c09d714087596fcfdcdc07f0c136120d9d98b687
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2021 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 #include "process-stratum-target.h"
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "gdbsupport/filestuff.h"
46 #include "gdbsupport/rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdbsupport/gdb_sys_time.h"
51
52 #include "gdbsupport/event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h"
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "gdbsupport/agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "gdbsupport/scoped_restore.h"
76 #include "gdbsupport/environ.h"
77 #include "gdbsupport/byte-vector.h"
78 #include "gdbsupport/search.h"
79 #include <algorithm>
80 #include <unordered_map>
81 #include "async-event.h"
82 #include "gdbsupport/selftest.h"
83
84 /* The remote target. */
85
86 static const char remote_doc[] = N_("\
87 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
88 Specify the serial device it is connected to\n\
89 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
90
91 /* See remote.h */
92
93 bool remote_debug = false;
94
95 #define OPAQUETHREADBYTES 8
96
97 /* a 64 bit opaque identifier */
98 typedef unsigned char threadref[OPAQUETHREADBYTES];
99
100 struct gdb_ext_thread_info;
101 struct threads_listing_context;
102 typedef int (*rmt_thread_action) (threadref *ref, void *context);
103 struct protocol_feature;
104 struct packet_reg;
105
106 struct stop_reply;
107 typedef std::unique_ptr<stop_reply> stop_reply_up;
108
109 /* Generic configuration support for packets the stub optionally
110 supports. Allows the user to specify the use of the packet as well
111 as allowing GDB to auto-detect support in the remote stub. */
112
113 enum packet_support
114 {
115 PACKET_SUPPORT_UNKNOWN = 0,
116 PACKET_ENABLE,
117 PACKET_DISABLE
118 };
119
120 /* Analyze a packet's return value and update the packet config
121 accordingly. */
122
123 enum packet_result
124 {
125 PACKET_ERROR,
126 PACKET_OK,
127 PACKET_UNKNOWN
128 };
129
130 struct threads_listing_context;
131
132 /* Stub vCont actions support.
133
134 Each field is a boolean flag indicating whether the stub reports
135 support for the corresponding action. */
136
137 struct vCont_action_support
138 {
139 /* vCont;t */
140 bool t = false;
141
142 /* vCont;r */
143 bool r = false;
144
145 /* vCont;s */
146 bool s = false;
147
148 /* vCont;S */
149 bool S = false;
150 };
151
152 /* About this many threadids fit in a packet. */
153
154 #define MAXTHREADLISTRESULTS 32
155
156 /* Data for the vFile:pread readahead cache. */
157
158 struct readahead_cache
159 {
160 /* Invalidate the readahead cache. */
161 void invalidate ();
162
163 /* Invalidate the readahead cache if it is holding data for FD. */
164 void invalidate_fd (int fd);
165
166 /* Serve pread from the readahead cache. Returns number of bytes
167 read, or 0 if the request can't be served from the cache. */
168 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
169
170 /* The file descriptor for the file that is being cached. -1 if the
171 cache is invalid. */
172 int fd = -1;
173
174 /* The offset into the file that the cache buffer corresponds
175 to. */
176 ULONGEST offset = 0;
177
178 /* The buffer holding the cache contents. */
179 gdb_byte *buf = nullptr;
180 /* The buffer's size. We try to read as much as fits into a packet
181 at a time. */
182 size_t bufsize = 0;
183
184 /* Cache hit and miss counters. */
185 ULONGEST hit_count = 0;
186 ULONGEST miss_count = 0;
187 };
188
189 /* Description of the remote protocol for a given architecture. */
190
191 struct packet_reg
192 {
193 long offset; /* Offset into G packet. */
194 long regnum; /* GDB's internal register number. */
195 LONGEST pnum; /* Remote protocol register number. */
196 int in_g_packet; /* Always part of G packet. */
197 /* long size in bytes; == register_size (target_gdbarch (), regnum);
198 at present. */
199 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
200 at present. */
201 };
202
203 struct remote_arch_state
204 {
205 explicit remote_arch_state (struct gdbarch *gdbarch);
206
207 /* Description of the remote protocol registers. */
208 long sizeof_g_packet;
209
210 /* Description of the remote protocol registers indexed by REGNUM
211 (making an array gdbarch_num_regs in size). */
212 std::unique_ptr<packet_reg[]> regs;
213
214 /* This is the size (in chars) of the first response to the ``g''
215 packet. It is used as a heuristic when determining the maximum
216 size of memory-read and memory-write packets. A target will
217 typically only reserve a buffer large enough to hold the ``g''
218 packet. The size does not include packet overhead (headers and
219 trailers). */
220 long actual_register_packet_size;
221
222 /* This is the maximum size (in chars) of a non read/write packet.
223 It is also used as a cap on the size of read/write packets. */
224 long remote_packet_size;
225 };
226
227 /* Description of the remote protocol state for the currently
228 connected target. This is per-target state, and independent of the
229 selected architecture. */
230
231 class remote_state
232 {
233 public:
234
235 remote_state ();
236 ~remote_state ();
237
238 /* Get the remote arch state for GDBARCH. */
239 struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
240
241 public: /* data */
242
243 /* A buffer to use for incoming packets, and its current size. The
244 buffer is grown dynamically for larger incoming packets.
245 Outgoing packets may also be constructed in this buffer.
246 The size of the buffer is always at least REMOTE_PACKET_SIZE;
247 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
248 packets. */
249 gdb::char_vector buf;
250
251 /* True if we're going through initial connection setup (finding out
252 about the remote side's threads, relocating symbols, etc.). */
253 bool starting_up = false;
254
255 /* If we negotiated packet size explicitly (and thus can bypass
256 heuristics for the largest packet size that will not overflow
257 a buffer in the stub), this will be set to that packet size.
258 Otherwise zero, meaning to use the guessed size. */
259 long explicit_packet_size = 0;
260
261 /* remote_wait is normally called when the target is running and
262 waits for a stop reply packet. But sometimes we need to call it
263 when the target is already stopped. We can send a "?" packet
264 and have remote_wait read the response. Or, if we already have
265 the response, we can stash it in BUF and tell remote_wait to
266 skip calling getpkt. This flag is set when BUF contains a
267 stop reply packet and the target is not waiting. */
268 int cached_wait_status = 0;
269
270 /* True, if in no ack mode. That is, neither GDB nor the stub will
271 expect acks from each other. The connection is assumed to be
272 reliable. */
273 bool noack_mode = false;
274
275 /* True if we're connected in extended remote mode. */
276 bool extended = false;
277
278 /* True if we resumed the target and we're waiting for the target to
279 stop. In the mean time, we can't start another command/query.
280 The remote server wouldn't be ready to process it, so we'd
281 timeout waiting for a reply that would never come and eventually
282 we'd close the connection. This can happen in asynchronous mode
283 because we allow GDB commands while the target is running. */
284 bool waiting_for_stop_reply = false;
285
286 /* The status of the stub support for the various vCont actions. */
287 vCont_action_support supports_vCont;
288 /* Whether vCont support was probed already. This is a workaround
289 until packet_support is per-connection. */
290 bool supports_vCont_probed;
291
292 /* True if the user has pressed Ctrl-C, but the target hasn't
293 responded to that. */
294 bool ctrlc_pending_p = false;
295
296 /* True if we saw a Ctrl-C while reading or writing from/to the
297 remote descriptor. At that point it is not safe to send a remote
298 interrupt packet, so we instead remember we saw the Ctrl-C and
299 process it once we're done with sending/receiving the current
300 packet, which should be shortly. If however that takes too long,
301 and the user presses Ctrl-C again, we offer to disconnect. */
302 bool got_ctrlc_during_io = false;
303
304 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
305 remote_open knows that we don't have a file open when the program
306 starts. */
307 struct serial *remote_desc = nullptr;
308
309 /* These are the threads which we last sent to the remote system. The
310 TID member will be -1 for all or -2 for not sent yet. */
311 ptid_t general_thread = null_ptid;
312 ptid_t continue_thread = null_ptid;
313
314 /* This is the traceframe which we last selected on the remote system.
315 It will be -1 if no traceframe is selected. */
316 int remote_traceframe_number = -1;
317
318 char *last_pass_packet = nullptr;
319
320 /* The last QProgramSignals packet sent to the target. We bypass
321 sending a new program signals list down to the target if the new
322 packet is exactly the same as the last we sent. IOW, we only let
323 the target know about program signals list changes. */
324 char *last_program_signals_packet = nullptr;
325
326 gdb_signal last_sent_signal = GDB_SIGNAL_0;
327
328 bool last_sent_step = false;
329
330 /* The execution direction of the last resume we got. */
331 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
332
333 char *finished_object = nullptr;
334 char *finished_annex = nullptr;
335 ULONGEST finished_offset = 0;
336
337 /* Should we try the 'ThreadInfo' query packet?
338
339 This variable (NOT available to the user: auto-detect only!)
340 determines whether GDB will use the new, simpler "ThreadInfo"
341 query or the older, more complex syntax for thread queries.
342 This is an auto-detect variable (set to true at each connect,
343 and set to false when the target fails to recognize it). */
344 bool use_threadinfo_query = false;
345 bool use_threadextra_query = false;
346
347 threadref echo_nextthread {};
348 threadref nextthread {};
349 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
350
351 /* The state of remote notification. */
352 struct remote_notif_state *notif_state = nullptr;
353
354 /* The branch trace configuration. */
355 struct btrace_config btrace_config {};
356
357 /* The argument to the last "vFile:setfs:" packet we sent, used
358 to avoid sending repeated unnecessary "vFile:setfs:" packets.
