751769ea7fc517013a3931df7ef0452a321f61d8
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 #include "process-stratum-target.h"
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "gdbsupport/filestuff.h"
46 #include "gdbsupport/rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdbsupport/gdb_sys_time.h"
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "gdbsupport/agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "gdbsupport/scoped_restore.h"
76 #include "gdbsupport/environ.h"
77 #include "gdbsupport/byte-vector.h"
78 #include <algorithm>
79 #include <unordered_map>
80
81 /* The remote target. */
82
83 static const char remote_doc[] = N_("\
84 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
85 Specify the serial device it is connected to\n\
86 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
87
88 #define OPAQUETHREADBYTES 8
89
90 /* a 64 bit opaque identifier */
91 typedef unsigned char threadref[OPAQUETHREADBYTES];
92
93 struct gdb_ext_thread_info;
94 struct threads_listing_context;
95 typedef int (*rmt_thread_action) (threadref *ref, void *context);
96 struct protocol_feature;
97 struct packet_reg;
98
99 struct stop_reply;
100 typedef std::unique_ptr<stop_reply> stop_reply_up;
101
102 /* Generic configuration support for packets the stub optionally
103 supports. Allows the user to specify the use of the packet as well
104 as allowing GDB to auto-detect support in the remote stub. */
105
106 enum packet_support
107 {
108 PACKET_SUPPORT_UNKNOWN = 0,
109 PACKET_ENABLE,
110 PACKET_DISABLE
111 };
112
113 /* Analyze a packet's return value and update the packet config
114 accordingly. */
115
116 enum packet_result
117 {
118 PACKET_ERROR,
119 PACKET_OK,
120 PACKET_UNKNOWN
121 };
122
123 struct threads_listing_context;
124
125 /* Stub vCont actions support.
126
127 Each field is a boolean flag indicating whether the stub reports
128 support for the corresponding action. */
129
130 struct vCont_action_support
131 {
132 /* vCont;t */
133 bool t = false;
134
135 /* vCont;r */
136 bool r = false;
137
138 /* vCont;s */
139 bool s = false;
140
141 /* vCont;S */
142 bool S = false;
143 };
144
145 /* About this many threadids fit in a packet. */
146
147 #define MAXTHREADLISTRESULTS 32
148
149 /* Data for the vFile:pread readahead cache. */
150
151 struct readahead_cache
152 {
153 /* Invalidate the readahead cache. */
154 void invalidate ();
155
156 /* Invalidate the readahead cache if it is holding data for FD. */
157 void invalidate_fd (int fd);
158
159 /* Serve pread from the readahead cache. Returns number of bytes
160 read, or 0 if the request can't be served from the cache. */
161 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
162
163 /* The file descriptor for the file that is being cached. -1 if the
164 cache is invalid. */
165 int fd = -1;
166
167 /* The offset into the file that the cache buffer corresponds
168 to. */
169 ULONGEST offset = 0;
170
171 /* The buffer holding the cache contents. */
172 gdb_byte *buf = nullptr;
173 /* The buffer's size. We try to read as much as fits into a packet
174 at a time. */
175 size_t bufsize = 0;
176
177 /* Cache hit and miss counters. */
178 ULONGEST hit_count = 0;
179 ULONGEST miss_count = 0;
180 };
181
182 /* Description of the remote protocol for a given architecture. */
183
184 struct packet_reg
185 {
186 long offset; /* Offset into G packet. */
187 long regnum; /* GDB's internal register number. */
188 LONGEST pnum; /* Remote protocol register number. */
189 int in_g_packet; /* Always part of G packet. */
190 /* long size in bytes; == register_size (target_gdbarch (), regnum);
191 at present. */
192 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
193 at present. */
194 };
195
196 struct remote_arch_state
197 {
198 explicit remote_arch_state (struct gdbarch *gdbarch);
199
200 /* Description of the remote protocol registers. */
201 long sizeof_g_packet;
202
203 /* Description of the remote protocol registers indexed by REGNUM
204 (making an array gdbarch_num_regs in size). */
205 std::unique_ptr<packet_reg[]> regs;
206
207 /* This is the size (in chars) of the first response to the ``g''
208 packet. It is used as a heuristic when determining the maximum
209 size of memory-read and memory-write packets. A target will
210 typically only reserve a buffer large enough to hold the ``g''
211 packet. The size does not include packet overhead (headers and
212 trailers). */
213 long actual_register_packet_size;
214
215 /* This is the maximum size (in chars) of a non read/write packet.
216 It is also used as a cap on the size of read/write packets. */
217 long remote_packet_size;
218 };
219
220 /* Description of the remote protocol state for the currently
221 connected target. This is per-target state, and independent of the
222 selected architecture. */
223
224 class remote_state
225 {
226 public:
227
228 remote_state ();
229 ~remote_state ();
230
231 /* Get the remote arch state for GDBARCH. */
232 struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
233
234 public: /* data */
235
236 /* A buffer to use for incoming packets, and its current size. The
237 buffer is grown dynamically for larger incoming packets.
238 Outgoing packets may also be constructed in this buffer.
239 The size of the buffer is always at least REMOTE_PACKET_SIZE;
240 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
241 packets. */
242 gdb::char_vector buf;
243
244 /* True if we're going through initial connection setup (finding out
245 about the remote side's threads, relocating symbols, etc.). */
246 bool starting_up = false;
247
248 /* If we negotiated packet size explicitly (and thus can bypass
249 heuristics for the largest packet size that will not overflow
250 a buffer in the stub), this will be set to that packet size.
251 Otherwise zero, meaning to use the guessed size. */
252 long explicit_packet_size = 0;
253
254 /* remote_wait is normally called when the target is running and
255 waits for a stop reply packet. But sometimes we need to call it
256 when the target is already stopped. We can send a "?" packet
257 and have remote_wait read the response. Or, if we already have
258 the response, we can stash it in BUF and tell remote_wait to
259 skip calling getpkt. This flag is set when BUF contains a
260 stop reply packet and the target is not waiting. */
261 int cached_wait_status = 0;
262
263 /* True, if in no ack mode. That is, neither GDB nor the stub will
264 expect acks from each other. The connection is assumed to be
265 reliable. */
266 bool noack_mode = false;
267
268 /* True if we're connected in extended remote mode. */
269 bool extended = false;
270
271 /* True if we resumed the target and we're waiting for the target to
272 stop. In the mean time, we can't start another command/query.
273 The remote server wouldn't be ready to process it, so we'd
274 timeout waiting for a reply that would never come and eventually
275 we'd close the connection. This can happen in asynchronous mode
276 because we allow GDB commands while the target is running. */
277 bool waiting_for_stop_reply = false;
278
279 /* The status of the stub support for the various vCont actions. */
280 vCont_action_support supports_vCont;
281
282 /* True if the user has pressed Ctrl-C, but the target hasn't
283 responded to that. */
284 bool ctrlc_pending_p = false;
285
286 /* True if we saw a Ctrl-C while reading or writing from/to the
287 remote descriptor. At that point it is not safe to send a remote
288 interrupt packet, so we instead remember we saw the Ctrl-C and
289 process it once we're done with sending/receiving the current
290 packet, which should be shortly. If however that takes too long,
291 and the user presses Ctrl-C again, we offer to disconnect. */
292 bool got_ctrlc_during_io = false;
293
294 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
295 remote_open knows that we don't have a file open when the program
296 starts. */
297 struct serial *remote_desc = nullptr;
298
299 /* These are the threads which we last sent to the remote system. The
300 TID member will be -1 for all or -2 for not sent yet. */
301 ptid_t general_thread = null_ptid;
302 ptid_t continue_thread = null_ptid;
303
304 /* This is the traceframe which we last selected on the remote system.
305 It will be -1 if no traceframe is selected. */
306 int remote_traceframe_number = -1;
307
308 char *last_pass_packet = nullptr;
309
310 /* The last QProgramSignals packet sent to the target. We bypass
311 sending a new program signals list down to the target if the new
312 packet is exactly the same as the last we sent. IOW, we only let
313 the target know about program signals list changes. */
314 char *last_program_signals_packet = nullptr;
315
316 gdb_signal last_sent_signal = GDB_SIGNAL_0;
317
318 bool last_sent_step = false;
319
320 /* The execution direction of the last resume we got. */
321 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
322
323 char *finished_object = nullptr;
324 char *finished_annex = nullptr;
325 ULONGEST finished_offset = 0;
326
327 /* Should we try the 'ThreadInfo' query packet?
328
329 This variable (NOT available to the user: auto-detect only!)
330 determines whether GDB will use the new, simpler "ThreadInfo"
331 query or the older, more complex syntax for thread queries.
332 This is an auto-detect variable (set to true at each connect,
333 and set to false when the target fails to recognize it). */
334 bool use_threadinfo_query = false;
335 bool use_threadextra_query = false;
336
337 threadref echo_nextthread {};
338 threadref nextthread {};
339 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
340
341 /* The state of remote notification. */
342 struct remote_notif_state *notif_state = nullptr;
343
344 /* The branch trace configuration. */
345 struct btrace_config btrace_config {};
346
347 /* The argument to the last "vFile:setfs:" packet we sent, used
348 to avoid sending repeated unnecessary "vFile:setfs:" packets.
349 Initialized to -1 to indicate that no "vFile:setfs:" packet
350 has yet been sent. */
351 int fs_pid = -1;
352
353 /* A readahead cache for vFile:pread. Often, reading a binary
354 involves a sequence of small reads. E.g., when parsing an ELF
355 file. A readahead cache helps mostly the case of remote
356 debugging on a connection with higher latency, due to the
357 request/reply nature of the RSP. We only cache data for a single
358 file descriptor at a time. */
359 struct readahead_cache readahead_cache;
360
361 /* The list of already fetched and acknowledged stop events. This
362 queue is used for notification Stop, and other notifications
363 don't need queue for their events, because the notification
364 events of Stop can't be consumed immediately, so that events
365 should be queued first, and be consumed by remote_wait_{ns,as}
366 one per time. Other notifications can consume their events
367 immediately, so queue is not needed for them. */
368 std::vector<stop_reply_up> stop_reply_queue;
369
370 /* Asynchronous signal handle registered as event loop source for
371 when we have pending events ready to be passed to the core. */
372 struct async_event_handler *remote_async_inferior_event_token = nullptr;
373
374 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
375 ``forever'' still use the normal timeout mechanism. This is
376 currently used by the ASYNC code to guarentee that target reads
377 during the initial connect always time-out. Once getpkt has been
378 modified to return a timeout indication and, in turn
379 remote_wait()/wait_for_inferior() have gained a timeout parameter
380 this can go away. */
381 int wait_forever_enabled_p = 1;
382
383 private:
384 /* Mapping of remote protocol data for each gdbarch. Usually there
385 is only one entry here, though we may see more with stubs that
386 support multi-process. */
387 std::unordered_map<struct gdbarch *, remote_arch_state>
388 m_arch_states;
389 };
390
391 static const target_info remote_target_info = {
392 "remote",
393 N_("Remote serial target in gdb-specific protocol"),
394 remote_doc
395 };
396
397 class remote_target : public process_stratum_target
398 {
399 public:
400 remote_target () = default;
401 ~remote_target () override;
402
403 const target_info &info () const override
404 { return remote_target_info; }
405
406 thread_control_capabilities get_thread_control_capabilities () override
407 { return tc_schedlock; }
408
409 /* Open a remote connection. */
410 static void open (const char *, int);
411
412 void close () override;
413
414 void detach (inferior *, int) override;
415 void disconnect (const char *, int) override;
416
417 void commit_resume () override;
418 void resume (ptid_t, int, enum gdb_signal) override;
419 ptid_t wait (ptid_t, struct target_waitstatus *, int) override;
420
421 void fetch_registers (struct regcache *, int) override;
422 void store_registers (struct regcache *, int) override;
423 void prepare_to_store (struct regcache *) override;
424
425 void files_info () override;
426
427 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
428
429 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
430 enum remove_bp_reason) override;
431
432
433 bool stopped_by_sw_breakpoint () override;
434 bool supports_stopped_by_sw_breakpoint () override;
435
436 bool stopped_by_hw_breakpoint () override;
437
438 bool supports_stopped_by_hw_breakpoint () override;
439
440 bool stopped_by_watchpoint () override;
441
442 bool stopped_data_address (CORE_ADDR *) override;
443
444 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
445
446 int can_use_hw_breakpoint (enum bptype, int, int) override;
447
448 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
449
450 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
451
452 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
453
454 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
455 struct expression *) override;
456
457 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
458 struct expression *) override;
459
460 void kill () override;
461
462 void load (const char *, int) override;
463
464 void mourn_inferior () override;
465
466 void pass_signals (gdb::array_view<const unsigned char>) override;
467
468 int set_syscall_catchpoint (int, bool, int,
469 gdb::array_view<const int>) override;
470
471 void program_signals (gdb::array_view<const unsigned char>) override;
472
473 bool thread_alive (ptid_t ptid) override;
474
475 const char *thread_name (struct thread_info *) override;
476
477 void update_thread_list () override;
478
479 std::string pid_to_str (ptid_t) override;
480
481 const char *extra_thread_info (struct thread_info *) override;
482
483 ptid_t get_ada_task_ptid (long lwp, long thread) override;
484
485 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
486 int handle_len,
487 inferior *inf) override;
488
489 gdb::byte_vector thread_info_to_thread_handle (struct thread_info *tp)
490 override;
491
492 void stop (ptid_t) override;
493
494 void interrupt () override;
495
496 void pass_ctrlc () override;
497
498 enum target_xfer_status xfer_partial (enum target_object object,
499 const char *annex,
500 gdb_byte *readbuf,
501 const gdb_byte *writebuf,
502 ULONGEST offset, ULONGEST len,
503 ULONGEST *xfered_len) override;
504
505 ULONGEST get_memory_xfer_limit () override;
506
507 void rcmd (const char *command, struct ui_file *output) override;
508
509 char *pid_to_exec_file (int pid) override;
510
511 void log_command (const char *cmd) override
512 {
513 serial_log_command (this, cmd);
514 }
515
516 CORE_ADDR get_thread_local_address (ptid_t ptid,
517 CORE_ADDR load_module_addr,
518 CORE_ADDR offset) override;
519
520 bool can_execute_reverse () override;
521
522 std::vector<mem_region> memory_map () override;
523
524 void flash_erase (ULONGEST address, LONGEST length) override;
525
526 void flash_done () override;
527
528 const struct target_desc *read_description () override;
529
530 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
531 const gdb_byte *pattern, ULONGEST pattern_len,
532 CORE_ADDR *found_addrp) override;
533
534 bool can_async_p () override;
535
536 bool is_async_p () override;
537
538 void async (int) override;
539
540 void thread_events (int) override;
541
542 int can_do_single_step () override;
543
544 void terminal_inferior () override;
545
546 void terminal_ours () override;
547
548 bool supports_non_stop () override;
549
550 bool supports_multi_process () override;
551
552 bool supports_disable_randomization () override;
553
554 bool filesystem_is_local () override;
555
556
557 int fileio_open (struct inferior *inf, const char *filename,
558 int flags, int mode, int warn_if_slow,
559 int *target_errno) override;
560
561 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
562 ULONGEST offset, int *target_errno) override;
563
564 int fileio_pread (int fd, gdb_byte *read_buf, int len,
565 ULONGEST offset, int *target_errno) override;
566
567 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
568
569 int fileio_close (int fd, int *target_errno) override;
570
571 int fileio_unlink (struct inferior *inf,
572 const char *filename,
573 int *target_errno) override;
574
575 gdb::optional<std::string>
576 fileio_readlink (struct inferior *inf,
577 const char *filename,
578 int *target_errno) override;
579
580 bool supports_enable_disable_tracepoint () override;
581
582 bool supports_string_tracing () override;
583
584 bool supports_evaluation_of_breakpoint_conditions () override;
585
586 bool can_run_breakpoint_commands () override;
587
588 void trace_init () override;
589
590 void download_tracepoint (struct bp_location *location) override;
591
592 bool can_download_tracepoint () override;
593
594 void download_trace_state_variable (const trace_state_variable &tsv) override;
595
596 void enable_tracepoint (struct bp_location *location) override;
597
598 void disable_tracepoint (struct bp_location *location) override;
599
600 void trace_set_readonly_regions () override;
601
602 void trace_start () override;
603
604 int get_trace_status (struct trace_status *ts) override;
605
606 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
607 override;
608
609 void trace_stop () override;
610
611 int trace_find (enum trace_find_type type, int num,
612 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
613
614 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
615
616 int save_trace_data (const char *filename) override;
617
618 int upload_tracepoints (struct uploaded_tp **utpp) override;
619
620 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
621
622 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
623
624 int get_min_fast_tracepoint_insn_len () override;
625
626 void set_disconnected_tracing (int val) override;
627
628 void set_circular_trace_buffer (int val) override;
629
630 void set_trace_buffer_size (LONGEST val) override;
631
632 bool set_trace_notes (const char *user, const char *notes,
633 const char *stopnotes) override;
634
635 int core_of_thread (ptid_t ptid) override;
636
637 int verify_memory (const gdb_byte *data,
638 CORE_ADDR memaddr, ULONGEST size) override;
639
640
641 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
642
643 void set_permissions () override;
644
645 bool static_tracepoint_marker_at (CORE_ADDR,
646 struct static_tracepoint_marker *marker)
647 override;
648
649 std::vector<static_tracepoint_marker>
650 static_tracepoint_markers_by_strid (const char *id) override;
651
652 traceframe_info_up traceframe_info () override;
653
654 bool use_agent (bool use) override;
655 bool can_use_agent () override;
656
657 struct btrace_target_info *enable_btrace (ptid_t ptid,
658 const struct btrace_config *conf) override;
659
660 void disable_btrace (struct btrace_target_info *tinfo) override;
661
662 void teardown_btrace (struct btrace_target_info *tinfo) override;
663
664 enum btrace_error read_btrace (struct btrace_data *data,
665 struct btrace_target_info *btinfo,
666 enum btrace_read_type type) override;
667
668 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
669 bool augmented_libraries_svr4_read () override;
670 int follow_fork (int, int) override;
671 void follow_exec (struct inferior *, const char *) override;
672 int insert_fork_catchpoint (int) override;
673 int remove_fork_catchpoint (int) override;
674 int insert_vfork_catchpoint (int) override;
675 int remove_vfork_catchpoint (int) override;
676 int insert_exec_catchpoint (int) override;
677 int remove_exec_catchpoint (int) override;
678 enum exec_direction_kind execution_direction () override;
679
680 public: /* Remote specific methods. */
681
682 void remote_download_command_source (int num, ULONGEST addr,
683 struct command_line *cmds);
684
685 void remote_file_put (const char *local_file, const char *remote_file,
686 int from_tty);
687 void remote_file_get (const char *remote_file, const char *local_file,
688 int from_tty);
689 void remote_file_delete (const char *remote_file, int from_tty);
690
691 int remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
692 ULONGEST offset, int *remote_errno);
693 int remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
694 ULONGEST offset, int *remote_errno);
695 int remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
696 ULONGEST offset, int *remote_errno);
697
698 int remote_hostio_send_command (int command_bytes, int which_packet,
699 int *remote_errno, char **attachment,
700 int *attachment_len);
701 int remote_hostio_set_filesystem (struct inferior *inf,
702 int *remote_errno);
703 /* We should get rid of this and use fileio_open directly. */
704 int remote_hostio_open (struct inferior *inf, const char *filename,
705 int flags, int mode, int warn_if_slow,
706 int *remote_errno);
707 int remote_hostio_close (int fd, int *remote_errno);
708
709 int remote_hostio_unlink (inferior *inf, const char *filename,
710 int *remote_errno);
711
712 struct remote_state *get_remote_state ();
713
714 long get_remote_packet_size (void);
715 long get_memory_packet_size (struct memory_packet_config *config);
716
717 long get_memory_write_packet_size ();
718 long get_memory_read_packet_size ();
719
720 char *append_pending_thread_resumptions (char *p, char *endp,
721 ptid_t ptid);
722 static void open_1 (const char *name, int from_tty, int extended_p);
723 void start_remote (int from_tty, int extended_p);
724 void remote_detach_1 (struct inferior *inf, int from_tty);
725
726 char *append_resumption (char *p, char *endp,
727 ptid_t ptid, int step, gdb_signal siggnal);
728 int remote_resume_with_vcont (ptid_t ptid, int step,
729 gdb_signal siggnal);
730
731 void add_current_inferior_and_thread (char *wait_status);
732
733 ptid_t wait_ns (ptid_t ptid, struct target_waitstatus *status,
734 int options);
735 ptid_t wait_as (ptid_t ptid, target_waitstatus *status,
736 int options);
737
738 ptid_t process_stop_reply (struct stop_reply *stop_reply,
739 target_waitstatus *status);
740
741 void remote_notice_new_inferior (ptid_t currthread, int executing);
742
743 void process_initial_stop_replies (int from_tty);
744
745 thread_info *remote_add_thread (ptid_t ptid, bool running, bool executing);
746
747 void btrace_sync_conf (const btrace_config *conf);
748
749 void remote_btrace_maybe_reopen ();
750
751 void remove_new_fork_children (threads_listing_context *context);
752 void kill_new_fork_children (int pid);
753 void discard_pending_stop_replies (struct inferior *inf);
754 int stop_reply_queue_length ();
755
756 void check_pending_events_prevent_wildcard_vcont
757 (int *may_global_wildcard_vcont);
758
759 void discard_pending_stop_replies_in_queue ();
760 struct stop_reply *remote_notif_remove_queued_reply (ptid_t ptid);
761 struct stop_reply *queued_stop_reply (ptid_t ptid);
762 int peek_stop_reply (ptid_t ptid);
763 void remote_parse_stop_reply (const char *buf, stop_reply *event);
764
765 void remote_stop_ns (ptid_t ptid);
766 void remote_interrupt_as ();
767 void remote_interrupt_ns ();
768
769 char *remote_get_noisy_reply ();
770 int remote_query_attached (int pid);
771 inferior *remote_add_inferior (bool fake_pid_p, int pid, int attached,
772 int try_open_exec);
773
774 ptid_t remote_current_thread (ptid_t oldpid);
775 ptid_t get_current_thread (char *wait_status);
776
777 void set_thread (ptid_t ptid, int gen);
778 void set_general_thread (ptid_t ptid);
779 void set_continue_thread (ptid_t ptid);
780 void set_general_process ();
781
782 char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
783
784 int remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
785 gdb_ext_thread_info *info);
786 int remote_get_threadinfo (threadref *threadid, int fieldset,
787 gdb_ext_thread_info *info);
788
789 int parse_threadlist_response (char *pkt, int result_limit,
790 threadref *original_echo,
791 threadref *resultlist,
792 int *doneflag);
793 int remote_get_threadlist (int startflag, threadref *nextthread,
794 int result_limit, int *done, int *result_count,
795 threadref *threadlist);
796
797 int remote_threadlist_iterator (rmt_thread_action stepfunction,
798 void *context, int looplimit);
799
800 int remote_get_threads_with_ql (threads_listing_context *context);
801 int remote_get_threads_with_qxfer (threads_listing_context *context);
802 int remote_get_threads_with_qthreadinfo (threads_listing_context *context);
803
804 void extended_remote_restart ();
805
806 void get_offsets ();
807
808 void remote_check_symbols ();
809
810 void remote_supported_packet (const struct protocol_feature *feature,
811 enum packet_support support,
812 const char *argument);
813
814 void remote_query_supported ();
815
816 void remote_packet_size (const protocol_feature *feature,
817 packet_support support, const char *value);
818
819 void remote_serial_quit_handler ();
820
821 void remote_detach_pid (int pid);
822
823 void remote_vcont_probe ();
824
825 void remote_resume_with_hc (ptid_t ptid, int step,
826 gdb_signal siggnal);
827
828 void send_interrupt_sequence ();
829 void interrupt_query ();
830
831 void remote_notif_get_pending_events (notif_client *nc);
832
833 int fetch_register_using_p (struct regcache *regcache,
834 packet_reg *reg);
835 int send_g_packet ();
836 void process_g_packet (struct regcache *regcache);
837 void fetch_registers_using_g (struct regcache *regcache);
838 int store_register_using_P (const struct regcache *regcache,
839 packet_reg *reg);
840 void store_registers_using_G (const struct regcache *regcache);
841
842 void set_remote_traceframe ();
843
844 void check_binary_download (CORE_ADDR addr);
845
846 target_xfer_status remote_write_bytes_aux (const char *header,
847 CORE_ADDR memaddr,
848 const gdb_byte *myaddr,
849 ULONGEST len_units,
850 int unit_size,
851 ULONGEST *xfered_len_units,
852 char packet_format,
853 int use_length);
854
855 target_xfer_status remote_write_bytes (CORE_ADDR memaddr,
856 const gdb_byte *myaddr, ULONGEST len,
857 int unit_size, ULONGEST *xfered_len);
858
859 target_xfer_status remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
860 ULONGEST len_units,
861 int unit_size, ULONGEST *xfered_len_units);
862
863 target_xfer_status remote_xfer_live_readonly_partial (gdb_byte *readbuf,
864 ULONGEST memaddr,
865 ULONGEST len,
866 int unit_size,
867 ULONGEST *xfered_len);
868
869 target_xfer_status remote_read_bytes (CORE_ADDR memaddr,
870 gdb_byte *myaddr, ULONGEST len,
871 int unit_size,
872 ULONGEST *xfered_len);
873
874 packet_result remote_send_printf (const char *format, ...)
875 ATTRIBUTE_PRINTF (2, 3);
876
877 target_xfer_status remote_flash_write (ULONGEST address,
878 ULONGEST length, ULONGEST *xfered_len,
879 const gdb_byte *data);
880
881 int readchar (int timeout);
882
883 void remote_serial_write (const char *str, int len);
884
885 int putpkt (const char *buf);
886 int putpkt_binary (const char *buf, int cnt);
887
888 int putpkt (const gdb::char_vector &buf)
889 {
890 return putpkt (buf.data ());
891 }
892
893 void skip_frame ();
894 long read_frame (gdb::char_vector *buf_p);
895 void getpkt (gdb::char_vector *buf, int forever);
896 int getpkt_or_notif_sane_1 (gdb::char_vector *buf, int forever,
897 int expecting_notif, int *is_notif);
898 int getpkt_sane (gdb::char_vector *buf, int forever);
899 int getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
900 int *is_notif);
901 int remote_vkill (int pid);
902 void remote_kill_k ();
903
904 void extended_remote_disable_randomization (int val);
905 int extended_remote_run (const std::string &args);
906
907 void send_environment_packet (const char *action,
908 const char *packet,
909 const char *value);
910
911 void extended_remote_environment_support ();
912 void extended_remote_set_inferior_cwd ();
913
914 target_xfer_status remote_write_qxfer (const char *object_name,
915 const char *annex,
916 const gdb_byte *writebuf,
917 ULONGEST offset, LONGEST len,
918 ULONGEST *xfered_len,
919 struct packet_config *packet);
920
921 target_xfer_status remote_read_qxfer (const char *object_name,
922 const char *annex,
923 gdb_byte *readbuf, ULONGEST offset,
924 LONGEST len,
925 ULONGEST *xfered_len,
926 struct packet_config *packet);
927
928 void push_stop_reply (struct stop_reply *new_event);
929
930 bool vcont_r_supported ();
931
932 void packet_command (const char *args, int from_tty);
933
934 private: /* data fields */
935
936 /* The remote state. Don't reference this directly. Use the
937 get_remote_state method instead. */
938 remote_state m_remote_state;
939 };
940
941 static const target_info extended_remote_target_info = {
942 "extended-remote",
943 N_("Extended remote serial target in gdb-specific protocol"),
944 remote_doc
945 };
946
947 /* Set up the extended remote target by extending the standard remote
948 target and adding to it. */
949
950 class extended_remote_target final : public remote_target
951 {
952 public:
953 const target_info &info () const override
954 { return extended_remote_target_info; }
955
956 /* Open an extended-remote connection. */
957 static void open (const char *, int);
958
959 bool can_create_inferior () override { return true; }
960 void create_inferior (const char *, const std::string &,
961 char **, int) override;
962
963 void detach (inferior *, int) override;
964
965 bool can_attach () override { return true; }
966 void attach (const char *, int) override;
967
968 void post_attach (int) override;
969 bool supports_disable_randomization () override;
970 };
971
972 /* Per-program-space data key. */
973 static const struct program_space_key<char, gdb::xfree_deleter<char>>
974 remote_pspace_data;
975
976 /* The variable registered as the control variable used by the
977 remote exec-file commands. While the remote exec-file setting is
978 per-program-space, the set/show machinery uses this as the
979 location of the remote exec-file value. */
980 static char *remote_exec_file_var;
981
982 /* The size to align memory write packets, when practical. The protocol
983 does not guarantee any alignment, and gdb will generate short
984 writes and unaligned writes, but even as a best-effort attempt this
985 can improve bulk transfers. For instance, if a write is misaligned
986 relative to the target's data bus, the stub may need to make an extra
987 round trip fetching data from the target. This doesn't make a
988 huge difference, but it's easy to do, so we try to be helpful.
989
990 The alignment chosen is arbitrary; usually data bus width is
991 important here, not the possibly larger cache line size. */
992 enum { REMOTE_ALIGN_WRITES = 16 };
993
994 /* Prototypes for local functions. */
995
996 static int hexnumlen (ULONGEST num);
997
998 static int stubhex (int ch);
999
1000 static int hexnumstr (char *, ULONGEST);
1001
1002 static int hexnumnstr (char *, ULONGEST, int);
1003
1004 static CORE_ADDR remote_address_masked (CORE_ADDR);
1005
1006 static void print_packet (const char *);
1007
1008 static int stub_unpack_int (char *buff, int fieldlength);
1009
1010 struct packet_config;
1011
1012 static void show_packet_config_cmd (struct packet_config *config);
1013
1014 static void show_remote_protocol_packet_cmd (struct ui_file *file,
1015 int from_tty,
1016 struct cmd_list_element *c,
1017 const char *value);
1018
1019 static ptid_t read_ptid (const char *buf, const char **obuf);
1020
1021 static void remote_async_inferior_event_handler (gdb_client_data);
1022
1023 static bool remote_read_description_p (struct target_ops *target);
1024
1025 static void remote_console_output (const char *msg);
1026
1027 static void remote_btrace_reset (remote_state *rs);
1028
1029 static void remote_unpush_and_throw (void);
1030
1031 /* For "remote". */
1032
1033 static struct cmd_list_element *remote_cmdlist;
1034
1035 /* For "set remote" and "show remote". */
1036
1037 static struct cmd_list_element *remote_set_cmdlist;
1038 static struct cmd_list_element *remote_show_cmdlist;
1039
1040 /* Controls whether GDB is willing to use range stepping. */
1041
1042 static bool use_range_stepping = true;
1043
1044 /* Private data that we'll store in (struct thread_info)->priv. */
1045 struct remote_thread_info : public private_thread_info
1046 {
1047 std::string extra;
1048 std::string name;
1049 int core = -1;
1050
1051 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
1052 sequence of bytes. */
1053 gdb::byte_vector thread_handle;
1054
1055 /* Whether the target stopped for a breakpoint/watchpoint. */
1056 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
1057
1058 /* This is set to the data address of the access causing the target
1059 to stop for a watchpoint. */
1060 CORE_ADDR watch_data_address = 0;
1061
1062 /* Fields used by the vCont action coalescing implemented in
1063 remote_resume / remote_commit_resume. remote_resume stores each
1064 thread's last resume request in these fields, so that a later
1065 remote_commit_resume knows which is the proper action for this
1066 thread to include in the vCont packet. */
1067
1068 /* True if the last target_resume call for this thread was a step
1069 request, false if a continue request. */
1070 int last_resume_step = 0;
1071
1072 /* The signal specified in the last target_resume call for this
1073 thread. */
1074 gdb_signal last_resume_sig = GDB_SIGNAL_0;
1075
1076 /* Whether this thread was already vCont-resumed on the remote
1077 side. */
1078 int vcont_resumed = 0;
1079 };
1080
1081 remote_state::remote_state ()
1082 : buf (400)
1083 {
1084 }
1085
1086 remote_state::~remote_state ()
1087 {
1088 xfree (this->last_pass_packet);
1089 xfree (this->last_program_signals_packet);
1090 xfree (this->finished_object);
1091 xfree (this->finished_annex);
1092 }
1093
1094 /* Utility: generate error from an incoming stub packet. */
1095 static void
1096 trace_error (char *buf)
1097 {
1098 if (*buf++ != 'E')
1099 return; /* not an error msg */
1100 switch (*buf)
1101 {
1102 case '1': /* malformed packet error */
1103 if (*++buf == '0') /* general case: */
1104 error (_("remote.c: error in outgoing packet."));
1105 else
1106 error (_("remote.c: error in outgoing packet at field #%ld."),
1107 strtol (buf, NULL, 16));
1108 default:
1109 error (_("Target returns error code '%s'."), buf);
1110 }
1111 }
1112
1113 /* Utility: wait for reply from stub, while accepting "O" packets. */
1114
1115 char *
1116 remote_target::remote_get_noisy_reply ()
1117 {
1118 struct remote_state *rs = get_remote_state ();
1119
1120 do /* Loop on reply from remote stub. */
1121 {
1122 char *buf;
1123
1124 QUIT; /* Allow user to bail out with ^C. */
1125 getpkt (&rs->buf, 0);
1126 buf = rs->buf.data ();
1127 if (buf[0] == 'E')
1128 trace_error (buf);
1129 else if (startswith (buf, "qRelocInsn:"))
1130 {
1131 ULONGEST ul;
1132 CORE_ADDR from, to, org_to;
1133 const char *p, *pp;
1134 int adjusted_size = 0;
1135 int relocated = 0;
1136
1137 p = buf + strlen ("qRelocInsn:");
1138 pp = unpack_varlen_hex (p, &ul);
1139 if (*pp != ';')
1140 error (_("invalid qRelocInsn packet: %s"), buf);
1141 from = ul;
1142
1143 p = pp + 1;
1144 unpack_varlen_hex (p, &ul);
1145 to = ul;
1146
1147 org_to = to;
1148
1149 try
1150 {
1151 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
1152 relocated = 1;
1153 }
1154 catch (const gdb_exception &ex)
1155 {
1156 if (ex.error == MEMORY_ERROR)
1157 {
1158 /* Propagate memory errors silently back to the
1159 target. The stub may have limited the range of
1160 addresses we can write to, for example. */
1161 }
1162 else
1163 {
1164 /* Something unexpectedly bad happened. Be verbose
1165 so we can tell what, and propagate the error back
1166 to the stub, so it doesn't get stuck waiting for
1167 a response. */
1168 exception_fprintf (gdb_stderr, ex,
1169 _("warning: relocating instruction: "));
1170 }
1171 putpkt ("E01");
1172 }
1173
1174 if (relocated)
1175 {
1176 adjusted_size = to - org_to;
1177
1178 xsnprintf (buf, rs->buf.size (), "qRelocInsn:%x", adjusted_size);
1179 putpkt (buf);
1180 }
1181 }
1182 else if (buf[0] == 'O' && buf[1] != 'K')
1183 remote_console_output (buf + 1); /* 'O' message from stub */
1184 else
1185 return buf; /* Here's the actual reply. */
1186 }
1187 while (1);
1188 }
1189
1190 struct remote_arch_state *
1191 remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
1192 {
1193 remote_arch_state *rsa;
1194
1195 auto it = this->m_arch_states.find (gdbarch);
1196 if (it == this->m_arch_states.end ())
1197 {
1198 auto p = this->m_arch_states.emplace (std::piecewise_construct,
1199 std::forward_as_tuple (gdbarch),
1200 std::forward_as_tuple (gdbarch));
1201 rsa = &p.first->second;
1202
1203 /* Make sure that the packet buffer is plenty big enough for
1204 this architecture. */
1205 if (this->buf.size () < rsa->remote_packet_size)
1206 this->buf.resize (2 * rsa->remote_packet_size);
1207 }
1208 else
1209 rsa = &it->second;
1210
1211 return rsa;
1212 }
1213
1214 /* Fetch the global remote target state. */
1215
1216 remote_state *
1217 remote_target::get_remote_state ()
1218 {
1219 /* Make sure that the remote architecture state has been
1220 initialized, because doing so might reallocate rs->buf. Any
1221 function which calls getpkt also needs to be mindful of changes
1222 to rs->buf, but this call limits the number of places which run
1223 into trouble. */
1224 m_remote_state.get_remote_arch_state (target_gdbarch ());
1225
1226 return &m_remote_state;
1227 }
1228
1229 /* Fetch the remote exec-file from the current program space. */
1230
1231 static const char *
1232 get_remote_exec_file (void)
1233 {
1234 char *remote_exec_file;
1235
1236 remote_exec_file = remote_pspace_data.get (current_program_space);
1237 if (remote_exec_file == NULL)
1238 return "";
1239
1240 return remote_exec_file;
1241 }
1242
1243 /* Set the remote exec file for PSPACE. */
1244
1245 static void
1246 set_pspace_remote_exec_file (struct program_space *pspace,
1247 const char *remote_exec_file)
1248 {
1249 char *old_file = remote_pspace_data.get (pspace);
1250
1251 xfree (old_file);
1252 remote_pspace_data.set (pspace, xstrdup (remote_exec_file));
1253 }
1254
1255 /* The "set/show remote exec-file" set command hook. */
1256
1257 static void
1258 set_remote_exec_file (const char *ignored, int from_tty,
1259 struct cmd_list_element *c)
1260 {
1261 gdb_assert (remote_exec_file_var != NULL);
1262 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
1263 }
1264
1265 /* The "set/show remote exec-file" show command hook. */
1266
1267 static void
1268 show_remote_exec_file (struct ui_file *file, int from_tty,
1269 struct cmd_list_element *cmd, const char *value)
1270 {
1271 fprintf_filtered (file, "%s\n", get_remote_exec_file ());
1272 }
1273
1274 static int
1275 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1276 {
1277 int regnum, num_remote_regs, offset;
1278 struct packet_reg **remote_regs;
1279
1280 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1281 {
1282 struct packet_reg *r = &regs[regnum];
1283
1284 if (register_size (gdbarch, regnum) == 0)
1285 /* Do not try to fetch zero-sized (placeholder) registers. */
1286 r->pnum = -1;
1287 else
1288 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1289
1290 r->regnum = regnum;
1291 }
1292
1293 /* Define the g/G packet format as the contents of each register
1294 with a remote protocol number, in order of ascending protocol
1295 number. */
1296
1297 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1298 for (num_remote_regs = 0, regnum = 0;
1299 regnum < gdbarch_num_regs (gdbarch);
1300 regnum++)
1301 if (regs[regnum].pnum != -1)
1302 remote_regs[num_remote_regs++] = &regs[regnum];
1303
1304 std::sort (remote_regs, remote_regs + num_remote_regs,
1305 [] (const packet_reg *a, const packet_reg *b)
1306 { return a->pnum < b->pnum; });
1307
1308 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1309 {
1310 remote_regs[regnum]->in_g_packet = 1;
1311 remote_regs[regnum]->offset = offset;
1312 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1313 }
1314
1315 return offset;
1316 }
1317
1318 /* Given the architecture described by GDBARCH, return the remote
1319 protocol register's number and the register's offset in the g/G
1320 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1321 If the target does not have a mapping for REGNUM, return false,
1322 otherwise, return true. */
1323
1324 int
1325 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1326 int *pnum, int *poffset)
1327 {
1328 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1329
1330 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1331
1332 map_regcache_remote_table (gdbarch, regs.data ());
1333
1334 *pnum = regs[regnum].pnum;
1335 *poffset = regs[regnum].offset;
1336
1337 return *pnum != -1;
1338 }
1339
1340 remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1341 {
1342 /* Use the architecture to build a regnum<->pnum table, which will be
1343 1:1 unless a feature set specifies otherwise. */
1344 this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1345
1346 /* Record the maximum possible size of the g packet - it may turn out
1347 to be smaller. */
1348 this->sizeof_g_packet
1349 = map_regcache_remote_table (gdbarch, this->regs.get ());
1350
1351 /* Default maximum number of characters in a packet body. Many
1352 remote stubs have a hardwired buffer size of 400 bytes
1353 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1354 as the maximum packet-size to ensure that the packet and an extra
1355 NUL character can always fit in the buffer. This stops GDB
1356 trashing stubs that try to squeeze an extra NUL into what is
1357 already a full buffer (As of 1999-12-04 that was most stubs). */
1358 this->remote_packet_size = 400 - 1;
1359
1360 /* This one is filled in when a ``g'' packet is received. */
1361 this->actual_register_packet_size = 0;
1362
1363 /* Should rsa->sizeof_g_packet needs more space than the
1364 default, adjust the size accordingly. Remember that each byte is
1365 encoded as two characters. 32 is the overhead for the packet
1366 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1367 (``$NN:G...#NN'') is a better guess, the below has been padded a
1368 little. */
1369 if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1370 this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1371 }
1372
1373 /* Get a pointer to the current remote target. If not connected to a
1374 remote target, return NULL. */
1375
1376 static remote_target *
1377 get_current_remote_target ()
1378 {
1379 target_ops *proc_target = find_target_at (process_stratum);
1380 return dynamic_cast<remote_target *> (proc_target);
1381 }
1382
1383 /* Return the current allowed size of a remote packet. This is
1384 inferred from the current architecture, and should be used to
1385 limit the length of outgoing packets. */
1386 long
1387 remote_target::get_remote_packet_size ()
1388 {
1389 struct remote_state *rs = get_remote_state ();
1390 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1391
1392 if (rs->explicit_packet_size)
1393 return rs->explicit_packet_size;
1394
1395 return rsa->remote_packet_size;
1396 }
1397
1398 static struct packet_reg *
1399 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1400 long regnum)
1401 {
1402 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1403 return NULL;
1404 else
1405 {
1406 struct packet_reg *r = &rsa->regs[regnum];
1407
1408 gdb_assert (r->regnum == regnum);
1409 return r;
1410 }
1411 }
1412
1413 static struct packet_reg *
1414 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1415 LONGEST pnum)
1416 {
1417 int i;
1418
1419 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1420 {
1421 struct packet_reg *r = &rsa->regs[i];
1422
1423 if (r->pnum == pnum)
1424 return r;
1425 }
1426 return NULL;
1427 }
1428
1429 /* Allow the user to specify what sequence to send to the remote
1430 when he requests a program interruption: Although ^C is usually
1431 what remote systems expect (this is the default, here), it is
1432 sometimes preferable to send a break. On other systems such
1433 as the Linux kernel, a break followed by g, which is Magic SysRq g
1434 is required in order to interrupt the execution. */
1435 const char interrupt_sequence_control_c[] = "Ctrl-C";
1436 const char interrupt_sequence_break[] = "BREAK";
1437 const char interrupt_sequence_break_g[] = "BREAK-g";
1438 static const char *const interrupt_sequence_modes[] =
1439 {
1440 interrupt_sequence_control_c,
1441 interrupt_sequence_break,
1442 interrupt_sequence_break_g,
1443 NULL
1444 };
1445 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1446
1447 static void
1448 show_interrupt_sequence (struct ui_file *file, int from_tty,
1449 struct cmd_list_element *c,
1450 const char *value)
1451 {
1452 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1453 fprintf_filtered (file,
1454 _("Send the ASCII ETX character (Ctrl-c) "
1455 "to the remote target to interrupt the "
1456 "execution of the program.\n"));
1457 else if (interrupt_sequence_mode == interrupt_sequence_break)
1458 fprintf_filtered (file,
1459 _("send a break signal to the remote target "
1460 "to interrupt the execution of the program.\n"));
1461 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1462 fprintf_filtered (file,
1463 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1464 "the remote target to interrupt the execution "
1465 "of Linux kernel.\n"));
1466 else
1467 internal_error (__FILE__, __LINE__,
1468 _("Invalid value for interrupt_sequence_mode: %s."),
1469 interrupt_sequence_mode);
1470 }
1471
1472 /* This boolean variable specifies whether interrupt_sequence is sent
1473 to the remote target when gdb connects to it.
1474 This is mostly needed when you debug the Linux kernel: The Linux kernel
1475 expects BREAK g which is Magic SysRq g for connecting gdb. */
1476 static bool interrupt_on_connect = false;
1477
1478 /* This variable is used to implement the "set/show remotebreak" commands.
1479 Since these commands are now deprecated in favor of "set/show remote
1480 interrupt-sequence", it no longer has any effect on the code. */
1481 static bool remote_break;
1482
1483 static void
1484 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1485 {
1486 if (remote_break)
1487 interrupt_sequence_mode = interrupt_sequence_break;
1488 else
1489 interrupt_sequence_mode = interrupt_sequence_control_c;
1490 }
1491
1492 static void
1493 show_remotebreak (struct ui_file *file, int from_tty,
1494 struct cmd_list_element *c,
1495 const char *value)
1496 {
1497 }
1498
1499 /* This variable sets the number of bits in an address that are to be
1500 sent in a memory ("M" or "m") packet. Normally, after stripping
1501 leading zeros, the entire address would be sent. This variable
1502 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1503 initial implementation of remote.c restricted the address sent in
1504 memory packets to ``host::sizeof long'' bytes - (typically 32
1505 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1506 address was never sent. Since fixing this bug may cause a break in
1507 some remote targets this variable is principally provided to
1508 facilitate backward compatibility. */
1509
1510 static unsigned int remote_address_size;
1511
1512 \f
1513 /* User configurable variables for the number of characters in a
1514 memory read/write packet. MIN (rsa->remote_packet_size,
1515 rsa->sizeof_g_packet) is the default. Some targets need smaller
1516 values (fifo overruns, et.al.) and some users need larger values
1517 (speed up transfers). The variables ``preferred_*'' (the user
1518 request), ``current_*'' (what was actually set) and ``forced_*''
1519 (Positive - a soft limit, negative - a hard limit). */
1520
1521 struct memory_packet_config
1522 {
1523 const char *name;
1524 long size;
1525 int fixed_p;
1526 };
1527
1528 /* The default max memory-write-packet-size, when the setting is
1529 "fixed". The 16k is historical. (It came from older GDB's using
1530 alloca for buffers and the knowledge (folklore?) that some hosts
1531 don't cope very well with large alloca calls.) */
1532 #define DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED 16384
1533
1534 /* The minimum remote packet size for memory transfers. Ensures we
1535 can write at least one byte. */
1536 #define MIN_MEMORY_PACKET_SIZE 20
1537
1538 /* Get the memory packet size, assuming it is fixed. */
1539
1540 static long
1541 get_fixed_memory_packet_size (struct memory_packet_config *config)
1542 {
1543 gdb_assert (config->fixed_p);
1544
1545 if (config->size <= 0)
1546 return DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED;
1547 else
1548 return config->size;
1549 }
1550
1551 /* Compute the current size of a read/write packet. Since this makes
1552 use of ``actual_register_packet_size'' the computation is dynamic. */
1553
1554 long
1555 remote_target::get_memory_packet_size (struct memory_packet_config *config)
1556 {
1557 struct remote_state *rs = get_remote_state ();
1558 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1559
1560 long what_they_get;
1561 if (config->fixed_p)
1562 what_they_get = get_fixed_memory_packet_size (config);
1563 else
1564 {
1565 what_they_get = get_remote_packet_size ();
1566 /* Limit the packet to the size specified by the user. */
1567 if (config->size > 0
1568 && what_they_get > config->size)
1569 what_they_get = config->size;
1570
1571 /* Limit it to the size of the targets ``g'' response unless we have
1572 permission from the stub to use a larger packet size. */
1573 if (rs->explicit_packet_size == 0
1574 && rsa->actual_register_packet_size > 0
1575 && what_they_get > rsa->actual_register_packet_size)
1576 what_they_get = rsa->actual_register_packet_size;
1577 }
1578 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1579 what_they_get = MIN_MEMORY_PACKET_SIZE;
1580
1581 /* Make sure there is room in the global buffer for this packet
1582 (including its trailing NUL byte). */
1583 if (rs->buf.size () < what_they_get + 1)
1584 rs->buf.resize (2 * what_they_get);
1585
1586 return what_they_get;
1587 }
1588
1589 /* Update the size of a read/write packet. If they user wants
1590 something really big then do a sanity check. */
1591
1592 static void
1593 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1594 {
1595 int fixed_p = config->fixed_p;
1596 long size = config->size;
1597
1598 if (args == NULL)
1599 error (_("Argument required (integer, `fixed' or `limited')."));
1600 else if (strcmp (args, "hard") == 0
1601 || strcmp (args, "fixed") == 0)
1602 fixed_p = 1;
1603 else if (strcmp (args, "soft") == 0
1604 || strcmp (args, "limit") == 0)
1605 fixed_p = 0;
1606 else
1607 {
1608 char *end;
1609
1610 size = strtoul (args, &end, 0);
1611 if (args == end)
1612 error (_("Invalid %s (bad syntax)."), config->name);
1613
1614 /* Instead of explicitly capping the size of a packet to or
1615 disallowing it, the user is allowed to set the size to
1616 something arbitrarily large. */
1617 }
1618
1619 /* Extra checks? */
1620 if (fixed_p && !config->fixed_p)
1621 {
1622 /* So that the query shows the correct value. */
1623 long query_size = (size <= 0
1624 ? DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED
1625 : size);
1626
1627 if (! query (_("The target may not be able to correctly handle a %s\n"
1628 "of %ld bytes. Change the packet size? "),
1629 config->name, query_size))
1630 error (_("Packet size not changed."));
1631 }
1632 /* Update the config. */
1633 config->fixed_p = fixed_p;
1634 config->size = size;
1635 }
1636
1637 static void
1638 show_memory_packet_size (struct memory_packet_config *config)
1639 {
1640 if (config->size == 0)
1641 printf_filtered (_("The %s is 0 (default). "), config->name);
1642 else
1643 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1644 if (config->fixed_p)
1645 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1646 get_fixed_memory_packet_size (config));
1647 else
1648 {
1649 remote_target *remote = get_current_remote_target ();
1650
1651 if (remote != NULL)
1652 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1653 remote->get_memory_packet_size (config));
1654 else
1655 puts_filtered ("The actual limit will be further reduced "
1656 "dependent on the target.\n");
1657 }
1658 }
1659
1660 static struct memory_packet_config memory_write_packet_config =
1661 {
1662 "memory-write-packet-size",
1663 };
1664
1665 static void
1666 set_memory_write_packet_size (const char *args, int from_tty)
1667 {
1668 set_memory_packet_size (args, &memory_write_packet_config);
1669 }
1670
1671 static void
1672 show_memory_write_packet_size (const char *args, int from_tty)
1673 {
1674 show_memory_packet_size (&memory_write_packet_config);
1675 }
1676
1677 /* Show the number of hardware watchpoints that can be used. */
1678
1679 static void
1680 show_hardware_watchpoint_limit (struct ui_file *file, int from_tty,
1681 struct cmd_list_element *c,
1682 const char *value)
1683 {
1684 fprintf_filtered (file, _("The maximum number of target hardware "
1685 "watchpoints is %s.\n"), value);
1686 }
1687
1688 /* Show the length limit (in bytes) for hardware watchpoints. */
1689
1690 static void
1691 show_hardware_watchpoint_length_limit (struct ui_file *file, int from_tty,
1692 struct cmd_list_element *c,
1693 const char *value)
1694 {
1695 fprintf_filtered (file, _("The maximum length (in bytes) of a target "
1696 "hardware watchpoint is %s.\n"), value);
1697 }
1698
1699 /* Show the number of hardware breakpoints that can be used. */
1700
1701 static void
1702 show_hardware_breakpoint_limit (struct ui_file *file, int from_tty,
1703 struct cmd_list_element *c,
1704 const char *value)
1705 {
1706 fprintf_filtered (file, _("The maximum number of target hardware "
1707 "breakpoints is %s.\n"), value);
1708 }
1709
1710 /* Controls the maximum number of characters to display in the debug output
1711 for each remote packet. The remaining characters are omitted. */
1712
1713 static int remote_packet_max_chars = 512;
1714
1715 /* Show the maximum number of characters to display for each remote packet
1716 when remote debugging is enabled. */
1717
1718 static void
1719 show_remote_packet_max_chars (struct ui_file *file, int from_tty,
1720 struct cmd_list_element *c,
1721 const char *value)
1722 {
1723 fprintf_filtered (file, _("Number of remote packet characters to "
1724 "display is %s.\n"), value);
1725 }
1726
1727 long
1728 remote_target::get_memory_write_packet_size ()
1729 {
1730 return get_memory_packet_size (&memory_write_packet_config);
1731 }
1732
1733 static struct memory_packet_config memory_read_packet_config =
1734 {
1735 "memory-read-packet-size",
1736 };
1737
1738 static void
1739 set_memory_read_packet_size (const char *args, int from_tty)
1740 {
1741 set_memory_packet_size (args, &memory_read_packet_config);
1742 }
1743
1744 static void
1745 show_memory_read_packet_size (const char *args, int from_tty)
1746 {
1747 show_memory_packet_size (&memory_read_packet_config);
1748 }
1749
1750 long
1751 remote_target::get_memory_read_packet_size ()
1752 {
1753 long size = get_memory_packet_size (&memory_read_packet_config);
1754
1755 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1756 extra buffer size argument before the memory read size can be
1757 increased beyond this. */
1758 if (size > get_remote_packet_size ())
1759 size = get_remote_packet_size ();
1760 return size;
1761 }
1762
1763 \f
1764
1765 struct packet_config
1766 {
1767 const char *name;
1768 const char *title;
1769
1770 /* If auto, GDB auto-detects support for this packet or feature,
1771 either through qSupported, or by trying the packet and looking
1772 at the response. If true, GDB assumes the target supports this
1773 packet. If false, the packet is disabled. Configs that don't
1774 have an associated command always have this set to auto. */
1775 enum auto_boolean detect;
1776
1777 /* Does the target support this packet? */
1778 enum packet_support support;
1779 };
1780
1781 static enum packet_support packet_config_support (struct packet_config *config);
1782 static enum packet_support packet_support (int packet);
1783
1784 static void
1785 show_packet_config_cmd (struct packet_config *config)
1786 {
1787 const char *support = "internal-error";
1788
1789 switch (packet_config_support (config))
1790 {
1791 case PACKET_ENABLE:
1792 support = "enabled";
1793 break;
1794 case PACKET_DISABLE:
1795 support = "disabled";
1796 break;
1797 case PACKET_SUPPORT_UNKNOWN:
1798 support = "unknown";
1799 break;
1800 }
1801 switch (config->detect)
1802 {
1803 case AUTO_BOOLEAN_AUTO:
1804 printf_filtered (_("Support for the `%s' packet "
1805 "is auto-detected, currently %s.\n"),
1806 config->name, support);
1807 break;
1808 case AUTO_BOOLEAN_TRUE:
1809 case AUTO_BOOLEAN_FALSE:
1810 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1811 config->name, support);
1812 break;
1813 }
1814 }
1815
1816 static void
1817 add_packet_config_cmd (struct packet_config *config, const char *name,
1818 const char *title, int legacy)
1819 {
1820 char *set_doc;
1821 char *show_doc;
1822 char *cmd_name;
1823
1824 config->name = name;
1825 config->title = title;
1826 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet.",
1827 name, title);
1828 show_doc = xstrprintf ("Show current use of remote "
1829 "protocol `%s' (%s) packet.",
1830 name, title);
1831 /* set/show TITLE-packet {auto,on,off} */
1832 cmd_name = xstrprintf ("%s-packet", title);
1833 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1834 &config->detect, set_doc,
1835 show_doc, NULL, /* help_doc */
1836 NULL,
1837 show_remote_protocol_packet_cmd,
1838 &remote_set_cmdlist, &remote_show_cmdlist);
1839 /* The command code copies the documentation strings. */
1840 xfree (set_doc);
1841 xfree (show_doc);
1842 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1843 if (legacy)
1844 {
1845 char *legacy_name;
1846
1847 legacy_name = xstrprintf ("%s-packet", name);
1848 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1849 &remote_set_cmdlist);
1850 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1851 &remote_show_cmdlist);
1852 }
1853 }
1854
1855 static enum packet_result
1856 packet_check_result (const char *buf)
1857 {
1858 if (buf[0] != '\0')
1859 {
1860 /* The stub recognized the packet request. Check that the
1861 operation succeeded. */
1862 if (buf[0] == 'E'
1863 && isxdigit (buf[1]) && isxdigit (buf[2])
1864 && buf[3] == '\0')
1865 /* "Enn" - definitely an error. */
1866 return PACKET_ERROR;
1867
1868 /* Always treat "E." as an error. This will be used for
1869 more verbose error messages, such as E.memtypes. */
1870 if (buf[0] == 'E' && buf[1] == '.')
