Don't rely on inferior_ptid in record_full_wait
[deliverable/binutils-gdb.git] / gdb / record-full.c
1 /* Process record and replay target for GDB, the GNU debugger.
2
3 Copyright (C) 2013-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "gdbcmd.h"
22 #include "regcache.h"
23 #include "gdbthread.h"
24 #include "inferior.h"
25 #include "event-top.h"
26 #include "completer.h"
27 #include "arch-utils.h"
28 #include "gdbcore.h"
29 #include "exec.h"
30 #include "record.h"
31 #include "record-full.h"
32 #include "elf-bfd.h"
33 #include "gcore.h"
34 #include "event-loop.h"
35 #include "inf-loop.h"
36 #include "gdb_bfd.h"
37 #include "observable.h"
38 #include "infrun.h"
39 #include "gdbsupport/gdb_unlinker.h"
40 #include "gdbsupport/byte-vector.h"
41
42 #include <signal.h>
43
44 /* This module implements "target record-full", also known as "process
45 record and replay". This target sits on top of a "normal" target
46 (a target that "has execution"), and provides a record and replay
47 functionality, including reverse debugging.
48
49 Target record has two modes: recording, and replaying.
50
51 In record mode, we intercept the resume and wait methods.
52 Whenever gdb resumes the target, we run the target in single step
53 mode, and we build up an execution log in which, for each executed
54 instruction, we record all changes in memory and register state.
55 This is invisible to the user, to whom it just looks like an
56 ordinary debugging session (except for performance degradation).
57
58 In replay mode, instead of actually letting the inferior run as a
59 process, we simulate its execution by playing back the recorded
60 execution log. For each instruction in the log, we simulate the
61 instruction's side effects by duplicating the changes that it would
62 have made on memory and registers. */
63
64 #define DEFAULT_RECORD_FULL_INSN_MAX_NUM 200000
65
66 #define RECORD_FULL_IS_REPLAY \
67 (record_full_list->next || ::execution_direction == EXEC_REVERSE)
68
69 #define RECORD_FULL_FILE_MAGIC netorder32(0x20091016)
70
71 /* These are the core structs of the process record functionality.
72
73 A record_full_entry is a record of the value change of a register
74 ("record_full_reg") or a part of memory ("record_full_mem"). And each
75 instruction must have a struct record_full_entry ("record_full_end")
76 that indicates that this is the last struct record_full_entry of this
77 instruction.
78
79 Each struct record_full_entry is linked to "record_full_list" by "prev"
80 and "next" pointers. */
81
82 struct record_full_mem_entry
83 {
84 CORE_ADDR addr;
85 int len;
86 /* Set this flag if target memory for this entry
87 can no longer be accessed. */
88 int mem_entry_not_accessible;
89 union
90 {
91 gdb_byte *ptr;
92 gdb_byte buf[sizeof (gdb_byte *)];
93 } u;
94 };
95
96 struct record_full_reg_entry
97 {
98 unsigned short num;
99 unsigned short len;
100 union
101 {
102 gdb_byte *ptr;
103 gdb_byte buf[2 * sizeof (gdb_byte *)];
104 } u;
105 };
106
107 struct record_full_end_entry
108 {
109 enum gdb_signal sigval;
110 ULONGEST insn_num;
111 };
112
113 enum record_full_type
114 {
115 record_full_end = 0,
116 record_full_reg,
117 record_full_mem
118 };
119
120 /* This is the data structure that makes up the execution log.
121
122 The execution log consists of a single linked list of entries
123 of type "struct record_full_entry". It is doubly linked so that it
124 can be traversed in either direction.
125
126 The start of the list is anchored by a struct called
127 "record_full_first". The pointer "record_full_list" either points
128 to the last entry that was added to the list (in record mode), or to
129 the next entry in the list that will be executed (in replay mode).
130
131 Each list element (struct record_full_entry), in addition to next
132 and prev pointers, consists of a union of three entry types: mem,
133 reg, and end. A field called "type" determines which entry type is
134 represented by a given list element.
135
136 Each instruction that is added to the execution log is represented
137 by a variable number of list elements ('entries'). The instruction
138 will have one "reg" entry for each register that is changed by
139 executing the instruction (including the PC in every case). It
140 will also have one "mem" entry for each memory change. Finally,
141 each instruction will have an "end" entry that separates it from
142 the changes associated with the next instruction. */
143
144 struct record_full_entry
145 {
146 struct record_full_entry *prev;
147 struct record_full_entry *next;
148 enum record_full_type type;
149 union
150 {
151 /* reg */
152 struct record_full_reg_entry reg;
153 /* mem */
154 struct record_full_mem_entry mem;
155 /* end */
156 struct record_full_end_entry end;
157 } u;
158 };
159
160 /* If true, query if PREC cannot record memory
161 change of next instruction. */
162 bool record_full_memory_query = false;
163
164 struct record_full_core_buf_entry
165 {
166 struct record_full_core_buf_entry *prev;
167 struct target_section *p;
168 bfd_byte *buf;
169 };
170
171 /* Record buf with core target. */
172 static detached_regcache *record_full_core_regbuf = NULL;
173 static struct target_section *record_full_core_start;
174 static struct target_section *record_full_core_end;
175 static struct record_full_core_buf_entry *record_full_core_buf_list = NULL;
176
177 /* The following variables are used for managing the linked list that
178 represents the execution log.
179
180 record_full_first is the anchor that holds down the beginning of
181 the list.
182
183 record_full_list serves two functions:
184 1) In record mode, it anchors the end of the list.
185 2) In replay mode, it traverses the list and points to
186 the next instruction that must be emulated.
187
188 record_full_arch_list_head and record_full_arch_list_tail are used
189 to manage a separate list, which is used to build up the change
190 elements of the currently executing instruction during record mode.
191 When this instruction has been completely annotated in the "arch
192 list", it will be appended to the main execution log. */
193
194 static struct record_full_entry record_full_first;
195 static struct record_full_entry *record_full_list = &record_full_first;
196 static struct record_full_entry *record_full_arch_list_head = NULL;
197 static struct record_full_entry *record_full_arch_list_tail = NULL;
198
199 /* true ask user. false auto delete the last struct record_full_entry. */
200 static bool record_full_stop_at_limit = true;
201 /* Maximum allowed number of insns in execution log. */
202 static unsigned int record_full_insn_max_num
203 = DEFAULT_RECORD_FULL_INSN_MAX_NUM;
204 /* Actual count of insns presently in execution log. */
205 static unsigned int record_full_insn_num = 0;
206 /* Count of insns logged so far (may be larger
207 than count of insns presently in execution log). */
208 static ULONGEST record_full_insn_count;
209
210 static const char record_longname[]
211 = N_("Process record and replay target");
212 static const char record_doc[]
213 = N_("Log program while executing and replay execution from log.");
214
215 /* Base class implementing functionality common to both the
216 "record-full" and "record-core" targets. */
217
218 class record_full_base_target : public target_ops
219 {
220 public:
221 const target_info &info () const override = 0;
222
223 strata stratum () const override { return record_stratum; }
224
225 void close () override;
226 void async (int) override;
227 ptid_t wait (ptid_t, struct target_waitstatus *, int) override;
228 bool stopped_by_watchpoint () override;
229 bool stopped_data_address (CORE_ADDR *) override;
230
231 bool stopped_by_sw_breakpoint () override;
232 bool supports_stopped_by_sw_breakpoint () override;
233
234 bool stopped_by_hw_breakpoint () override;
235 bool supports_stopped_by_hw_breakpoint () override;
236
237 bool can_execute_reverse () override;
238
239 /* Add bookmark target methods. */
240 gdb_byte *get_bookmark (const char *, int) override;
241 void goto_bookmark (const gdb_byte *, int) override;
242 enum exec_direction_kind execution_direction () override;
243 enum record_method record_method (ptid_t ptid) override;
244 void info_record () override;
245 void save_record (const char *filename) override;
246 bool supports_delete_record () override;
247 void delete_record () override;
248 bool record_is_replaying (ptid_t ptid) override;
249 bool record_will_replay (ptid_t ptid, int dir) override;
250 void record_stop_replaying () override;
251 void goto_record_begin () override;
252 void goto_record_end () override;
253 void goto_record (ULONGEST insn) override;
254 };
255
256 /* The "record-full" target. */
257
258 static const target_info record_full_target_info = {
259 "record-full",
260 record_longname,
261 record_doc,
262 };
263
264 class record_full_target final : public record_full_base_target
265 {
266 public:
267 const target_info &info () const override
268 { return record_full_target_info; }
269
270 void commit_resume () override;
271 void resume (ptid_t, int, enum gdb_signal) override;
272 void disconnect (const char *, int) override;
273 void detach (inferior *, int) override;
274 void mourn_inferior () override;
275 void kill () override;
276 void store_registers (struct regcache *, int) override;
277 enum target_xfer_status xfer_partial (enum target_object object,
278 const char *annex,
279 gdb_byte *readbuf,
280 const gdb_byte *writebuf,
281 ULONGEST offset, ULONGEST len,
282 ULONGEST *xfered_len) override;
283 int insert_breakpoint (struct gdbarch *,
284 struct bp_target_info *) override;
285 int remove_breakpoint (struct gdbarch *,
286 struct bp_target_info *,
287 enum remove_bp_reason) override;
288 };
289
290 /* The "record-core" target. */
291
292 static const target_info record_full_core_target_info = {
293 "record-core",
294 record_longname,
295 record_doc,
296 };
297
298 class record_full_core_target final : public record_full_base_target
299 {
300 public:
301 const target_info &info () const override
302 { return record_full_core_target_info; }
303
304 void resume (ptid_t, int, enum gdb_signal) override;
305 void disconnect (const char *, int) override;
306 void kill () override;
307 void fetch_registers (struct regcache *regcache, int regno) override;
308 void prepare_to_store (struct regcache *regcache) override;
309 void store_registers (struct regcache *, int) override;
310 enum target_xfer_status xfer_partial (enum target_object object,
311 const char *annex,
312 gdb_byte *readbuf,
313 const gdb_byte *writebuf,
314 ULONGEST offset, ULONGEST len,
315 ULONGEST *xfered_len) override;
316 int insert_breakpoint (struct gdbarch *,
317 struct bp_target_info *) override;
318 int remove_breakpoint (struct gdbarch *,
319 struct bp_target_info *,
320 enum remove_bp_reason) override;
321
322 bool has_execution (ptid_t) override;
323 };
324
325 static record_full_target record_full_ops;
326 static record_full_core_target record_full_core_ops;
327
328 void
329 record_full_target::detach (inferior *inf, int from_tty)
330 {
331 record_detach (this, inf, from_tty);
332 }
333
334 void
335 record_full_target::disconnect (const char *args, int from_tty)
336 {
337 record_disconnect (this, args, from_tty);
338 }
339
340 void
341 record_full_core_target::disconnect (const char *args, int from_tty)
342 {
343 record_disconnect (this, args, from_tty);
344 }
345
346 void
347 record_full_target::mourn_inferior ()
348 {
349 record_mourn_inferior (this);
350 }
351
352 void
353 record_full_target::kill ()
354 {
355 record_kill (this);
356 }
357
358 /* See record-full.h. */
359
360 int
361 record_full_is_used (void)
362 {
363 struct target_ops *t;
364
365 t = find_record_target ();
366 return (t == &record_full_ops
367 || t == &record_full_core_ops);
368 }
369
370
371 /* Command lists for "set/show record full". */
372 static struct cmd_list_element *set_record_full_cmdlist;
373 static struct cmd_list_element *show_record_full_cmdlist;
374
375 /* Command list for "record full". */
376 static struct cmd_list_element *record_full_cmdlist;
377
378 static void record_full_goto_insn (struct record_full_entry *entry,
379 enum exec_direction_kind dir);
380
381 /* Alloc and free functions for record_full_reg, record_full_mem, and
382 record_full_end entries. */
383
384 /* Alloc a record_full_reg record entry. */
385
386 static inline struct record_full_entry *
387 record_full_reg_alloc (struct regcache *regcache, int regnum)
388 {
389 struct record_full_entry *rec;
390 struct gdbarch *gdbarch = regcache->arch ();
391
392 rec = XCNEW (struct record_full_entry);
393 rec->type = record_full_reg;
394 rec->u.reg.num = regnum;
395 rec->u.reg.len = register_size (gdbarch, regnum);
396 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf))
397 rec->u.reg.u.ptr = (gdb_byte *) xmalloc (rec->u.reg.len);
398
399 return rec;
400 }
401
402 /* Free a record_full_reg record entry. */
403
404 static inline void
405 record_full_reg_release (struct record_full_entry *rec)
406 {
407 gdb_assert (rec->type == record_full_reg);
408 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf))
409 xfree (rec->u.reg.u.ptr);
410 xfree (rec);
411 }
412
413 /* Alloc a record_full_mem record entry. */
414
415 static inline struct record_full_entry *
416 record_full_mem_alloc (CORE_ADDR addr, int len)
417 {
418 struct record_full_entry *rec;
419
420 rec = XCNEW (struct record_full_entry);
421 rec->type = record_full_mem;
422 rec->u.mem.addr = addr;
423 rec->u.mem.len = len;
424 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf))
425 rec->u.mem.u.ptr = (gdb_byte *) xmalloc (len);
426
427 return rec;
428 }
429
430 /* Free a record_full_mem record entry. */
431
432 static inline void
433 record_full_mem_release (struct record_full_entry *rec)
434 {
435 gdb_assert (rec->type == record_full_mem);
436 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf))
437 xfree (rec->u.mem.u.ptr);
438 xfree (rec);
439 }
440
441 /* Alloc a record_full_end record entry. */
442
443 static inline struct record_full_entry *
444 record_full_end_alloc (void)
445 {
446 struct record_full_entry *rec;
447
448 rec = XCNEW (struct record_full_entry);
449 rec->type = record_full_end;
450
451 return rec;
452 }
453
454 /* Free a record_full_end record entry. */
455
456 static inline void
457 record_full_end_release (struct record_full_entry *rec)
458 {
459 xfree (rec);
460 }
461
462 /* Free one record entry, any type.