359 Initialized to -1 to indicate that no "vFile:setfs:" packet
360 has yet been sent. */
361 int fs_pid = -1;
362
363 /* A readahead cache for vFile:pread. Often, reading a binary
364 involves a sequence of small reads. E.g., when parsing an ELF
365 file. A readahead cache helps mostly the case of remote
366 debugging on a connection with higher latency, due to the
367 request/reply nature of the RSP. We only cache data for a single
368 file descriptor at a time. */
369 struct readahead_cache readahead_cache;
370
371 /* The list of already fetched and acknowledged stop events. This
372 queue is used for notification Stop, and other notifications
373 don't need queue for their events, because the notification
374 events of Stop can't be consumed immediately, so that events
375 should be queued first, and be consumed by remote_wait_{ns,as}
376 one per time. Other notifications can consume their events
377 immediately, so queue is not needed for them. */
378 std::vector<stop_reply_up> stop_reply_queue;
379
380 /* Asynchronous signal handle registered as event loop source for
381 when we have pending events ready to be passed to the core. */
382 struct async_event_handler *remote_async_inferior_event_token = nullptr;
383
384 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
385 ``forever'' still use the normal timeout mechanism. This is
386 currently used by the ASYNC code to guarentee that target reads
387 during the initial connect always time-out. Once getpkt has been
388 modified to return a timeout indication and, in turn
389 remote_wait()/wait_for_inferior() have gained a timeout parameter
390 this can go away. */
391 int wait_forever_enabled_p = 1;
392
393 private:
394 /* Mapping of remote protocol data for each gdbarch. Usually there
395 is only one entry here, though we may see more with stubs that
396 support multi-process. */
397 std::unordered_map<struct gdbarch *, remote_arch_state>
398 m_arch_states;
399 };
400
401 static const target_info remote_target_info = {
402 "remote",
403 N_("Remote serial target in gdb-specific protocol"),
404 remote_doc
405 };
406
407 class remote_target : public process_stratum_target
408 {
409 public:
410 remote_target () = default;
411 ~remote_target () override;
412
413 const target_info &info () const override
414 { return remote_target_info; }
415
416 const char *connection_string () override;
417
418 thread_control_capabilities get_thread_control_capabilities () override
419 { return tc_schedlock; }
420
421 /* Open a remote connection. */
422 static void open (const char *, int);
423
424 void close () override;
425
426 void detach (inferior *, int) override;
427 void disconnect (const char *, int) override;
428
429 void commit_resumed () override;
430 void resume (ptid_t, int, enum gdb_signal) override;
431 ptid_t wait (ptid_t, struct target_waitstatus *, target_wait_flags) override;
432 bool has_pending_events () override;
433
434 void fetch_registers (struct regcache *, int) override;
435 void store_registers (struct regcache *, int) override;
436 void prepare_to_store (struct regcache *) override;
437
438 void files_info () override;
439
440 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
441
442 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
443 enum remove_bp_reason) override;
444
445
446 bool stopped_by_sw_breakpoint () override;
447 bool supports_stopped_by_sw_breakpoint () override;
448
449 bool stopped_by_hw_breakpoint () override;
450
451 bool supports_stopped_by_hw_breakpoint () override;
452
453 bool stopped_by_watchpoint () override;
454
455 bool stopped_data_address (CORE_ADDR *) override;
456
457 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
458
459 int can_use_hw_breakpoint (enum bptype, int, int) override;
460
461 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
462
463 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
464
465 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
466
467 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
468 struct expression *) override;
469
470 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
471 struct expression *) override;
472
473 void kill () override;
474
475 void load (const char *, int) override;
476
477 void mourn_inferior () override;
478
479 void pass_signals (gdb::array_view<const unsigned char>) override;
480
481 int set_syscall_catchpoint (int, bool, int,
482 gdb::array_view<const int>) override;
483
484 void program_signals (gdb::array_view<const unsigned char>) override;
485
486 bool thread_alive (ptid_t ptid) override;
487
488 const char *thread_name (struct thread_info *) override;
489
490 void update_thread_list () override;
491
492 std::string pid_to_str (ptid_t) override;
493
494 const char *extra_thread_info (struct thread_info *) override;
495
496 ptid_t get_ada_task_ptid (long lwp, long thread) override;
497
498 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
499 int handle_len,
500 inferior *inf) override;
501
502 gdb::byte_vector thread_info_to_thread_handle (struct thread_info *tp)
503 override;
504
505 void stop (ptid_t) override;
506
507 void interrupt () override;
508
509 void pass_ctrlc () override;
510
511 enum target_xfer_status xfer_partial (enum target_object object,
512 const char *annex,
513 gdb_byte *readbuf,
514 const gdb_byte *writebuf,
515 ULONGEST offset, ULONGEST len,
516 ULONGEST *xfered_len) override;
517
518 ULONGEST get_memory_xfer_limit () override;
519
520 void rcmd (const char *command, struct ui_file *output) override;
521
522 char *pid_to_exec_file (int pid) override;
523
524 void log_command (const char *cmd) override
525 {
526 serial_log_command (this, cmd);
527 }
528
529 CORE_ADDR get_thread_local_address (ptid_t ptid,
530 CORE_ADDR load_module_addr,
531 CORE_ADDR offset) override;
532
533 bool can_execute_reverse () override;
534
535 std::vector<mem_region> memory_map () override;
536
537 void flash_erase (ULONGEST address, LONGEST length) override;
538
539 void flash_done () override;
540
541 const struct target_desc *read_description () override;
542
543 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
544 const gdb_byte *pattern, ULONGEST pattern_len,
545 CORE_ADDR *found_addrp) override;
546
547 bool can_async_p () override;
548
549 bool is_async_p () override;
550
551 void async (int) override;
552
553 int async_wait_fd () override;
554
555 void thread_events (int) override;
556
557 int can_do_single_step () override;
558
559 void terminal_inferior () override;
560
561 void terminal_ours () override;
562
563 bool supports_non_stop () override;
564
565 bool supports_multi_process () override;
566
567 bool supports_disable_randomization () override;
568
569 bool filesystem_is_local () override;
570
571
572 int fileio_open (struct inferior *inf, const char *filename,
573 int flags, int mode, int warn_if_slow,
574 int *target_errno) override;
575
576 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
577 ULONGEST offset, int *target_errno) override;
578
579 int fileio_pread (int fd, gdb_byte *read_buf, int len,
580 ULONGEST offset, int *target_errno) override;
581
582 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
583
584 int fileio_close (int fd, int *target_errno) override;
585
586 int fileio_unlink (struct inferior *inf,
587 const char *filename,
588 int *target_errno) override;
589
590 gdb::optional<std::string>
591 fileio_readlink (struct inferior *inf,
592 const char *filename,
593 int *target_errno) override;
594
595 bool supports_enable_disable_tracepoint () override;
596
597 bool supports_string_tracing () override;
598
599 bool supports_evaluation_of_breakpoint_conditions () override;
600
601 bool can_run_breakpoint_commands () override;
602
603 void trace_init () override;
604
605 void download_tracepoint (struct bp_location *location) override;
606
607 bool can_download_tracepoint () override;
608
609 void download_trace_state_variable (const trace_state_variable &tsv) override;
610
611 void enable_tracepoint (struct bp_location *location) override;
612
613 void disable_tracepoint (struct bp_location *location) override;
614
615 void trace_set_readonly_regions () override;
616
617 void trace_start () override;
618
619 int get_trace_status (struct trace_status *ts) override;
620
621 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
622 override;
623
624 void trace_stop () override;
625
626 int trace_find (enum trace_find_type type, int num,
627 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
628
629 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
630
631 int save_trace_data (const char *filename) override;
632
633 int upload_tracepoints (struct uploaded_tp **utpp) override;
634
635 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
636
637 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
638
639 int get_min_fast_tracepoint_insn_len () override;
640
641 void set_disconnected_tracing (int val) override;
642
643 void set_circular_trace_buffer (int val) override;
644
645 void set_trace_buffer_size (LONGEST val) override;
646
647 bool set_trace_notes (const char *user, const char *notes,
648 const char *stopnotes) override;
649
650 int core_of_thread (ptid_t ptid) override;
651
652 int verify_memory (const gdb_byte *data,
653 CORE_ADDR memaddr, ULONGEST size) override;
654
655
656 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
657
658 void set_permissions () override;
659
660 bool static_tracepoint_marker_at (CORE_ADDR,
661 struct static_tracepoint_marker *marker)
662 override;
663
664 std::vector<static_tracepoint_marker>
665 static_tracepoint_markers_by_strid (const char *id) override;
666
667 traceframe_info_up traceframe_info () override;
668
669 bool use_agent (bool use) override;
670 bool can_use_agent () override;
671
672 struct btrace_target_info *enable_btrace (ptid_t ptid,
673 const struct btrace_config *conf) override;
674
675 void disable_btrace (struct btrace_target_info *tinfo) override;
676
677 void teardown_btrace (struct btrace_target_info *tinfo) override;
678
679 enum btrace_error read_btrace (struct btrace_data *data,
680 struct btrace_target_info *btinfo,
681 enum btrace_read_type type) override;
682
683 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
684 bool augmented_libraries_svr4_read () override;
685 void follow_fork (bool, bool) override;
686 void follow_exec (inferior *, ptid_t, const char *) override;
687 int insert_fork_catchpoint (int) override;
688 int remove_fork_catchpoint (int) override;
689 int insert_vfork_catchpoint (int) override;
690 int remove_vfork_catchpoint (int) override;
691 int insert_exec_catchpoint (int) override;
692 int remove_exec_catchpoint (int) override;
693 enum exec_direction_kind execution_direction () override;
694
695 bool supports_memory_tagging () override;
696
697 bool fetch_memtags (CORE_ADDR address, size_t len,
698 gdb::byte_vector &tags, int type) override;
699
700 bool store_memtags (CORE_ADDR address, size_t len,
701 const gdb::byte_vector &tags, int type) override;
702
703 public: /* Remote specific methods. */
704
705 void remote_download_command_source (int num, ULONGEST addr,
706 struct command_line *cmds);
707
708 void remote_file_put (const char *local_file, const char *remote_file,
709 int from_tty);
710 void remote_file_get (const char *remote_file, const char *local_file,
711 int from_tty);
712 void remote_file_delete (const char *remote_file, int from_tty);
713
714 int remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
715 ULONGEST offset, int *remote_errno);
716 int remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
717 ULONGEST offset, int *remote_errno);
718 int remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
719 ULONGEST offset, int *remote_errno);
720
721 int remote_hostio_send_command (int command_bytes, int which_packet,
722 int *remote_errno, const char **attachment,
723 int *attachment_len);
724 int remote_hostio_set_filesystem (struct inferior *inf,
725 int *remote_errno);
726 /* We should get rid of this and use fileio_open directly. */
727 int remote_hostio_open (struct inferior *inf, const char *filename,
728 int flags, int mode, int warn_if_slow,
729 int *remote_errno);
730 int remote_hostio_close (int fd, int *remote_errno);
731
732 int remote_hostio_unlink (inferior *inf, const char *filename,
733 int *remote_errno);
734
735 struct remote_state *get_remote_state ();
736
737 long get_remote_packet_size (void);
738 long get_memory_packet_size (struct memory_packet_config *config);
739
740 long get_memory_write_packet_size ();
741 long get_memory_read_packet_size ();
742
743 char *append_pending_thread_resumptions (char *p, char *endp,
744 ptid_t ptid);
745 static void open_1 (const char *name, int from_tty, int extended_p);
746 void start_remote (int from_tty, int extended_p);
747 void remote_detach_1 (struct inferior *inf, int from_tty);
748
749 char *append_resumption (char *p, char *endp,
750 ptid_t ptid, int step, gdb_signal siggnal);
751 int remote_resume_with_vcont (ptid_t ptid, int step,
752 gdb_signal siggnal);
753
754 thread_info *add_current_inferior_and_thread (const char *wait_status);
755
756 ptid_t wait_ns (ptid_t ptid, struct target_waitstatus *status,
757 target_wait_flags options);
758 ptid_t wait_as (ptid_t ptid, target_waitstatus *status,
759 target_wait_flags options);
760
761 ptid_t process_stop_reply (struct stop_reply *stop_reply,
762 target_waitstatus *status);
763
764 ptid_t select_thread_for_ambiguous_stop_reply
765 (const struct target_waitstatus *status);
766
767 void remote_notice_new_inferior (ptid_t currthread, bool executing);
768
769 void process_initial_stop_replies (int from_tty);
770
771 thread_info *remote_add_thread (ptid_t ptid, bool running, bool executing);
772
773 void btrace_sync_conf (const btrace_config *conf);
774
775 void remote_btrace_maybe_reopen ();
776
777 void remove_new_fork_children (threads_listing_context *context);
778 void kill_new_fork_children (int pid);
779 void discard_pending_stop_replies (struct inferior *inf);
780 int stop_reply_queue_length ();
781
782 void check_pending_events_prevent_wildcard_vcont
783 (bool *may_global_wildcard_vcont);
784
785 void discard_pending_stop_replies_in_queue ();
786 struct stop_reply *remote_notif_remove_queued_reply (ptid_t ptid);
787 struct stop_reply *queued_stop_reply (ptid_t ptid);
788 int peek_stop_reply (ptid_t ptid);
789 void remote_parse_stop_reply (const char *buf, stop_reply *event);
790
791 void remote_stop_ns (ptid_t ptid);
792 void remote_interrupt_as ();
793 void remote_interrupt_ns ();
794
795 char *remote_get_noisy_reply ();
796 int remote_query_attached (int pid);
797 inferior *remote_add_inferior (bool fake_pid_p, int pid, int attached,
798 int try_open_exec);
799
800 ptid_t remote_current_thread (ptid_t oldpid);
801 ptid_t get_current_thread (const char *wait_status);
802
803 void set_thread (ptid_t ptid, int gen);
804 void set_general_thread (ptid_t ptid);
805 void set_continue_thread (ptid_t ptid);
806 void set_general_process ();
807
808 char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
809
810 int remote_unpack_thread_info_response (const char *pkt, threadref *expectedref,
811 gdb_ext_thread_info *info);
812 int remote_get_threadinfo (threadref *threadid, int fieldset,
813 gdb_ext_thread_info *info);
814
815 int parse_threadlist_response (const char *pkt, int result_limit,
816 threadref *original_echo,
817 threadref *resultlist,
818 int *doneflag);
819 int remote_get_threadlist (int startflag, threadref *nextthread,
820 int result_limit, int *done, int *result_count,
821 threadref *threadlist);
822
823 int remote_threadlist_iterator (rmt_thread_action stepfunction,
824 void *context, int looplimit);
825
826 int remote_get_threads_with_ql (threads_listing_context *context);
827 int remote_get_threads_with_qxfer (threads_listing_context *context);
828 int remote_get_threads_with_qthreadinfo (threads_listing_context *context);
829
830 void extended_remote_restart ();
831
832 void get_offsets ();
833
834 void remote_check_symbols ();
835
836 void remote_supported_packet (const struct protocol_feature *feature,
837 enum packet_support support,
838 const char *argument);
839
840 void remote_query_supported ();
841
842 void remote_packet_size (const protocol_feature *feature,
843 packet_support support, const char *value);
844
845 void remote_serial_quit_handler ();
846
847 void remote_detach_pid (int pid);
848
849 void remote_vcont_probe ();
850
851 void remote_resume_with_hc (ptid_t ptid, int step,
852 gdb_signal siggnal);
853
854 void send_interrupt_sequence ();
855 void interrupt_query ();
856
857 void remote_notif_get_pending_events (notif_client *nc);
858
859 int fetch_register_using_p (struct regcache *regcache,
860 packet_reg *reg);
861 int send_g_packet ();
862 void process_g_packet (struct regcache *regcache);
863 void fetch_registers_using_g (struct regcache *regcache);
864 int store_register_using_P (const struct regcache *regcache,
865 packet_reg *reg);
866 void store_registers_using_G (const struct regcache *regcache);
867
868 void set_remote_traceframe ();
869
870 void check_binary_download (CORE_ADDR addr);
871
872 target_xfer_status remote_write_bytes_aux (const char *header,
873 CORE_ADDR memaddr,
874 const gdb_byte *myaddr,
875 ULONGEST len_units,
876 int unit_size,
877 ULONGEST *xfered_len_units,
878 char packet_format,
879 int use_length);
880
881 target_xfer_status remote_write_bytes (CORE_ADDR memaddr,
882 const gdb_byte *myaddr, ULONGEST len,
883 int unit_size, ULONGEST *xfered_len);
884
885 target_xfer_status remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
886 ULONGEST len_units,
887 int unit_size, ULONGEST *xfered_len_units);
888
889 target_xfer_status remote_xfer_live_readonly_partial (gdb_byte *readbuf,
890 ULONGEST memaddr,
891 ULONGEST len,
892 int unit_size,
893 ULONGEST *xfered_len);
894
895 target_xfer_status remote_read_bytes (CORE_ADDR memaddr,
896 gdb_byte *myaddr, ULONGEST len,
897 int unit_size,
898 ULONGEST *xfered_len);
899
900 packet_result remote_send_printf (const char *format, ...)