1871 return PACKET_ERROR;
1872
1873 /* The packet may or may not be OK. Just assume it is. */
1874 return PACKET_OK;
1875 }
1876 else
1877 /* The stub does not support the packet. */
1878 return PACKET_UNKNOWN;
1879 }
1880
1881 static enum packet_result
1882 packet_check_result (const gdb::char_vector &buf)
1883 {
1884 return packet_check_result (buf.data ());
1885 }
1886
1887 static enum packet_result
1888 packet_ok (const char *buf, struct packet_config *config)
1889 {
1890 enum packet_result result;
1891
1892 if (config->detect != AUTO_BOOLEAN_TRUE
1893 && config->support == PACKET_DISABLE)
1894 internal_error (__FILE__, __LINE__,
1895 _("packet_ok: attempt to use a disabled packet"));
1896
1897 result = packet_check_result (buf);
1898 switch (result)
1899 {
1900 case PACKET_OK:
1901 case PACKET_ERROR:
1902 /* The stub recognized the packet request. */
1903 if (config->support == PACKET_SUPPORT_UNKNOWN)
1904 {
1905 if (remote_debug)
1906 fprintf_unfiltered (gdb_stdlog,
1907 "Packet %s (%s) is supported\n",
1908 config->name, config->title);
1909 config->support = PACKET_ENABLE;
1910 }
1911 break;
1912 case PACKET_UNKNOWN:
1913 /* The stub does not support the packet. */
1914 if (config->detect == AUTO_BOOLEAN_AUTO
1915 && config->support == PACKET_ENABLE)
1916 {
1917 /* If the stub previously indicated that the packet was
1918 supported then there is a protocol error. */
1919 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1920 config->name, config->title);
1921 }
1922 else if (config->detect == AUTO_BOOLEAN_TRUE)
1923 {
1924 /* The user set it wrong. */
1925 error (_("Enabled packet %s (%s) not recognized by stub"),
1926 config->name, config->title);
1927 }
1928
1929 if (remote_debug)
1930 fprintf_unfiltered (gdb_stdlog,
1931 "Packet %s (%s) is NOT supported\n",
1932 config->name, config->title);
1933 config->support = PACKET_DISABLE;
1934 break;
1935 }
1936
1937 return result;
1938 }
1939
1940 static enum packet_result
1941 packet_ok (const gdb::char_vector &buf, struct packet_config *config)
1942 {
1943 return packet_ok (buf.data (), config);
1944 }
1945
1946 enum {
1947 PACKET_vCont = 0,
1948 PACKET_X,
1949 PACKET_qSymbol,
1950 PACKET_P,
1951 PACKET_p,
1952 PACKET_Z0,
1953 PACKET_Z1,
1954 PACKET_Z2,
1955 PACKET_Z3,
1956 PACKET_Z4,
1957 PACKET_vFile_setfs,
1958 PACKET_vFile_open,
1959 PACKET_vFile_pread,
1960 PACKET_vFile_pwrite,
1961 PACKET_vFile_close,
1962 PACKET_vFile_unlink,
1963 PACKET_vFile_readlink,
1964 PACKET_vFile_fstat,
1965 PACKET_qXfer_auxv,
1966 PACKET_qXfer_features,
1967 PACKET_qXfer_exec_file,
1968 PACKET_qXfer_libraries,
1969 PACKET_qXfer_libraries_svr4,
1970 PACKET_qXfer_memory_map,
1971 PACKET_qXfer_osdata,
1972 PACKET_qXfer_threads,
1973 PACKET_qXfer_statictrace_read,
1974 PACKET_qXfer_traceframe_info,
1975 PACKET_qXfer_uib,
1976 PACKET_qGetTIBAddr,
1977 PACKET_qGetTLSAddr,
1978 PACKET_qSupported,
1979 PACKET_qTStatus,
1980 PACKET_QPassSignals,
1981 PACKET_QCatchSyscalls,
1982 PACKET_QProgramSignals,
1983 PACKET_QSetWorkingDir,
1984 PACKET_QStartupWithShell,
1985 PACKET_QEnvironmentHexEncoded,
1986 PACKET_QEnvironmentReset,
1987 PACKET_QEnvironmentUnset,
1988 PACKET_qCRC,
1989 PACKET_qSearch_memory,
1990 PACKET_vAttach,
1991 PACKET_vRun,
1992 PACKET_QStartNoAckMode,
1993 PACKET_vKill,
1994 PACKET_qXfer_siginfo_read,
1995 PACKET_qXfer_siginfo_write,
1996 PACKET_qAttached,
1997
1998 /* Support for conditional tracepoints. */
1999 PACKET_ConditionalTracepoints,
2000
2001 /* Support for target-side breakpoint conditions. */
2002 PACKET_ConditionalBreakpoints,
2003
2004 /* Support for target-side breakpoint commands. */
2005 PACKET_BreakpointCommands,
2006
2007 /* Support for fast tracepoints. */
2008 PACKET_FastTracepoints,
2009
2010 /* Support for static tracepoints. */
2011 PACKET_StaticTracepoints,
2012
2013 /* Support for installing tracepoints while a trace experiment is
2014 running. */
2015 PACKET_InstallInTrace,
2016
2017 PACKET_bc,
2018 PACKET_bs,
2019 PACKET_TracepointSource,
2020 PACKET_QAllow,
2021 PACKET_qXfer_fdpic,
2022 PACKET_QDisableRandomization,
2023 PACKET_QAgent,
2024 PACKET_QTBuffer_size,
2025 PACKET_Qbtrace_off,
2026 PACKET_Qbtrace_bts,
2027 PACKET_Qbtrace_pt,
2028 PACKET_qXfer_btrace,
2029
2030 /* Support for the QNonStop packet. */
2031 PACKET_QNonStop,
2032
2033 /* Support for the QThreadEvents packet. */
2034 PACKET_QThreadEvents,
2035
2036 /* Support for multi-process extensions. */
2037 PACKET_multiprocess_feature,
2038
2039 /* Support for enabling and disabling tracepoints while a trace
2040 experiment is running. */
2041 PACKET_EnableDisableTracepoints_feature,
2042
2043 /* Support for collecting strings using the tracenz bytecode. */
2044 PACKET_tracenz_feature,
2045
2046 /* Support for continuing to run a trace experiment while GDB is
2047 disconnected. */
2048 PACKET_DisconnectedTracing_feature,
2049
2050 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
2051 PACKET_augmented_libraries_svr4_read_feature,
2052
2053 /* Support for the qXfer:btrace-conf:read packet. */
2054 PACKET_qXfer_btrace_conf,
2055
2056 /* Support for the Qbtrace-conf:bts:size packet. */
2057 PACKET_Qbtrace_conf_bts_size,
2058
2059 /* Support for swbreak+ feature. */
2060 PACKET_swbreak_feature,
2061
2062 /* Support for hwbreak+ feature. */
2063 PACKET_hwbreak_feature,
2064
2065 /* Support for fork events. */
2066 PACKET_fork_event_feature,
2067
2068 /* Support for vfork events. */
2069 PACKET_vfork_event_feature,
2070
2071 /* Support for the Qbtrace-conf:pt:size packet. */
2072 PACKET_Qbtrace_conf_pt_size,
2073
2074 /* Support for exec events. */
2075 PACKET_exec_event_feature,
2076
2077 /* Support for query supported vCont actions. */
2078 PACKET_vContSupported,
2079
2080 /* Support remote CTRL-C. */
2081 PACKET_vCtrlC,
2082
2083 /* Support TARGET_WAITKIND_NO_RESUMED. */
2084 PACKET_no_resumed,
2085
2086 PACKET_MAX
2087 };
2088
2089 static struct packet_config remote_protocol_packets[PACKET_MAX];
2090
2091 /* Returns the packet's corresponding "set remote foo-packet" command
2092 state. See struct packet_config for more details. */
2093
2094 static enum auto_boolean
2095 packet_set_cmd_state (int packet)
2096 {
2097 return remote_protocol_packets[packet].detect;
2098 }
2099
2100 /* Returns whether a given packet or feature is supported. This takes
2101 into account the state of the corresponding "set remote foo-packet"
2102 command, which may be used to bypass auto-detection. */
2103
2104 static enum packet_support
2105 packet_config_support (struct packet_config *config)
2106 {
2107 switch (config->detect)
2108 {
2109 case AUTO_BOOLEAN_TRUE:
2110 return PACKET_ENABLE;
2111 case AUTO_BOOLEAN_FALSE:
2112 return PACKET_DISABLE;
2113 case AUTO_BOOLEAN_AUTO:
2114 return config->support;
2115 default:
2116 gdb_assert_not_reached (_("bad switch"));
2117 }
2118 }
2119
2120 /* Same as packet_config_support, but takes the packet's enum value as
2121 argument. */
2122
2123 static enum packet_support
2124 packet_support (int packet)
2125 {
2126 struct packet_config *config = &remote_protocol_packets[packet];
2127
2128 return packet_config_support (config);
2129 }
2130
2131 static void
2132 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
2133 struct cmd_list_element *c,
2134 const char *value)
2135 {
2136 struct packet_config *packet;
2137
2138 for (packet = remote_protocol_packets;
2139 packet < &remote_protocol_packets[PACKET_MAX];
2140 packet++)
2141 {
2142 if (&packet->detect == c->var)
2143 {
2144 show_packet_config_cmd (packet);
2145 return;
2146 }
2147 }
2148 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
2149 c->name);
2150 }
2151
2152 /* Should we try one of the 'Z' requests? */
2153
2154 enum Z_packet_type
2155 {
2156 Z_PACKET_SOFTWARE_BP,
2157 Z_PACKET_HARDWARE_BP,
2158 Z_PACKET_WRITE_WP,
2159 Z_PACKET_READ_WP,
2160 Z_PACKET_ACCESS_WP,
2161 NR_Z_PACKET_TYPES
2162 };
2163
2164 /* For compatibility with older distributions. Provide a ``set remote
2165 Z-packet ...'' command that updates all the Z packet types. */
2166
2167 static enum auto_boolean remote_Z_packet_detect;
2168
2169 static void
2170 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
2171 struct cmd_list_element *c)
2172 {
2173 int i;
2174
2175 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2176 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
2177 }
2178
2179 static void
2180 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
2181 struct cmd_list_element *c,
2182 const char *value)
2183 {
2184 int i;
2185
2186 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2187 {
2188 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
2189 }
2190 }
2191
2192 /* Returns true if the multi-process extensions are in effect. */
2193
2194 static int
2195 remote_multi_process_p (struct remote_state *rs)
2196 {
2197 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
2198 }
2199
2200 /* Returns true if fork events are supported. */
2201
2202 static int
2203 remote_fork_event_p (struct remote_state *rs)
2204 {
2205 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
2206 }
2207
2208 /* Returns true if vfork events are supported. */
2209
2210 static int
2211 remote_vfork_event_p (struct remote_state *rs)
2212 {
2213 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
2214 }
2215
2216 /* Returns true if exec events are supported. */
2217
2218 static int
2219 remote_exec_event_p (struct remote_state *rs)
2220 {
2221 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
2222 }
2223
2224 /* Insert fork catchpoint target routine. If fork events are enabled
2225 then return success, nothing more to do. */
2226
2227 int
2228 remote_target::insert_fork_catchpoint (int pid)
2229 {
2230 struct remote_state *rs = get_remote_state ();
2231
2232 return !remote_fork_event_p (rs);
2233 }
2234
2235 /* Remove fork catchpoint target routine. Nothing to do, just
2236 return success. */
2237
2238 int
2239 remote_target::remove_fork_catchpoint (int pid)
2240 {
2241 return 0;
2242 }
2243
2244 /* Insert vfork catchpoint target routine. If vfork events are enabled
2245 then return success, nothing more to do. */
2246
2247 int
2248 remote_target::insert_vfork_catchpoint (int pid)
2249 {
2250 struct remote_state *rs = get_remote_state ();
2251
2252 return !remote_vfork_event_p (rs);
2253 }
2254
2255 /* Remove vfork catchpoint target routine. Nothing to do, just
2256 return success. */
2257
2258 int
2259 remote_target::remove_vfork_catchpoint (int pid)
2260 {
2261 return 0;
2262 }
2263
2264 /* Insert exec catchpoint target routine. If exec events are
2265 enabled, just return success. */
2266
2267 int
2268 remote_target::insert_exec_catchpoint (int pid)
2269 {
2270 struct remote_state *rs = get_remote_state ();
2271
2272 return !remote_exec_event_p (rs);
2273 }
2274
2275 /* Remove exec catchpoint target routine. Nothing to do, just
2276 return success. */
2277
2278 int
2279 remote_target::remove_exec_catchpoint (int pid)
2280 {
2281 return 0;
2282 }
2283
2284 \f
2285
2286 /* Take advantage of the fact that the TID field is not used, to tag
2287 special ptids with it set to != 0. */
2288 static const ptid_t magic_null_ptid (42000, -1, 1);
2289 static const ptid_t not_sent_ptid (42000, -2, 1);
2290 static const ptid_t any_thread_ptid (42000, 0, 1);
2291
2292 /* Find out if the stub attached to PID (and hence GDB should offer to
2293 detach instead of killing it when bailing out). */
2294
2295 int
2296 remote_target::remote_query_attached (int pid)
2297 {
2298 struct remote_state *rs = get_remote_state ();
2299 size_t size = get_remote_packet_size ();
2300
2301 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2302 return 0;
2303
2304 if (remote_multi_process_p (rs))
2305 xsnprintf (rs->buf.data (), size, "qAttached:%x", pid);
2306 else
2307 xsnprintf (rs->buf.data (), size, "qAttached");
2308
2309 putpkt (rs->buf);
2310 getpkt (&rs->buf, 0);
2311
2312 switch (packet_ok (rs->buf,
2313 &remote_protocol_packets[PACKET_qAttached]))
2314 {
2315 case PACKET_OK:
2316 if (strcmp (rs->buf.data (), "1") == 0)
2317 return 1;
2318 break;
2319 case PACKET_ERROR:
2320 warning (_("Remote failure reply: %s"), rs->buf.data ());
2321 break;
2322 case PACKET_UNKNOWN:
2323 break;
2324 }
2325
2326 return 0;
2327 }
2328
2329 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2330 has been invented by GDB, instead of reported by the target. Since
2331 we can be connected to a remote system before before knowing about
2332 any inferior, mark the target with execution when we find the first
2333 inferior. If ATTACHED is 1, then we had just attached to this
2334 inferior. If it is 0, then we just created this inferior. If it
2335 is -1, then try querying the remote stub to find out if it had
2336 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2337 attempt to open this inferior's executable as the main executable
2338 if no main executable is open already. */
2339
2340 inferior *
2341 remote_target::remote_add_inferior (bool fake_pid_p, int pid, int attached,
2342 int try_open_exec)
2343 {
2344 struct inferior *inf;
2345
2346 /* Check whether this process we're learning about is to be
2347 considered attached, or if is to be considered to have been
2348 spawned by the stub. */
2349 if (attached == -1)
2350 attached = remote_query_attached (pid);
2351
2352 if (gdbarch_has_global_solist (target_gdbarch ()))
2353 {
2354 /* If the target shares code across all inferiors, then every
2355 attach adds a new inferior. */
2356 inf = add_inferior (pid);
2357
2358 /* ... and every inferior is bound to the same program space.
2359 However, each inferior may still have its own address
2360 space. */
2361 inf->aspace = maybe_new_address_space ();
2362 inf->pspace = current_program_space;
2363 }
2364 else
2365 {
2366 /* In the traditional debugging scenario, there's a 1-1 match
2367 between program/address spaces. We simply bind the inferior
2368 to the program space's address space. */
2369 inf = current_inferior ();
2370
2371 /* However, if the current inferior is already bound to a
2372 process, find some other empty inferior. */
2373 if (inf->pid != 0)
2374 {
2375 inf = nullptr;
2376 for (inferior *it : all_inferiors ())
2377 if (it->pid == 0)
2378 {
2379 inf = it;
2380 break;
2381 }
2382 }
2383 if (inf == nullptr)
2384 {
2385 /* Since all inferiors were already bound to a process, add
2386 a new inferior. */
2387 inf = add_inferior_with_spaces ();
2388 }
2389 switch_to_inferior_no_thread (inf);
2390 inferior_appeared (inf, pid);
2391 }
2392
2393 inf->attach_flag = attached;
2394 inf->fake_pid_p = fake_pid_p;
2395
2396 /* If no main executable is currently open then attempt to
2397 open the file that was executed to create this inferior. */
2398 if (try_open_exec && get_exec_file (0) == NULL)
2399 exec_file_locate_attach (pid, 0, 1);
2400
2401 return inf;
2402 }
2403
2404 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2405 static remote_thread_info *get_remote_thread_info (ptid_t ptid);
2406
2407 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2408 according to RUNNING. */
2409
2410 thread_info *
2411 remote_target::remote_add_thread (ptid_t ptid, bool running, bool executing)
2412 {
2413 struct remote_state *rs = get_remote_state ();
2414 struct thread_info *thread;
2415
2416 /* GDB historically didn't pull threads in the initial connection
2417 setup. If the remote target doesn't even have a concept of
2418 threads (e.g., a bare-metal target), even if internally we
2419 consider that a single-threaded target, mentioning a new thread
2420 might be confusing to the user. Be silent then, preserving the
2421 age old behavior. */
2422 if (rs->starting_up)
2423 thread = add_thread_silent (ptid);
2424 else
2425 thread = add_thread (ptid);
2426
2427 get_remote_thread_info (thread)->vcont_resumed = executing;
2428 set_executing (ptid, executing);
2429 set_running (ptid, running);
2430
2431 return thread;
2432 }
2433
2434 /* Come here when we learn about a thread id from the remote target.
2435 It may be the first time we hear about such thread, so take the
2436 opportunity to add it to GDB's thread list. In case this is the
2437 first time we're noticing its corresponding inferior, add it to
2438 GDB's inferior list as well. EXECUTING indicates whether the
2439 thread is (internally) executing or stopped. */
2440
2441 void
2442 remote_target::remote_notice_new_inferior (ptid_t currthread, int executing)
2443 {
2444 /* In non-stop mode, we assume new found threads are (externally)
2445 running until proven otherwise with a stop reply. In all-stop,
2446 we can only get here if all threads are stopped. */
2447 int running = target_is_non_stop_p () ? 1 : 0;
2448
2449 /* If this is a new thread, add it to GDB's thread list.
2450 If we leave it up to WFI to do this, bad things will happen. */
2451
2452 thread_info *tp = find_thread_ptid (currthread);
2453 if (tp != NULL && tp->state == THREAD_EXITED)
2454 {
2455 /* We're seeing an event on a thread id we knew had exited.
2456 This has to be a new thread reusing the old id. Add it. */
2457 remote_add_thread (currthread, running, executing);
2458 return;
2459 }
2460
2461 if (!in_thread_list (currthread))
2462 {
2463 struct inferior *inf = NULL;
2464 int pid = currthread.pid ();
2465
2466 if (inferior_ptid.is_pid ()
2467 && pid == inferior_ptid.pid ())
2468 {
2469 /* inferior_ptid has no thread member yet. This can happen
2470 with the vAttach -> remote_wait,"TAAthread:" path if the
2471 stub doesn't support qC. This is the first stop reported
2472 after an attach, so this is the main thread. Update the
2473 ptid in the thread list. */
2474 if (in_thread_list (ptid_t (pid)))
2475 thread_change_ptid (inferior_ptid, currthread);
2476 else
2477 {
2478 remote_add_thread (currthread, running, executing);
2479 inferior_ptid = currthread;
2480 }
2481 return;
2482 }
2483
2484 if (magic_null_ptid == inferior_ptid)
2485 {
2486 /* inferior_ptid is not set yet. This can happen with the
2487 vRun -> remote_wait,"TAAthread:" path if the stub
2488 doesn't support qC. This is the first stop reported
2489 after an attach, so this is the main thread. Update the
2490 ptid in the thread list. */
2491 thread_change_ptid (inferior_ptid, currthread);
2492 return;
2493 }
2494
2495 /* When connecting to a target remote, or to a target
2496 extended-remote which already was debugging an inferior, we
2497 may not know about it yet. Add it before adding its child
2498 thread, so notifications are emitted in a sensible order. */
2499 if (find_inferior_pid (currthread.pid ()) == NULL)
2500 {
2501 struct remote_state *rs = get_remote_state ();
2502 bool fake_pid_p = !remote_multi_process_p (rs);
2503
2504 inf = remote_add_inferior (fake_pid_p,
2505 currthread.pid (), -1, 1);
2506 }
2507
2508 /* This is really a new thread. Add it. */
2509 thread_info *new_thr
2510 = remote_add_thread (currthread, running, executing);
2511
2512 /* If we found a new inferior, let the common code do whatever
2513 it needs to with it (e.g., read shared libraries, insert
2514 breakpoints), unless we're just setting up an all-stop
2515 connection. */
2516 if (inf != NULL)
2517 {
2518 struct remote_state *rs = get_remote_state ();
2519
2520 if (!rs->starting_up)
2521 notice_new_inferior (new_thr, executing, 0);
2522 }
2523 }
2524 }
2525
2526 /* Return THREAD's private thread data, creating it if necessary. */
2527
2528 static remote_thread_info *
2529 get_remote_thread_info (thread_info *thread)
2530 {
2531 gdb_assert (thread != NULL);
2532
2533 if (thread->priv == NULL)
2534 thread->priv.reset (new remote_thread_info);
2535
2536 return static_cast<remote_thread_info *> (thread->priv.get ());
2537 }
2538
2539 static remote_thread_info *
2540 get_remote_thread_info (ptid_t ptid)
2541 {
2542 thread_info *thr = find_thread_ptid (ptid);
2543 return get_remote_thread_info (thr);
2544 }
2545
2546 /* Call this function as a result of
2547 1) A halt indication (T packet) containing a thread id
2548 2) A direct query of currthread
2549 3) Successful execution of set thread */
2550
2551 static void
2552 record_currthread (struct remote_state *rs, ptid_t currthread)
2553 {
2554 rs->general_thread = currthread;
2555 }
2556
2557 /* If 'QPassSignals' is supported, tell the remote stub what signals
2558 it can simply pass through to the inferior without reporting. */
2559
2560 void
2561 remote_target::pass_signals (gdb::array_view<const unsigned char> pass_signals)
2562 {
2563 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2564 {
2565 char *pass_packet, *p;
2566 int count = 0;
2567 struct remote_state *rs = get_remote_state ();
2568
2569 gdb_assert (pass_signals.size () < 256);
2570 for (size_t i = 0; i < pass_signals.size (); i++)
2571 {
2572 if (pass_signals[i])
2573 count++;
2574 }
2575 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2576 strcpy (pass_packet, "QPassSignals:");
2577 p = pass_packet + strlen (pass_packet);
2578 for (size_t i = 0; i < pass_signals.size (); i++)
2579 {
2580 if (pass_signals[i])
2581 {
2582 if (i >= 16)
2583 *p++ = tohex (i >> 4);
2584 *p++ = tohex (i & 15);
2585 if (count)
2586 *p++ = ';';
2587 else
2588 break;
2589 count--;
2590 }
2591 }
2592 *p = 0;
2593 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2594 {
2595 putpkt (pass_packet);
2596 getpkt (&rs->buf, 0);
2597 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2598 if (rs->last_pass_packet)
2599 xfree (rs->last_pass_packet);
2600 rs->last_pass_packet = pass_packet;
2601 }
2602 else
2603 xfree (pass_packet);
2604 }
2605 }
2606
2607 /* If 'QCatchSyscalls' is supported, tell the remote stub
2608 to report syscalls to GDB. */
2609
2610 int
2611 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2612 gdb::array_view<const int> syscall_counts)
2613 {
2614 const char *catch_packet;
2615 enum packet_result result;
2616 int n_sysno = 0;
2617
2618 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2619 {
2620 /* Not supported. */
2621 return 1;
2622 }
2623
2624 if (needed && any_count == 0)
2625 {
2626 /* Count how many syscalls are to be caught. */
2627 for (size_t i = 0; i < syscall_counts.size (); i++)
2628 {
2629 if (syscall_counts[i] != 0)
2630 n_sysno++;
2631 }
2632 }
2633
2634 if (remote_debug)
2635 {
2636 fprintf_unfiltered (gdb_stdlog,
2637 "remote_set_syscall_catchpoint "
2638 "pid %d needed %d any_count %d n_sysno %d\n",
2639 pid, needed, any_count, n_sysno);
2640 }
2641
2642 std::string built_packet;
2643 if (needed)
2644 {
2645 /* Prepare a packet with the sysno list, assuming max 8+1
2646 characters for a sysno. If the resulting packet size is too
2647 big, fallback on the non-selective packet. */
2648 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2649 built_packet.reserve (maxpktsz);
2650 built_packet = "QCatchSyscalls:1";
2651 if (any_count == 0)
2652 {
2653 /* Add in each syscall to be caught. */
2654 for (size_t i = 0; i < syscall_counts.size (); i++)
2655 {
2656 if (syscall_counts[i] != 0)
2657 string_appendf (built_packet, ";%zx", i);
2658 }
2659 }
2660 if (built_packet.size () > get_remote_packet_size ())
2661 {
2662 /* catch_packet too big. Fallback to less efficient
2663 non selective mode, with GDB doing the filtering. */
2664 catch_packet = "QCatchSyscalls:1";
2665 }
2666 else
2667 catch_packet = built_packet.c_str ();
2668 }
2669 else
2670 catch_packet = "QCatchSyscalls:0";
2671
2672 struct remote_state *rs = get_remote_state ();
2673
2674 putpkt (catch_packet);
2675 getpkt (&rs->buf, 0);
2676 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2677 if (result == PACKET_OK)
2678 return 0;
2679 else
2680 return -1;
2681 }
2682
2683 /* If 'QProgramSignals' is supported, tell the remote stub what
2684 signals it should pass through to the inferior when detaching. */
2685
2686 void
2687 remote_target::program_signals (gdb::array_view<const unsigned char> signals)
2688 {
2689 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2690 {
2691 char *packet, *p;
2692 int count = 0;
2693 struct remote_state *rs = get_remote_state ();
2694
2695 gdb_assert (signals.size () < 256);
2696 for (size_t i = 0; i < signals.size (); i++)
2697 {
2698 if (signals[i])
2699 count++;
2700 }
2701 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2702 strcpy (packet, "QProgramSignals:");
2703 p = packet + strlen (packet);
2704 for (size_t i = 0; i < signals.size (); i++)
2705 {
2706 if (signal_pass_state (i))
2707 {
2708 if (i >= 16)
2709 *p++ = tohex (i >> 4);
2710 *p++ = tohex (i & 15);
2711 if (count)
2712 *p++ = ';';
2713 else
2714 break;
2715 count--;
2716 }
2717 }
2718 *p = 0;
2719 if (!rs->last_program_signals_packet
2720 || strcmp (rs->last_program_signals_packet, packet) != 0)
2721 {
2722 putpkt (packet);
2723 getpkt (&rs->buf, 0);
2724 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2725 xfree (rs->last_program_signals_packet);
2726 rs->last_program_signals_packet = packet;
2727 }
2728 else
2729 xfree (packet);
2730 }
2731 }
2732
2733 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2734 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2735 thread. If GEN is set, set the general thread, if not, then set
2736 the step/continue thread. */
2737 void
2738 remote_target::set_thread (ptid_t ptid, int gen)
2739 {
2740 struct remote_state *rs = get_remote_state ();
2741 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2742 char *buf = rs->buf.data ();
2743 char *endbuf = buf + get_remote_packet_size ();
2744
2745 if (state == ptid)
2746 return;
2747
2748 *buf++ = 'H';
2749 *buf++ = gen ? 'g' : 'c';
2750 if (ptid == magic_null_ptid)
2751 xsnprintf (buf, endbuf - buf, "0");
2752 else if (ptid == any_thread_ptid)
2753 xsnprintf (buf, endbuf - buf, "0");
2754 else if (ptid == minus_one_ptid)
2755 xsnprintf (buf, endbuf - buf, "-1");
2756 else
2757 write_ptid (buf, endbuf, ptid);
2758 putpkt (rs->buf);
2759 getpkt (&rs->buf, 0);
2760 if (gen)
2761 rs->general_thread = ptid;
2762 else
2763 rs->continue_thread = ptid;
2764 }
2765
2766 void
2767 remote_target::set_general_thread (ptid_t ptid)
2768 {
2769 set_thread (ptid, 1);
2770 }
2771
2772 void
2773 remote_target::set_continue_thread (ptid_t ptid)
2774 {
2775 set_thread (ptid, 0);
2776 }
2777
2778 /* Change the remote current process. Which thread within the process
2779 ends up selected isn't important, as long as it is the same process
2780 as what INFERIOR_PTID points to.
2781
2782 This comes from that fact that there is no explicit notion of
2783 "selected process" in the protocol. The selected process for
2784 general operations is the process the selected general thread
2785 belongs to. */
2786
2787 void
2788 remote_target::set_general_process ()
2789 {
2790 struct remote_state *rs = get_remote_state ();
2791
2792 /* If the remote can't handle multiple processes, don't bother. */
2793 if (!remote_multi_process_p (rs))
2794 return;
2795
2796 /* We only need to change the remote current thread if it's pointing
2797 at some other process. */
2798 if (rs->general_thread.pid () != inferior_ptid.pid ())
2799 set_general_thread (inferior_ptid);
2800 }
2801
2802 \f
2803 /* Return nonzero if this is the main thread that we made up ourselves
2804 to model non-threaded targets as single-threaded. */
2805
2806 static int
2807 remote_thread_always_alive (ptid_t ptid)
2808 {
2809 if (ptid == magic_null_ptid)
2810 /* The main thread is always alive. */
2811 return 1;
2812
2813 if (ptid.pid () != 0 && ptid.lwp () == 0)
2814 /* The main thread is always alive. This can happen after a
2815 vAttach, if the remote side doesn't support
2816 multi-threading. */
2817 return 1;
2818
2819 return 0;
2820 }
2821
2822 /* Return nonzero if the thread PTID is still alive on the remote
2823 system. */
2824
2825 bool
2826 remote_target::thread_alive (ptid_t ptid)
2827 {
2828 struct remote_state *rs = get_remote_state ();
2829 char *p, *endp;
2830
2831 /* Check if this is a thread that we made up ourselves to model
2832 non-threaded targets as single-threaded. */
2833 if (remote_thread_always_alive (ptid))
2834 return 1;
2835
2836 p = rs->buf.data ();
2837 endp = p + get_remote_packet_size ();
2838
2839 *p++ = 'T';
2840 write_ptid (p, endp, ptid);
2841
2842 putpkt (rs->buf);
2843 getpkt (&rs->buf, 0);
2844 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2845 }
2846
2847 /* Return a pointer to a thread name if we know it and NULL otherwise.
2848 The thread_info object owns the memory for the name. */
2849
2850 const char *
2851 remote_target::thread_name (struct thread_info *info)
2852 {
2853 if (info->priv != NULL)
2854 {
2855 const std::string &name = get_remote_thread_info (info)->name;
2856 return !name.empty () ? name.c_str () : NULL;
2857 }
2858
2859 return NULL;
2860 }
2861
2862 /* About these extended threadlist and threadinfo packets. They are
2863 variable length packets but, the fields within them are often fixed
2864 length. They are redundant enough to send over UDP as is the
2865 remote protocol in general. There is a matching unit test module
2866 in libstub. */
2867
2868 /* WARNING: This threadref data structure comes from the remote O.S.,
2869 libstub protocol encoding, and remote.c. It is not particularly
2870 changable. */
2871
2872 /* Right now, the internal structure is int. We want it to be bigger.
2873 Plan to fix this. */
2874
2875 typedef int gdb_threadref; /* Internal GDB thread reference. */
2876
2877 /* gdb_ext_thread_info is an internal GDB data structure which is
2878 equivalent to the reply of the remote threadinfo packet. */
2879
2880 struct gdb_ext_thread_info
2881 {
2882 threadref threadid; /* External form of thread reference. */
2883 int active; /* Has state interesting to GDB?
2884 regs, stack. */
2885 char display[256]; /* Brief state display, name,
2886 blocked/suspended. */
2887 char shortname[32]; /* To be used to name threads. */
2888 char more_display[256]; /* Long info, statistics, queue depth,
2889 whatever. */
2890 };
2891
2892 /* The volume of remote transfers can be limited by submitting
2893 a mask containing bits specifying the desired information.
2894 Use a union of these values as the 'selection' parameter to
2895 get_thread_info. FIXME: Make these TAG names more thread specific. */
2896
2897 #define TAG_THREADID 1
2898 #define TAG_EXISTS 2
2899 #define TAG_DISPLAY 4
2900 #define TAG_THREADNAME 8
2901 #define TAG_MOREDISPLAY 16
2902
2903 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2904
2905 static char *unpack_nibble (char *buf, int *val);
2906
2907 static char *unpack_byte (char *buf, int *value);
2908
2909 static char *pack_int (char *buf, int value);
2910
2911 static char *unpack_int (char *buf, int *value);
2912
2913 static char *unpack_string (char *src, char *dest, int length);
2914
2915 static char *pack_threadid (char *pkt, threadref *id);
2916
2917 static char *unpack_threadid (char *inbuf, threadref *id);
2918
2919 void int_to_threadref (threadref *id, int value);
2920
2921 static int threadref_to_int (threadref *ref);
2922
2923 static void copy_threadref (threadref *dest, threadref *src);
2924
2925 static int threadmatch (threadref *dest, threadref *src);
2926
2927 static char *pack_threadinfo_request (char *pkt, int mode,
2928 threadref *id);
2929
2930 static char *pack_threadlist_request (char *pkt, int startflag,
2931 int threadcount,
2932 threadref *nextthread);
2933
2934 static int remote_newthread_step (threadref *ref, void *context);
2935
2936
2937 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2938 buffer we're allowed to write to. Returns
2939 BUF+CHARACTERS_WRITTEN. */
2940
2941 char *
2942 remote_target::write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2943 {
2944 int pid, tid;
2945 struct remote_state *rs = get_remote_state ();
2946
2947 if (remote_multi_process_p (rs))
2948 {
2949 pid = ptid.pid ();
2950 if (pid < 0)
2951 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2952 else
2953 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2954 }
2955 tid = ptid.lwp ();
2956 if (tid < 0)
2957 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2958 else
2959 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2960
2961 return buf;
2962 }
2963
2964 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
2965 last parsed char. Returns null_ptid if no thread id is found, and
2966 throws an error if the thread id has an invalid format. */
2967
2968 static ptid_t
2969 read_ptid (const char *buf, const char **obuf)
2970 {
2971 const char *p = buf;
2972 const char *pp;
2973 ULONGEST pid = 0, tid = 0;
2974
2975 if (*p == 'p')
2976 {
2977 /* Multi-process ptid. */
2978 pp = unpack_varlen_hex (p + 1, &pid);
2979 if (*pp != '.')
2980 error (_("invalid remote ptid: %s"), p);
2981
2982 p = pp;
2983 pp = unpack_varlen_hex (p + 1, &tid);
2984 if (obuf)
2985 *obuf = pp;
2986 return ptid_t (pid, tid, 0);
2987 }
2988
2989 /* No multi-process. Just a tid. */
2990 pp = unpack_varlen_hex (p, &tid);
2991
2992 /* Return null_ptid when no thread id is found. */
2993 if (p == pp)
2994 {
2995 if (obuf)
2996 *obuf = pp;
2997 return null_ptid;
2998 }
2999
3000 /* Since the stub is not sending a process id, then default to
3001 what's in inferior_ptid, unless it's null at this point. If so,
3002 then since there's no way to know the pid of the reported
3003 threads, use the magic number. */
3004 if (inferior_ptid == null_ptid)
3005 pid = magic_null_ptid.pid ();
3006 else
3007 pid = inferior_ptid.pid ();
3008
3009 if (obuf)
3010 *obuf = pp;
3011 return ptid_t (pid, tid, 0);
3012 }
3013
3014 static int
3015 stubhex (int ch)
3016 {
3017 if (ch >= 'a' && ch <= 'f')
3018 return ch - 'a' + 10;
3019 if (ch >= '0' && ch <= '9')
3020 return ch - '0';
3021 if (ch >= 'A' && ch <= 'F')
3022 return ch - 'A' + 10;
3023 return -1;
3024 }
3025
3026 static int
3027 stub_unpack_int (char *buff, int fieldlength)
3028 {
3029 int nibble;
3030 int retval = 0;
3031
3032 while (fieldlength)
3033 {
3034 nibble = stubhex (*buff++);
3035 retval |= nibble;
3036 fieldlength--;
3037 if (fieldlength)
3038 retval = retval << 4;
3039 }
3040 return retval;
3041 }
3042
3043 static char *
3044 unpack_nibble (char *buf, int *val)
3045 {
3046 *val = fromhex (*buf++);
3047 return buf;
3048 }
3049
3050 static char *
3051 unpack_byte (char *buf, int *value)
3052 {
3053 *value = stub_unpack_int (buf, 2);
3054 return buf + 2;
3055 }
3056
3057 static char *
3058 pack_int (char *buf, int value)
3059 {
3060 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
3061 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
3062 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
3063 buf = pack_hex_byte (buf, (value & 0xff));
3064 return buf;
3065 }
3066
3067 static char *
3068 unpack_int (char *buf, int *value)
3069 {
3070 *value = stub_unpack_int (buf, 8);
3071 return buf + 8;
3072 }
3073
3074 #if 0 /* Currently unused, uncomment when needed. */
3075 static char *pack_string (char *pkt, char *string);
3076
3077 static char *
3078 pack_string (char *pkt, char *string)
3079 {
3080 char ch;
3081 int len;
3082
3083 len = strlen (string);
3084 if (len > 200)
3085 len = 200; /* Bigger than most GDB packets, junk??? */
3086 pkt = pack_hex_byte (pkt, len);
3087 while (len-- > 0)
3088 {
3089 ch = *string++;
3090 if ((ch == '\0') || (ch == '#'))
3091 ch = '*'; /* Protect encapsulation. */
3092 *pkt++ = ch;
3093 }
3094 return pkt;
3095 }
3096 #endif /* 0 (unused) */
3097
3098 static char *
3099 unpack_string (char *src, char *dest, int length)
3100 {
3101 while (length--)
3102 *dest++ = *src++;
3103 *dest = '\0';
3104 return src;
3105 }
3106
3107 static char *
3108 pack_threadid (char *pkt, threadref *id)
3109 {
3110 char *limit;
3111 unsigned char *altid;
3112
3113 altid = (unsigned char *) id;
3114 limit = pkt + BUF_THREAD_ID_SIZE;
3115 while (pkt < limit)
3116 pkt = pack_hex_byte (pkt, *altid++);
3117 return pkt;
3118 }
3119
3120
3121 static char *
3122 unpack_threadid (char *inbuf, threadref *id)
3123 {
3124 char *altref;
3125 char *limit = inbuf + BUF_THREAD_ID_SIZE;
3126 int x, y;
3127
3128 altref = (char *) id;
3129
3130 while (inbuf < limit)
3131 {
3132 x = stubhex (*inbuf++);
3133 y = stubhex (*inbuf++);
3134 *altref++ = (x << 4) | y;
3135 }
3136 return inbuf;
3137 }
3138
3139 /* Externally, threadrefs are 64 bits but internally, they are still
3140 ints. This is due to a mismatch of specifications. We would like
3141 to use 64bit thread references internally. This is an adapter
3142 function. */
3143
3144 void
3145 int_to_threadref (threadref *id, int value)
3146 {
3147 unsigned char *scan;
3148
3149 scan = (unsigned char *) id;
3150 {
3151 int i = 4;
3152 while (i--)
3153 *scan++ = 0;
3154 }
3155 *scan++ = (value >> 24) & 0xff;
3156 *scan++ = (value >> 16) & 0xff;
3157 *scan++ = (value >> 8) & 0xff;
3158 *scan++ = (value & 0xff);
3159 }
3160
3161 static int
3162 threadref_to_int (threadref *ref)
3163 {
3164 int i, value = 0;
3165 unsigned char *scan;
3166
3167 scan = *ref;
3168 scan += 4;
3169 i = 4;
3170 while (i-- > 0)
3171 value = (value << 8) | ((*scan++) & 0xff);
3172 return value;
3173 }
3174
3175 static void
3176 copy_threadref (threadref *dest, threadref *src)
3177 {
3178 int i;
3179 unsigned char *csrc, *cdest;
3180
3181 csrc = (unsigned char *) src;
3182 cdest = (unsigned char *) dest;
3183 i = 8;
3184 while (i--)
3185 *cdest++ = *csrc++;
3186 }
3187
3188 static int
3189 threadmatch (threadref *dest, threadref *src)
3190 {
3191 /* Things are broken right now, so just assume we got a match. */
3192 #if 0
3193 unsigned char *srcp, *destp;
3194 int i, result;
3195 srcp = (char *) src;
3196 destp = (char *) dest;
3197
3198 result = 1;
3199 while (i-- > 0)
3200 result &= (*srcp++ == *destp++) ? 1 : 0;
3201 return result;
3202 #endif
3203 return 1;
3204 }
3205
3206 /*
3207 threadid:1, # always request threadid
3208 context_exists:2,
3209 display:4,
3210 unique_name:8,
3211 more_display:16
3212 */
3213
3214 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
3215
3216 static char *
3217 pack_threadinfo_request (char *pkt, int mode, threadref *id)
3218 {
3219 *pkt++ = 'q'; /* Info Query */
3220 *pkt++ = 'P'; /* process or thread info */
3221 pkt = pack_int (pkt, mode); /* mode */
3222 pkt = pack_threadid (pkt, id); /* threadid */
3223 *pkt = '\0'; /* terminate */
3224 return pkt;
3225 }
3226
3227 /* These values tag the fields in a thread info response packet. */
3228 /* Tagging the fields allows us to request specific fields and to
3229 add more fields as time goes by. */
3230
3231 #define TAG_THREADID 1 /* Echo the thread identifier. */
3232 #define TAG_EXISTS 2 /* Is this process defined enough to
3233 fetch registers and its stack? */
3234 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
3235 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
3236 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
3237 the process. */
3238
3239 int
3240 remote_target::remote_unpack_thread_info_response (char *pkt,
3241 threadref *expectedref,
3242 gdb_ext_thread_info *info)
3243 {
3244 struct remote_state *rs = get_remote_state ();
3245 int mask, length;
3246 int tag;
3247 threadref ref;
3248 char *limit = pkt + rs->buf.size (); /* Plausible parsing limit. */
3249 int retval = 1;
3250
3251 /* info->threadid = 0; FIXME: implement zero_threadref. */
3252 info->active = 0;
3253 info->display[0] = '\0';
3254 info->shortname[0] = '\0';
3255 info->more_display[0] = '\0';
3256
3257 /* Assume the characters indicating the packet type have been
3258 stripped. */
3259 pkt = unpack_int (pkt, &mask); /* arg mask */
3260 pkt = unpack_threadid (pkt, &ref);
3261
3262 if (mask == 0)
3263 warning (_("Incomplete response to threadinfo request."));
3264 if (!threadmatch (&ref, expectedref))
3265 { /* This is an answer to a different request. */
3266 warning (_("ERROR RMT Thread info mismatch."));
3267 return 0;
3268 }
3269 copy_threadref (&info->threadid, &ref);
3270
3271 /* Loop on tagged fields , try to bail if something goes wrong. */
3272
3273 /* Packets are terminated with nulls. */
3274 while ((pkt < limit) && mask && *pkt)
3275 {
3276 pkt = unpack_int (pkt, &tag); /* tag */
3277 pkt = unpack_byte (pkt, &length); /* length */
3278 if (!(tag & mask)) /* Tags out of synch with mask. */
3279 {
3280 warning (_("ERROR RMT: threadinfo tag mismatch."));
3281 retval = 0;
3282 break;
3283 }
3284 if (tag == TAG_THREADID)
3285 {
3286 if (length != 16)
3287 {
3288 warning (_("ERROR RMT: length of threadid is not 16."));
3289 retval = 0;
3290 break;
3291 }
3292 pkt = unpack_threadid (pkt, &ref);
3293 mask = mask & ~TAG_THREADID;
3294 continue;
3295 }
3296 if (tag == TAG_EXISTS)
3297 {
3298 info->active = stub_unpack_int (pkt, length);
3299 pkt += length;
3300 mask = mask & ~(TAG_EXISTS);
3301 if (length > 8)
3302 {
3303 warning (_("ERROR RMT: 'exists' length too long."));
3304 retval = 0;
3305 break;
3306 }
3307 continue;
3308 }
3309 if (tag == TAG_THREADNAME)
3310 {
3311 pkt = unpack_string (pkt, &info->shortname[0], length);
3312 mask = mask & ~TAG_THREADNAME;
3313 continue;
3314 }
3315 if (tag == TAG_DISPLAY)
3316 {
3317 pkt = unpack_string (pkt, &info->display[0], length);
3318 mask = mask & ~TAG_DISPLAY;
3319 continue;
3320 }
3321 if (tag == TAG_MOREDISPLAY)
3322 {
3323 pkt = unpack_string (pkt, &info->more_display[0], length);
3324 mask = mask & ~TAG_MOREDISPLAY;
3325 continue;
3326 }
3327 warning (_("ERROR RMT: unknown thread info tag."));
3328 break; /* Not a tag we know about. */
3329 }
3330 return retval;
3331 }
3332
3333 int
3334 remote_target::remote_get_threadinfo (threadref *threadid,
3335 int fieldset,
3336 gdb_ext_thread_info *info)
3337 {
3338 struct remote_state *rs = get_remote_state ();
3339 int result;
3340
3341 pack_threadinfo_request (rs->buf.data (), fieldset, threadid);
3342 putpkt (rs->buf);
3343 getpkt (&rs->buf, 0);
3344
3345 if (rs->buf[0] == '\0')
3346 return 0;
3347
3348 result = remote_unpack_thread_info_response (&rs->buf[2],
3349 threadid, info);
3350 return result;
3351 }
3352
3353 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3354
3355 static char *
3356 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3357 threadref *nextthread)
3358 {
3359 *pkt++ = 'q'; /* info query packet */
3360 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3361 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3362 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3363 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3364 *pkt = '\0';
3365 return pkt;
3366 }
3367
3368 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3369
3370 int
3371 remote_target::parse_threadlist_response (char *pkt, int result_limit,
3372 threadref *original_echo,
3373 threadref *resultlist,
3374 int *doneflag)
3375 {
3376 struct remote_state *rs = get_remote_state ();
3377 char *limit;
3378 int count, resultcount, done;
3379
3380 resultcount = 0;
3381 /* Assume the 'q' and 'M chars have been stripped. */
3382 limit = pkt + (rs->buf.size () - BUF_THREAD_ID_SIZE);
3383 /* done parse past here */
3384 pkt = unpack_byte (pkt, &count); /* count field */
3385 pkt = unpack_nibble (pkt, &done);
3386 /* The first threadid is the argument threadid. */
3387 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3388 while ((count-- > 0) && (pkt < limit))
3389 {
3390 pkt = unpack_threadid (pkt, resultlist++);
3391 if (resultcount++ >= result_limit)
3392 break;
3393 }
3394 if (doneflag)
3395 *doneflag = done;
3396 return resultcount;
3397 }
3398
3399 /* Fetch the next batch of threads from the remote. Returns -1 if the
3400 qL packet is not supported, 0 on error and 1 on success. */
3401
3402 int
3403 remote_target::remote_get_threadlist (int startflag, threadref *nextthread,
3404 int result_limit, int *done, int *result_count,
3405 threadref *threadlist)
3406 {
3407 struct remote_state *rs = get_remote_state ();
3408 int result = 1;
3409
3410 /* Truncate result limit to be smaller than the packet size. */
3411 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3412 >= get_remote_packet_size ())
3413 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3414
3415 pack_threadlist_request (rs->buf.data (), startflag, result_limit,
3416 nextthread);
3417 putpkt (rs->buf);
3418 getpkt (&rs->buf, 0);
3419 if (rs->buf[0] == '\0')
3420 {
3421 /* Packet not supported. */
3422 return -1;
3423 }
3424
3425 *result_count =
3426 parse_threadlist_response (&rs->buf[2], result_limit,
3427 &rs->echo_nextthread, threadlist, done);
3428
3429 if (!threadmatch (&rs->echo_nextthread, nextthread))
3430 {
3431 /* FIXME: This is a good reason to drop the packet. */
3432 /* Possibly, there is a duplicate response. */
3433 /* Possibilities :
3434 retransmit immediatly - race conditions
3435 retransmit after timeout - yes
3436 exit
3437 wait for packet, then exit
3438 */
3439 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3440 return 0; /* I choose simply exiting. */
3441 }
3442 if (*result_count <= 0)
3443 {
3444 if (*done != 1)
3445 {
3446 warning (_("RMT ERROR : failed to get remote thread list."));
3447 result = 0;
3448 }
3449 return result; /* break; */
3450 }
3451 if (*result_count > result_limit)
3452 {
3453 *result_count = 0;
3454 warning (_("RMT ERROR: threadlist response longer than requested."));
3455 return 0;
3456 }
3457 return result;
3458 }
3459
3460 /* Fetch the list of remote threads, with the qL packet, and call
3461 STEPFUNCTION for each thread found. Stops iterating and returns 1
3462 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3463 STEPFUNCTION returns false. If the packet is not supported,
3464 returns -1. */
3465
3466 int
3467 remote_target::remote_threadlist_iterator (rmt_thread_action stepfunction,
3468 void *context, int looplimit)
3469 {
3470 struct remote_state *rs = get_remote_state ();
3471 int done, i, result_count;
3472 int startflag = 1;
3473 int result = 1;
3474 int loopcount = 0;
3475
3476 done = 0;
3477 while (!done)
3478 {
3479 if (loopcount++ > looplimit)
3480 {
3481 result = 0;
3482 warning (_("Remote fetch threadlist -infinite loop-."));
3483 break;
3484 }
3485 result = remote_get_threadlist (startflag, &rs->nextthread,
3486 MAXTHREADLISTRESULTS,
3487 &done, &result_count,
3488 rs->resultthreadlist);
3489 if (result <= 0)
3490 break;
3491 /* Clear for later iterations. */
3492 startflag = 0;
3493 /* Setup to resume next batch of thread references, set nextthread. */
3494 if (result_count >= 1)
3495 copy_threadref (&rs->nextthread,
3496 &rs->resultthreadlist[result_count - 1]);
3497 i = 0;
3498 while (result_count--)
3499 {
3500 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3501 {
3502 result = 0;
3503 break;
3504 }
3505 }
3506 }
3507 return result;
3508 }
3509
3510 /* A thread found on the remote target. */
3511
3512 struct thread_item
3513 {
3514 explicit thread_item (ptid_t ptid_)
3515 : ptid (ptid_)
3516 {}
3517
3518 thread_item (thread_item &&other) = default;
3519 thread_item &operator= (thread_item &&other) = default;
3520
3521 DISABLE_COPY_AND_ASSIGN (thread_item);
3522
3523 /* The thread's PTID. */
3524 ptid_t ptid;
3525
3526 /* The thread's extra info. */
3527 std::string extra;
3528
3529 /* The thread's name. */
3530 std::string name;
3531
3532 /* The core the thread was running on. -1 if not known. */
3533 int core = -1;
3534
3535 /* The thread handle associated with the thread. */
3536 gdb::byte_vector thread_handle;
3537 };
3538
3539 /* Context passed around to the various methods listing remote
3540 threads. As new threads are found, they're added to the ITEMS
3541 vector. */
3542
3543 struct threads_listing_context
3544 {
3545 /* Return true if this object contains an entry for a thread with ptid
3546 PTID. */
3547
3548 bool contains_thread (ptid_t ptid) const
3549 {
3550 auto match_ptid = [&] (const thread_item &item)
3551 {
3552 return item.ptid == ptid;
3553 };
3554
3555 auto it = std::find_if (this->items.begin (),
3556 this->items.end (),
3557 match_ptid);
3558
3559 return it != this->items.end ();
3560 }
3561
3562 /* Remove the thread with ptid PTID. */
3563
3564 void remove_thread (ptid_t ptid)
3565 {
3566 auto match_ptid = [&] (const thread_item &item)
3567 {
3568 return item.ptid == ptid;
3569 };
3570
3571 auto it = std::remove_if (this->items.begin (),
3572 this->items.end (),
3573 match_ptid);
3574
3575 if (it != this->items.end ())
3576 this->items.erase (it);
3577 }
3578
3579 /* The threads found on the remote target. */
3580 std::vector<thread_item> items;
3581 };
3582
3583 static int
3584 remote_newthread_step (threadref *ref, void *data)
3585 {
3586 struct threads_listing_context *context
3587 = (struct threads_listing_context *) data;
3588 int pid = inferior_ptid.pid ();
3589 int lwp = threadref_to_int (ref);
3590 ptid_t ptid (pid, lwp);
3591
3592 context->items.emplace_back (ptid);
3593
3594 return 1; /* continue iterator */
3595 }
3596
3597 #define CRAZY_MAX_THREADS 1000
3598
3599 ptid_t
3600 remote_target::remote_current_thread (ptid_t oldpid)
3601 {
3602 struct remote_state *rs = get_remote_state ();
3603
3604 putpkt ("qC");
3605 getpkt (&rs->buf, 0);
3606 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3607 {
3608 const char *obuf;
3609 ptid_t result;
3610
3611 result = read_ptid (&rs->buf[2], &obuf);
3612 if (*obuf != '\0' && remote_debug)
3613 fprintf_unfiltered (gdb_stdlog,
3614 "warning: garbage in qC reply\n");
3615
3616 return result;
3617 }
3618 else
3619 return oldpid;
3620 }
3621
3622 /* List remote threads using the deprecated qL packet. */
3623
3624 int
3625 remote_target::remote_get_threads_with_ql (threads_listing_context *context)
3626 {
3627 if (remote_threadlist_iterator (remote_newthread_step, context,
3628 CRAZY_MAX_THREADS) >= 0)
3629 return 1;
3630
3631 return 0;
3632 }
3633
3634 #if defined(HAVE_LIBEXPAT)
3635
3636 static void
3637 start_thread (struct gdb_xml_parser *parser,
3638 const struct gdb_xml_element *element,
3639 void *user_data,
3640 std::vector<gdb_xml_value> &attributes)
3641 {
3642 struct threads_listing_context *data
3643 = (struct threads_listing_context *) user_data;
3644 struct gdb_xml_value *attr;
3645
3646 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3647 ptid_t ptid = read_ptid (id, NULL);
3648
3649 data->items.emplace_back (ptid);
3650 thread_item &item = data->items.back ();
3651
3652 attr = xml_find_attribute (attributes, "core");
3653 if (attr != NULL)
3654 item.core = *(ULONGEST *) attr->value.get ();
3655
3656 attr = xml_find_attribute (attributes, "name");
3657 if (attr != NULL)
3658 item.name = (const char *) attr->value.get ();
3659
3660 attr = xml_find_attribute (attributes, "handle");
3661 if (attr != NULL)
3662 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3663 }
3664
3665 static void
3666 end_thread (struct gdb_xml_parser *parser,
3667 const struct gdb_xml_element *element,
3668 void *user_data, const char *body_text)
3669 {
3670 struct threads_listing_context *data
3671 = (struct threads_listing_context *) user_data;
3672
3673 if (body_text != NULL && *body_text != '\0')
3674 data->items.back ().extra = body_text;
3675 }
3676
3677 const struct gdb_xml_attribute thread_attributes[] = {
3678 { "id", GDB_XML_AF_NONE, NULL, NULL },
3679 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3680 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3681 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3682 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3683 };
3684
3685 const struct gdb_xml_element thread_children[] = {
3686 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3687 };
3688
3689 const struct gdb_xml_element threads_children[] = {
3690 { "thread", thread_attributes, thread_children,
3691 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3692 start_thread, end_thread },
3693 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3694 };
3695
3696 const struct gdb_xml_element threads_elements[] = {
3697 { "threads", NULL, threads_children,
3698 GDB_XML_EF_NONE, NULL, NULL },
3699 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3700 };
3701
3702 #endif
3703
3704 /* List remote threads using qXfer:threads:read. */
3705
3706 int
3707 remote_target::remote_get_threads_with_qxfer (threads_listing_context *context)
3708 {
3709 #if defined(HAVE_LIBEXPAT)
3710 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3711 {
3712 gdb::optional<gdb::char_vector> xml
3713 = target_read_stralloc (this, TARGET_OBJECT_THREADS, NULL);
3714
3715 if (xml && (*xml)[0] != '\0')
3716 {
3717 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3718 threads_elements, xml->data (), context);
3719 }
3720
3721 return 1;
3722 }
3723 #endif
3724
3725 return 0;
3726 }
3727
3728 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3729
3730 int
3731 remote_target::remote_get_threads_with_qthreadinfo (threads_listing_context *context)
3732 {
3733 struct remote_state *rs = get_remote_state ();
3734
3735 if (rs->use_threadinfo_query)
3736 {
3737 const char *bufp;
3738
3739 putpkt ("qfThreadInfo");
3740 getpkt (&rs->buf, 0);
3741 bufp = rs->buf.data ();
3742 if (bufp[0] != '\0') /* q packet recognized */
3743 {
3744 while (*bufp++ == 'm') /* reply contains one or more TID */
3745 {
3746 do
3747 {
3748 ptid_t ptid = read_ptid (bufp, &bufp);
3749 context->items.emplace_back (ptid);
3750 }
3751 while (*bufp++ == ','); /* comma-separated list */
3752 putpkt ("qsThreadInfo");
3753 getpkt (&rs->buf, 0);
3754 bufp = rs->buf.data ();
3755 }
3756 return 1;
3757 }
3758 else
3759 {
3760 /* Packet not recognized. */
3761 rs->use_threadinfo_query = 0;
3762 }
3763 }
3764
3765 return 0;
3766 }
3767
3768 /* Implement the to_update_thread_list function for the remote
3769 targets. */
3770
3771 void
3772 remote_target::update_thread_list ()
3773 {
3774 struct threads_listing_context context;
3775 int got_list = 0;
3776
3777 /* We have a few different mechanisms to fetch the thread list. Try
3778 them all, starting with the most preferred one first, falling
3779 back to older methods. */
3780 if (remote_get_threads_with_qxfer (&context)
3781 || remote_get_threads_with_qthreadinfo (&context)
3782 || remote_get_threads_with_ql (&context))
3783 {
3784 got_list = 1;
3785
3786 if (context.items.empty ()
3787 && remote_thread_always_alive (inferior_ptid))
3788 {
3789 /* Some targets don't really support threads, but still
3790 reply an (empty) thread list in response to the thread
3791 listing packets, instead of replying "packet not
3792 supported". Exit early so we don't delete the main
3793 thread. */
3794 return;
3795 }
3796
3797 /* CONTEXT now holds the current thread list on the remote
3798 target end. Delete GDB-side threads no longer found on the
3799 target. */
3800 for (thread_info *tp : all_threads_safe ())
3801 {
3802 if (!context.contains_thread (tp->ptid))
3803 {
3804 /* Not found. */
3805 delete_thread (tp);
3806 }
3807 }
3808
3809 /* Remove any unreported fork child threads from CONTEXT so
3810 that we don't interfere with follow fork, which is where
3811 creation of such threads is handled. */
3812 remove_new_fork_children (&context);
3813
3814 /* And now add threads we don't know about yet to our list. */
3815 for (thread_item &item : context.items)
3816 {
3817 if (item.ptid != null_ptid)
3818 {
3819 /* In non-stop mode, we assume new found threads are
3820 executing until proven otherwise with a stop reply.