463 Return entry->type, in case caller wants to know. */
464
465 static inline enum record_full_type
466 record_full_entry_release (struct record_full_entry *rec)
467 {
468 enum record_full_type type = rec->type;
469
470 switch (type) {
471 case record_full_reg:
472 record_full_reg_release (rec);
473 break;
474 case record_full_mem:
475 record_full_mem_release (rec);
476 break;
477 case record_full_end:
478 record_full_end_release (rec);
479 break;
480 }
481 return type;
482 }
483
484 /* Free all record entries in list pointed to by REC. */
485
486 static void
487 record_full_list_release (struct record_full_entry *rec)
488 {
489 if (!rec)
490 return;
491
492 while (rec->next)
493 rec = rec->next;
494
495 while (rec->prev)
496 {
497 rec = rec->prev;
498 record_full_entry_release (rec->next);
499 }
500
501 if (rec == &record_full_first)
502 {
503 record_full_insn_num = 0;
504 record_full_first.next = NULL;
505 }
506 else
507 record_full_entry_release (rec);
508 }
509
510 /* Free all record entries forward of the given list position. */
511
512 static void
513 record_full_list_release_following (struct record_full_entry *rec)
514 {
515 struct record_full_entry *tmp = rec->next;
516
517 rec->next = NULL;
518 while (tmp)
519 {
520 rec = tmp->next;
521 if (record_full_entry_release (tmp) == record_full_end)
522 {
523 record_full_insn_num--;
524 record_full_insn_count--;
525 }
526 tmp = rec;
527 }
528 }
529
530 /* Delete the first instruction from the beginning of the log, to make
531 room for adding a new instruction at the end of the log.
532
533 Note -- this function does not modify record_full_insn_num. */
534
535 static void
536 record_full_list_release_first (void)
537 {
538 struct record_full_entry *tmp;
539
540 if (!record_full_first.next)
541 return;
542
543 /* Loop until a record_full_end. */
544 while (1)
545 {
546 /* Cut record_full_first.next out of the linked list. */
547 tmp = record_full_first.next;
548 record_full_first.next = tmp->next;
549 tmp->next->prev = &record_full_first;
550
551 /* tmp is now isolated, and can be deleted. */
552 if (record_full_entry_release (tmp) == record_full_end)
553 break; /* End loop at first record_full_end. */
554
555 if (!record_full_first.next)
556 {
557 gdb_assert (record_full_insn_num == 1);
558 break; /* End loop when list is empty. */
559 }
560 }
561 }
562
563 /* Add a struct record_full_entry to record_full_arch_list. */
564
565 static void
566 record_full_arch_list_add (struct record_full_entry *rec)
567 {
568 if (record_debug > 1)
569 fprintf_unfiltered (gdb_stdlog,
570 "Process record: record_full_arch_list_add %s.\n",
571 host_address_to_string (rec));
572
573 if (record_full_arch_list_tail)
574 {
575 record_full_arch_list_tail->next = rec;
576 rec->prev = record_full_arch_list_tail;
577 record_full_arch_list_tail = rec;
578 }
579 else
580 {
581 record_full_arch_list_head = rec;
582 record_full_arch_list_tail = rec;
583 }
584 }
585
586 /* Return the value storage location of a record entry. */
587 static inline gdb_byte *
588 record_full_get_loc (struct record_full_entry *rec)
589 {
590 switch (rec->type) {
591 case record_full_mem:
592 if (rec->u.mem.len > sizeof (rec->u.mem.u.buf))
593 return rec->u.mem.u.ptr;
594 else
595 return rec->u.mem.u.buf;
596 case record_full_reg:
597 if (rec->u.reg.len > sizeof (rec->u.reg.u.buf))
598 return rec->u.reg.u.ptr;
599 else
600 return rec->u.reg.u.buf;
601 case record_full_end:
602 default:
603 gdb_assert_not_reached ("unexpected record_full_entry type");
604 return NULL;
605 }
606 }
607
608 /* Record the value of a register NUM to record_full_arch_list. */
609
610 int
611 record_full_arch_list_add_reg (struct regcache *regcache, int regnum)
612 {
613 struct record_full_entry *rec;
614
615 if (record_debug > 1)
616 fprintf_unfiltered (gdb_stdlog,
617 "Process record: add register num = %d to "
618 "record list.\n",
619 regnum);
620
621 rec = record_full_reg_alloc (regcache, regnum);
622
623 regcache->raw_read (regnum, record_full_get_loc (rec));
624
625 record_full_arch_list_add (rec);
626
627 return 0;
628 }
629
630 /* Record the value of a region of memory whose address is ADDR and
631 length is LEN to record_full_arch_list. */
632
633 int
634 record_full_arch_list_add_mem (CORE_ADDR addr, int len)
635 {
636 struct record_full_entry *rec;
637
638 if (record_debug > 1)
639 fprintf_unfiltered (gdb_stdlog,
640 "Process record: add mem addr = %s len = %d to "
641 "record list.\n",
642 paddress (target_gdbarch (), addr), len);
643
644 if (!addr) /* FIXME: Why? Some arch must permit it... */
645 return 0;
646
647 rec = record_full_mem_alloc (addr, len);
648
649 if (record_read_memory (target_gdbarch (), addr,
650 record_full_get_loc (rec), len))
651 {
652 record_full_mem_release (rec);
653 return -1;
654 }
655
656 record_full_arch_list_add (rec);
657
658 return 0;
659 }
660
661 /* Add a record_full_end type struct record_full_entry to
662 record_full_arch_list. */
663
664 int
665 record_full_arch_list_add_end (void)
666 {
667 struct record_full_entry *rec;
668
669 if (record_debug > 1)
670 fprintf_unfiltered (gdb_stdlog,
671 "Process record: add end to arch list.\n");
672
673 rec = record_full_end_alloc ();
674 rec->u.end.sigval = GDB_SIGNAL_0;
675 rec->u.end.insn_num = ++record_full_insn_count;
676
677 record_full_arch_list_add (rec);
678
679 return 0;
680 }
681
682 static void
683 record_full_check_insn_num (void)
684 {
685 if (record_full_insn_num == record_full_insn_max_num)
686 {
687 /* Ask user what to do. */
688 if (record_full_stop_at_limit)
689 {
690 if (!yquery (_("Do you want to auto delete previous execution "
691 "log entries when record/replay buffer becomes "
692 "full (record full stop-at-limit)?")))
693 error (_("Process record: stopped by user."));
694 record_full_stop_at_limit = 0;
695 }
696 }
697 }
698
699 /* Before inferior step (when GDB record the running message, inferior
700 only can step), GDB will call this function to record the values to
701 record_full_list. This function will call gdbarch_process_record to
702 record the running message of inferior and set them to
703 record_full_arch_list, and add it to record_full_list. */
704
705 static void
706 record_full_message (struct regcache *regcache, enum gdb_signal signal)
707 {
708 int ret;
709 struct gdbarch *gdbarch = regcache->arch ();
710
711 try
712 {
713 record_full_arch_list_head = NULL;
714 record_full_arch_list_tail = NULL;
715
716 /* Check record_full_insn_num. */
717 record_full_check_insn_num ();
718
719 /* If gdb sends a signal value to target_resume,
720 save it in the 'end' field of the previous instruction.
721
722 Maybe process record should record what really happened,
723 rather than what gdb pretends has happened.
724
725 So if Linux delivered the signal to the child process during
726 the record mode, we will record it and deliver it again in
727 the replay mode.
728
729 If user says "ignore this signal" during the record mode, then
730 it will be ignored again during the replay mode (no matter if
731 the user says something different, like "deliver this signal"
732 during the replay mode).
733
734 User should understand that nothing he does during the replay
735 mode will change the behavior of the child. If he tries,
736 then that is a user error.