901 ATTRIBUTE_PRINTF (2, 3);
902
903 target_xfer_status remote_flash_write (ULONGEST address,
904 ULONGEST length, ULONGEST *xfered_len,
905 const gdb_byte *data);
906
907 int readchar (int timeout);
908
909 void remote_serial_write (const char *str, int len);
910
911 int putpkt (const char *buf);
912 int putpkt_binary (const char *buf, int cnt);
913
914 int putpkt (const gdb::char_vector &buf)
915 {
916 return putpkt (buf.data ());
917 }
918
919 void skip_frame ();
920 long read_frame (gdb::char_vector *buf_p);
921 void getpkt (gdb::char_vector *buf, int forever);
922 int getpkt_or_notif_sane_1 (gdb::char_vector *buf, int forever,
923 int expecting_notif, int *is_notif);
924 int getpkt_sane (gdb::char_vector *buf, int forever);
925 int getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
926 int *is_notif);
927 int remote_vkill (int pid);
928 void remote_kill_k ();
929
930 void extended_remote_disable_randomization (int val);
931 int extended_remote_run (const std::string &args);
932
933 void send_environment_packet (const char *action,
934 const char *packet,
935 const char *value);
936
937 void extended_remote_environment_support ();
938 void extended_remote_set_inferior_cwd ();
939
940 target_xfer_status remote_write_qxfer (const char *object_name,
941 const char *annex,
942 const gdb_byte *writebuf,
943 ULONGEST offset, LONGEST len,
944 ULONGEST *xfered_len,
945 struct packet_config *packet);
946
947 target_xfer_status remote_read_qxfer (const char *object_name,
948 const char *annex,
949 gdb_byte *readbuf, ULONGEST offset,
950 LONGEST len,
951 ULONGEST *xfered_len,
952 struct packet_config *packet);
953
954 void push_stop_reply (struct stop_reply *new_event);
955
956 bool vcont_r_supported ();
957
958 void packet_command (const char *args, int from_tty);
959
960 private: /* data fields */
961
962 /* The remote state. Don't reference this directly. Use the
963 get_remote_state method instead. */
964 remote_state m_remote_state;
965 };
966
967 static const target_info extended_remote_target_info = {
968 "extended-remote",
969 N_("Extended remote serial target in gdb-specific protocol"),
970 remote_doc
971 };
972
973 /* Set up the extended remote target by extending the standard remote
974 target and adding to it. */
975
976 class extended_remote_target final : public remote_target
977 {
978 public:
979 const target_info &info () const override
980 { return extended_remote_target_info; }
981
982 /* Open an extended-remote connection. */
983 static void open (const char *, int);
984
985 bool can_create_inferior () override { return true; }
986 void create_inferior (const char *, const std::string &,
987 char **, int) override;
988
989 void detach (inferior *, int) override;
990
991 bool can_attach () override { return true; }
992 void attach (const char *, int) override;
993
994 void post_attach (int) override;
995 bool supports_disable_randomization () override;
996 };
997
998 /* Per-program-space data key. */
999 static const struct program_space_key<char, gdb::xfree_deleter<char>>
1000 remote_pspace_data;
1001
1002 /* The variable registered as the control variable used by the
1003 remote exec-file commands. While the remote exec-file setting is
1004 per-program-space, the set/show machinery uses this as the
1005 location of the remote exec-file value. */
1006 static char *remote_exec_file_var;
1007
1008 /* The size to align memory write packets, when practical. The protocol
1009 does not guarantee any alignment, and gdb will generate short
1010 writes and unaligned writes, but even as a best-effort attempt this
1011 can improve bulk transfers. For instance, if a write is misaligned
1012 relative to the target's data bus, the stub may need to make an extra
1013 round trip fetching data from the target. This doesn't make a
1014 huge difference, but it's easy to do, so we try to be helpful.
1015
1016 The alignment chosen is arbitrary; usually data bus width is
1017 important here, not the possibly larger cache line size. */
1018 enum { REMOTE_ALIGN_WRITES = 16 };
1019
1020 /* Prototypes for local functions. */
1021
1022 static int hexnumlen (ULONGEST num);
1023
1024 static int stubhex (int ch);
1025
1026 static int hexnumstr (char *, ULONGEST);
1027
1028 static int hexnumnstr (char *, ULONGEST, int);
1029
1030 static CORE_ADDR remote_address_masked (CORE_ADDR);
1031
1032 static void print_packet (const char *);
1033
1034 static int stub_unpack_int (const char *buff, int fieldlength);
1035
1036 struct packet_config;
1037
1038 static void show_packet_config_cmd (struct packet_config *config);
1039
1040 static void show_remote_protocol_packet_cmd (struct ui_file *file,
1041 int from_tty,
1042 struct cmd_list_element *c,
1043 const char *value);
1044
1045 static ptid_t read_ptid (const char *buf, const char **obuf);
1046
1047 static void remote_async_inferior_event_handler (gdb_client_data);
1048
1049 static bool remote_read_description_p (struct target_ops *target);
1050
1051 static void remote_console_output (const char *msg);
1052
1053 static void remote_btrace_reset (remote_state *rs);
1054
1055 static void remote_unpush_and_throw (remote_target *target);
1056
1057 /* For "remote". */
1058
1059 static struct cmd_list_element *remote_cmdlist;
1060
1061 /* For "set remote" and "show remote". */
1062
1063 static struct cmd_list_element *remote_set_cmdlist;
1064 static struct cmd_list_element *remote_show_cmdlist;
1065
1066 /* Controls whether GDB is willing to use range stepping. */
1067
1068 static bool use_range_stepping = true;
1069
1070 /* From the remote target's point of view, each thread is in one of these three
1071 states. */
1072 enum class resume_state
1073 {
1074 /* Not resumed - we haven't been asked to resume this thread. */
1075 NOT_RESUMED,
1076
1077 /* We have been asked to resume this thread, but haven't sent a vCont action
1078 for it yet. We'll need to consider it next time commit_resume is
1079 called. */
1080 RESUMED_PENDING_VCONT,
1081
1082 /* We have been asked to resume this thread, and we have sent a vCont action
1083 for it. */
1084 RESUMED,
1085 };
1086
1087 /* Information about a thread's pending vCont-resume. Used when a thread is in
1088 the remote_resume_state::RESUMED_PENDING_VCONT state. remote_target::resume
1089 stores this information which is then picked up by
1090 remote_target::commit_resume to know which is the proper action for this
1091 thread to include in the vCont packet. */
1092 struct resumed_pending_vcont_info
1093 {
1094 /* True if the last resume call for this thread was a step request, false
1095 if a continue request. */
1096 bool step;
1097
1098 /* The signal specified in the last resume call for this thread. */
1099 gdb_signal sig;
1100 };
1101
1102 /* Private data that we'll store in (struct thread_info)->priv. */
1103 struct remote_thread_info : public private_thread_info
1104 {
1105 std::string extra;
1106 std::string name;
1107 int core = -1;
1108
1109 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
1110 sequence of bytes. */
1111 gdb::byte_vector thread_handle;
1112
1113 /* Whether the target stopped for a breakpoint/watchpoint. */
1114 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
1115
1116 /* This is set to the data address of the access causing the target
1117 to stop for a watchpoint. */
1118 CORE_ADDR watch_data_address = 0;
1119
1120 /* Get the thread's resume state. */
1121 enum resume_state get_resume_state () const
1122 {
1123 return m_resume_state;
1124 }
1125
1126 /* Put the thread in the NOT_RESUMED state. */
1127 void set_not_resumed ()
1128 {
1129 m_resume_state = resume_state::NOT_RESUMED;
1130 }
1131
1132 /* Put the thread in the RESUMED_PENDING_VCONT state. */
1133 void set_resumed_pending_vcont (bool step, gdb_signal sig)
1134 {
1135 m_resume_state = resume_state::RESUMED_PENDING_VCONT;
1136 m_resumed_pending_vcont_info.step = step;
1137 m_resumed_pending_vcont_info.sig = sig;
1138 }
1139
1140 /* Get the information this thread's pending vCont-resumption.
1141
1142 Must only be called if the thread is in the RESUMED_PENDING_VCONT resume
1143 state. */
1144 const struct resumed_pending_vcont_info &resumed_pending_vcont_info () const
1145 {
1146 gdb_assert (m_resume_state == resume_state::RESUMED_PENDING_VCONT);
1147
1148 return m_resumed_pending_vcont_info;
1149 }
1150
1151 /* Put the thread in the VCONT_RESUMED state. */
1152 void set_resumed ()
1153 {
1154 m_resume_state = resume_state::RESUMED;
1155 }
1156
1157 private:
1158 /* Resume state for this thread. This is used to implement vCont action
1159 coalescing (only when the target operates in non-stop mode).
1160
1161 remote_target::resume moves the thread to the RESUMED_PENDING_VCONT state,
1162 which notes that this thread must be considered in the next commit_resume
1163 call.