3821 In all-stop, we can only get here if all threads are
3822 stopped. */
3823 int executing = target_is_non_stop_p () ? 1 : 0;
3824
3825 remote_notice_new_inferior (item.ptid, executing);
3826
3827 thread_info *tp = find_thread_ptid (item.ptid);
3828 remote_thread_info *info = get_remote_thread_info (tp);
3829 info->core = item.core;
3830 info->extra = std::move (item.extra);
3831 info->name = std::move (item.name);
3832 info->thread_handle = std::move (item.thread_handle);
3833 }
3834 }
3835 }
3836
3837 if (!got_list)
3838 {
3839 /* If no thread listing method is supported, then query whether
3840 each known thread is alive, one by one, with the T packet.
3841 If the target doesn't support threads at all, then this is a
3842 no-op. See remote_thread_alive. */
3843 prune_threads ();
3844 }
3845 }
3846
3847 /*
3848 * Collect a descriptive string about the given thread.
3849 * The target may say anything it wants to about the thread
3850 * (typically info about its blocked / runnable state, name, etc.).
3851 * This string will appear in the info threads display.
3852 *
3853 * Optional: targets are not required to implement this function.
3854 */
3855
3856 const char *
3857 remote_target::extra_thread_info (thread_info *tp)
3858 {
3859 struct remote_state *rs = get_remote_state ();
3860 int set;
3861 threadref id;
3862 struct gdb_ext_thread_info threadinfo;
3863
3864 if (rs->remote_desc == 0) /* paranoia */
3865 internal_error (__FILE__, __LINE__,
3866 _("remote_threads_extra_info"));
3867
3868 if (tp->ptid == magic_null_ptid
3869 || (tp->ptid.pid () != 0 && tp->ptid.lwp () == 0))
3870 /* This is the main thread which was added by GDB. The remote
3871 server doesn't know about it. */
3872 return NULL;
3873
3874 std::string &extra = get_remote_thread_info (tp)->extra;
3875
3876 /* If already have cached info, use it. */
3877 if (!extra.empty ())
3878 return extra.c_str ();
3879
3880 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3881 {
3882 /* If we're using qXfer:threads:read, then the extra info is
3883 included in the XML. So if we didn't have anything cached,
3884 it's because there's really no extra info. */
3885 return NULL;
3886 }
3887
3888 if (rs->use_threadextra_query)
3889 {
3890 char *b = rs->buf.data ();
3891 char *endb = b + get_remote_packet_size ();
3892
3893 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3894 b += strlen (b);
3895 write_ptid (b, endb, tp->ptid);
3896
3897 putpkt (rs->buf);
3898 getpkt (&rs->buf, 0);
3899 if (rs->buf[0] != 0)
3900 {
3901 extra.resize (strlen (rs->buf.data ()) / 2);
3902 hex2bin (rs->buf.data (), (gdb_byte *) &extra[0], extra.size ());
3903 return extra.c_str ();
3904 }
3905 }
3906
3907 /* If the above query fails, fall back to the old method. */
3908 rs->use_threadextra_query = 0;
3909 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3910 | TAG_MOREDISPLAY | TAG_DISPLAY;
3911 int_to_threadref (&id, tp->ptid.lwp ());
3912 if (remote_get_threadinfo (&id, set, &threadinfo))
3913 if (threadinfo.active)
3914 {
3915 if (*threadinfo.shortname)
3916 string_appendf (extra, " Name: %s", threadinfo.shortname);
3917 if (*threadinfo.display)
3918 {
3919 if (!extra.empty ())
3920 extra += ',';
3921 string_appendf (extra, " State: %s", threadinfo.display);
3922 }
3923 if (*threadinfo.more_display)
3924 {
3925 if (!extra.empty ())
3926 extra += ',';
3927 string_appendf (extra, " Priority: %s", threadinfo.more_display);
3928 }
3929 return extra.c_str ();
3930 }
3931 return NULL;
3932 }
3933 \f
3934
3935 bool
3936 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
3937 struct static_tracepoint_marker *marker)
3938 {
3939 struct remote_state *rs = get_remote_state ();
3940 char *p = rs->buf.data ();
3941
3942 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3943 p += strlen (p);
3944 p += hexnumstr (p, addr);
3945 putpkt (rs->buf);
3946 getpkt (&rs->buf, 0);
3947 p = rs->buf.data ();
3948
3949 if (*p == 'E')
3950 error (_("Remote failure reply: %s"), p);
3951
3952 if (*p++ == 'm')
3953 {
3954 parse_static_tracepoint_marker_definition (p, NULL, marker);
3955 return true;
3956 }
3957
3958 return false;
3959 }
3960
3961 std::vector<static_tracepoint_marker>
3962 remote_target::static_tracepoint_markers_by_strid (const char *strid)
3963 {
3964 struct remote_state *rs = get_remote_state ();
3965 std::vector<static_tracepoint_marker> markers;
3966 const char *p;
3967 static_tracepoint_marker marker;
3968
3969 /* Ask for a first packet of static tracepoint marker
3970 definition. */
3971 putpkt ("qTfSTM");
3972 getpkt (&rs->buf, 0);
3973 p = rs->buf.data ();
3974 if (*p == 'E')
3975 error (_("Remote failure reply: %s"), p);
3976
3977 while (*p++ == 'm')
3978 {
3979 do
3980 {
3981 parse_static_tracepoint_marker_definition (p, &p, &marker);
3982
3983 if (strid == NULL || marker.str_id == strid)
3984 markers.push_back (std::move (marker));
3985 }
3986 while (*p++ == ','); /* comma-separated list */
3987 /* Ask for another packet of static tracepoint definition. */
3988 putpkt ("qTsSTM");
3989 getpkt (&rs->buf, 0);
3990 p = rs->buf.data ();
3991 }
3992
3993 return markers;
3994 }
3995
3996 \f
3997 /* Implement the to_get_ada_task_ptid function for the remote targets. */
3998
3999 ptid_t
4000 remote_target::get_ada_task_ptid (long lwp, long thread)
4001 {
4002 return ptid_t (inferior_ptid.pid (), lwp, 0);
4003 }
4004 \f
4005
4006 /* Restart the remote side; this is an extended protocol operation. */
4007
4008 void
4009 remote_target::extended_remote_restart ()
4010 {
4011 struct remote_state *rs = get_remote_state ();
4012
4013 /* Send the restart command; for reasons I don't understand the
4014 remote side really expects a number after the "R". */
4015 xsnprintf (rs->buf.data (), get_remote_packet_size (), "R%x", 0);
4016 putpkt (rs->buf);
4017
4018 remote_fileio_reset ();
4019 }
4020 \f
4021 /* Clean up connection to a remote debugger. */
4022
4023 void
4024 remote_target::close ()
4025 {
4026 /* Make sure we leave stdin registered in the event loop. */
4027 terminal_ours ();
4028
4029 /* We don't have a connection to the remote stub anymore. Get rid
4030 of all the inferiors and their threads we were controlling.
4031 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
4032 will be unable to find the thread corresponding to (pid, 0, 0). */
4033 inferior_ptid = null_ptid;
4034 discard_all_inferiors ();
4035
4036 trace_reset_local_state ();
4037
4038 delete this;
4039 }
4040
4041 remote_target::~remote_target ()
4042 {
4043 struct remote_state *rs = get_remote_state ();
4044
4045 /* Check for NULL because we may get here with a partially
4046 constructed target/connection. */
4047 if (rs->remote_desc == nullptr)
4048 return;
4049
4050 serial_close (rs->remote_desc);
4051
4052 /* We are destroying the remote target, so we should discard
4053 everything of this target. */
4054 discard_pending_stop_replies_in_queue ();
4055
4056 if (rs->remote_async_inferior_event_token)
4057 delete_async_event_handler (&rs->remote_async_inferior_event_token);
4058
4059 delete rs->notif_state;
4060 }
4061
4062 /* Query the remote side for the text, data and bss offsets. */
4063
4064 void
4065 remote_target::get_offsets ()
4066 {
4067 struct remote_state *rs = get_remote_state ();
4068 char *buf;
4069 char *ptr;
4070 int lose, num_segments = 0, do_sections, do_segments;
4071 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
4072 struct symfile_segment_data *data;
4073
4074 if (symfile_objfile == NULL)
4075 return;
4076
4077 putpkt ("qOffsets");
4078 getpkt (&rs->buf, 0);
4079 buf = rs->buf.data ();
4080
4081 if (buf[0] == '\000')
4082 return; /* Return silently. Stub doesn't support
4083 this command. */
4084 if (buf[0] == 'E')
4085 {
4086 warning (_("Remote failure reply: %s"), buf);
4087 return;
4088 }
4089
4090 /* Pick up each field in turn. This used to be done with scanf, but
4091 scanf will make trouble if CORE_ADDR size doesn't match
4092 conversion directives correctly. The following code will work
4093 with any size of CORE_ADDR. */
4094 text_addr = data_addr = bss_addr = 0;
4095 ptr = buf;
4096 lose = 0;
4097
4098 if (startswith (ptr, "Text="))
4099 {
4100 ptr += 5;
4101 /* Don't use strtol, could lose on big values. */
4102 while (*ptr && *ptr != ';')
4103 text_addr = (text_addr << 4) + fromhex (*ptr++);
4104
4105 if (startswith (ptr, ";Data="))
4106 {
4107 ptr += 6;
4108 while (*ptr && *ptr != ';')
4109 data_addr = (data_addr << 4) + fromhex (*ptr++);
4110 }
4111 else
4112 lose = 1;
4113
4114 if (!lose && startswith (ptr, ";Bss="))
4115 {
4116 ptr += 5;
4117 while (*ptr && *ptr != ';')
4118 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
4119
4120 if (bss_addr != data_addr)
4121 warning (_("Target reported unsupported offsets: %s"), buf);
4122 }
4123 else
4124 lose = 1;
4125 }
4126 else if (startswith (ptr, "TextSeg="))
4127 {
4128 ptr += 8;
4129 /* Don't use strtol, could lose on big values. */
4130 while (*ptr && *ptr != ';')
4131 text_addr = (text_addr << 4) + fromhex (*ptr++);
4132 num_segments = 1;
4133
4134 if (startswith (ptr, ";DataSeg="))
4135 {
4136 ptr += 9;
4137 while (*ptr && *ptr != ';')
4138 data_addr = (data_addr << 4) + fromhex (*ptr++);
4139 num_segments++;
4140 }
4141 }
4142 else
4143 lose = 1;
4144
4145 if (lose)
4146 error (_("Malformed response to offset query, %s"), buf);
4147 else if (*ptr != '\0')
4148 warning (_("Target reported unsupported offsets: %s"), buf);
4149
4150 section_offsets offs = symfile_objfile->section_offsets;
4151
4152 data = get_symfile_segment_data (symfile_objfile->obfd);
4153 do_segments = (data != NULL);
4154 do_sections = num_segments == 0;
4155
4156 if (num_segments > 0)
4157 {
4158 segments[0] = text_addr;
4159 segments[1] = data_addr;
4160 }
4161 /* If we have two segments, we can still try to relocate everything
4162 by assuming that the .text and .data offsets apply to the whole
4163 text and data segments. Convert the offsets given in the packet
4164 to base addresses for symfile_map_offsets_to_segments. */
4165 else if (data && data->num_segments == 2)
4166 {
4167 segments[0] = data->segment_bases[0] + text_addr;
4168 segments[1] = data->segment_bases[1] + data_addr;
4169 num_segments = 2;
4170 }
4171 /* If the object file has only one segment, assume that it is text
4172 rather than data; main programs with no writable data are rare,
4173 but programs with no code are useless. Of course the code might
4174 have ended up in the data segment... to detect that we would need
4175 the permissions here. */
4176 else if (data && data->num_segments == 1)
4177 {
4178 segments[0] = data->segment_bases[0] + text_addr;
4179 num_segments = 1;
4180 }
4181 /* There's no way to relocate by segment. */
4182 else
4183 do_segments = 0;
4184
4185 if (do_segments)
4186 {
4187 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
4188 offs, num_segments, segments);
4189
4190 if (ret == 0 && !do_sections)
4191 error (_("Can not handle qOffsets TextSeg "
4192 "response with this symbol file"));
4193
4194 if (ret > 0)
4195 do_sections = 0;
4196 }
4197
4198 if (data)
4199 free_symfile_segment_data (data);
4200
4201 if (do_sections)
4202 {
4203 offs[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
4204
4205 /* This is a temporary kludge to force data and bss to use the
4206 same offsets because that's what nlmconv does now. The real
4207 solution requires changes to the stub and remote.c that I
4208 don't have time to do right now. */
4209
4210 offs[SECT_OFF_DATA (symfile_objfile)] = data_addr;
4211 offs[SECT_OFF_BSS (symfile_objfile)] = data_addr;
4212 }
4213
4214 objfile_relocate (symfile_objfile, offs);
4215 }
4216
4217 /* Send interrupt_sequence to remote target. */
4218
4219 void
4220 remote_target::send_interrupt_sequence ()
4221 {
4222 struct remote_state *rs = get_remote_state ();
4223
4224 if (interrupt_sequence_mode == interrupt_sequence_control_c)
4225 remote_serial_write ("\x03", 1);
4226 else if (interrupt_sequence_mode == interrupt_sequence_break)
4227 serial_send_break (rs->remote_desc);
4228 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
4229 {
4230 serial_send_break (rs->remote_desc);
4231 remote_serial_write ("g", 1);
4232 }
4233 else
4234 internal_error (__FILE__, __LINE__,
4235 _("Invalid value for interrupt_sequence_mode: %s."),
4236 interrupt_sequence_mode);
4237 }
4238
4239
4240 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
4241 and extract the PTID. Returns NULL_PTID if not found. */
4242
4243 static ptid_t
4244 stop_reply_extract_thread (char *stop_reply)
4245 {
4246 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4247 {
4248 const char *p;
4249
4250 /* Txx r:val ; r:val (...) */
4251 p = &stop_reply[3];
4252
4253 /* Look for "register" named "thread". */
4254 while (*p != '\0')
4255 {
4256 const char *p1;
4257
4258 p1 = strchr (p, ':');
4259 if (p1 == NULL)
4260 return null_ptid;
4261
4262 if (strncmp (p, "thread", p1 - p) == 0)
4263 return read_ptid (++p1, &p);
4264
4265 p1 = strchr (p, ';');
4266 if (p1 == NULL)
4267 return null_ptid;
4268 p1++;
4269
4270 p = p1;
4271 }
4272 }
4273
4274 return null_ptid;
4275 }
4276
4277 /* Determine the remote side's current thread. If we have a stop
4278 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4279 "thread" register we can extract the current thread from. If not,
4280 ask the remote which is the current thread with qC. The former
4281 method avoids a roundtrip. */
4282
4283 ptid_t
4284 remote_target::get_current_thread (char *wait_status)
4285 {
4286 ptid_t ptid = null_ptid;
4287
4288 /* Note we don't use remote_parse_stop_reply as that makes use of
4289 the target architecture, which we haven't yet fully determined at
4290 this point. */
4291 if (wait_status != NULL)
4292 ptid = stop_reply_extract_thread (wait_status);
4293 if (ptid == null_ptid)
4294 ptid = remote_current_thread (inferior_ptid);
4295
4296 return ptid;
4297 }
4298
4299 /* Query the remote target for which is the current thread/process,
4300 add it to our tables, and update INFERIOR_PTID. The caller is
4301 responsible for setting the state such that the remote end is ready
4302 to return the current thread.
4303
4304 This function is called after handling the '?' or 'vRun' packets,
4305 whose response is a stop reply from which we can also try
4306 extracting the thread. If the target doesn't support the explicit
4307 qC query, we infer the current thread from that stop reply, passed
4308 in in WAIT_STATUS, which may be NULL. */
4309
4310 void
4311 remote_target::add_current_inferior_and_thread (char *wait_status)
4312 {
4313 struct remote_state *rs = get_remote_state ();
4314 bool fake_pid_p = false;
4315
4316 inferior_ptid = null_ptid;
4317
4318 /* Now, if we have thread information, update inferior_ptid. */
4319 ptid_t curr_ptid = get_current_thread (wait_status);
4320
4321 if (curr_ptid != null_ptid)
4322 {
4323 if (!remote_multi_process_p (rs))
4324 fake_pid_p = true;
4325 }
4326 else
4327 {
4328 /* Without this, some commands which require an active target
4329 (such as kill) won't work. This variable serves (at least)
4330 double duty as both the pid of the target process (if it has
4331 such), and as a flag indicating that a target is active. */
4332 curr_ptid = magic_null_ptid;
4333 fake_pid_p = true;
4334 }
4335
4336 remote_add_inferior (fake_pid_p, curr_ptid.pid (), -1, 1);
4337
4338 /* Add the main thread and switch to it. Don't try reading
4339 registers yet, since we haven't fetched the target description
4340 yet. */
4341 thread_info *tp = add_thread_silent (curr_ptid);
4342 switch_to_thread_no_regs (tp);
4343 }
4344
4345 /* Print info about a thread that was found already stopped on
4346 connection. */
4347
4348 static void
4349 print_one_stopped_thread (struct thread_info *thread)
4350 {
4351 struct target_waitstatus *ws = &thread->suspend.waitstatus;
4352
4353 switch_to_thread (thread);
4354 thread->suspend.stop_pc = get_frame_pc (get_current_frame ());
4355 set_current_sal_from_frame (get_current_frame ());
4356
4357 thread->suspend.waitstatus_pending_p = 0;
4358
4359 if (ws->kind == TARGET_WAITKIND_STOPPED)
4360 {
4361 enum gdb_signal sig = ws->value.sig;
4362
4363 if (signal_print_state (sig))
4364 gdb::observers::signal_received.notify (sig);
4365 }
4366 gdb::observers::normal_stop.notify (NULL, 1);
4367 }
4368
4369 /* Process all initial stop replies the remote side sent in response
4370 to the ? packet. These indicate threads that were already stopped
4371 on initial connection. We mark these threads as stopped and print
4372 their current frame before giving the user the prompt. */
4373
4374 void
4375 remote_target::process_initial_stop_replies (int from_tty)
4376 {
4377 int pending_stop_replies = stop_reply_queue_length ();
4378 struct thread_info *selected = NULL;
4379 struct thread_info *lowest_stopped = NULL;
4380 struct thread_info *first = NULL;
4381
4382 /* Consume the initial pending events. */
4383 while (pending_stop_replies-- > 0)
4384 {
4385 ptid_t waiton_ptid = minus_one_ptid;
4386 ptid_t event_ptid;
4387 struct target_waitstatus ws;
4388 int ignore_event = 0;
4389
4390 memset (&ws, 0, sizeof (ws));
4391 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4392 if (remote_debug)
4393 print_target_wait_results (waiton_ptid, event_ptid, &ws);
4394
4395 switch (ws.kind)
4396 {
4397 case TARGET_WAITKIND_IGNORE:
4398 case TARGET_WAITKIND_NO_RESUMED:
4399 case TARGET_WAITKIND_SIGNALLED:
4400 case TARGET_WAITKIND_EXITED:
4401 /* We shouldn't see these, but if we do, just ignore. */
4402 if (remote_debug)
4403 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
4404 ignore_event = 1;
4405 break;
4406
4407 case TARGET_WAITKIND_EXECD:
4408 xfree (ws.value.execd_pathname);
4409 break;
4410 default:
4411 break;
4412 }
4413
4414 if (ignore_event)
4415 continue;
4416
4417 struct thread_info *evthread = find_thread_ptid (event_ptid);
4418
4419 if (ws.kind == TARGET_WAITKIND_STOPPED)
4420 {
4421 enum gdb_signal sig = ws.value.sig;
4422
4423 /* Stubs traditionally report SIGTRAP as initial signal,
4424 instead of signal 0. Suppress it. */
4425 if (sig == GDB_SIGNAL_TRAP)
4426 sig = GDB_SIGNAL_0;
4427 evthread->suspend.stop_signal = sig;
4428 ws.value.sig = sig;
4429 }
4430
4431 evthread->suspend.waitstatus = ws;
4432
4433 if (ws.kind != TARGET_WAITKIND_STOPPED
4434 || ws.value.sig != GDB_SIGNAL_0)
4435 evthread->suspend.waitstatus_pending_p = 1;
4436
4437 set_executing (event_ptid, 0);
4438 set_running (event_ptid, 0);
4439 get_remote_thread_info (evthread)->vcont_resumed = 0;
4440 }
4441
4442 /* "Notice" the new inferiors before anything related to
4443 registers/memory. */
4444 for (inferior *inf : all_non_exited_inferiors ())
4445 {
4446 inf->needs_setup = 1;
4447
4448 if (non_stop)
4449 {
4450 thread_info *thread = any_live_thread_of_inferior (inf);
4451 notice_new_inferior (thread, thread->state == THREAD_RUNNING,
4452 from_tty);
4453 }
4454 }
4455
4456 /* If all-stop on top of non-stop, pause all threads. Note this
4457 records the threads' stop pc, so must be done after "noticing"
4458 the inferiors. */
4459 if (!non_stop)
4460 {
4461 stop_all_threads ();
4462
4463 /* If all threads of an inferior were already stopped, we
4464 haven't setup the inferior yet. */
4465 for (inferior *inf : all_non_exited_inferiors ())
4466 {
4467 if (inf->needs_setup)
4468 {
4469 thread_info *thread = any_live_thread_of_inferior (inf);
4470 switch_to_thread_no_regs (thread);
4471 setup_inferior (0);
4472 }
4473 }
4474 }
4475
4476 /* Now go over all threads that are stopped, and print their current
4477 frame. If all-stop, then if there's a signalled thread, pick
4478 that as current. */
4479 for (thread_info *thread : all_non_exited_threads ())
4480 {
4481 if (first == NULL)
4482 first = thread;
4483
4484 if (!non_stop)
4485 thread->set_running (false);
4486 else if (thread->state != THREAD_STOPPED)
4487 continue;
4488
4489 if (selected == NULL
4490 && thread->suspend.waitstatus_pending_p)
4491 selected = thread;
4492
4493 if (lowest_stopped == NULL
4494 || thread->inf->num < lowest_stopped->inf->num
4495 || thread->per_inf_num < lowest_stopped->per_inf_num)
4496 lowest_stopped = thread;
4497
4498 if (non_stop)
4499 print_one_stopped_thread (thread);
4500 }
4501
4502 /* In all-stop, we only print the status of one thread, and leave
4503 others with their status pending. */
4504 if (!non_stop)
4505 {
4506 thread_info *thread = selected;
4507 if (thread == NULL)
4508 thread = lowest_stopped;
4509 if (thread == NULL)
4510 thread = first;
4511
4512 print_one_stopped_thread (thread);
4513 }
4514
4515 /* For "info program". */
4516 thread_info *thread = inferior_thread ();
4517 if (thread->state == THREAD_STOPPED)
4518 set_last_target_status (inferior_ptid, thread->suspend.waitstatus);
4519 }
4520
4521 /* Start the remote connection and sync state. */
4522
4523 void
4524 remote_target::start_remote (int from_tty, int extended_p)
4525 {
4526 struct remote_state *rs = get_remote_state ();
4527 struct packet_config *noack_config;
4528 char *wait_status = NULL;
4529
4530 /* Signal other parts that we're going through the initial setup,
4531 and so things may not be stable yet. E.g., we don't try to
4532 install tracepoints until we've relocated symbols. Also, a
4533 Ctrl-C before we're connected and synced up can't interrupt the
4534 target. Instead, it offers to drop the (potentially wedged)
4535 connection. */
4536 rs->starting_up = 1;
4537
4538 QUIT;
4539
4540 if (interrupt_on_connect)
4541 send_interrupt_sequence ();
4542
4543 /* Ack any packet which the remote side has already sent. */
4544 remote_serial_write ("+", 1);
4545
4546 /* The first packet we send to the target is the optional "supported
4547 packets" request. If the target can answer this, it will tell us
4548 which later probes to skip. */
4549 remote_query_supported ();
4550
4551 /* If the stub wants to get a QAllow, compose one and send it. */
4552 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4553 set_permissions ();
4554
4555 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4556 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4557 as a reply to known packet. For packet "vFile:setfs:" it is an
4558 invalid reply and GDB would return error in
4559 remote_hostio_set_filesystem, making remote files access impossible.
4560 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4561 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4562 {
4563 const char v_mustreplyempty[] = "vMustReplyEmpty";
4564
4565 putpkt (v_mustreplyempty);
4566 getpkt (&rs->buf, 0);
4567 if (strcmp (rs->buf.data (), "OK") == 0)
4568 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4569 else if (strcmp (rs->buf.data (), "") != 0)
4570 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4571 rs->buf.data ());
4572 }
4573
4574 /* Next, we possibly activate noack mode.
4575
4576 If the QStartNoAckMode packet configuration is set to AUTO,
4577 enable noack mode if the stub reported a wish for it with
4578 qSupported.
4579
4580 If set to TRUE, then enable noack mode even if the stub didn't
4581 report it in qSupported. If the stub doesn't reply OK, the
4582 session ends with an error.
4583
4584 If FALSE, then don't activate noack mode, regardless of what the
4585 stub claimed should be the default with qSupported. */
4586
4587 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4588 if (packet_config_support (noack_config) != PACKET_DISABLE)
4589 {
4590 putpkt ("QStartNoAckMode");
4591 getpkt (&rs->buf, 0);
4592 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4593 rs->noack_mode = 1;
4594 }
4595
4596 if (extended_p)
4597 {
4598 /* Tell the remote that we are using the extended protocol. */
4599 putpkt ("!");
4600 getpkt (&rs->buf, 0);
4601 }
4602
4603 /* Let the target know which signals it is allowed to pass down to
4604 the program. */
4605 update_signals_program_target ();
4606
4607 /* Next, if the target can specify a description, read it. We do
4608 this before anything involving memory or registers. */
4609 target_find_description ();
4610
4611 /* Next, now that we know something about the target, update the
4612 address spaces in the program spaces. */
4613 update_address_spaces ();
4614
4615 /* On OSs where the list of libraries is global to all
4616 processes, we fetch them early. */
4617 if (gdbarch_has_global_solist (target_gdbarch ()))
4618 solib_add (NULL, from_tty, auto_solib_add);
4619
4620 if (target_is_non_stop_p ())
4621 {
4622 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4623 error (_("Non-stop mode requested, but remote "
4624 "does not support non-stop"));
4625
4626 putpkt ("QNonStop:1");
4627 getpkt (&rs->buf, 0);
4628
4629 if (strcmp (rs->buf.data (), "OK") != 0)
4630 error (_("Remote refused setting non-stop mode with: %s"),
4631 rs->buf.data ());
4632
4633 /* Find about threads and processes the stub is already
4634 controlling. We default to adding them in the running state.
4635 The '?' query below will then tell us about which threads are
4636 stopped. */
4637 this->update_thread_list ();
4638 }
4639 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4640 {
4641 /* Don't assume that the stub can operate in all-stop mode.
4642 Request it explicitly. */
4643 putpkt ("QNonStop:0");
4644 getpkt (&rs->buf, 0);
4645
4646 if (strcmp (rs->buf.data (), "OK") != 0)
4647 error (_("Remote refused setting all-stop mode with: %s"),
4648 rs->buf.data ());
4649 }
4650
4651 /* Upload TSVs regardless of whether the target is running or not. The
4652 remote stub, such as GDBserver, may have some predefined or builtin
4653 TSVs, even if the target is not running. */
4654 if (get_trace_status (current_trace_status ()) != -1)
4655 {
4656 struct uploaded_tsv *uploaded_tsvs = NULL;
4657
4658 upload_trace_state_variables (&uploaded_tsvs);
4659 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4660 }
4661
4662 /* Check whether the target is running now. */
4663 putpkt ("?");
4664 getpkt (&rs->buf, 0);
4665
4666 if (!target_is_non_stop_p ())
4667 {
4668 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4669 {
4670 if (!extended_p)
4671 error (_("The target is not running (try extended-remote?)"));
4672
4673 /* We're connected, but not running. Drop out before we
4674 call start_remote. */
4675 rs->starting_up = 0;
4676 return;
4677 }
4678 else
4679 {
4680 /* Save the reply for later. */
4681 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
4682 strcpy (wait_status, rs->buf.data ());
4683 }
4684
4685 /* Fetch thread list. */
4686 target_update_thread_list ();
4687
4688 /* Let the stub know that we want it to return the thread. */
4689 set_continue_thread (minus_one_ptid);
4690
4691 if (thread_count () == 0)
4692 {
4693 /* Target has no concept of threads at all. GDB treats
4694 non-threaded target as single-threaded; add a main
4695 thread. */
4696 add_current_inferior_and_thread (wait_status);
4697 }
4698 else
4699 {
4700 /* We have thread information; select the thread the target
4701 says should be current. If we're reconnecting to a
4702 multi-threaded program, this will ideally be the thread
4703 that last reported an event before GDB disconnected. */
4704 inferior_ptid = get_current_thread (wait_status);
4705 if (inferior_ptid == null_ptid)
4706 {
4707 /* Odd... The target was able to list threads, but not
4708 tell us which thread was current (no "thread"
4709 register in T stop reply?). Just pick the first
4710 thread in the thread list then. */
4711
4712 if (remote_debug)
4713 fprintf_unfiltered (gdb_stdlog,
4714 "warning: couldn't determine remote "
4715 "current thread; picking first in list.\n");
4716
4717 inferior_ptid = inferior_list->thread_list->ptid;
4718 }
4719 }
4720
4721 /* init_wait_for_inferior should be called before get_offsets in order
4722 to manage `inserted' flag in bp loc in a correct state.
4723 breakpoint_init_inferior, called from init_wait_for_inferior, set
4724 `inserted' flag to 0, while before breakpoint_re_set, called from
4725 start_remote, set `inserted' flag to 1. In the initialization of
4726 inferior, breakpoint_init_inferior should be called first, and then
4727 breakpoint_re_set can be called. If this order is broken, state of
4728 `inserted' flag is wrong, and cause some problems on breakpoint
4729 manipulation. */
4730 init_wait_for_inferior ();
4731
4732 get_offsets (); /* Get text, data & bss offsets. */
4733
4734 /* If we could not find a description using qXfer, and we know
4735 how to do it some other way, try again. This is not
4736 supported for non-stop; it could be, but it is tricky if
4737 there are no stopped threads when we connect. */
4738 if (remote_read_description_p (this)
4739 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4740 {
4741 target_clear_description ();
4742 target_find_description ();
4743 }
4744
4745 /* Use the previously fetched status. */
4746 gdb_assert (wait_status != NULL);
4747 strcpy (rs->buf.data (), wait_status);
4748 rs->cached_wait_status = 1;
4749
4750 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4751 }
4752 else
4753 {
4754 /* Clear WFI global state. Do this before finding about new
4755 threads and inferiors, and setting the current inferior.
4756 Otherwise we would clear the proceed status of the current
4757 inferior when we want its stop_soon state to be preserved
4758 (see notice_new_inferior). */
4759 init_wait_for_inferior ();
4760
4761 /* In non-stop, we will either get an "OK", meaning that there
4762 are no stopped threads at this time; or, a regular stop
4763 reply. In the latter case, there may be more than one thread
4764 stopped --- we pull them all out using the vStopped
4765 mechanism. */
4766 if (strcmp (rs->buf.data (), "OK") != 0)
4767 {
4768 struct notif_client *notif = &notif_client_stop;
4769
4770 /* remote_notif_get_pending_replies acks this one, and gets
4771 the rest out. */
4772 rs->notif_state->pending_event[notif_client_stop.id]
4773 = remote_notif_parse (this, notif, rs->buf.data ());
4774 remote_notif_get_pending_events (notif);
4775 }
4776
4777 if (thread_count () == 0)
4778 {
4779 if (!extended_p)
4780 error (_("The target is not running (try extended-remote?)"));
4781
4782 /* We're connected, but not running. Drop out before we
4783 call start_remote. */
4784 rs->starting_up = 0;
4785 return;
4786 }
4787
4788 /* In non-stop mode, any cached wait status will be stored in
4789 the stop reply queue. */
4790 gdb_assert (wait_status == NULL);
4791
4792 /* Report all signals during attach/startup. */
4793 pass_signals ({});
4794
4795 /* If there are already stopped threads, mark them stopped and
4796 report their stops before giving the prompt to the user. */
4797 process_initial_stop_replies (from_tty);
4798
4799 if (target_can_async_p ())
4800 target_async (1);
4801 }
4802
4803 /* If we connected to a live target, do some additional setup. */
4804 if (target_has_execution)
4805 {
4806 if (symfile_objfile) /* No use without a symbol-file. */
4807 remote_check_symbols ();
4808 }
4809
4810 /* Possibly the target has been engaged in a trace run started
4811 previously; find out where things are at. */
4812 if (get_trace_status (current_trace_status ()) != -1)
4813 {
4814 struct uploaded_tp *uploaded_tps = NULL;
4815
4816 if (current_trace_status ()->running)
4817 printf_filtered (_("Trace is already running on the target.\n"));
4818
4819 upload_tracepoints (&uploaded_tps);
4820
4821 merge_uploaded_tracepoints (&uploaded_tps);
4822 }
4823
4824 /* Possibly the target has been engaged in a btrace record started
4825 previously; find out where things are at. */
4826 remote_btrace_maybe_reopen ();
4827
4828 /* The thread and inferior lists are now synchronized with the
4829 target, our symbols have been relocated, and we're merged the
4830 target's tracepoints with ours. We're done with basic start
4831 up. */
4832 rs->starting_up = 0;
4833
4834 /* Maybe breakpoints are global and need to be inserted now. */
4835 if (breakpoints_should_be_inserted_now ())
4836 insert_breakpoints ();
4837 }
4838
4839 /* Open a connection to a remote debugger.
4840 NAME is the filename used for communication. */
4841
4842 void
4843 remote_target::open (const char *name, int from_tty)
4844 {
4845 open_1 (name, from_tty, 0);
4846 }
4847
4848 /* Open a connection to a remote debugger using the extended
4849 remote gdb protocol. NAME is the filename used for communication. */
4850
4851 void
4852 extended_remote_target::open (const char *name, int from_tty)
4853 {
4854 open_1 (name, from_tty, 1 /*extended_p */);
4855 }
4856
4857 /* Reset all packets back to "unknown support". Called when opening a
4858 new connection to a remote target. */
4859
4860 static void
4861 reset_all_packet_configs_support (void)
4862 {
4863 int i;
4864
4865 for (i = 0; i < PACKET_MAX; i++)
4866 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4867 }
4868
4869 /* Initialize all packet configs. */
4870
4871 static void
4872 init_all_packet_configs (void)
4873 {
4874 int i;
4875
4876 for (i = 0; i < PACKET_MAX; i++)
4877 {
4878 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4879 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4880 }
4881 }
4882
4883 /* Symbol look-up. */
4884
4885 void
4886 remote_target::remote_check_symbols ()
4887 {
4888 char *tmp;
4889 int end;
4890
4891 /* The remote side has no concept of inferiors that aren't running
4892 yet, it only knows about running processes. If we're connected
4893 but our current inferior is not running, we should not invite the
4894 remote target to request symbol lookups related to its
4895 (unrelated) current process. */
4896 if (!target_has_execution)
4897 return;
4898
4899 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4900 return;
4901
4902 /* Make sure the remote is pointing at the right process. Note
4903 there's no way to select "no process". */
4904 set_general_process ();
4905
4906 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4907 because we need both at the same time. */
4908 gdb::char_vector msg (get_remote_packet_size ());
4909 gdb::char_vector reply (get_remote_packet_size ());
4910
4911 /* Invite target to request symbol lookups. */
4912
4913 putpkt ("qSymbol::");
4914 getpkt (&reply, 0);
4915 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4916
4917 while (startswith (reply.data (), "qSymbol:"))
4918 {
4919 struct bound_minimal_symbol sym;
4920
4921 tmp = &reply[8];
4922 end = hex2bin (tmp, reinterpret_cast <gdb_byte *> (msg.data ()),
4923 strlen (tmp) / 2);
4924 msg[end] = '\0';
4925 sym = lookup_minimal_symbol (msg.data (), NULL, NULL);
4926 if (sym.minsym == NULL)
4927 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol::%s",
4928 &reply[8]);
4929 else
4930 {
4931 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4932 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4933
4934 /* If this is a function address, return the start of code
4935 instead of any data function descriptor. */
4936 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4937 sym_addr,
4938 current_top_target ());
4939
4940 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol:%s:%s",
4941 phex_nz (sym_addr, addr_size), &reply[8]);
4942 }
4943
4944 putpkt (msg.data ());
4945 getpkt (&reply, 0);
4946 }
4947 }
4948
4949 static struct serial *
4950 remote_serial_open (const char *name)
4951 {
4952 static int udp_warning = 0;
4953
4954 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
4955 of in ser-tcp.c, because it is the remote protocol assuming that the
4956 serial connection is reliable and not the serial connection promising
4957 to be. */
4958 if (!udp_warning && startswith (name, "udp:"))
4959 {
4960 warning (_("The remote protocol may be unreliable over UDP.\n"
4961 "Some events may be lost, rendering further debugging "
4962 "impossible."));
4963 udp_warning = 1;
4964 }
4965
4966 return serial_open (name);
4967 }
4968
4969 /* Inform the target of our permission settings. The permission flags
4970 work without this, but if the target knows the settings, it can do
4971 a couple things. First, it can add its own check, to catch cases
4972 that somehow manage to get by the permissions checks in target
4973 methods. Second, if the target is wired to disallow particular
4974 settings (for instance, a system in the field that is not set up to
4975 be able to stop at a breakpoint), it can object to any unavailable
4976 permissions. */
4977
4978 void
4979 remote_target::set_permissions ()
4980 {
4981 struct remote_state *rs = get_remote_state ();
4982
4983 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAllow:"
4984 "WriteReg:%x;WriteMem:%x;"
4985 "InsertBreak:%x;InsertTrace:%x;"
4986 "InsertFastTrace:%x;Stop:%x",
4987 may_write_registers, may_write_memory,
4988 may_insert_breakpoints, may_insert_tracepoints,
4989 may_insert_fast_tracepoints, may_stop);
4990 putpkt (rs->buf);
4991 getpkt (&rs->buf, 0);
4992
4993 /* If the target didn't like the packet, warn the user. Do not try
4994 to undo the user's settings, that would just be maddening. */
4995 if (strcmp (rs->buf.data (), "OK") != 0)
4996 warning (_("Remote refused setting permissions with: %s"),
4997 rs->buf.data ());
4998 }
4999
5000 /* This type describes each known response to the qSupported
5001 packet. */
5002 struct protocol_feature
5003 {
5004 /* The name of this protocol feature. */
5005 const char *name;
5006
5007 /* The default for this protocol feature. */
5008 enum packet_support default_support;
5009
5010 /* The function to call when this feature is reported, or after
5011 qSupported processing if the feature is not supported.
5012 The first argument points to this structure. The second
5013 argument indicates whether the packet requested support be
5014 enabled, disabled, or probed (or the default, if this function
5015 is being called at the end of processing and this feature was
5016 not reported). The third argument may be NULL; if not NULL, it
5017 is a NUL-terminated string taken from the packet following
5018 this feature's name and an equals sign. */
5019 void (*func) (remote_target *remote, const struct protocol_feature *,
5020 enum packet_support, const char *);
5021
5022 /* The corresponding packet for this feature. Only used if
5023 FUNC is remote_supported_packet. */
5024 int packet;
5025 };
5026
5027 static void
5028 remote_supported_packet (remote_target *remote,
5029 const struct protocol_feature *feature,
5030 enum packet_support support,
5031 const char *argument)
5032 {
5033 if (argument)
5034 {
5035 warning (_("Remote qSupported response supplied an unexpected value for"
5036 " \"%s\"."), feature->name);
5037 return;
5038 }
5039
5040 remote_protocol_packets[feature->packet].support = support;
5041 }
5042
5043 void
5044 remote_target::remote_packet_size (const protocol_feature *feature,
5045 enum packet_support support, const char *value)
5046 {
5047 struct remote_state *rs = get_remote_state ();
5048
5049 int packet_size;
5050 char *value_end;
5051
5052 if (support != PACKET_ENABLE)
5053 return;
5054
5055 if (value == NULL || *value == '\0')
5056 {
5057 warning (_("Remote target reported \"%s\" without a size."),
5058 feature->name);
5059 return;
5060 }
5061
5062 errno = 0;
5063 packet_size = strtol (value, &value_end, 16);
5064 if (errno != 0 || *value_end != '\0' || packet_size < 0)
5065 {
5066 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
5067 feature->name, value);
5068 return;
5069 }
5070
5071 /* Record the new maximum packet size. */
5072 rs->explicit_packet_size = packet_size;
5073 }
5074
5075 static void
5076 remote_packet_size (remote_target *remote, const protocol_feature *feature,
5077 enum packet_support support, const char *value)
5078 {
5079 remote->remote_packet_size (feature, support, value);
5080 }
5081
5082 static const struct protocol_feature remote_protocol_features[] = {
5083 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
5084 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
5085 PACKET_qXfer_auxv },
5086 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
5087 PACKET_qXfer_exec_file },
5088 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
5089 PACKET_qXfer_features },
5090 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
5091 PACKET_qXfer_libraries },
5092 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
5093 PACKET_qXfer_libraries_svr4 },
5094 { "augmented-libraries-svr4-read", PACKET_DISABLE,
5095 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
5096 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
5097 PACKET_qXfer_memory_map },
5098 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
5099 PACKET_qXfer_osdata },
5100 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
5101 PACKET_qXfer_threads },
5102 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
5103 PACKET_qXfer_traceframe_info },
5104 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
5105 PACKET_QPassSignals },
5106 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
5107 PACKET_QCatchSyscalls },
5108 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
5109 PACKET_QProgramSignals },
5110 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
5111 PACKET_QSetWorkingDir },
5112 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
5113 PACKET_QStartupWithShell },
5114 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
5115 PACKET_QEnvironmentHexEncoded },
5116 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
5117 PACKET_QEnvironmentReset },
5118 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
5119 PACKET_QEnvironmentUnset },
5120 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
5121 PACKET_QStartNoAckMode },
5122 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
5123 PACKET_multiprocess_feature },
5124 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
5125 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
5126 PACKET_qXfer_siginfo_read },
5127 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
5128 PACKET_qXfer_siginfo_write },
5129 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
5130 PACKET_ConditionalTracepoints },
5131 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
5132 PACKET_ConditionalBreakpoints },
5133 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
5134 PACKET_BreakpointCommands },
5135 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
5136 PACKET_FastTracepoints },
5137 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
5138 PACKET_StaticTracepoints },
5139 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
5140 PACKET_InstallInTrace},
5141 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
5142 PACKET_DisconnectedTracing_feature },
5143 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
5144 PACKET_bc },
5145 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
5146 PACKET_bs },
5147 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
5148 PACKET_TracepointSource },
5149 { "QAllow", PACKET_DISABLE, remote_supported_packet,
5150 PACKET_QAllow },
5151 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
5152 PACKET_EnableDisableTracepoints_feature },
5153 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
5154 PACKET_qXfer_fdpic },
5155 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
5156 PACKET_qXfer_uib },
5157 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
5158 PACKET_QDisableRandomization },
5159 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
5160 { "QTBuffer:size", PACKET_DISABLE,
5161 remote_supported_packet, PACKET_QTBuffer_size},
5162 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
5163 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
5164 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
5165 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
5166 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
5167 PACKET_qXfer_btrace },
5168 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
5169 PACKET_qXfer_btrace_conf },
5170 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
5171 PACKET_Qbtrace_conf_bts_size },
5172 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
5173 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
5174 { "fork-events", PACKET_DISABLE, remote_supported_packet,
5175 PACKET_fork_event_feature },
5176 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
5177 PACKET_vfork_event_feature },
5178 { "exec-events", PACKET_DISABLE, remote_supported_packet,
5179 PACKET_exec_event_feature },
5180 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
5181 PACKET_Qbtrace_conf_pt_size },
5182 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
5183 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
5184 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
5185 };
5186
5187 static char *remote_support_xml;
5188
5189 /* Register string appended to "xmlRegisters=" in qSupported query. */
5190
5191 void
5192 register_remote_support_xml (const char *xml)
5193 {
5194 #if defined(HAVE_LIBEXPAT)
5195 if (remote_support_xml == NULL)
5196 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
5197 else
5198 {
5199 char *copy = xstrdup (remote_support_xml + 13);
5200 char *saveptr;
5201 char *p = strtok_r (copy, ",", &saveptr);
5202
5203 do
5204 {
5205 if (strcmp (p, xml) == 0)
5206 {
5207 /* already there */
5208 xfree (copy);
5209 return;
5210 }
5211 }
5212 while ((p = strtok_r (NULL, ",", &saveptr)) != NULL);
5213 xfree (copy);
5214
5215 remote_support_xml = reconcat (remote_support_xml,
5216 remote_support_xml, ",", xml,
5217 (char *) NULL);
5218 }
5219 #endif
5220 }
5221
5222 static void
5223 remote_query_supported_append (std::string *msg, const char *append)
5224 {
5225 if (!msg->empty ())
5226 msg->append (";");
5227 msg->append (append);
5228 }
5229
5230 void
5231 remote_target::remote_query_supported ()
5232 {
5233 struct remote_state *rs = get_remote_state ();
5234 char *next;
5235 int i;
5236 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5237
5238 /* The packet support flags are handled differently for this packet
5239 than for most others. We treat an error, a disabled packet, and
5240 an empty response identically: any features which must be reported
5241 to be used will be automatically disabled. An empty buffer
5242 accomplishes this, since that is also the representation for a list
5243 containing no features. */
5244
5245 rs->buf[0] = 0;
5246 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5247 {
5248 std::string q;
5249
5250 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5251 remote_query_supported_append (&q, "multiprocess+");
5252
5253 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5254 remote_query_supported_append (&q, "swbreak+");
5255 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5256 remote_query_supported_append (&q, "hwbreak+");
5257
5258 remote_query_supported_append (&q, "qRelocInsn+");
5259
5260 if (packet_set_cmd_state (PACKET_fork_event_feature)
5261 != AUTO_BOOLEAN_FALSE)
5262 remote_query_supported_append (&q, "fork-events+");
5263 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5264 != AUTO_BOOLEAN_FALSE)
5265 remote_query_supported_append (&q, "vfork-events+");
5266 if (packet_set_cmd_state (PACKET_exec_event_feature)
5267 != AUTO_BOOLEAN_FALSE)
5268 remote_query_supported_append (&q, "exec-events+");
5269
5270 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5271 remote_query_supported_append (&q, "vContSupported+");
5272
5273 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5274 remote_query_supported_append (&q, "QThreadEvents+");
5275
5276 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5277 remote_query_supported_append (&q, "no-resumed+");
5278
5279 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5280 the qSupported:xmlRegisters=i386 handling. */
5281 if (remote_support_xml != NULL
5282 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5283 remote_query_supported_append (&q, remote_support_xml);
5284
5285 q = "qSupported:" + q;
5286 putpkt (q.c_str ());
5287
5288 getpkt (&rs->buf, 0);
5289
5290 /* If an error occured, warn, but do not return - just reset the
5291 buffer to empty and go on to disable features. */
5292 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5293 == PACKET_ERROR)
5294 {
5295 warning (_("Remote failure reply: %s"), rs->buf.data ());
5296 rs->buf[0] = 0;
5297 }
5298 }
5299
5300 memset (seen, 0, sizeof (seen));
5301
5302 next = rs->buf.data ();
5303 while (*next)
5304 {
5305 enum packet_support is_supported;
5306 char *p, *end, *name_end, *value;
5307
5308 /* First separate out this item from the rest of the packet. If
5309 there's another item after this, we overwrite the separator
5310 (terminated strings are much easier to work with). */
5311 p = next;
5312 end = strchr (p, ';');
5313 if (end == NULL)
5314 {
5315 end = p + strlen (p);
5316 next = end;
5317 }
5318 else
5319 {
5320 *end = '\0';
5321 next = end + 1;
5322
5323 if (end == p)
5324 {
5325 warning (_("empty item in \"qSupported\" response"));
5326 continue;
5327 }
5328 }
5329
5330 name_end = strchr (p, '=');
5331 if (name_end)
5332 {
5333 /* This is a name=value entry. */
5334 is_supported = PACKET_ENABLE;
5335 value = name_end + 1;
5336 *name_end = '\0';
5337 }
5338 else
5339 {
5340 value = NULL;
5341 switch (end[-1])
5342 {
5343 case '+':
5344 is_supported = PACKET_ENABLE;
5345 break;
5346
5347 case '-':
5348 is_supported = PACKET_DISABLE;
5349 break;
5350
5351 case '?':
5352 is_supported = PACKET_SUPPORT_UNKNOWN;
5353 break;
5354
5355 default:
5356 warning (_("unrecognized item \"%s\" "
5357 "in \"qSupported\" response"), p);
5358 continue;
5359 }
5360 end[-1] = '\0';
5361 }
5362
5363 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5364 if (strcmp (remote_protocol_features[i].name, p) == 0)
5365 {
5366 const struct protocol_feature *feature;
5367
5368 seen[i] = 1;
5369 feature = &remote_protocol_features[i];
5370 feature->func (this, feature, is_supported, value);
5371 break;
5372 }
5373 }
5374
5375 /* If we increased the packet size, make sure to increase the global
5376 buffer size also. We delay this until after parsing the entire
5377 qSupported packet, because this is the same buffer we were
5378 parsing. */
5379 if (rs->buf.size () < rs->explicit_packet_size)
5380 rs->buf.resize (rs->explicit_packet_size);
5381
5382 /* Handle the defaults for unmentioned features. */
5383 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5384 if (!seen[i])
5385 {
5386 const struct protocol_feature *feature;
5387
5388 feature = &remote_protocol_features[i];
5389 feature->func (this, feature, feature->default_support, NULL);
5390 }
5391 }
5392
5393 /* Serial QUIT handler for the remote serial descriptor.
5394
5395 Defers handling a Ctrl-C until we're done with the current
5396 command/response packet sequence, unless:
5397
5398 - We're setting up the connection. Don't send a remote interrupt
5399 request, as we're not fully synced yet. Quit immediately
5400 instead.
5401
5402 - The target has been resumed in the foreground
5403 (target_terminal::is_ours is false) with a synchronous resume
5404 packet, and we're blocked waiting for the stop reply, thus a
5405 Ctrl-C should be immediately sent to the target.
5406
5407 - We get a second Ctrl-C while still within the same serial read or
5408 write. In that case the serial is seemingly wedged --- offer to
5409 quit/disconnect.
5410
5411 - We see a second Ctrl-C without target response, after having
5412 previously interrupted the target. In that case the target/stub
5413 is probably wedged --- offer to quit/disconnect.
5414 */
5415
5416 void
5417 remote_target::remote_serial_quit_handler ()
5418 {
5419 struct remote_state *rs = get_remote_state ();
5420
5421 if (check_quit_flag ())
5422 {
5423 /* If we're starting up, we're not fully synced yet. Quit
5424 immediately. */
5425 if (rs->starting_up)
5426 quit ();
5427 else if (rs->got_ctrlc_during_io)
5428 {
5429 if (query (_("The target is not responding to GDB commands.\n"
5430 "Stop debugging it? ")))
5431 remote_unpush_and_throw ();
5432 }
5433 /* If ^C has already been sent once, offer to disconnect. */
5434 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5435 interrupt_query ();
5436 /* All-stop protocol, and blocked waiting for stop reply. Send
5437 an interrupt request. */
5438 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5439 target_interrupt ();
5440 else
5441 rs->got_ctrlc_during_io = 1;
5442 }
5443 }
5444
5445 /* The remote_target that is current while the quit handler is
5446 overridden with remote_serial_quit_handler. */
5447 static remote_target *curr_quit_handler_target;
5448
5449 static void
5450 remote_serial_quit_handler ()
5451 {
5452 curr_quit_handler_target->remote_serial_quit_handler ();
5453 }
5454
5455 /* Remove any of the remote.c targets from target stack. Upper targets depend
5456 on it so remove them first. */
5457
5458 static void
5459 remote_unpush_target (void)
5460 {
5461 pop_all_targets_at_and_above (process_stratum);
5462 }
5463
5464 static void
5465 remote_unpush_and_throw (void)
5466 {
5467 remote_unpush_target ();
5468 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5469 }
5470
5471 void
5472 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5473 {
5474 remote_target *curr_remote = get_current_remote_target ();
5475
5476 if (name == 0)
5477 error (_("To open a remote debug connection, you need to specify what\n"
5478 "serial device is attached to the remote system\n"
5479 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5480
5481 /* If we're connected to a running target, target_preopen will kill it.
