2010-05-15 Michael Snyder <msnyder@vmware.com>
[deliverable/binutils-gdb.git] / gdb / progspace.c
1 /* Program and address space management, for GDB, the GNU debugger.
2
3 Copyright (C) 2009, 2010 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbcmd.h"
22 #include "objfiles.h"
23 #include "arch-utils.h"
24 #include "gdbcore.h"
25 #include "solib.h"
26 #include "gdbthread.h"
27
28 /* The last program space number assigned. */
29 int last_program_space_num = 0;
30
31 /* The head of the program spaces list. */
32 struct program_space *program_spaces;
33
34 /* Pointer to the current program space. */
35 struct program_space *current_program_space;
36
37 /* The last address space number assigned. */
38 static int highest_address_space_num;
39
40 /* Prototypes for local functions */
41
42 static void program_space_alloc_data (struct program_space *);
43 static void program_space_free_data (struct program_space *);
44 \f
45
46 /* An address space. Currently this is not used for much other than
47 for comparing if pspaces/inferior/threads see the same address
48 space. */
49
50 struct address_space
51 {
52 int num;
53 };
54
55 /* Create a new address space object, and add it to the list. */
56
57 struct address_space *
58 new_address_space (void)
59 {
60 struct address_space *aspace;
61
62 aspace = XZALLOC (struct address_space);
63 aspace->num = ++highest_address_space_num;
64
65 return aspace;
66 }
67
68 /* Maybe create a new address space object, and add it to the list, or
69 return a pointer to an existing address space, in case inferiors
70 share an address space on this target system. */
71
72 struct address_space *
73 maybe_new_address_space (void)
74 {
75 int shared_aspace = gdbarch_has_shared_address_space (target_gdbarch);
76
77 if (shared_aspace)
78 {
79 /* Just return the first in the list. */
80 return program_spaces->aspace;
81 }
82
83 return new_address_space ();
84 }
85
86 static void
87 free_address_space (struct address_space *aspace)
88 {
89 xfree (aspace);
90 }
91
92 int
93 address_space_num (struct address_space *aspace)
94 {
95 return aspace->num;
96 }
97
98 /* Start counting over from scratch. */
99
100 static void
101 init_address_spaces (void)
102 {
103 highest_address_space_num = 0;
104 }
105
106 \f
107
108 /* Adds a new empty program space to the program space list, and binds
109 it to ASPACE. Returns the pointer to the new object. */
110
111 struct program_space *
112 add_program_space (struct address_space *aspace)
113 {
114 struct program_space *pspace;
115
116 pspace = XZALLOC (struct program_space);
117
118 pspace->num = ++last_program_space_num;
119 pspace->aspace = aspace;
120
121 program_space_alloc_data (pspace);
122
123 pspace->next = program_spaces;
124 program_spaces = pspace;
125
126 return pspace;
127 }
128
129 /* Releases program space PSPACE, and all its contents (shared
130 libraries, objfiles, and any other references to the PSPACE in
131 other modules). It is an internal error to call this when PSPACE
132 is the current program space, since there should always be a
133 program space. */
134
135 static void
136 release_program_space (struct program_space *pspace)
137 {
138 struct cleanup *old_chain = save_current_program_space ();
139
140 gdb_assert (pspace != current_program_space);
141
142 set_current_program_space (pspace);
143
144 breakpoint_program_space_exit (pspace);
145 no_shared_libraries (NULL, 0);
146 exec_close ();
147 free_all_objfiles ();
148 if (!gdbarch_has_shared_address_space (target_gdbarch))
149 free_address_space (pspace->aspace);
150 resize_section_table (&pspace->target_sections,
151 -resize_section_table (&pspace->target_sections, 0));
152 /* Discard any data modules have associated with the PSPACE. */
153 program_space_free_data (pspace);
154 xfree (pspace);
155
156 do_cleanups (old_chain);
157 }
158
159 /* Unlinks PSPACE from the pspace list, and releases it. */
160
161 void
162 remove_program_space (struct program_space *pspace)
163 {
164 struct program_space *ss, **ss_link;
165
166 ss = program_spaces;
167 ss_link = &program_spaces;
168 while (ss)
169 {
170 if (ss != pspace)
171 {
172 ss_link = &ss->next;
173 ss = *ss_link;
174 continue;
175 }
176
177 *ss_link = ss->next;
178 release_program_space (ss);
179 ss = *ss_link;