1164
1165 remote_target::commit_resume sends a vCont packet with actions for the
1166 threads in the RESUMED_PENDING_VCONT state and moves them to the
1167 VCONT_RESUMED state.
1168
1169 When reporting a stop to the core for a thread, that thread is moved back
1170 to the NOT_RESUMED state. */
1171 enum resume_state m_resume_state = resume_state::NOT_RESUMED;
1172
1173 /* Extra info used if the thread is in the RESUMED_PENDING_VCONT state. */
1174 struct resumed_pending_vcont_info m_resumed_pending_vcont_info;
1175 };
1176
1177 remote_state::remote_state ()
1178 : buf (400)
1179 {
1180 }
1181
1182 remote_state::~remote_state ()
1183 {
1184 xfree (this->last_pass_packet);
1185 xfree (this->last_program_signals_packet);
1186 xfree (this->finished_object);
1187 xfree (this->finished_annex);
1188 }
1189
1190 /* Utility: generate error from an incoming stub packet. */
1191 static void
1192 trace_error (char *buf)
1193 {
1194 if (*buf++ != 'E')
1195 return; /* not an error msg */
1196 switch (*buf)
1197 {
1198 case '1': /* malformed packet error */
1199 if (*++buf == '0') /* general case: */
1200 error (_("remote.c: error in outgoing packet."));
1201 else
1202 error (_("remote.c: error in outgoing packet at field #%ld."),
1203 strtol (buf, NULL, 16));
1204 default:
1205 error (_("Target returns error code '%s'."), buf);
1206 }
1207 }
1208
1209 /* Utility: wait for reply from stub, while accepting "O" packets. */
1210
1211 char *
1212 remote_target::remote_get_noisy_reply ()
1213 {
1214 struct remote_state *rs = get_remote_state ();
1215
1216 do /* Loop on reply from remote stub. */
1217 {
1218 char *buf;
1219
1220 QUIT; /* Allow user to bail out with ^C. */
1221 getpkt (&rs->buf, 0);
1222 buf = rs->buf.data ();
1223 if (buf[0] == 'E')
1224 trace_error (buf);
1225 else if (startswith (buf, "qRelocInsn:"))
1226 {
1227 ULONGEST ul;
1228 CORE_ADDR from, to, org_to;
1229 const char *p, *pp;
1230 int adjusted_size = 0;
1231 int relocated = 0;
1232
1233 p = buf + strlen ("qRelocInsn:");
1234 pp = unpack_varlen_hex (p, &ul);
1235 if (*pp != ';')
1236 error (_("invalid qRelocInsn packet: %s"), buf);
1237 from = ul;
1238
1239 p = pp + 1;
1240 unpack_varlen_hex (p, &ul);
1241 to = ul;
1242
1243 org_to = to;
1244
1245 try
1246 {
1247 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
1248 relocated = 1;
1249 }
1250 catch (const gdb_exception &ex)
1251 {
1252 if (ex.error == MEMORY_ERROR)
1253 {
1254 /* Propagate memory errors silently back to the
1255 target. The stub may have limited the range of
1256 addresses we can write to, for example. */
1257 }
1258 else
1259 {
1260 /* Something unexpectedly bad happened. Be verbose
1261 so we can tell what, and propagate the error back
1262 to the stub, so it doesn't get stuck waiting for
1263 a response. */
1264 exception_fprintf (gdb_stderr, ex,
1265 _("warning: relocating instruction: "));
1266 }
1267 putpkt ("E01");
1268 }
1269
1270 if (relocated)
1271 {
1272 adjusted_size = to - org_to;
1273
1274 xsnprintf (buf, rs->buf.size (), "qRelocInsn:%x", adjusted_size);
1275 putpkt (buf);
1276 }
1277 }
1278 else if (buf[0] == 'O' && buf[1] != 'K')
1279 remote_console_output (buf + 1); /* 'O' message from stub */
1280 else
1281 return buf; /* Here's the actual reply. */
1282 }
1283 while (1);
1284 }
1285
1286 struct remote_arch_state *
1287 remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
1288 {
1289 remote_arch_state *rsa;
1290
1291 auto it = this->m_arch_states.find (gdbarch);
1292 if (it == this->m_arch_states.end ())
1293 {
1294 auto p = this->m_arch_states.emplace (std::piecewise_construct,
1295 std::forward_as_tuple (gdbarch),
1296 std::forward_as_tuple (gdbarch));
1297 rsa = &p.first->second;
1298
1299 /* Make sure that the packet buffer is plenty big enough for
1300 this architecture. */
1301 if (this->buf.size () < rsa->remote_packet_size)
1302 this->buf.resize (2 * rsa->remote_packet_size);
1303 }
1304 else
1305 rsa = &it->second;
1306
1307 return rsa;
1308 }
1309
1310 /* Fetch the global remote target state. */
1311
1312 remote_state *
1313 remote_target::get_remote_state ()
1314 {
1315 /* Make sure that the remote architecture state has been
1316 initialized, because doing so might reallocate rs->buf. Any
1317 function which calls getpkt also needs to be mindful of changes
1318 to rs->buf, but this call limits the number of places which run
1319 into trouble. */
1320 m_remote_state.get_remote_arch_state (target_gdbarch ());
1321
1322 return &m_remote_state;
1323 }
1324
1325 /* Fetch the remote exec-file from the current program space. */
1326
1327 static const char *
1328 get_remote_exec_file (void)
1329 {
1330 char *remote_exec_file;
1331
1332 remote_exec_file = remote_pspace_data.get (current_program_space);
1333 if (remote_exec_file == NULL)
1334 return "";
1335
1336 return remote_exec_file;
1337 }
1338
1339 /* Set the remote exec file for PSPACE. */
1340
1341 static void
1342 set_pspace_remote_exec_file (struct program_space *pspace,
1343 const char *remote_exec_file)
1344 {
1345 char *old_file = remote_pspace_data.get (pspace);
1346
1347 xfree (old_file);
1348 remote_pspace_data.set (pspace, xstrdup (remote_exec_file));
1349 }
1350
1351 /* The "set/show remote exec-file" set command hook. */
1352
1353 static void
1354 set_remote_exec_file (const char *ignored, int from_tty,
1355 struct cmd_list_element *c)
1356 {
1357 gdb_assert (remote_exec_file_var != NULL);
1358 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
1359 }
1360
1361 /* The "set/show remote exec-file" show command hook. */
1362
1363 static void
1364 show_remote_exec_file (struct ui_file *file, int from_tty,
1365 struct cmd_list_element *cmd, const char *value)
1366 {
1367 fprintf_filtered (file, "%s\n", get_remote_exec_file ());
1368 }
1369
1370 static int
1371 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1372 {
1373 int regnum, num_remote_regs, offset;
1374 struct packet_reg **remote_regs;
1375
1376 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1377 {
1378 struct packet_reg *r = &regs[regnum];
1379
1380 if (register_size (gdbarch, regnum) == 0)
1381 /* Do not try to fetch zero-sized (placeholder) registers. */
1382 r->pnum = -1;
1383 else
1384 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1385
1386 r->regnum = regnum;
1387 }
1388
1389 /* Define the g/G packet format as the contents of each register
1390 with a remote protocol number, in order of ascending protocol
1391 number. */
1392
1393 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1394 for (num_remote_regs = 0, regnum = 0;
1395 regnum < gdbarch_num_regs (gdbarch);
1396 regnum++)
1397 if (regs[regnum].pnum != -1)
1398 remote_regs[num_remote_regs++] = &regs[regnum];
1399
1400 std::sort (remote_regs, remote_regs + num_remote_regs,
1401 [] (const packet_reg *a, const packet_reg *b)
1402 { return a->pnum < b->pnum; });
1403
1404 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1405 {
1406 remote_regs[regnum]->in_g_packet = 1;
1407 remote_regs[regnum]->offset = offset;
1408 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1409 }
1410
1411 return offset;
1412 }
1413
1414 /* Given the architecture described by GDBARCH, return the remote
1415 protocol register's number and the register's offset in the g/G
1416 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1417 If the target does not have a mapping for REGNUM, return false,
1418 otherwise, return true. */
1419
1420 int
1421 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1422 int *pnum, int *poffset)
1423 {
1424 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1425
1426 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1427
1428 map_regcache_remote_table (gdbarch, regs.data ());
1429
1430 *pnum = regs[regnum].pnum;
1431 *poffset = regs[regnum].offset;
1432
1433 return *pnum != -1;
1434 }
1435
1436 remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1437 {
1438 /* Use the architecture to build a regnum<->pnum table, which will be
1439 1:1 unless a feature set specifies otherwise. */
1440 this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1441
1442 /* Record the maximum possible size of the g packet - it may turn out
1443 to be smaller. */
1444 this->sizeof_g_packet
1445 = map_regcache_remote_table (gdbarch, this->regs.get ());
1446
1447 /* Default maximum number of characters in a packet body. Many
1448 remote stubs have a hardwired buffer size of 400 bytes
1449 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1450 as the maximum packet-size to ensure that the packet and an extra
1451 NUL character can always fit in the buffer. This stops GDB
1452 trashing stubs that try to squeeze an extra NUL into what is
1453 already a full buffer (As of 1999-12-04 that was most stubs). */
1454 this->remote_packet_size = 400 - 1;
1455
1456 /* This one is filled in when a ``g'' packet is received. */
1457 this->actual_register_packet_size = 0;
1458
1459 /* Should rsa->sizeof_g_packet needs more space than the
1460 default, adjust the size accordingly. Remember that each byte is
1461 encoded as two characters. 32 is the overhead for the packet
1462 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1463 (``$NN:G...#NN'') is a better guess, the below has been padded a
1464 little. */
1465 if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1466 this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1467 }
1468
1469 /* Get a pointer to the current remote target. If not connected to a
1470 remote target, return NULL. */
1471
1472 static remote_target *
1473 get_current_remote_target ()
1474 {
1475 target_ops *proc_target = current_inferior ()->process_target ();
1476 return dynamic_cast<remote_target *> (proc_target);
1477 }
1478
1479 /* Return the current allowed size of a remote packet. This is
1480 inferred from the current architecture, and should be used to
1481 limit the length of outgoing packets. */
1482 long
1483 remote_target::get_remote_packet_size ()
1484 {
1485 struct remote_state *rs = get_remote_state ();
1486 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1487
1488 if (rs->explicit_packet_size)
1489 return rs->explicit_packet_size;
1490
1491 return rsa->remote_packet_size;
1492 }
1493
1494 static struct packet_reg *
1495 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1496 long regnum)
1497 {
1498 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1499 return NULL;
1500 else
1501 {
1502 struct packet_reg *r = &rsa->regs[regnum];
1503
1504 gdb_assert (r->regnum == regnum);
1505 return r;
1506 }
1507 }
1508
1509 static struct packet_reg *
1510 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1511 LONGEST pnum)
1512 {
1513 int i;
1514
1515 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1516 {
1517 struct packet_reg *r = &rsa->regs[i];
1518
1519 if (r->pnum == pnum)
1520 return r;
1521 }
1522 return NULL;
1523 }
1524
1525 /* Allow the user to specify what sequence to send to the remote
1526 when he requests a program interruption: Although ^C is usually
1527 what remote systems expect (this is the default, here), it is
1528 sometimes preferable to send a break. On other systems such
1529 as the Linux kernel, a break followed by g, which is Magic SysRq g
1530 is required in order to interrupt the execution. */
1531 const char interrupt_sequence_control_c[] = "Ctrl-C";
1532 const char interrupt_sequence_break[] = "BREAK";
1533 const char interrupt_sequence_break_g[] = "BREAK-g";
1534 static const char *const interrupt_sequence_modes[] =
1535 {
1536 interrupt_sequence_control_c,
1537 interrupt_sequence_break,
1538 interrupt_sequence_break_g,
1539 NULL
1540 };
1541 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1542
1543 static void
1544 show_interrupt_sequence (struct ui_file *file, int from_tty,
1545 struct cmd_list_element *c,
1546 const char *value)
1547 {
1548 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1549 fprintf_filtered (file,
1550 _("Send the ASCII ETX character (Ctrl-c) "
1551 "to the remote target to interrupt the "
1552 "execution of the program.\n"));
1553 else if (interrupt_sequence_mode == interrupt_sequence_break)
1554 fprintf_filtered (file,
1555 _("send a break signal to the remote target "
1556 "to interrupt the execution of the program.\n"));
1557 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1558 fprintf_filtered (file,
1559 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1560 "the remote target to interrupt the execution "
1561 "of Linux kernel.\n"));
1562 else
1563 internal_error (__FILE__, __LINE__,
1564 _("Invalid value for interrupt_sequence_mode: %s."),
1565 interrupt_sequence_mode);
1566 }
1567
1568 /* This boolean variable specifies whether interrupt_sequence is sent
1569 to the remote target when gdb connects to it.
1570 This is mostly needed when you debug the Linux kernel: The Linux kernel
1571 expects BREAK g which is Magic SysRq g for connecting gdb. */
1572 static bool interrupt_on_connect = false;
1573
1574 /* This variable is used to implement the "set/show remotebreak" commands.