737
738 But we should still deliver the signal to gdb during the replay,
739 if we delivered it during the recording. Therefore we should
740 record the signal during record_full_wait, not
741 record_full_resume. */
742 if (record_full_list != &record_full_first) /* FIXME better way
743 to check */
744 {
745 gdb_assert (record_full_list->type == record_full_end);
746 record_full_list->u.end.sigval = signal;
747 }
748
749 if (signal == GDB_SIGNAL_0
750 || !gdbarch_process_record_signal_p (gdbarch))
751 ret = gdbarch_process_record (gdbarch,
752 regcache,
753 regcache_read_pc (regcache));
754 else
755 ret = gdbarch_process_record_signal (gdbarch,
756 regcache,
757 signal);
758
759 if (ret > 0)
760 error (_("Process record: inferior program stopped."));
761 if (ret < 0)
762 error (_("Process record: failed to record execution log."));
763 }
764 catch (const gdb_exception &ex)
765 {
766 record_full_list_release (record_full_arch_list_tail);
767 throw;
768 }
769
770 record_full_list->next = record_full_arch_list_head;
771 record_full_arch_list_head->prev = record_full_list;
772 record_full_list = record_full_arch_list_tail;
773
774 if (record_full_insn_num == record_full_insn_max_num)
775 record_full_list_release_first ();
776 else
777 record_full_insn_num++;
778 }
779
780 static bool
781 record_full_message_wrapper_safe (struct regcache *regcache,
782 enum gdb_signal signal)
783 {
784 try
785 {
786 record_full_message (regcache, signal);
787 }
788 catch (const gdb_exception &ex)
789 {
790 exception_print (gdb_stderr, ex);
791 return false;
792 }
793
794 return true;
795 }
796
797 /* Set to 1 if record_full_store_registers and record_full_xfer_partial
798 doesn't need record. */
799
800 static int record_full_gdb_operation_disable = 0;
801
802 scoped_restore_tmpl<int>
803 record_full_gdb_operation_disable_set (void)
804 {
805 return make_scoped_restore (&record_full_gdb_operation_disable, 1);
806 }
807
808 /* Flag set to TRUE for target_stopped_by_watchpoint. */
809 static enum target_stop_reason record_full_stop_reason
810 = TARGET_STOPPED_BY_NO_REASON;
811
812 /* Execute one instruction from the record log. Each instruction in
813 the log will be represented by an arbitrary sequence of register
814 entries and memory entries, followed by an 'end' entry. */
815
816 static inline void
817 record_full_exec_insn (struct regcache *regcache,
818 struct gdbarch *gdbarch,
819 struct record_full_entry *entry)
820 {
821 switch (entry->type)
822 {
823 case record_full_reg: /* reg */
824 {
825 gdb::byte_vector reg (entry->u.reg.len);
826
827 if (record_debug > 1)
828 fprintf_unfiltered (gdb_stdlog,
829 "Process record: record_full_reg %s to "
830 "inferior num = %d.\n",
831 host_address_to_string (entry),
832 entry->u.reg.num);
833
834 regcache->cooked_read (entry->u.reg.num, reg.data ());
835 regcache->cooked_write (entry->u.reg.num, record_full_get_loc (entry));
836 memcpy (record_full_get_loc (entry), reg.data (), entry->u.reg.len);
837 }
838 break;
839
840 case record_full_mem: /* mem */
841 {
842 /* Nothing to do if the entry is flagged not_accessible. */
843 if (!entry->u.mem.mem_entry_not_accessible)
844 {
845 gdb::byte_vector mem (entry->u.mem.len);
846
847 if (record_debug > 1)
848 fprintf_unfiltered (gdb_stdlog,
849 "Process record: record_full_mem %s to "
850 "inferior addr = %s len = %d.\n",
851 host_address_to_string (entry),
852 paddress (gdbarch, entry->u.mem.addr),
853 entry->u.mem.len);
854
855 if (record_read_memory (gdbarch,
856 entry->u.mem.addr, mem.data (),
857 entry->u.mem.len))
858 entry->u.mem.mem_entry_not_accessible = 1;
859 else
860 {
861 if (target_write_memory (entry->u.mem.addr,
862 record_full_get_loc (entry),
863 entry->u.mem.len))
864 {
865 entry->u.mem.mem_entry_not_accessible = 1;
866 if (record_debug)
867 warning (_("Process record: error writing memory at "
868 "addr = %s len = %d."),
869 paddress (gdbarch, entry->u.mem.addr),
870 entry->u.mem.len);
871 }
872 else
873 {
874 memcpy (record_full_get_loc (entry), mem.data (),
875 entry->u.mem.len);
876
877 /* We've changed memory --- check if a hardware
878 watchpoint should trap. Note that this
879 presently assumes the target beneath supports
880 continuable watchpoints. On non-continuable
881 watchpoints target, we'll want to check this
882 _before_ actually doing the memory change, and
883 not doing the change at all if the watchpoint
884 traps. */
885 if (hardware_watchpoint_inserted_in_range
886 (regcache->aspace (),
887 entry->u.mem.addr, entry->u.mem.len))
888 record_full_stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
889 }
890 }
891 }
892 }
893 break;
894 }
895 }
896
897 static void record_full_restore (void);
898
899 /* Asynchronous signal handle registered as event loop source for when
900 we have pending events ready to be passed to the core. */
901
902 static struct async_event_handler *record_full_async_inferior_event_token;
903
904 static void
905 record_full_async_inferior_event_handler (gdb_client_data data)
906 {
907 inferior_event_handler (INF_REG_EVENT, NULL);
908 }
909
910 /* Open the process record target for 'core' files. */
911
912 static void
913 record_full_core_open_1 (const char *name, int from_tty)
914 {
915 struct regcache *regcache = get_current_regcache ();
916 int regnum = gdbarch_num_regs (regcache->arch ());
917 int i;
918
919 /* Get record_full_core_regbuf. */
920 target_fetch_registers (regcache, -1);
921 record_full_core_regbuf = new detached_regcache (regcache->arch (), false);
922
923 for (i = 0; i < regnum; i ++)
924 record_full_core_regbuf->raw_supply (i, *regcache);
925
926 /* Get record_full_core_start and record_full_core_end. */
927 if (build_section_table (core_bfd, &record_full_core_start,
928 &record_full_core_end))
929 {
930 delete record_full_core_regbuf;
931 record_full_core_regbuf = NULL;
932 error (_("\"%s\": Can't find sections: %s"),
933 bfd_get_filename (core_bfd), bfd_errmsg (bfd_get_error ()));
934 }
935
936 push_target (&record_full_core_ops);
937 record_full_restore ();
938 }
939
940 /* Open the process record target for 'live' processes. */
941
942 static void
943 record_full_open_1 (const char *name, int from_tty)
944 {
945 if (record_debug)
946 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_open_1\n");
947
948 /* check exec */
949 if (!target_has_execution)
950 error (_("Process record: the program is not being run."));
951 if (non_stop)
952 error (_("Process record target can't debug inferior in non-stop mode "
953 "(non-stop)."));
954
955 if (!gdbarch_process_record_p (target_gdbarch ()))
956 error (_("Process record: the current architecture doesn't support "
957 "record function."));
958
959 push_target (&record_full_ops);
960 }
961
962 static void record_full_init_record_breakpoints (void);
963
964 /* Open the process record target. */
965
966 static void
967 record_full_open (const char *name, int from_tty)
968 {
969 if (record_debug)
970 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_open\n");
971
972 record_preopen ();
973
974 /* Reset */
975 record_full_insn_num = 0;
976 record_full_insn_count = 0;
977 record_full_list = &record_full_first;
978 record_full_list->next = NULL;
979
980 if (core_bfd)
981 record_full_core_open_1 (name, from_tty);
982 else
983 record_full_open_1 (name, from_tty);
984
985 /* Register extra event sources in the event loop. */
986 record_full_async_inferior_event_token
987 = create_async_event_handler (record_full_async_inferior_event_handler,
988 NULL);
989
990 record_full_init_record_breakpoints ();
991
992 gdb::observers::record_changed.notify (current_inferior (), 1, "full", NULL);
993 }
994
995 /* "close" target method. Close the process record target. */
996
997 void
998 record_full_base_target::close ()
999 {
1000 struct record_full_core_buf_entry *entry;
1001
1002 if (record_debug)
1003 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_close\n");
1004
1005 record_full_list_release (record_full_list);
1006
1007 /* Release record_full_core_regbuf. */
1008 if (record_full_core_regbuf)
1009 {
1010 delete record_full_core_regbuf;
1011 record_full_core_regbuf = NULL;
1012 }
1013
1014 /* Release record_full_core_buf_list. */
1015 while (record_full_core_buf_list)
1016 {
1017 entry = record_full_core_buf_list;
1018 record_full_core_buf_list = record_full_core_buf_list->prev;
1019 xfree (entry);
1020 }
1021
1022 if (record_full_async_inferior_event_token)
1023 delete_async_event_handler (&record_full_async_inferior_event_token);
1024 }
1025
1026 /* "async" target method. */
1027
1028 void
1029 record_full_base_target::async (int enable)
1030 {
1031 if (enable)
1032 mark_async_event_handler (record_full_async_inferior_event_token);
1033 else
1034 clear_async_event_handler (record_full_async_inferior_event_token);
1035
1036 beneath ()->async (enable);
1037 }
1038
1039 /* The PTID and STEP arguments last passed to
1040 record_full_target::resume. */
1041 static ptid_t record_full_resume_ptid = null_ptid;
1042 static int record_full_resume_step = 0;
1043
1044 /* True if we've been resumed, and so each record_full_wait call should
1045 advance execution. If this is false, record_full_wait will return a
1046 TARGET_WAITKIND_IGNORE. */
1047 static int record_full_resumed = 0;
1048
1049 /* The execution direction of the last resume we got. This is
1050 necessary for async mode. Vis (order is not strictly accurate):
1051
1052 1. user has the global execution direction set to forward
1053 2. user does a reverse-step command
1054 3. record_full_resume is called with global execution direction
1055 temporarily switched to reverse
1056 4. GDB's execution direction is reverted back to forward
1057 5. target record notifies event loop there's an event to handle
1058 6. infrun asks the target which direction was it going, and switches
1059 the global execution direction accordingly (to reverse)
1060 7. infrun polls an event out of the record target, and handles it
1061 8. GDB goes back to the event loop, and goto #4.
1062 */
1063 static enum exec_direction_kind record_full_execution_dir = EXEC_FORWARD;
1064
1065 /* "resume" target method. Resume the process record target. */
1066
1067 void
1068 record_full_target::resume (ptid_t ptid, int step, enum gdb_signal signal)
1069 {
1070 record_full_resume_ptid = inferior_ptid;
1071 record_full_resume_step = step;
1072 record_full_resumed = 1;
1073 record_full_execution_dir = ::execution_direction;
1074
1075 if (!RECORD_FULL_IS_REPLAY)
1076 {
1077 struct gdbarch *gdbarch = target_thread_architecture (ptid);
1078
1079 record_full_message (get_current_regcache (), signal);
1080
1081 if (!step)
1082 {
1083 /* This is not hard single step. */
1084 if (!gdbarch_software_single_step_p (gdbarch))
1085 {
1086 /* This is a normal continue. */
1087 step = 1;
1088 }
1089 else
1090 {
1091 /* This arch supports soft single step. */
1092 if (thread_has_single_step_breakpoints_set (inferior_thread ()))
1093 {
1094 /* This is a soft single step. */
1095 record_full_resume_step = 1;
1096 }
1097 else
1098 step = !insert_single_step_breakpoints (gdbarch);
1099 }
1100 }
1101
1102 /* Make sure the target beneath reports all signals. */
1103 target_pass_signals ({});
1104
1105 this->beneath ()->resume (ptid, step, signal);
1106 }
1107
1108 /* We are about to start executing the inferior (or simulate it),
1109 let's register it with the event loop. */
1110 if (target_can_async_p ())
1111 target_async (1);
1112 }
1113
1114 /* "commit_resume" method for process record target. */
1115
1116 void
1117 record_full_target::commit_resume ()
1118 {
1119 if (!RECORD_FULL_IS_REPLAY)
1120 beneath ()->commit_resume ();
1121 }
1122
1123 static int record_full_get_sig = 0;
1124
1125 /* SIGINT signal handler, registered by "wait" method. */
1126
1127 static void
1128 record_full_sig_handler (int signo)
1129 {
1130 if (record_debug)
1131 fprintf_unfiltered (gdb_stdlog, "Process record: get a signal\n");
1132
1133 /* It will break the running inferior in replay mode. */
1134 record_full_resume_step = 1;
1135
1136 /* It will let record_full_wait set inferior status to get the signal
1137 SIGINT. */
1138 record_full_get_sig = 1;
1139 }
1140
1141 /* "wait" target method for process record target.
1142
1143 In record mode, the target is always run in singlestep mode
1144 (even when gdb says to continue). The wait method intercepts
1145 the stop events and determines which ones are to be passed on to
1146 gdb. Most stop events are just singlestep events that gdb is not
1147 to know about, so the wait method just records them and keeps
1148 singlestepping.