5482 Ask this question first, before target_preopen has a chance to kill
5483 anything. */
5484 if (curr_remote != NULL && !have_inferiors ())
5485 {
5486 if (from_tty
5487 && !query (_("Already connected to a remote target. Disconnect? ")))
5488 error (_("Still connected."));
5489 }
5490
5491 /* Here the possibly existing remote target gets unpushed. */
5492 target_preopen (from_tty);
5493
5494 remote_fileio_reset ();
5495 reopen_exec_file ();
5496 reread_symbols ();
5497
5498 remote_target *remote
5499 = (extended_p ? new extended_remote_target () : new remote_target ());
5500 target_ops_up target_holder (remote);
5501
5502 remote_state *rs = remote->get_remote_state ();
5503
5504 /* See FIXME above. */
5505 if (!target_async_permitted)
5506 rs->wait_forever_enabled_p = 1;
5507
5508 rs->remote_desc = remote_serial_open (name);
5509 if (!rs->remote_desc)
5510 perror_with_name (name);
5511
5512 if (baud_rate != -1)
5513 {
5514 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5515 {
5516 /* The requested speed could not be set. Error out to
5517 top level after closing remote_desc. Take care to
5518 set remote_desc to NULL to avoid closing remote_desc
5519 more than once. */
5520 serial_close (rs->remote_desc);
5521 rs->remote_desc = NULL;
5522 perror_with_name (name);
5523 }
5524 }
5525
5526 serial_setparity (rs->remote_desc, serial_parity);
5527 serial_raw (rs->remote_desc);
5528
5529 /* If there is something sitting in the buffer we might take it as a
5530 response to a command, which would be bad. */
5531 serial_flush_input (rs->remote_desc);
5532
5533 if (from_tty)
5534 {
5535 puts_filtered ("Remote debugging using ");
5536 puts_filtered (name);
5537 puts_filtered ("\n");
5538 }
5539
5540 /* Switch to using the remote target now. */
5541 push_target (std::move (target_holder));
5542
5543 /* Register extra event sources in the event loop. */
5544 rs->remote_async_inferior_event_token
5545 = create_async_event_handler (remote_async_inferior_event_handler,
5546 remote);
5547 rs->notif_state = remote_notif_state_allocate (remote);
5548
5549 /* Reset the target state; these things will be queried either by
5550 remote_query_supported or as they are needed. */
5551 reset_all_packet_configs_support ();
5552 rs->cached_wait_status = 0;
5553 rs->explicit_packet_size = 0;
5554 rs->noack_mode = 0;
5555 rs->extended = extended_p;
5556 rs->waiting_for_stop_reply = 0;
5557 rs->ctrlc_pending_p = 0;
5558 rs->got_ctrlc_during_io = 0;
5559
5560 rs->general_thread = not_sent_ptid;
5561 rs->continue_thread = not_sent_ptid;
5562 rs->remote_traceframe_number = -1;
5563
5564 rs->last_resume_exec_dir = EXEC_FORWARD;
5565
5566 /* Probe for ability to use "ThreadInfo" query, as required. */
5567 rs->use_threadinfo_query = 1;
5568 rs->use_threadextra_query = 1;
5569
5570 rs->readahead_cache.invalidate ();
5571
5572 if (target_async_permitted)
5573 {
5574 /* FIXME: cagney/1999-09-23: During the initial connection it is
5575 assumed that the target is already ready and able to respond to
5576 requests. Unfortunately remote_start_remote() eventually calls
5577 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5578 around this. Eventually a mechanism that allows
5579 wait_for_inferior() to expect/get timeouts will be
5580 implemented. */
5581 rs->wait_forever_enabled_p = 0;
5582 }
5583
5584 /* First delete any symbols previously loaded from shared libraries. */
5585 no_shared_libraries (NULL, 0);
5586
5587 /* Start the remote connection. If error() or QUIT, discard this
5588 target (we'd otherwise be in an inconsistent state) and then
5589 propogate the error on up the exception chain. This ensures that
5590 the caller doesn't stumble along blindly assuming that the
5591 function succeeded. The CLI doesn't have this problem but other
5592 UI's, such as MI do.
5593
5594 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5595 this function should return an error indication letting the
5596 caller restore the previous state. Unfortunately the command
5597 ``target remote'' is directly wired to this function making that
5598 impossible. On a positive note, the CLI side of this problem has
5599 been fixed - the function set_cmd_context() makes it possible for
5600 all the ``target ....'' commands to share a common callback
5601 function. See cli-dump.c. */
5602 {
5603
5604 try
5605 {
5606 remote->start_remote (from_tty, extended_p);
5607 }
5608 catch (const gdb_exception &ex)
5609 {
5610 /* Pop the partially set up target - unless something else did
5611 already before throwing the exception. */
5612 if (ex.error != TARGET_CLOSE_ERROR)
5613 remote_unpush_target ();
5614 throw;
5615 }
5616 }
5617
5618 remote_btrace_reset (rs);
5619
5620 if (target_async_permitted)
5621 rs->wait_forever_enabled_p = 1;
5622 }
5623
5624 /* Detach the specified process. */
5625
5626 void
5627 remote_target::remote_detach_pid (int pid)
5628 {
5629 struct remote_state *rs = get_remote_state ();
5630
5631 /* This should not be necessary, but the handling for D;PID in
5632 GDBserver versions prior to 8.2 incorrectly assumes that the
5633 selected process points to the same process we're detaching,
5634 leading to misbehavior (and possibly GDBserver crashing) when it
5635 does not. Since it's easy and cheap, work around it by forcing
5636 GDBserver to select GDB's current process. */
5637 set_general_process ();
5638
5639 if (remote_multi_process_p (rs))
5640 xsnprintf (rs->buf.data (), get_remote_packet_size (), "D;%x", pid);
5641 else
5642 strcpy (rs->buf.data (), "D");
5643
5644 putpkt (rs->buf);
5645 getpkt (&rs->buf, 0);
5646
5647 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5648 ;
5649 else if (rs->buf[0] == '\0')
5650 error (_("Remote doesn't know how to detach"));
5651 else
5652 error (_("Can't detach process."));
5653 }
5654
5655 /* This detaches a program to which we previously attached, using
5656 inferior_ptid to identify the process. After this is done, GDB
5657 can be used to debug some other program. We better not have left
5658 any breakpoints in the target program or it'll die when it hits
5659 one. */
5660
5661 void
5662 remote_target::remote_detach_1 (inferior *inf, int from_tty)
5663 {
5664 int pid = inferior_ptid.pid ();
5665 struct remote_state *rs = get_remote_state ();
5666 int is_fork_parent;
5667
5668 if (!target_has_execution)
5669 error (_("No process to detach from."));
5670
5671 target_announce_detach (from_tty);
5672
5673 /* Tell the remote target to detach. */
5674 remote_detach_pid (pid);
5675
5676 /* Exit only if this is the only active inferior. */
5677 if (from_tty && !rs->extended && number_of_live_inferiors () == 1)
5678 puts_filtered (_("Ending remote debugging.\n"));
5679
5680 struct thread_info *tp = find_thread_ptid (inferior_ptid);
5681
5682 /* Check to see if we are detaching a fork parent. Note that if we
5683 are detaching a fork child, tp == NULL. */
5684 is_fork_parent = (tp != NULL
5685 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5686
5687 /* If doing detach-on-fork, we don't mourn, because that will delete
5688 breakpoints that should be available for the followed inferior. */
5689 if (!is_fork_parent)
5690 {
5691 /* Save the pid as a string before mourning, since that will
5692 unpush the remote target, and we need the string after. */
5693 std::string infpid = target_pid_to_str (ptid_t (pid));
5694
5695 target_mourn_inferior (inferior_ptid);
5696 if (print_inferior_events)
5697 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5698 inf->num, infpid.c_str ());
5699 }
5700 else
5701 {
5702 inferior_ptid = null_ptid;
5703 detach_inferior (current_inferior ());
5704 }
5705 }
5706
5707 void
5708 remote_target::detach (inferior *inf, int from_tty)
5709 {
5710 remote_detach_1 (inf, from_tty);
5711 }
5712
5713 void
5714 extended_remote_target::detach (inferior *inf, int from_tty)
5715 {
5716 remote_detach_1 (inf, from_tty);
5717 }
5718
5719 /* Target follow-fork function for remote targets. On entry, and
5720 at return, the current inferior is the fork parent.
5721
5722 Note that although this is currently only used for extended-remote,
5723 it is named remote_follow_fork in anticipation of using it for the
5724 remote target as well. */
5725
5726 int
5727 remote_target::follow_fork (int follow_child, int detach_fork)
5728 {
5729 struct remote_state *rs = get_remote_state ();
5730 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5731
5732 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5733 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5734 {
5735 /* When following the parent and detaching the child, we detach
5736 the child here. For the case of following the child and
5737 detaching the parent, the detach is done in the target-
5738 independent follow fork code in infrun.c. We can't use
5739 target_detach when detaching an unfollowed child because
5740 the client side doesn't know anything about the child. */
5741 if (detach_fork && !follow_child)
5742 {
5743 /* Detach the fork child. */
5744 ptid_t child_ptid;
5745 pid_t child_pid;
5746
5747 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5748 child_pid = child_ptid.pid ();
5749
5750 remote_detach_pid (child_pid);
5751 }
5752 }
5753 return 0;
5754 }
5755
5756 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5757 in the program space of the new inferior. On entry and at return the
5758 current inferior is the exec'ing inferior. INF is the new exec'd
5759 inferior, which may be the same as the exec'ing inferior unless
5760 follow-exec-mode is "new". */
5761
5762 void
5763 remote_target::follow_exec (struct inferior *inf, const char *execd_pathname)
5764 {
5765 /* We know that this is a target file name, so if it has the "target:"
5766 prefix we strip it off before saving it in the program space. */
5767 if (is_target_filename (execd_pathname))
5768 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5769
5770 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5771 }
5772
5773 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5774
5775 void
5776 remote_target::disconnect (const char *args, int from_tty)
5777 {
5778 if (args)
5779 error (_("Argument given to \"disconnect\" when remotely debugging."));
5780
5781 /* Make sure we unpush even the extended remote targets. Calling
5782 target_mourn_inferior won't unpush, and remote_mourn won't
5783 unpush if there is more than one inferior left. */
5784 unpush_target (this);
5785 generic_mourn_inferior ();
5786
5787 if (from_tty)
5788 puts_filtered ("Ending remote debugging.\n");
5789 }
5790
5791 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5792 be chatty about it. */
5793
5794 void
5795 extended_remote_target::attach (const char *args, int from_tty)
5796 {
5797 struct remote_state *rs = get_remote_state ();
5798 int pid;
5799 char *wait_status = NULL;
5800
5801 pid = parse_pid_to_attach (args);
5802
5803 /* Remote PID can be freely equal to getpid, do not check it here the same
5804 way as in other targets. */
5805
5806 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5807 error (_("This target does not support attaching to a process"));
5808
5809 if (from_tty)
5810 {
5811 const char *exec_file = get_exec_file (0);
5812
5813 if (exec_file)
5814 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5815 target_pid_to_str (ptid_t (pid)).c_str ());
5816 else
5817 printf_unfiltered (_("Attaching to %s\n"),
5818 target_pid_to_str (ptid_t (pid)).c_str ());
5819 }
5820
5821 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vAttach;%x", pid);
5822 putpkt (rs->buf);
5823 getpkt (&rs->buf, 0);
5824
5825 switch (packet_ok (rs->buf,
5826 &remote_protocol_packets[PACKET_vAttach]))
5827 {
5828 case PACKET_OK:
5829 if (!target_is_non_stop_p ())
5830 {
5831 /* Save the reply for later. */
5832 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
5833 strcpy (wait_status, rs->buf.data ());
5834 }
5835 else if (strcmp (rs->buf.data (), "OK") != 0)
5836 error (_("Attaching to %s failed with: %s"),
5837 target_pid_to_str (ptid_t (pid)).c_str (),
5838 rs->buf.data ());
5839 break;
5840 case PACKET_UNKNOWN:
5841 error (_("This target does not support attaching to a process"));
5842 default:
5843 error (_("Attaching to %s failed"),
5844 target_pid_to_str (ptid_t (pid)).c_str ());
5845 }
5846
5847 set_current_inferior (remote_add_inferior (false, pid, 1, 0));
5848
5849 inferior_ptid = ptid_t (pid);
5850
5851 if (target_is_non_stop_p ())
5852 {
5853 struct thread_info *thread;
5854
5855 /* Get list of threads. */
5856 update_thread_list ();
5857
5858 thread = first_thread_of_inferior (current_inferior ());
5859 if (thread)
5860 inferior_ptid = thread->ptid;
5861 else
5862 inferior_ptid = ptid_t (pid);
5863
5864 /* Invalidate our notion of the remote current thread. */
5865 record_currthread (rs, minus_one_ptid);
5866 }
5867 else
5868 {
5869 /* Now, if we have thread information, update inferior_ptid. */
5870 inferior_ptid = remote_current_thread (inferior_ptid);
5871
5872 /* Add the main thread to the thread list. */
5873 thread_info *thr = add_thread_silent (inferior_ptid);
5874 /* Don't consider the thread stopped until we've processed the
5875 saved stop reply. */
5876 set_executing (thr->ptid, true);
5877 }
5878
5879 /* Next, if the target can specify a description, read it. We do
5880 this before anything involving memory or registers. */
5881 target_find_description ();
5882
5883 if (!target_is_non_stop_p ())
5884 {
5885 /* Use the previously fetched status. */
5886 gdb_assert (wait_status != NULL);
5887
5888 if (target_can_async_p ())
5889 {
5890 struct notif_event *reply
5891 = remote_notif_parse (this, &notif_client_stop, wait_status);
5892
5893 push_stop_reply ((struct stop_reply *) reply);
5894
5895 target_async (1);
5896 }
5897 else
5898 {
5899 gdb_assert (wait_status != NULL);
5900 strcpy (rs->buf.data (), wait_status);
5901 rs->cached_wait_status = 1;
5902 }
5903 }
5904 else
5905 gdb_assert (wait_status == NULL);
5906 }
5907
5908 /* Implementation of the to_post_attach method. */
5909
5910 void
5911 extended_remote_target::post_attach (int pid)
5912 {
5913 /* Get text, data & bss offsets. */
5914 get_offsets ();
5915
5916 /* In certain cases GDB might not have had the chance to start
5917 symbol lookup up until now. This could happen if the debugged
5918 binary is not using shared libraries, the vsyscall page is not
5919 present (on Linux) and the binary itself hadn't changed since the
5920 debugging process was started. */
5921 if (symfile_objfile != NULL)
5922 remote_check_symbols();
5923 }
5924
5925 \f
5926 /* Check for the availability of vCont. This function should also check
5927 the response. */
5928
5929 void
5930 remote_target::remote_vcont_probe ()
5931 {
5932 remote_state *rs = get_remote_state ();
5933 char *buf;
5934
5935 strcpy (rs->buf.data (), "vCont?");
5936 putpkt (rs->buf);
5937 getpkt (&rs->buf, 0);
5938 buf = rs->buf.data ();
5939
5940 /* Make sure that the features we assume are supported. */
5941 if (startswith (buf, "vCont"))
5942 {
5943 char *p = &buf[5];
5944 int support_c, support_C;
5945
5946 rs->supports_vCont.s = 0;
5947 rs->supports_vCont.S = 0;
5948 support_c = 0;
5949 support_C = 0;
5950 rs->supports_vCont.t = 0;
5951 rs->supports_vCont.r = 0;
5952 while (p && *p == ';')
5953 {
5954 p++;
5955 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
5956 rs->supports_vCont.s = 1;
5957 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
5958 rs->supports_vCont.S = 1;
5959 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
5960 support_c = 1;
5961 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
5962 support_C = 1;
5963 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
5964 rs->supports_vCont.t = 1;
5965 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
5966 rs->supports_vCont.r = 1;
5967
5968 p = strchr (p, ';');
5969 }
5970
5971 /* If c, and C are not all supported, we can't use vCont. Clearing
5972 BUF will make packet_ok disable the packet. */
5973 if (!support_c || !support_C)
5974 buf[0] = 0;
5975 }
5976
5977 packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCont]);
5978 }
5979
5980 /* Helper function for building "vCont" resumptions. Write a
5981 resumption to P. ENDP points to one-passed-the-end of the buffer
5982 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
5983 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
5984 resumed thread should be single-stepped and/or signalled. If PTID
5985 equals minus_one_ptid, then all threads are resumed; if PTID
5986 represents a process, then all threads of the process are resumed;
5987 the thread to be stepped and/or signalled is given in the global
5988 INFERIOR_PTID. */
5989
5990 char *
5991 remote_target::append_resumption (char *p, char *endp,
5992 ptid_t ptid, int step, gdb_signal siggnal)
5993 {
5994 struct remote_state *rs = get_remote_state ();
5995
5996 if (step && siggnal != GDB_SIGNAL_0)
5997 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
5998 else if (step
5999 /* GDB is willing to range step. */
6000 && use_range_stepping
6001 /* Target supports range stepping. */
6002 && rs->supports_vCont.r
6003 /* We don't currently support range stepping multiple
6004 threads with a wildcard (though the protocol allows it,
6005 so stubs shouldn't make an active effort to forbid
6006 it). */
6007 && !(remote_multi_process_p (rs) && ptid.is_pid ()))
6008 {
6009 struct thread_info *tp;
6010
6011 if (ptid == minus_one_ptid)
6012 {
6013 /* If we don't know about the target thread's tid, then
6014 we're resuming magic_null_ptid (see caller). */
6015 tp = find_thread_ptid (magic_null_ptid);
6016 }
6017 else
6018 tp = find_thread_ptid (ptid);
6019 gdb_assert (tp != NULL);
6020
6021 if (tp->control.may_range_step)
6022 {
6023 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6024
6025 p += xsnprintf (p, endp - p, ";r%s,%s",
6026 phex_nz (tp->control.step_range_start,
6027 addr_size),
6028 phex_nz (tp->control.step_range_end,
6029 addr_size));
6030 }
6031 else
6032 p += xsnprintf (p, endp - p, ";s");
6033 }
6034 else if (step)
6035 p += xsnprintf (p, endp - p, ";s");
6036 else if (siggnal != GDB_SIGNAL_0)
6037 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
6038 else
6039 p += xsnprintf (p, endp - p, ";c");
6040
6041 if (remote_multi_process_p (rs) && ptid.is_pid ())
6042 {
6043 ptid_t nptid;
6044
6045 /* All (-1) threads of process. */
6046 nptid = ptid_t (ptid.pid (), -1, 0);
6047
6048 p += xsnprintf (p, endp - p, ":");
6049 p = write_ptid (p, endp, nptid);
6050 }
6051 else if (ptid != minus_one_ptid)
6052 {
6053 p += xsnprintf (p, endp - p, ":");
6054 p = write_ptid (p, endp, ptid);
6055 }
6056
6057 return p;
6058 }
6059
6060 /* Clear the thread's private info on resume. */
6061
6062 static void
6063 resume_clear_thread_private_info (struct thread_info *thread)
6064 {
6065 if (thread->priv != NULL)
6066 {
6067 remote_thread_info *priv = get_remote_thread_info (thread);
6068
6069 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6070 priv->watch_data_address = 0;
6071 }
6072 }
6073
6074 /* Append a vCont continue-with-signal action for threads that have a
6075 non-zero stop signal. */
6076
6077 char *
6078 remote_target::append_pending_thread_resumptions (char *p, char *endp,
6079 ptid_t ptid)
6080 {
6081 for (thread_info *thread : all_non_exited_threads (ptid))
6082 if (inferior_ptid != thread->ptid
6083 && thread->suspend.stop_signal != GDB_SIGNAL_0)
6084 {
6085 p = append_resumption (p, endp, thread->ptid,
6086 0, thread->suspend.stop_signal);
6087 thread->suspend.stop_signal = GDB_SIGNAL_0;
6088 resume_clear_thread_private_info (thread);
6089 }
6090
6091 return p;
6092 }
6093
6094 /* Set the target running, using the packets that use Hc
6095 (c/s/C/S). */
6096
6097 void
6098 remote_target::remote_resume_with_hc (ptid_t ptid, int step,
6099 gdb_signal siggnal)
6100 {
6101 struct remote_state *rs = get_remote_state ();
6102 char *buf;
6103
6104 rs->last_sent_signal = siggnal;
6105 rs->last_sent_step = step;
6106
6107 /* The c/s/C/S resume packets use Hc, so set the continue
6108 thread. */
6109 if (ptid == minus_one_ptid)
6110 set_continue_thread (any_thread_ptid);
6111 else
6112 set_continue_thread (ptid);
6113
6114 for (thread_info *thread : all_non_exited_threads ())
6115 resume_clear_thread_private_info (thread);
6116
6117 buf = rs->buf.data ();
6118 if (::execution_direction == EXEC_REVERSE)
6119 {
6120 /* We don't pass signals to the target in reverse exec mode. */
6121 if (info_verbose && siggnal != GDB_SIGNAL_0)
6122 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
6123 siggnal);
6124
6125 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
6126 error (_("Remote reverse-step not supported."));
6127 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
6128 error (_("Remote reverse-continue not supported."));
6129
6130 strcpy (buf, step ? "bs" : "bc");
6131 }
6132 else if (siggnal != GDB_SIGNAL_0)
6133 {
6134 buf[0] = step ? 'S' : 'C';
6135 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
6136 buf[2] = tohex (((int) siggnal) & 0xf);
6137 buf[3] = '\0';
6138 }
6139 else
6140 strcpy (buf, step ? "s" : "c");
6141
6142 putpkt (buf);
6143 }
6144
6145 /* Resume the remote inferior by using a "vCont" packet. The thread
6146 to be resumed is PTID; STEP and SIGGNAL indicate whether the
6147 resumed thread should be single-stepped and/or signalled. If PTID
6148 equals minus_one_ptid, then all threads are resumed; the thread to
6149 be stepped and/or signalled is given in the global INFERIOR_PTID.
6150 This function returns non-zero iff it resumes the inferior.
6151
6152 This function issues a strict subset of all possible vCont commands
6153 at the moment. */
6154
6155 int
6156 remote_target::remote_resume_with_vcont (ptid_t ptid, int step,
6157 enum gdb_signal siggnal)
6158 {
6159 struct remote_state *rs = get_remote_state ();
6160 char *p;
6161 char *endp;
6162
6163 /* No reverse execution actions defined for vCont. */
6164 if (::execution_direction == EXEC_REVERSE)
6165 return 0;
6166
6167 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6168 remote_vcont_probe ();
6169
6170 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
6171 return 0;
6172
6173 p = rs->buf.data ();
6174 endp = p + get_remote_packet_size ();
6175
6176 /* If we could generate a wider range of packets, we'd have to worry
6177 about overflowing BUF. Should there be a generic
6178 "multi-part-packet" packet? */
6179
6180 p += xsnprintf (p, endp - p, "vCont");
6181
6182 if (ptid == magic_null_ptid)
6183 {
6184 /* MAGIC_NULL_PTID means that we don't have any active threads,
6185 so we don't have any TID numbers the inferior will
6186 understand. Make sure to only send forms that do not specify
6187 a TID. */
6188 append_resumption (p, endp, minus_one_ptid, step, siggnal);
6189 }
6190 else if (ptid == minus_one_ptid || ptid.is_pid ())
6191 {
6192 /* Resume all threads (of all processes, or of a single
6193 process), with preference for INFERIOR_PTID. This assumes
6194 inferior_ptid belongs to the set of all threads we are about
6195 to resume. */
6196 if (step || siggnal != GDB_SIGNAL_0)
6197 {
6198 /* Step inferior_ptid, with or without signal. */
6199 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
6200 }
6201
6202 /* Also pass down any pending signaled resumption for other
6203 threads not the current. */
6204 p = append_pending_thread_resumptions (p, endp, ptid);
6205
6206 /* And continue others without a signal. */
6207 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
6208 }
6209 else
6210 {
6211 /* Scheduler locking; resume only PTID. */
6212 append_resumption (p, endp, ptid, step, siggnal);
6213 }
6214
6215 gdb_assert (strlen (rs->buf.data ()) < get_remote_packet_size ());
6216 putpkt (rs->buf);
6217
6218 if (target_is_non_stop_p ())
6219 {
6220 /* In non-stop, the stub replies to vCont with "OK". The stop
6221 reply will be reported asynchronously by means of a `%Stop'
6222 notification. */
6223 getpkt (&rs->buf, 0);
6224 if (strcmp (rs->buf.data (), "OK") != 0)
6225 error (_("Unexpected vCont reply in non-stop mode: %s"),
6226 rs->buf.data ());
6227 }
6228
6229 return 1;
6230 }
6231
6232 /* Tell the remote machine to resume. */
6233
6234 void
6235 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
6236 {
6237 struct remote_state *rs = get_remote_state ();
6238
6239 /* When connected in non-stop mode, the core resumes threads
6240 individually. Resuming remote threads directly in target_resume
6241 would thus result in sending one packet per thread. Instead, to
6242 minimize roundtrip latency, here we just store the resume
6243 request; the actual remote resumption will be done in
6244 target_commit_resume / remote_commit_resume, where we'll be able
6245 to do vCont action coalescing. */
6246 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6247 {
6248 remote_thread_info *remote_thr;
6249
6250 if (minus_one_ptid == ptid || ptid.is_pid ())
6251 remote_thr = get_remote_thread_info (inferior_ptid);
6252 else
6253 remote_thr = get_remote_thread_info (ptid);
6254
6255 remote_thr->last_resume_step = step;
6256 remote_thr->last_resume_sig = siggnal;
6257 return;
6258 }
6259
6260 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6261 (explained in remote-notif.c:handle_notification) so
6262 remote_notif_process is not called. We need find a place where
6263 it is safe to start a 'vNotif' sequence. It is good to do it
6264 before resuming inferior, because inferior was stopped and no RSP
6265 traffic at that moment. */
6266 if (!target_is_non_stop_p ())
6267 remote_notif_process (rs->notif_state, &notif_client_stop);
6268
6269 rs->last_resume_exec_dir = ::execution_direction;
6270
6271 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6272 if (!remote_resume_with_vcont (ptid, step, siggnal))
6273 remote_resume_with_hc (ptid, step, siggnal);
6274
6275 /* We are about to start executing the inferior, let's register it
6276 with the event loop. NOTE: this is the one place where all the
6277 execution commands end up. We could alternatively do this in each
6278 of the execution commands in infcmd.c. */
6279 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6280 into infcmd.c in order to allow inferior function calls to work
6281 NOT asynchronously. */
6282 if (target_can_async_p ())
6283 target_async (1);
6284
6285 /* We've just told the target to resume. The remote server will
6286 wait for the inferior to stop, and then send a stop reply. In
6287 the mean time, we can't start another command/query ourselves
6288 because the stub wouldn't be ready to process it. This applies
6289 only to the base all-stop protocol, however. In non-stop (which
6290 only supports vCont), the stub replies with an "OK", and is
6291 immediate able to process further serial input. */
6292 if (!target_is_non_stop_p ())
6293 rs->waiting_for_stop_reply = 1;
6294 }
6295
6296 static int is_pending_fork_parent_thread (struct thread_info *thread);
6297
6298 /* Private per-inferior info for target remote processes. */
6299
6300 struct remote_inferior : public private_inferior
6301 {
6302 /* Whether we can send a wildcard vCont for this process. */
6303 bool may_wildcard_vcont = true;
6304 };
6305
6306 /* Get the remote private inferior data associated to INF. */
6307
6308 static remote_inferior *
6309 get_remote_inferior (inferior *inf)
6310 {
6311 if (inf->priv == NULL)
6312 inf->priv.reset (new remote_inferior);
6313
6314 return static_cast<remote_inferior *> (inf->priv.get ());
6315 }
6316
6317 /* Class used to track the construction of a vCont packet in the
6318 outgoing packet buffer. This is used to send multiple vCont
6319 packets if we have more actions than would fit a single packet. */
6320
6321 class vcont_builder
6322 {
6323 public:
6324 explicit vcont_builder (remote_target *remote)
6325 : m_remote (remote)
6326 {
6327 restart ();
6328 }
6329
6330 void flush ();
6331 void push_action (ptid_t ptid, bool step, gdb_signal siggnal);
6332
6333 private:
6334 void restart ();
6335
6336 /* The remote target. */
6337 remote_target *m_remote;
6338
6339 /* Pointer to the first action. P points here if no action has been
6340 appended yet. */
6341 char *m_first_action;
6342
6343 /* Where the next action will be appended. */
6344 char *m_p;
6345
6346 /* The end of the buffer. Must never write past this. */
6347 char *m_endp;
6348 };
6349
6350 /* Prepare the outgoing buffer for a new vCont packet. */
6351
6352 void
6353 vcont_builder::restart ()
6354 {
6355 struct remote_state *rs = m_remote->get_remote_state ();
6356
6357 m_p = rs->buf.data ();
6358 m_endp = m_p + m_remote->get_remote_packet_size ();
6359 m_p += xsnprintf (m_p, m_endp - m_p, "vCont");
6360 m_first_action = m_p;
6361 }
6362
6363 /* If the vCont packet being built has any action, send it to the
6364 remote end. */
6365
6366 void
6367 vcont_builder::flush ()
6368 {
6369 struct remote_state *rs;
6370
6371 if (m_p == m_first_action)
6372 return;
6373
6374 rs = m_remote->get_remote_state ();
6375 m_remote->putpkt (rs->buf);
6376 m_remote->getpkt (&rs->buf, 0);
6377 if (strcmp (rs->buf.data (), "OK") != 0)
6378 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf.data ());
6379 }
6380
6381 /* The largest action is range-stepping, with its two addresses. This
6382 is more than sufficient. If a new, bigger action is created, it'll
6383 quickly trigger a failed assertion in append_resumption (and we'll
6384 just bump this). */
6385 #define MAX_ACTION_SIZE 200
6386
6387 /* Append a new vCont action in the outgoing packet being built. If
6388 the action doesn't fit the packet along with previous actions, push
6389 what we've got so far to the remote end and start over a new vCont
6390 packet (with the new action). */
6391
6392 void
6393 vcont_builder::push_action (ptid_t ptid, bool step, gdb_signal siggnal)
6394 {
6395 char buf[MAX_ACTION_SIZE + 1];
6396
6397 char *endp = m_remote->append_resumption (buf, buf + sizeof (buf),
6398 ptid, step, siggnal);
6399
6400 /* Check whether this new action would fit in the vCont packet along
6401 with previous actions. If not, send what we've got so far and
6402 start a new vCont packet. */
6403 size_t rsize = endp - buf;
6404 if (rsize > m_endp - m_p)
6405 {
6406 flush ();
6407 restart ();
6408
6409 /* Should now fit. */
6410 gdb_assert (rsize <= m_endp - m_p);
6411 }
6412
6413 memcpy (m_p, buf, rsize);
6414 m_p += rsize;
6415 *m_p = '\0';
6416 }
6417
6418 /* to_commit_resume implementation. */
6419
6420 void
6421 remote_target::commit_resume ()
6422 {
6423 int any_process_wildcard;
6424 int may_global_wildcard_vcont;
6425
6426 /* If connected in all-stop mode, we'd send the remote resume
6427 request directly from remote_resume. Likewise if
6428 reverse-debugging, as there are no defined vCont actions for
6429 reverse execution. */
6430 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6431 return;
6432
6433 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6434 instead of resuming all threads of each process individually.
6435 However, if any thread of a process must remain halted, we can't
6436 send wildcard resumes and must send one action per thread.
6437
6438 Care must be taken to not resume threads/processes the server
6439 side already told us are stopped, but the core doesn't know about
6440 yet, because the events are still in the vStopped notification
6441 queue. For example:
6442
6443 #1 => vCont s:p1.1;c
6444 #2 <= OK
6445 #3 <= %Stopped T05 p1.1
6446 #4 => vStopped
6447 #5 <= T05 p1.2
6448 #6 => vStopped
6449 #7 <= OK
6450 #8 (infrun handles the stop for p1.1 and continues stepping)
6451 #9 => vCont s:p1.1;c
6452
6453 The last vCont above would resume thread p1.2 by mistake, because
6454 the server has no idea that the event for p1.2 had not been
6455 handled yet.
6456
6457 The server side must similarly ignore resume actions for the
6458 thread that has a pending %Stopped notification (and any other
6459 threads with events pending), until GDB acks the notification
6460 with vStopped. Otherwise, e.g., the following case is
6461 mishandled:
6462
6463 #1 => g (or any other packet)
6464 #2 <= [registers]
6465 #3 <= %Stopped T05 p1.2
6466 #4 => vCont s:p1.1;c
6467 #5 <= OK
6468
6469 Above, the server must not resume thread p1.2. GDB can't know
6470 that p1.2 stopped until it acks the %Stopped notification, and
6471 since from GDB's perspective all threads should be running, it
6472 sends a "c" action.
6473
6474 Finally, special care must also be given to handling fork/vfork
6475 events. A (v)fork event actually tells us that two processes
6476 stopped -- the parent and the child. Until we follow the fork,
6477 we must not resume the child. Therefore, if we have a pending
6478 fork follow, we must not send a global wildcard resume action
6479 (vCont;c). We can still send process-wide wildcards though. */
6480
6481 /* Start by assuming a global wildcard (vCont;c) is possible. */
6482 may_global_wildcard_vcont = 1;
6483
6484 /* And assume every process is individually wildcard-able too. */
6485 for (inferior *inf : all_non_exited_inferiors ())
6486 {
6487 remote_inferior *priv = get_remote_inferior (inf);
6488
6489 priv->may_wildcard_vcont = true;
6490 }
6491
6492 /* Check for any pending events (not reported or processed yet) and
6493 disable process and global wildcard resumes appropriately. */
6494 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6495
6496 for (thread_info *tp : all_non_exited_threads ())
6497 {
6498 /* If a thread of a process is not meant to be resumed, then we
6499 can't wildcard that process. */
6500 if (!tp->executing)
6501 {
6502 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6503
6504 /* And if we can't wildcard a process, we can't wildcard
6505 everything either. */
6506 may_global_wildcard_vcont = 0;
6507 continue;
6508 }
6509
6510 /* If a thread is the parent of an unfollowed fork, then we
6511 can't do a global wildcard, as that would resume the fork
6512 child. */
6513 if (is_pending_fork_parent_thread (tp))
6514 may_global_wildcard_vcont = 0;
6515 }
6516
6517 /* Now let's build the vCont packet(s). Actions must be appended
6518 from narrower to wider scopes (thread -> process -> global). If
6519 we end up with too many actions for a single packet vcont_builder
6520 flushes the current vCont packet to the remote side and starts a
6521 new one. */
6522 struct vcont_builder vcont_builder (this);
6523
6524 /* Threads first. */
6525 for (thread_info *tp : all_non_exited_threads ())
6526 {
6527 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6528
6529 if (!tp->executing || remote_thr->vcont_resumed)
6530 continue;
6531
6532 gdb_assert (!thread_is_in_step_over_chain (tp));
6533
6534 if (!remote_thr->last_resume_step
6535 && remote_thr->last_resume_sig == GDB_SIGNAL_0
6536 && get_remote_inferior (tp->inf)->may_wildcard_vcont)
6537 {
6538 /* We'll send a wildcard resume instead. */
6539 remote_thr->vcont_resumed = 1;
6540 continue;
6541 }
6542
6543 vcont_builder.push_action (tp->ptid,
6544 remote_thr->last_resume_step,
6545 remote_thr->last_resume_sig);
6546 remote_thr->vcont_resumed = 1;
6547 }
6548
6549 /* Now check whether we can send any process-wide wildcard. This is
6550 to avoid sending a global wildcard in the case nothing is
6551 supposed to be resumed. */
6552 any_process_wildcard = 0;
6553
6554 for (inferior *inf : all_non_exited_inferiors ())
6555 {
6556 if (get_remote_inferior (inf)->may_wildcard_vcont)
6557 {
6558 any_process_wildcard = 1;
6559 break;
6560 }
6561 }
6562
6563 if (any_process_wildcard)
6564 {
6565 /* If all processes are wildcard-able, then send a single "c"
6566 action, otherwise, send an "all (-1) threads of process"
6567 continue action for each running process, if any. */
6568 if (may_global_wildcard_vcont)
6569 {
6570 vcont_builder.push_action (minus_one_ptid,
6571 false, GDB_SIGNAL_0);
6572 }
6573 else
6574 {
6575 for (inferior *inf : all_non_exited_inferiors ())
6576 {
6577 if (get_remote_inferior (inf)->may_wildcard_vcont)
6578 {
6579 vcont_builder.push_action (ptid_t (inf->pid),
6580 false, GDB_SIGNAL_0);
6581 }
6582 }
6583 }
6584 }
6585
6586 vcont_builder.flush ();
6587 }
6588
6589 \f
6590
6591 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6592 thread, all threads of a remote process, or all threads of all
6593 processes. */
6594
6595 void
6596 remote_target::remote_stop_ns (ptid_t ptid)
6597 {
6598 struct remote_state *rs = get_remote_state ();
6599 char *p = rs->buf.data ();
6600 char *endp = p + get_remote_packet_size ();
6601
6602 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6603 remote_vcont_probe ();
6604
6605 if (!rs->supports_vCont.t)
6606 error (_("Remote server does not support stopping threads"));
6607
6608 if (ptid == minus_one_ptid
6609 || (!remote_multi_process_p (rs) && ptid.is_pid ()))
6610 p += xsnprintf (p, endp - p, "vCont;t");
6611 else
6612 {
6613 ptid_t nptid;
6614
6615 p += xsnprintf (p, endp - p, "vCont;t:");
6616
6617 if (ptid.is_pid ())
6618 /* All (-1) threads of process. */
6619 nptid = ptid_t (ptid.pid (), -1, 0);
6620 else
6621 {
6622 /* Small optimization: if we already have a stop reply for
6623 this thread, no use in telling the stub we want this
6624 stopped. */
6625 if (peek_stop_reply (ptid))
6626 return;
6627
6628 nptid = ptid;
6629 }
6630
6631 write_ptid (p, endp, nptid);
6632 }
6633
6634 /* In non-stop, we get an immediate OK reply. The stop reply will
6635 come in asynchronously by notification. */
6636 putpkt (rs->buf);
6637 getpkt (&rs->buf, 0);
6638 if (strcmp (rs->buf.data (), "OK") != 0)
6639 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid).c_str (),
6640 rs->buf.data ());
6641 }
6642
6643 /* All-stop version of target_interrupt. Sends a break or a ^C to
6644 interrupt the remote target. It is undefined which thread of which
6645 process reports the interrupt. */
6646
6647 void
6648 remote_target::remote_interrupt_as ()
6649 {
6650 struct remote_state *rs = get_remote_state ();
6651
6652 rs->ctrlc_pending_p = 1;
6653
6654 /* If the inferior is stopped already, but the core didn't know
6655 about it yet, just ignore the request. The cached wait status
6656 will be collected in remote_wait. */
6657 if (rs->cached_wait_status)
6658 return;
6659
6660 /* Send interrupt_sequence to remote target. */
6661 send_interrupt_sequence ();
6662 }
6663
6664 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6665 the remote target. It is undefined which thread of which process
6666 reports the interrupt. Throws an error if the packet is not
6667 supported by the server. */
6668
6669 void
6670 remote_target::remote_interrupt_ns ()
6671 {
6672 struct remote_state *rs = get_remote_state ();
6673 char *p = rs->buf.data ();
6674 char *endp = p + get_remote_packet_size ();
6675
6676 xsnprintf (p, endp - p, "vCtrlC");
6677
6678 /* In non-stop, we get an immediate OK reply. The stop reply will
6679 come in asynchronously by notification. */
6680 putpkt (rs->buf);
6681 getpkt (&rs->buf, 0);
6682
6683 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6684 {
6685 case PACKET_OK:
6686 break;
6687 case PACKET_UNKNOWN:
6688 error (_("No support for interrupting the remote target."));
6689 case PACKET_ERROR:
6690 error (_("Interrupting target failed: %s"), rs->buf.data ());
6691 }
6692 }
6693
6694 /* Implement the to_stop function for the remote targets. */
6695
6696 void
6697 remote_target::stop (ptid_t ptid)
6698 {
6699 if (remote_debug)
6700 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6701
6702 if (target_is_non_stop_p ())
6703 remote_stop_ns (ptid);
6704 else
6705 {
6706 /* We don't currently have a way to transparently pause the
6707 remote target in all-stop mode. Interrupt it instead. */
6708 remote_interrupt_as ();
6709 }
6710 }
6711
6712 /* Implement the to_interrupt function for the remote targets. */
6713
6714 void
6715 remote_target::interrupt ()
6716 {
6717 if (remote_debug)
6718 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6719
6720 if (target_is_non_stop_p ())
6721 remote_interrupt_ns ();
6722 else
6723 remote_interrupt_as ();
6724 }
6725
6726 /* Implement the to_pass_ctrlc function for the remote targets. */
6727
6728 void
6729 remote_target::pass_ctrlc ()
6730 {
6731 struct remote_state *rs = get_remote_state ();
6732
6733 if (remote_debug)
6734 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6735
6736 /* If we're starting up, we're not fully synced yet. Quit
6737 immediately. */
6738 if (rs->starting_up)
6739 quit ();
6740 /* If ^C has already been sent once, offer to disconnect. */
6741 else if (rs->ctrlc_pending_p)
6742 interrupt_query ();
6743 else
6744 target_interrupt ();
6745 }
6746
6747 /* Ask the user what to do when an interrupt is received. */
6748
6749 void
6750 remote_target::interrupt_query ()
6751 {
6752 struct remote_state *rs = get_remote_state ();
6753
6754 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6755 {
6756 if (query (_("The target is not responding to interrupt requests.\n"
6757 "Stop debugging it? ")))
6758 {
6759 remote_unpush_target ();
6760 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6761 }
6762 }
6763 else
6764 {
6765 if (query (_("Interrupted while waiting for the program.\n"
6766 "Give up waiting? ")))
6767 quit ();
6768 }
6769 }
6770
6771 /* Enable/disable target terminal ownership. Most targets can use
6772 terminal groups to control terminal ownership. Remote targets are
6773 different in that explicit transfer of ownership to/from GDB/target
6774 is required. */
6775
6776 void
6777 remote_target::terminal_inferior ()
6778 {
6779 /* NOTE: At this point we could also register our selves as the
6780 recipient of all input. Any characters typed could then be
6781 passed on down to the target. */
6782 }
6783
6784 void
6785 remote_target::terminal_ours ()
6786 {
6787 }
6788
6789 static void
6790 remote_console_output (const char *msg)
6791 {
6792 const char *p;
6793
6794 for (p = msg; p[0] && p[1]; p += 2)
6795 {
6796 char tb[2];
6797 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6798
6799 tb[0] = c;
6800 tb[1] = 0;
6801 fputs_unfiltered (tb, gdb_stdtarg);
6802 }
6803 gdb_flush (gdb_stdtarg);
6804 }
6805
6806 struct stop_reply : public notif_event
6807 {
6808 ~stop_reply ();
6809
6810 /* The identifier of the thread about this event */
6811 ptid_t ptid;
6812
6813 /* The remote state this event is associated with. When the remote
6814 connection, represented by a remote_state object, is closed,
6815 all the associated stop_reply events should be released. */
6816 struct remote_state *rs;
6817
6818 struct target_waitstatus ws;
6819
6820 /* The architecture associated with the expedited registers. */
6821 gdbarch *arch;
6822
6823 /* Expedited registers. This makes remote debugging a bit more
6824 efficient for those targets that provide critical registers as
6825 part of their normal status mechanism (as another roundtrip to
6826 fetch them is avoided). */
6827 std::vector<cached_reg_t> regcache;
6828
6829 enum target_stop_reason stop_reason;
6830
6831 CORE_ADDR watch_data_address;
6832
6833 int core;
6834 };
6835
6836 /* Return the length of the stop reply queue. */
6837
6838 int
6839 remote_target::stop_reply_queue_length ()
6840 {
6841 remote_state *rs = get_remote_state ();
6842 return rs->stop_reply_queue.size ();
6843 }
6844
6845 static void
6846 remote_notif_stop_parse (remote_target *remote,
6847 struct notif_client *self, const char *buf,
6848 struct notif_event *event)
6849 {
6850 remote->remote_parse_stop_reply (buf, (struct stop_reply *) event);
6851 }
6852
6853 static void
6854 remote_notif_stop_ack (remote_target *remote,
6855 struct notif_client *self, const char *buf,
6856 struct notif_event *event)
6857 {
6858 struct stop_reply *stop_reply = (struct stop_reply *) event;
6859
6860 /* acknowledge */
6861 putpkt (remote, self->ack_command);
6862
6863 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6864 {
6865 /* We got an unknown stop reply. */
6866 error (_("Unknown stop reply"));
6867 }
6868
6869 remote->push_stop_reply (stop_reply);
6870 }
6871
6872 static int
6873 remote_notif_stop_can_get_pending_events (remote_target *remote,
6874 struct notif_client *self)
6875 {
6876 /* We can't get pending events in remote_notif_process for
6877 notification stop, and we have to do this in remote_wait_ns
6878 instead. If we fetch all queued events from stub, remote stub
6879 may exit and we have no chance to process them back in
6880 remote_wait_ns. */
6881 remote_state *rs = remote->get_remote_state ();
6882 mark_async_event_handler (rs->remote_async_inferior_event_token);
6883 return 0;
6884 }
6885
6886 stop_reply::~stop_reply ()
6887 {
6888 for (cached_reg_t &reg : regcache)
6889 xfree (reg.data);
6890 }
6891
6892 static notif_event_up
6893 remote_notif_stop_alloc_reply ()
6894 {
6895 return notif_event_up (new struct stop_reply ());
6896 }
6897
6898 /* A client of notification Stop. */
6899
6900 struct notif_client notif_client_stop =
6901 {
6902 "Stop",
6903 "vStopped",
6904 remote_notif_stop_parse,
6905 remote_notif_stop_ack,
6906 remote_notif_stop_can_get_pending_events,
6907 remote_notif_stop_alloc_reply,
6908 REMOTE_NOTIF_STOP,
6909 };
6910
6911 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
6912 the pid of the process that owns the threads we want to check, or
6913 -1 if we want to check all threads. */
6914
6915 static int
6916 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6917 ptid_t thread_ptid)
6918 {
6919 if (ws->kind == TARGET_WAITKIND_FORKED
6920 || ws->kind == TARGET_WAITKIND_VFORKED)
6921 {
6922 if (event_pid == -1 || event_pid == thread_ptid.pid ())
6923 return 1;
6924 }
6925
6926 return 0;
6927 }
6928
6929 /* Return the thread's pending status used to determine whether the
6930 thread is a fork parent stopped at a fork event. */
6931
6932 static struct target_waitstatus *
6933 thread_pending_fork_status (struct thread_info *thread)
6934 {
6935 if (thread->suspend.waitstatus_pending_p)
6936 return &thread->suspend.waitstatus;
6937 else
6938 return &thread->pending_follow;
6939 }
6940
6941 /* Determine if THREAD is a pending fork parent thread. */
6942
6943 static int
6944 is_pending_fork_parent_thread (struct thread_info *thread)
6945 {
6946 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6947 int pid = -1;
6948
6949 return is_pending_fork_parent (ws, pid, thread->ptid);
6950 }
6951
6952 /* If CONTEXT contains any fork child threads that have not been
6953 reported yet, remove them from the CONTEXT list. If such a
6954 thread exists it is because we are stopped at a fork catchpoint
6955 and have not yet called follow_fork, which will set up the
6956 host-side data structures for the new process. */
6957
6958 void
6959 remote_target::remove_new_fork_children (threads_listing_context *context)
6960 {
6961 int pid = -1;
6962 struct notif_client *notif = &notif_client_stop;
6963
6964 /* For any threads stopped at a fork event, remove the corresponding
6965 fork child threads from the CONTEXT list. */
6966 for (thread_info *thread : all_non_exited_threads ())
6967 {
6968 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6969
6970 if (is_pending_fork_parent (ws, pid, thread->ptid))
6971 context->remove_thread (ws->value.related_pid);
6972 }
6973
6974 /* Check for any pending fork events (not reported or processed yet)
6975 in process PID and remove those fork child threads from the
6976 CONTEXT list as well. */
6977 remote_notif_get_pending_events (notif);
6978 for (auto &event : get_remote_state ()->stop_reply_queue)
6979 if (event->ws.kind == TARGET_WAITKIND_FORKED
6980 || event->ws.kind == TARGET_WAITKIND_VFORKED
6981 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
6982 context->remove_thread (event->ws.value.related_pid);
6983 }
6984
6985 /* Check whether any event pending in the vStopped queue would prevent
6986 a global or process wildcard vCont action. Clear
6987 *may_global_wildcard if we can't do a global wildcard (vCont;c),
6988 and clear the event inferior's may_wildcard_vcont flag if we can't
6989 do a process-wide wildcard resume (vCont;c:pPID.-1). */
6990
6991 void
6992 remote_target::check_pending_events_prevent_wildcard_vcont
6993 (int *may_global_wildcard)
6994 {
6995 struct notif_client *notif = &notif_client_stop;
6996
6997 remote_notif_get_pending_events (notif);
6998 for (auto &event : get_remote_state ()->stop_reply_queue)
6999 {
7000 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
7001 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
7002 continue;
7003
7004 if (event->ws.kind == TARGET_WAITKIND_FORKED
7005 || event->ws.kind == TARGET_WAITKIND_VFORKED)
7006 *may_global_wildcard = 0;
7007
7008 struct inferior *inf = find_inferior_ptid (event->ptid);
7009
7010 /* This may be the first time we heard about this process.
7011 Regardless, we must not do a global wildcard resume, otherwise
7012 we'd resume this process too. */
7013 *may_global_wildcard = 0;
7014 if (inf != NULL)
7015 get_remote_inferior (inf)->may_wildcard_vcont = false;
7016 }
7017 }
7018
7019 /* Discard all pending stop replies of inferior INF. */
7020
7021 void
7022 remote_target::discard_pending_stop_replies (struct inferior *inf)
7023 {
7024 struct stop_reply *reply;
7025 struct remote_state *rs = get_remote_state ();
7026 struct remote_notif_state *rns = rs->notif_state;
7027
7028 /* This function can be notified when an inferior exists. When the
7029 target is not remote, the notification state is NULL. */
7030 if (rs->remote_desc == NULL)
7031 return;
7032
7033 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
7034
7035 /* Discard the in-flight notification. */
7036 if (reply != NULL && reply->ptid.pid () == inf->pid)
7037 {
7038 delete reply;
7039 rns->pending_event[notif_client_stop.id] = NULL;
7040 }
7041
7042 /* Discard the stop replies we have already pulled with
7043 vStopped. */
7044 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7045 rs->stop_reply_queue.end (),
7046 [=] (const stop_reply_up &event)
7047 {
7048 return event->ptid.pid () == inf->pid;
7049 });
7050 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7051 }
7052
7053 /* Discard the stop replies for RS in stop_reply_queue. */
7054
7055 void
7056 remote_target::discard_pending_stop_replies_in_queue ()
7057 {
7058 remote_state *rs = get_remote_state ();
7059
7060 /* Discard the stop replies we have already pulled with
7061 vStopped. */
7062 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7063 rs->stop_reply_queue.end (),
7064 [=] (const stop_reply_up &event)
7065 {
7066 return event->rs == rs;
7067 });
7068 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7069 }
7070
7071 /* Remove the first reply in 'stop_reply_queue' which matches
7072 PTID. */
7073
7074 struct stop_reply *
7075 remote_target::remote_notif_remove_queued_reply (ptid_t ptid)
7076 {
7077 remote_state *rs = get_remote_state ();
7078
7079 auto iter = std::find_if (rs->stop_reply_queue.begin (),
7080 rs->stop_reply_queue.end (),
7081 [=] (const stop_reply_up &event)
7082 {
7083 return event->ptid.matches (ptid);
7084 });
7085 struct stop_reply *result;
7086 if (iter == rs->stop_reply_queue.end ())
7087 result = nullptr;
7088 else
7089 {
7090 result = iter->release ();
7091 rs->stop_reply_queue.erase (iter);
7092 }
7093
7094 if (notif_debug)
7095 fprintf_unfiltered (gdb_stdlog,
7096 "notif: discard queued event: 'Stop' in %s\n",
7097 target_pid_to_str (ptid).c_str ());
7098
7099 return result;
7100 }
7101
7102 /* Look for a queued stop reply belonging to PTID. If one is found,
7103 remove it from the queue, and return it. Returns NULL if none is
7104 found. If there are still queued events left to process, tell the
7105 event loop to get back to target_wait soon. */
7106
7107 struct stop_reply *
7108 remote_target::queued_stop_reply (ptid_t ptid)
7109 {
7110 remote_state *rs = get_remote_state ();
7111 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
7112
7113 if (!rs->stop_reply_queue.empty ())
7114 {
7115 /* There's still at least an event left. */
7116 mark_async_event_handler (rs->remote_async_inferior_event_token);
7117 }
7118
7119 return r;
7120 }
7121
7122 /* Push a fully parsed stop reply in the stop reply queue. Since we
7123 know that we now have at least one queued event left to pass to the
7124 core side, tell the event loop to get back to target_wait soon. */
7125
7126 void
7127 remote_target::push_stop_reply (struct stop_reply *new_event)
7128 {
7129 remote_state *rs = get_remote_state ();
7130 rs->stop_reply_queue.push_back (stop_reply_up (new_event));
7131
7132 if (notif_debug)
7133 fprintf_unfiltered (gdb_stdlog,
7134 "notif: push 'Stop' %s to queue %d\n",
7135 target_pid_to_str (new_event->ptid).c_str (),
7136 int (rs->stop_reply_queue.size ()));
7137
7138 mark_async_event_handler (rs->remote_async_inferior_event_token);
7139 }
7140
7141 /* Returns true if we have a stop reply for PTID. */
7142
7143 int
7144 remote_target::peek_stop_reply (ptid_t ptid)
7145 {
7146 remote_state *rs = get_remote_state ();
7147 for (auto &event : rs->stop_reply_queue)
7148 if (ptid == event->ptid
7149 && event->ws.kind == TARGET_WAITKIND_STOPPED)
7150 return 1;
7151 return 0;
7152 }
7153
7154 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7155 starting with P and ending with PEND matches PREFIX. */
7156
7157 static int
7158 strprefix (const char *p, const char *pend, const char *prefix)
7159 {
7160 for ( ; p < pend; p++, prefix++)
7161 if (*p != *prefix)
7162 return 0;
7163 return *prefix == '\0';
7164 }
7165
7166 /* Parse the stop reply in BUF. Either the function succeeds, and the
7167 result is stored in EVENT, or throws an error. */
7168
7169 void
7170 remote_target::remote_parse_stop_reply (const char *buf, stop_reply *event)
7171 {
7172 remote_arch_state *rsa = NULL;
7173 ULONGEST addr;
7174 const char *p;
7175 int skipregs = 0;
7176
7177 event->ptid = null_ptid;
7178 event->rs = get_remote_state ();
7179 event->ws.kind = TARGET_WAITKIND_IGNORE;
7180 event->ws.value.integer = 0;
7181 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7182 event->regcache.clear ();
7183 event->core = -1;
7184
7185 switch (buf[0])
7186 {
7187 case 'T': /* Status with PC, SP, FP, ... */
7188 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7189 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7190 ss = signal number
7191 n... = register number
7192 r... = register contents
7193 */
7194
7195 p = &buf[3]; /* after Txx */
7196 while (*p)
7197 {
7198 const char *p1;
7199 int fieldsize;
7200
7201 p1 = strchr (p, ':');
7202 if (p1 == NULL)
7203 error (_("Malformed packet(a) (missing colon): %s\n\
7204 Packet: '%s'\n"),
7205 p, buf);
7206 if (p == p1)
7207 error (_("Malformed packet(a) (missing register number): %s\n\
7208 Packet: '%s'\n"),
7209 p, buf);
7210
7211 /* Some "registers" are actually extended stop information.
7212 Note if you're adding a new entry here: GDB 7.9 and
7213 earlier assume that all register "numbers" that start
7214 with an hex digit are real register numbers. Make sure
7215 the server only sends such a packet if it knows the
7216 client understands it. */
7217
7218 if (strprefix (p, p1, "thread"))
7219 event->ptid = read_ptid (++p1, &p);
7220 else if (strprefix (p, p1, "syscall_entry"))
7221 {
7222 ULONGEST sysno;
7223
7224 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
7225 p = unpack_varlen_hex (++p1, &sysno);
7226 event->ws.value.syscall_number = (int) sysno;
7227 }
7228 else if (strprefix (p, p1, "syscall_return"))
7229 {
7230 ULONGEST sysno;
7231
7232 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
7233 p = unpack_varlen_hex (++p1, &sysno);
7234 event->ws.value.syscall_number = (int) sysno;
7235 }
7236 else if (strprefix (p, p1, "watch")
7237 || strprefix (p, p1, "rwatch")
7238 || strprefix (p, p1, "awatch"))
7239 {
7240 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7241 p = unpack_varlen_hex (++p1, &addr);
7242 event->watch_data_address = (CORE_ADDR) addr;
7243 }
7244 else if (strprefix (p, p1, "swbreak"))
7245 {
7246 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7247
7248 /* Make sure the stub doesn't forget to indicate support
7249 with qSupported. */
7250 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7251 error (_("Unexpected swbreak stop reason"));
7252
7253 /* The value part is documented as "must be empty",
7254 though we ignore it, in case we ever decide to make
7255 use of it in a backward compatible way. */
7256 p = strchrnul (p1 + 1, ';');
7257 }
7258 else if (strprefix (p, p1, "hwbreak"))
7259 {
7260 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7261
7262 /* Make sure the stub doesn't forget to indicate support
7263 with qSupported. */
7264 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7265 error (_("Unexpected hwbreak stop reason"));
7266
7267 /* See above. */
7268 p = strchrnul (p1 + 1, ';');
7269 }
7270 else if (strprefix (p, p1, "library"))
7271 {
7272 event->ws.kind = TARGET_WAITKIND_LOADED;
7273 p = strchrnul (p1 + 1, ';');
7274 }
7275 else if (strprefix (p, p1, "replaylog"))
7276 {
7277 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
7278 /* p1 will indicate "begin" or "end", but it makes
7279 no difference for now, so ignore it. */
7280 p = strchrnul (p1 + 1, ';');
7281 }
7282 else if (strprefix (p, p1, "core"))
7283 {
7284 ULONGEST c;
7285
7286 p = unpack_varlen_hex (++p1, &c);
7287 event->core = c;
7288 }
7289 else if (strprefix (p, p1, "fork"))
7290 {
7291 event->ws.value.related_pid = read_ptid (++p1, &p);
7292 event->ws.kind = TARGET_WAITKIND_FORKED;
7293 }
7294 else if (strprefix (p, p1, "vfork"))
7295 {
7296 event->ws.value.related_pid = read_ptid (++p1, &p);
7297 event->ws.kind = TARGET_WAITKIND_VFORKED;
7298 }
7299 else if (strprefix (p, p1, "vforkdone"))
7300 {
7301 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
7302 p = strchrnul (p1 + 1, ';');
7303 }
7304 else if (strprefix (p, p1, "exec"))
7305 {
7306 ULONGEST ignored;
7307 int pathlen;
7308
7309 /* Determine the length of the execd pathname. */
7310 p = unpack_varlen_hex (++p1, &ignored);
7311 pathlen = (p - p1) / 2;
7312
7313 /* Save the pathname for event reporting and for
7314 the next run command. */
7315 gdb::unique_xmalloc_ptr<char[]> pathname
7316 ((char *) xmalloc (pathlen + 1));
7317 hex2bin (p1, (gdb_byte *) pathname.get (), pathlen);
7318 pathname[pathlen] = '\0';
7319
7320 /* This is freed during event handling. */
7321 event->ws.value.execd_pathname = pathname.release ();
7322 event->ws.kind = TARGET_WAITKIND_EXECD;
7323
7324 /* Skip the registers included in this packet, since
7325 they may be for an architecture different from the
7326 one used by the original program. */
7327 skipregs = 1;
7328 }
7329 else if (strprefix (p, p1, "create"))
7330 {
7331 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
7332 p = strchrnul (p1 + 1, ';');
7333 }
7334 else
7335 {
7336 ULONGEST pnum;
7337 const char *p_temp;
7338
7339 if (skipregs)
7340 {
7341 p = strchrnul (p1 + 1, ';');
7342 p++;
7343 continue;
7344 }
7345
7346 /* Maybe a real ``P'' register number. */
7347 p_temp = unpack_varlen_hex (p, &pnum);
7348 /* If the first invalid character is the colon, we got a
7349 register number. Otherwise, it's an unknown stop
7350 reason. */
7351 if (p_temp == p1)
7352 {
7353 /* If we haven't parsed the event's thread yet, find
7354 it now, in order to find the architecture of the
7355 reported expedited registers. */
7356 if (event->ptid == null_ptid)
7357 {
7358 const char *thr = strstr (p1 + 1, ";thread:");
7359 if (thr != NULL)
7360 event->ptid = read_ptid (thr + strlen (";thread:"),
7361 NULL);
7362 else
7363 {
7364 /* Either the current thread hasn't changed,
7365 or the inferior is not multi-threaded.