1575 Since these commands are now deprecated in favor of "set/show remote
1576 interrupt-sequence", it no longer has any effect on the code. */
1577 static bool remote_break;
1578
1579 static void
1580 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1581 {
1582 if (remote_break)
1583 interrupt_sequence_mode = interrupt_sequence_break;
1584 else
1585 interrupt_sequence_mode = interrupt_sequence_control_c;
1586 }
1587
1588 static void
1589 show_remotebreak (struct ui_file *file, int from_tty,
1590 struct cmd_list_element *c,
1591 const char *value)
1592 {
1593 }
1594
1595 /* This variable sets the number of bits in an address that are to be
1596 sent in a memory ("M" or "m") packet. Normally, after stripping
1597 leading zeros, the entire address would be sent. This variable
1598 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1599 initial implementation of remote.c restricted the address sent in
1600 memory packets to ``host::sizeof long'' bytes - (typically 32
1601 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1602 address was never sent. Since fixing this bug may cause a break in
1603 some remote targets this variable is principally provided to
1604 facilitate backward compatibility. */
1605
1606 static unsigned int remote_address_size;
1607
1608 \f
1609 /* User configurable variables for the number of characters in a
1610 memory read/write packet. MIN (rsa->remote_packet_size,
1611 rsa->sizeof_g_packet) is the default. Some targets need smaller
1612 values (fifo overruns, et.al.) and some users need larger values
1613 (speed up transfers). The variables ``preferred_*'' (the user
1614 request), ``current_*'' (what was actually set) and ``forced_*''
1615 (Positive - a soft limit, negative - a hard limit). */
1616
1617 struct memory_packet_config
1618 {
1619 const char *name;
1620 long size;
1621 int fixed_p;
1622 };
1623
1624 /* The default max memory-write-packet-size, when the setting is
1625 "fixed". The 16k is historical. (It came from older GDB's using
1626 alloca for buffers and the knowledge (folklore?) that some hosts
1627 don't cope very well with large alloca calls.) */
1628 #define DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED 16384
1629
1630 /* The minimum remote packet size for memory transfers. Ensures we
1631 can write at least one byte. */
1632 #define MIN_MEMORY_PACKET_SIZE 20
1633
1634 /* Get the memory packet size, assuming it is fixed. */
1635
1636 static long
1637 get_fixed_memory_packet_size (struct memory_packet_config *config)
1638 {
1639 gdb_assert (config->fixed_p);
1640
1641 if (config->size <= 0)
1642 return DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED;
1643 else
1644 return config->size;
1645 }
1646
1647 /* Compute the current size of a read/write packet. Since this makes
1648 use of ``actual_register_packet_size'' the computation is dynamic. */
1649
1650 long
1651 remote_target::get_memory_packet_size (struct memory_packet_config *config)
1652 {
1653 struct remote_state *rs = get_remote_state ();
1654 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1655
1656 long what_they_get;
1657 if (config->fixed_p)
1658 what_they_get = get_fixed_memory_packet_size (config);
1659 else
1660 {
1661 what_they_get = get_remote_packet_size ();
1662 /* Limit the packet to the size specified by the user. */
1663 if (config->size > 0
1664 && what_they_get > config->size)
1665 what_they_get = config->size;
1666
1667 /* Limit it to the size of the targets ``g'' response unless we have
1668 permission from the stub to use a larger packet size. */
1669 if (rs->explicit_packet_size == 0
1670 && rsa->actual_register_packet_size > 0
1671 && what_they_get > rsa->actual_register_packet_size)
1672 what_they_get = rsa->actual_register_packet_size;
1673 }
1674 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1675 what_they_get = MIN_MEMORY_PACKET_SIZE;
1676
1677 /* Make sure there is room in the global buffer for this packet
1678 (including its trailing NUL byte). */
1679 if (rs->buf.size () < what_they_get + 1)
1680 rs->buf.resize (2 * what_they_get);
1681
1682 return what_they_get;
1683 }
1684
1685 /* Update the size of a read/write packet. If they user wants
1686 something really big then do a sanity check. */
1687
1688 static void
1689 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1690 {
1691 int fixed_p = config->fixed_p;
1692 long size = config->size;
1693
1694 if (args == NULL)
1695 error (_("Argument required (integer, `fixed' or `limited')."));
1696 else if (strcmp (args, "hard") == 0
1697 || strcmp (args, "fixed") == 0)
1698 fixed_p = 1;
1699 else if (strcmp (args, "soft") == 0
1700 || strcmp (args, "limit") == 0)
1701 fixed_p = 0;
1702 else
1703 {
1704 char *end;
1705
1706 size = strtoul (args, &end, 0);
1707 if (args == end)
1708 error (_("Invalid %s (bad syntax)."), config->name);
1709
1710 /* Instead of explicitly capping the size of a packet to or
1711 disallowing it, the user is allowed to set the size to
1712 something arbitrarily large. */
1713 }
1714
1715 /* Extra checks? */
1716 if (fixed_p && !config->fixed_p)
1717 {
1718 /* So that the query shows the correct value. */
1719 long query_size = (size <= 0
1720 ? DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED
1721 : size);
1722
1723 if (! query (_("The target may not be able to correctly handle a %s\n"
1724 "of %ld bytes. Change the packet size? "),
1725 config->name, query_size))
1726 error (_("Packet size not changed."));
1727 }
1728 /* Update the config. */
1729 config->fixed_p = fixed_p;
1730 config->size = size;
1731 }
1732
1733 static void
1734 show_memory_packet_size (struct memory_packet_config *config)
1735 {
1736 if (config->size == 0)
1737 printf_filtered (_("The %s is 0 (default). "), config->name);
1738 else
1739 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1740 if (config->fixed_p)
1741 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1742 get_fixed_memory_packet_size (config));
1743 else
1744 {
1745 remote_target *remote = get_current_remote_target ();
1746
1747 if (remote != NULL)
1748 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1749 remote->get_memory_packet_size (config));
1750 else
1751 puts_filtered ("The actual limit will be further reduced "
1752 "dependent on the target.\n");
1753 }
1754 }
1755
1756 /* FIXME: needs to be per-remote-target. */
1757 static struct memory_packet_config memory_write_packet_config =
1758 {
1759 "memory-write-packet-size",
1760 };
1761
1762 static void
1763 set_memory_write_packet_size (const char *args, int from_tty)
1764 {
1765 set_memory_packet_size (args, &memory_write_packet_config);
1766 }
1767
1768 static void
1769 show_memory_write_packet_size (const char *args, int from_tty)
1770 {
1771 show_memory_packet_size (&memory_write_packet_config);
1772 }
1773
1774 /* Show the number of hardware watchpoints that can be used. */
1775
1776 static void
1777 show_hardware_watchpoint_limit (struct ui_file *file, int from_tty,
1778 struct cmd_list_element *c,
1779 const char *value)
1780 {
1781 fprintf_filtered (file, _("The maximum number of target hardware "
1782 "watchpoints is %s.\n"), value);
1783 }
1784
1785 /* Show the length limit (in bytes) for hardware watchpoints. */
1786
1787 static void
1788 show_hardware_watchpoint_length_limit (struct ui_file *file, int from_tty,
1789 struct cmd_list_element *c,
1790 const char *value)
1791 {
1792 fprintf_filtered (file, _("The maximum length (in bytes) of a target "
1793 "hardware watchpoint is %s.\n"), value);
1794 }
1795
1796 /* Show the number of hardware breakpoints that can be used. */
1797
1798 static void
1799 show_hardware_breakpoint_limit (struct ui_file *file, int from_tty,
1800 struct cmd_list_element *c,
1801 const char *value)
1802 {
1803 fprintf_filtered (file, _("The maximum number of target hardware "
1804 "breakpoints is %s.\n"), value);
1805 }
1806
1807 /* Controls the maximum number of characters to display in the debug output
1808 for each remote packet. The remaining characters are omitted. */
1809
1810 static int remote_packet_max_chars = 512;
1811
1812 /* Show the maximum number of characters to display for each remote packet
1813 when remote debugging is enabled. */
1814
1815 static void
1816 show_remote_packet_max_chars (struct ui_file *file, int from_tty,
1817 struct cmd_list_element *c,
1818 const char *value)
1819 {
1820 fprintf_filtered (file, _("Number of remote packet characters to "
1821 "display is %s.\n"), value);
1822 }
1823
1824 long
1825 remote_target::get_memory_write_packet_size ()
1826 {
1827 return get_memory_packet_size (&memory_write_packet_config);
1828 }
1829
1830 /* FIXME: needs to be per-remote-target. */
1831 static struct memory_packet_config memory_read_packet_config =
1832 {
1833 "memory-read-packet-size",
1834 };
1835
1836 static void
1837 set_memory_read_packet_size (const char *args, int from_tty)
1838 {
1839 set_memory_packet_size (args, &memory_read_packet_config);
1840 }
1841
1842 static void
1843 show_memory_read_packet_size (const char *args, int from_tty)
1844 {
1845 show_memory_packet_size (&memory_read_packet_config);
1846 }
1847
1848 long
1849 remote_target::get_memory_read_packet_size ()
1850 {
1851 long size = get_memory_packet_size (&memory_read_packet_config);
1852
1853 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1854 extra buffer size argument before the memory read size can be
1855 increased beyond this. */
1856 if (size > get_remote_packet_size ())
1857 size = get_remote_packet_size ();
1858 return size;
1859 }
1860
1861 \f
1862
1863 struct packet_config
1864 {
1865 const char *name;
1866 const char *title;
1867
1868 /* If auto, GDB auto-detects support for this packet or feature,
1869 either through qSupported, or by trying the packet and looking
1870 at the response. If true, GDB assumes the target supports this
1871 packet. If false, the packet is disabled. Configs that don't
1872 have an associated command always have this set to auto. */
1873 enum auto_boolean detect;
1874
1875 /* Does the target support this packet? */
1876 enum packet_support support;
1877 };
1878
1879 static enum packet_support packet_config_support (struct packet_config *config);
1880 static enum packet_support packet_support (int packet);
1881
1882 static void
1883 show_packet_config_cmd (struct packet_config *config)
1884 {
1885 const char *support = "internal-error";
1886
1887 switch (packet_config_support (config))
1888 {
1889 case PACKET_ENABLE:
1890 support = "enabled";
1891 break;
1892 case PACKET_DISABLE:
1893 support = "disabled";
1894 break;
1895 case PACKET_SUPPORT_UNKNOWN:
1896 support = "unknown";
1897 break;
1898 }
1899 switch (config->detect)
1900 {
1901 case AUTO_BOOLEAN_AUTO:
1902 printf_filtered (_("Support for the `%s' packet "
1903 "is auto-detected, currently %s.\n"),
1904 config->name, support);
1905 break;
1906 case AUTO_BOOLEAN_TRUE:
1907 case AUTO_BOOLEAN_FALSE:
1908 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1909 config->name, support);
1910 break;
1911 }
1912 }
1913
1914 static void
1915 add_packet_config_cmd (struct packet_config *config, const char *name,
1916 const char *title, int legacy)
1917 {
1918 char *set_doc;
1919 char *show_doc;
1920 char *cmd_name;
1921
1922 config->name = name;
1923 config->title = title;
1924 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet.",
1925 name, title);
1926 show_doc = xstrprintf ("Show current use of remote "
1927 "protocol `%s' (%s) packet.",
1928 name, title);
1929 /* set/show TITLE-packet {auto,on,off} */
1930 cmd_name = xstrprintf ("%s-packet", title);
1931 set_show_commands cmds
1932 = add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1933 &config->detect, set_doc,
1934 show_doc, NULL, /* help_doc */
1935 NULL,
1936 show_remote_protocol_packet_cmd,
1937 &remote_set_cmdlist, &remote_show_cmdlist);
1938
1939 /* The command code copies the documentation strings. */
1940 xfree (set_doc);
1941 xfree (show_doc);
1942
1943 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1944 if (legacy)
1945 {
1946 char *legacy_name;
1947
1948 legacy_name = xstrprintf ("%s-packet", name);
1949 add_alias_cmd (legacy_name, cmds.set, class_obscure, 0,
1950 &remote_set_cmdlist);
1951 add_alias_cmd (legacy_name, cmds.show, class_obscure, 0,
1952 &remote_show_cmdlist);
1953 }
1954 }
1955
1956 static enum packet_result
1957 packet_check_result (const char *buf)
1958 {
1959 if (buf[0] != '\0')
1960 {
1961 /* The stub recognized the packet request. Check that the
1962 operation succeeded. */
1963 if (buf[0] == 'E'
1964 && isxdigit (buf[1]) && isxdigit (buf[2])
1965 && buf[3] == '\0')
1966 /* "Enn" - definitely an error. */
1967 return PACKET_ERROR;
1968
1969 /* Always treat "E." as an error. This will be used for
1970 more verbose error messages, such as E.memtypes. */
1971 if (buf[0] == 'E' && buf[1] == '.')