180 }
181 }
182
183 /* Copies program space SRC to DEST. Copies the main executable file,
184 and the main symbol file. Returns DEST. */
185
186 struct program_space *
187 clone_program_space (struct program_space *dest, struct program_space *src)
188 {
189 struct cleanup *old_chain;
190
191 old_chain = save_current_program_space ();
192
193 set_current_program_space (dest);
194
195 if (src->ebfd != NULL)
196 exec_file_attach (bfd_get_filename (src->ebfd), 0);
197
198 if (src->symfile_object_file != NULL)
199 symbol_file_add_main (src->symfile_object_file->name, 0);
200
201 do_cleanups (old_chain);
202 return dest;
203 }
204
205 /* Sets PSPACE as the current program space. It is the caller's
206 responsibility to make sure that the currently selected
207 inferior/thread matches the selected program space. */
208
209 void
210 set_current_program_space (struct program_space *pspace)
211 {
212 if (current_program_space == pspace)
213 return;
214
215 gdb_assert (pspace != NULL);
216
217 current_program_space = pspace;
218
219 /* Different symbols change our view of the frame chain. */
220 reinit_frame_cache ();
221 }
222
223 /* A cleanups callback, helper for save_current_program_space
224 below. */
225
226 static void
227 restore_program_space (void *arg)
228 {
229 struct program_space *saved_pspace = arg;
230
231 set_current_program_space (saved_pspace);
232 }
233
234 /* Save the current program space so that it may be restored by a later
235 call to do_cleanups. Returns the struct cleanup pointer needed for
236 later doing the cleanup. */
237
238 struct cleanup *
239 save_current_program_space (void)
240 {
241 struct cleanup *old_chain = make_cleanup (restore_program_space,
242 current_program_space);
243
244 return old_chain;
245 }
246
247 /* Returns true iff there's no inferior bound to PSPACE. */
248
249 static int
250 pspace_empty_p (struct program_space *pspace)
251 {
252 if (find_inferior_for_program_space (pspace) != NULL)
253 return 0;
254
255 return 1;
256 }
257
258 /* Prune away automatically added program spaces that aren't required
259 anymore. */
260
261 void
262 prune_program_spaces (void)
263 {
264 struct program_space *ss, **ss_link;
265 struct program_space *current = current_program_space;
266
267 ss = program_spaces;
268 ss_link = &program_spaces;
269 while (ss)
270 {
271 if (ss == current || !pspace_empty_p (ss))
272 {
273 ss_link = &ss->next;
274 ss = *ss_link;
275 continue;
276 }
277
278 *ss_link = ss->next;
279 release_program_space (ss);
280 ss = *ss_link;
281 }
282 }
283
284 /* Prints the list of program spaces and their details on UIOUT. If
285 REQUESTED is not -1, it's the ID of the pspace that should be
286 printed. Otherwise, all spaces are printed. */
287
288 static void
289 print_program_space (struct ui_out *uiout, int requested)
290 {
291 struct program_space *pspace;
292 int count = 0;
293 struct cleanup *old_chain;
294
295 /* Might as well prune away unneeded ones, so the user doesn't even
296 seem them. */
297 prune_program_spaces ();
298
299 /* Compute number of pspaces we will print. */
300 ALL_PSPACES (pspace)
301 {
302 if (requested != -1 && pspace->num != requested)
303 continue;
304
305 ++count;
306 }
307
308 /* There should always be at least one. */
309 gdb_assert (count > 0);
310
311 old_chain = make_cleanup_ui_out_table_begin_end (uiout, 3, count, "pspaces");
312 ui_out_table_header (uiout, 1, ui_left, "current", "");
313 ui_out_table_header (uiout, 4, ui_left, "id", "Id");
314 ui_out_table_header (uiout, 17, ui_left, "exec", "Executable");
315 ui_out_table_body (uiout);
316
317 ALL_PSPACES (pspace)
318 {
319 struct cleanup *chain2;
320 struct inferior *inf;
321 int printed_header;
322
323 if (requested != -1 && requested != pspace->num)
324 continue;
325
326 chain2 = make_cleanup_ui_out_tuple_begin_end (uiout, NULL);
327
328 if (pspace == current_program_space)
329 ui_out_field_string (uiout, "current", "*");
330 else
331 ui_out_field_skip (uiout, "current");
332
333 ui_out_field_int (uiout, "id", pspace->num);
334
335 if (pspace->ebfd)
336 ui_out_field_string (uiout, "exec",
337 bfd_get_filename (pspace->ebfd));
338 else
339 ui_out_field_skip (uiout, "exec");
340
341 /* Print extra info that doesn't really fit in tabular form.