7366 The event must be for the thread we last
7367 set as (or learned as being) current. */
7368 event->ptid = event->rs->general_thread;
7369 }
7370 }
7371
7372 if (rsa == NULL)
7373 {
7374 inferior *inf = (event->ptid == null_ptid
7375 ? NULL
7376 : find_inferior_ptid (event->ptid));
7377 /* If this is the first time we learn anything
7378 about this process, skip the registers
7379 included in this packet, since we don't yet
7380 know which architecture to use to parse them.
7381 We'll determine the architecture later when
7382 we process the stop reply and retrieve the
7383 target description, via
7384 remote_notice_new_inferior ->
7385 post_create_inferior. */
7386 if (inf == NULL)
7387 {
7388 p = strchrnul (p1 + 1, ';');
7389 p++;
7390 continue;
7391 }
7392
7393 event->arch = inf->gdbarch;
7394 rsa = event->rs->get_remote_arch_state (event->arch);
7395 }
7396
7397 packet_reg *reg
7398 = packet_reg_from_pnum (event->arch, rsa, pnum);
7399 cached_reg_t cached_reg;
7400
7401 if (reg == NULL)
7402 error (_("Remote sent bad register number %s: %s\n\
7403 Packet: '%s'\n"),
7404 hex_string (pnum), p, buf);
7405
7406 cached_reg.num = reg->regnum;
7407 cached_reg.data = (gdb_byte *)
7408 xmalloc (register_size (event->arch, reg->regnum));
7409
7410 p = p1 + 1;
7411 fieldsize = hex2bin (p, cached_reg.data,
7412 register_size (event->arch, reg->regnum));
7413 p += 2 * fieldsize;
7414 if (fieldsize < register_size (event->arch, reg->regnum))
7415 warning (_("Remote reply is too short: %s"), buf);
7416
7417 event->regcache.push_back (cached_reg);
7418 }
7419 else
7420 {
7421 /* Not a number. Silently skip unknown optional
7422 info. */
7423 p = strchrnul (p1 + 1, ';');
7424 }
7425 }
7426
7427 if (*p != ';')
7428 error (_("Remote register badly formatted: %s\nhere: %s"),
7429 buf, p);
7430 ++p;
7431 }
7432
7433 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7434 break;
7435
7436 /* fall through */
7437 case 'S': /* Old style status, just signal only. */
7438 {
7439 int sig;
7440
7441 event->ws.kind = TARGET_WAITKIND_STOPPED;
7442 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7443 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7444 event->ws.value.sig = (enum gdb_signal) sig;
7445 else
7446 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7447 }
7448 break;
7449 case 'w': /* Thread exited. */
7450 {
7451 ULONGEST value;
7452
7453 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7454 p = unpack_varlen_hex (&buf[1], &value);
7455 event->ws.value.integer = value;
7456 if (*p != ';')
7457 error (_("stop reply packet badly formatted: %s"), buf);
7458 event->ptid = read_ptid (++p, NULL);
7459 break;
7460 }
7461 case 'W': /* Target exited. */
7462 case 'X':
7463 {
7464 ULONGEST value;
7465
7466 /* GDB used to accept only 2 hex chars here. Stubs should
7467 only send more if they detect GDB supports multi-process
7468 support. */
7469 p = unpack_varlen_hex (&buf[1], &value);
7470
7471 if (buf[0] == 'W')
7472 {
7473 /* The remote process exited. */
7474 event->ws.kind = TARGET_WAITKIND_EXITED;
7475 event->ws.value.integer = value;
7476 }
7477 else
7478 {
7479 /* The remote process exited with a signal. */
7480 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7481 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7482 event->ws.value.sig = (enum gdb_signal) value;
7483 else
7484 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7485 }
7486
7487 /* If no process is specified, return null_ptid, and let the
7488 caller figure out the right process to use. */
7489 int pid = 0;
7490 if (*p == '\0')
7491 ;
7492 else if (*p == ';')
7493 {
7494 p++;
7495
7496 if (*p == '\0')
7497 ;
7498 else if (startswith (p, "process:"))
7499 {
7500 ULONGEST upid;
7501
7502 p += sizeof ("process:") - 1;
7503 unpack_varlen_hex (p, &upid);
7504 pid = upid;
7505 }
7506 else
7507 error (_("unknown stop reply packet: %s"), buf);
7508 }
7509 else
7510 error (_("unknown stop reply packet: %s"), buf);
7511 event->ptid = ptid_t (pid);
7512 }
7513 break;
7514 case 'N':
7515 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7516 event->ptid = minus_one_ptid;
7517 break;
7518 }
7519
7520 if (target_is_non_stop_p () && event->ptid == null_ptid)
7521 error (_("No process or thread specified in stop reply: %s"), buf);
7522 }
7523
7524 /* When the stub wants to tell GDB about a new notification reply, it
7525 sends a notification (%Stop, for example). Those can come it at
7526 any time, hence, we have to make sure that any pending
7527 putpkt/getpkt sequence we're making is finished, before querying
7528 the stub for more events with the corresponding ack command
7529 (vStopped, for example). E.g., if we started a vStopped sequence
7530 immediately upon receiving the notification, something like this
7531 could happen:
7532
7533 1.1) --> Hg 1
7534 1.2) <-- OK
7535 1.3) --> g
7536 1.4) <-- %Stop
7537 1.5) --> vStopped
7538 1.6) <-- (registers reply to step #1.3)
7539
7540 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7541 query.
7542
7543 To solve this, whenever we parse a %Stop notification successfully,
7544 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7545 doing whatever we were doing:
7546
7547 2.1) --> Hg 1
7548 2.2) <-- OK
7549 2.3) --> g
7550 2.4) <-- %Stop
7551 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7552 2.5) <-- (registers reply to step #2.3)
7553
7554 Eventually after step #2.5, we return to the event loop, which
7555 notices there's an event on the
7556 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7557 associated callback --- the function below. At this point, we're
7558 always safe to start a vStopped sequence. :
7559
7560 2.6) --> vStopped
7561 2.7) <-- T05 thread:2
7562 2.8) --> vStopped
7563 2.9) --> OK
7564 */
7565
7566 void
7567 remote_target::remote_notif_get_pending_events (notif_client *nc)
7568 {
7569 struct remote_state *rs = get_remote_state ();
7570
7571 if (rs->notif_state->pending_event[nc->id] != NULL)
7572 {
7573 if (notif_debug)
7574 fprintf_unfiltered (gdb_stdlog,
7575 "notif: process: '%s' ack pending event\n",
7576 nc->name);
7577
7578 /* acknowledge */
7579 nc->ack (this, nc, rs->buf.data (),
7580 rs->notif_state->pending_event[nc->id]);
7581 rs->notif_state->pending_event[nc->id] = NULL;
7582
7583 while (1)
7584 {
7585 getpkt (&rs->buf, 0);
7586 if (strcmp (rs->buf.data (), "OK") == 0)
7587 break;
7588 else
7589 remote_notif_ack (this, nc, rs->buf.data ());
7590 }
7591 }
7592 else
7593 {
7594 if (notif_debug)
7595 fprintf_unfiltered (gdb_stdlog,
7596 "notif: process: '%s' no pending reply\n",
7597 nc->name);
7598 }
7599 }
7600
7601 /* Wrapper around remote_target::remote_notif_get_pending_events to
7602 avoid having to export the whole remote_target class. */
7603
7604 void
7605 remote_notif_get_pending_events (remote_target *remote, notif_client *nc)
7606 {
7607 remote->remote_notif_get_pending_events (nc);
7608 }
7609
7610 /* Called when it is decided that STOP_REPLY holds the info of the
7611 event that is to be returned to the core. This function always
7612 destroys STOP_REPLY. */
7613
7614 ptid_t
7615 remote_target::process_stop_reply (struct stop_reply *stop_reply,
7616 struct target_waitstatus *status)
7617 {
7618 ptid_t ptid;
7619
7620 *status = stop_reply->ws;
7621 ptid = stop_reply->ptid;
7622
7623 /* If no thread/process was reported by the stub, assume the current
7624 inferior. */
7625 if (ptid == null_ptid)
7626 ptid = inferior_ptid;
7627
7628 if (status->kind != TARGET_WAITKIND_EXITED
7629 && status->kind != TARGET_WAITKIND_SIGNALLED
7630 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7631 {
7632 /* Expedited registers. */
7633 if (!stop_reply->regcache.empty ())
7634 {
7635 struct regcache *regcache
7636 = get_thread_arch_regcache (ptid, stop_reply->arch);
7637
7638 for (cached_reg_t &reg : stop_reply->regcache)
7639 {
7640 regcache->raw_supply (reg.num, reg.data);
7641 xfree (reg.data);
7642 }
7643
7644 stop_reply->regcache.clear ();
7645 }
7646
7647 remote_notice_new_inferior (ptid, 0);
7648 remote_thread_info *remote_thr = get_remote_thread_info (ptid);
7649 remote_thr->core = stop_reply->core;
7650 remote_thr->stop_reason = stop_reply->stop_reason;
7651 remote_thr->watch_data_address = stop_reply->watch_data_address;
7652 remote_thr->vcont_resumed = 0;
7653 }
7654
7655 delete stop_reply;
7656 return ptid;
7657 }
7658
7659 /* The non-stop mode version of target_wait. */
7660
7661 ptid_t
7662 remote_target::wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
7663 {
7664 struct remote_state *rs = get_remote_state ();
7665 struct stop_reply *stop_reply;
7666 int ret;
7667 int is_notif = 0;
7668
7669 /* If in non-stop mode, get out of getpkt even if a
7670 notification is received. */
7671
7672 ret = getpkt_or_notif_sane (&rs->buf, 0 /* forever */, &is_notif);
7673 while (1)
7674 {
7675 if (ret != -1 && !is_notif)
7676 switch (rs->buf[0])
7677 {
7678 case 'E': /* Error of some sort. */
7679 /* We're out of sync with the target now. Did it continue
7680 or not? We can't tell which thread it was in non-stop,
7681 so just ignore this. */
7682 warning (_("Remote failure reply: %s"), rs->buf.data ());
7683 break;
7684 case 'O': /* Console output. */
7685 remote_console_output (&rs->buf[1]);
7686 break;
7687 default:
7688 warning (_("Invalid remote reply: %s"), rs->buf.data ());
7689 break;
7690 }
7691
7692 /* Acknowledge a pending stop reply that may have arrived in the
7693 mean time. */
7694 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7695 remote_notif_get_pending_events (&notif_client_stop);
7696
7697 /* If indeed we noticed a stop reply, we're done. */
7698 stop_reply = queued_stop_reply (ptid);
7699 if (stop_reply != NULL)
7700 return process_stop_reply (stop_reply, status);
7701
7702 /* Still no event. If we're just polling for an event, then
7703 return to the event loop. */
7704 if (options & TARGET_WNOHANG)
7705 {
7706 status->kind = TARGET_WAITKIND_IGNORE;
7707 return minus_one_ptid;
7708 }
7709
7710 /* Otherwise do a blocking wait. */
7711 ret = getpkt_or_notif_sane (&rs->buf, 1 /* forever */, &is_notif);
7712 }
7713 }
7714
7715 /* Return the first resumed thread. */
7716
7717 static ptid_t
7718 first_remote_resumed_thread ()
7719 {
7720 for (thread_info *tp : all_non_exited_threads (minus_one_ptid))
7721 if (tp->resumed)
7722 return tp->ptid;
7723 return null_ptid;
7724 }
7725
7726 /* Wait until the remote machine stops, then return, storing status in
7727 STATUS just as `wait' would. */
7728
7729 ptid_t
7730 remote_target::wait_as (ptid_t ptid, target_waitstatus *status, int options)
7731 {
7732 struct remote_state *rs = get_remote_state ();
7733 ptid_t event_ptid = null_ptid;
7734 char *buf;
7735 struct stop_reply *stop_reply;
7736
7737 again:
7738
7739 status->kind = TARGET_WAITKIND_IGNORE;
7740 status->value.integer = 0;
7741
7742 stop_reply = queued_stop_reply (ptid);
7743 if (stop_reply != NULL)
7744 return process_stop_reply (stop_reply, status);
7745
7746 if (rs->cached_wait_status)
7747 /* Use the cached wait status, but only once. */
7748 rs->cached_wait_status = 0;
7749 else
7750 {
7751 int ret;
7752 int is_notif;
7753 int forever = ((options & TARGET_WNOHANG) == 0
7754 && rs->wait_forever_enabled_p);
7755
7756 if (!rs->waiting_for_stop_reply)
7757 {
7758 status->kind = TARGET_WAITKIND_NO_RESUMED;
7759 return minus_one_ptid;
7760 }
7761
7762 /* FIXME: cagney/1999-09-27: If we're in async mode we should
7763 _never_ wait for ever -> test on target_is_async_p().
7764 However, before we do that we need to ensure that the caller
7765 knows how to take the target into/out of async mode. */
7766 ret = getpkt_or_notif_sane (&rs->buf, forever, &is_notif);
7767
7768 /* GDB gets a notification. Return to core as this event is
7769 not interesting. */
7770 if (ret != -1 && is_notif)
7771 return minus_one_ptid;
7772
7773 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7774 return minus_one_ptid;
7775 }
7776
7777 buf = rs->buf.data ();
7778
7779 /* Assume that the target has acknowledged Ctrl-C unless we receive
7780 an 'F' or 'O' packet. */
7781 if (buf[0] != 'F' && buf[0] != 'O')
7782 rs->ctrlc_pending_p = 0;
7783
7784 switch (buf[0])
7785 {
7786 case 'E': /* Error of some sort. */
7787 /* We're out of sync with the target now. Did it continue or
7788 not? Not is more likely, so report a stop. */
7789 rs->waiting_for_stop_reply = 0;
7790
7791 warning (_("Remote failure reply: %s"), buf);
7792 status->kind = TARGET_WAITKIND_STOPPED;
7793 status->value.sig = GDB_SIGNAL_0;
7794 break;
7795 case 'F': /* File-I/O request. */
7796 /* GDB may access the inferior memory while handling the File-I/O
7797 request, but we don't want GDB accessing memory while waiting
7798 for a stop reply. See the comments in putpkt_binary. Set
7799 waiting_for_stop_reply to 0 temporarily. */
7800 rs->waiting_for_stop_reply = 0;
7801 remote_fileio_request (this, buf, rs->ctrlc_pending_p);
7802 rs->ctrlc_pending_p = 0;
7803 /* GDB handled the File-I/O request, and the target is running
7804 again. Keep waiting for events. */
7805 rs->waiting_for_stop_reply = 1;
7806 break;
7807 case 'N': case 'T': case 'S': case 'X': case 'W':
7808 {
7809 /* There is a stop reply to handle. */
7810 rs->waiting_for_stop_reply = 0;
7811
7812 stop_reply
7813 = (struct stop_reply *) remote_notif_parse (this,
7814 &notif_client_stop,
7815 rs->buf.data ());
7816
7817 event_ptid = process_stop_reply (stop_reply, status);
7818 break;
7819 }
7820 case 'O': /* Console output. */
7821 remote_console_output (buf + 1);
7822 break;
7823 case '\0':
7824 if (rs->last_sent_signal != GDB_SIGNAL_0)
7825 {
7826 /* Zero length reply means that we tried 'S' or 'C' and the
7827 remote system doesn't support it. */
7828 target_terminal::ours_for_output ();
7829 printf_filtered
7830 ("Can't send signals to this remote system. %s not sent.\n",
7831 gdb_signal_to_name (rs->last_sent_signal));
7832 rs->last_sent_signal = GDB_SIGNAL_0;
7833 target_terminal::inferior ();
7834
7835 strcpy (buf, rs->last_sent_step ? "s" : "c");
7836 putpkt (buf);
7837 break;
7838 }
7839 /* fallthrough */
7840 default:
7841 warning (_("Invalid remote reply: %s"), buf);
7842 break;
7843 }
7844
7845 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7846 return minus_one_ptid;
7847 else if (status->kind == TARGET_WAITKIND_IGNORE)
7848 {
7849 /* Nothing interesting happened. If we're doing a non-blocking
7850 poll, we're done. Otherwise, go back to waiting. */
7851 if (options & TARGET_WNOHANG)
7852 return minus_one_ptid;
7853 else
7854 goto again;
7855 }
7856 else if (status->kind != TARGET_WAITKIND_EXITED
7857 && status->kind != TARGET_WAITKIND_SIGNALLED)
7858 {
7859 if (event_ptid != null_ptid)
7860 record_currthread (rs, event_ptid);
7861 else
7862 event_ptid = first_remote_resumed_thread ();
7863 }
7864 else
7865 {
7866 /* A process exit. Invalidate our notion of current thread. */
7867 record_currthread (rs, minus_one_ptid);
7868 /* It's possible that the packet did not include a pid. */
7869 if (event_ptid == null_ptid)
7870 event_ptid = first_remote_resumed_thread ();
7871 /* EVENT_PTID could still be NULL_PTID. Double-check. */
7872 if (event_ptid == null_ptid)
7873 event_ptid = magic_null_ptid;
7874 }
7875
7876 return event_ptid;
7877 }
7878
7879 /* Wait until the remote machine stops, then return, storing status in
7880 STATUS just as `wait' would. */
7881
7882 ptid_t
7883 remote_target::wait (ptid_t ptid, struct target_waitstatus *status, int options)
7884 {
7885 ptid_t event_ptid;
7886
7887 if (target_is_non_stop_p ())
7888 event_ptid = wait_ns (ptid, status, options);
7889 else
7890 event_ptid = wait_as (ptid, status, options);
7891
7892 if (target_is_async_p ())
7893 {
7894 remote_state *rs = get_remote_state ();
7895
7896 /* If there are are events left in the queue tell the event loop
7897 to return here. */
7898 if (!rs->stop_reply_queue.empty ())
7899 mark_async_event_handler (rs->remote_async_inferior_event_token);
7900 }
7901
7902 return event_ptid;
7903 }
7904
7905 /* Fetch a single register using a 'p' packet. */
7906
7907 int
7908 remote_target::fetch_register_using_p (struct regcache *regcache,
7909 packet_reg *reg)
7910 {
7911 struct gdbarch *gdbarch = regcache->arch ();
7912 struct remote_state *rs = get_remote_state ();
7913 char *buf, *p;
7914 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7915 int i;
7916
7917 if (packet_support (PACKET_p) == PACKET_DISABLE)
7918 return 0;
7919
7920 if (reg->pnum == -1)
7921 return 0;
7922
7923 p = rs->buf.data ();
7924 *p++ = 'p';
7925 p += hexnumstr (p, reg->pnum);
7926 *p++ = '\0';
7927 putpkt (rs->buf);
7928 getpkt (&rs->buf, 0);
7929
7930 buf = rs->buf.data ();
7931
7932 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_p]))
7933 {
7934 case PACKET_OK:
7935 break;
7936 case PACKET_UNKNOWN:
7937 return 0;
7938 case PACKET_ERROR:
7939 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
7940 gdbarch_register_name (regcache->arch (),
7941 reg->regnum),
7942 buf);
7943 }
7944
7945 /* If this register is unfetchable, tell the regcache. */
7946 if (buf[0] == 'x')
7947 {
7948 regcache->raw_supply (reg->regnum, NULL);
7949 return 1;
7950 }
7951
7952 /* Otherwise, parse and supply the value. */
7953 p = buf;
7954 i = 0;
7955 while (p[0] != 0)
7956 {
7957 if (p[1] == 0)
7958 error (_("fetch_register_using_p: early buf termination"));
7959
7960 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
7961 p += 2;
7962 }
7963 regcache->raw_supply (reg->regnum, regp);
7964 return 1;
7965 }
7966
7967 /* Fetch the registers included in the target's 'g' packet. */
7968
7969 int
7970 remote_target::send_g_packet ()
7971 {
7972 struct remote_state *rs = get_remote_state ();
7973 int buf_len;
7974
7975 xsnprintf (rs->buf.data (), get_remote_packet_size (), "g");
7976 putpkt (rs->buf);
7977 getpkt (&rs->buf, 0);
7978 if (packet_check_result (rs->buf) == PACKET_ERROR)
7979 error (_("Could not read registers; remote failure reply '%s'"),
7980 rs->buf.data ());
7981
7982 /* We can get out of synch in various cases. If the first character
7983 in the buffer is not a hex character, assume that has happened
7984 and try to fetch another packet to read. */
7985 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
7986 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
7987 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
7988 && rs->buf[0] != 'x') /* New: unavailable register value. */
7989 {
7990 if (remote_debug)
7991 fprintf_unfiltered (gdb_stdlog,
7992 "Bad register packet; fetching a new packet\n");
7993 getpkt (&rs->buf, 0);
7994 }
7995
7996 buf_len = strlen (rs->buf.data ());
7997
7998 /* Sanity check the received packet. */
7999 if (buf_len % 2 != 0)
8000 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf.data ());
8001
8002 return buf_len / 2;
8003 }
8004
8005 void
8006 remote_target::process_g_packet (struct regcache *regcache)
8007 {
8008 struct gdbarch *gdbarch = regcache->arch ();
8009 struct remote_state *rs = get_remote_state ();
8010 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8011 int i, buf_len;
8012 char *p;
8013 char *regs;
8014
8015 buf_len = strlen (rs->buf.data ());
8016
8017 /* Further sanity checks, with knowledge of the architecture. */
8018 if (buf_len > 2 * rsa->sizeof_g_packet)
8019 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
8020 "bytes): %s"),
8021 rsa->sizeof_g_packet, buf_len / 2,
8022 rs->buf.data ());
8023
8024 /* Save the size of the packet sent to us by the target. It is used
8025 as a heuristic when determining the max size of packets that the
8026 target can safely receive. */
8027 if (rsa->actual_register_packet_size == 0)
8028 rsa->actual_register_packet_size = buf_len;
8029
8030 /* If this is smaller than we guessed the 'g' packet would be,
8031 update our records. A 'g' reply that doesn't include a register's
8032 value implies either that the register is not available, or that
8033 the 'p' packet must be used. */
8034 if (buf_len < 2 * rsa->sizeof_g_packet)
8035 {
8036 long sizeof_g_packet = buf_len / 2;
8037
8038 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8039 {
8040 long offset = rsa->regs[i].offset;
8041 long reg_size = register_size (gdbarch, i);
8042
8043 if (rsa->regs[i].pnum == -1)
8044 continue;
8045
8046 if (offset >= sizeof_g_packet)
8047 rsa->regs[i].in_g_packet = 0;
8048 else if (offset + reg_size > sizeof_g_packet)
8049 error (_("Truncated register %d in remote 'g' packet"), i);
8050 else
8051 rsa->regs[i].in_g_packet = 1;
8052 }
8053
8054 /* Looks valid enough, we can assume this is the correct length
8055 for a 'g' packet. It's important not to adjust
8056 rsa->sizeof_g_packet if we have truncated registers otherwise
8057 this "if" won't be run the next time the method is called
8058 with a packet of the same size and one of the internal errors
8059 below will trigger instead. */
8060 rsa->sizeof_g_packet = sizeof_g_packet;
8061 }
8062
8063 regs = (char *) alloca (rsa->sizeof_g_packet);
8064
8065 /* Unimplemented registers read as all bits zero. */
8066 memset (regs, 0, rsa->sizeof_g_packet);
8067
8068 /* Reply describes registers byte by byte, each byte encoded as two
8069 hex characters. Suck them all up, then supply them to the
8070 register cacheing/storage mechanism. */
8071
8072 p = rs->buf.data ();
8073 for (i = 0; i < rsa->sizeof_g_packet; i++)
8074 {
8075 if (p[0] == 0 || p[1] == 0)
8076 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
8077 internal_error (__FILE__, __LINE__,
8078 _("unexpected end of 'g' packet reply"));
8079
8080 if (p[0] == 'x' && p[1] == 'x')
8081 regs[i] = 0; /* 'x' */
8082 else
8083 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
8084 p += 2;
8085 }
8086
8087 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8088 {
8089 struct packet_reg *r = &rsa->regs[i];
8090 long reg_size = register_size (gdbarch, i);
8091
8092 if (r->in_g_packet)
8093 {
8094 if ((r->offset + reg_size) * 2 > strlen (rs->buf.data ()))
8095 /* This shouldn't happen - we adjusted in_g_packet above. */
8096 internal_error (__FILE__, __LINE__,
8097 _("unexpected end of 'g' packet reply"));
8098 else if (rs->buf[r->offset * 2] == 'x')
8099 {
8100 gdb_assert (r->offset * 2 < strlen (rs->buf.data ()));
8101 /* The register isn't available, mark it as such (at
8102 the same time setting the value to zero). */
8103 regcache->raw_supply (r->regnum, NULL);
8104 }
8105 else
8106 regcache->raw_supply (r->regnum, regs + r->offset);
8107 }
8108 }
8109 }
8110
8111 void
8112 remote_target::fetch_registers_using_g (struct regcache *regcache)
8113 {
8114 send_g_packet ();
8115 process_g_packet (regcache);
8116 }
8117
8118 /* Make the remote selected traceframe match GDB's selected
8119 traceframe. */
8120
8121 void
8122 remote_target::set_remote_traceframe ()
8123 {
8124 int newnum;
8125 struct remote_state *rs = get_remote_state ();
8126
8127 if (rs->remote_traceframe_number == get_traceframe_number ())
8128 return;
8129
8130 /* Avoid recursion, remote_trace_find calls us again. */
8131 rs->remote_traceframe_number = get_traceframe_number ();
8132
8133 newnum = target_trace_find (tfind_number,
8134 get_traceframe_number (), 0, 0, NULL);
8135
8136 /* Should not happen. If it does, all bets are off. */
8137 if (newnum != get_traceframe_number ())
8138 warning (_("could not set remote traceframe"));
8139 }
8140
8141 void
8142 remote_target::fetch_registers (struct regcache *regcache, int regnum)
8143 {
8144 struct gdbarch *gdbarch = regcache->arch ();
8145 struct remote_state *rs = get_remote_state ();
8146 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8147 int i;
8148
8149 set_remote_traceframe ();
8150 set_general_thread (regcache->ptid ());
8151
8152 if (regnum >= 0)
8153 {
8154 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8155
8156 gdb_assert (reg != NULL);
8157
8158 /* If this register might be in the 'g' packet, try that first -
8159 we are likely to read more than one register. If this is the
8160 first 'g' packet, we might be overly optimistic about its
8161 contents, so fall back to 'p'. */
8162 if (reg->in_g_packet)
8163 {
8164 fetch_registers_using_g (regcache);
8165 if (reg->in_g_packet)
8166 return;
8167 }
8168
8169 if (fetch_register_using_p (regcache, reg))
8170 return;
8171
8172 /* This register is not available. */
8173 regcache->raw_supply (reg->regnum, NULL);
8174
8175 return;
8176 }
8177
8178 fetch_registers_using_g (regcache);
8179
8180 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8181 if (!rsa->regs[i].in_g_packet)
8182 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8183 {
8184 /* This register is not available. */
8185 regcache->raw_supply (i, NULL);
8186 }
8187 }
8188
8189 /* Prepare to store registers. Since we may send them all (using a
8190 'G' request), we have to read out the ones we don't want to change
8191 first. */
8192
8193 void
8194 remote_target::prepare_to_store (struct regcache *regcache)
8195 {
8196 struct remote_state *rs = get_remote_state ();
8197 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8198 int i;
8199
8200 /* Make sure the entire registers array is valid. */
8201 switch (packet_support (PACKET_P))
8202 {
8203 case PACKET_DISABLE:
8204 case PACKET_SUPPORT_UNKNOWN:
8205 /* Make sure all the necessary registers are cached. */
8206 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8207 if (rsa->regs[i].in_g_packet)
8208 regcache->raw_update (rsa->regs[i].regnum);
8209 break;
8210 case PACKET_ENABLE:
8211 break;
8212 }
8213 }
8214
8215 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8216 packet was not recognized. */
8217
8218 int
8219 remote_target::store_register_using_P (const struct regcache *regcache,
8220 packet_reg *reg)
8221 {
8222 struct gdbarch *gdbarch = regcache->arch ();
8223 struct remote_state *rs = get_remote_state ();
8224 /* Try storing a single register. */
8225 char *buf = rs->buf.data ();
8226 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8227 char *p;
8228
8229 if (packet_support (PACKET_P) == PACKET_DISABLE)
8230 return 0;
8231
8232 if (reg->pnum == -1)
8233 return 0;
8234
8235 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8236 p = buf + strlen (buf);
8237 regcache->raw_collect (reg->regnum, regp);
8238 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8239 putpkt (rs->buf);
8240 getpkt (&rs->buf, 0);
8241
8242 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8243 {
8244 case PACKET_OK:
8245 return 1;
8246 case PACKET_ERROR:
8247 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8248 gdbarch_register_name (gdbarch, reg->regnum), rs->buf.data ());
8249 case PACKET_UNKNOWN:
8250 return 0;
8251 default:
8252 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8253 }
8254 }
8255
8256 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8257 contents of the register cache buffer. FIXME: ignores errors. */
8258
8259 void
8260 remote_target::store_registers_using_G (const struct regcache *regcache)
8261 {
8262 struct remote_state *rs = get_remote_state ();
8263 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8264 gdb_byte *regs;
8265 char *p;
8266
8267 /* Extract all the registers in the regcache copying them into a
8268 local buffer. */
8269 {
8270 int i;
8271
8272 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8273 memset (regs, 0, rsa->sizeof_g_packet);
8274 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8275 {
8276 struct packet_reg *r = &rsa->regs[i];
8277
8278 if (r->in_g_packet)
8279 regcache->raw_collect (r->regnum, regs + r->offset);
8280 }
8281 }
8282
8283 /* Command describes registers byte by byte,
8284 each byte encoded as two hex characters. */
8285 p = rs->buf.data ();
8286 *p++ = 'G';
8287 bin2hex (regs, p, rsa->sizeof_g_packet);
8288 putpkt (rs->buf);
8289 getpkt (&rs->buf, 0);
8290 if (packet_check_result (rs->buf) == PACKET_ERROR)
8291 error (_("Could not write registers; remote failure reply '%s'"),
8292 rs->buf.data ());
8293 }
8294
8295 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8296 of the register cache buffer. FIXME: ignores errors. */
8297
8298 void
8299 remote_target::store_registers (struct regcache *regcache, int regnum)
8300 {
8301 struct gdbarch *gdbarch = regcache->arch ();
8302 struct remote_state *rs = get_remote_state ();
8303 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8304 int i;
8305
8306 set_remote_traceframe ();
8307 set_general_thread (regcache->ptid ());
8308
8309 if (regnum >= 0)
8310 {
8311 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8312
8313 gdb_assert (reg != NULL);
8314
8315 /* Always prefer to store registers using the 'P' packet if
8316 possible; we often change only a small number of registers.
8317 Sometimes we change a larger number; we'd need help from a
8318 higher layer to know to use 'G'. */
8319 if (store_register_using_P (regcache, reg))
8320 return;
8321
8322 /* For now, don't complain if we have no way to write the
8323 register. GDB loses track of unavailable registers too
8324 easily. Some day, this may be an error. We don't have
8325 any way to read the register, either... */
8326 if (!reg->in_g_packet)
8327 return;
8328
8329 store_registers_using_G (regcache);
8330 return;
8331 }
8332
8333 store_registers_using_G (regcache);
8334
8335 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8336 if (!rsa->regs[i].in_g_packet)
8337 if (!store_register_using_P (regcache, &rsa->regs[i]))
8338 /* See above for why we do not issue an error here. */
8339 continue;
8340 }
8341 \f
8342
8343 /* Return the number of hex digits in num. */
8344
8345 static int
8346 hexnumlen (ULONGEST num)
8347 {
8348 int i;
8349
8350 for (i = 0; num != 0; i++)
8351 num >>= 4;
8352
8353 return std::max (i, 1);
8354 }
8355
8356 /* Set BUF to the minimum number of hex digits representing NUM. */
8357
8358 static int
8359 hexnumstr (char *buf, ULONGEST num)
8360 {
8361 int len = hexnumlen (num);
8362
8363 return hexnumnstr (buf, num, len);
8364 }
8365
8366
8367 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8368
8369 static int
8370 hexnumnstr (char *buf, ULONGEST num, int width)
8371 {
8372 int i;
8373
8374 buf[width] = '\0';
8375
8376 for (i = width - 1; i >= 0; i--)
8377 {
8378 buf[i] = "0123456789abcdef"[(num & 0xf)];
8379 num >>= 4;
8380 }
8381
8382 return width;
8383 }
8384
8385 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8386
8387 static CORE_ADDR
8388 remote_address_masked (CORE_ADDR addr)
8389 {
8390 unsigned int address_size = remote_address_size;
8391
8392 /* If "remoteaddresssize" was not set, default to target address size. */
8393 if (!address_size)
8394 address_size = gdbarch_addr_bit (target_gdbarch ());
8395
8396 if (address_size > 0
8397 && address_size < (sizeof (ULONGEST) * 8))
8398 {
8399 /* Only create a mask when that mask can safely be constructed
8400 in a ULONGEST variable. */
8401 ULONGEST mask = 1;
8402
8403 mask = (mask << address_size) - 1;
8404 addr &= mask;
8405 }
8406 return addr;
8407 }
8408
8409 /* Determine whether the remote target supports binary downloading.
8410 This is accomplished by sending a no-op memory write of zero length
8411 to the target at the specified address. It does not suffice to send
8412 the whole packet, since many stubs strip the eighth bit and
8413 subsequently compute a wrong checksum, which causes real havoc with
8414 remote_write_bytes.
8415
8416 NOTE: This can still lose if the serial line is not eight-bit
8417 clean. In cases like this, the user should clear "remote
8418 X-packet". */
8419
8420 void
8421 remote_target::check_binary_download (CORE_ADDR addr)
8422 {
8423 struct remote_state *rs = get_remote_state ();
8424
8425 switch (packet_support (PACKET_X))
8426 {
8427 case PACKET_DISABLE:
8428 break;
8429 case PACKET_ENABLE:
8430 break;
8431 case PACKET_SUPPORT_UNKNOWN:
8432 {
8433 char *p;
8434
8435 p = rs->buf.data ();
8436 *p++ = 'X';
8437 p += hexnumstr (p, (ULONGEST) addr);
8438 *p++ = ',';
8439 p += hexnumstr (p, (ULONGEST) 0);
8440 *p++ = ':';
8441 *p = '\0';
8442
8443 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8444 getpkt (&rs->buf, 0);
8445
8446 if (rs->buf[0] == '\0')
8447 {
8448 if (remote_debug)
8449 fprintf_unfiltered (gdb_stdlog,
8450 "binary downloading NOT "
8451 "supported by target\n");
8452 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8453 }
8454 else
8455 {
8456 if (remote_debug)
8457 fprintf_unfiltered (gdb_stdlog,
8458 "binary downloading supported by target\n");
8459 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8460 }
8461 break;
8462 }
8463 }
8464 }
8465
8466 /* Helper function to resize the payload in order to try to get a good
8467 alignment. We try to write an amount of data such that the next write will
8468 start on an address aligned on REMOTE_ALIGN_WRITES. */
8469
8470 static int
8471 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8472 {
8473 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8474 }
8475
8476 /* Write memory data directly to the remote machine.
8477 This does not inform the data cache; the data cache uses this.
8478 HEADER is the starting part of the packet.
8479 MEMADDR is the address in the remote memory space.
8480 MYADDR is the address of the buffer in our space.
8481 LEN_UNITS is the number of addressable units to write.
8482 UNIT_SIZE is the length in bytes of an addressable unit.
8483 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8484 should send data as binary ('X'), or hex-encoded ('M').
8485
8486 The function creates packet of the form
8487 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8488
8489 where encoding of <DATA> is terminated by PACKET_FORMAT.
8490
8491 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8492 are omitted.
8493
8494 Return the transferred status, error or OK (an
8495 'enum target_xfer_status' value). Save the number of addressable units
8496 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8497
8498 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8499 exchange between gdb and the stub could look like (?? in place of the
8500 checksum):
8501
8502 -> $m1000,4#??
8503 <- aaaabbbbccccdddd
8504
8505 -> $M1000,3:eeeeffffeeee#??
8506 <- OK
8507
8508 -> $m1000,4#??
8509 <- eeeeffffeeeedddd */
8510
8511 target_xfer_status
8512 remote_target::remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8513 const gdb_byte *myaddr,
8514 ULONGEST len_units,
8515 int unit_size,
8516 ULONGEST *xfered_len_units,
8517 char packet_format, int use_length)
8518 {
8519 struct remote_state *rs = get_remote_state ();
8520 char *p;
8521 char *plen = NULL;
8522 int plenlen = 0;
8523 int todo_units;
8524 int units_written;
8525 int payload_capacity_bytes;
8526 int payload_length_bytes;
8527
8528 if (packet_format != 'X' && packet_format != 'M')
8529 internal_error (__FILE__, __LINE__,
8530 _("remote_write_bytes_aux: bad packet format"));
8531
8532 if (len_units == 0)
8533 return TARGET_XFER_EOF;
8534
8535 payload_capacity_bytes = get_memory_write_packet_size ();
8536
8537 /* The packet buffer will be large enough for the payload;
8538 get_memory_packet_size ensures this. */
8539 rs->buf[0] = '\0';
8540
8541 /* Compute the size of the actual payload by subtracting out the
8542 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8543
8544 payload_capacity_bytes -= strlen ("$,:#NN");
8545 if (!use_length)
8546 /* The comma won't be used. */
8547 payload_capacity_bytes += 1;
8548 payload_capacity_bytes -= strlen (header);
8549 payload_capacity_bytes -= hexnumlen (memaddr);
8550
8551 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8552
8553 strcat (rs->buf.data (), header);
8554 p = rs->buf.data () + strlen (header);
8555
8556 /* Compute a best guess of the number of bytes actually transfered. */
8557 if (packet_format == 'X')
8558 {
8559 /* Best guess at number of bytes that will fit. */
8560 todo_units = std::min (len_units,
8561 (ULONGEST) payload_capacity_bytes / unit_size);
8562 if (use_length)
8563 payload_capacity_bytes -= hexnumlen (todo_units);
8564 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8565 }
8566 else
8567 {
8568 /* Number of bytes that will fit. */
8569 todo_units
8570 = std::min (len_units,
8571 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8572 if (use_length)
8573 payload_capacity_bytes -= hexnumlen (todo_units);
8574 todo_units = std::min (todo_units,
8575 (payload_capacity_bytes / unit_size) / 2);
8576 }
8577
8578 if (todo_units <= 0)
8579 internal_error (__FILE__, __LINE__,
8580 _("minimum packet size too small to write data"));
8581
8582 /* If we already need another packet, then try to align the end
8583 of this packet to a useful boundary. */
8584 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8585 todo_units = align_for_efficient_write (todo_units, memaddr);
8586
8587 /* Append "<memaddr>". */
8588 memaddr = remote_address_masked (memaddr);
8589 p += hexnumstr (p, (ULONGEST) memaddr);
8590
8591 if (use_length)
8592 {
8593 /* Append ",". */
8594 *p++ = ',';
8595
8596 /* Append the length and retain its location and size. It may need to be
8597 adjusted once the packet body has been created. */
8598 plen = p;
8599 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8600 p += plenlen;
8601 }
8602
8603 /* Append ":". */
8604 *p++ = ':';
8605 *p = '\0';
8606
8607 /* Append the packet body. */
8608 if (packet_format == 'X')
8609 {
8610 /* Binary mode. Send target system values byte by byte, in
8611 increasing byte addresses. Only escape certain critical
8612 characters. */
8613 payload_length_bytes =
8614 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8615 &units_written, payload_capacity_bytes);
8616
8617 /* If not all TODO units fit, then we'll need another packet. Make
8618 a second try to keep the end of the packet aligned. Don't do
8619 this if the packet is tiny. */
8620 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8621 {
8622 int new_todo_units;
8623
8624 new_todo_units = align_for_efficient_write (units_written, memaddr);
8625
8626 if (new_todo_units != units_written)
8627 payload_length_bytes =
8628 remote_escape_output (myaddr, new_todo_units, unit_size,
8629 (gdb_byte *) p, &units_written,
8630 payload_capacity_bytes);
8631 }
8632
8633 p += payload_length_bytes;
8634 if (use_length && units_written < todo_units)
8635 {
8636 /* Escape chars have filled up the buffer prematurely,
8637 and we have actually sent fewer units than planned.
8638 Fix-up the length field of the packet. Use the same
8639 number of characters as before. */
8640 plen += hexnumnstr (plen, (ULONGEST) units_written,
8641 plenlen);
8642 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8643 }
8644 }
8645 else
8646 {
8647 /* Normal mode: Send target system values byte by byte, in
8648 increasing byte addresses. Each byte is encoded as a two hex
8649 value. */
8650 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8651 units_written = todo_units;
8652 }
8653
8654 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8655 getpkt (&rs->buf, 0);
8656
8657 if (rs->buf[0] == 'E')
8658 return TARGET_XFER_E_IO;
8659
8660 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8661 send fewer units than we'd planned. */
8662 *xfered_len_units = (ULONGEST) units_written;
8663 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8664 }
8665
8666 /* Write memory data directly to the remote machine.
8667 This does not inform the data cache; the data cache uses this.
8668 MEMADDR is the address in the remote memory space.
8669 MYADDR is the address of the buffer in our space.
8670 LEN is the number of bytes.
8671
8672 Return the transferred status, error or OK (an
8673 'enum target_xfer_status' value). Save the number of bytes
8674 transferred in *XFERED_LEN. Only transfer a single packet. */
8675
8676 target_xfer_status
8677 remote_target::remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr,
8678 ULONGEST len, int unit_size,
8679 ULONGEST *xfered_len)
8680 {
8681 const char *packet_format = NULL;
8682
8683 /* Check whether the target supports binary download. */
8684 check_binary_download (memaddr);
8685
8686 switch (packet_support (PACKET_X))
8687 {
8688 case PACKET_ENABLE:
8689 packet_format = "X";
8690 break;
8691 case PACKET_DISABLE:
8692 packet_format = "M";
8693 break;
8694 case PACKET_SUPPORT_UNKNOWN:
8695 internal_error (__FILE__, __LINE__,
8696 _("remote_write_bytes: bad internal state"));
8697 default:
8698 internal_error (__FILE__, __LINE__, _("bad switch"));
8699 }
8700
8701 return remote_write_bytes_aux (packet_format,
8702 memaddr, myaddr, len, unit_size, xfered_len,
8703 packet_format[0], 1);
8704 }
8705
8706 /* Read memory data directly from the remote machine.
8707 This does not use the data cache; the data cache uses this.
8708 MEMADDR is the address in the remote memory space.
8709 MYADDR is the address of the buffer in our space.
8710 LEN_UNITS is the number of addressable memory units to read..
8711 UNIT_SIZE is the length in bytes of an addressable unit.
8712
8713 Return the transferred status, error or OK (an
8714 'enum target_xfer_status' value). Save the number of bytes
8715 transferred in *XFERED_LEN_UNITS.
8716
8717 See the comment of remote_write_bytes_aux for an example of
8718 memory read/write exchange between gdb and the stub. */
8719
8720 target_xfer_status
8721 remote_target::remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
8722 ULONGEST len_units,
8723 int unit_size, ULONGEST *xfered_len_units)
8724 {
8725 struct remote_state *rs = get_remote_state ();
8726 int buf_size_bytes; /* Max size of packet output buffer. */
8727 char *p;
8728 int todo_units;
8729 int decoded_bytes;
8730
8731 buf_size_bytes = get_memory_read_packet_size ();
8732 /* The packet buffer will be large enough for the payload;
8733 get_memory_packet_size ensures this. */
8734
8735 /* Number of units that will fit. */
8736 todo_units = std::min (len_units,
8737 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8738
8739 /* Construct "m"<memaddr>","<len>". */
8740 memaddr = remote_address_masked (memaddr);
8741 p = rs->buf.data ();
8742 *p++ = 'm';
8743 p += hexnumstr (p, (ULONGEST) memaddr);
8744 *p++ = ',';
8745 p += hexnumstr (p, (ULONGEST) todo_units);
8746 *p = '\0';
8747 putpkt (rs->buf);
8748 getpkt (&rs->buf, 0);
8749 if (rs->buf[0] == 'E'
8750 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8751 && rs->buf[3] == '\0')
8752 return TARGET_XFER_E_IO;
8753 /* Reply describes memory byte by byte, each byte encoded as two hex
8754 characters. */
8755 p = rs->buf.data ();
8756 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8757 /* Return what we have. Let higher layers handle partial reads. */
8758 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8759 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8760 }
8761
8762 /* Using the set of read-only target sections of remote, read live
8763 read-only memory.
8764
8765 For interface/parameters/return description see target.h,
8766 to_xfer_partial. */
8767
8768 target_xfer_status
8769 remote_target::remote_xfer_live_readonly_partial (gdb_byte *readbuf,
8770 ULONGEST memaddr,
8771 ULONGEST len,
8772 int unit_size,
8773 ULONGEST *xfered_len)
8774 {
8775 struct target_section *secp;
8776 struct target_section_table *table;
8777
8778 secp = target_section_by_addr (this, memaddr);
8779 if (secp != NULL
8780 && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
8781 {
8782 struct target_section *p;
8783 ULONGEST memend = memaddr + len;
8784
8785 table = target_get_section_table (this);
8786
8787 for (p = table->sections; p < table->sections_end; p++)
8788 {
8789 if (memaddr >= p->addr)
8790 {
8791 if (memend <= p->endaddr)
8792 {
8793 /* Entire transfer is within this section. */
8794 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8795 xfered_len);
8796 }
8797 else if (memaddr >= p->endaddr)
8798 {
8799 /* This section ends before the transfer starts. */
8800 continue;
8801 }
8802 else
8803 {
8804 /* This section overlaps the transfer. Just do half. */
8805 len = p->endaddr - memaddr;
8806 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8807 xfered_len);
8808 }
8809 }
8810 }
8811 }
8812
8813 return TARGET_XFER_EOF;
8814 }
8815
8816 /* Similar to remote_read_bytes_1, but it reads from the remote stub
8817 first if the requested memory is unavailable in traceframe.
8818 Otherwise, fall back to remote_read_bytes_1. */
8819
8820 target_xfer_status
8821 remote_target::remote_read_bytes (CORE_ADDR memaddr,
8822 gdb_byte *myaddr, ULONGEST len, int unit_size,
8823 ULONGEST *xfered_len)
8824 {
8825 if (len == 0)
8826 return TARGET_XFER_EOF;
8827
8828 if (get_traceframe_number () != -1)
8829 {
8830 std::vector<mem_range> available;
8831
8832 /* If we fail to get the set of available memory, then the
8833 target does not support querying traceframe info, and so we
8834 attempt reading from the traceframe anyway (assuming the
8835 target implements the old QTro packet then). */
8836 if (traceframe_available_memory (&available, memaddr, len))
8837 {
8838 if (available.empty () || available[0].start != memaddr)
8839 {
8840 enum target_xfer_status res;
8841
8842 /* Don't read into the traceframe's available
8843 memory. */
8844 if (!available.empty ())
8845 {
8846 LONGEST oldlen = len;
8847
8848 len = available[0].start - memaddr;
8849 gdb_assert (len <= oldlen);
8850 }
8851
8852 /* This goes through the topmost target again. */
8853 res = remote_xfer_live_readonly_partial (myaddr, memaddr,
8854 len, unit_size, xfered_len);
8855 if (res == TARGET_XFER_OK)
8856 return TARGET_XFER_OK;
8857 else
8858 {
8859 /* No use trying further, we know some memory starting
8860 at MEMADDR isn't available. */
8861 *xfered_len = len;
8862 return (*xfered_len != 0) ?
8863 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
8864 }
8865 }
8866
8867 /* Don't try to read more than how much is available, in
8868 case the target implements the deprecated QTro packet to
8869 cater for older GDBs (the target's knowledge of read-only
8870 sections may be outdated by now). */
8871 len = available[0].length;
8872 }
8873 }
8874
8875 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8876 }
8877
8878 \f
8879
8880 /* Sends a packet with content determined by the printf format string
8881 FORMAT and the remaining arguments, then gets the reply. Returns
8882 whether the packet was a success, a failure, or unknown. */
8883
8884 packet_result
8885 remote_target::remote_send_printf (const char *format, ...)
8886 {
8887 struct remote_state *rs = get_remote_state ();
8888 int max_size = get_remote_packet_size ();
8889 va_list ap;
8890
8891 va_start (ap, format);
8892
8893 rs->buf[0] = '\0';
8894 int size = vsnprintf (rs->buf.data (), max_size, format, ap);
8895
8896 va_end (ap);
8897
8898 if (size >= max_size)
8899 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
8900
8901 if (putpkt (rs->buf) < 0)
8902 error (_("Communication problem with target."));
8903
8904 rs->buf[0] = '\0';
8905 getpkt (&rs->buf, 0);
8906
8907 return packet_check_result (rs->buf);
8908 }
8909
8910 /* Flash writing can take quite some time. We'll set
8911 effectively infinite timeout for flash operations.
8912 In future, we'll need to decide on a better approach. */
8913 static const int remote_flash_timeout = 1000;
8914
8915 void
8916 remote_target::flash_erase (ULONGEST address, LONGEST length)
8917 {
8918 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8919 enum packet_result ret;
8920 scoped_restore restore_timeout
8921 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8922
8923 ret = remote_send_printf ("vFlashErase:%s,%s",
8924 phex (address, addr_size),
8925 phex (length, 4));
8926 switch (ret)
8927 {
8928 case PACKET_UNKNOWN:
8929 error (_("Remote target does not support flash erase"));
8930 case PACKET_ERROR:
8931 error (_("Error erasing flash with vFlashErase packet"));
8932 default:
8933 break;
8934 }
8935 }
8936
8937 target_xfer_status
8938 remote_target::remote_flash_write (ULONGEST address,
8939 ULONGEST length, ULONGEST *xfered_len,
8940 const gdb_byte *data)
8941 {
8942 scoped_restore restore_timeout
8943 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8944 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
8945 xfered_len,'X', 0);
8946 }
8947
8948 void
8949 remote_target::flash_done ()
8950 {
8951 int ret;
8952
8953 scoped_restore restore_timeout
8954 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8955
8956 ret = remote_send_printf ("vFlashDone");
8957
8958 switch (ret)
8959 {
8960 case PACKET_UNKNOWN:
8961 error (_("Remote target does not support vFlashDone"));
8962 case PACKET_ERROR:
8963 error (_("Error finishing flash operation"));
8964 default:
8965 break;
8966 }
8967 }
8968
8969 void
8970 remote_target::files_info ()
8971 {
8972 puts_filtered ("Debugging a target over a serial line.\n");
8973 }
8974 \f
8975 /* Stuff for dealing with the packets which are part of this protocol.
8976 See comment at top of file for details. */
8977
8978 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
8979 error to higher layers. Called when a serial error is detected.
8980 The exception message is STRING, followed by a colon and a blank,
8981 the system error message for errno at function entry and final dot
8982 for output compatibility with throw_perror_with_name. */
8983
8984 static void
8985 unpush_and_perror (const char *string)
8986 {
8987 int saved_errno = errno;
8988
8989 remote_unpush_target ();
8990 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
8991 safe_strerror (saved_errno));
8992 }
8993
8994 /* Read a single character from the remote end. The current quit
8995 handler is overridden to avoid quitting in the middle of packet
8996 sequence, as that would break communication with the remote server.
8997 See remote_serial_quit_handler for more detail. */
8998
8999 int
9000 remote_target::readchar (int timeout)
9001 {
9002 int ch;
9003 struct remote_state *rs = get_remote_state ();
9004
9005 {
9006 scoped_restore restore_quit_target
9007 = make_scoped_restore (&curr_quit_handler_target, this);
9008 scoped_restore restore_quit
9009 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9010
9011 rs->got_ctrlc_during_io = 0;
9012
9013 ch = serial_readchar (rs->remote_desc, timeout);
9014
9015 if (rs->got_ctrlc_during_io)
9016 set_quit_flag ();
9017 }
9018
9019 if (ch >= 0)
9020 return ch;
9021
9022 switch ((enum serial_rc) ch)
9023 {
9024 case SERIAL_EOF:
9025 remote_unpush_target ();
9026 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
9027 /* no return */
9028 case SERIAL_ERROR:
9029 unpush_and_perror (_("Remote communication error. "
9030 "Target disconnected."));
9031 /* no return */
9032 case SERIAL_TIMEOUT:
9033 break;
9034 }
9035 return ch;
9036 }
9037
9038 /* Wrapper for serial_write that closes the target and throws if
9039 writing fails. The current quit handler is overridden to avoid
9040 quitting in the middle of packet sequence, as that would break
9041 communication with the remote server. See
9042 remote_serial_quit_handler for more detail. */
9043
9044 void
9045 remote_target::remote_serial_write (const char *str, int len)
9046 {
9047 struct remote_state *rs = get_remote_state ();
9048
9049 scoped_restore restore_quit_target
9050 = make_scoped_restore (&curr_quit_handler_target, this);
9051 scoped_restore restore_quit
9052 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9053
9054 rs->got_ctrlc_during_io = 0;
9055
9056 if (serial_write (rs->remote_desc, str, len))
9057 {
9058 unpush_and_perror (_("Remote communication error. "
9059 "Target disconnected."));
9060 }
9061
9062 if (rs->got_ctrlc_during_io)
9063 set_quit_flag ();
9064 }
9065
9066 /* Return a string representing an escaped version of BUF, of len N.
9067 E.g. \n is converted to \\n, \t to \\t, etc. */
9068
9069 static std::string
9070 escape_buffer (const char *buf, int n)
9071 {
9072 string_file stb;
9073
9074 stb.putstrn (buf, n, '\\');
9075 return std::move (stb.string ());
9076 }
9077
9078 /* Display a null-terminated packet on stdout, for debugging, using C
9079 string notation. */
9080
9081 static void
9082 print_packet (const char *buf)
9083 {
9084 puts_filtered ("\"");
9085 fputstr_filtered (buf, '"', gdb_stdout);
9086 puts_filtered ("\"");
9087 }
9088
9089 int
9090 remote_target::putpkt (const char *buf)
9091 {
9092 return putpkt_binary (buf, strlen (buf));
9093 }
9094
9095 /* Wrapper around remote_target::putpkt to avoid exporting
9096 remote_target. */
9097
9098 int
9099 putpkt (remote_target *remote, const char *buf)
9100 {
9101 return remote->putpkt (buf);
9102 }
9103
9104 /* Send a packet to the remote machine, with error checking. The data
9105 of the packet is in BUF. The string in BUF can be at most
9106 get_remote_packet_size () - 5 to account for the $, # and checksum,
9107 and for a possible /0 if we are debugging (remote_debug) and want
9108 to print the sent packet as a string. */
9109
9110 int
9111 remote_target::putpkt_binary (const char *buf, int cnt)
9112 {
9113 struct remote_state *rs = get_remote_state ();
9114 int i;
9115 unsigned char csum = 0;
9116 gdb::def_vector<char> data (cnt + 6);
9117 char *buf2 = data.data ();
9118
9119 int ch;
9120 int tcount = 0;
9121 char *p;
9122
9123 /* Catch cases like trying to read memory or listing threads while
9124 we're waiting for a stop reply. The remote server wouldn't be
9125 ready to handle this request, so we'd hang and timeout. We don't
9126 have to worry about this in synchronous mode, because in that
9127 case it's not possible to issue a command while the target is
9128 running. This is not a problem in non-stop mode, because in that
9129 case, the stub is always ready to process serial input. */
9130 if (!target_is_non_stop_p ()
9131 && target_is_async_p ()
9132 && rs->waiting_for_stop_reply)
9133 {
9134 error (_("Cannot execute this command while the target is running.\n"
9135 "Use the \"interrupt\" command to stop the target\n"
9136 "and then try again."));
9137 }
9138
9139 /* We're sending out a new packet. Make sure we don't look at a
9140 stale cached response. */
9141 rs->cached_wait_status = 0;
9142
9143 /* Copy the packet into buffer BUF2, encapsulating it
9144 and giving it a checksum. */
9145
9146 p = buf2;
9147 *p++ = '$';
9148
9149 for (i = 0; i < cnt; i++)
9150 {
9151 csum += buf[i];
9152 *p++ = buf[i];
9153 }
9154 *p++ = '#';
9155 *p++ = tohex ((csum >> 4) & 0xf);
9156 *p++ = tohex (csum & 0xf);
9157
9158 /* Send it over and over until we get a positive ack. */
9159
9160 while (1)
9161 {
9162 int started_error_output = 0;
9163
9164 if (remote_debug)
9165 {
9166 *p = '\0';
9167
9168 int len = (int) (p - buf2);
9169 int max_chars;
9170
9171 if (remote_packet_max_chars < 0)
9172 max_chars = len;
9173 else
9174 max_chars = remote_packet_max_chars;
9175
9176 std::string str
9177 = escape_buffer (buf2, std::min (len, max_chars));
9178
9179 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
9180
9181 if (len > max_chars)
9182 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9183 len - max_chars);
9184
9185 fprintf_unfiltered (gdb_stdlog, "...");
9186
9187 gdb_flush (gdb_stdlog);
9188 }
9189 remote_serial_write (buf2, p - buf2);
9190
9191 /* If this is a no acks version of the remote protocol, send the
9192 packet and move on. */
9193 if (rs->noack_mode)
9194 break;
9195
9196 /* Read until either a timeout occurs (-2) or '+' is read.