1972 return PACKET_ERROR;
1973
1974 /* The packet may or may not be OK. Just assume it is. */
1975 return PACKET_OK;
1976 }
1977 else
1978 /* The stub does not support the packet. */
1979 return PACKET_UNKNOWN;
1980 }
1981
1982 static enum packet_result
1983 packet_check_result (const gdb::char_vector &buf)
1984 {
1985 return packet_check_result (buf.data ());
1986 }
1987
1988 static enum packet_result
1989 packet_ok (const char *buf, struct packet_config *config)
1990 {
1991 enum packet_result result;
1992
1993 if (config->detect != AUTO_BOOLEAN_TRUE
1994 && config->support == PACKET_DISABLE)
1995 internal_error (__FILE__, __LINE__,
1996 _("packet_ok: attempt to use a disabled packet"));
1997
1998 result = packet_check_result (buf);
1999 switch (result)
2000 {
2001 case PACKET_OK:
2002 case PACKET_ERROR:
2003 /* The stub recognized the packet request. */
2004 if (config->support == PACKET_SUPPORT_UNKNOWN)
2005 {
2006 remote_debug_printf ("Packet %s (%s) is supported",
2007 config->name, config->title);
2008 config->support = PACKET_ENABLE;
2009 }
2010 break;
2011 case PACKET_UNKNOWN:
2012 /* The stub does not support the packet. */
2013 if (config->detect == AUTO_BOOLEAN_AUTO
2014 && config->support == PACKET_ENABLE)
2015 {
2016 /* If the stub previously indicated that the packet was
2017 supported then there is a protocol error. */
2018 error (_("Protocol error: %s (%s) conflicting enabled responses."),
2019 config->name, config->title);
2020 }
2021 else if (config->detect == AUTO_BOOLEAN_TRUE)
2022 {
2023 /* The user set it wrong. */
2024 error (_("Enabled packet %s (%s) not recognized by stub"),
2025 config->name, config->title);
2026 }
2027
2028 remote_debug_printf ("Packet %s (%s) is NOT supported",
2029 config->name, config->title);
2030 config->support = PACKET_DISABLE;
2031 break;
2032 }
2033
2034 return result;
2035 }
2036
2037 static enum packet_result
2038 packet_ok (const gdb::char_vector &buf, struct packet_config *config)
2039 {
2040 return packet_ok (buf.data (), config);
2041 }
2042
2043 enum {
2044 PACKET_vCont = 0,
2045 PACKET_X,
2046 PACKET_qSymbol,
2047 PACKET_P,
2048 PACKET_p,
2049 PACKET_Z0,
2050 PACKET_Z1,
2051 PACKET_Z2,
2052 PACKET_Z3,
2053 PACKET_Z4,
2054 PACKET_vFile_setfs,
2055 PACKET_vFile_open,
2056 PACKET_vFile_pread,
2057 PACKET_vFile_pwrite,
2058 PACKET_vFile_close,
2059 PACKET_vFile_unlink,
2060 PACKET_vFile_readlink,
2061 PACKET_vFile_fstat,
2062 PACKET_qXfer_auxv,
2063 PACKET_qXfer_features,
2064 PACKET_qXfer_exec_file,
2065 PACKET_qXfer_libraries,
2066 PACKET_qXfer_libraries_svr4,
2067 PACKET_qXfer_memory_map,
2068 PACKET_qXfer_osdata,
2069 PACKET_qXfer_threads,
2070 PACKET_qXfer_statictrace_read,
2071 PACKET_qXfer_traceframe_info,
2072 PACKET_qXfer_uib,
2073 PACKET_qGetTIBAddr,
2074 PACKET_qGetTLSAddr,
2075 PACKET_qSupported,
2076 PACKET_qTStatus,
2077 PACKET_QPassSignals,
2078 PACKET_QCatchSyscalls,
2079 PACKET_QProgramSignals,
2080 PACKET_QSetWorkingDir,
2081 PACKET_QStartupWithShell,
2082 PACKET_QEnvironmentHexEncoded,
2083 PACKET_QEnvironmentReset,
2084 PACKET_QEnvironmentUnset,
2085 PACKET_qCRC,
2086 PACKET_qSearch_memory,
2087 PACKET_vAttach,
2088 PACKET_vRun,
2089 PACKET_QStartNoAckMode,
2090 PACKET_vKill,
2091 PACKET_qXfer_siginfo_read,
2092 PACKET_qXfer_siginfo_write,
2093 PACKET_qAttached,
2094
2095 /* Support for conditional tracepoints. */
2096 PACKET_ConditionalTracepoints,
2097
2098 /* Support for target-side breakpoint conditions. */
2099 PACKET_ConditionalBreakpoints,
2100
2101 /* Support for target-side breakpoint commands. */
2102 PACKET_BreakpointCommands,
2103
2104 /* Support for fast tracepoints. */
2105 PACKET_FastTracepoints,
2106
2107 /* Support for static tracepoints. */
2108 PACKET_StaticTracepoints,
2109
2110 /* Support for installing tracepoints while a trace experiment is
2111 running. */
2112 PACKET_InstallInTrace,
2113
2114 PACKET_bc,
2115 PACKET_bs,
2116 PACKET_TracepointSource,
2117 PACKET_QAllow,
2118 PACKET_qXfer_fdpic,
2119 PACKET_QDisableRandomization,
2120 PACKET_QAgent,
2121 PACKET_QTBuffer_size,
2122 PACKET_Qbtrace_off,
2123 PACKET_Qbtrace_bts,
2124 PACKET_Qbtrace_pt,
2125 PACKET_qXfer_btrace,
2126
2127 /* Support for the QNonStop packet. */
2128 PACKET_QNonStop,
2129
2130 /* Support for the QThreadEvents packet. */
2131 PACKET_QThreadEvents,
2132
2133 /* Support for multi-process extensions. */
2134 PACKET_multiprocess_feature,
2135
2136 /* Support for enabling and disabling tracepoints while a trace
2137 experiment is running. */
2138 PACKET_EnableDisableTracepoints_feature,
2139
2140 /* Support for collecting strings using the tracenz bytecode. */
2141 PACKET_tracenz_feature,
2142
2143 /* Support for continuing to run a trace experiment while GDB is
2144 disconnected. */
2145 PACKET_DisconnectedTracing_feature,
2146
2147 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
2148 PACKET_augmented_libraries_svr4_read_feature,
2149
2150 /* Support for the qXfer:btrace-conf:read packet. */
2151 PACKET_qXfer_btrace_conf,
2152
2153 /* Support for the Qbtrace-conf:bts:size packet. */
2154 PACKET_Qbtrace_conf_bts_size,
2155
2156 /* Support for swbreak+ feature. */
2157 PACKET_swbreak_feature,
2158
2159 /* Support for hwbreak+ feature. */
2160 PACKET_hwbreak_feature,
2161
2162 /* Support for fork events. */
2163 PACKET_fork_event_feature,
2164
2165 /* Support for vfork events. */
2166 PACKET_vfork_event_feature,
2167
2168 /* Support for the Qbtrace-conf:pt:size packet. */
2169 PACKET_Qbtrace_conf_pt_size,
2170
2171 /* Support for exec events. */
2172 PACKET_exec_event_feature,
2173
2174 /* Support for query supported vCont actions. */
2175 PACKET_vContSupported,
2176
2177 /* Support remote CTRL-C. */
2178 PACKET_vCtrlC,
2179
2180 /* Support TARGET_WAITKIND_NO_RESUMED. */
2181 PACKET_no_resumed,
2182
2183 /* Support for memory tagging, allocation tag fetch/store
2184 packets and the tag violation stop replies. */
2185 PACKET_memory_tagging_feature,
2186
2187 PACKET_MAX
2188 };
2189
2190 /* FIXME: needs to be per-remote-target. Ignoring this for now,
2191 assuming all remote targets are the same server (thus all support
2192 the same packets). */
2193 static struct packet_config remote_protocol_packets[PACKET_MAX];
2194
2195 /* Returns the packet's corresponding "set remote foo-packet" command
2196 state. See struct packet_config for more details. */
2197
2198 static enum auto_boolean
2199 packet_set_cmd_state (int packet)
2200 {
2201 return remote_protocol_packets[packet].detect;
2202 }
2203
2204 /* Returns whether a given packet or feature is supported. This takes
2205 into account the state of the corresponding "set remote foo-packet"
2206 command, which may be used to bypass auto-detection. */
2207
2208 static enum packet_support
2209 packet_config_support (struct packet_config *config)
2210 {
2211 switch (config->detect)
2212 {
2213 case AUTO_BOOLEAN_TRUE:
2214 return PACKET_ENABLE;
2215 case AUTO_BOOLEAN_FALSE:
2216 return PACKET_DISABLE;
2217 case AUTO_BOOLEAN_AUTO:
2218 return config->support;
2219 default:
2220 gdb_assert_not_reached (_("bad switch"));
2221 }
2222 }
2223
2224 /* Same as packet_config_support, but takes the packet's enum value as
2225 argument. */
2226
2227 static enum packet_support
2228 packet_support (int packet)
2229 {
2230 struct packet_config *config = &remote_protocol_packets[packet];
2231
2232 return packet_config_support (config);
2233 }
2234
2235 static void
2236 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
2237 struct cmd_list_element *c,
2238 const char *value)
2239 {
2240 struct packet_config *packet;
2241
2242 for (packet = remote_protocol_packets;
2243 packet < &remote_protocol_packets[PACKET_MAX];
2244 packet++)
2245 {
2246 if (&packet->detect == c->var)
2247 {
2248 show_packet_config_cmd (packet);
2249 return;
2250 }
2251 }
2252 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
2253 c->name);
2254 }
2255
2256 /* Should we try one of the 'Z' requests? */
2257
2258 enum Z_packet_type
2259 {
2260 Z_PACKET_SOFTWARE_BP,
2261 Z_PACKET_HARDWARE_BP,
2262 Z_PACKET_WRITE_WP,
2263 Z_PACKET_READ_WP,
2264 Z_PACKET_ACCESS_WP,
2265 NR_Z_PACKET_TYPES
2266 };
2267
2268 /* For compatibility with older distributions. Provide a ``set remote
2269 Z-packet ...'' command that updates all the Z packet types. */
2270
2271 static enum auto_boolean remote_Z_packet_detect;
2272
2273 static void
2274 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
2275 struct cmd_list_element *c)
2276 {
2277 int i;
2278
2279 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2280 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
2281 }
2282
2283 static void
2284 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
2285 struct cmd_list_element *c,
2286 const char *value)
2287 {
2288 int i;
2289
2290 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2291 {
2292 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
2293 }
2294 }
2295
2296 /* Returns true if the multi-process extensions are in effect. */
2297
2298 static int
2299 remote_multi_process_p (struct remote_state *rs)
2300 {
2301 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
2302 }
2303
2304 /* Returns true if fork events are supported. */
2305
2306 static int
2307 remote_fork_event_p (struct remote_state *rs)
2308 {
2309 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
2310 }
2311
2312 /* Returns true if vfork events are supported. */
2313
2314 static int
2315 remote_vfork_event_p (struct remote_state *rs)
2316 {
2317 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
2318 }
2319
2320 /* Returns true if exec events are supported. */
2321
2322 static int
2323 remote_exec_event_p (struct remote_state *rs)
2324 {
2325 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
2326 }
2327
2328 /* Returns true if memory tagging is supported, false otherwise. */
2329
2330 static bool
2331 remote_memory_tagging_p ()
2332 {
2333 return packet_support (PACKET_memory_tagging_feature) == PACKET_ENABLE;
2334 }
2335
2336 /* Insert fork catchpoint target routine. If fork events are enabled
2337 then return success, nothing more to do. */
2338
2339 int
2340 remote_target::insert_fork_catchpoint (int pid)
2341 {
2342 struct remote_state *rs = get_remote_state ();
2343
2344 return !remote_fork_event_p (rs);
2345 }
2346
2347 /* Remove fork catchpoint target routine. Nothing to do, just
2348 return success. */
2349
2350 int
2351 remote_target::remove_fork_catchpoint (int pid)
2352 {
2353 return 0;
2354 }
2355
2356 /* Insert vfork catchpoint target routine. If vfork events are enabled
2357 then return success, nothing more to do. */
2358
2359 int
2360 remote_target::insert_vfork_catchpoint (int pid)
2361 {
2362 struct remote_state *rs = get_remote_state ();
2363
2364 return !remote_vfork_event_p (rs);
2365 }
2366
2367 /* Remove vfork catchpoint target routine. Nothing to do, just
2368 return success. */
2369
2370 int
2371 remote_target::remove_vfork_catchpoint (int pid)
2372 {
2373 return 0;
2374 }
2375
2376 /* Insert exec catchpoint target routine. If exec events are
2377 enabled, just return success. */
2378
2379 int
2380 remote_target::insert_exec_catchpoint (int pid)
2381 {
2382 struct remote_state *rs = get_remote_state ();
2383
2384 return !remote_exec_event_p (rs);
2385 }
2386
2387 /* Remove exec catchpoint target routine. Nothing to do, just
2388 return success. */
2389
2390 int
2391 remote_target::remove_exec_catchpoint (int pid)
2392 {
2393 return 0;
2394 }
2395
2396 \f
2397
2398 /* Take advantage of the fact that the TID field is not used, to tag
2399 special ptids with it set to != 0. */
2400 static const ptid_t magic_null_ptid (42000, -1, 1);
2401 static const ptid_t not_sent_ptid (42000, -2, 1);
2402 static const ptid_t any_thread_ptid (42000, 0, 1);
2403
2404 /* Find out if the stub attached to PID (and hence GDB should offer to
2405 detach instead of killing it when bailing out). */
2406
2407 int
2408 remote_target::remote_query_attached (int pid)
2409 {
2410 struct remote_state *rs = get_remote_state ();
2411 size_t size = get_remote_packet_size ();
2412
2413 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2414 return 0;
2415
2416 if (remote_multi_process_p (rs))
2417 xsnprintf (rs->buf.data (), size, "qAttached:%x", pid);
2418 else
2419 xsnprintf (rs->buf.data (), size, "qAttached");
2420
2421 putpkt (rs->buf);
2422 getpkt (&rs->buf, 0);
2423
2424 switch (packet_ok (rs->buf,
2425 &remote_protocol_packets[PACKET_qAttached]))
2426 {
2427 case PACKET_OK:
2428 if (strcmp (rs->buf.data (), "1") == 0)
2429 return 1;
2430 break;
2431 case PACKET_ERROR:
2432 warning (_("Remote failure reply: %s"), rs->buf.data ());
2433 break;
2434 case PACKET_UNKNOWN:
2435 break;
2436 }
2437
2438 return 0;
2439 }
2440
2441 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2442 has been invented by GDB, instead of reported by the target. Since
2443 we can be connected to a remote system before before knowing about
2444 any inferior, mark the target with execution when we find the first
2445 inferior. If ATTACHED is 1, then we had just attached to this
2446 inferior. If it is 0, then we just created this inferior. If it
2447 is -1, then try querying the remote stub to find out if it had
2448 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2449 attempt to open this inferior's executable as the main executable
2450 if no main executable is open already. */
2451
2452 inferior *
2453 remote_target::remote_add_inferior (bool fake_pid_p, int pid, int attached,
2454 int try_open_exec)
2455 {
2456 struct inferior *inf;
2457
2458 /* Check whether this process we're learning about is to be
2459 considered attached, or if is to be considered to have been
2460 spawned by the stub. */
2461 if (attached == -1)
2462 attached = remote_query_attached (pid);
2463
2464 if (gdbarch_has_global_solist (target_gdbarch ()))
2465 {
2466 /* If the target shares code across all inferiors, then every
2467 attach adds a new inferior. */
2468 inf = add_inferior (pid);
2469
2470 /* ... and every inferior is bound to the same program space.