342 Currently, we print the list of inferiors bound to a pspace.
343 There can be more than one inferior bound to the same pspace,
344 e.g., both parent/child inferiors in a vfork, or, on targets
345 that share pspaces between inferiors. */
346 printed_header = 0;
347 for (inf = inferior_list; inf; inf = inf->next)
348 if (inf->pspace == pspace)
349 {
350 if (!printed_header)
351 {
352 printed_header = 1;
353 printf_filtered ("\n\tBound inferiors: ID %d (%s)",
354 inf->num,
355 target_pid_to_str (pid_to_ptid (inf->pid)));
356 }
357 else
358 printf_filtered (", ID %d (%s)",
359 inf->num,
360 target_pid_to_str (pid_to_ptid (inf->pid)));
361 }
362
363 ui_out_text (uiout, "\n");
364 do_cleanups (chain2);
365 }
366
367 do_cleanups (old_chain);
368 }
369
370 /* Boolean test for an already-known program space id. */
371
372 static int
373 valid_program_space_id (int num)
374 {
375 struct program_space *pspace;
376
377 ALL_PSPACES (pspace)
378 if (pspace->num == num)
379 return 1;
380
381 return 0;
382 }
383
384 /* If ARGS is NULL or empty, print information about all program
385 spaces. Otherwise, ARGS is a text representation of a LONG
386 indicating which the program space to print information about. */
387
388 static void
389 maintenance_info_program_spaces_command (char *args, int from_tty)
390 {
391 int requested = -1;
392
393 if (args && *args)
394 {
395 requested = parse_and_eval_long (args);
396 if (!valid_program_space_id (requested))
397 error (_("program space ID %d not known."), requested);
398 }
399
400 print_program_space (uiout, requested);
401 }
402
403 /* Simply returns the count of program spaces. */
404
405 int
406 number_of_program_spaces (void)
407 {
408 struct program_space *pspace;
409 int count = 0;
410
411 ALL_PSPACES (pspace)
412 count++;
413
414 return count;
415 }
416
417 /* Update all program spaces matching to address spaces. The user may
418 have created several program spaces, and loaded executables into
419 them before connecting to the target interface that will create the
420 inferiors. All that happens before GDB has a chance to know if the
421 inferiors will share an address space or not. Call this after
422 having connected to the target interface and having fetched the
423 target description, to fixup the program/address spaces mappings.
424
425 It is assumed that there are no bound inferiors yet, otherwise,
426 they'd be left with stale referenced to released aspaces. */
427
428 void
429 update_address_spaces (void)
430 {
431 int shared_aspace = gdbarch_has_shared_address_space (target_gdbarch);
432 struct program_space *pspace;
433 struct inferior *inf;
434
435 init_address_spaces ();
436
437 if (shared_aspace)
438 {
439 struct address_space *aspace = new_address_space ();
440
441 free_address_space (current_program_space->aspace);
442 ALL_PSPACES (pspace)
443 pspace->aspace = aspace;
444 }
445 else
446 ALL_PSPACES (pspace)
447 {
448 free_address_space (pspace->aspace);
449 pspace->aspace = new_address_space ();
450 }
451
452 for (inf = inferior_list; inf; inf = inf->next)
453 if (gdbarch_has_global_solist (target_gdbarch))
454 inf->aspace = maybe_new_address_space ();
455 else
456 inf->aspace = inf->pspace->aspace;
457 }
458
459 /* Save the current program space so that it may be restored by a later
460 call to do_cleanups. Returns the struct cleanup pointer needed for
461 later doing the cleanup. */
462
463 struct cleanup *
464 save_current_space_and_thread (void)
465 {
466 struct cleanup *old_chain;
467
468 /* If restoring to null thread, we need to restore the pspace as
469 well, hence, we need to save the current program space first. */
470 old_chain = save_current_program_space ();
471 save_current_inferior ();
472 make_cleanup_restore_current_thread ();
473
474 return old_chain;
475 }
476
477 /* Switches full context to program space PSPACE. Switches to the
478 first thread found bound to PSPACE. */
479
480 void
481 switch_to_program_space_and_thread (struct program_space *pspace)
482 {
483 struct inferior *inf;
484
