitive_type_##TYPE##16] \
1123 = init_vector_type (types[opencl_primitive_type_##TYPE], 16); \
1124 types[opencl_primitive_type_##TYPE##16]->set_name (OCL_STRING(TYPE ## 16))
1125
1126 types[opencl_primitive_type_char]
1127 = arch_integer_type (gdbarch, 8, 0, "char");
1128 BUILD_OCL_VTYPES (char);
1129 types[opencl_primitive_type_uchar]
1130 = arch_integer_type (gdbarch, 8, 1, "uchar");
1131 BUILD_OCL_VTYPES (uchar);
1132 types[opencl_primitive_type_short]
1133 = arch_integer_type (gdbarch, 16, 0, "short");
1134 BUILD_OCL_VTYPES (short);
1135 types[opencl_primitive_type_ushort]
1136 = arch_integer_type (gdbarch, 16, 1, "ushort");
1137 BUILD_OCL_VTYPES (ushort);
1138 types[opencl_primitive_type_int]
1139 = arch_integer_type (gdbarch, 32, 0, "int");
1140 BUILD_OCL_VTYPES (int);
1141 types[opencl_primitive_type_uint]
1142 = arch_integer_type (gdbarch, 32, 1, "uint");
1143 BUILD_OCL_VTYPES (uint);
1144 types[opencl_primitive_type_long]
1145 = arch_integer_type (gdbarch, 64, 0, "long");
1146 BUILD_OCL_VTYPES (long);
1147 types[opencl_primitive_type_ulong]
1148 = arch_integer_type (gdbarch, 64, 1, "ulong");
1149 BUILD_OCL_VTYPES (ulong);
1150 types[opencl_primitive_type_half]
1151 = arch_float_type (gdbarch, 16, "half", floatformats_ieee_half);
1152 BUILD_OCL_VTYPES (half);
1153 types[opencl_primitive_type_float]
1154 = arch_float_type (gdbarch, 32, "float", floatformats_ieee_single);
1155 BUILD_OCL_VTYPES (float);
1156 types[opencl_primitive_type_double]
1157 = arch_float_type (gdbarch, 64, "double", floatformats_ieee_double);
1158 BUILD_OCL_VTYPES (double);
1159 types[opencl_primitive_type_bool]
1160 = arch_boolean_type (gdbarch, 8, 1, "bool");
1161 types[opencl_primitive_type_unsigned_char]
1162 = arch_integer_type (gdbarch, 8, 1, "unsigned char");
1163 types[opencl_primitive_type_unsigned_short]
1164 = arch_integer_type (gdbarch, 16, 1, "unsigned short");
1165 types[opencl_primitive_type_unsigned_int]
1166 = arch_integer_type (gdbarch, 32, 1, "unsigned int");
1167 types[opencl_primitive_type_unsigned_long]
1168 = arch_integer_type (gdbarch, 64, 1, "unsigned long");
1169 types[opencl_primitive_type_size_t]
1170 = arch_integer_type (gdbarch, gdbarch_ptr_bit (gdbarch), 1, "size_t");
1171 types[opencl_primitive_type_ptrdiff_t]
1172 = arch_integer_type (gdbarch, gdbarch_ptr_bit (gdbarch), 0, "ptrdiff_t");
1173 types[opencl_primitive_type_intptr_t]
1174 = arch_integer_type (gdbarch, gdbarch_ptr_bit (gdbarch), 0, "intptr_t");
1175 types[opencl_primitive_type_uintptr_t]
1176 = arch_integer_type (gdbarch, gdbarch_ptr_bit (gdbarch), 1, "uintptr_t");
1177 types[opencl_primitive_type_void]
1178 = arch_type (gdbarch, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
1179
1180 return types;
1181 }
1182
1183 void _initialize_opencl_language ();
1184 void
1185 _initialize_opencl_language ()
1186 {
1187 opencl_type_data = gdbarch_data_register_post_init (build_opencl_types);
1188 }
This page took 0.054734 seconds and 4 git commands to generate.