1149
1150 In replay mode, this function emulates the recorded execution log,
1151 one instruction at a time (forward or backward), and determines
1152 where to stop. */
1153
1154 static ptid_t
1155 record_full_wait_1 (struct target_ops *ops,
1156 ptid_t ptid, struct target_waitstatus *status,
1157 int options)
1158 {
1159 scoped_restore restore_operation_disable
1160 = record_full_gdb_operation_disable_set ();
1161
1162 if (record_debug)
1163 fprintf_unfiltered (gdb_stdlog,
1164 "Process record: record_full_wait "
1165 "record_full_resume_step = %d, "
1166 "record_full_resumed = %d, direction=%s\n",
1167 record_full_resume_step, record_full_resumed,
1168 record_full_execution_dir == EXEC_FORWARD
1169 ? "forward" : "reverse");
1170
1171 if (!record_full_resumed)
1172 {
1173 gdb_assert ((options & TARGET_WNOHANG) != 0);
1174
1175 /* No interesting event. */
1176 status->kind = TARGET_WAITKIND_IGNORE;
1177 return minus_one_ptid;
1178 }
1179
1180 record_full_get_sig = 0;
1181 signal (SIGINT, record_full_sig_handler);
1182
1183 record_full_stop_reason = TARGET_STOPPED_BY_NO_REASON;
1184
1185 if (!RECORD_FULL_IS_REPLAY && ops != &record_full_core_ops)
1186 {
1187 if (record_full_resume_step)
1188 {
1189 /* This is a single step. */
1190 return ops->beneath ()->wait (ptid, status, options);
1191 }
1192 else
1193 {
1194 /* This is not a single step. */
1195 ptid_t ret;
1196 CORE_ADDR tmp_pc;
1197 struct gdbarch *gdbarch
1198 = target_thread_architecture (record_full_resume_ptid);
1199
1200 while (1)
1201 {
1202 ret = ops->beneath ()->wait (ptid, status, options);
1203 if (status->kind == TARGET_WAITKIND_IGNORE)
1204 {
1205 if (record_debug)
1206 fprintf_unfiltered (gdb_stdlog,
1207 "Process record: record_full_wait "
1208 "target beneath not done yet\n");
1209 return ret;
1210 }
1211
1212 for (thread_info *tp : all_non_exited_threads ())
1213 delete_single_step_breakpoints (tp);
1214
1215 if (record_full_resume_step)
1216 return ret;
1217
1218 /* Is this a SIGTRAP? */
1219 if (status->kind == TARGET_WAITKIND_STOPPED
1220 && status->value.sig == GDB_SIGNAL_TRAP)
1221 {
1222 struct regcache *regcache;
1223 enum target_stop_reason *stop_reason_p
1224 = &record_full_stop_reason;
1225
1226 /* Yes -- this is likely our single-step finishing,
1227 but check if there's any reason the core would be
1228 interested in the event. */
1229
1230 registers_changed ();
1231 regcache = get_current_regcache ();
1232 tmp_pc = regcache_read_pc (regcache);
1233 const struct address_space *aspace = regcache->aspace ();
1234
1235 if (target_stopped_by_watchpoint ())
1236 {
1237 /* Always interested in watchpoints. */
1238 }
1239 else if (record_check_stopped_by_breakpoint (aspace, tmp_pc,
1240 stop_reason_p))
1241 {
1242 /* There is a breakpoint here. Let the core
1243 handle it. */
1244 }
1245 else
1246 {
1247 /* This is a single-step trap. Record the
1248 insn and issue another step.
1249 FIXME: this part can be a random SIGTRAP too.
1250 But GDB cannot handle it. */
1251 int step = 1;
1252
1253 if (!record_full_message_wrapper_safe (regcache,
1254 GDB_SIGNAL_0))
1255 {
1256 status->kind = TARGET_WAITKIND_STOPPED;
1257 status->value.sig = GDB_SIGNAL_0;
1258 break;
1259 }
1260
1261 if (gdbarch_software_single_step_p (gdbarch))
1262 {
1263 /* Try to insert the software single step breakpoint.
1264 If insert success, set step to 0. */
1265 set_executing (inferior_ptid, 0);
1266 reinit_frame_cache ();
1267
1268 step = !insert_single_step_breakpoints (gdbarch);
1269
1270 set_executing (inferior_ptid, 1);
1271 }
1272
1273 if (record_debug)
1274 fprintf_unfiltered (gdb_stdlog,
1275 "Process record: record_full_wait "
1276 "issuing one more step in the "
1277 "target beneath\n");
1278 ops->beneath ()->resume (ptid, step, GDB_SIGNAL_0);
1279 ops->beneath ()->commit_resume ();
1280 continue;
1281 }
1282 }
1283
1284 /* The inferior is broken by a breakpoint or a signal. */
1285 break;
1286 }
1287
1288 return ret;
1289 }
1290 }
1291 else
1292 {
1293 struct regcache *regcache = get_current_regcache ();
1294 struct gdbarch *gdbarch = regcache->arch ();
1295 const struct address_space *aspace = regcache->aspace ();
1296 int continue_flag = 1;
1297 int first_record_full_end = 1;
1298
1299 try
1300 {
1301 CORE_ADDR tmp_pc;
1302
1303 record_full_stop_reason = TARGET_STOPPED_BY_NO_REASON;
1304 status->kind = TARGET_WAITKIND_STOPPED;
1305
1306 /* Check breakpoint when forward execute. */
1307 if (execution_direction == EXEC_FORWARD)
1308 {
1309 tmp_pc = regcache_read_pc (regcache);
1310 if (record_check_stopped_by_breakpoint (aspace, tmp_pc,
1311 &record_full_stop_reason))
1312 {
1313 if (record_debug)
1314 fprintf_unfiltered (gdb_stdlog,
1315 "Process record: break at %s.\n",
1316 paddress (gdbarch, tmp_pc));
1317 goto replay_out;
1318 }
1319 }
1320
1321 /* If GDB is in terminal_inferior mode, it will not get the
1322 signal. And in GDB replay mode, GDB doesn't need to be
1323 in terminal_inferior mode, because inferior will not
1324 executed. Then set it to terminal_ours to make GDB get
1325 the signal. */
1326 target_terminal::ours ();
1327
1328 /* In EXEC_FORWARD mode, record_full_list points to the tail of prev
1329 instruction. */
1330 if (execution_direction == EXEC_FORWARD && record_full_list->next)
1331 record_full_list = record_full_list->next;
1332
1333 /* Loop over the record_full_list, looking for the next place to
1334 stop. */
1335 do
1336 {
1337 /* Check for beginning and end of log. */
1338 if (execution_direction == EXEC_REVERSE
1339 && record_full_list == &record_full_first)
1340 {
1341 /* Hit beginning of record log in reverse. */
1342 status->kind = TARGET_WAITKIND_NO_HISTORY;
1343 break;
1344 }
1345 if (execution_direction != EXEC_REVERSE
1346 && !record_full_list->next)
1347 {
1348 /* Hit end of record log going forward. */
1349 status->kind = TARGET_WAITKIND_NO_HISTORY;
1350 break;
1351 }
1352
1353 record_full_exec_insn (regcache, gdbarch, record_full_list);
1354
1355 if (record_full_list->type == record_full_end)
1356 {
1357 if (record_debug > 1)
1358 fprintf_unfiltered
1359 (gdb_stdlog,
1360 "Process record: record_full_end %s to "
1361 "inferior.\n",
1362 host_address_to_string (record_full_list));
1363
1364 if (first_record_full_end
1365 && execution_direction == EXEC_REVERSE)
1366 {
1367 /* When reverse execute, the first
1368 record_full_end is the part of current
1369 instruction. */
1370 first_record_full_end = 0;
1371 }
1372 else
1373 {
1374 /* In EXEC_REVERSE mode, this is the
1375 record_full_end of prev instruction. In
1376 EXEC_FORWARD mode, this is the
1377 record_full_end of current instruction. */
1378 /* step */
1379 if (record_full_resume_step)
1380 {
1381 if (record_debug > 1)
1382 fprintf_unfiltered (gdb_stdlog,
1383 "Process record: step.\n");
1384 continue_flag = 0;
1385 }
1386
1387 /* check breakpoint */
1388 tmp_pc = regcache_read_pc (regcache);
1389 if (record_check_stopped_by_breakpoint
1390 (aspace, tmp_pc, &record_full_stop_reason))
1391 {
1392 if (record_debug)
1393 fprintf_unfiltered (gdb_stdlog,
1394 "Process record: break "
1395 "at %s.\n",
1396 paddress (gdbarch, tmp_pc));
1397
1398 continue_flag = 0;
1399 }
1400
1401 if (record_full_stop_reason
1402 == TARGET_STOPPED_BY_WATCHPOINT)
1403 {
1404 if (record_debug)
1405 fprintf_unfiltered (gdb_stdlog,
1406 "Process record: hit hw "
1407 "watchpoint.\n");
1408 continue_flag = 0;
1409 }
1410 /* Check target signal */
1411 if (record_full_list->u.end.sigval != GDB_SIGNAL_0)
1412 /* FIXME: better way to check */
1413 continue_flag = 0;
1414 }
1415 }
1416
1417 if (continue_flag)
1418 {
1419 if (execution_direction == EXEC_REVERSE)
1420 {
1421 if (record_full_list->prev)
1422 record_full_list = record_full_list->prev;
1423 }
1424 else
1425 {
1426 if (record_full_list->next)
1427 record_full_list = record_full_list->next;
1428 }
1429 }
1430 }
1431 while (continue_flag);
1432
1433 replay_out:
1434 if (record_full_get_sig)
1435 status->value.sig = GDB_SIGNAL_INT;
1436 else if (record_full_list->u.end.sigval != GDB_SIGNAL_0)
1437 /* FIXME: better way to check */
1438 status->value.sig = record_full_list->u.end.sigval;
1439 else
1440 status->value.sig = GDB_SIGNAL_TRAP;
1441 }
1442 catch (const gdb_exception &ex)
1443 {
1444 if (execution_direction == EXEC_REVERSE)
1445 {
1446 if (record_full_list->next)
1447 record_full_list = record_full_list->next;
1448 }
1449 else
1450 record_full_list = record_full_list->prev;
1451
1452 throw;
1453 }
1454 }
1455
1456 signal (SIGINT, handle_sigint);
1457
1458 return inferior_ptid;
1459 }
1460
1461 ptid_t
1462 record_full_base_target::wait (ptid_t ptid, struct target_waitstatus *status,
1463 int options)
1464 {
1465 ptid_t return_ptid;
1466
1467 return_ptid = record_full_wait_1 (this, ptid, status, options);
1468 if (status->kind != TARGET_WAITKIND_IGNORE)
1469 {
1470 /* We're reporting a stop. Make sure any spurious
1471 target_wait(WNOHANG) doesn't advance the target until the
1472 core wants us resumed again. */
1473 record_full_resumed = 0;
1474 }
1475 return return_ptid;
1476 }
1477
1478 bool
1479 record_full_base_target::stopped_by_watchpoint ()
1480 {
1481 if (RECORD_FULL_IS_REPLAY)
1482 return record_full_stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
1483 else
1484 return beneath ()->stopped_by_watchpoint ();
1485 }
1486
1487 bool
1488 record_full_base_target::stopped_data_address (CORE_ADDR *addr_p)
1489 {
1490 if (RECORD_FULL_IS_REPLAY)
1491 return false;
1492 else
1493 return this->beneath ()->stopped_data_address (addr_p);
1494 }
1495
1496 /* The stopped_by_sw_breakpoint method of target record-full. */
1497
1498 bool
1499 record_full_base_target::stopped_by_sw_breakpoint ()
1500 {
1501 return record_full_stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT;
1502 }
1503
1504 /* The supports_stopped_by_sw_breakpoint method of target
1505 record-full. */
1506
1507 bool
1508 record_full_base_target::supports_stopped_by_sw_breakpoint ()
1509 {
1510 return true;
1511 }
1512
1513 /* The stopped_by_hw_breakpoint method of target record-full. */
1514
1515 bool
1516 record_full_base_target::stopped_by_hw_breakpoint ()
1517 {
1518 return record_full_stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT;
1519 }
1520
1521 /* The supports_stopped_by_sw_breakpoint method of target
1522 record-full. */
1523
1524 bool
1525 record_full_base_target::supports_stopped_by_hw_breakpoint ()
1526 {
1527 return true;
1528 }
1529
1530 /* Record registers change (by user or by GDB) to list as an instruction. */
1531
1532 static void
1533 record_full_registers_change (struct regcache *regcache, int regnum)
1534 {
1535 /* Check record_full_insn_num. */
1536 record_full_check_insn_num ();
1537
1538 record_full_arch_list_head = NULL;
1539 record_full_arch_list_tail = NULL;
1540
1541 if (regnum < 0)
1542 {
1543 int i;
1544
1545 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
1546 {
1547 if (record_full_arch_list_add_reg (regcache, i))
1548 {
1549 record_full_list_release (record_full_arch_list_tail);
1550 error (_("Process record: failed to record execution log."));
1551 }
1552 }
1553 }
1554 else
1555 {
1556 if (record_full_arch_list_add_reg (regcache, regnum))
1557 {
1558 record_full_list_release (record_full_arch_list_tail);
1559 error (_("Process record: failed to record execution log."));
1560 }
1561 }
1562 if (record_full_arch_list_add_end ())
1563 {
1564 record_full_list_release (record_full_arch_list_tail);
1565 error (_("Process record: failed to record execution log."));
1566 }
1567 record_full_list->next = record_full_arch_list_head;
1568 record_full_arch_list_head->prev = record_full_list;
1569 record_full_list = record_full_arch_list_tail;
1570
1571 if (record_full_insn_num == record_full_insn_max_num)
1572 record_full_list_release_first ();
1573 else
1574 record_full_insn_num++;
1575 }
1576
1577 /* "store_registers" method for process record target. */
1578
1579 void
1580 record_full_target::store_registers (struct regcache *regcache, int regno)
1581 {
1582 if (!record_full_gdb_operation_disable)
1583 {
1584 if (RECORD_FULL_IS_REPLAY)
1585 {
1586 int n;
1587
1588 /* Let user choose if he wants to write register or not. */
1589 if (regno < 0)
1590 n =
1591 query (_("Because GDB is in replay mode, changing the "
1592 "value of a register will make the execution "
1593 "log unusable from this point onward. "
1594 "Change all registers?"));
1595 else
1596 n =
1597 query (_("Because GDB is in replay mode, changing the value "
1598 "of a register will make the execution log unusable "
1599 "from this point onward. Change register %s?"),
1600 gdbarch_register_name (regcache->arch (),
1601 regno));
1602
1603 if (!n)
1604 {
1605 /* Invalidate the value of regcache that was set in function
1606 "regcache_raw_write". */
1607 if (regno < 0)
1608 {
1609 int i;
1610
1611 for (i = 0;
1612 i < gdbarch_num_regs (regcache->arch ());
1613 i++)
1614 regcache->invalidate (i);
1615 }
1616 else
1617 regcache->invalidate (regno);
1618
1619 error (_("Process record canceled the operation."));
1620 }
1621
1622 /* Destroy the record from here forward. */
1623 record_full_list_release_following (record_full_list);
1624 }
1625
1626 record_full_registers_change (regcache, regno);
1627 }
1628 this->beneath ()->store_registers (regcache, regno);