485 inf = find_inferior_for_program_space (pspace);
486 if (inf != NULL)
487 {
488 struct thread_info *tp;
489
490 tp = any_live_thread_of_process (inf->pid);
491 if (tp != NULL)
492 {
493 switch_to_thread (tp->ptid);
494 /* Switching thread switches pspace implicitly. We're
495 done. */
496 return;
497 }
498 }
499
500 switch_to_thread (null_ptid);
501 set_current_program_space (pspace);
502 }
503
504 \f
505
506 /* Keep a registry of per-program_space data-pointers required by other GDB
507 modules. */
508
509 struct program_space_data
510 {
511 unsigned index;
512 void (*cleanup) (struct program_space *, void *);
513 };
514
515 struct program_space_data_registration
516 {
517 struct program_space_data *data;
518 struct program_space_data_registration *next;
519 };
520
521 struct program_space_data_registry
522 {
523 struct program_space_data_registration *registrations;
524 unsigned num_registrations;
525 };
526
527 static struct program_space_data_registry program_space_data_registry
528 = { NULL, 0 };
529
530 const struct program_space_data *
531 register_program_space_data_with_cleanup
532 (void (*cleanup) (struct program_space *, void *))
533 {
534 struct program_space_data_registration **curr;
535
536 /* Append new registration. */
537 for (curr = &program_space_data_registry.registrations;
538 *curr != NULL; curr = &(*curr)->next);
539
540 *curr = XMALLOC (struct program_space_data_registration);
541 (*curr)->next = NULL;
542 (*curr)->data = XMALLOC (struct program_space_data);
543 (*curr)->data->index = program_space_data_registry.num_registrations++;
544 (*curr)->data->cleanup = cleanup;
545
546 return (*curr)->data;
547 }
548
549 const struct program_space_data *
550 register_program_space_data (void)
551 {
552 return register_program_space_data_with_cleanup (NULL);
553 }
554
555 static void
556 program_space_alloc_data (struct program_space *pspace)
557 {
558 gdb_assert (pspace->data == NULL);
559 pspace->num_data = program_space_data_registry.num_registrations;
560 pspace->data = XCALLOC (pspace->num_data, void *);
561 }
562
563 static void
564 program_space_free_data (struct program_space *pspace)
565 {
566 gdb_assert (pspace->data != NULL);
567 clear_program_space_data (pspace);
568 xfree (pspace->data);
569 pspace->data = NULL;
570 }
571
572 void
573 clear_program_space_data (struct program_space *pspace)
574 {
575 struct program_space_data_registration *registration;
576 int i;
577
578 gdb_assert (pspace->data != NULL);
579
580 for (registration = program_space_data_registry.registrations, i = 0;
581 i < pspace->num_data;
582 registration = registration->next, i++)
583 if (pspace->data[i] != NULL && registration->data->cleanup)
584 registration->data->cleanup (pspace, pspace->data[i]);
585
586 memset (pspace->data, 0, pspace->num_data * sizeof (void *));
587 }
588
589 void
590 set_program_space_data (struct program_space *pspace,
591 const struct program_space_data *data,
592 void *value)
593 {
594 gdb_assert (data->index < pspace->num_data);
595 pspace->data[data->index] = value;
596 }
597
598 void *
599 program_space_data (struct program_space *pspace, const struct program_space_data *data)
600 {
601 gdb_assert (data->index < pspace->num_data);
602 return pspace->data[data->index];
603 }
604
605 \f
606
607 void
608 initialize_progspace (void)
609 {
610 add_cmd ("program-spaces", class_maintenance,
611 maintenance_info_program_spaces_command, _("\
612 Info about currently known program spaces."),
613 &maintenanceinfolist);
614
615 /* There's always one program space. Note that this function isn't
616 an automatic _initialize_foo function, since other
617 _initialize_foo routines may need to install their per-pspace
618 data keys. We can only allocate a progspace when all those
619 modules have done that. Do this before
620 initialize_current_architecture, because that accesses exec_bfd,
621 which in turn dereferences current_program_space. */
622 current_program_space = add_program_space (new_address_space ());
623 }
This page took 0.04289 seconds and 5 git commands to generate.