9197 Handle any notification that arrives in the mean time. */
9198 while (1)
9199 {
9200 ch = readchar (remote_timeout);
9201
9202 if (remote_debug)
9203 {
9204 switch (ch)
9205 {
9206 case '+':
9207 case '-':
9208 case SERIAL_TIMEOUT:
9209 case '$':
9210 case '%':
9211 if (started_error_output)
9212 {
9213 putchar_unfiltered ('\n');
9214 started_error_output = 0;
9215 }
9216 }
9217 }
9218
9219 switch (ch)
9220 {
9221 case '+':
9222 if (remote_debug)
9223 fprintf_unfiltered (gdb_stdlog, "Ack\n");
9224 return 1;
9225 case '-':
9226 if (remote_debug)
9227 fprintf_unfiltered (gdb_stdlog, "Nak\n");
9228 /* FALLTHROUGH */
9229 case SERIAL_TIMEOUT:
9230 tcount++;
9231 if (tcount > 3)
9232 return 0;
9233 break; /* Retransmit buffer. */
9234 case '$':
9235 {
9236 if (remote_debug)
9237 fprintf_unfiltered (gdb_stdlog,
9238 "Packet instead of Ack, ignoring it\n");
9239 /* It's probably an old response sent because an ACK
9240 was lost. Gobble up the packet and ack it so it
9241 doesn't get retransmitted when we resend this
9242 packet. */
9243 skip_frame ();
9244 remote_serial_write ("+", 1);
9245 continue; /* Now, go look for +. */
9246 }
9247
9248 case '%':
9249 {
9250 int val;
9251
9252 /* If we got a notification, handle it, and go back to looking
9253 for an ack. */
9254 /* We've found the start of a notification. Now
9255 collect the data. */
9256 val = read_frame (&rs->buf);
9257 if (val >= 0)
9258 {
9259 if (remote_debug)
9260 {
9261 std::string str = escape_buffer (rs->buf.data (), val);
9262
9263 fprintf_unfiltered (gdb_stdlog,
9264 " Notification received: %s\n",
9265 str.c_str ());
9266 }
9267 handle_notification (rs->notif_state, rs->buf.data ());
9268 /* We're in sync now, rewait for the ack. */
9269 tcount = 0;
9270 }
9271 else
9272 {
9273 if (remote_debug)
9274 {
9275 if (!started_error_output)
9276 {
9277 started_error_output = 1;
9278 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9279 }
9280 fputc_unfiltered (ch & 0177, gdb_stdlog);
9281 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf.data ());
9282 }
9283 }
9284 continue;
9285 }
9286 /* fall-through */
9287 default:
9288 if (remote_debug)
9289 {
9290 if (!started_error_output)
9291 {
9292 started_error_output = 1;
9293 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9294 }
9295 fputc_unfiltered (ch & 0177, gdb_stdlog);
9296 }
9297 continue;
9298 }
9299 break; /* Here to retransmit. */
9300 }
9301
9302 #if 0
9303 /* This is wrong. If doing a long backtrace, the user should be
9304 able to get out next time we call QUIT, without anything as
9305 violent as interrupt_query. If we want to provide a way out of
9306 here without getting to the next QUIT, it should be based on
9307 hitting ^C twice as in remote_wait. */
9308 if (quit_flag)
9309 {
9310 quit_flag = 0;
9311 interrupt_query ();
9312 }
9313 #endif
9314 }
9315
9316 return 0;
9317 }
9318
9319 /* Come here after finding the start of a frame when we expected an
9320 ack. Do our best to discard the rest of this packet. */
9321
9322 void
9323 remote_target::skip_frame ()
9324 {
9325 int c;
9326
9327 while (1)
9328 {
9329 c = readchar (remote_timeout);
9330 switch (c)
9331 {
9332 case SERIAL_TIMEOUT:
9333 /* Nothing we can do. */
9334 return;
9335 case '#':
9336 /* Discard the two bytes of checksum and stop. */
9337 c = readchar (remote_timeout);
9338 if (c >= 0)
9339 c = readchar (remote_timeout);
9340
9341 return;
9342 case '*': /* Run length encoding. */
9343 /* Discard the repeat count. */
9344 c = readchar (remote_timeout);
9345 if (c < 0)
9346 return;
9347 break;
9348 default:
9349 /* A regular character. */
9350 break;
9351 }
9352 }
9353 }
9354
9355 /* Come here after finding the start of the frame. Collect the rest
9356 into *BUF, verifying the checksum, length, and handling run-length
9357 compression. NUL terminate the buffer. If there is not enough room,
9358 expand *BUF.
9359
9360 Returns -1 on error, number of characters in buffer (ignoring the
9361 trailing NULL) on success. (could be extended to return one of the
9362 SERIAL status indications). */
9363
9364 long
9365 remote_target::read_frame (gdb::char_vector *buf_p)
9366 {
9367 unsigned char csum;
9368 long bc;
9369 int c;
9370 char *buf = buf_p->data ();
9371 struct remote_state *rs = get_remote_state ();
9372
9373 csum = 0;
9374 bc = 0;
9375
9376 while (1)
9377 {
9378 c = readchar (remote_timeout);
9379 switch (c)
9380 {
9381 case SERIAL_TIMEOUT:
9382 if (remote_debug)
9383 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
9384 return -1;
9385 case '$':
9386 if (remote_debug)
9387 fputs_filtered ("Saw new packet start in middle of old one\n",
9388 gdb_stdlog);
9389 return -1; /* Start a new packet, count retries. */
9390 case '#':
9391 {
9392 unsigned char pktcsum;
9393 int check_0 = 0;
9394 int check_1 = 0;
9395
9396 buf[bc] = '\0';
9397
9398 check_0 = readchar (remote_timeout);
9399 if (check_0 >= 0)
9400 check_1 = readchar (remote_timeout);
9401
9402 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9403 {
9404 if (remote_debug)
9405 fputs_filtered ("Timeout in checksum, retrying\n",
9406 gdb_stdlog);
9407 return -1;
9408 }
9409 else if (check_0 < 0 || check_1 < 0)
9410 {
9411 if (remote_debug)
9412 fputs_filtered ("Communication error in checksum\n",
9413 gdb_stdlog);
9414 return -1;
9415 }
9416
9417 /* Don't recompute the checksum; with no ack packets we
9418 don't have any way to indicate a packet retransmission
9419 is necessary. */
9420 if (rs->noack_mode)
9421 return bc;
9422
9423 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9424 if (csum == pktcsum)
9425 return bc;
9426
9427 if (remote_debug)
9428 {
9429 std::string str = escape_buffer (buf, bc);
9430
9431 fprintf_unfiltered (gdb_stdlog,
9432 "Bad checksum, sentsum=0x%x, "
9433 "csum=0x%x, buf=%s\n",
9434 pktcsum, csum, str.c_str ());
9435 }
9436 /* Number of characters in buffer ignoring trailing
9437 NULL. */
9438 return -1;
9439 }
9440 case '*': /* Run length encoding. */
9441 {
9442 int repeat;
9443
9444 csum += c;
9445 c = readchar (remote_timeout);
9446 csum += c;
9447 repeat = c - ' ' + 3; /* Compute repeat count. */
9448
9449 /* The character before ``*'' is repeated. */
9450
9451 if (repeat > 0 && repeat <= 255 && bc > 0)
9452 {
9453 if (bc + repeat - 1 >= buf_p->size () - 1)
9454 {
9455 /* Make some more room in the buffer. */
9456 buf_p->resize (buf_p->size () + repeat);
9457 buf = buf_p->data ();
9458 }
9459
9460 memset (&buf[bc], buf[bc - 1], repeat);
9461 bc += repeat;
9462 continue;
9463 }
9464
9465 buf[bc] = '\0';
9466 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9467 return -1;
9468 }
9469 default:
9470 if (bc >= buf_p->size () - 1)
9471 {
9472 /* Make some more room in the buffer. */
9473 buf_p->resize (buf_p->size () * 2);
9474 buf = buf_p->data ();
9475 }
9476
9477 buf[bc++] = c;
9478 csum += c;
9479 continue;
9480 }
9481 }
9482 }
9483
9484 /* Set this to the maximum number of seconds to wait instead of waiting forever
9485 in target_wait(). If this timer times out, then it generates an error and
9486 the command is aborted. This replaces most of the need for timeouts in the
9487 GDB test suite, and makes it possible to distinguish between a hung target
9488 and one with slow communications. */
9489
9490 static int watchdog = 0;
9491 static void
9492 show_watchdog (struct ui_file *file, int from_tty,
9493 struct cmd_list_element *c, const char *value)
9494 {
9495 fprintf_filtered (file, _("Watchdog timer is %s.\n"), value);
9496 }
9497
9498 /* Read a packet from the remote machine, with error checking, and
9499 store it in *BUF. Resize *BUF if necessary to hold the result. If
9500 FOREVER, wait forever rather than timing out; this is used (in
9501 synchronous mode) to wait for a target that is is executing user
9502 code to stop. */
9503 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9504 don't have to change all the calls to getpkt to deal with the
9505 return value, because at the moment I don't know what the right
9506 thing to do it for those. */
9507
9508 void
9509 remote_target::getpkt (gdb::char_vector *buf, int forever)
9510 {
9511 getpkt_sane (buf, forever);
9512 }
9513
9514
9515 /* Read a packet from the remote machine, with error checking, and
9516 store it in *BUF. Resize *BUF if necessary to hold the result. If
9517 FOREVER, wait forever rather than timing out; this is used (in
9518 synchronous mode) to wait for a target that is is executing user
9519 code to stop. If FOREVER == 0, this function is allowed to time
9520 out gracefully and return an indication of this to the caller.
9521 Otherwise return the number of bytes read. If EXPECTING_NOTIF,
9522 consider receiving a notification enough reason to return to the
9523 caller. *IS_NOTIF is an output boolean that indicates whether *BUF
9524 holds a notification or not (a regular packet). */
9525
9526 int
9527 remote_target::getpkt_or_notif_sane_1 (gdb::char_vector *buf,
9528 int forever, int expecting_notif,
9529 int *is_notif)
9530 {
9531 struct remote_state *rs = get_remote_state ();
9532 int c;
9533 int tries;
9534 int timeout;
9535 int val = -1;
9536
9537 /* We're reading a new response. Make sure we don't look at a
9538 previously cached response. */
9539 rs->cached_wait_status = 0;
9540
9541 strcpy (buf->data (), "timeout");
9542
9543 if (forever)
9544 timeout = watchdog > 0 ? watchdog : -1;
9545 else if (expecting_notif)
9546 timeout = 0; /* There should already be a char in the buffer. If
9547 not, bail out. */
9548 else
9549 timeout = remote_timeout;
9550
9551 #define MAX_TRIES 3
9552
9553 /* Process any number of notifications, and then return when
9554 we get a packet. */
9555 for (;;)
9556 {
9557 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9558 times. */
9559 for (tries = 1; tries <= MAX_TRIES; tries++)
9560 {
9561 /* This can loop forever if the remote side sends us
9562 characters continuously, but if it pauses, we'll get
9563 SERIAL_TIMEOUT from readchar because of timeout. Then
9564 we'll count that as a retry.
9565
9566 Note that even when forever is set, we will only wait
9567 forever prior to the start of a packet. After that, we
9568 expect characters to arrive at a brisk pace. They should
9569 show up within remote_timeout intervals. */
9570 do
9571 c = readchar (timeout);
9572 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9573
9574 if (c == SERIAL_TIMEOUT)
9575 {
9576 if (expecting_notif)
9577 return -1; /* Don't complain, it's normal to not get
9578 anything in this case. */
9579
9580 if (forever) /* Watchdog went off? Kill the target. */
9581 {
9582 remote_unpush_target ();
9583 throw_error (TARGET_CLOSE_ERROR,
9584 _("Watchdog timeout has expired. "
9585 "Target detached."));
9586 }
9587 if (remote_debug)
9588 fputs_filtered ("Timed out.\n", gdb_stdlog);
9589 }
9590 else
9591 {
9592 /* We've found the start of a packet or notification.
9593 Now collect the data. */
9594 val = read_frame (buf);
9595 if (val >= 0)
9596 break;
9597 }
9598
9599 remote_serial_write ("-", 1);
9600 }
9601
9602 if (tries > MAX_TRIES)
9603 {
9604 /* We have tried hard enough, and just can't receive the
9605 packet/notification. Give up. */
9606 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9607
9608 /* Skip the ack char if we're in no-ack mode. */
9609 if (!rs->noack_mode)
9610 remote_serial_write ("+", 1);
9611 return -1;
9612 }
9613
9614 /* If we got an ordinary packet, return that to our caller. */
9615 if (c == '$')
9616 {
9617 if (remote_debug)
9618 {
9619 int max_chars;
9620
9621 if (remote_packet_max_chars < 0)
9622 max_chars = val;
9623 else
9624 max_chars = remote_packet_max_chars;
9625
9626 std::string str
9627 = escape_buffer (buf->data (),
9628 std::min (val, max_chars));
9629
9630 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9631 str.c_str ());
9632
9633 if (val > max_chars)
9634 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9635 val - max_chars);
9636
9637 fprintf_unfiltered (gdb_stdlog, "\n");
9638 }
9639
9640 /* Skip the ack char if we're in no-ack mode. */
9641 if (!rs->noack_mode)
9642 remote_serial_write ("+", 1);
9643 if (is_notif != NULL)
9644 *is_notif = 0;
9645 return val;
9646 }
9647
9648 /* If we got a notification, handle it, and go back to looking
9649 for a packet. */
9650 else
9651 {
9652 gdb_assert (c == '%');
9653
9654 if (remote_debug)
9655 {
9656 std::string str = escape_buffer (buf->data (), val);
9657
9658 fprintf_unfiltered (gdb_stdlog,
9659 " Notification received: %s\n",
9660 str.c_str ());
9661 }
9662 if (is_notif != NULL)
9663 *is_notif = 1;
9664
9665 handle_notification (rs->notif_state, buf->data ());
9666
9667 /* Notifications require no acknowledgement. */
9668
9669 if (expecting_notif)
9670 return val;
9671 }
9672 }
9673 }
9674
9675 int
9676 remote_target::getpkt_sane (gdb::char_vector *buf, int forever)
9677 {
9678 return getpkt_or_notif_sane_1 (buf, forever, 0, NULL);
9679 }
9680
9681 int
9682 remote_target::getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
9683 int *is_notif)
9684 {
9685 return getpkt_or_notif_sane_1 (buf, forever, 1, is_notif);
9686 }
9687
9688 /* Kill any new fork children of process PID that haven't been
9689 processed by follow_fork. */
9690
9691 void
9692 remote_target::kill_new_fork_children (int pid)
9693 {
9694 remote_state *rs = get_remote_state ();
9695 struct notif_client *notif = &notif_client_stop;
9696
9697 /* Kill the fork child threads of any threads in process PID
9698 that are stopped at a fork event. */
9699 for (thread_info *thread : all_non_exited_threads ())
9700 {
9701 struct target_waitstatus *ws = &thread->pending_follow;
9702
9703 if (is_pending_fork_parent (ws, pid, thread->ptid))
9704 {
9705 int child_pid = ws->value.related_pid.pid ();
9706 int res;
9707
9708 res = remote_vkill (child_pid);
9709 if (res != 0)
9710 error (_("Can't kill fork child process %d"), child_pid);
9711 }
9712 }
9713
9714 /* Check for any pending fork events (not reported or processed yet)
9715 in process PID and kill those fork child threads as well. */
9716 remote_notif_get_pending_events (notif);
9717 for (auto &event : rs->stop_reply_queue)
9718 if (is_pending_fork_parent (&event->ws, pid, event->ptid))
9719 {
9720 int child_pid = event->ws.value.related_pid.pid ();
9721 int res;
9722
9723 res = remote_vkill (child_pid);
9724 if (res != 0)
9725 error (_("Can't kill fork child process %d"), child_pid);
9726 }
9727 }
9728
9729 \f
9730 /* Target hook to kill the current inferior. */
9731
9732 void
9733 remote_target::kill ()
9734 {
9735 int res = -1;
9736 int pid = inferior_ptid.pid ();
9737 struct remote_state *rs = get_remote_state ();
9738
9739 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9740 {
9741 /* If we're stopped while forking and we haven't followed yet,
9742 kill the child task. We need to do this before killing the
9743 parent task because if this is a vfork then the parent will
9744 be sleeping. */
9745 kill_new_fork_children (pid);
9746
9747 res = remote_vkill (pid);
9748 if (res == 0)
9749 {
9750 target_mourn_inferior (inferior_ptid);
9751 return;
9752 }
9753 }
9754
9755 /* If we are in 'target remote' mode and we are killing the only
9756 inferior, then we will tell gdbserver to exit and unpush the
9757 target. */
9758 if (res == -1 && !remote_multi_process_p (rs)
9759 && number_of_live_inferiors () == 1)
9760 {
9761 remote_kill_k ();
9762
9763 /* We've killed the remote end, we get to mourn it. If we are
9764 not in extended mode, mourning the inferior also unpushes
9765 remote_ops from the target stack, which closes the remote
9766 connection. */
9767 target_mourn_inferior (inferior_ptid);
9768
9769 return;
9770 }
9771
9772 error (_("Can't kill process"));
9773 }
9774
9775 /* Send a kill request to the target using the 'vKill' packet. */
9776
9777 int
9778 remote_target::remote_vkill (int pid)
9779 {
9780 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9781 return -1;
9782
9783 remote_state *rs = get_remote_state ();
9784
9785 /* Tell the remote target to detach. */
9786 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vKill;%x", pid);
9787 putpkt (rs->buf);
9788 getpkt (&rs->buf, 0);
9789
9790 switch (packet_ok (rs->buf,
9791 &remote_protocol_packets[PACKET_vKill]))
9792 {
9793 case PACKET_OK:
9794 return 0;
9795 case PACKET_ERROR:
9796 return 1;
9797 case PACKET_UNKNOWN:
9798 return -1;
9799 default:
9800 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9801 }
9802 }
9803
9804 /* Send a kill request to the target using the 'k' packet. */
9805
9806 void
9807 remote_target::remote_kill_k ()
9808 {
9809 /* Catch errors so the user can quit from gdb even when we
9810 aren't on speaking terms with the remote system. */
9811 try
9812 {
9813 putpkt ("k");
9814 }
9815 catch (const gdb_exception_error &ex)
9816 {
9817 if (ex.error == TARGET_CLOSE_ERROR)
9818 {
9819 /* If we got an (EOF) error that caused the target
9820 to go away, then we're done, that's what we wanted.
9821 "k" is susceptible to cause a premature EOF, given
9822 that the remote server isn't actually required to
9823 reply to "k", and it can happen that it doesn't
9824 even get to reply ACK to the "k". */
9825 return;
9826 }
9827
9828 /* Otherwise, something went wrong. We didn't actually kill
9829 the target. Just propagate the exception, and let the
9830 user or higher layers decide what to do. */
9831 throw;
9832 }
9833 }
9834
9835 void
9836 remote_target::mourn_inferior ()
9837 {
9838 struct remote_state *rs = get_remote_state ();
9839
9840 /* We're no longer interested in notification events of an inferior
9841 that exited or was killed/detached. */
9842 discard_pending_stop_replies (current_inferior ());
9843
9844 /* In 'target remote' mode with one inferior, we close the connection. */
9845 if (!rs->extended && number_of_live_inferiors () <= 1)
9846 {
9847 unpush_target (this);
9848
9849 /* remote_close takes care of doing most of the clean up. */
9850 generic_mourn_inferior ();
9851 return;
9852 }
9853
9854 /* In case we got here due to an error, but we're going to stay
9855 connected. */
9856 rs->waiting_for_stop_reply = 0;
9857
9858 /* If the current general thread belonged to the process we just
9859 detached from or has exited, the remote side current general
9860 thread becomes undefined. Considering a case like this:
9861
9862 - We just got here due to a detach.
9863 - The process that we're detaching from happens to immediately
9864 report a global breakpoint being hit in non-stop mode, in the
9865 same thread we had selected before.
9866 - GDB attaches to this process again.
9867 - This event happens to be the next event we handle.
9868
9869 GDB would consider that the current general thread didn't need to
9870 be set on the stub side (with Hg), since for all it knew,
9871 GENERAL_THREAD hadn't changed.
9872
9873 Notice that although in all-stop mode, the remote server always
9874 sets the current thread to the thread reporting the stop event,
9875 that doesn't happen in non-stop mode; in non-stop, the stub *must
9876 not* change the current thread when reporting a breakpoint hit,
9877 due to the decoupling of event reporting and event handling.
9878
9879 To keep things simple, we always invalidate our notion of the
9880 current thread. */
9881 record_currthread (rs, minus_one_ptid);
9882
9883 /* Call common code to mark the inferior as not running. */
9884 generic_mourn_inferior ();
9885 }
9886
9887 bool
9888 extended_remote_target::supports_disable_randomization ()
9889 {
9890 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
9891 }
9892
9893 void
9894 remote_target::extended_remote_disable_randomization (int val)
9895 {
9896 struct remote_state *rs = get_remote_state ();
9897 char *reply;
9898
9899 xsnprintf (rs->buf.data (), get_remote_packet_size (),
9900 "QDisableRandomization:%x", val);
9901 putpkt (rs->buf);
9902 reply = remote_get_noisy_reply ();
9903 if (*reply == '\0')
9904 error (_("Target does not support QDisableRandomization."));
9905 if (strcmp (reply, "OK") != 0)
9906 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
9907 }
9908
9909 int
9910 remote_target::extended_remote_run (const std::string &args)
9911 {
9912 struct remote_state *rs = get_remote_state ();
9913 int len;
9914 const char *remote_exec_file = get_remote_exec_file ();
9915
9916 /* If the user has disabled vRun support, or we have detected that
9917 support is not available, do not try it. */
9918 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
9919 return -1;
9920
9921 strcpy (rs->buf.data (), "vRun;");
9922 len = strlen (rs->buf.data ());
9923
9924 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
9925 error (_("Remote file name too long for run packet"));
9926 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf.data () + len,
9927 strlen (remote_exec_file));
9928
9929 if (!args.empty ())
9930 {
9931 int i;
9932
9933 gdb_argv argv (args.c_str ());
9934 for (i = 0; argv[i] != NULL; i++)
9935 {
9936 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
9937 error (_("Argument list too long for run packet"));
9938 rs->buf[len++] = ';';
9939 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf.data () + len,
9940 strlen (argv[i]));
9941 }
9942 }
9943
9944 rs->buf[len++] = '\0';
9945
9946 putpkt (rs->buf);
9947 getpkt (&rs->buf, 0);
9948
9949 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
9950 {
9951 case PACKET_OK:
9952 /* We have a wait response. All is well. */
9953 return 0;
9954 case PACKET_UNKNOWN:
9955 return -1;
9956 case PACKET_ERROR:
9957 if (remote_exec_file[0] == '\0')
9958 error (_("Running the default executable on the remote target failed; "
9959 "try \"set remote exec-file\"?"));
9960 else
9961 error (_("Running \"%s\" on the remote target failed"),
9962 remote_exec_file);
9963 default:
9964 gdb_assert_not_reached (_("bad switch"));
9965 }
9966 }
9967
9968 /* Helper function to send set/unset environment packets. ACTION is
9969 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
9970 or "QEnvironmentUnsetVariable". VALUE is the variable to be
9971 sent. */
9972
9973 void
9974 remote_target::send_environment_packet (const char *action,
9975 const char *packet,
9976 const char *value)
9977 {
9978 remote_state *rs = get_remote_state ();
9979
9980 /* Convert the environment variable to an hex string, which
9981 is the best format to be transmitted over the wire. */
9982 std::string encoded_value = bin2hex ((const gdb_byte *) value,
9983 strlen (value));
9984
9985 xsnprintf (rs->buf.data (), get_remote_packet_size (),
9986 "%s:%s", packet, encoded_value.c_str ());
9987
9988 putpkt (rs->buf);
9989 getpkt (&rs->buf, 0);
9990 if (strcmp (rs->buf.data (), "OK") != 0)
9991 warning (_("Unable to %s environment variable '%s' on remote."),
9992 action, value);
9993 }
9994
9995 /* Helper function to handle the QEnvironment* packets. */
9996
9997 void
9998 remote_target::extended_remote_environment_support ()
9999 {
10000 remote_state *rs = get_remote_state ();
10001
10002 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
10003 {
10004 putpkt ("QEnvironmentReset");
10005 getpkt (&rs->buf, 0);
10006 if (strcmp (rs->buf.data (), "OK") != 0)
10007 warning (_("Unable to reset environment on remote."));
10008 }
10009
10010 gdb_environ *e = &current_inferior ()->environment;
10011
10012 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
10013 for (const std::string &el : e->user_set_env ())
10014 send_environment_packet ("set", "QEnvironmentHexEncoded",
10015 el.c_str ());
10016
10017 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
10018 for (const std::string &el : e->user_unset_env ())
10019 send_environment_packet ("unset", "QEnvironmentUnset", el.c_str ());
10020 }
10021
10022 /* Helper function to set the current working directory for the
10023 inferior in the remote target. */
10024
10025 void
10026 remote_target::extended_remote_set_inferior_cwd ()
10027 {
10028 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
10029 {
10030 const char *inferior_cwd = get_inferior_cwd ();
10031 remote_state *rs = get_remote_state ();
10032
10033 if (inferior_cwd != NULL)
10034 {
10035 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
10036 strlen (inferior_cwd));
10037
10038 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10039 "QSetWorkingDir:%s", hexpath.c_str ());
10040 }
10041 else
10042 {
10043 /* An empty inferior_cwd means that the user wants us to
10044 reset the remote server's inferior's cwd. */
10045 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10046 "QSetWorkingDir:");
10047 }
10048
10049 putpkt (rs->buf);
10050 getpkt (&rs->buf, 0);
10051 if (packet_ok (rs->buf,
10052 &remote_protocol_packets[PACKET_QSetWorkingDir])
10053 != PACKET_OK)
10054 error (_("\
10055 Remote replied unexpectedly while setting the inferior's working\n\
10056 directory: %s"),
10057 rs->buf.data ());
10058
10059 }
10060 }
10061
10062 /* In the extended protocol we want to be able to do things like
10063 "run" and have them basically work as expected. So we need
10064 a special create_inferior function. We support changing the
10065 executable file and the command line arguments, but not the
10066 environment. */
10067
10068 void
10069 extended_remote_target::create_inferior (const char *exec_file,
10070 const std::string &args,
10071 char **env, int from_tty)
10072 {
10073 int run_worked;
10074 char *stop_reply;
10075 struct remote_state *rs = get_remote_state ();
10076 const char *remote_exec_file = get_remote_exec_file ();
10077
10078 /* If running asynchronously, register the target file descriptor
10079 with the event loop. */
10080 if (target_can_async_p ())
10081 target_async (1);
10082
10083 /* Disable address space randomization if requested (and supported). */
10084 if (supports_disable_randomization ())
10085 extended_remote_disable_randomization (disable_randomization);
10086
10087 /* If startup-with-shell is on, we inform gdbserver to start the
10088 remote inferior using a shell. */
10089 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
10090 {
10091 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10092 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
10093 putpkt (rs->buf);
10094 getpkt (&rs->buf, 0);
10095 if (strcmp (rs->buf.data (), "OK") != 0)
10096 error (_("\
10097 Remote replied unexpectedly while setting startup-with-shell: %s"),
10098 rs->buf.data ());
10099 }
10100
10101 extended_remote_environment_support ();
10102
10103 extended_remote_set_inferior_cwd ();
10104
10105 /* Now restart the remote server. */
10106 run_worked = extended_remote_run (args) != -1;
10107 if (!run_worked)
10108 {
10109 /* vRun was not supported. Fail if we need it to do what the
10110 user requested. */
10111 if (remote_exec_file[0])
10112 error (_("Remote target does not support \"set remote exec-file\""));
10113 if (!args.empty ())
10114 error (_("Remote target does not support \"set args\" or run ARGS"));
10115
10116 /* Fall back to "R". */
10117 extended_remote_restart ();
10118 }
10119
10120 /* vRun's success return is a stop reply. */
10121 stop_reply = run_worked ? rs->buf.data () : NULL;
10122 add_current_inferior_and_thread (stop_reply);
10123
10124 /* Get updated offsets, if the stub uses qOffsets. */
10125 get_offsets ();
10126 }
10127 \f
10128
10129 /* Given a location's target info BP_TGT and the packet buffer BUF, output
10130 the list of conditions (in agent expression bytecode format), if any, the
10131 target needs to evaluate. The output is placed into the packet buffer
10132 started from BUF and ended at BUF_END. */
10133
10134 static int
10135 remote_add_target_side_condition (struct gdbarch *gdbarch,
10136 struct bp_target_info *bp_tgt, char *buf,
10137 char *buf_end)
10138 {
10139 if (bp_tgt->conditions.empty ())
10140 return 0;
10141
10142 buf += strlen (buf);
10143 xsnprintf (buf, buf_end - buf, "%s", ";");
10144 buf++;
10145
10146 /* Send conditions to the target. */
10147 for (agent_expr *aexpr : bp_tgt->conditions)
10148 {
10149 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10150 buf += strlen (buf);
10151 for (int i = 0; i < aexpr->len; ++i)
10152 buf = pack_hex_byte (buf, aexpr->buf[i]);
10153 *buf = '\0';
10154 }
10155 return 0;
10156 }
10157
10158 static void
10159 remote_add_target_side_commands (struct gdbarch *gdbarch,
10160 struct bp_target_info *bp_tgt, char *buf)
10161 {
10162 if (bp_tgt->tcommands.empty ())
10163 return;
10164
10165 buf += strlen (buf);
10166
10167 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10168 buf += strlen (buf);
10169
10170 /* Concatenate all the agent expressions that are commands into the
10171 cmds parameter. */
10172 for (agent_expr *aexpr : bp_tgt->tcommands)
10173 {
10174 sprintf (buf, "X%x,", aexpr->len);
10175 buf += strlen (buf);
10176 for (int i = 0; i < aexpr->len; ++i)
10177 buf = pack_hex_byte (buf, aexpr->buf[i]);
10178 *buf = '\0';
10179 }
10180 }
10181
10182 /* Insert a breakpoint. On targets that have software breakpoint
10183 support, we ask the remote target to do the work; on targets
10184 which don't, we insert a traditional memory breakpoint. */
10185
10186 int
10187 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10188 struct bp_target_info *bp_tgt)
10189 {
10190 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10191 If it succeeds, then set the support to PACKET_ENABLE. If it
10192 fails, and the user has explicitly requested the Z support then
10193 report an error, otherwise, mark it disabled and go on. */
10194
10195 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10196 {
10197 CORE_ADDR addr = bp_tgt->reqstd_address;
10198 struct remote_state *rs;
10199 char *p, *endbuf;
10200
10201 /* Make sure the remote is pointing at the right process, if
10202 necessary. */
10203 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10204 set_general_process ();
10205
10206 rs = get_remote_state ();
10207 p = rs->buf.data ();
10208 endbuf = p + get_remote_packet_size ();
10209
10210 *(p++) = 'Z';
10211 *(p++) = '0';
10212 *(p++) = ',';
10213 addr = (ULONGEST) remote_address_masked (addr);
10214 p += hexnumstr (p, addr);
10215 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10216
10217 if (supports_evaluation_of_breakpoint_conditions ())
10218 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10219
10220 if (can_run_breakpoint_commands ())
10221 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10222
10223 putpkt (rs->buf);
10224 getpkt (&rs->buf, 0);
10225
10226 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10227 {
10228 case PACKET_ERROR:
10229 return -1;
10230 case PACKET_OK:
10231 return 0;
10232 case PACKET_UNKNOWN:
10233 break;
10234 }
10235 }
10236
10237 /* If this breakpoint has target-side commands but this stub doesn't
10238 support Z0 packets, throw error. */
10239 if (!bp_tgt->tcommands.empty ())
10240 throw_error (NOT_SUPPORTED_ERROR, _("\
10241 Target doesn't support breakpoints that have target side commands."));
10242
10243 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10244 }
10245
10246 int
10247 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10248 struct bp_target_info *bp_tgt,
10249 enum remove_bp_reason reason)
10250 {
10251 CORE_ADDR addr = bp_tgt->placed_address;
10252 struct remote_state *rs = get_remote_state ();
10253
10254 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10255 {
10256 char *p = rs->buf.data ();
10257 char *endbuf = p + get_remote_packet_size ();
10258
10259 /* Make sure the remote is pointing at the right process, if
10260 necessary. */
10261 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10262 set_general_process ();
10263
10264 *(p++) = 'z';
10265 *(p++) = '0';
10266 *(p++) = ',';
10267
10268 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10269 p += hexnumstr (p, addr);
10270 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10271
10272 putpkt (rs->buf);
10273 getpkt (&rs->buf, 0);
10274
10275 return (rs->buf[0] == 'E');
10276 }
10277
10278 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10279 }
10280
10281 static enum Z_packet_type
10282 watchpoint_to_Z_packet (int type)
10283 {
10284 switch (type)
10285 {
10286 case hw_write:
10287 return Z_PACKET_WRITE_WP;
10288 break;
10289 case hw_read:
10290 return Z_PACKET_READ_WP;
10291 break;
10292 case hw_access:
10293 return Z_PACKET_ACCESS_WP;
10294 break;
10295 default:
10296 internal_error (__FILE__, __LINE__,
10297 _("hw_bp_to_z: bad watchpoint type %d"), type);
10298 }
10299 }
10300
10301 int
10302 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10303 enum target_hw_bp_type type, struct expression *cond)
10304 {
10305 struct remote_state *rs = get_remote_state ();
10306 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10307 char *p;
10308 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10309
10310 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10311 return 1;
10312
10313 /* Make sure the remote is pointing at the right process, if
10314 necessary. */
10315 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10316 set_general_process ();
10317
10318 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "Z%x,", packet);
10319 p = strchr (rs->buf.data (), '\0');
10320 addr = remote_address_masked (addr);
10321 p += hexnumstr (p, (ULONGEST) addr);
10322 xsnprintf (p, endbuf - p, ",%x", len);
10323
10324 putpkt (rs->buf);
10325 getpkt (&rs->buf, 0);
10326
10327 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10328 {
10329 case PACKET_ERROR:
10330 return -1;
10331 case PACKET_UNKNOWN:
10332 return 1;
10333 case PACKET_OK:
10334 return 0;
10335 }
10336 internal_error (__FILE__, __LINE__,
10337 _("remote_insert_watchpoint: reached end of function"));
10338 }
10339
10340 bool
10341 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10342 CORE_ADDR start, int length)
10343 {
10344 CORE_ADDR diff = remote_address_masked (addr - start);
10345
10346 return diff < length;
10347 }
10348
10349
10350 int
10351 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10352 enum target_hw_bp_type type, struct expression *cond)
10353 {
10354 struct remote_state *rs = get_remote_state ();
10355 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10356 char *p;
10357 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10358
10359 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10360 return -1;
10361
10362 /* Make sure the remote is pointing at the right process, if
10363 necessary. */
10364 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10365 set_general_process ();
10366
10367 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "z%x,", packet);
10368 p = strchr (rs->buf.data (), '\0');
10369 addr = remote_address_masked (addr);
10370 p += hexnumstr (p, (ULONGEST) addr);
10371 xsnprintf (p, endbuf - p, ",%x", len);
10372 putpkt (rs->buf);
10373 getpkt (&rs->buf, 0);
10374
10375 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10376 {
10377 case PACKET_ERROR:
10378 case PACKET_UNKNOWN:
10379 return -1;
10380 case PACKET_OK:
10381 return 0;
10382 }
10383 internal_error (__FILE__, __LINE__,
10384 _("remote_remove_watchpoint: reached end of function"));
10385 }
10386
10387
10388 static int remote_hw_watchpoint_limit = -1;
10389 static int remote_hw_watchpoint_length_limit = -1;
10390 static int remote_hw_breakpoint_limit = -1;
10391
10392 int
10393 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10394 {
10395 if (remote_hw_watchpoint_length_limit == 0)
10396 return 0;
10397 else if (remote_hw_watchpoint_length_limit < 0)
10398 return 1;
10399 else if (len <= remote_hw_watchpoint_length_limit)
10400 return 1;
10401 else
10402 return 0;
10403 }
10404
10405 int
10406 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10407 {
10408 if (type == bp_hardware_breakpoint)
10409 {
10410 if (remote_hw_breakpoint_limit == 0)
10411 return 0;
10412 else if (remote_hw_breakpoint_limit < 0)
10413 return 1;
10414 else if (cnt <= remote_hw_breakpoint_limit)
10415 return 1;
10416 }
10417 else
10418 {
10419 if (remote_hw_watchpoint_limit == 0)
10420 return 0;
10421 else if (remote_hw_watchpoint_limit < 0)
10422 return 1;
10423 else if (ot)
10424 return -1;
10425 else if (cnt <= remote_hw_watchpoint_limit)
10426 return 1;
10427 }
10428 return -1;
10429 }
10430
10431 /* The to_stopped_by_sw_breakpoint method of target remote. */
10432
10433 bool
10434 remote_target::stopped_by_sw_breakpoint ()
10435 {
10436 struct thread_info *thread = inferior_thread ();
10437
10438 return (thread->priv != NULL
10439 && (get_remote_thread_info (thread)->stop_reason
10440 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10441 }
10442
10443 /* The to_supports_stopped_by_sw_breakpoint method of target
10444 remote. */
10445
10446 bool
10447 remote_target::supports_stopped_by_sw_breakpoint ()
10448 {
10449 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10450 }
10451
10452 /* The to_stopped_by_hw_breakpoint method of target remote. */
10453
10454 bool
10455 remote_target::stopped_by_hw_breakpoint ()
10456 {
10457 struct thread_info *thread = inferior_thread ();
10458
10459 return (thread->priv != NULL
10460 && (get_remote_thread_info (thread)->stop_reason
10461 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10462 }
10463
10464 /* The to_supports_stopped_by_hw_breakpoint method of target
10465 remote. */
10466
10467 bool
10468 remote_target::supports_stopped_by_hw_breakpoint ()
10469 {
10470 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10471 }
10472
10473 bool
10474 remote_target::stopped_by_watchpoint ()
10475 {
10476 struct thread_info *thread = inferior_thread ();
10477
10478 return (thread->priv != NULL
10479 && (get_remote_thread_info (thread)->stop_reason
10480 == TARGET_STOPPED_BY_WATCHPOINT));
10481 }
10482
10483 bool
10484 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10485 {
10486 struct thread_info *thread = inferior_thread ();
10487
10488 if (thread->priv != NULL
10489 && (get_remote_thread_info (thread)->stop_reason
10490 == TARGET_STOPPED_BY_WATCHPOINT))
10491 {
10492 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10493 return true;
10494 }
10495
10496 return false;
10497 }
10498
10499
10500 int
10501 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10502 struct bp_target_info *bp_tgt)
10503 {
10504 CORE_ADDR addr = bp_tgt->reqstd_address;
10505 struct remote_state *rs;
10506 char *p, *endbuf;
10507 char *message;
10508
10509 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10510 return -1;
10511
10512 /* Make sure the remote is pointing at the right process, if
10513 necessary. */
10514 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10515 set_general_process ();
10516
10517 rs = get_remote_state ();
10518 p = rs->buf.data ();
10519 endbuf = p + get_remote_packet_size ();
10520
10521 *(p++) = 'Z';
10522 *(p++) = '1';
10523 *(p++) = ',';
10524
10525 addr = remote_address_masked (addr);
10526 p += hexnumstr (p, (ULONGEST) addr);
10527 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10528
10529 if (supports_evaluation_of_breakpoint_conditions ())
10530 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10531
10532 if (can_run_breakpoint_commands ())
10533 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10534
10535 putpkt (rs->buf);
10536 getpkt (&rs->buf, 0);
10537
10538 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10539 {
10540 case PACKET_ERROR:
10541 if (rs->buf[1] == '.')
10542 {
10543 message = strchr (&rs->buf[2], '.');
10544 if (message)
10545 error (_("Remote failure reply: %s"), message + 1);
10546 }
10547 return -1;
10548 case PACKET_UNKNOWN:
10549 return -1;
10550 case PACKET_OK:
10551 return 0;
10552 }
10553 internal_error (__FILE__, __LINE__,
10554 _("remote_insert_hw_breakpoint: reached end of function"));
10555 }
10556
10557
10558 int
10559 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10560 struct bp_target_info *bp_tgt)
10561 {
10562 CORE_ADDR addr;
10563 struct remote_state *rs = get_remote_state ();
10564 char *p = rs->buf.data ();
10565 char *endbuf = p + get_remote_packet_size ();
10566
10567 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10568 return -1;
10569
10570 /* Make sure the remote is pointing at the right process, if
10571 necessary. */
10572 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10573 set_general_process ();
10574
10575 *(p++) = 'z';
10576 *(p++) = '1';
10577 *(p++) = ',';
10578
10579 addr = remote_address_masked (bp_tgt->placed_address);
10580 p += hexnumstr (p, (ULONGEST) addr);
10581 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10582
10583 putpkt (rs->buf);
10584 getpkt (&rs->buf, 0);
10585
10586 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10587 {
10588 case PACKET_ERROR:
10589 case PACKET_UNKNOWN:
10590 return -1;
10591 case PACKET_OK:
10592 return 0;
10593 }
10594 internal_error (__FILE__, __LINE__,
10595 _("remote_remove_hw_breakpoint: reached end of function"));
10596 }
10597
10598 /* Verify memory using the "qCRC:" request. */
10599
10600 int
10601 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10602 {
10603 struct remote_state *rs = get_remote_state ();
10604 unsigned long host_crc, target_crc;
10605 char *tmp;
10606
10607 /* It doesn't make sense to use qCRC if the remote target is
10608 connected but not running. */
10609 if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10610 {
10611 enum packet_result result;
10612
10613 /* Make sure the remote is pointing at the right process. */
10614 set_general_process ();
10615
10616 /* FIXME: assumes lma can fit into long. */
10617 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qCRC:%lx,%lx",
10618 (long) lma, (long) size);
10619 putpkt (rs->buf);
10620
10621 /* Be clever; compute the host_crc before waiting for target
10622 reply. */
10623 host_crc = xcrc32 (data, size, 0xffffffff);
10624
10625 getpkt (&rs->buf, 0);
10626
10627 result = packet_ok (rs->buf,
10628 &remote_protocol_packets[PACKET_qCRC]);
10629 if (result == PACKET_ERROR)
10630 return -1;
10631 else if (result == PACKET_OK)
10632 {
10633 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10634 target_crc = target_crc * 16 + fromhex (*tmp);
10635
10636 return (host_crc == target_crc);
10637 }
10638 }
10639
10640 return simple_verify_memory (this, data, lma, size);
10641 }
10642
10643 /* compare-sections command
10644
10645 With no arguments, compares each loadable section in the exec bfd
10646 with the same memory range on the target, and reports mismatches.
10647 Useful for verifying the image on the target against the exec file. */
10648
10649 static void
10650 compare_sections_command (const char *args, int from_tty)
10651 {
10652 asection *s;
10653 const char *sectname;
10654 bfd_size_type size;
10655 bfd_vma lma;
10656 int matched = 0;
10657 int mismatched = 0;
10658 int res;
10659 int read_only = 0;
10660
10661 if (!exec_bfd)
10662 error (_("command cannot be used without an exec file"));
10663
10664 if (args != NULL && strcmp (args, "-r") == 0)
10665 {
10666 read_only = 1;
10667 args = NULL;
10668 }
10669
10670 for (s = exec_bfd->sections; s; s = s->next)
10671 {
10672 if (!(s->flags & SEC_LOAD))
10673 continue; /* Skip non-loadable section. */
10674
10675 if (read_only && (s->flags & SEC_READONLY) == 0)
10676 continue; /* Skip writeable sections */
10677
10678 size = bfd_section_size (s);
10679 if (size == 0)
10680 continue; /* Skip zero-length section. */
10681
10682 sectname = bfd_section_name (s);
10683 if (args && strcmp (args, sectname) != 0)
10684 continue; /* Not the section selected by user. */
10685
10686 matched = 1; /* Do this section. */
10687 lma = s->lma;
10688
10689 gdb::byte_vector sectdata (size);
10690 bfd_get_section_contents (exec_bfd, s, sectdata.data (), 0, size);
10691
10692 res = target_verify_memory (sectdata.data (), lma, size);
10693
10694 if (res == -1)
10695 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10696 paddress (target_gdbarch (), lma),
10697 paddress (target_gdbarch (), lma + size));
10698
10699 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10700 paddress (target_gdbarch (), lma),
10701 paddress (target_gdbarch (), lma + size));
10702 if (res)
10703 printf_filtered ("matched.\n");
10704 else
10705 {
10706 printf_filtered ("MIS-MATCHED!\n");
10707 mismatched++;
10708 }
10709 }
10710 if (mismatched > 0)
10711 warning (_("One or more sections of the target image does not match\n\
10712 the loaded file\n"));
10713 if (args && !matched)
10714 printf_filtered (_("No loaded section named '%s'.\n"), args);
10715 }
10716
10717 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10718 into remote target. The number of bytes written to the remote
10719 target is returned, or -1 for error. */
10720
10721 target_xfer_status
10722 remote_target::remote_write_qxfer (const char *object_name,
10723 const char *annex, const gdb_byte *writebuf,
10724 ULONGEST offset, LONGEST len,
10725 ULONGEST *xfered_len,
10726 struct packet_config *packet)
10727 {
10728 int i, buf_len;
10729 ULONGEST n;
10730 struct remote_state *rs = get_remote_state ();
10731 int max_size = get_memory_write_packet_size ();
10732
10733 if (packet_config_support (packet) == PACKET_DISABLE)
10734 return TARGET_XFER_E_IO;
10735
10736 /* Insert header. */
10737 i = snprintf (rs->buf.data (), max_size,
10738 "qXfer:%s:write:%s:%s:",
10739 object_name, annex ? annex : "",
10740 phex_nz (offset, sizeof offset));
10741 max_size -= (i + 1);
10742
10743 /* Escape as much data as fits into rs->buf. */
10744 buf_len = remote_escape_output
10745 (writebuf, len, 1, (gdb_byte *) rs->buf.data () + i, &max_size, max_size);
10746
10747 if (putpkt_binary (rs->buf.data (), i + buf_len) < 0
10748 || getpkt_sane (&rs->buf, 0) < 0
10749 || packet_ok (rs->buf, packet) != PACKET_OK)
10750 return TARGET_XFER_E_IO;
10751
10752 unpack_varlen_hex (rs->buf.data (), &n);
10753
10754 *xfered_len = n;
10755 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10756 }
10757
10758 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10759 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10760 number of bytes read is returned, or 0 for EOF, or -1 for error.
10761 The number of bytes read may be less than LEN without indicating an
10762 EOF. PACKET is checked and updated to indicate whether the remote
10763 target supports this object. */
10764
10765 target_xfer_status
10766 remote_target::remote_read_qxfer (const char *object_name,
10767 const char *annex,
10768 gdb_byte *readbuf, ULONGEST offset,
10769 LONGEST len,
10770 ULONGEST *xfered_len,
10771 struct packet_config *packet)
10772 {
10773 struct remote_state *rs = get_remote_state ();
10774 LONGEST i, n, packet_len;
10775
10776 if (packet_config_support (packet) == PACKET_DISABLE)
10777 return TARGET_XFER_E_IO;
10778
10779 /* Check whether we've cached an end-of-object packet that matches
10780 this request. */
10781 if (rs->finished_object)
10782 {
10783 if (strcmp (object_name, rs->finished_object) == 0
10784 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10785 && offset == rs->finished_offset)
10786 return TARGET_XFER_EOF;
10787
10788
10789 /* Otherwise, we're now reading something different. Discard
10790 the cache. */
10791 xfree (rs->finished_object);
10792 xfree (rs->finished_annex);
10793 rs->finished_object = NULL;
10794 rs->finished_annex = NULL;
10795 }
10796
10797 /* Request only enough to fit in a single packet. The actual data
10798 may not, since we don't know how much of it will need to be escaped;
10799 the target is free to respond with slightly less data. We subtract
10800 five to account for the response type and the protocol frame. */
10801 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10802 snprintf (rs->buf.data (), get_remote_packet_size () - 4,
10803 "qXfer:%s:read:%s:%s,%s",
10804 object_name, annex ? annex : "",
10805 phex_nz (offset, sizeof offset),
10806 phex_nz (n, sizeof n));
10807 i = putpkt (rs->buf);
10808 if (i < 0)
10809 return TARGET_XFER_E_IO;
10810
10811 rs->buf[0] = '\0';
10812 packet_len = getpkt_sane (&rs->buf, 0);
10813 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10814 return TARGET_XFER_E_IO;
10815
10816 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10817 error (_("Unknown remote qXfer reply: %s"), rs->buf.data ());
10818
10819 /* 'm' means there is (or at least might be) more data after this
10820 batch. That does not make sense unless there's at least one byte
10821 of data in this reply. */
10822 if (rs->buf[0] == 'm' && packet_len == 1)
10823 error (_("Remote qXfer reply contained no data."));
10824
10825 /* Got some data. */
10826 i = remote_unescape_input ((gdb_byte *) rs->buf.data () + 1,
10827 packet_len - 1, readbuf, n);
10828
10829 /* 'l' is an EOF marker, possibly including a final block of data,
10830 or possibly empty. If we have the final block of a non-empty
10831 object, record this fact to bypass a subsequent partial read. */
10832 if (rs->buf[0] == 'l' && offset + i > 0)
10833 {
10834 rs->finished_object = xstrdup (object_name);
10835 rs->finished_annex = xstrdup (annex ? annex : "");
10836 rs->finished_offset = offset + i;
10837 }
10838
10839 if (i == 0)
10840 return TARGET_XFER_EOF;
10841 else
10842 {
10843 *xfered_len = i;
10844 return TARGET_XFER_OK;
10845 }
10846 }
10847
10848 enum target_xfer_status
10849 remote_target::xfer_partial (enum target_object object,
10850 const char *annex, gdb_byte *readbuf,
10851 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
10852 ULONGEST *xfered_len)
10853 {
10854 struct remote_state *rs;
10855 int i;
10856 char *p2;
10857 char query_type;
10858 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
10859
10860 set_remote_traceframe ();
10861 set_general_thread (inferior_ptid);
10862
10863 rs = get_remote_state ();
10864
10865 /* Handle memory using the standard memory routines. */
10866 if (object == TARGET_OBJECT_MEMORY)
10867 {
10868 /* If the remote target is connected but not running, we should
10869 pass this request down to a lower stratum (e.g. the executable
10870 file). */
10871 if (!target_has_execution)
10872 return TARGET_XFER_EOF;
10873
10874 if (writebuf != NULL)
10875 return remote_write_bytes (offset, writebuf, len, unit_size,
10876 xfered_len);
10877 else
10878 return remote_read_bytes (offset, readbuf, len, unit_size,
10879 xfered_len);
10880 }
10881
10882 /* Handle extra signal info using qxfer packets. */
10883 if (object == TARGET_OBJECT_SIGNAL_INFO)
10884 {
10885 if (readbuf)
10886 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
10887 xfered_len, &remote_protocol_packets
10888 [PACKET_qXfer_siginfo_read]);
10889 else
10890 return remote_write_qxfer ("siginfo", annex,
10891 writebuf, offset, len, xfered_len,
10892 &remote_protocol_packets
10893 [PACKET_qXfer_siginfo_write]);
10894 }
10895
10896 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
10897 {
10898 if (readbuf)
10899 return remote_read_qxfer ("statictrace", annex,
10900 readbuf, offset, len, xfered_len,
10901 &remote_protocol_packets
10902 [PACKET_qXfer_statictrace_read]);
10903 else
10904 return TARGET_XFER_E_IO;
10905 }
10906
10907 /* Only handle flash writes. */
10908 if (writebuf != NULL)
10909 {
10910 switch (object)
10911 {
10912 case TARGET_OBJECT_FLASH:
10913 return remote_flash_write (offset, len, xfered_len,
10914 writebuf);
10915
10916 default:
10917 return TARGET_XFER_E_IO;
10918 }
10919 }
10920
10921 /* Map pre-existing objects onto letters. DO NOT do this for new
10922 objects!!! Instead specify new query packets. */
10923 switch (object)
10924 {
10925 case TARGET_OBJECT_AVR:
10926 query_type = 'R';
10927 break;
10928
10929 case TARGET_OBJECT_AUXV:
10930 gdb_assert (annex == NULL);
10931 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
10932 xfered_len,
10933 &remote_protocol_packets[PACKET_qXfer_auxv]);
10934
10935 case TARGET_OBJECT_AVAILABLE_FEATURES:
10936 return remote_read_qxfer
10937 ("features", annex, readbuf, offset, len, xfered_len,
10938 &remote_protocol_packets[PACKET_qXfer_features]);
10939
10940 case TARGET_OBJECT_LIBRARIES:
10941 return remote_read_qxfer
10942 ("libraries", annex, readbuf, offset, len, xfered_len,
10943 &remote_protocol_packets[PACKET_qXfer_libraries]);
10944
10945 case TARGET_OBJECT_LIBRARIES_SVR4:
10946 return remote_read_qxfer
10947 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
10948 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
10949
10950 case TARGET_OBJECT_MEMORY_MAP:
10951 gdb_assert (annex == NULL);
10952 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
10953 xfered_len,
10954 &remote_protocol_packets[PACKET_qXfer_memory_map]);
10955
10956 case TARGET_OBJECT_OSDATA:
10957 /* Should only get here if we're connected. */
10958 gdb_assert (rs->remote_desc);
10959 return remote_read_qxfer
10960 ("osdata", annex, readbuf, offset, len, xfered_len,
10961 &remote_protocol_packets[PACKET_qXfer_osdata]);
10962
10963 case TARGET_OBJECT_THREADS:
10964 gdb_assert (annex == NULL);
10965 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
10966 xfered_len,
10967 &remote_protocol_packets[PACKET_qXfer_threads]);
10968
10969 case TARGET_OBJECT_TRACEFRAME_INFO:
10970 gdb_assert (annex == NULL);
10971 return remote_read_qxfer
10972 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
10973 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
10974
10975 case TARGET_OBJECT_FDPIC:
10976 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
10977 xfered_len,
10978 &remote_protocol_packets[PACKET_qXfer_fdpic]);
10979
10980 case TARGET_OBJECT_OPENVMS_UIB:
10981 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
10982 xfered_len,
10983 &remote_protocol_packets[PACKET_qXfer_uib]);
10984
10985 case TARGET_OBJECT_BTRACE:
10986 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
10987 xfered_len,
10988 &remote_protocol_packets[PACKET_qXfer_btrace]);
10989
10990 case TARGET_OBJECT_BTRACE_CONF:
10991 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
10992 len, xfered_len,
10993 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
10994
10995 case TARGET_OBJECT_EXEC_FILE:
10996 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
10997 len, xfered_len,
10998 &remote_protocol_packets[PACKET_qXfer_exec_file]);
10999
11000 default:
11001 return TARGET_XFER_E_IO;
11002 }
11003
11004 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
11005 large enough let the caller deal with it. */
11006 if (len < get_remote_packet_size ())
11007 return TARGET_XFER_E_IO;
11008 len = get_remote_packet_size ();
11009
11010 /* Except for querying the minimum buffer size, target must be open. */
11011 if (!rs->remote_desc)
11012 error (_("remote query is only available after target open"));
11013
11014 gdb_assert (annex != NULL);
11015 gdb_assert (readbuf != NULL);
11016
11017 p2 = rs->buf.data ();
11018 *p2++ = 'q';
11019 *p2++ = query_type;
11020
11021 /* We used one buffer char for the remote protocol q command and
11022 another for the query type. As the remote protocol encapsulation
11023 uses 4 chars plus one extra in case we are debugging
11024 (remote_debug), we have PBUFZIZ - 7 left to pack the query
11025 string. */
11026 i = 0;
11027 while (annex[i] && (i < (get_remote_packet_size () - 8)))
11028 {
11029 /* Bad caller may have sent forbidden characters. */
11030 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
11031 *p2++ = annex[i];
11032 i++;
11033 }
11034 *p2 = '\0';
11035 gdb_assert (annex[i] == '\0');
11036
11037 i = putpkt (rs->buf);
11038 if (i < 0)
11039 return TARGET_XFER_E_IO;
11040
11041 getpkt (&rs->buf, 0);
11042 strcpy ((char *) readbuf, rs->buf.data ());
11043
11044 *xfered_len = strlen ((char *) readbuf);
11045 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11046 }
11047
11048 /* Implementation of to_get_memory_xfer_limit. */
11049
11050 ULONGEST
11051 remote_target::get_memory_xfer_limit ()
11052 {
11053 return get_memory_write_packet_size ();
11054 }
11055
11056 int
11057 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
11058 const gdb_byte *pattern, ULONGEST pattern_len,
11059 CORE_ADDR *found_addrp)
11060 {
11061 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
11062 struct remote_state *rs = get_remote_state ();
11063 int max_size = get_memory_write_packet_size ();
11064 struct packet_config *packet =
11065 &remote_protocol_packets[PACKET_qSearch_memory];
11066 /* Number of packet bytes used to encode the pattern;
11067 this could be more than PATTERN_LEN due to escape characters. */
11068 int escaped_pattern_len;
11069 /* Amount of pattern that was encodable in the packet. */
11070 int used_pattern_len;
11071 int i;
11072 int found;
11073 ULONGEST found_addr;
11074
11075 /* Don't go to the target if we don't have to. This is done before
11076 checking packet_config_support to avoid the possibility that a
11077 success for this edge case means the facility works in
11078 general. */
11079 if (pattern_len > search_space_len)
11080 return 0;
11081 if (pattern_len == 0)
11082 {
11083 *found_addrp = start_addr;
11084 return 1;
11085 }
11086
11087 /* If we already know the packet isn't supported, fall back to the simple
11088 way of searching memory. */
11089
11090 if (packet_config_support (packet) == PACKET_DISABLE)
11091 {
11092 /* Target doesn't provided special support, fall back and use the
11093 standard support (copy memory and do the search here). */
11094 return simple_search_memory (this, start_addr, search_space_len,
11095 pattern, pattern_len, found_addrp);
11096 }
11097
11098 /* Make sure the remote is pointing at the right process. */
11099 set_general_process ();
11100
11101 /* Insert header. */
11102 i = snprintf (rs->buf.data (), max_size,
11103 "qSearch:memory:%s;%s;",
11104 phex_nz (start_addr, addr_size),
11105 phex_nz (search_space_len, sizeof (search_space_len)));
11106 max_size -= (i + 1);
11107
11108 /* Escape as much data as fits into rs->buf. */
11109 escaped_pattern_len =
11110 remote_escape_output (pattern, pattern_len, 1,
11111 (gdb_byte *) rs->buf.data () + i,
11112 &used_pattern_len, max_size);
11113
11114 /* Bail if the pattern is too large. */
11115 if (used_pattern_len != pattern_len)
11116 error (_("Pattern is too large to transmit to remote target."));
11117
11118 if (putpkt_binary (rs->buf.data (), i + escaped_pattern_len) < 0
11119 || getpkt_sane (&rs->buf, 0) < 0
11120 || packet_ok (rs->buf, packet) != PACKET_OK)
11121 {
11122 /* The request may not have worked because the command is not
11123 supported. If so, fall back to the simple way. */
11124 if (packet_config_support (packet) == PACKET_DISABLE)
11125 {
11126 return simple_search_memory (this, start_addr, search_space_len,
11127 pattern, pattern_len, found_addrp);
11128 }
11129 return -1;
11130 }
11131
11132 if (rs->buf[0] == '0')
11133 found = 0;
11134 else if (rs->buf[0] == '1')
11135 {
11136 found = 1;
11137 if (rs->buf[1] != ',')
11138 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11139 unpack_varlen_hex (&rs->buf[2], &found_addr);
11140 *found_addrp = found_addr;
11141 }
11142 else
11143 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11144
11145 return found;
11146 }
11147
11148 void
11149 remote_target::rcmd (const char *command, struct ui_file *outbuf)
11150 {
11151 struct remote_state *rs = get_remote_state ();
11152 char *p = rs->buf.data ();
11153
11154 if (!rs->remote_desc)
11155 error (_("remote rcmd is only available after target open"));
11156
11157 /* Send a NULL command across as an empty command. */
11158 if (command == NULL)
11159 command = "";
11160
11161 /* The query prefix. */
11162 strcpy (rs->buf.data (), "qRcmd,");
11163 p = strchr (rs->buf.data (), '\0');
11164
11165 if ((strlen (rs->buf.data ()) + strlen (command) * 2 + 8/*misc*/)
11166 > get_remote_packet_size ())
11167 error (_("\"monitor\" command ``%s'' is too long."), command);
11168
11169 /* Encode the actual command. */
11170 bin2hex ((const gdb_byte *) command, p, strlen (command));
11171
11172 if (putpkt (rs->buf) < 0)
11173 error (_("Communication problem with target."));
11174
11175 /* get/display the response */
11176 while (1)
11177 {
11178 char *buf;
11179
11180 /* XXX - see also remote_get_noisy_reply(). */
11181 QUIT; /* Allow user to bail out with ^C. */
11182 rs->buf[0] = '\0';
11183 if (getpkt_sane (&rs->buf, 0) == -1)
11184 {
11185 /* Timeout. Continue to (try to) read responses.