1629 }
1630
1631 /* "xfer_partial" method. Behavior is conditional on
1632 RECORD_FULL_IS_REPLAY.
1633 In replay mode, we cannot write memory unles we are willing to
1634 invalidate the record/replay log from this point forward. */
1635
1636 enum target_xfer_status
1637 record_full_target::xfer_partial (enum target_object object,
1638 const char *annex, gdb_byte *readbuf,
1639 const gdb_byte *writebuf, ULONGEST offset,
1640 ULONGEST len, ULONGEST *xfered_len)
1641 {
1642 if (!record_full_gdb_operation_disable
1643 && (object == TARGET_OBJECT_MEMORY
1644 || object == TARGET_OBJECT_RAW_MEMORY) && writebuf)
1645 {
1646 if (RECORD_FULL_IS_REPLAY)
1647 {
1648 /* Let user choose if he wants to write memory or not. */
1649 if (!query (_("Because GDB is in replay mode, writing to memory "
1650 "will make the execution log unusable from this "
1651 "point onward. Write memory at address %s?"),
1652 paddress (target_gdbarch (), offset)))
1653 error (_("Process record canceled the operation."));
1654
1655 /* Destroy the record from here forward. */
1656 record_full_list_release_following (record_full_list);
1657 }
1658
1659 /* Check record_full_insn_num */
1660 record_full_check_insn_num ();
1661
1662 /* Record registers change to list as an instruction. */
1663 record_full_arch_list_head = NULL;
1664 record_full_arch_list_tail = NULL;
1665 if (record_full_arch_list_add_mem (offset, len))
1666 {
1667 record_full_list_release (record_full_arch_list_tail);
1668 if (record_debug)
1669 fprintf_unfiltered (gdb_stdlog,
1670 "Process record: failed to record "
1671 "execution log.");
1672 return TARGET_XFER_E_IO;
1673 }
1674 if (record_full_arch_list_add_end ())
1675 {
1676 record_full_list_release (record_full_arch_list_tail);
1677 if (record_debug)
1678 fprintf_unfiltered (gdb_stdlog,
1679 "Process record: failed to record "
1680 "execution log.");
1681 return TARGET_XFER_E_IO;
1682 }
1683 record_full_list->next = record_full_arch_list_head;
1684 record_full_arch_list_head->prev = record_full_list;
1685 record_full_list = record_full_arch_list_tail;
1686
1687 if (record_full_insn_num == record_full_insn_max_num)
1688 record_full_list_release_first ();
1689 else
1690 record_full_insn_num++;
1691 }
1692
1693 return this->beneath ()->xfer_partial (object, annex, readbuf, writebuf,
1694 offset, len, xfered_len);
1695 }
1696
1697 /* This structure represents a breakpoint inserted while the record
1698 target is active. We use this to know when to install/remove
1699 breakpoints in/from the target beneath. For example, a breakpoint
1700 may be inserted while recording, but removed when not replaying nor
1701 recording. In that case, the breakpoint had not been inserted on
1702 the target beneath, so we should not try to remove it there. */
1703
1704 struct record_full_breakpoint
1705 {
1706 record_full_breakpoint (struct address_space *address_space_,
1707 CORE_ADDR addr_,
1708 bool in_target_beneath_)
1709 : address_space (address_space_),
1710 addr (addr_),
1711 in_target_beneath (in_target_beneath_)
1712 {
1713 }
1714
1715 /* The address and address space the breakpoint was set at. */
1716 struct address_space *address_space;
1717 CORE_ADDR addr;
1718
1719 /* True when the breakpoint has been also installed in the target
1720 beneath. This will be false for breakpoints set during replay or
1721 when recording. */
1722 bool in_target_beneath;
1723 };
1724
1725 /* The list of breakpoints inserted while the record target is
1726 active. */
1727 static std::vector<record_full_breakpoint> record_full_breakpoints;
1728
1729 static void
1730 record_full_sync_record_breakpoints (struct bp_location *loc, void *data)
1731 {
1732 if (loc->loc_type != bp_loc_software_breakpoint)
1733 return;
1734
1735 if (loc->inserted)
1736 {
1737 record_full_breakpoints.emplace_back
1738 (loc->target_info.placed_address_space,
1739 loc->target_info.placed_address,
1740 1);
1741 }
1742 }
1743
1744 /* Sync existing breakpoints to record_full_breakpoints. */
1745
1746 static void
1747 record_full_init_record_breakpoints (void)
1748 {
1749 record_full_breakpoints.clear ();
1750
1751 iterate_over_bp_locations (record_full_sync_record_breakpoints);
1752 }
1753
1754 /* Behavior is conditional on RECORD_FULL_IS_REPLAY. We will not actually
1755 insert or remove breakpoints in the real target when replaying, nor
1756 when recording. */
1757
1758 int
1759 record_full_target::insert_breakpoint (struct gdbarch *gdbarch,
1760 struct bp_target_info *bp_tgt)
1761 {
1762 bool in_target_beneath = false;
1763
1764 if (!RECORD_FULL_IS_REPLAY)
1765 {
1766 /* When recording, we currently always single-step, so we don't
1767 really need to install regular breakpoints in the inferior.
1768 However, we do have to insert software single-step
1769 breakpoints, in case the target can't hardware step. To keep
1770 things simple, we always insert. */
1771
1772 scoped_restore restore_operation_disable
1773 = record_full_gdb_operation_disable_set ();
1774
1775 int ret = this->beneath ()->insert_breakpoint (gdbarch, bp_tgt);
1776 if (ret != 0)
1777 return ret;
1778
1779 in_target_beneath = true;
1780 }
1781
1782 /* Use the existing entries if found in order to avoid duplication
1783 in record_full_breakpoints. */
1784
1785 for (const record_full_breakpoint &bp : record_full_breakpoints)
1786 {
1787 if (bp.addr == bp_tgt->placed_address
1788 && bp.address_space == bp_tgt->placed_address_space)
1789 {
1790 gdb_assert (bp.in_target_beneath == in_target_beneath);
1791 return 0;
1792 }
1793 }
1794
1795 record_full_breakpoints.emplace_back (bp_tgt->placed_address_space,
1796 bp_tgt->placed_address,
1797 in_target_beneath);
1798 return 0;
1799 }
1800
1801 /* "remove_breakpoint" method for process record target. */
1802
1803 int
1804 record_full_target::remove_breakpoint (struct gdbarch *gdbarch,
1805 struct bp_target_info *bp_tgt,
1806 enum remove_bp_reason reason)
1807 {
1808 for (auto iter = record_full_breakpoints.begin ();
1809 iter != record_full_breakpoints.end ();
1810 ++iter)
1811 {
1812 struct record_full_breakpoint &bp = *iter;
1813
1814 if (bp.addr == bp_tgt->placed_address
1815 && bp.address_space == bp_tgt->placed_address_space)
1816 {
1817 if (bp.in_target_beneath)
1818 {
1819 scoped_restore restore_operation_disable
1820 = record_full_gdb_operation_disable_set ();
1821
1822 int ret = this->beneath ()->remove_breakpoint (gdbarch, bp_tgt,
1823 reason);
1824 if (ret != 0)
1825 return ret;
1826 }
1827
1828 if (reason == REMOVE_BREAKPOINT)
1829 unordered_remove (record_full_breakpoints, iter);
1830 return 0;
1831 }
1832 }
1833
1834 gdb_assert_not_reached ("removing unknown breakpoint");
1835 }
1836
1837 /* "can_execute_reverse" method for process record target. */
1838
1839 bool
1840 record_full_base_target::can_execute_reverse ()
1841 {
1842 return true;
1843 }
1844
1845 /* "get_bookmark" method for process record and prec over core. */
1846
1847 gdb_byte *
1848 record_full_base_target::get_bookmark (const char *args, int from_tty)
1849 {
1850 char *ret = NULL;
1851
1852 /* Return stringified form of instruction count. */
1853 if (record_full_list && record_full_list->type == record_full_end)
1854 ret = xstrdup (pulongest (record_full_list->u.end.insn_num));
1855
1856 if (record_debug)
1857 {
1858 if (ret)
1859 fprintf_unfiltered (gdb_stdlog,
1860 "record_full_get_bookmark returns %s\n", ret);
1861 else
1862 fprintf_unfiltered (gdb_stdlog,
1863 "record_full_get_bookmark returns NULL\n");
1864 }
1865 return (gdb_byte *) ret;
1866 }
1867
1868 /* "goto_bookmark" method for process record and prec over core. */
1869
1870 void
1871 record_full_base_target::goto_bookmark (const gdb_byte *raw_bookmark,
1872 int from_tty)
1873 {
1874 const char *bookmark = (const char *) raw_bookmark;
1875
1876 if (record_debug)
1877 fprintf_unfiltered (gdb_stdlog,
1878 "record_full_goto_bookmark receives %s\n", bookmark);
1879
1880 std::string name_holder;
1881 if (bookmark[0] == '\'' || bookmark[0] == '\"')
1882 {
1883 if (bookmark[strlen (bookmark) - 1] != bookmark[0])
1884 error (_("Unbalanced quotes: %s"), bookmark);
1885
1886 name_holder = std::string (bookmark + 1, strlen (bookmark) - 2);
1887 bookmark = name_holder.c_str ();
1888 }
1889
1890 record_goto (bookmark);
1891 }
1892
1893 enum exec_direction_kind
1894 record_full_base_target::execution_direction ()
1895 {
1896 return record_full_execution_dir;
1897 }
1898
1899 /* The record_method method of target record-full. */
1900
1901 enum record_method
1902 record_full_base_target::record_method (ptid_t ptid)
1903 {
1904 return RECORD_METHOD_FULL;
1905 }
1906
1907 void
1908 record_full_base_target::info_record ()
1909 {
1910 struct record_full_entry *p;
1911
1912 if (RECORD_FULL_IS_REPLAY)
1913 printf_filtered (_("Replay mode:\n"));
1914 else
1915 printf_filtered (_("Record mode:\n"));
1916
1917 /* Find entry for first actual instruction in the log. */
1918 for (p = record_full_first.next;
1919 p != NULL && p->type != record_full_end;
1920 p = p->next)
1921 ;
1922
1923 /* Do we have a log at all? */
1924 if (p != NULL && p->type == record_full_end)
1925 {
1926 /* Display instruction number for first instruction in the log. */
1927 printf_filtered (_("Lowest recorded instruction number is %s.\n"),
1928 pulongest (p->u.end.insn_num));