2471 However, each inferior may still have its own address
2472 space. */
2473 inf->aspace = maybe_new_address_space ();
2474 inf->pspace = current_program_space;
2475 }
2476 else
2477 {
2478 /* In the traditional debugging scenario, there's a 1-1 match
2479 between program/address spaces. We simply bind the inferior
2480 to the program space's address space. */
2481 inf = current_inferior ();
2482
2483 /* However, if the current inferior is already bound to a
2484 process, find some other empty inferior. */
2485 if (inf->pid != 0)
2486 {
2487 inf = nullptr;
2488 for (inferior *it : all_inferiors ())
2489 if (it->pid == 0)
2490 {
2491 inf = it;
2492 break;
2493 }
2494 }
2495 if (inf == nullptr)
2496 {
2497 /* Since all inferiors were already bound to a process, add
2498 a new inferior. */
2499 inf = add_inferior_with_spaces ();
2500 }
2501 switch_to_inferior_no_thread (inf);
2502 inf->push_target (this);
2503 inferior_appeared (inf, pid);
2504 }
2505
2506 inf->attach_flag = attached;
2507 inf->fake_pid_p = fake_pid_p;
2508
2509 /* If no main executable is currently open then attempt to
2510 open the file that was executed to create this inferior. */
2511 if (try_open_exec && get_exec_file (0) == NULL)
2512 exec_file_locate_attach (pid, 0, 1);
2513
2514 /* Check for exec file mismatch, and let the user solve it. */
2515 validate_exec_file (1);
2516
2517 return inf;
2518 }
2519
2520 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2521 static remote_thread_info *get_remote_thread_info (remote_target *target,
2522 ptid_t ptid);
2523
2524 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2525 according to RUNNING. */
2526
2527 thread_info *
2528 remote_target::remote_add_thread (ptid_t ptid, bool running, bool executing)
2529 {
2530 struct remote_state *rs = get_remote_state ();
2531 struct thread_info *thread;
2532
2533 /* GDB historically didn't pull threads in the initial connection
2534 setup. If the remote target doesn't even have a concept of
2535 threads (e.g., a bare-metal target), even if internally we
2536 consider that a single-threaded target, mentioning a new thread
2537 might be confusing to the user. Be silent then, preserving the
2538 age old behavior. */
2539 if (rs->starting_up)
2540 thread = add_thread_silent (this, ptid);
2541 else
2542 thread = add_thread (this, ptid);
2543
2544 /* We start by assuming threads are resumed. That state then gets updated
2545 when we process a matching stop reply. */
2546 get_remote_thread_info (thread)->set_resumed ();
2547
2548 set_executing (this, ptid, executing);
2549 set_running (this, ptid, running);
2550
2551 return thread;
2552 }
2553
2554 /* Come here when we learn about a thread id from the remote target.
2555 It may be the first time we hear about such thread, so take the
2556 opportunity to add it to GDB's thread list. In case this is the
2557 first time we're noticing its corresponding inferior, add it to
2558 GDB's inferior list as well. EXECUTING indicates whether the
2559 thread is (internally) executing or stopped. */
2560
2561 void
2562 remote_target::remote_notice_new_inferior (ptid_t currthread, bool executing)
2563 {
2564 /* In non-stop mode, we assume new found threads are (externally)
2565 running until proven otherwise with a stop reply. In all-stop,
2566 we can only get here if all threads are stopped. */
2567 bool running = target_is_non_stop_p ();
2568
2569 /* If this is a new thread, add it to GDB's thread list.
2570 If we leave it up to WFI to do this, bad things will happen. */
2571
2572 thread_info *tp = find_thread_ptid (this, currthread);
2573 if (tp != NULL && tp->state == THREAD_EXITED)
2574 {
2575 /* We're seeing an event on a thread id we knew had exited.
2576 This has to be a new thread reusing the old id. Add it. */
2577 remote_add_thread (currthread, running, executing);
2578 return;
2579 }
2580
2581 if (!in_thread_list (this, currthread))
2582 {
2583 struct inferior *inf = NULL;
2584 int pid = currthread.pid ();
2585
2586 if (inferior_ptid.is_pid ()
2587 && pid == inferior_ptid.pid ())
2588 {
2589 /* inferior_ptid has no thread member yet. This can happen
2590 with the vAttach -> remote_wait,"TAAthread:" path if the
2591 stub doesn't support qC. This is the first stop reported
2592 after an attach, so this is the main thread. Update the
2593 ptid in the thread list. */
2594 if (in_thread_list (this, ptid_t (pid)))
2595 thread_change_ptid (this, inferior_ptid, currthread);
2596 else
2597 {
2598 thread_info *thr
2599 = remote_add_thread (currthread, running, executing);
2600 switch_to_thread (thr);
2601 }
2602 return;
2603 }
2604
2605 if (magic_null_ptid == inferior_ptid)
2606 {
2607 /* inferior_ptid is not set yet. This can happen with the
2608 vRun -> remote_wait,"TAAthread:" path if the stub
2609 doesn't support qC. This is the first stop reported
2610 after an attach, so this is the main thread. Update the
2611 ptid in the thread list. */
2612 thread_change_ptid (this, inferior_ptid, currthread);
2613 return;
2614 }
2615
2616 /* When connecting to a target remote, or to a target
2617 extended-remote which already was debugging an inferior, we
2618 may not know about it yet. Add it before adding its child
2619 thread, so notifications are emitted in a sensible order. */
2620 if (find_inferior_pid (this, currthread.pid ()) == NULL)
2621 {
2622 struct remote_state *rs = get_remote_state ();
2623 bool fake_pid_p = !remote_multi_process_p (rs);
2624
2625 inf = remote_add_inferior (fake_pid_p,
2626 currthread.pid (), -1, 1);
2627 }
2628
2629 /* This is really a new thread. Add it. */
2630 thread_info *new_thr
2631 = remote_add_thread (currthread, running, executing);
2632
2633 /* If we found a new inferior, let the common code do whatever
2634 it needs to with it (e.g., read shared libraries, insert
2635 breakpoints), unless we're just setting up an all-stop
2636 connection. */
2637 if (inf != NULL)
2638 {
2639 struct remote_state *rs = get_remote_state ();
2640
2641 if (!rs->starting_up)
2642 notice_new_inferior (new_thr, executing, 0);
2643 }
2644 }
2645 }
2646
2647 /* Return THREAD's private thread data, creating it if necessary. */
2648
2649 static remote_thread_info *
2650 get_remote_thread_info (thread_info *thread)
2651 {
2652 gdb_assert (thread != NULL);
2653
2654 if (thread->priv == NULL)
2655 thread->priv.reset (new remote_thread_info);
2656
2657 return static_cast<remote_thread_info *> (thread->priv.get ());
2658 }
2659
2660 /* Return PTID's private thread data, creating it if necessary. */
2661
2662 static remote_thread_info *
2663 get_remote_thread_info (remote_target *target, ptid_t ptid)
2664 {
2665 thread_info *thr = find_thread_ptid (target, ptid);
2666 return get_remote_thread_info (thr);
2667 }
2668
2669 /* Call this function as a result of
2670 1) A halt indication (T packet) containing a thread id
2671 2) A direct query of currthread
2672 3) Successful execution of set thread */
2673
2674 static void
2675 record_currthread (struct remote_state *rs, ptid_t currthread)
2676 {
2677 rs->general_thread = currthread;
2678 }
2679
2680 /* If 'QPassSignals' is supported, tell the remote stub what signals
2681 it can simply pass through to the inferior without reporting. */
2682
2683 void
2684 remote_target::pass_signals (gdb::array_view<const unsigned char> pass_signals)
2685 {
2686 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2687 {
2688 char *pass_packet, *p;
2689 int count = 0;
2690 struct remote_state *rs = get_remote_state ();
2691
2692 gdb_assert (pass_signals.size () < 256);
2693 for (size_t i = 0; i < pass_signals.size (); i++)
2694 {
2695 if (pass_signals[i])
2696 count++;
2697 }
2698 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2699 strcpy (pass_packet, "QPassSignals:");
2700 p = pass_packet + strlen (pass_packet);
2701 for (size_t i = 0; i < pass_signals.size (); i++)
2702 {
2703 if (pass_signals[i])
2704 {
2705 if (i >= 16)
2706 *p++ = tohex (i >> 4);
2707 *p++ = tohex (i & 15);
2708 if (count)
2709 *p++ = ';';
2710 else
2711 break;
2712 count--;
2713 }
2714 }
2715 *p = 0;
2716 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2717 {
2718 putpkt (pass_packet);
2719 getpkt (&rs->buf, 0);
2720 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2721 xfree (rs->last_pass_packet);
2722 rs->last_pass_packet = pass_packet;
2723 }
2724 else
2725 xfree (pass_packet);
2726 }
2727 }
2728
2729 /* If 'QCatchSyscalls' is supported, tell the remote stub
2730 to report syscalls to GDB. */
2731
2732 int
2733 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2734 gdb::array_view<const int> syscall_counts)
2735 {
2736 const char *catch_packet;
2737 enum packet_result result;
2738 int n_sysno = 0;
2739
2740 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2741 {
2742 /* Not supported. */
2743 return 1;
2744 }
2745
2746 if (needed && any_count == 0)
2747 {
2748 /* Count how many syscalls are to be caught. */
2749 for (size_t i = 0; i < syscall_counts.size (); i++)
2750 {
2751 if (syscall_counts[i] != 0)
2752 n_sysno++;
2753 }
2754 }
2755
2756 remote_debug_printf ("pid %d needed %d any_count %d n_sysno %d",
2757 pid, needed, any_count, n_sysno);
2758
2759 std::string built_packet;
2760 if (needed)
2761 {
2762 /* Prepare a packet with the sysno list, assuming max 8+1
2763 characters for a sysno. If the resulting packet size is too
2764 big, fallback on the non-selective packet. */
2765 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2766 built_packet.reserve (maxpktsz);
2767 built_packet = "QCatchSyscalls:1";
2768 if (any_count == 0)
2769 {
2770 /* Add in each syscall to be caught. */
2771 for (size_t i = 0; i < syscall_counts.size (); i++)
2772 {
2773 if (syscall_counts[i] != 0)
2774 string_appendf (built_packet, ";%zx", i);
2775 }
2776 }
2777 if (built_packet.size () > get_remote_packet_size ())
2778 {
2779 /* catch_packet too big. Fallback to less efficient
2780 non selective mode, with GDB doing the filtering. */
2781 catch_packet = "QCatchSyscalls:1";
2782 }
2783 else
2784 catch_packet = built_packet.c_str ();
2785 }
2786 else
2787 catch_packet = "QCatchSyscalls:0";
2788
2789 struct remote_state *rs = get_remote_state ();
2790
2791 putpkt (catch_packet);
2792 getpkt (&rs->buf, 0);
2793 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2794 if (result == PACKET_OK)
2795 return 0;
2796 else
2797 return -1;
2798 }
2799
2800 /* If 'QProgramSignals' is supported, tell the remote stub what
2801 signals it should pass through to the inferior when detaching. */
2802
2803 void
2804 remote_target::program_signals (gdb::array_view<const unsigned char> signals)
2805 {
2806 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2807 {
2808 char *packet, *p;
2809 int count = 0;
2810 struct remote_state *rs = get_remote_state ();
2811
2812 gdb_assert (signals.size () < 256);
2813 for (size_t i = 0; i < signals.size (); i++)
2814 {
2815 if (signals[i])
2816 count++;
2817 }
2818 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2819 strcpy (packet, "QProgramSignals:");
2820 p = packet + strlen (packet);
2821 for (size_t i = 0; i < signals.size (); i++)
2822 {
2823 if (signal_pass_state (i))
2824 {
2825 if (i >= 16)
2826 *p++ = tohex (i >> 4);
2827 *p++ = tohex (i & 15);
2828 if (count)
2829 *p++ = ';';
2830 else
2831 break;
2832 count--;
2833 }
2834 }
2835 *p = 0;
2836 if (!rs->last_program_signals_packet
2837 || strcmp (rs->last_program_signals_packet, packet) != 0)
2838 {
2839 putpkt (packet);
2840 getpkt (&rs->buf, 0);
2841 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2842 xfree (rs->last_program_signals_packet);
2843 rs->last_program_signals_packet = packet;
2844 }
2845 else
2846 xfree (packet);
2847 }
2848 }
2849
2850 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2851 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2852 thread. If GEN is set, set the general thread, if not, then set
2853 the step/continue thread. */
2854 void
2855 remote_target::set_thread (ptid_t ptid, int gen)
2856 {
2857 struct remote_state *rs = get_remote_state ();
2858 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2859 char *buf = rs->buf.data ();
2860 char *endbuf = buf + get_remote_packet_size ();
2861
2862 if (state == ptid)
2863 return;
2864
2865 *buf++ = 'H';
2866 *buf++ = gen ? 'g' : 'c';
2867 if (ptid == magic_null_ptid)
2868 xsnprintf (buf, endbuf - buf, "0");
2869 else if (ptid == any_thread_ptid)
2870 xsnprintf (buf, endbuf - buf, "0");
2871 else if (ptid == minus_one_ptid)
2872 xsnprintf (buf, endbuf - buf, "-1");
2873 else
2874 write_ptid (buf, endbuf, ptid);
2875 putpkt (rs->buf);
2876 getpkt (&rs->buf, 0);
2877 if (gen)
2878 rs->general_thread = ptid;
2879 else
2880 rs->continue_thread = ptid;
2881 }
2882
2883 void
2884 remote_target::set_general_thread (ptid_t ptid)
2885 {
2886 set_thread (ptid, 1);
2887 }
2888
2889 void
2890 remote_target::set_continue_thread (ptid_t ptid)
2891 {
2892 set_thread (ptid, 0);
2893 }
2894
2895 /* Change the remote current process. Which thread within the process
2896 ends up selected isn't important, as long as it is the same process
2897 as what INFERIOR_PTID points to.