11186 This is better than stopping with an error, assuming the stub
11187 is still executing the (long) monitor command.
11188 If needed, the user can interrupt gdb using C-c, obtaining
11189 an effect similar to stop on timeout. */
11190 continue;
11191 }
11192 buf = rs->buf.data ();
11193 if (buf[0] == '\0')
11194 error (_("Target does not support this command."));
11195 if (buf[0] == 'O' && buf[1] != 'K')
11196 {
11197 remote_console_output (buf + 1); /* 'O' message from stub. */
11198 continue;
11199 }
11200 if (strcmp (buf, "OK") == 0)
11201 break;
11202 if (strlen (buf) == 3 && buf[0] == 'E'
11203 && isdigit (buf[1]) && isdigit (buf[2]))
11204 {
11205 error (_("Protocol error with Rcmd"));
11206 }
11207 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11208 {
11209 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11210
11211 fputc_unfiltered (c, outbuf);
11212 }
11213 break;
11214 }
11215 }
11216
11217 std::vector<mem_region>
11218 remote_target::memory_map ()
11219 {
11220 std::vector<mem_region> result;
11221 gdb::optional<gdb::char_vector> text
11222 = target_read_stralloc (current_top_target (), TARGET_OBJECT_MEMORY_MAP, NULL);
11223
11224 if (text)
11225 result = parse_memory_map (text->data ());
11226
11227 return result;
11228 }
11229
11230 static void
11231 packet_command (const char *args, int from_tty)
11232 {
11233 remote_target *remote = get_current_remote_target ();
11234
11235 if (remote == nullptr)
11236 error (_("command can only be used with remote target"));
11237
11238 remote->packet_command (args, from_tty);
11239 }
11240
11241 void
11242 remote_target::packet_command (const char *args, int from_tty)
11243 {
11244 if (!args)
11245 error (_("remote-packet command requires packet text as argument"));
11246
11247 puts_filtered ("sending: ");
11248 print_packet (args);
11249 puts_filtered ("\n");
11250 putpkt (args);
11251
11252 remote_state *rs = get_remote_state ();
11253
11254 getpkt (&rs->buf, 0);
11255 puts_filtered ("received: ");
11256 print_packet (rs->buf.data ());
11257 puts_filtered ("\n");
11258 }
11259
11260 #if 0
11261 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11262
11263 static void display_thread_info (struct gdb_ext_thread_info *info);
11264
11265 static void threadset_test_cmd (char *cmd, int tty);
11266
11267 static void threadalive_test (char *cmd, int tty);
11268
11269 static void threadlist_test_cmd (char *cmd, int tty);
11270
11271 int get_and_display_threadinfo (threadref *ref);
11272
11273 static void threadinfo_test_cmd (char *cmd, int tty);
11274
11275 static int thread_display_step (threadref *ref, void *context);
11276
11277 static void threadlist_update_test_cmd (char *cmd, int tty);
11278
11279 static void init_remote_threadtests (void);
11280
11281 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11282
11283 static void
11284 threadset_test_cmd (const char *cmd, int tty)
11285 {
11286 int sample_thread = SAMPLE_THREAD;
11287
11288 printf_filtered (_("Remote threadset test\n"));
11289 set_general_thread (sample_thread);
11290 }
11291
11292
11293 static void
11294 threadalive_test (const char *cmd, int tty)
11295 {
11296 int sample_thread = SAMPLE_THREAD;
11297 int pid = inferior_ptid.pid ();
11298 ptid_t ptid = ptid_t (pid, sample_thread, 0);
11299
11300 if (remote_thread_alive (ptid))
11301 printf_filtered ("PASS: Thread alive test\n");
11302 else
11303 printf_filtered ("FAIL: Thread alive test\n");
11304 }
11305
11306 void output_threadid (char *title, threadref *ref);
11307
11308 void
11309 output_threadid (char *title, threadref *ref)
11310 {
11311 char hexid[20];
11312
11313 pack_threadid (&hexid[0], ref); /* Convert thread id into hex. */
11314 hexid[16] = 0;
11315 printf_filtered ("%s %s\n", title, (&hexid[0]));
11316 }
11317
11318 static void
11319 threadlist_test_cmd (const char *cmd, int tty)
11320 {
11321 int startflag = 1;
11322 threadref nextthread;
11323 int done, result_count;
11324 threadref threadlist[3];
11325
11326 printf_filtered ("Remote Threadlist test\n");
11327 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11328 &result_count, &threadlist[0]))
11329 printf_filtered ("FAIL: threadlist test\n");
11330 else
11331 {
11332 threadref *scan = threadlist;
11333 threadref *limit = scan + result_count;
11334
11335 while (scan < limit)
11336 output_threadid (" thread ", scan++);
11337 }
11338 }
11339
11340 void
11341 display_thread_info (struct gdb_ext_thread_info *info)
11342 {
11343 output_threadid ("Threadid: ", &info->threadid);
11344 printf_filtered ("Name: %s\n ", info->shortname);
11345 printf_filtered ("State: %s\n", info->display);
11346 printf_filtered ("other: %s\n\n", info->more_display);
11347 }
11348
11349 int
11350 get_and_display_threadinfo (threadref *ref)
11351 {
11352 int result;
11353 int set;
11354 struct gdb_ext_thread_info threadinfo;
11355
11356 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11357 | TAG_MOREDISPLAY | TAG_DISPLAY;
11358 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11359 display_thread_info (&threadinfo);
11360 return result;
11361 }
11362
11363 static void
11364 threadinfo_test_cmd (const char *cmd, int tty)
11365 {
11366 int athread = SAMPLE_THREAD;
11367 threadref thread;
11368 int set;
11369
11370 int_to_threadref (&thread, athread);
11371 printf_filtered ("Remote Threadinfo test\n");
11372 if (!get_and_display_threadinfo (&thread))
11373 printf_filtered ("FAIL cannot get thread info\n");
11374 }
11375
11376 static int
11377 thread_display_step (threadref *ref, void *context)
11378 {
11379 /* output_threadid(" threadstep ",ref); *//* simple test */
11380 return get_and_display_threadinfo (ref);
11381 }
11382
11383 static void
11384 threadlist_update_test_cmd (const char *cmd, int tty)
11385 {
11386 printf_filtered ("Remote Threadlist update test\n");
11387 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11388 }
11389
11390 static void
11391 init_remote_threadtests (void)
11392 {
11393 add_com ("tlist", class_obscure, threadlist_test_cmd,
11394 _("Fetch and print the remote list of "
11395 "thread identifiers, one pkt only."));
11396 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11397 _("Fetch and display info about one thread."));
11398 add_com ("tset", class_obscure, threadset_test_cmd,
11399 _("Test setting to a different thread."));
11400 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11401 _("Iterate through updating all remote thread info."));
11402 add_com ("talive", class_obscure, threadalive_test,
11403 _("Remote thread alive test."));
11404 }
11405
11406 #endif /* 0 */
11407
11408 /* Convert a thread ID to a string. */
11409
11410 std::string
11411 remote_target::pid_to_str (ptid_t ptid)
11412 {
11413 struct remote_state *rs = get_remote_state ();
11414
11415 if (ptid == null_ptid)
11416 return normal_pid_to_str (ptid);
11417 else if (ptid.is_pid ())
11418 {
11419 /* Printing an inferior target id. */
11420
11421 /* When multi-process extensions are off, there's no way in the
11422 remote protocol to know the remote process id, if there's any
11423 at all. There's one exception --- when we're connected with
11424 target extended-remote, and we manually attached to a process
11425 with "attach PID". We don't record anywhere a flag that
11426 allows us to distinguish that case from the case of
11427 connecting with extended-remote and the stub already being
11428 attached to a process, and reporting yes to qAttached, hence
11429 no smart special casing here. */
11430 if (!remote_multi_process_p (rs))
11431 return "Remote target";
11432
11433 return normal_pid_to_str (ptid);
11434 }
11435 else
11436 {
11437 if (magic_null_ptid == ptid)
11438 return "Thread <main>";
11439 else if (remote_multi_process_p (rs))
11440 if (ptid.lwp () == 0)
11441 return normal_pid_to_str (ptid);
11442 else
11443 return string_printf ("Thread %d.%ld",
11444 ptid.pid (), ptid.lwp ());
11445 else
11446 return string_printf ("Thread %ld", ptid.lwp ());
11447 }
11448 }
11449
11450 /* Get the address of the thread local variable in OBJFILE which is
11451 stored at OFFSET within the thread local storage for thread PTID. */
11452
11453 CORE_ADDR
11454 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11455 CORE_ADDR offset)
11456 {
11457 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11458 {
11459 struct remote_state *rs = get_remote_state ();
11460 char *p = rs->buf.data ();
11461 char *endp = p + get_remote_packet_size ();
11462 enum packet_result result;
11463
11464 strcpy (p, "qGetTLSAddr:");
11465 p += strlen (p);
11466 p = write_ptid (p, endp, ptid);
11467 *p++ = ',';
11468 p += hexnumstr (p, offset);
11469 *p++ = ',';
11470 p += hexnumstr (p, lm);
11471 *p++ = '\0';
11472
11473 putpkt (rs->buf);
11474 getpkt (&rs->buf, 0);
11475 result = packet_ok (rs->buf,
11476 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11477 if (result == PACKET_OK)
11478 {
11479 ULONGEST addr;
11480
11481 unpack_varlen_hex (rs->buf.data (), &addr);
11482 return addr;
11483 }
11484 else if (result == PACKET_UNKNOWN)
11485 throw_error (TLS_GENERIC_ERROR,
11486 _("Remote target doesn't support qGetTLSAddr packet"));
11487 else
11488 throw_error (TLS_GENERIC_ERROR,
11489 _("Remote target failed to process qGetTLSAddr request"));
11490 }
11491 else
11492 throw_error (TLS_GENERIC_ERROR,
11493 _("TLS not supported or disabled on this target"));
11494 /* Not reached. */
11495 return 0;
11496 }
11497
11498 /* Provide thread local base, i.e. Thread Information Block address.
11499 Returns 1 if ptid is found and thread_local_base is non zero. */
11500
11501 bool
11502 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11503 {
11504 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11505 {
11506 struct remote_state *rs = get_remote_state ();
11507 char *p = rs->buf.data ();
11508 char *endp = p + get_remote_packet_size ();
11509 enum packet_result result;
11510
11511 strcpy (p, "qGetTIBAddr:");
11512 p += strlen (p);
11513 p = write_ptid (p, endp, ptid);
11514 *p++ = '\0';
11515
11516 putpkt (rs->buf);
11517 getpkt (&rs->buf, 0);
11518 result = packet_ok (rs->buf,
11519 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11520 if (result == PACKET_OK)
11521 {
11522 ULONGEST val;
11523 unpack_varlen_hex (rs->buf.data (), &val);
11524 if (addr)
11525 *addr = (CORE_ADDR) val;
11526 return true;
11527 }
11528 else if (result == PACKET_UNKNOWN)
11529 error (_("Remote target doesn't support qGetTIBAddr packet"));
11530 else
11531 error (_("Remote target failed to process qGetTIBAddr request"));
11532 }
11533 else
11534 error (_("qGetTIBAddr not supported or disabled on this target"));
11535 /* Not reached. */
11536 return false;
11537 }
11538
11539 /* Support for inferring a target description based on the current
11540 architecture and the size of a 'g' packet. While the 'g' packet
11541 can have any size (since optional registers can be left off the
11542 end), some sizes are easily recognizable given knowledge of the
11543 approximate architecture. */
11544
11545 struct remote_g_packet_guess
11546 {
11547 remote_g_packet_guess (int bytes_, const struct target_desc *tdesc_)
11548 : bytes (bytes_),
11549 tdesc (tdesc_)
11550 {
11551 }
11552
11553 int bytes;
11554 const struct target_desc *tdesc;
11555 };
11556
11557 struct remote_g_packet_data : public allocate_on_obstack
11558 {
11559 std::vector<remote_g_packet_guess> guesses;
11560 };
11561
11562 static struct gdbarch_data *remote_g_packet_data_handle;
11563
11564 static void *
11565 remote_g_packet_data_init (struct obstack *obstack)
11566 {
11567 return new (obstack) remote_g_packet_data;
11568 }
11569
11570 void
11571 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11572 const struct target_desc *tdesc)
11573 {
11574 struct remote_g_packet_data *data
11575 = ((struct remote_g_packet_data *)
11576 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11577
11578 gdb_assert (tdesc != NULL);
11579
11580 for (const remote_g_packet_guess &guess : data->guesses)
11581 if (guess.bytes == bytes)
11582 internal_error (__FILE__, __LINE__,
11583 _("Duplicate g packet description added for size %d"),
11584 bytes);
11585
11586 data->guesses.emplace_back (bytes, tdesc);
11587 }
11588
11589 /* Return true if remote_read_description would do anything on this target
11590 and architecture, false otherwise. */
11591
11592 static bool
11593 remote_read_description_p (struct target_ops *target)
11594 {
11595 struct remote_g_packet_data *data
11596 = ((struct remote_g_packet_data *)
11597 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11598
11599 return !data->guesses.empty ();
11600 }
11601
11602 const struct target_desc *
11603 remote_target::read_description ()
11604 {
11605 struct remote_g_packet_data *data
11606 = ((struct remote_g_packet_data *)
11607 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11608
11609 /* Do not try this during initial connection, when we do not know
11610 whether there is a running but stopped thread. */
11611 if (!target_has_execution || inferior_ptid == null_ptid)
11612 return beneath ()->read_description ();
11613
11614 if (!data->guesses.empty ())
11615 {
11616 int bytes = send_g_packet ();
11617
11618 for (const remote_g_packet_guess &guess : data->guesses)
11619 if (guess.bytes == bytes)
11620 return guess.tdesc;
11621
11622 /* We discard the g packet. A minor optimization would be to
11623 hold on to it, and fill the register cache once we have selected
11624 an architecture, but it's too tricky to do safely. */
11625 }
11626
11627 return beneath ()->read_description ();
11628 }
11629
11630 /* Remote file transfer support. This is host-initiated I/O, not
11631 target-initiated; for target-initiated, see remote-fileio.c. */
11632
11633 /* If *LEFT is at least the length of STRING, copy STRING to
11634 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11635 decrease *LEFT. Otherwise raise an error. */
11636
11637 static void
11638 remote_buffer_add_string (char **buffer, int *left, const char *string)
11639 {
11640 int len = strlen (string);
11641
11642 if (len > *left)
11643 error (_("Packet too long for target."));
11644
11645 memcpy (*buffer, string, len);
11646 *buffer += len;
11647 *left -= len;
11648
11649 /* NUL-terminate the buffer as a convenience, if there is
11650 room. */
11651 if (*left)
11652 **buffer = '\0';
11653 }
11654
11655 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11656 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11657 decrease *LEFT. Otherwise raise an error. */
11658
11659 static void
11660 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11661 int len)
11662 {
11663 if (2 * len > *left)
11664 error (_("Packet too long for target."));
11665
11666 bin2hex (bytes, *buffer, len);
11667 *buffer += 2 * len;
11668 *left -= 2 * len;
11669
11670 /* NUL-terminate the buffer as a convenience, if there is
11671 room. */
11672 if (*left)
11673 **buffer = '\0';
11674 }
11675
11676 /* If *LEFT is large enough, convert VALUE to hex and add it to
11677 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11678 decrease *LEFT. Otherwise raise an error. */
11679
11680 static void
11681 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11682 {
11683 int len = hexnumlen (value);
11684
11685 if (len > *left)
11686 error (_("Packet too long for target."));
11687
11688 hexnumstr (*buffer, value);
11689 *buffer += len;
11690 *left -= len;
11691
11692 /* NUL-terminate the buffer as a convenience, if there is
11693 room. */
11694 if (*left)
11695 **buffer = '\0';
11696 }
11697
11698 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11699 value, *REMOTE_ERRNO to the remote error number or zero if none
11700 was included, and *ATTACHMENT to point to the start of the annex
11701 if any. The length of the packet isn't needed here; there may
11702 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11703
11704 Return 0 if the packet could be parsed, -1 if it could not. If
11705 -1 is returned, the other variables may not be initialized. */
11706
11707 static int
11708 remote_hostio_parse_result (char *buffer, int *retcode,
11709 int *remote_errno, char **attachment)
11710 {
11711 char *p, *p2;
11712
11713 *remote_errno = 0;
11714 *attachment = NULL;
11715
11716 if (buffer[0] != 'F')
11717 return -1;
11718
11719 errno = 0;
11720 *retcode = strtol (&buffer[1], &p, 16);
11721 if (errno != 0 || p == &buffer[1])
11722 return -1;
11723
11724 /* Check for ",errno". */
11725 if (*p == ',')
11726 {
11727 errno = 0;
11728 *remote_errno = strtol (p + 1, &p2, 16);
11729 if (errno != 0 || p + 1 == p2)
11730 return -1;
11731 p = p2;
11732 }
11733
11734 /* Check for ";attachment". If there is no attachment, the
11735 packet should end here. */
11736 if (*p == ';')
11737 {
11738 *attachment = p + 1;
11739 return 0;
11740 }
11741 else if (*p == '\0')
11742 return 0;
11743 else
11744 return -1;
11745 }
11746
11747 /* Send a prepared I/O packet to the target and read its response.
11748 The prepared packet is in the global RS->BUF before this function
11749 is called, and the answer is there when we return.
11750
11751 COMMAND_BYTES is the length of the request to send, which may include
11752 binary data. WHICH_PACKET is the packet configuration to check
11753 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11754 is set to the error number and -1 is returned. Otherwise the value
11755 returned by the function is returned.
11756
11757 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11758 attachment is expected; an error will be reported if there's a
11759 mismatch. If one is found, *ATTACHMENT will be set to point into
11760 the packet buffer and *ATTACHMENT_LEN will be set to the
11761 attachment's length. */
11762
11763 int
11764 remote_target::remote_hostio_send_command (int command_bytes, int which_packet,
11765 int *remote_errno, char **attachment,
11766 int *attachment_len)
11767 {
11768 struct remote_state *rs = get_remote_state ();
11769 int ret, bytes_read;
11770 char *attachment_tmp;
11771
11772 if (packet_support (which_packet) == PACKET_DISABLE)
11773 {
11774 *remote_errno = FILEIO_ENOSYS;
11775 return -1;
11776 }
11777
11778 putpkt_binary (rs->buf.data (), command_bytes);
11779 bytes_read = getpkt_sane (&rs->buf, 0);
11780
11781 /* If it timed out, something is wrong. Don't try to parse the
11782 buffer. */
11783 if (bytes_read < 0)
11784 {
11785 *remote_errno = FILEIO_EINVAL;
11786 return -1;
11787 }
11788
11789 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11790 {
11791 case PACKET_ERROR:
11792 *remote_errno = FILEIO_EINVAL;
11793 return -1;
11794 case PACKET_UNKNOWN:
11795 *remote_errno = FILEIO_ENOSYS;
11796 return -1;
11797 case PACKET_OK:
11798 break;
11799 }
11800
11801 if (remote_hostio_parse_result (rs->buf.data (), &ret, remote_errno,
11802 &attachment_tmp))
11803 {
11804 *remote_errno = FILEIO_EINVAL;
11805 return -1;
11806 }
11807
11808 /* Make sure we saw an attachment if and only if we expected one. */
11809 if ((attachment_tmp == NULL && attachment != NULL)
11810 || (attachment_tmp != NULL && attachment == NULL))
11811 {
11812 *remote_errno = FILEIO_EINVAL;
11813 return -1;
11814 }
11815
11816 /* If an attachment was found, it must point into the packet buffer;
11817 work out how many bytes there were. */
11818 if (attachment_tmp != NULL)
11819 {
11820 *attachment = attachment_tmp;
11821 *attachment_len = bytes_read - (*attachment - rs->buf.data ());
11822 }
11823
11824 return ret;
11825 }
11826
11827 /* See declaration.h. */
11828
11829 void
11830 readahead_cache::invalidate ()
11831 {
11832 this->fd = -1;
11833 }
11834
11835 /* See declaration.h. */
11836
11837 void
11838 readahead_cache::invalidate_fd (int fd)
11839 {
11840 if (this->fd == fd)
11841 this->fd = -1;
11842 }
11843
11844 /* Set the filesystem remote_hostio functions that take FILENAME
11845 arguments will use. Return 0 on success, or -1 if an error
11846 occurs (and set *REMOTE_ERRNO). */
11847
11848 int
11849 remote_target::remote_hostio_set_filesystem (struct inferior *inf,
11850 int *remote_errno)
11851 {
11852 struct remote_state *rs = get_remote_state ();
11853 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
11854 char *p = rs->buf.data ();
11855 int left = get_remote_packet_size () - 1;
11856 char arg[9];
11857 int ret;
11858
11859 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11860 return 0;
11861
11862 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11863 return 0;
11864
11865 remote_buffer_add_string (&p, &left, "vFile:setfs:");
11866
11867 xsnprintf (arg, sizeof (arg), "%x", required_pid);
11868 remote_buffer_add_string (&p, &left, arg);
11869
11870 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_setfs,
11871 remote_errno, NULL, NULL);
11872
11873 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11874 return 0;
11875
11876 if (ret == 0)
11877 rs->fs_pid = required_pid;
11878
11879 return ret;
11880 }
11881
11882 /* Implementation of to_fileio_open. */
11883
11884 int
11885 remote_target::remote_hostio_open (inferior *inf, const char *filename,
11886 int flags, int mode, int warn_if_slow,
11887 int *remote_errno)
11888 {
11889 struct remote_state *rs = get_remote_state ();
11890 char *p = rs->buf.data ();
11891 int left = get_remote_packet_size () - 1;
11892
11893 if (warn_if_slow)
11894 {
11895 static int warning_issued = 0;
11896
11897 printf_unfiltered (_("Reading %s from remote target...\n"),
11898 filename);
11899
11900 if (!warning_issued)
11901 {
11902 warning (_("File transfers from remote targets can be slow."
11903 " Use \"set sysroot\" to access files locally"
11904 " instead."));
11905 warning_issued = 1;
11906 }
11907 }
11908
11909 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11910 return -1;
11911
11912 remote_buffer_add_string (&p, &left, "vFile:open:");
11913
11914 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11915 strlen (filename));
11916 remote_buffer_add_string (&p, &left, ",");
11917
11918 remote_buffer_add_int (&p, &left, flags);
11919 remote_buffer_add_string (&p, &left, ",");
11920
11921 remote_buffer_add_int (&p, &left, mode);
11922
11923 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_open,
11924 remote_errno, NULL, NULL);
11925 }
11926
11927 int
11928 remote_target::fileio_open (struct inferior *inf, const char *filename,
11929 int flags, int mode, int warn_if_slow,
11930 int *remote_errno)
11931 {
11932 return remote_hostio_open (inf, filename, flags, mode, warn_if_slow,
11933 remote_errno);
11934 }
11935
11936 /* Implementation of to_fileio_pwrite. */
11937
11938 int
11939 remote_target::remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
11940 ULONGEST offset, int *remote_errno)
11941 {
11942 struct remote_state *rs = get_remote_state ();
11943 char *p = rs->buf.data ();
11944 int left = get_remote_packet_size ();
11945 int out_len;
11946
11947 rs->readahead_cache.invalidate_fd (fd);
11948
11949 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
11950
11951 remote_buffer_add_int (&p, &left, fd);
11952 remote_buffer_add_string (&p, &left, ",");
11953
11954 remote_buffer_add_int (&p, &left, offset);
11955 remote_buffer_add_string (&p, &left, ",");
11956
11957 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
11958 (get_remote_packet_size ()
11959 - (p - rs->buf.data ())));
11960
11961 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pwrite,
11962 remote_errno, NULL, NULL);
11963 }
11964
11965 int
11966 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
11967 ULONGEST offset, int *remote_errno)
11968 {
11969 return remote_hostio_pwrite (fd, write_buf, len, offset, remote_errno);
11970 }
11971
11972 /* Helper for the implementation of to_fileio_pread. Read the file
11973 from the remote side with vFile:pread. */
11974
11975 int
11976 remote_target::remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
11977 ULONGEST offset, int *remote_errno)
11978 {
11979 struct remote_state *rs = get_remote_state ();
11980 char *p = rs->buf.data ();
11981 char *attachment;
11982 int left = get_remote_packet_size ();
11983 int ret, attachment_len;
11984 int read_len;
11985
11986 remote_buffer_add_string (&p, &left, "vFile:pread:");
11987
11988 remote_buffer_add_int (&p, &left, fd);
11989 remote_buffer_add_string (&p, &left, ",");
11990
11991 remote_buffer_add_int (&p, &left, len);
11992 remote_buffer_add_string (&p, &left, ",");
11993
11994 remote_buffer_add_int (&p, &left, offset);
11995
11996 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pread,
11997 remote_errno, &attachment,
11998 &attachment_len);
11999
12000 if (ret < 0)
12001 return ret;
12002
12003 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12004 read_buf, len);
12005 if (read_len != ret)
12006 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
12007
12008 return ret;
12009 }
12010
12011 /* See declaration.h. */
12012
12013 int
12014 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
12015 ULONGEST offset)
12016 {
12017 if (this->fd == fd
12018 && this->offset <= offset
12019 && offset < this->offset + this->bufsize)
12020 {
12021 ULONGEST max = this->offset + this->bufsize;
12022
12023 if (offset + len > max)
12024 len = max - offset;
12025
12026 memcpy (read_buf, this->buf + offset - this->offset, len);
12027 return len;
12028 }
12029
12030 return 0;
12031 }
12032
12033 /* Implementation of to_fileio_pread. */
12034
12035 int
12036 remote_target::remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
12037 ULONGEST offset, int *remote_errno)
12038 {
12039 int ret;
12040 struct remote_state *rs = get_remote_state ();
12041 readahead_cache *cache = &rs->readahead_cache;
12042
12043 ret = cache->pread (fd, read_buf, len, offset);
12044 if (ret > 0)
12045 {
12046 cache->hit_count++;
12047
12048 if (remote_debug)
12049 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
12050 pulongest (cache->hit_count));
12051 return ret;
12052 }
12053
12054 cache->miss_count++;
12055 if (remote_debug)
12056 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
12057 pulongest (cache->miss_count));
12058
12059 cache->fd = fd;
12060 cache->offset = offset;
12061 cache->bufsize = get_remote_packet_size ();
12062 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
12063
12064 ret = remote_hostio_pread_vFile (cache->fd, cache->buf, cache->bufsize,
12065 cache->offset, remote_errno);
12066 if (ret <= 0)
12067 {
12068 cache->invalidate_fd (fd);
12069 return ret;
12070 }
12071
12072 cache->bufsize = ret;
12073 return cache->pread (fd, read_buf, len, offset);
12074 }
12075
12076 int
12077 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
12078 ULONGEST offset, int *remote_errno)
12079 {
12080 return remote_hostio_pread (fd, read_buf, len, offset, remote_errno);
12081 }
12082
12083 /* Implementation of to_fileio_close. */
12084
12085 int
12086 remote_target::remote_hostio_close (int fd, int *remote_errno)
12087 {
12088 struct remote_state *rs = get_remote_state ();
12089 char *p = rs->buf.data ();
12090 int left = get_remote_packet_size () - 1;
12091
12092 rs->readahead_cache.invalidate_fd (fd);
12093
12094 remote_buffer_add_string (&p, &left, "vFile:close:");
12095
12096 remote_buffer_add_int (&p, &left, fd);
12097
12098 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_close,
12099 remote_errno, NULL, NULL);
12100 }
12101
12102 int
12103 remote_target::fileio_close (int fd, int *remote_errno)
12104 {
12105 return remote_hostio_close (fd, remote_errno);
12106 }
12107
12108 /* Implementation of to_fileio_unlink. */
12109
12110 int
12111 remote_target::remote_hostio_unlink (inferior *inf, const char *filename,
12112 int *remote_errno)
12113 {
12114 struct remote_state *rs = get_remote_state ();
12115 char *p = rs->buf.data ();
12116 int left = get_remote_packet_size () - 1;
12117
12118 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12119 return -1;
12120
12121 remote_buffer_add_string (&p, &left, "vFile:unlink:");
12122
12123 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12124 strlen (filename));
12125
12126 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_unlink,
12127 remote_errno, NULL, NULL);
12128 }
12129
12130 int
12131 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12132 int *remote_errno)
12133 {
12134 return remote_hostio_unlink (inf, filename, remote_errno);
12135 }
12136
12137 /* Implementation of to_fileio_readlink. */
12138
12139 gdb::optional<std::string>
12140 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12141 int *remote_errno)
12142 {
12143 struct remote_state *rs = get_remote_state ();
12144 char *p = rs->buf.data ();
12145 char *attachment;
12146 int left = get_remote_packet_size ();
12147 int len, attachment_len;
12148 int read_len;
12149
12150 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12151 return {};
12152
12153 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12154
12155 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12156 strlen (filename));
12157
12158 len = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_readlink,
12159 remote_errno, &attachment,
12160 &attachment_len);
12161
12162 if (len < 0)
12163 return {};
12164
12165 std::string ret (len, '\0');
12166
12167 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12168 (gdb_byte *) &ret[0], len);
12169 if (read_len != len)
12170 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12171
12172 return ret;
12173 }
12174
12175 /* Implementation of to_fileio_fstat. */
12176
12177 int
12178 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12179 {
12180 struct remote_state *rs = get_remote_state ();
12181 char *p = rs->buf.data ();
12182 int left = get_remote_packet_size ();
12183 int attachment_len, ret;
12184 char *attachment;
12185 struct fio_stat fst;
12186 int read_len;
12187
12188 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12189
12190 remote_buffer_add_int (&p, &left, fd);
12191
12192 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_fstat,
12193 remote_errno, &attachment,
12194 &attachment_len);
12195 if (ret < 0)
12196 {
12197 if (*remote_errno != FILEIO_ENOSYS)
12198 return ret;
12199
12200 /* Strictly we should return -1, ENOSYS here, but when
12201 "set sysroot remote:" was implemented in August 2008
12202 BFD's need for a stat function was sidestepped with
12203 this hack. This was not remedied until March 2015
12204 so we retain the previous behavior to avoid breaking
12205 compatibility.
12206
12207 Note that the memset is a March 2015 addition; older
12208 GDBs set st_size *and nothing else* so the structure
12209 would have garbage in all other fields. This might
12210 break something but retaining the previous behavior
12211 here would be just too wrong. */
12212
12213 memset (st, 0, sizeof (struct stat));
12214 st->st_size = INT_MAX;
12215 return 0;
12216 }
12217
12218 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12219 (gdb_byte *) &fst, sizeof (fst));
12220
12221 if (read_len != ret)
12222 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12223
12224 if (read_len != sizeof (fst))
12225 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12226 read_len, (int) sizeof (fst));
12227
12228 remote_fileio_to_host_stat (&fst, st);
12229
12230 return 0;
12231 }
12232
12233 /* Implementation of to_filesystem_is_local. */
12234
12235 bool
12236 remote_target::filesystem_is_local ()
12237 {
12238 /* Valgrind GDB presents itself as a remote target but works
12239 on the local filesystem: it does not implement remote get
12240 and users are not expected to set a sysroot. To handle
12241 this case we treat the remote filesystem as local if the
12242 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12243 does not support vFile:open. */
12244 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
12245 {
12246 enum packet_support ps = packet_support (PACKET_vFile_open);
12247
12248 if (ps == PACKET_SUPPORT_UNKNOWN)
12249 {
12250 int fd, remote_errno;
12251
12252 /* Try opening a file to probe support. The supplied
12253 filename is irrelevant, we only care about whether
12254 the stub recognizes the packet or not. */
12255 fd = remote_hostio_open (NULL, "just probing",
12256 FILEIO_O_RDONLY, 0700, 0,
12257 &remote_errno);
12258
12259 if (fd >= 0)
12260 remote_hostio_close (fd, &remote_errno);
12261
12262 ps = packet_support (PACKET_vFile_open);
12263 }
12264
12265 if (ps == PACKET_DISABLE)
12266 {
12267 static int warning_issued = 0;
12268
12269 if (!warning_issued)
12270 {
12271 warning (_("remote target does not support file"
12272 " transfer, attempting to access files"
12273 " from local filesystem."));
12274 warning_issued = 1;
12275 }
12276
12277 return true;
12278 }
12279 }
12280
12281 return false;
12282 }
12283
12284 static int
12285 remote_fileio_errno_to_host (int errnum)
12286 {
12287 switch (errnum)
12288 {
12289 case FILEIO_EPERM:
12290 return EPERM;
12291 case FILEIO_ENOENT:
12292 return ENOENT;
12293 case FILEIO_EINTR:
12294 return EINTR;
12295 case FILEIO_EIO:
12296 return EIO;
12297 case FILEIO_EBADF:
12298 return EBADF;
12299 case FILEIO_EACCES:
12300 return EACCES;
12301 case FILEIO_EFAULT:
12302 return EFAULT;
12303 case FILEIO_EBUSY:
12304 return EBUSY;
12305 case FILEIO_EEXIST:
12306 return EEXIST;
12307 case FILEIO_ENODEV:
12308 return ENODEV;
12309 case FILEIO_ENOTDIR:
12310 return ENOTDIR;
12311 case FILEIO_EISDIR:
12312 return EISDIR;
12313 case FILEIO_EINVAL:
12314 return EINVAL;
12315 case FILEIO_ENFILE:
12316 return ENFILE;
12317 case FILEIO_EMFILE:
12318 return EMFILE;
12319 case FILEIO_EFBIG:
12320 return EFBIG;
12321 case FILEIO_ENOSPC:
12322 return ENOSPC;
12323 case FILEIO_ESPIPE:
12324 return ESPIPE;
12325 case FILEIO_EROFS:
12326 return EROFS;
12327 case FILEIO_ENOSYS:
12328 return ENOSYS;
12329 case FILEIO_ENAMETOOLONG:
12330 return ENAMETOOLONG;
12331 }
12332 return -1;
12333 }
12334
12335 static char *
12336 remote_hostio_error (int errnum)
12337 {
12338 int host_error = remote_fileio_errno_to_host (errnum);
12339
12340 if (host_error == -1)
12341 error (_("Unknown remote I/O error %d"), errnum);
12342 else
12343 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12344 }
12345
12346 /* A RAII wrapper around a remote file descriptor. */
12347
12348 class scoped_remote_fd
12349 {
12350 public:
12351 scoped_remote_fd (remote_target *remote, int fd)
12352 : m_remote (remote), m_fd (fd)
12353 {
12354 }
12355
12356 ~scoped_remote_fd ()
12357 {
12358 if (m_fd != -1)
12359 {
12360 try
12361 {
12362 int remote_errno;
12363 m_remote->remote_hostio_close (m_fd, &remote_errno);
12364 }
12365 catch (...)