1929
1930 /* If in replay mode, display where we are in the log. */
1931 if (RECORD_FULL_IS_REPLAY)
1932 printf_filtered (_("Current instruction number is %s.\n"),
1933 pulongest (record_full_list->u.end.insn_num));
1934
1935 /* Display instruction number for last instruction in the log. */
1936 printf_filtered (_("Highest recorded instruction number is %s.\n"),
1937 pulongest (record_full_insn_count));
1938
1939 /* Display log count. */
1940 printf_filtered (_("Log contains %u instructions.\n"),
1941 record_full_insn_num);
1942 }
1943 else
1944 printf_filtered (_("No instructions have been logged.\n"));
1945
1946 /* Display max log size. */
1947 printf_filtered (_("Max logged instructions is %u.\n"),
1948 record_full_insn_max_num);
1949 }
1950
1951 bool
1952 record_full_base_target::supports_delete_record ()
1953 {
1954 return true;
1955 }
1956
1957 /* The "delete_record" target method. */
1958
1959 void
1960 record_full_base_target::delete_record ()
1961 {
1962 record_full_list_release_following (record_full_list);
1963 }
1964
1965 /* The "record_is_replaying" target method. */
1966
1967 bool
1968 record_full_base_target::record_is_replaying (ptid_t ptid)
1969 {
1970 return RECORD_FULL_IS_REPLAY;
1971 }
1972
1973 /* The "record_will_replay" target method. */
1974
1975 bool
1976 record_full_base_target::record_will_replay (ptid_t ptid, int dir)
1977 {
1978 /* We can currently only record when executing forwards. Should we be able
1979 to record when executing backwards on targets that support reverse
1980 execution, this needs to be changed. */
1981
1982 return RECORD_FULL_IS_REPLAY || dir == EXEC_REVERSE;
1983 }
1984
1985 /* Go to a specific entry. */
1986
1987 static void
1988 record_full_goto_entry (struct record_full_entry *p)
1989 {
1990 if (p == NULL)
1991 error (_("Target insn not found."));
1992 else if (p == record_full_list)
1993 error (_("Already at target insn."));
1994 else if (p->u.end.insn_num > record_full_list->u.end.insn_num)
1995 {
1996 printf_filtered (_("Go forward to insn number %s\n"),
1997 pulongest (p->u.end.insn_num));
1998 record_full_goto_insn (p, EXEC_FORWARD);
1999 }
2000 else
2001 {
2002 printf_filtered (_("Go backward to insn number %s\n"),
2003 pulongest (p->u.end.insn_num));
2004 record_full_goto_insn (p, EXEC_REVERSE);
2005 }
2006
2007 registers_changed ();
2008 reinit_frame_cache ();
2009 inferior_thread ()->suspend.stop_pc
2010 = regcache_read_pc (get_current_regcache ());
2011 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
2012 }
2013
2014 /* The "goto_record_begin" target method. */
2015
2016 void
2017 record_full_base_target::goto_record_begin ()
2018 {
2019 struct record_full_entry *p = NULL;
2020
2021 for (p = &record_full_first; p != NULL; p = p->next)
2022 if (p->type == record_full_end)
2023 break;
2024
2025 record_full_goto_entry (p);
2026 }
2027
2028 /* The "goto_record_end" target method. */
2029
2030 void
2031 record_full_base_target::goto_record_end ()
2032 {
2033 struct record_full_entry *p = NULL;
2034
2035 for (p = record_full_list; p->next != NULL; p = p->next)
2036 ;
2037 for (; p!= NULL; p = p->prev)
2038 if (p->type == record_full_end)
2039 break;
2040
2041 record_full_goto_entry (p);
2042 }
2043
2044 /* The "goto_record" target method. */
2045
2046 void
2047 record_full_base_target::goto_record (ULONGEST target_insn)
2048 {
2049 struct record_full_entry *p = NULL;
2050
2051 for (p = &record_full_first; p != NULL; p = p->next)
2052 if (p->type == record_full_end && p->u.end.insn_num == target_insn)
2053 break;
2054
2055 record_full_goto_entry (p);
2056 }
2057
2058 /* The "record_stop_replaying" target method. */
2059
2060 void
2061 record_full_base_target::record_stop_replaying ()
2062 {
2063 goto_record_end ();
2064 }
2065
2066 /* "resume" method for prec over corefile. */
2067
2068 void
2069 record_full_core_target::resume (ptid_t ptid, int step,
2070 enum gdb_signal signal)
2071 {
2072 record_full_resume_step = step;
2073 record_full_resumed = 1;
2074 record_full_execution_dir = ::execution_direction;
2075
2076 /* We are about to start executing the inferior (or simulate it),
2077 let's register it with the event loop. */
2078 if (target_can_async_p ())
2079 target_async (1);
2080 }
2081
2082 /* "kill" method for prec over corefile. */
2083
2084 void
2085 record_full_core_target::kill ()
2086 {
2087 if (record_debug)
2088 fprintf_unfiltered (gdb_stdlog, "Process record: record_full_core_kill\n");
2089
2090 unpush_target (this);
2091 }
2092
2093 /* "fetch_registers" method for prec over corefile. */
2094
2095 void
2096 record_full_core_target::fetch_registers (struct regcache *regcache,
2097 int regno)
2098 {
2099 if (regno < 0)
2100 {
2101 int num = gdbarch_num_regs (regcache->arch ());
2102 int i;
2103
2104 for (i = 0; i < num; i ++)
2105 regcache->raw_supply (i, *record_full_core_regbuf);
2106 }
2107 else
2108 regcache->raw_supply (regno, *record_full_core_regbuf);
2109 }
2110
2111 /* "prepare_to_store" method for prec over corefile. */
2112
2113 void
2114 record_full_core_target::prepare_to_store (struct regcache *regcache)
2115 {
2116 }
2117
2118 /* "store_registers" method for prec over corefile. */
2119
2120 void
2121 record_full_core_target::store_registers (struct regcache *regcache,
2122 int regno)
2123 {
2124 if (record_full_gdb_operation_disable)
2125 record_full_core_regbuf->raw_supply (regno, *regcache);
2126 else
2127 error (_("You can't do that without a process to debug."));
2128 }
2129
2130 /* "xfer_partial" method for prec over corefile. */
2131
2132 enum target_xfer_status
2133 record_full_core_target::xfer_partial (enum target_object object,
2134 const char *annex, gdb_byte *readbuf,
2135 const gdb_byte *writebuf, ULONGEST offset,
2136 ULONGEST len, ULONGEST *xfered_len)
2137 {
2138 if (object == TARGET_OBJECT_MEMORY)
2139 {
2140 if (record_full_gdb_operation_disable || !writebuf)
2141 {
2142 struct target_section *p;
2143
2144 for (p = record_full_core_start; p < record_full_core_end; p++)
2145 {
2146 if (offset >= p->addr)
2147 {
2148 struct record_full_core_buf_entry *entry;
2149 ULONGEST sec_offset;
2150
2151 if (offset >= p->endaddr)
2152 continue;
2153
2154 if (offset + len > p->endaddr)
2155 len = p->endaddr - offset;
2156
2157 sec_offset = offset - p->addr;
2158
2159 /* Read readbuf or write writebuf p, offset, len. */
2160 /* Check flags. */
2161 if (p->the_bfd_section->flags & SEC_CONSTRUCTOR
2162 || (p->the_bfd_section->flags & SEC_HAS_CONTENTS) == 0)
2163 {
2164 if (readbuf)
2165 memset (readbuf, 0, len);
2166
2167 *xfered_len = len;
2168 return TARGET_XFER_OK;
2169 }
2170 /* Get record_full_core_buf_entry. */
2171 for (entry = record_full_core_buf_list; entry;
2172 entry = entry->prev)
2173 if (entry->p == p)
2174 break;
2175 if (writebuf)
2176 {
2177 if (!entry)
2178 {
2179 /* Add a new entry. */
2180 entry = XNEW (struct record_full_core_buf_entry);
2181 entry->p = p;
2182 if (!bfd_malloc_and_get_section
2183 (p->the_bfd_section->owner,
2184 p->the_bfd_section,
2185 &entry->buf))
2186 {
2187 xfree (entry);
2188 return TARGET_XFER_EOF;
2189 }
2190 entry->prev = record_full_core_buf_list;
2191 record_full_core_buf_list = entry;
2192 }
2193
2194 memcpy (entry->buf + sec_offset, writebuf,
2195 (size_t) len);
2196 }
2197 else
2198 {
2199 if (!entry)
2200 return this->beneath ()->xfer_partial (object, annex,
2201 readbuf, writebuf,
2202 offset, len,
2203 xfered_len);
2204
2205 memcpy (readbuf, entry->buf + sec_offset,
2206 (size_t) len);
2207 }
2208
2209 *xfered_len = len;
2210 return TARGET_XFER_OK;
2211 }
2212 }
2213
2214 return TARGET_XFER_E_IO;
2215 }
2216 else
2217 error (_("You can't do that without a process to debug."));
2218 }
2219
2220 return this->beneath ()->xfer_partial (object, annex,
2221 readbuf, writebuf, offset, len,
2222 xfered_len);
2223 }
2224
2225 /* "insert_breakpoint" method for prec over corefile. */
2226
2227 int
2228 record_full_core_target::insert_breakpoint (struct gdbarch *gdbarch,
2229 struct bp_target_info *bp_tgt)
2230 {
2231 return 0;
2232 }
2233
2234 /* "remove_breakpoint" method for prec over corefile. */
2235
2236 int
2237 record_full_core_target::remove_breakpoint (struct gdbarch *gdbarch,
2238 struct bp_target_info *bp_tgt,
2239 enum remove_bp_reason reason)
2240 {
2241 return 0;
2242 }
2243
2244 /* "has_execution" method for prec over corefile. */
2245
2246 bool
2247 record_full_core_target::has_execution (ptid_t the_ptid)
2248 {
2249 return true;
2250 }
2251
2252 /* Record log save-file format
2253 Version 1 (never released)
2254
2255 Header:
2256 4 bytes: magic number htonl(0x20090829).
2257 NOTE: be sure to change whenever this file format changes!
2258
2259 Records:
2260 record_full_end:
2261 1 byte: record type (record_full_end, see enum record_full_type).
2262 record_full_reg:
2263 1 byte: record type (record_full_reg, see enum record_full_type).
2264 8 bytes: register id (network byte order).
2265 MAX_REGISTER_SIZE bytes: register value.
2266 record_full_mem:
2267 1 byte: record type (record_full_mem, see enum record_full_type).
2268 8 bytes: memory length (network byte order).
2269 8 bytes: memory address (network byte order).
2270 n bytes: memory value (n == memory length).
2271
2272 Version 2
2273 4 bytes: magic number netorder32(0x20091016).
2274 NOTE: be sure to change whenever this file format changes!
2275
2276 Records:
2277 record_full_end:
2278 1 byte: record type (record_full_end, see enum record_full_type).
2279 4 bytes: signal
2280 4 bytes: instruction count
2281 record_full_reg:
2282 1 byte: record type (record_full_reg, see enum record_full_type).
2283 4 bytes: register id (network byte order).
2284 n bytes: register value (n == actual register size).
2285 (eg. 4 bytes for x86 general registers).
2286 record_full_mem:
2287 1 byte: record type (record_full_mem, see enum record_full_type).
2288 4 bytes: memory length (network byte order).
2289 8 bytes: memory address (network byte order).
2290 n bytes: memory value (n == memory length).
2291
2292 */
2293
2294 /* bfdcore_read -- read bytes from a core file section. */
2295
2296 static inline void
2297 bfdcore_read (bfd *obfd, asection *osec, void *buf, int len, int *offset)
2298 {
2299 int ret = bfd_get_section_contents (obfd, osec, buf, *offset, len);
2300
2301 if (ret)
2302 *offset += len;
2303 else
2304 error (_("Failed to read %d bytes from core file %s ('%s')."),
2305 len, bfd_get_filename (obfd),
2306 bfd_errmsg (bfd_get_error ()));
2307 }
2308
2309 static inline uint64_t
2310 netorder64 (uint64_t input)
2311 {
2312 uint64_t ret;
2313
2314 store_unsigned_integer ((gdb_byte *) &ret, sizeof (ret),
2315 BFD_ENDIAN_BIG, input);
2316 return ret;
2317 }
2318
2319 static inline uint32_t
2320 netorder32 (uint32_t input)
2321 {
2322 uint32_t ret;
2323
2324 store_unsigned_integer ((gdb_byte *) &ret, sizeof (ret),
2325 BFD_ENDIAN_BIG, input);
2326 return ret;
2327 }
2328
2329 /* Restore the execution log from a core_bfd file. */
2330 static void
2331 record_full_restore (void)
2332 {
2333 uint32_t magic;
2334 struct record_full_entry *rec;
2335 asection *osec;
2336 uint32_t osec_size;
2337 int bfd_offset = 0;
2338 struct regcache *regcache;
2339
2340 /* We restore the execution log from the open core bfd,
2341 if there is one. */
2342 if (core_bfd == NULL)
2343 return;
2344
2345 /* "record_full_restore" can only be called when record list is empty. */
2346 gdb_assert (record_full_first.next == NULL);
2347
2348 if (record_debug)
2349 fprintf_unfiltered (gdb_stdlog, "Restoring recording from core file.\n");
2350
2351 /* Now need to find our special note section. */
2352 osec = bfd_get_section_by_name (core_bfd, "null0");
2353 if (record_debug)
2354 fprintf_unfiltered (gdb_stdlog, "Find precord section %s.\n",
2355 osec ? "succeeded" : "failed");
2356 if (osec == NULL)
2357 return;
2358 osec_size = bfd_section_size (osec);
2359 if (record_debug)
2360 fprintf_unfiltered (gdb_stdlog, "%s", bfd_section_name (osec));
2361
2362 /* Check the magic code. */
2363 bfdcore_read (core_bfd, osec, &magic, sizeof (magic), &bfd_offset);
2364 if (magic != RECORD_FULL_FILE_MAGIC)
2365 error (_("Version mis-match or file format error in core file %s."),
2366 bfd_get_filename (core_bfd));
2367 if (record_debug)
2368 fprintf_unfiltered (gdb_stdlog,
2369 " Reading 4-byte magic cookie "
2370 "RECORD_FULL_FILE_MAGIC (0x%s)\n",
2371 phex_nz (netorder32 (magic), 4));
2372
2373 /* Restore the entries in recfd into record_full_arch_list_head and
2374 record_full_arch_list_tail. */
2375 record_full_arch_list_head = NULL;
2376 record_full_arch_list_tail = NULL;
2377 record_full_insn_num = 0;
2378
2379 try
2380 {
2381 regcache = get_current_regcache ();
2382
2383 while (1)
2384 {
2385 uint8_t rectype;
2386 uint32_t regnum, len, signal, count;
2387 uint64_t addr;
2388
2389 /* We are finished when offset reaches osec_size. */
2390 if (bfd_offset >= osec_size)
2391 break;
2392 bfdcore_read (core_bfd, osec, &rectype, sizeof (rectype), &bfd_offset);
2393
2394 switch (rectype)
2395 {
2396 case record_full_reg: /* reg */
2397 /* Get register number to regnum. */
2398 bfdcore_read (core_bfd, osec, &regnum,
2399 sizeof (regnum), &bfd_offset);
2400 regnum = netorder32 (regnum);
2401
2402 rec = record_full_reg_alloc (regcache, regnum);
2403
2404 /* Get val. */
2405 bfdcore_read (core_bfd, osec, record_full_get_loc (rec),
2406 rec->u.reg.len, &bfd_offset);
2407
2408 if (record_debug)
2409 fprintf_unfiltered (gdb_stdlog,
2410 " Reading register %d (1 "
2411 "plus %lu plus %d bytes)\n",
2412 rec->u.reg.num,
2413 (unsigned long) sizeof (regnum),
2414 rec->u.reg.len);
2415 break;
2416
2417 case record_full_mem: /* mem */
2418 /* Get len. */
2419 bfdcore_read (core_bfd, osec, &len,
2420 sizeof (len), &bfd_offset);
2421 len = netorder32 (len);
2422
2423 /* Get addr. */
2424 bfdcore_read (core_bfd, osec, &addr,
2425 sizeof (addr), &bfd_offset);
2426 addr = netorder64 (addr);
2427
2428 rec = record_full_mem_alloc (addr, len);
2429
2430 /* Get val. */
2431 bfdcore_read (core_bfd, osec, record_full_get_loc (rec),
2432 rec->u.mem.len, &bfd_offset);
2433
2434 if (record_debug)
2435 fprintf_unfiltered (gdb_stdlog,
2436 " Reading memory %s (1 plus "
2437 "%lu plus %lu plus %d bytes)\n",
2438 paddress (get_current_arch (),
2439 rec->u.mem.addr),
2440 (unsigned long) sizeof (addr),
2441 (unsigned long) sizeof (len),
2442 rec->u.mem.len);
2443 break;
2444
2445 case record_full_end: /* end */
2446 rec = record_full_end_alloc ();
2447 record_full_insn_num ++;
2448
2449 /* Get signal value. */
2450 bfdcore_read (core_bfd, osec, &signal,
2451 sizeof (signal), &bfd_offset);
2452 signal = netorder32 (signal);
2453 rec->u.end.sigval = (enum gdb_signal) signal;
2454
2455 /* Get insn count. */
2456 bfdcore_read (core_bfd, osec, &count,
2457 sizeof (count), &bfd_offset);
2458 count = netorder32 (count);
2459 rec->u.end.insn_num = count;
2460 record_full_insn_count = count + 1;
2461 if (record_debug)
2462 fprintf_unfiltered (gdb_stdlog,
2463 " Reading record_full_end (1 + "
2464 "%lu + %lu bytes), offset == %s\n",
2465 (unsigned long) sizeof (signal),
2466 (unsigned long) sizeof (count),
2467 paddress (get_current_arch (),
2468 bfd_offset));
2469 break;
2470
2471 default:
2472 error (_("Bad entry type in core file %s."),
2473 bfd_get_filename (core_bfd));
2474 break;
2475 }
2476
2477 /* Add rec to record arch list. */
2478 record_full_arch_list_add (rec);
2479 }
2480 }
2481 catch (const gdb_exception &ex)
2482 {
2483 record_full_list_release (record_full_arch_list_tail);
2484 throw;
2485 }
2486
2487 /* Add record_full_arch_list_head to the end of record list. */
2488 record_full_first.next = record_full_arch_list_head;
2489 record_full_arch_list_head->prev = &record_full_first;
2490 record_full_arch_list_tail->next = NULL;
2491 record_full_list = &record_full_first;
2492
2493 /* Update record_full_insn_max_num. */
2494 if (record_full_insn_num > record_full_insn_max_num)
2495 {
2496 record_full_insn_max_num = record_full_insn_num;
2497 warning (_("Auto increase record/replay buffer limit to %u."),
2498 record_full_insn_max_num);
2499 }
2500
2501 /* Succeeded. */
2502 printf_filtered (_("Restored records from core file %s.\n"),
2503 bfd_get_filename (core_bfd));
2504
2505 print_stack_frame (get_selected_frame (NULL), 1, SRC_AND_LOC, 1);
2506 }
2507
2508 /* bfdcore_write -- write bytes into a core file section. */
2509
2510 static inline void
2511 bfdcore_write (bfd *obfd, asection *osec, void *buf, int len, int *offset)
2512 {
2513 int ret = bfd_set_section_contents (obfd, osec, buf, *offset, len);
2514
2515 if (ret)
2516 *offset += len;
2517 else
2518 error (_("Failed to write %d bytes to core file %s ('%s')."),
2519 len, bfd_get_filename (obfd),
2520 bfd_errmsg (bfd_get_error ()));
2521 }
2522
2523 /* Restore the execution log from a file. We use a modified elf
2524 corefile format, with an extra section for our data. */
2525
2526 static void
2527 cmd_record_full_restore (const char *args, int from_tty)
2528 {
2529 core_file_command (args, from_tty);
2530 record_full_open (args, from_tty);
2531 }
2532
2533 /* Save the execution log to a file. We use a modified elf corefile
2534 format, with an extra section for our data. */
2535
2536 void
2537 record_full_base_target::save_record (const char *recfilename)
2538 {
2539 struct record_full_entry *cur_record_full_list;
2540 uint32_t magic;
2541 struct regcache *regcache;
2542 struct gdbarch *gdbarch;
2543 int save_size = 0;
2544 asection *osec = NULL;
2545 int bfd_offset = 0;
2546
2547 /* Open the save file. */
2548 if (record_debug)
2549 fprintf_unfiltered (gdb_stdlog, "Saving execution log to core file '%s'\n",
2550 recfilename);
2551
2552 /* Open the output file. */
2553 gdb_bfd_ref_ptr obfd (create_gcore_bfd (recfilename));
2554
2555 /* Arrange to remove the output file on failure. */
2556 gdb::unlinker unlink_file (recfilename);
2557
2558 /* Save the current record entry to "cur_record_full_list". */
2559 cur_record_full_list = record_full_list;
2560
2561 /* Get the values of regcache and gdbarch. */
2562 regcache = get_current_regcache ();
2563 gdbarch = regcache->arch ();
2564
2565 /* Disable the GDB operation record. */
2566 scoped_restore restore_operation_disable
2567 = record_full_gdb_operation_disable_set ();
2568
2569 /* Reverse execute to the begin of record list. */
2570 while (1)
2571 {
2572 /* Check for beginning and end of log. */
2573 if (record_full_list == &record_full_first)
2574 break;
2575
2576 record_full_exec_insn (regcache, gdbarch, record_full_list);
2577
2578 if (record_full_list->prev)
2579 record_full_list = record_full_list->prev;
2580 }
2581
2582 /* Compute the size needed for the extra bfd section. */
2583 save_size = 4; /* magic cookie */
2584 for (record_full_list = record_full_first.next; record_full_list;
2585 record_full_list = record_full_list->next)
2586 switch (record_full_list->type)
2587 {
2588 case record_full_end:
2589 save_size += 1 + 4 + 4;
2590 break;
2591 case record_full_reg:
2592 save_size += 1 + 4 + record_full_list->u.reg.len;
2593 break;
2594 case record_full_mem:
2595 save_size += 1 + 4 + 8 + record_full_list->u.mem.len;
2596 break;
2597 }
2598
2599 /* Make the new bfd section. */
2600 osec = bfd_make_section_anyway_with_flags (obfd.get (), "precord",
2601 SEC_HAS_CONTENTS
2602 | SEC_READONLY);
2603 if (osec == NULL)
2604 error (_("Failed to create 'precord' section for corefile %s: %s"),
2605 recfilename,
2606 bfd_errmsg (bfd_get_error ()));