12366 {
12367 /* Swallow exception before it escapes the dtor. If
12368 something goes wrong, likely the connection is gone,
12369 and there's nothing else that can be done. */
12370 }
12371 }
12372 }
12373
12374 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12375
12376 /* Release ownership of the file descriptor, and return it. */
12377 ATTRIBUTE_UNUSED_RESULT int release () noexcept
12378 {
12379 int fd = m_fd;
12380 m_fd = -1;
12381 return fd;
12382 }
12383
12384 /* Return the owned file descriptor. */
12385 int get () const noexcept
12386 {
12387 return m_fd;
12388 }
12389
12390 private:
12391 /* The remote target. */
12392 remote_target *m_remote;
12393
12394 /* The owned remote I/O file descriptor. */
12395 int m_fd;
12396 };
12397
12398 void
12399 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12400 {
12401 remote_target *remote = get_current_remote_target ();
12402
12403 if (remote == nullptr)
12404 error (_("command can only be used with remote target"));
12405
12406 remote->remote_file_put (local_file, remote_file, from_tty);
12407 }
12408
12409 void
12410 remote_target::remote_file_put (const char *local_file, const char *remote_file,
12411 int from_tty)
12412 {
12413 int retcode, remote_errno, bytes, io_size;
12414 int bytes_in_buffer;
12415 int saw_eof;
12416 ULONGEST offset;
12417
12418 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12419 if (file == NULL)
12420 perror_with_name (local_file);
12421
12422 scoped_remote_fd fd
12423 (this, remote_hostio_open (NULL,
12424 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12425 | FILEIO_O_TRUNC),
12426 0700, 0, &remote_errno));
12427 if (fd.get () == -1)
12428 remote_hostio_error (remote_errno);
12429
12430 /* Send up to this many bytes at once. They won't all fit in the
12431 remote packet limit, so we'll transfer slightly fewer. */
12432 io_size = get_remote_packet_size ();
12433 gdb::byte_vector buffer (io_size);
12434
12435 bytes_in_buffer = 0;
12436 saw_eof = 0;
12437 offset = 0;
12438 while (bytes_in_buffer || !saw_eof)
12439 {
12440 if (!saw_eof)
12441 {
12442 bytes = fread (buffer.data () + bytes_in_buffer, 1,
12443 io_size - bytes_in_buffer,
12444 file.get ());
12445 if (bytes == 0)
12446 {
12447 if (ferror (file.get ()))
12448 error (_("Error reading %s."), local_file);
12449 else
12450 {
12451 /* EOF. Unless there is something still in the
12452 buffer from the last iteration, we are done. */
12453 saw_eof = 1;
12454 if (bytes_in_buffer == 0)
12455 break;
12456 }
12457 }
12458 }
12459 else
12460 bytes = 0;
12461
12462 bytes += bytes_in_buffer;
12463 bytes_in_buffer = 0;
12464
12465 retcode = remote_hostio_pwrite (fd.get (), buffer.data (), bytes,
12466 offset, &remote_errno);
12467
12468 if (retcode < 0)
12469 remote_hostio_error (remote_errno);
12470 else if (retcode == 0)
12471 error (_("Remote write of %d bytes returned 0!"), bytes);
12472 else if (retcode < bytes)
12473 {
12474 /* Short write. Save the rest of the read data for the next
12475 write. */
12476 bytes_in_buffer = bytes - retcode;
12477 memmove (buffer.data (), buffer.data () + retcode, bytes_in_buffer);
12478 }
12479
12480 offset += retcode;
12481 }
12482
12483 if (remote_hostio_close (fd.release (), &remote_errno))
12484 remote_hostio_error (remote_errno);
12485
12486 if (from_tty)
12487 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12488 }
12489
12490 void
12491 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12492 {
12493 remote_target *remote = get_current_remote_target ();
12494
12495 if (remote == nullptr)
12496 error (_("command can only be used with remote target"));
12497
12498 remote->remote_file_get (remote_file, local_file, from_tty);
12499 }
12500
12501 void
12502 remote_target::remote_file_get (const char *remote_file, const char *local_file,
12503 int from_tty)
12504 {
12505 int remote_errno, bytes, io_size;
12506 ULONGEST offset;
12507
12508 scoped_remote_fd fd
12509 (this, remote_hostio_open (NULL,
12510 remote_file, FILEIO_O_RDONLY, 0, 0,
12511 &remote_errno));
12512 if (fd.get () == -1)
12513 remote_hostio_error (remote_errno);
12514
12515 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12516 if (file == NULL)
12517 perror_with_name (local_file);
12518
12519 /* Send up to this many bytes at once. They won't all fit in the
12520 remote packet limit, so we'll transfer slightly fewer. */
12521 io_size = get_remote_packet_size ();
12522 gdb::byte_vector buffer (io_size);
12523
12524 offset = 0;
12525 while (1)
12526 {
12527 bytes = remote_hostio_pread (fd.get (), buffer.data (), io_size, offset,
12528 &remote_errno);
12529 if (bytes == 0)
12530 /* Success, but no bytes, means end-of-file. */
12531 break;
12532 if (bytes == -1)
12533 remote_hostio_error (remote_errno);
12534
12535 offset += bytes;
12536
12537 bytes = fwrite (buffer.data (), 1, bytes, file.get ());
12538 if (bytes == 0)
12539 perror_with_name (local_file);
12540 }
12541
12542 if (remote_hostio_close (fd.release (), &remote_errno))
12543 remote_hostio_error (remote_errno);
12544
12545 if (from_tty)
12546 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12547 }
12548
12549 void
12550 remote_file_delete (const char *remote_file, int from_tty)
12551 {
12552 remote_target *remote = get_current_remote_target ();
12553
12554 if (remote == nullptr)
12555 error (_("command can only be used with remote target"));
12556
12557 remote->remote_file_delete (remote_file, from_tty);
12558 }
12559
12560 void
12561 remote_target::remote_file_delete (const char *remote_file, int from_tty)
12562 {
12563 int retcode, remote_errno;
12564
12565 retcode = remote_hostio_unlink (NULL, remote_file, &remote_errno);
12566 if (retcode == -1)
12567 remote_hostio_error (remote_errno);
12568
12569 if (from_tty)
12570 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12571 }
12572
12573 static void
12574 remote_put_command (const char *args, int from_tty)
12575 {
12576 if (args == NULL)
12577 error_no_arg (_("file to put"));
12578
12579 gdb_argv argv (args);
12580 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12581 error (_("Invalid parameters to remote put"));
12582
12583 remote_file_put (argv[0], argv[1], from_tty);
12584 }
12585
12586 static void
12587 remote_get_command (const char *args, int from_tty)
12588 {
12589 if (args == NULL)
12590 error_no_arg (_("file to get"));
12591
12592 gdb_argv argv (args);
12593 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12594 error (_("Invalid parameters to remote get"));
12595
12596 remote_file_get (argv[0], argv[1], from_tty);
12597 }
12598
12599 static void
12600 remote_delete_command (const char *args, int from_tty)
12601 {
12602 if (args == NULL)
12603 error_no_arg (_("file to delete"));
12604
12605 gdb_argv argv (args);
12606 if (argv[0] == NULL || argv[1] != NULL)
12607 error (_("Invalid parameters to remote delete"));
12608
12609 remote_file_delete (argv[0], from_tty);
12610 }
12611
12612 static void
12613 remote_command (const char *args, int from_tty)
12614 {
12615 help_list (remote_cmdlist, "remote ", all_commands, gdb_stdout);
12616 }
12617
12618 bool
12619 remote_target::can_execute_reverse ()
12620 {
12621 if (packet_support (PACKET_bs) == PACKET_ENABLE
12622 || packet_support (PACKET_bc) == PACKET_ENABLE)
12623 return true;
12624 else
12625 return false;
12626 }
12627
12628 bool
12629 remote_target::supports_non_stop ()
12630 {
12631 return true;
12632 }
12633
12634 bool
12635 remote_target::supports_disable_randomization ()
12636 {
12637 /* Only supported in extended mode. */
12638 return false;
12639 }
12640
12641 bool
12642 remote_target::supports_multi_process ()
12643 {
12644 struct remote_state *rs = get_remote_state ();
12645
12646 return remote_multi_process_p (rs);
12647 }
12648
12649 static int
12650 remote_supports_cond_tracepoints ()
12651 {
12652 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12653 }
12654
12655 bool
12656 remote_target::supports_evaluation_of_breakpoint_conditions ()
12657 {
12658 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12659 }
12660
12661 static int
12662 remote_supports_fast_tracepoints ()
12663 {
12664 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12665 }
12666
12667 static int
12668 remote_supports_static_tracepoints ()
12669 {
12670 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12671 }
12672
12673 static int
12674 remote_supports_install_in_trace ()
12675 {
12676 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12677 }
12678
12679 bool
12680 remote_target::supports_enable_disable_tracepoint ()
12681 {
12682 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12683 == PACKET_ENABLE);
12684 }
12685
12686 bool
12687 remote_target::supports_string_tracing ()
12688 {
12689 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12690 }
12691
12692 bool
12693 remote_target::can_run_breakpoint_commands ()
12694 {
12695 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12696 }
12697
12698 void
12699 remote_target::trace_init ()
12700 {
12701 struct remote_state *rs = get_remote_state ();
12702
12703 putpkt ("QTinit");
12704 remote_get_noisy_reply ();
12705 if (strcmp (rs->buf.data (), "OK") != 0)
12706 error (_("Target does not support this command."));
12707 }
12708
12709 /* Recursive routine to walk through command list including loops, and
12710 download packets for each command. */
12711
12712 void
12713 remote_target::remote_download_command_source (int num, ULONGEST addr,
12714 struct command_line *cmds)
12715 {
12716 struct remote_state *rs = get_remote_state ();
12717 struct command_line *cmd;
12718
12719 for (cmd = cmds; cmd; cmd = cmd->next)
12720 {
12721 QUIT; /* Allow user to bail out with ^C. */
12722 strcpy (rs->buf.data (), "QTDPsrc:");
12723 encode_source_string (num, addr, "cmd", cmd->line,
12724 rs->buf.data () + strlen (rs->buf.data ()),
12725 rs->buf.size () - strlen (rs->buf.data ()));
12726 putpkt (rs->buf);
12727 remote_get_noisy_reply ();
12728 if (strcmp (rs->buf.data (), "OK"))
12729 warning (_("Target does not support source download."));
12730
12731 if (cmd->control_type == while_control
12732 || cmd->control_type == while_stepping_control)
12733 {
12734 remote_download_command_source (num, addr, cmd->body_list_0.get ());
12735
12736 QUIT; /* Allow user to bail out with ^C. */
12737 strcpy (rs->buf.data (), "QTDPsrc:");
12738 encode_source_string (num, addr, "cmd", "end",
12739 rs->buf.data () + strlen (rs->buf.data ()),
12740 rs->buf.size () - strlen (rs->buf.data ()));
12741 putpkt (rs->buf);
12742 remote_get_noisy_reply ();
12743 if (strcmp (rs->buf.data (), "OK"))
12744 warning (_("Target does not support source download."));
12745 }
12746 }
12747 }
12748
12749 void
12750 remote_target::download_tracepoint (struct bp_location *loc)
12751 {
12752 CORE_ADDR tpaddr;
12753 char addrbuf[40];
12754 std::vector<std::string> tdp_actions;
12755 std::vector<std::string> stepping_actions;
12756 char *pkt;
12757 struct breakpoint *b = loc->owner;
12758 struct tracepoint *t = (struct tracepoint *) b;
12759 struct remote_state *rs = get_remote_state ();
12760 int ret;
12761 const char *err_msg = _("Tracepoint packet too large for target.");
12762 size_t size_left;
12763
12764 /* We use a buffer other than rs->buf because we'll build strings
12765 across multiple statements, and other statements in between could
12766 modify rs->buf. */
12767 gdb::char_vector buf (get_remote_packet_size ());
12768
12769 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12770
12771 tpaddr = loc->address;
12772 sprintf_vma (addrbuf, tpaddr);
12773 ret = snprintf (buf.data (), buf.size (), "QTDP:%x:%s:%c:%lx:%x",
12774 b->number, addrbuf, /* address */
12775 (b->enable_state == bp_enabled ? 'E' : 'D'),
12776 t->step_count, t->pass_count);
12777
12778 if (ret < 0 || ret >= buf.size ())
12779 error ("%s", err_msg);
12780
12781 /* Fast tracepoints are mostly handled by the target, but we can
12782 tell the target how big of an instruction block should be moved
12783 around. */
12784 if (b->type == bp_fast_tracepoint)
12785 {
12786 /* Only test for support at download time; we may not know
12787 target capabilities at definition time. */
12788 if (remote_supports_fast_tracepoints ())
12789 {
12790 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12791 NULL))
12792 {
12793 size_left = buf.size () - strlen (buf.data ());
12794 ret = snprintf (buf.data () + strlen (buf.data ()),
12795 size_left, ":F%x",
12796 gdb_insn_length (loc->gdbarch, tpaddr));
12797
12798 if (ret < 0 || ret >= size_left)
12799 error ("%s", err_msg);
12800 }
12801 else
12802 /* If it passed validation at definition but fails now,
12803 something is very wrong. */
12804 internal_error (__FILE__, __LINE__,
12805 _("Fast tracepoint not "
12806 "valid during download"));
12807 }
12808 else
12809 /* Fast tracepoints are functionally identical to regular
12810 tracepoints, so don't take lack of support as a reason to
12811 give up on the trace run. */
12812 warning (_("Target does not support fast tracepoints, "
12813 "downloading %d as regular tracepoint"), b->number);
12814 }
12815 else if (b->type == bp_static_tracepoint)
12816 {
12817 /* Only test for support at download time; we may not know
12818 target capabilities at definition time. */
12819 if (remote_supports_static_tracepoints ())
12820 {
12821 struct static_tracepoint_marker marker;
12822
12823 if (target_static_tracepoint_marker_at (tpaddr, &marker))
12824 {
12825 size_left = buf.size () - strlen (buf.data ());
12826 ret = snprintf (buf.data () + strlen (buf.data ()),
12827 size_left, ":S");
12828
12829 if (ret < 0 || ret >= size_left)
12830 error ("%s", err_msg);
12831 }
12832 else
12833 error (_("Static tracepoint not valid during download"));
12834 }
12835 else
12836 /* Fast tracepoints are functionally identical to regular
12837 tracepoints, so don't take lack of support as a reason
12838 to give up on the trace run. */
12839 error (_("Target does not support static tracepoints"));
12840 }
12841 /* If the tracepoint has a conditional, make it into an agent
12842 expression and append to the definition. */
12843 if (loc->cond)
12844 {
12845 /* Only test support at download time, we may not know target
12846 capabilities at definition time. */
12847 if (remote_supports_cond_tracepoints ())
12848 {
12849 agent_expr_up aexpr = gen_eval_for_expr (tpaddr,
12850 loc->cond.get ());
12851
12852 size_left = buf.size () - strlen (buf.data ());
12853
12854 ret = snprintf (buf.data () + strlen (buf.data ()),
12855 size_left, ":X%x,", aexpr->len);
12856
12857 if (ret < 0 || ret >= size_left)
12858 error ("%s", err_msg);
12859
12860 size_left = buf.size () - strlen (buf.data ());
12861
12862 /* Two bytes to encode each aexpr byte, plus the terminating
12863 null byte. */
12864 if (aexpr->len * 2 + 1 > size_left)
12865 error ("%s", err_msg);
12866
12867 pkt = buf.data () + strlen (buf.data ());
12868
12869 for (int ndx = 0; ndx < aexpr->len; ++ndx)
12870 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
12871 *pkt = '\0';
12872 }
12873 else
12874 warning (_("Target does not support conditional tracepoints, "
12875 "ignoring tp %d cond"), b->number);
12876 }
12877
12878 if (b->commands || *default_collect)
12879 {
12880 size_left = buf.size () - strlen (buf.data ());
12881
12882 ret = snprintf (buf.data () + strlen (buf.data ()),
12883 size_left, "-");
12884
12885 if (ret < 0 || ret >= size_left)
12886 error ("%s", err_msg);
12887 }
12888
12889 putpkt (buf.data ());
12890 remote_get_noisy_reply ();
12891 if (strcmp (rs->buf.data (), "OK"))
12892 error (_("Target does not support tracepoints."));
12893
12894 /* do_single_steps (t); */
12895 for (auto action_it = tdp_actions.begin ();
12896 action_it != tdp_actions.end (); action_it++)
12897 {
12898 QUIT; /* Allow user to bail out with ^C. */
12899
12900 bool has_more = ((action_it + 1) != tdp_actions.end ()
12901 || !stepping_actions.empty ());
12902
12903 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%c",
12904 b->number, addrbuf, /* address */
12905 action_it->c_str (),
12906 has_more ? '-' : 0);
12907
12908 if (ret < 0 || ret >= buf.size ())
12909 error ("%s", err_msg);
12910
12911 putpkt (buf.data ());
12912 remote_get_noisy_reply ();
12913 if (strcmp (rs->buf.data (), "OK"))
12914 error (_("Error on target while setting tracepoints."));
12915 }
12916
12917 for (auto action_it = stepping_actions.begin ();
12918 action_it != stepping_actions.end (); action_it++)
12919 {
12920 QUIT; /* Allow user to bail out with ^C. */
12921
12922 bool is_first = action_it == stepping_actions.begin ();
12923 bool has_more = (action_it + 1) != stepping_actions.end ();
12924
12925 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%s%s",
12926 b->number, addrbuf, /* address */
12927 is_first ? "S" : "",
12928 action_it->c_str (),
12929 has_more ? "-" : "");
12930
12931 if (ret < 0 || ret >= buf.size ())
12932 error ("%s", err_msg);
12933
12934 putpkt (buf.data ());
12935 remote_get_noisy_reply ();
12936 if (strcmp (rs->buf.data (), "OK"))
12937 error (_("Error on target while setting tracepoints."));
12938 }
12939
12940 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
12941 {
12942 if (b->location != NULL)
12943 {
12944 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
12945
12946 if (ret < 0 || ret >= buf.size ())
12947 error ("%s", err_msg);
12948
12949 encode_source_string (b->number, loc->address, "at",
12950 event_location_to_string (b->location.get ()),
12951 buf.data () + strlen (buf.data ()),
12952 buf.size () - strlen (buf.data ()));
12953 putpkt (buf.data ());
12954 remote_get_noisy_reply ();
12955 if (strcmp (rs->buf.data (), "OK"))
12956 warning (_("Target does not support source download."));
12957 }
12958 if (b->cond_string)
12959 {
12960 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
12961
12962 if (ret < 0 || ret >= buf.size ())
12963 error ("%s", err_msg);
12964
12965 encode_source_string (b->number, loc->address,
12966 "cond", b->cond_string,
12967 buf.data () + strlen (buf.data ()),
12968 buf.size () - strlen (buf.data ()));
12969 putpkt (buf.data ());
12970 remote_get_noisy_reply ();
12971 if (strcmp (rs->buf.data (), "OK"))
12972 warning (_("Target does not support source download."));
12973 }
12974 remote_download_command_source (b->number, loc->address,
12975 breakpoint_commands (b));
12976 }
12977 }
12978
12979 bool
12980 remote_target::can_download_tracepoint ()
12981 {
12982 struct remote_state *rs = get_remote_state ();
12983 struct trace_status *ts;
12984 int status;
12985
12986 /* Don't try to install tracepoints until we've relocated our
12987 symbols, and fetched and merged the target's tracepoint list with
12988 ours. */
12989 if (rs->starting_up)
12990 return false;
12991
12992 ts = current_trace_status ();
12993 status = get_trace_status (ts);
12994
12995 if (status == -1 || !ts->running_known || !ts->running)
12996 return false;
12997
12998 /* If we are in a tracing experiment, but remote stub doesn't support
12999 installing tracepoint in trace, we have to return. */
13000 if (!remote_supports_install_in_trace ())
13001 return false;
13002
13003 return true;
13004 }
13005
13006
13007 void
13008 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
13009 {
13010 struct remote_state *rs = get_remote_state ();
13011 char *p;
13012
13013 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDV:%x:%s:%x:",
13014 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
13015 tsv.builtin);
13016 p = rs->buf.data () + strlen (rs->buf.data ());
13017 if ((p - rs->buf.data ()) + tsv.name.length () * 2
13018 >= get_remote_packet_size ())
13019 error (_("Trace state variable name too long for tsv definition packet"));
13020 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
13021 *p++ = '\0';
13022 putpkt (rs->buf);
13023 remote_get_noisy_reply ();
13024 if (rs->buf[0] == '\0')
13025 error (_("Target does not support this command."));
13026 if (strcmp (rs->buf.data (), "OK") != 0)
13027 error (_("Error on target while downloading trace state variable."));
13028 }
13029
13030 void
13031 remote_target::enable_tracepoint (struct bp_location *location)
13032 {
13033 struct remote_state *rs = get_remote_state ();
13034 char addr_buf[40];
13035
13036 sprintf_vma (addr_buf, location->address);
13037 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTEnable:%x:%s",
13038 location->owner->number, addr_buf);
13039 putpkt (rs->buf);
13040 remote_get_noisy_reply ();
13041 if (rs->buf[0] == '\0')
13042 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
13043 if (strcmp (rs->buf.data (), "OK") != 0)
13044 error (_("Error on target while enabling tracepoint."));
13045 }
13046
13047 void
13048 remote_target::disable_tracepoint (struct bp_location *location)
13049 {
13050 struct remote_state *rs = get_remote_state ();
13051 char addr_buf[40];
13052
13053 sprintf_vma (addr_buf, location->address);
13054 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDisable:%x:%s",
13055 location->owner->number, addr_buf);
13056 putpkt (rs->buf);
13057 remote_get_noisy_reply ();
13058 if (rs->buf[0] == '\0')
13059 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
13060 if (strcmp (rs->buf.data (), "OK") != 0)
13061 error (_("Error on target while disabling tracepoint."));
13062 }
13063
13064 void
13065 remote_target::trace_set_readonly_regions ()
13066 {
13067 asection *s;
13068 bfd_size_type size;
13069 bfd_vma vma;
13070 int anysecs = 0;
13071 int offset = 0;
13072
13073 if (!exec_bfd)
13074 return; /* No information to give. */
13075
13076 struct remote_state *rs = get_remote_state ();
13077
13078 strcpy (rs->buf.data (), "QTro");
13079 offset = strlen (rs->buf.data ());
13080 for (s = exec_bfd->sections; s; s = s->next)
13081 {
13082 char tmp1[40], tmp2[40];
13083 int sec_length;
13084
13085 if ((s->flags & SEC_LOAD) == 0 ||
13086 /* (s->flags & SEC_CODE) == 0 || */
13087 (s->flags & SEC_READONLY) == 0)
13088 continue;
13089
13090 anysecs = 1;
13091 vma = bfd_section_vma (s);
13092 size = bfd_section_size (s);
13093 sprintf_vma (tmp1, vma);
13094 sprintf_vma (tmp2, vma + size);
13095 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
13096 if (offset + sec_length + 1 > rs->buf.size ())
13097 {
13098 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
13099 warning (_("\
13100 Too many sections for read-only sections definition packet."));
13101 break;
13102 }
13103 xsnprintf (rs->buf.data () + offset, rs->buf.size () - offset, ":%s,%s",
13104 tmp1, tmp2);
13105 offset += sec_length;
13106 }
13107 if (anysecs)
13108 {
13109 putpkt (rs->buf);
13110 getpkt (&rs->buf, 0);
13111 }
13112 }
13113
13114 void
13115 remote_target::trace_start ()
13116 {
13117 struct remote_state *rs = get_remote_state ();
13118
13119 putpkt ("QTStart");
13120 remote_get_noisy_reply ();
13121 if (rs->buf[0] == '\0')
13122 error (_("Target does not support this command."));
13123 if (strcmp (rs->buf.data (), "OK") != 0)
13124 error (_("Bogus reply from target: %s"), rs->buf.data ());
13125 }
13126
13127 int
13128 remote_target::get_trace_status (struct trace_status *ts)
13129 {
13130 /* Initialize it just to avoid a GCC false warning. */
13131 char *p = NULL;
13132 enum packet_result result;
13133 struct remote_state *rs = get_remote_state ();
13134
13135 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
13136 return -1;
13137
13138 /* FIXME we need to get register block size some other way. */
13139 trace_regblock_size
13140 = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
13141
13142 putpkt ("qTStatus");
13143
13144 try
13145 {
13146 p = remote_get_noisy_reply ();
13147 }
13148 catch (const gdb_exception_error &ex)
13149 {
13150 if (ex.error != TARGET_CLOSE_ERROR)
13151 {
13152 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
13153 return -1;
13154 }
13155 throw;
13156 }
13157
13158 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
13159
13160 /* If the remote target doesn't do tracing, flag it. */
13161 if (result == PACKET_UNKNOWN)
13162 return -1;
13163
13164 /* We're working with a live target. */
13165 ts->filename = NULL;
13166
13167 if (*p++ != 'T')
13168 error (_("Bogus trace status reply from target: %s"), rs->buf.data ());
13169
13170 /* Function 'parse_trace_status' sets default value of each field of
13171 'ts' at first, so we don't have to do it here. */
13172 parse_trace_status (p, ts);
13173
13174 return ts->running;
13175 }
13176
13177 void
13178 remote_target::get_tracepoint_status (struct breakpoint *bp,
13179 struct uploaded_tp *utp)
13180 {
13181 struct remote_state *rs = get_remote_state ();
13182 char *reply;
13183 struct bp_location *loc;
13184 struct tracepoint *tp = (struct tracepoint *) bp;
13185 size_t size = get_remote_packet_size ();
13186
13187 if (tp)
13188 {
13189 tp->hit_count = 0;
13190 tp->traceframe_usage = 0;
13191 for (loc = tp->loc; loc; loc = loc->next)
13192 {
13193 /* If the tracepoint was never downloaded, don't go asking for
13194 any status. */
13195 if (tp->number_on_target == 0)
13196 continue;
13197 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", tp->number_on_target,
13198 phex_nz (loc->address, 0));
13199 putpkt (rs->buf);
13200 reply = remote_get_noisy_reply ();
13201 if (reply && *reply)
13202 {
13203 if (*reply == 'V')
13204 parse_tracepoint_status (reply + 1, bp, utp);
13205 }
13206 }
13207 }
13208 else if (utp)
13209 {
13210 utp->hit_count = 0;
13211 utp->traceframe_usage = 0;
13212 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", utp->number,
13213 phex_nz (utp->addr, 0));
13214 putpkt (rs->buf);
13215 reply = remote_get_noisy_reply ();
13216 if (reply && *reply)
13217 {
13218 if (*reply == 'V')
13219 parse_tracepoint_status (reply + 1, bp, utp);
13220 }
13221 }
13222 }
13223
13224 void
13225 remote_target::trace_stop ()
13226 {
13227 struct remote_state *rs = get_remote_state ();
13228
13229 putpkt ("QTStop");
13230 remote_get_noisy_reply ();
13231 if (rs->buf[0] == '\0')
13232 error (_("Target does not support this command."));
13233 if (strcmp (rs->buf.data (), "OK") != 0)
13234 error (_("Bogus reply from target: %s"), rs->buf.data ());
13235 }
13236
13237 int
13238 remote_target::trace_find (enum trace_find_type type, int num,
13239 CORE_ADDR addr1, CORE_ADDR addr2,
13240 int *tpp)
13241 {
13242 struct remote_state *rs = get_remote_state ();
13243 char *endbuf = rs->buf.data () + get_remote_packet_size ();
13244 char *p, *reply;
13245 int target_frameno = -1, target_tracept = -1;
13246
13247 /* Lookups other than by absolute frame number depend on the current
13248 trace selected, so make sure it is correct on the remote end
13249 first. */
13250 if (type != tfind_number)
13251 set_remote_traceframe ();
13252
13253 p = rs->buf.data ();
13254 strcpy (p, "QTFrame:");
13255 p = strchr (p, '\0');
13256 switch (type)
13257 {
13258 case tfind_number:
13259 xsnprintf (p, endbuf - p, "%x", num);
13260 break;
13261 case tfind_pc:
13262 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13263 break;
13264 case tfind_tp:
13265 xsnprintf (p, endbuf - p, "tdp:%x", num);
13266 break;
13267 case tfind_range:
13268 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13269 phex_nz (addr2, 0));
13270 break;
13271 case tfind_outside:
13272 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13273 phex_nz (addr2, 0));
13274 break;
13275 default:
13276 error (_("Unknown trace find type %d"), type);
13277 }
13278
13279 putpkt (rs->buf);
13280 reply = remote_get_noisy_reply ();
13281 if (*reply == '\0')
13282 error (_("Target does not support this command."));
13283
13284 while (reply && *reply)
13285 switch (*reply)
13286 {
13287 case 'F':
13288 p = ++reply;
13289 target_frameno = (int) strtol (p, &reply, 16);
13290 if (reply == p)
13291 error (_("Unable to parse trace frame number"));
13292 /* Don't update our remote traceframe number cache on failure
13293 to select a remote traceframe. */
13294 if (target_frameno == -1)
13295 return -1;
13296 break;
13297 case 'T':
13298 p = ++reply;
13299 target_tracept = (int) strtol (p, &reply, 16);
13300 if (reply == p)
13301 error (_("Unable to parse tracepoint number"));
13302 break;
13303 case 'O': /* "OK"? */
13304 if (reply[1] == 'K' && reply[2] == '\0')
13305 reply += 2;
13306 else
13307 error (_("Bogus reply from target: %s"), reply);
13308 break;
13309 default:
13310 error (_("Bogus reply from target: %s"), reply);
13311 }
13312 if (tpp)
13313 *tpp = target_tracept;
13314
13315 rs->remote_traceframe_number = target_frameno;
13316 return target_frameno;
13317 }
13318
13319 bool
13320 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13321 {
13322 struct remote_state *rs = get_remote_state ();
13323 char *reply;
13324 ULONGEST uval;
13325
13326 set_remote_traceframe ();
13327
13328 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTV:%x", tsvnum);
13329 putpkt (rs->buf);
13330 reply = remote_get_noisy_reply ();
13331 if (reply && *reply)
13332 {
13333 if (*reply == 'V')
13334 {
13335 unpack_varlen_hex (reply + 1, &uval);
13336 *val = (LONGEST) uval;
13337 return true;
13338 }
13339 }
13340 return false;
13341 }
13342
13343 int
13344 remote_target::save_trace_data (const char *filename)
13345 {
13346 struct remote_state *rs = get_remote_state ();
13347 char *p, *reply;
13348
13349 p = rs->buf.data ();
13350 strcpy (p, "QTSave:");
13351 p += strlen (p);
13352 if ((p - rs->buf.data ()) + strlen (filename) * 2
13353 >= get_remote_packet_size ())
13354 error (_("Remote file name too long for trace save packet"));
13355 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13356 *p++ = '\0';
13357 putpkt (rs->buf);
13358 reply = remote_get_noisy_reply ();
13359 if (*reply == '\0')
13360 error (_("Target does not support this command."));
13361 if (strcmp (reply, "OK") != 0)
13362 error (_("Bogus reply from target: %s"), reply);
13363 return 0;
13364 }
13365
13366 /* This is basically a memory transfer, but needs to be its own packet
13367 because we don't know how the target actually organizes its trace
13368 memory, plus we want to be able to ask for as much as possible, but
13369 not be unhappy if we don't get as much as we ask for. */
13370
13371 LONGEST
13372 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13373 {
13374 struct remote_state *rs = get_remote_state ();
13375 char *reply;
13376 char *p;
13377 int rslt;
13378
13379 p = rs->buf.data ();
13380 strcpy (p, "qTBuffer:");
13381 p += strlen (p);
13382 p += hexnumstr (p, offset);
13383 *p++ = ',';
13384 p += hexnumstr (p, len);
13385 *p++ = '\0';
13386
13387 putpkt (rs->buf);
13388 reply = remote_get_noisy_reply ();
13389 if (reply && *reply)
13390 {
13391 /* 'l' by itself means we're at the end of the buffer and
13392 there is nothing more to get. */
13393 if (*reply == 'l')
13394 return 0;
13395
13396 /* Convert the reply into binary. Limit the number of bytes to
13397 convert according to our passed-in buffer size, rather than
13398 what was returned in the packet; if the target is
13399 unexpectedly generous and gives us a bigger reply than we
13400 asked for, we don't want to crash. */
13401 rslt = hex2bin (reply, buf, len);
13402 return rslt;
13403 }
13404
13405 /* Something went wrong, flag as an error. */
13406 return -1;
13407 }
13408
13409 void
13410 remote_target::set_disconnected_tracing (int val)
13411 {
13412 struct remote_state *rs = get_remote_state ();
13413
13414 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13415 {
13416 char *reply;
13417
13418 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13419 "QTDisconnected:%x", val);
13420 putpkt (rs->buf);
13421 reply = remote_get_noisy_reply ();
13422 if (*reply == '\0')
13423 error (_("Target does not support this command."));
13424 if (strcmp (reply, "OK") != 0)
13425 error (_("Bogus reply from target: %s"), reply);
13426 }
13427 else if (val)
13428 warning (_("Target does not support disconnected tracing."));
13429 }
13430
13431 int
13432 remote_target::core_of_thread (ptid_t ptid)
13433 {
13434 struct thread_info *info = find_thread_ptid (ptid);
13435
13436 if (info != NULL && info->priv != NULL)
13437 return get_remote_thread_info (info)->core;
13438
13439 return -1;
13440 }
13441
13442 void
13443 remote_target::set_circular_trace_buffer (int val)
13444 {
13445 struct remote_state *rs = get_remote_state ();
13446 char *reply;
13447
13448 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13449 "QTBuffer:circular:%x", val);
13450 putpkt (rs->buf);
13451 reply = remote_get_noisy_reply ();
13452 if (*reply == '\0')
13453 error (_("Target does not support this command."));
13454 if (strcmp (reply, "OK") != 0)
13455 error (_("Bogus reply from target: %s"), reply);
13456 }
13457
13458 traceframe_info_up
13459 remote_target::traceframe_info ()
13460 {
13461 gdb::optional<gdb::char_vector> text
13462 = target_read_stralloc (current_top_target (), TARGET_OBJECT_TRACEFRAME_INFO,
13463 NULL);
13464 if (text)
13465 return parse_traceframe_info (text->data ());
13466
13467 return NULL;
13468 }
13469
13470 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13471 instruction on which a fast tracepoint may be placed. Returns -1
13472 if the packet is not supported, and 0 if the minimum instruction
13473 length is unknown. */
13474
13475 int
13476 remote_target::get_min_fast_tracepoint_insn_len ()
13477 {
13478 struct remote_state *rs = get_remote_state ();
13479 char *reply;
13480
13481 /* If we're not debugging a process yet, the IPA can't be
13482 loaded. */
13483 if (!target_has_execution)
13484 return 0;
13485
13486 /* Make sure the remote is pointing at the right process. */
13487 set_general_process ();
13488
13489 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTMinFTPILen");
13490 putpkt (rs->buf);
13491 reply = remote_get_noisy_reply ();
13492 if (*reply == '\0')
13493 return -1;
13494 else
13495 {
13496 ULONGEST min_insn_len;
13497
13498 unpack_varlen_hex (reply, &min_insn_len);
13499
13500 return (int) min_insn_len;
13501 }
13502 }
13503
13504 void
13505 remote_target::set_trace_buffer_size (LONGEST val)
13506 {
13507 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13508 {
13509 struct remote_state *rs = get_remote_state ();
13510 char *buf = rs->buf.data ();
13511 char *endbuf = buf + get_remote_packet_size ();
13512 enum packet_result result;
13513
13514 gdb_assert (val >= 0 || val == -1);
13515 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13516 /* Send -1 as literal "-1" to avoid host size dependency. */
13517 if (val < 0)
13518 {
13519 *buf++ = '-';
13520 buf += hexnumstr (buf, (ULONGEST) -val);
13521 }
13522 else
13523 buf += hexnumstr (buf, (ULONGEST) val);
13524
13525 putpkt (rs->buf);
13526 remote_get_noisy_reply ();
13527 result = packet_ok (rs->buf,
13528 &remote_protocol_packets[PACKET_QTBuffer_size]);
13529
13530 if (result != PACKET_OK)
13531 warning (_("Bogus reply from target: %s"), rs->buf.data ());
13532 }
13533 }
13534
13535 bool
13536 remote_target::set_trace_notes (const char *user, const char *notes,
13537 const char *stop_notes)
13538 {
13539 struct remote_state *rs = get_remote_state ();
13540 char *reply;
13541 char *buf = rs->buf.data ();
13542 char *endbuf = buf + get_remote_packet_size ();
13543 int nbytes;
13544
13545 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13546 if (user)
13547 {
13548 buf += xsnprintf (buf, endbuf - buf, "user:");
13549 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13550 buf += 2 * nbytes;
13551 *buf++ = ';';
13552 }
13553 if (notes)
13554 {
13555 buf += xsnprintf (buf, endbuf - buf, "notes:");
13556 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13557 buf += 2 * nbytes;
13558 *buf++ = ';';
13559 }
13560 if (stop_notes)
13561 {
13562 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13563 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13564 buf += 2 * nbytes;
13565 *buf++ = ';';
13566 }
13567 /* Ensure the buffer is terminated. */
13568 *buf = '\0';
13569
13570 putpkt (rs->buf);
13571 reply = remote_get_noisy_reply ();
13572 if (*reply == '\0')
13573 return false;
13574
13575 if (strcmp (reply, "OK") != 0)
13576 error (_("Bogus reply from target: %s"), reply);
13577
13578 return true;
13579 }
13580
13581 bool
13582 remote_target::use_agent (bool use)
13583 {
13584 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13585 {
13586 struct remote_state *rs = get_remote_state ();
13587
13588 /* If the stub supports QAgent. */
13589 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAgent:%d", use);
13590 putpkt (rs->buf);
13591 getpkt (&rs->buf, 0);
13592
13593 if (strcmp (rs->buf.data (), "OK") == 0)
13594 {
13595 ::use_agent = use;
13596 return true;
13597 }
13598 }
13599
13600 return false;
13601 }
13602
13603 bool
13604 remote_target::can_use_agent ()
13605 {
13606 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13607 }
13608
13609 struct btrace_target_info
13610 {
13611 /* The ptid of the traced thread. */
13612 ptid_t ptid;
13613
13614 /* The obtained branch trace configuration. */
13615 struct btrace_config conf;
13616 };
13617
13618 /* Reset our idea of our target's btrace configuration. */
13619
13620 static void
13621 remote_btrace_reset (remote_state *rs)
13622 {
13623 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13624 }
13625
13626 /* Synchronize the configuration with the target. */
13627
13628 void
13629 remote_target::btrace_sync_conf (const btrace_config *conf)
13630 {
13631 struct packet_config *packet;
13632 struct remote_state *rs;
13633 char *buf, *pos, *endbuf;
13634
13635 rs = get_remote_state ();
13636 buf = rs->buf.data ();
13637 endbuf = buf + get_remote_packet_size ();
13638
13639 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13640 if (packet_config_support (packet) == PACKET_ENABLE
13641 && conf->bts.size != rs->btrace_config.bts.size)
13642 {
13643 pos = buf;
13644 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13645 conf->bts.size);
13646
13647 putpkt (buf);
13648 getpkt (&rs->buf, 0);
13649
13650 if (packet_ok (buf, packet) == PACKET_ERROR)
13651 {
13652 if (buf[0] == 'E' && buf[1] == '.')
13653 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13654 else
13655 error (_("Failed to configure the BTS buffer size."));
13656 }
13657
13658 rs->btrace_config.bts.size = conf->bts.size;
13659 }
13660
13661 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13662 if (packet_config_support (packet) == PACKET_ENABLE
13663 && conf->pt.size != rs->btrace_config.pt.size)
13664 {
13665 pos = buf;
13666 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13667 conf->pt.size);
13668
13669 putpkt (buf);
13670 getpkt (&rs->buf, 0);
13671
13672 if (packet_ok (buf, packet) == PACKET_ERROR)
13673 {
13674 if (buf[0] == 'E' && buf[1] == '.')
13675 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13676 else
13677 error (_("Failed to configure the trace buffer size."));
13678 }
13679
13680 rs->btrace_config.pt.size = conf->pt.size;
13681 }
13682 }
13683
13684 /* Read the current thread's btrace configuration from the target and
13685 store it into CONF. */
13686
13687 static void
13688 btrace_read_config (struct btrace_config *conf)
13689 {
13690 gdb::optional<gdb::char_vector> xml
13691 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE_CONF, "");
13692 if (xml)
13693 parse_xml_btrace_conf (conf, xml->data ());
13694 }
13695
13696 /* Maybe reopen target btrace. */
13697
13698 void
13699 remote_target::remote_btrace_maybe_reopen ()
13700 {
13701 struct remote_state *rs = get_remote_state ();
13702 int btrace_target_pushed = 0;
13703 #if !defined (HAVE_LIBIPT)
13704 int warned = 0;
13705 #endif
13706
13707 /* Don't bother walking the entirety of the remote thread list when
13708 we know the feature isn't supported by the remote. */
13709 if (packet_support (PACKET_qXfer_btrace_conf) != PACKET_ENABLE)
13710 return;
13711
13712 scoped_restore_current_thread restore_thread;
13713
13714 for (thread_info *tp : all_non_exited_threads ())
13715 {
13716 set_general_thread (tp->ptid);
13717
13718 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13719 btrace_read_config (&rs->btrace_config);
13720
13721 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13722 continue;
13723
13724 #if !defined (HAVE_LIBIPT)
13725 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13726 {
13727 if (!warned)
13728 {
13729 warned = 1;
13730 warning (_("Target is recording using Intel Processor Trace "
13731 "but support was disabled at compile time."));
13732 }
13733
13734 continue;
13735 }
13736 #endif /* !defined (HAVE_LIBIPT) */
13737
13738 /* Push target, once, but before anything else happens. This way our
13739 changes to the threads will be cleaned up by unpushing the target
13740 in case btrace_read_config () throws. */
13741 if (!btrace_target_pushed)
13742 {
13743 btrace_target_pushed = 1;
13744 record_btrace_push_target ();
13745 printf_filtered (_("Target is recording using %s.\n"),
13746 btrace_format_string (rs->btrace_config.format));
13747 }
13748
13749 tp->btrace.target = XCNEW (struct btrace_target_info);
13750 tp->btrace.target->ptid = tp->ptid;
13751 tp->btrace.target->conf = rs->btrace_config;
13752 }
13753 }
13754
13755 /* Enable branch tracing. */
13756
13757 struct btrace_target_info *
13758 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
13759 {
13760 struct btrace_target_info *tinfo = NULL;
13761 struct packet_config *packet = NULL;
13762 struct remote_state *rs = get_remote_state ();
13763 char *buf = rs->buf.data ();
13764 char *endbuf = buf + get_remote_packet_size ();
13765
13766 switch (conf->format)
13767 {
13768 case BTRACE_FORMAT_BTS:
13769 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13770 break;
13771
13772 case BTRACE_FORMAT_PT:
13773 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13774 break;
13775 }
13776
13777 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13778 error (_("Target does not support branch tracing."));
13779
13780 btrace_sync_conf (conf);
13781
13782 set_general_thread (ptid);
13783
13784 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13785 putpkt (rs->buf);
13786 getpkt (&rs->buf, 0);
13787
13788 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13789 {
13790 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13791 error (_("Could not enable branch tracing for %s: %s"),
13792 target_pid_to_str (ptid).c_str (), &rs->buf[2]);
13793 else
13794 error (_("Could not enable branch tracing for %s."),
13795 target_pid_to_str (ptid).c_str ());
13796 }
13797
13798 tinfo = XCNEW (struct btrace_target_info);
13799 tinfo->ptid = ptid;
13800
13801 /* If we fail to read the configuration, we lose some information, but the
13802 tracing itself is not impacted. */
13803 try
13804 {
13805 btrace_read_config (&tinfo->conf);
13806 }
13807 catch (const gdb_exception_error &err)
13808 {
13809 if (err.message != NULL)
13810 warning ("%s", err.what ());
13811 }
13812
13813 return tinfo;
13814 }
13815
13816 /* Disable branch tracing. */
13817
13818 void
13819 remote_target::disable_btrace (struct btrace_target_info *tinfo)
13820 {
13821 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13822 struct remote_state *rs = get_remote_state ();
13823 char *buf = rs->buf.data ();
13824 char *endbuf = buf + get_remote_packet_size ();
13825
13826 if (packet_config_support (packet) != PACKET_ENABLE)
13827 error (_("Target does not support branch tracing."));
13828
13829 set_general_thread (tinfo->ptid);
13830
13831 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13832 putpkt (rs->buf);
13833 getpkt (&rs->buf, 0);
13834
13835 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13836 {
13837 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13838 error (_("Could not disable branch tracing for %s: %s"),
13839 target_pid_to_str (tinfo->ptid).c_str (), &rs->buf[2]);
13840 else
13841 error (_("Could not disable branch tracing for %s."),
13842 target_pid_to_str (tinfo->ptid).c_str ());
13843 }
13844
13845 xfree (tinfo);
13846 }
13847
13848 /* Teardown branch tracing. */
13849
13850 void
13851 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
13852 {
13853 /* We must not talk to the target during teardown. */
13854 xfree (tinfo);
13855 }
13856
13857 /* Read the branch trace. */
13858
13859 enum btrace_error
13860 remote_target::read_btrace (struct btrace_data *btrace,
13861 struct btrace_target_info *tinfo,
13862 enum btrace_read_type type)
13863 {
13864 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13865 const char *annex;
13866
13867 if (packet_config_support (packet) != PACKET_ENABLE)
13868 error (_("Target does not support branch tracing."));
13869
13870 #if !defined(HAVE_LIBEXPAT)
13871 error (_("Cannot process branch tracing result. XML parsing not supported."));
13872 #endif
13873
13874 switch (type)
13875 {
13876 case BTRACE_READ_ALL:
13877 annex = "all";
13878 break;
13879 case BTRACE_READ_NEW:
13880 annex = "new";
13881 break;
13882 case BTRACE_READ_DELTA:
13883 annex = "delta";
13884 break;
13885 default:
13886 internal_error (__FILE__, __LINE__,
13887 _("Bad branch tracing read type: %u."),
13888 (unsigned int) type);
13889 }
13890
13891 gdb::optional<gdb::char_vector> xml
13892 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE, annex);
13893 if (!xml)
13894 return BTRACE_ERR_UNKNOWN;
13895
13896 parse_xml_btrace (btrace, xml->data ());
13897
13898 return BTRACE_ERR_NONE;
13899 }
13900
13901 const struct btrace_config *
13902 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
13903 {
13904 return &tinfo->conf;
13905 }
13906
13907 bool
13908 remote_target::augmented_libraries_svr4_read ()
13909 {
13910 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
13911 == PACKET_ENABLE);
13912 }
13913
13914 /* Implementation of to_load. */
13915
13916 void
13917 remote_target::load (const char *name, int from_tty)
13918 {
13919 generic_load (name, from_tty);
13920 }
13921
13922 /* Accepts an integer PID; returns a string representing a file that
13923 can be opened on the remote side to get the symbols for the child
13924 process. Returns NULL if the operation is not supported. */
13925
13926 char *
13927 remote_target::pid_to_exec_file (int pid)
13928 {
13929 static gdb::optional<gdb::char_vector> filename;
13930 struct inferior *inf;
13931 char *annex = NULL;
13932
13933 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
13934 return NULL;
13935
13936 inf = find_inferior_pid (pid);
13937 if (inf == NULL)
13938 internal_error (__FILE__, __LINE__,
13939 _("not currently attached to process %d"), pid);
13940
13941 if (!inf->fake_pid_p)
13942 {
13943 const int annex_size = 9;
13944
13945 annex = (char *) alloca (annex_size);
13946 xsnprintf (annex, annex_size, "%x", pid);
13947 }
13948
13949 filename = target_read_stralloc (current_top_target (),
13950 TARGET_OBJECT_EXEC_FILE, annex);
13951
13952 return filename ? filename->data () : nullptr;
13953 }
13954
13955 /* Implement the to_can_do_single_step target_ops method. */
13956
13957 int
13958 remote_target::can_do_single_step ()
13959 {
13960 /* We can only tell whether target supports single step or not by
13961 supported s and S vCont actions if the stub supports vContSupported
13962 feature. If the stub doesn't support vContSupported feature,
13963 we have conservatively to think target doesn't supports single
13964 step. */
13965 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
13966 {
13967 struct remote_state *rs = get_remote_state ();
13968
13969 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13970 remote_vcont_probe ();
13971
13972 return rs->supports_vCont.s && rs->supports_vCont.S;
13973 }
13974 else
13975 return 0;
13976 }
13977
13978 /* Implementation of the to_execution_direction method for the remote
13979 target. */
13980
13981 enum exec_direction_kind
13982 remote_target::execution_direction ()
13983 {
13984 struct remote_state *rs = get_remote_state ();
13985
13986 return rs->last_resume_exec_dir;
13987 }
13988
13989 /* Return pointer to the thread_info struct which corresponds to
13990 THREAD_HANDLE (having length HANDLE_LEN). */
13991
13992 thread_info *
13993 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
13994 int handle_len,
13995 inferior *inf)
13996 {
13997 for (thread_info *tp : all_non_exited_threads ())
13998 {
13999 remote_thread_info *priv = get_remote_thread_info (tp);
14000
14001 if (tp->inf == inf && priv != NULL)
14002 {
14003 if (handle_len != priv->thread_handle.size ())
14004 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
14005 handle_len, priv->thread_handle.size ());
14006 if (memcmp (thread_handle, priv->thread_handle.data (),
14007 handle_len) == 0)
14008 return tp;
14009 }
14010 }
14011
14012 return NULL;
14013 }
14014
14015 gdb::byte_vector
14016 remote_target::thread_info_to_thread_handle (struct thread_info *tp)
14017 {
14018 remote_thread_info *priv = get_remote_thread_info (tp);
14019 return priv->thread_handle;
14020 }
14021
14022 bool
14023 remote_target::can_async_p ()
14024 {
14025 struct remote_state *rs = get_remote_state ();
14026
14027 /* We don't go async if the user has explicitly prevented it with the
14028 "maint set target-async" command. */
14029 if (!target_async_permitted)
14030 return false;
14031
14032 /* We're async whenever the serial device is. */
14033 return serial_can_async_p (rs->remote_desc);
14034 }
14035
14036 bool
14037 remote_target::is_async_p ()
14038 {
14039 struct remote_state *rs = get_remote_state ();
14040
14041 if (!target_async_permitted)
14042 /* We only enable async when the user specifically asks for it. */
14043 return false;
14044
14045 /* We're async whenever the serial device is. */
14046 return serial_is_async_p (rs->remote_desc);
14047 }
14048
14049 /* Pass the SERIAL event on and up to the client. One day this code
14050 will be able to delay notifying the client of an event until the
14051 point where an entire packet has been received. */
14052
14053 static serial_event_ftype remote_async_serial_handler;
14054
14055 static void
14056 remote_async_serial_handler (struct serial *scb, void *context)
14057 {
14058 /* Don't propogate error information up to the client. Instead let
14059 the client find out about the error by querying the target. */
14060 inferior_event_handler (INF_REG_EVENT, NULL);
14061 }
14062
14063 static void
14064 remote_async_inferior_event_handler (gdb_client_data data)
14065 {
14066 inferior_event_handler (INF_REG_EVENT, data);
14067 }
14068
14069 void
14070 remote_target::async (int enable)
14071 {
14072 struct remote_state *rs = get_remote_state ();
14073
14074 if (enable)
14075 {
14076 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
14077
14078 /* If there are pending events in the stop reply queue tell the
14079 event loop to process them. */
14080 if (!rs->stop_reply_queue.empty ())
14081 mark_async_event_handler (rs->remote_async_inferior_event_token);
14082 /* For simplicity, below we clear the pending events token
14083 without remembering whether it is marked, so here we always
14084 mark it. If there's actually no pending notification to
14085 process, this ends up being a no-op (other than a spurious
14086 event-loop wakeup). */
14087 if (target_is_non_stop_p ())
14088 mark_async_event_handler (rs->notif_state->get_pending_events_token);
14089 }
14090 else
14091 {
14092 serial_async (rs->remote_desc, NULL, NULL);
14093 /* If the core is disabling async, it doesn't want to be
14094 disturbed with target events. Clear all async event sources
14095 too. */
14096 clear_async_event_handler (rs->remote_async_inferior_event_token);
14097 if (target_is_non_stop_p ())
14098 clear_async_event_handler (rs->notif_state->get_pending_events_token);
14099 }
14100 }
14101
14102 /* Implementation of the to_thread_events method. */
14103
14104 void
14105 remote_target::thread_events (int enable)
14106 {
14107 struct remote_state *rs = get_remote_state ();
14108 size_t size = get_remote_packet_size ();
14109
14110 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
14111 return;
14112
14113 xsnprintf (rs->buf.data (), size, "QThreadEvents:%x", enable ? 1 : 0);
14114 putpkt (rs->buf);
14115 getpkt (&rs->buf, 0);
14116
14117 switch (packet_ok (rs->buf,
14118 &remote_protocol_packets[PACKET_QThreadEvents]))
14119 {
14120 case PACKET_OK:
14121 if (strcmp (rs->buf.data (), "OK") != 0)
14122 error (_("Remote refused setting thread events: %s"), rs->buf.data ());
14123 break;
14124 case PACKET_ERROR:
14125 warning (_("Remote failure reply: %s"), rs->buf.data ());
14126 break;
14127 case PACKET_UNKNOWN:
14128 break;
14129 }
14130 }
14131
14132 static void
14133 set_remote_cmd (const char *args, int from_tty)
14134 {
14135 help_list (remote_set_cmdlist, "set remote ", all_commands, gdb_stdout);
14136 }
14137
14138 static void
14139 show_remote_cmd (const char *args, int from_tty)
14140 {
14141 /* We can't just use cmd_show_list here, because we want to skip
14142 the redundant "show remote Z-packet" and the legacy aliases. */
14143 struct cmd_list_element *list = remote_show_cmdlist;
14144 struct ui_out *uiout = current_uiout;
14145
14146 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
14147 for (; list != NULL; list = list->next)
14148 if (strcmp (list->name, "Z-packet") == 0)
14149 continue;
14150 else if (list->type == not_set_cmd)
14151 /* Alias commands are exactly like the original, except they
14152 don't have the normal type. */
14153 continue;
14154 else
14155 {
14156 ui_out_emit_tuple option_emitter (uiout, "option");
14157
14158 uiout->field_string ("name", list->name);
14159 uiout->text (": ");
14160 if (list->type == show_cmd)
14161 do_show_command (NULL, from_tty, list);
14162 else
14163 cmd_func (list, NULL, from_tty);
14164 }
14165 }
14166
14167
14168 /* Function to be called whenever a new objfile (shlib) is detected. */
14169 static void
14170 remote_new_objfile (struct objfile *objfile)
14171 {
14172 remote_target *remote = get_current_remote_target ();
14173
14174 if (remote != NULL) /* Have a remote connection. */
14175 remote->remote_check_symbols ();
14176 }
14177
14178 /* Pull all the tracepoints defined on the target and create local
14179 data structures representing them. We don't want to create real
14180 tracepoints yet, we don't want to mess up the user's existing
14181 collection. */
14182
14183 int
14184 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
14185 {
14186 struct remote_state *rs = get_remote_state ();
14187 char *p;
14188
14189 /* Ask for a first packet of tracepoint definition. */
14190 putpkt ("qTfP");
14191 getpkt (&rs->buf, 0);
14192 p = rs->buf.data ();
14193 while (*p && *p != 'l')
14194 {
14195 parse_tracepoint_definition (p, utpp);
14196 /* Ask for another packet of tracepoint definition. */
14197 putpkt ("qTsP");
14198 getpkt (&rs->buf, 0);
14199 p = rs->buf.data ();
14200 }
14201 return 0;
14202 }
14203
14204 int
14205 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
14206 {
14207 struct remote_state *rs = get_remote_state ();
14208 char *p;
14209
14210 /* Ask for a first packet of variable definition. */
14211 putpkt ("qTfV");
14212 getpkt (&rs->buf, 0);
14213 p = rs->buf.data ();
14214 while (*p && *p != 'l')
14215 {
14216 parse_tsv_definition (p, utsvp);
14217 /* Ask for another packet of variable definition. */
14218 putpkt ("qTsV");
14219 getpkt (&rs->buf, 0);
14220 p = rs->buf.data ();
14221 }
14222 return 0;
14223 }
14224
14225 /* The "set/show range-stepping" show hook. */
14226
14227 static void
14228 show_range_stepping (struct ui_file *file, int from_tty,
14229 struct cmd_list_element *c,
14230 const char *value)
14231 {
14232 fprintf_filtered (file,
14233 _("Debugger's willingness to use range stepping "
14234 "is %s.\n"), value);
14235 }
14236
14237 /* Return true if the vCont;r action is supported by the remote
14238 stub. */
14239
14240 bool
14241 remote_target::vcont_r_supported ()
14242 {
14243 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14244 remote_vcont_probe ();
14245
14246 return (packet_support (PACKET_vCont) == PACKET_ENABLE
14247 && get_remote_state ()->supports_vCont.r);
14248 }
14249
14250 /* The "set/show range-stepping" set hook. */
14251
14252 static void
14253 set_range_stepping (const char *ignore_args, int from_tty,
14254 struct cmd_list_element *c)
14255 {
14256 /* When enabling, check whether range stepping is actually supported
14257 by the target, and warn if not. */
14258 if (use_range_stepping)
14259 {
14260 remote_target *remote = get_current_remote_target ();
14261 if (remote == NULL
14262 || !remote->vcont_r_supported ())
14263 warning (_("Range stepping is not supported by the current target"));
14264 }
14265 }
14266
14267 void
14268 _initialize_remote (void)
14269 {
14270 struct cmd_list_element *cmd;
14271 const char *cmd_name;
14272
14273 /* architecture specific data */
14274 remote_g_packet_data_handle =
14275 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14276
14277 add_target (remote_target_info, remote_target::open);
14278 add_target (extended_remote_target_info, extended_remote_target::open);
14279
14280 /* Hook into new objfile notification. */
14281 gdb::observers::new_objfile.attach (remote_new_objfile);
14282
14283 #if 0
14284 init_remote_threadtests ();
14285 #endif
14286
14287 /* set/show remote ... */
14288
14289 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
14290 Remote protocol specific variables.\n\
14291 Configure various remote-protocol specific variables such as\n\
14292 the packets being used."),
14293 &remote_set_cmdlist, "set remote ",
14294 0 /* allow-unknown */, &setlist);
14295 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14296 Remote protocol specific variables.\n\
14297 Configure various remote-protocol specific variables such as\n\
14298 the packets being used."),
14299 &remote_show_cmdlist, "show remote ",
14300 0 /* allow-unknown */, &showlist);
14301
14302 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14303 Compare section data on target to the exec file.\n\
14304 Argument is a single section name (default: all loaded sections).\n\
14305 To compare only read-only loaded sections, specify the -r option."),
14306 &cmdlist);
14307
14308 add_cmd ("packet", class_maintenance, packet_command, _("\
14309 Send an arbitrary packet to a remote target.\n\
14310 maintenance packet TEXT\n\
14311 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14312 this command sends the string TEXT to the inferior, and displays the\n\
14313 response packet. GDB supplies the initial `$' character, and the\n\
14314 terminating `#' character and checksum."),
14315 &maintenancelist);
14316
14317 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14318 Set whether to send break if interrupted."), _("\
14319 Show whether to send break if interrupted."), _("\
14320 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14321 set_remotebreak, show_remotebreak,
14322 &setlist, &showlist);
14323 cmd_name = "remotebreak";
14324 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
14325 deprecate_cmd (cmd, "set remote interrupt-sequence");
14326 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14327 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
14328 deprecate_cmd (cmd, "show remote interrupt-sequence");
14329
14330 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14331 interrupt_sequence_modes, &interrupt_sequence_mode,
14332 _("\
14333 Set interrupt sequence to remote target."), _("\
14334 Show interrupt sequence to remote target."), _("\
14335 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14336 NULL, show_interrupt_sequence,
14337 &remote_set_cmdlist,
14338 &remote_show_cmdlist);
14339
14340 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14341 &interrupt_on_connect, _("\
14342 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14343 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14344 If set, interrupt sequence is sent to remote target."),
14345 NULL, NULL,
14346 &remote_set_cmdlist, &remote_show_cmdlist);
14347
14348 /* Install commands for configuring memory read/write packets. */
14349
14350 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14351 Set the maximum number of bytes per memory write packet (deprecated)."),
14352 &setlist);
14353 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14354 Show the maximum number of bytes per memory write packet (deprecated)."),
14355 &showlist);
14356 add_cmd ("memory-write-packet-size", no_class,
14357 set_memory_write_packet_size, _("\
14358 Set the maximum number of bytes per memory-write packet.\n\
14359 Specify the number of bytes in a packet or 0 (zero) for the\n\
14360 default packet size. The actual limit is further reduced\n\
14361 dependent on the target. Specify ``fixed'' to disable the\n\
14362 further restriction and ``limit'' to enable that restriction."),
14363 &remote_set_cmdlist);
14364 add_cmd ("memory-read-packet-size", no_class,
14365 set_memory_read_packet_size, _("\
14366 Set the maximum number of bytes per memory-read packet.\n\
14367 Specify the number of bytes in a packet or 0 (zero) for the\n\
14368 default packet size. The actual limit is further reduced\n\
14369 dependent on the target. Specify ``fixed'' to disable the\n\
14370 further restriction and ``limit'' to enable that restriction."),
14371 &remote_set_cmdlist);
14372 add_cmd ("memory-write-packet-size", no_class,
14373 show_memory_write_packet_size,
14374 _("Show the maximum number of bytes per memory-write packet."),
14375 &remote_show_cmdlist);
14376 add_cmd ("memory-read-packet-size", no_class,
14377 show_memory_read_packet_size,
14378 _("Show the maximum number of bytes per memory-read packet."),
14379 &remote_show_cmdlist);
14380
14381 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-limit", no_class,
14382 &remote_hw_watchpoint_limit, _("\
14383 Set the maximum number of target hardware watchpoints."), _("\
14384 Show the maximum number of target hardware watchpoints."), _("\
14385 Specify \"unlimited\" for unlimited hardware watchpoints."),
14386 NULL, show_hardware_watchpoint_limit,
14387 &remote_set_cmdlist,
14388 &remote_show_cmdlist);
14389 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-length-limit",
14390 no_class,
14391 &remote_hw_watchpoint_length_limit, _("\
14392 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14393 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14394 Specify \"unlimited\" to allow watchpoints of unlimited size."),
14395 NULL, show_hardware_watchpoint_length_limit,
14396 &remote_set_cmdlist, &remote_show_cmdlist);
14397 add_setshow_zuinteger_unlimited_cmd ("hardware-breakpoint-limit", no_class,
14398 &remote_hw_breakpoint_limit, _("\
14399 Set the maximum number of target hardware breakpoints."), _("\
14400 Show the maximum number of target hardware breakpoints."), _("\
14401 Specify \"unlimited\" for unlimited hardware breakpoints."),
14402 NULL, show_hardware_breakpoint_limit,
14403 &remote_set_cmdlist, &remote_show_cmdlist);
14404
14405 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14406 &remote_address_size, _("\
14407 Set the maximum size of the address (in bits) in a memory packet."), _("\
14408 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14409 NULL,
14410 NULL, /* FIXME: i18n: */
14411 &setlist, &showlist);
14412
14413 init_all_packet_configs ();
14414
14415 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14416 "X", "binary-download", 1);
14417
14418 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14419 "vCont", "verbose-resume", 0);
14420
14421 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14422 "QPassSignals", "pass-signals", 0);
14423
14424 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14425 "QCatchSyscalls", "catch-syscalls", 0);
14426
14427 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14428 "QProgramSignals", "program-signals", 0);
14429
14430 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14431 "QSetWorkingDir", "set-working-dir", 0);
14432
14433 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14434 "QStartupWithShell", "startup-with-shell", 0);
14435
14436 add_packet_config_cmd (&remote_protocol_packets
14437 [PACKET_QEnvironmentHexEncoded],
14438 "QEnvironmentHexEncoded", "environment-hex-encoded",
14439 0);
14440
14441 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14442 "QEnvironmentReset", "environment-reset",
14443 0);
14444
14445 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14446 "QEnvironmentUnset", "environment-unset",
14447 0);
14448
14449 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14450 "qSymbol", "symbol-lookup", 0);
14451
14452 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14453 "P", "set-register", 1);
14454
14455 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14456 "p", "fetch-register", 1);
14457
14458 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14459 "Z0", "software-breakpoint", 0);
14460
14461 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14462 "Z1", "hardware-breakpoint", 0);
14463
14464 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14465 "Z2", "write-watchpoint", 0);
14466
14467 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14468 "Z3", "read-watchpoint", 0);
14469
14470 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14471 "Z4", "access-watchpoint", 0);
14472
14473 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14474 "qXfer:auxv:read", "read-aux-vector", 0);
14475
14476 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14477 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14478
14479 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14480 "qXfer:features:read", "target-features", 0);
14481
14482 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14483 "qXfer:libraries:read", "library-info", 0);
14484
14485 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14486 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14487
14488 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14489 "qXfer:memory-map:read", "memory-map", 0);
14490
14491 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14492 "qXfer:osdata:read", "osdata", 0);
14493
14494 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14495 "qXfer:threads:read", "threads", 0);
14496
14497 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14498 "qXfer:siginfo:read", "read-siginfo-object", 0);
14499
14500 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14501 "qXfer:siginfo:write", "write-siginfo-object", 0);
14502
14503 add_packet_config_cmd
14504 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14505 "qXfer:traceframe-info:read", "traceframe-info", 0);
14506
14507 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14508 "qXfer:uib:read", "unwind-info-block", 0);
14509
14510 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14511 "qGetTLSAddr", "get-thread-local-storage-address",
14512 0);
14513
14514 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14515 "qGetTIBAddr", "get-thread-information-block-address",
14516 0);
14517
14518 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14519 "bc", "reverse-continue", 0);
14520
14521 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14522 "bs", "reverse-step", 0);
14523
14524 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14525 "qSupported", "supported-packets", 0);
14526
14527 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14528 "qSearch:memory", "search-memory", 0);
14529
14530 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14531 "qTStatus", "trace-status", 0);
14532
14533 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14534 "vFile:setfs", "hostio-setfs", 0);
14535
14536 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14537 "vFile:open", "hostio-open", 0);
14538
14539 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14540 "vFile:pread", "hostio-pread", 0);
14541
14542 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14543 "vFile:pwrite", "hostio-pwrite", 0);
14544
14545 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14546 "vFile:close", "hostio-close", 0);
14547
14548 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14549 "vFile:unlink", "hostio-unlink", 0);
14550
14551 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14552 "vFile:readlink", "hostio-readlink", 0);
14553
14554 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14555 "vFile:fstat", "hostio-fstat", 0);
14556
14557 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14558 "vAttach", "attach", 0);
14559
14560 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14561 "vRun", "run", 0);
14562
14563 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14564 "QStartNoAckMode", "noack", 0);
14565
14566 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14567 "vKill", "kill", 0);
14568
14569 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14570 "qAttached", "query-attached", 0);
14571
14572 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14573 "ConditionalTracepoints",
14574 "conditional-tracepoints", 0);
14575
14576 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14577 "ConditionalBreakpoints",
14578 "conditional-breakpoints", 0);
14579
14580 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14581 "BreakpointCommands",
14582 "breakpoint-commands", 0);
14583
14584 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14585 "FastTracepoints", "fast-tracepoints", 0);
14586
14587 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14588 "TracepointSource", "TracepointSource", 0);
14589
14590 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14591 "QAllow", "allow", 0);
14592
14593 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14594 "StaticTracepoints", "static-tracepoints", 0);
14595
14596 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14597 "InstallInTrace", "install-in-trace", 0);
14598
14599 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14600 "qXfer:statictrace:read", "read-sdata-object", 0);
14601
14602 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14603 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14604
14605 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14606 "QDisableRandomization", "disable-randomization", 0);
14607
14608 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14609 "QAgent", "agent", 0);
14610
14611 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14612 "QTBuffer:size", "trace-buffer-size", 0);
14613
14614 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14615 "Qbtrace:off", "disable-btrace", 0);
14616
14617 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14618 "Qbtrace:bts", "enable-btrace-bts", 0);
14619
14620 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14621 "Qbtrace:pt", "enable-btrace-pt", 0);
14622
14623 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14624 "qXfer:btrace", "read-btrace", 0);
14625
14626 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14627 "qXfer:btrace-conf", "read-btrace-conf", 0);
14628
14629 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14630 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14631
14632 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14633 "multiprocess-feature", "multiprocess-feature", 0);
14634
14635 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14636 "swbreak-feature", "swbreak-feature", 0);
14637
14638 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14639 "hwbreak-feature", "hwbreak-feature", 0);
14640
14641 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14642 "fork-event-feature", "fork-event-feature", 0);
14643
14644 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14645 "vfork-event-feature", "vfork-event-feature", 0);
14646
14647 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14648 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14649
14650 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14651 "vContSupported", "verbose-resume-supported", 0);
14652
14653 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14654 "exec-event-feature", "exec-event-feature", 0);
14655
14656 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14657 "vCtrlC", "ctrl-c", 0);
14658
14659 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14660 "QThreadEvents", "thread-events", 0);
14661
14662 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14663 "N stop reply", "no-resumed-stop-reply", 0);
14664
14665 /* Assert that we've registered "set remote foo-packet" commands
14666 for all packet configs. */
14667 {
14668 int i;
14669
14670 for (i = 0; i < PACKET_MAX; i++)
14671 {
14672 /* Ideally all configs would have a command associated. Some
14673 still don't though. */
14674 int excepted;
14675
14676 switch (i)
14677 {
14678 case PACKET_QNonStop:
14679 case PACKET_EnableDisableTracepoints_feature:
14680 case PACKET_tracenz_feature:
14681 case PACKET_DisconnectedTracing_feature:
14682 case PACKET_augmented_libraries_svr4_read_feature:
14683 case PACKET_qCRC:
14684 /* Additions to this list need to be well justified:
14685 pre-existing packets are OK; new packets are not. */
14686 excepted = 1;
14687 break;
14688 default:
14689 excepted = 0;
14690 break;
14691 }
14692
14693 /* This catches both forgetting to add a config command, and
14694 forgetting to remove a packet from the exception list. */
14695 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14696 }
14697 }
14698
14699 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14700 Z sub-packet has its own set and show commands, but users may
14701 have sets to this variable in their .gdbinit files (or in their
14702 documentation). */
14703 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14704 &remote_Z_packet_detect, _("\
14705 Set use of remote protocol `Z' packets."), _("\
14706 Show use of remote protocol `Z' packets."), _("\
14707 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14708 packets."),
14709 set_remote_protocol_Z_packet_cmd,
14710 show_remote_protocol_Z_packet_cmd,
14711 /* FIXME: i18n: Use of remote protocol
14712 `Z' packets is %s. */
14713 &remote_set_cmdlist, &remote_show_cmdlist);
14714
14715 add_prefix_cmd ("remote", class_files, remote_command, _("\
14716 Manipulate files on the remote system.\n\
14717 Transfer files to and from the remote target system."),
14718 &remote_cmdlist, "remote ",
14719 0 /* allow-unknown */, &cmdlist);
14720
14721 add_cmd ("put", class_files, remote_put_command,
14722 _("Copy a local file to the remote system."),
14723 &remote_cmdlist);
14724
14725 add_cmd ("get", class_files, remote_get_command,
14726 _("Copy a remote file to the local system."),
14727 &remote_cmdlist);
14728
14729 add_cmd ("delete", class_files, remote_delete_command,
14730 _("Delete a remote file."),
14731 &remote_cmdlist);
14732
14733 add_setshow_string_noescape_cmd ("exec-file", class_files,
14734 &remote_exec_file_var, _("\
14735 Set the remote pathname for \"run\"."), _("\
14736 Show the remote pathname for \"run\"."), NULL,
14737 set_remote_exec_file,
14738 show_remote_exec_file,
14739 &remote_set_cmdlist,
14740 &remote_show_cmdlist);
14741
14742 add_setshow_boolean_cmd ("range-stepping", class_run,
14743 &use_range_stepping, _("\
14744 Enable or disable range stepping."), _("\
14745 Show whether target-assisted range stepping is enabled."), _("\
14746 If on, and the target supports it, when stepping a source line, GDB\n\
14747 tells the target to step the corresponding range of addresses itself instead\n\
14748 of issuing multiple single-steps. This speeds up source level\n\
14749 stepping. If off, GDB always issues single-steps, even if range\n\
14750 stepping is supported by the target. The default is on."),
14751 set_range_stepping,
14752 show_range_stepping,
14753 &setlist,
14754 &showlist);
14755
14756 add_setshow_zinteger_cmd ("watchdog", class_maintenance, &watchdog, _("\
14757 Set watchdog timer."), _("\
14758 Show watchdog timer."), _("\
14759 When non-zero, this timeout is used instead of waiting forever for a target\n\
14760 to finish a low-level step or continue operation. If the specified amount\n\
14761 of time passes without a response from the target, an error occurs."),
14762 NULL,
14763 show_watchdog,
14764 &setlist, &showlist);
14765
14766 add_setshow_zuinteger_unlimited_cmd ("remote-packet-max-chars", no_class,
14767 &remote_packet_max_chars, _("\
14768 Set the maximum number of characters to display for each remote packet."), _("\
14769 Show the maximum number of characters to display for each remote packet."), _("\
14770 Specify \"unlimited\" to display all the characters."),
14771 NULL, show_remote_packet_max_chars,
14772 &setdebuglist, &showdebuglist);
14773
14774 /* Eventually initialize fileio. See fileio.c */
14775 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
14776 }
This page took 0.415645 seconds and 3 git commands to generate.