2607 bfd_set_section_size (osec, save_size);
2608 bfd_set_section_vma (osec, 0);
2609 bfd_set_section_alignment (osec, 0);
2610
2611 /* Save corefile state. */
2612 write_gcore_file (obfd.get ());
2613
2614 /* Write out the record log. */
2615 /* Write the magic code. */
2616 magic = RECORD_FULL_FILE_MAGIC;
2617 if (record_debug)
2618 fprintf_unfiltered (gdb_stdlog,
2619 " Writing 4-byte magic cookie "
2620 "RECORD_FULL_FILE_MAGIC (0x%s)\n",
2621 phex_nz (magic, 4));
2622 bfdcore_write (obfd.get (), osec, &magic, sizeof (magic), &bfd_offset);
2623
2624 /* Save the entries to recfd and forward execute to the end of
2625 record list. */
2626 record_full_list = &record_full_first;
2627 while (1)
2628 {
2629 /* Save entry. */
2630 if (record_full_list != &record_full_first)
2631 {
2632 uint8_t type;
2633 uint32_t regnum, len, signal, count;
2634 uint64_t addr;
2635
2636 type = record_full_list->type;
2637 bfdcore_write (obfd.get (), osec, &type, sizeof (type), &bfd_offset);
2638
2639 switch (record_full_list->type)
2640 {
2641 case record_full_reg: /* reg */
2642 if (record_debug)
2643 fprintf_unfiltered (gdb_stdlog,
2644 " Writing register %d (1 "
2645 "plus %lu plus %d bytes)\n",
2646 record_full_list->u.reg.num,
2647 (unsigned long) sizeof (regnum),
2648 record_full_list->u.reg.len);
2649
2650 /* Write regnum. */
2651 regnum = netorder32 (record_full_list->u.reg.num);
2652 bfdcore_write (obfd.get (), osec, &regnum,
2653 sizeof (regnum), &bfd_offset);
2654
2655 /* Write regval. */
2656 bfdcore_write (obfd.get (), osec,
2657 record_full_get_loc (record_full_list),
2658 record_full_list->u.reg.len, &bfd_offset);
2659 break;
2660
2661 case record_full_mem: /* mem */
2662 if (record_debug)
2663 fprintf_unfiltered (gdb_stdlog,
2664 " Writing memory %s (1 plus "
2665 "%lu plus %lu plus %d bytes)\n",
2666 paddress (gdbarch,
2667 record_full_list->u.mem.addr),
2668 (unsigned long) sizeof (addr),
2669 (unsigned long) sizeof (len),
2670 record_full_list->u.mem.len);
2671
2672 /* Write memlen. */
2673 len = netorder32 (record_full_list->u.mem.len);
2674 bfdcore_write (obfd.get (), osec, &len, sizeof (len),
2675 &bfd_offset);
2676
2677 /* Write memaddr. */
2678 addr = netorder64 (record_full_list->u.mem.addr);
2679 bfdcore_write (obfd.get (), osec, &addr,
2680 sizeof (addr), &bfd_offset);
2681
2682 /* Write memval. */
2683 bfdcore_write (obfd.get (), osec,
2684 record_full_get_loc (record_full_list),
2685 record_full_list->u.mem.len, &bfd_offset);
2686 break;
2687
2688 case record_full_end:
2689 if (record_debug)
2690 fprintf_unfiltered (gdb_stdlog,
2691 " Writing record_full_end (1 + "
2692 "%lu + %lu bytes)\n",
2693 (unsigned long) sizeof (signal),
2694 (unsigned long) sizeof (count));
2695 /* Write signal value. */
2696 signal = netorder32 (record_full_list->u.end.sigval);
2697 bfdcore_write (obfd.get (), osec, &signal,
2698 sizeof (signal), &bfd_offset);
2699
2700 /* Write insn count. */
2701 count = netorder32 (record_full_list->u.end.insn_num);
2702 bfdcore_write (obfd.get (), osec, &count,
2703 sizeof (count), &bfd_offset);
2704 break;
2705 }
2706 }
2707
2708 /* Execute entry. */
2709 record_full_exec_insn (regcache, gdbarch, record_full_list);
2710
2711 if (record_full_list->next)
2712 record_full_list = record_full_list->next;
2713 else
2714 break;
2715 }
2716
2717 /* Reverse execute to cur_record_full_list. */
2718 while (1)
2719 {
2720 /* Check for beginning and end of log. */
2721 if (record_full_list == cur_record_full_list)
2722 break;
2723
2724 record_full_exec_insn (regcache, gdbarch, record_full_list);
2725
2726 if (record_full_list->prev)
2727 record_full_list = record_full_list->prev;
2728 }
2729
2730 unlink_file.keep ();
2731
2732 /* Succeeded. */
2733 printf_filtered (_("Saved core file %s with execution log.\n"),
2734 recfilename);
2735 }
2736
2737 /* record_full_goto_insn -- rewind the record log (forward or backward,
2738 depending on DIR) to the given entry, changing the program state
2739 correspondingly. */
2740
2741 static void
2742 record_full_goto_insn (struct record_full_entry *entry,
2743 enum exec_direction_kind dir)
2744 {
2745 scoped_restore restore_operation_disable
2746 = record_full_gdb_operation_disable_set ();
2747 struct regcache *regcache = get_current_regcache ();
2748 struct gdbarch *gdbarch = regcache->arch ();
2749
2750 /* Assume everything is valid: we will hit the entry,
2751 and we will not hit the end of the recording. */
2752
2753 if (dir == EXEC_FORWARD)
2754 record_full_list = record_full_list->next;
2755
2756 do
2757 {
2758 record_full_exec_insn (regcache, gdbarch, record_full_list);
2759 if (dir == EXEC_REVERSE)
2760 record_full_list = record_full_list->prev;
2761 else
2762 record_full_list = record_full_list->next;
2763 } while (record_full_list != entry);
2764 }
2765
2766 /* Alias for "target record-full". */
2767
2768 static void
2769 cmd_record_full_start (const char *args, int from_tty)
2770 {
2771 execute_command ("target record-full", from_tty);
2772 }
2773
2774 static void
2775 set_record_full_insn_max_num (const char *args, int from_tty,
2776 struct cmd_list_element *c)
2777 {
2778 if (record_full_insn_num > record_full_insn_max_num)
2779 {
2780 /* Count down record_full_insn_num while releasing records from list. */
2781 while (record_full_insn_num > record_full_insn_max_num)
2782 {
2783 record_full_list_release_first ();
2784 record_full_insn_num--;
2785 }
2786 }
2787 }
2788
2789 /* The "set record full" command. */
2790
2791 static void
2792 set_record_full_command (const char *args, int from_tty)
2793 {
2794 printf_unfiltered (_("\"set record full\" must be followed "
2795 "by an appropriate subcommand.\n"));
2796 help_list (set_record_full_cmdlist, "set record full ", all_commands,
2797 gdb_stdout);
2798 }
2799
2800 /* The "show record full" command. */
2801
2802 static void
2803 show_record_full_command (const char *args, int from_tty)
2804 {
2805 cmd_show_list (show_record_full_cmdlist, from_tty, "");
2806 }
2807
2808 void
2809 _initialize_record_full (void)
2810 {
2811 struct cmd_list_element *c;
2812
2813 /* Init record_full_first. */
2814 record_full_first.prev = NULL;
2815 record_full_first.next = NULL;
2816 record_full_first.type = record_full_end;
2817
2818 add_target (record_full_target_info, record_full_open);
2819 add_deprecated_target_alias (record_full_target_info, "record");
2820 add_target (record_full_core_target_info, record_full_open);
2821
2822 add_prefix_cmd ("full", class_obscure, cmd_record_full_start,
2823 _("Start full execution recording."), &record_full_cmdlist,
2824 "record full ", 0, &record_cmdlist);
2825
2826 c = add_cmd ("restore", class_obscure, cmd_record_full_restore,
2827 _("Restore the execution log from a file.\n\
2828 Argument is filename. File must be created with 'record save'."),
2829 &record_full_cmdlist);
2830 set_cmd_completer (c, filename_completer);
2831
2832 /* Deprecate the old version without "full" prefix. */
2833 c = add_alias_cmd ("restore", "full restore", class_obscure, 1,
2834 &record_cmdlist);
2835 set_cmd_completer (c, filename_completer);
2836 deprecate_cmd (c, "record full restore");
2837
2838 add_prefix_cmd ("full", class_support, set_record_full_command,
2839 _("Set record options."), &set_record_full_cmdlist,
2840 "set record full ", 0, &set_record_cmdlist);
2841
2842 add_prefix_cmd ("full", class_support, show_record_full_command,
2843 _("Show record options."), &show_record_full_cmdlist,
2844 "show record full ", 0, &show_record_cmdlist);
2845
2846 /* Record instructions number limit command. */
2847 add_setshow_boolean_cmd ("stop-at-limit", no_class,
2848 &record_full_stop_at_limit, _("\
2849 Set whether record/replay stops when record/replay buffer becomes full."), _("\
2850 Show whether record/replay stops when record/replay buffer becomes full."),
2851 _("Default is ON.\n\
2852 When ON, if the record/replay buffer becomes full, ask user what to do.\n\
2853 When OFF, if the record/replay buffer becomes full,\n\
2854 delete the oldest recorded instruction to make room for each new one."),
2855 NULL, NULL,
2856 &set_record_full_cmdlist, &show_record_full_cmdlist);
2857
2858 c = add_alias_cmd ("stop-at-limit", "full stop-at-limit", no_class, 1,
2859 &set_record_cmdlist);
2860 deprecate_cmd (c, "set record full stop-at-limit");
2861
2862 c = add_alias_cmd ("stop-at-limit", "full stop-at-limit", no_class, 1,
2863 &show_record_cmdlist);
2864 deprecate_cmd (c, "show record full stop-at-limit");
2865
2866 add_setshow_uinteger_cmd ("insn-number-max", no_class,
2867 &record_full_insn_max_num,
2868 _("Set record/replay buffer limit."),
2869 _("Show record/replay buffer limit."), _("\
2870 Set the maximum number of instructions to be stored in the\n\
2871 record/replay buffer. A value of either \"unlimited\" or zero means no\n\
2872 limit. Default is 200000."),
2873 set_record_full_insn_max_num,
2874 NULL, &set_record_full_cmdlist,
2875 &show_record_full_cmdlist);
2876
2877 c = add_alias_cmd ("insn-number-max", "full insn-number-max", no_class, 1,
2878 &set_record_cmdlist);
2879 deprecate_cmd (c, "set record full insn-number-max");
2880
2881 c = add_alias_cmd ("insn-number-max", "full insn-number-max", no_class, 1,
2882 &show_record_cmdlist);
2883 deprecate_cmd (c, "show record full insn-number-max");
2884
2885 add_setshow_boolean_cmd ("memory-query", no_class,
2886 &record_full_memory_query, _("\
2887 Set whether query if PREC cannot record memory change of next instruction."),
2888 _("\
2889 Show whether query if PREC cannot record memory change of next instruction."),
2890 _("\
2891 Default is OFF.\n\
2892 When ON, query if PREC cannot record memory change of next instruction."),
2893 NULL, NULL,
2894 &set_record_full_cmdlist,
2895 &show_record_full_cmdlist);
2896
2897 c = add_alias_cmd ("memory-query", "full memory-query", no_class, 1,
2898 &set_record_cmdlist);
2899 deprecate_cmd (c, "set record full memory-query");
2900
2901 c = add_alias_cmd ("memory-query", "full memory-query", no_class, 1,
2902 &show_record_cmdlist);
2903 deprecate_cmd (c, "show record full memory-query");
2904 }
This page took 0.142704 seconds and 4 git commands to generate.