2898
2899 This comes from that fact that there is no explicit notion of
2900 "selected process" in the protocol. The selected process for
2901 general operations is the process the selected general thread
2902 belongs to. */
2903
2904 void
2905 remote_target::set_general_process ()
2906 {
2907 struct remote_state *rs = get_remote_state ();
2908
2909 /* If the remote can't handle multiple processes, don't bother. */
2910 if (!remote_multi_process_p (rs))
2911 return;
2912
2913 /* We only need to change the remote current thread if it's pointing
2914 at some other process. */
2915 if (rs->general_thread.pid () != inferior_ptid.pid ())
2916 set_general_thread (inferior_ptid);
2917 }
2918
2919 \f
2920 /* Return nonzero if this is the main thread that we made up ourselves
2921 to model non-threaded targets as single-threaded. */
2922
2923 static int
2924 remote_thread_always_alive (ptid_t ptid)
2925 {
2926 if (ptid == magic_null_ptid)
2927 /* The main thread is always alive. */
2928 return 1;
2929
2930 if (ptid.pid () != 0 && ptid.lwp () == 0)
2931 /* The main thread is always alive. This can happen after a
2932 vAttach, if the remote side doesn't support
2933 multi-threading. */
2934 return 1;
2935
2936 return 0;
2937 }
2938
2939 /* Return nonzero if the thread PTID is still alive on the remote
2940 system. */
2941
2942 bool
2943 remote_target::thread_alive (ptid_t ptid)
2944 {
2945 struct remote_state *rs = get_remote_state ();
2946 char *p, *endp;
2947
2948 /* Check if this is a thread that we made up ourselves to model
2949 non-threaded targets as single-threaded. */
2950 if (remote_thread_always_alive (ptid))
2951 return 1;
2952
2953 p = rs->buf.data ();
2954 endp = p + get_remote_packet_size ();
2955
2956 *p++ = 'T';
2957 write_ptid (p, endp, ptid);
2958
2959 putpkt (rs->buf);
2960 getpkt (&rs->buf, 0);
2961 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2962 }
2963
2964 /* Return a pointer to a thread name if we know it and NULL otherwise.
2965 The thread_info object owns the memory for the name. */
2966
2967 const char *
2968 remote_target::thread_name (struct thread_info *info)
2969 {
2970 if (info->priv != NULL)
2971 {
2972 const std::string &name = get_remote_thread_info (info)->name;
2973 return !name.empty () ? name.c_str () : NULL;
2974 }
2975
2976 return NULL;
2977 }
2978
2979 /* About these extended threadlist and threadinfo packets. They are
2980 variable length packets but, the fields within them are often fixed
2981 length. They are redundant enough to send over UDP as is the
2982 remote protocol in general. There is a matching unit test module
2983 in libstub. */
2984
2985 /* WARNING: This threadref data structure comes from the remote O.S.,
2986 libstub protocol encoding, and remote.c. It is not particularly
2987 changable. */
2988
2989 /* Right now, the internal structure is int. We want it to be bigger.
2990 Plan to fix this. */
2991
2992 typedef int gdb_threadref; /* Internal GDB thread reference. */
2993
2994 /* gdb_ext_thread_info is an internal GDB data structure which is
2995 equivalent to the reply of the remote threadinfo packet. */
2996
2997 struct gdb_ext_thread_info
2998 {
2999 threadref threadid; /* External form of thread reference. */
3000 int active; /* Has state interesting to GDB?
3001 regs, stack. */
3002 char display[256]; /* Brief state display, name,
3003 blocked/suspended. */
3004 char shortname[32]; /* To be used to name threads. */
3005 char more_display[256]; /* Long info, statistics, queue depth,
3006 whatever. */
3007 };
3008
3009 /* The volume of remote transfers can be limited by submitting
3010 a mask containing bits specifying the desired information.
3011 Use a union of these values as the 'selection' parameter to
3012 get_thread_info. FIXME: Make these TAG names more thread specific. */
3013
3014 #define TAG_THREADID 1
3015 #define TAG_EXISTS 2
3016 #define TAG_DISPLAY 4
3017 #define TAG_THREADNAME 8
3018 #define TAG_MOREDISPLAY 16
3019
3020 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
3021
3022 static const char *unpack_nibble (const char *buf, int *val);
3023
3024 static const char *unpack_byte (const char *buf, int *value);
3025
3026 static char *pack_int (char *buf, int value);
3027
3028 static const char *unpack_int (const char *buf, int *value);
3029
3030 static const char *unpack_string (const char *src, char *dest, int length);
3031
3032 static char *pack_threadid (char *pkt, threadref *id);
3033
3034 static const char *unpack_threadid (const char *inbuf, threadref *id);
3035
3036 void int_to_threadref (threadref *id, int value);
3037
3038 static int threadref_to_int (threadref *ref);
3039
3040 static void copy_threadref (threadref *dest, threadref *src);
3041
3042 static int threadmatch (threadref *dest, threadref *src);
3043
3044 static char *pack_threadinfo_request (char *pkt, int mode,
3045 threadref *id);
3046
3047 static char *pack_threadlist_request (char *pkt, int startflag,
3048 int threadcount,
3049 threadref *nextthread);
3050
3051 static int remote_newthread_step (threadref *ref, void *context);
3052
3053
3054 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
3055 buffer we're allowed to write to. Returns
3056 BUF+CHARACTERS_WRITTEN. */
3057
3058 char *
3059 remote_target::write_ptid (char *buf, const char *endbuf, ptid_t ptid)
3060 {
3061 int pid, tid;
3062 struct remote_state *rs = get_remote_state ();
3063
3064 if (remote_multi_process_p (rs))
3065 {
3066 pid = ptid.pid ();
3067 if (pid < 0)
3068 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
3069 else
3070 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
3071 }
3072 tid = ptid.lwp ();
3073 if (tid < 0)
3074 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
3075 else
3076 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
3077
3078 return buf;
3079 }
3080
3081 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
3082 last parsed char. Returns null_ptid if no thread id is found, and
3083 throws an error if the thread id has an invalid format. */
3084
3085 static ptid_t
3086 read_ptid (const char *buf, const char **obuf)
3087 {
3088 const char *p = buf;
3089 const char *pp;
3090 ULONGEST pid = 0, tid = 0;
3091
3092 if (*p == 'p')
3093 {
3094 /* Multi-process ptid. */
3095 pp = unpack_varlen_hex (p + 1, &pid);
3096 if (*pp != '.')
3097 error (_("invalid remote ptid: %s"), p);
3098
3099 p = pp;
3100 pp = unpack_varlen_hex (p + 1, &tid);
3101 if (obuf)
3102 *obuf = pp;
3103 return ptid_t (pid, tid, 0);
3104 }
3105
3106 /* No multi-process. Just a tid. */
3107 pp = unpack_varlen_hex (p, &tid);
3108
3109 /* Return null_ptid when no thread id is found. */
3110 if (p == pp)
3111 {
3112 if (obuf)
3113 *obuf = pp;
3114 return null_ptid;
3115 }
3116
3117 /* Since the stub is not sending a process id, then default to
3118 what's in inferior_ptid, unless it's null at this point. If so,
3119 then since there's no way to know the pid of the reported
3120 threads, use the magic number. */
3121 if (inferior_ptid == null_ptid)
3122 pid = magic_null_ptid.pid ();
3123 else
3124 pid = inferior_ptid.pid ();
3125
3126 if (obuf)
3127 *obuf = pp;
3128 return ptid_t (pid, tid, 0);
3129 }
3130
3131 static int
3132 stubhex (int ch)
3133 {
3134 if (ch >= 'a' && ch <= 'f')
3135 return ch - 'a' + 10;
3136 if (ch >= '0' && ch <= '9')
3137 return ch - '0';
3138 if (ch >= 'A' && ch <= 'F')
3139 return ch - 'A' + 10;
3140 return -1;
3141 }
3142
3143 static int
3144 stub_unpack_int (const char *buff, int fieldlength)
3145 {
3146 int nibble;
3147 int retval = 0;
3148
3149 while (fieldlength)
3150 {
3151 nibble = stubhex (*buff++);
3152 retval |= nibble;
3153 fieldlength--;
3154 if (fieldlength)
3155 retval = retval << 4;
3156 }
3157 return retval;
3158 }
3159
3160 static const char *
3161 unpack_nibble (const char *buf, int *val)
3162 {
3163 *val = fromhex (*buf++);
3164 return buf;
3165 }
3166
3167 static const char *
3168 unpack_byte (const char *buf, int *value)
3169 {
3170 *value = stub_unpack_int (buf, 2);
3171 return buf + 2;
3172 }
3173
3174 static char *
3175 pack_int (char *buf, int value)
3176 {
3177 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
3178 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
3179 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
3180 buf = pack_hex_byte (buf, (value & 0xff));
3181 return buf;
3182 }
3183
3184 static const char *
3185 unpack_int (const char *buf, int *value)
3186 {
3187 *value = stub_unpack_int (buf, 8);
3188 return buf + 8;
3189 }
3190
3191 #if 0 /* Currently unused, uncomment when needed. */
3192 static char *pack_string (char *pkt, char *string);
3193
3194 static char *
3195 pack_string (char *pkt, char *string)
3196 {
3197 char ch;
3198 int len;
3199
3200 len = strlen (string);
3201 if (len > 200)
3202 len = 200; /* Bigger than most GDB packets, junk??? */
3203 pkt = pack_hex_byte (pkt, len);
3204 while (len-- > 0)
3205 {
3206 ch = *string++;
3207 if ((ch == '\0') || (ch == '#'))
3208 ch = '*'; /* Protect encapsulation. */
3209 *pkt++ = ch;
3210 }
3211 return pkt;
3212 }
3213 #endif /* 0 (unused) */
3214
3215 static const char *
3216 unpack_string (const char *src, char *dest, int length)
3217 {
3218 while (length--)
3219 *dest++ = *src++;
3220 *dest = '\0';
3221 return src;
3222 }
3223
3224 static char *
3225 pack_threadid (char *pkt, threadref *id)
3226 {
3227 char *limit;
3228 unsigned char *altid;
3229
3230 altid = (unsigned char *) id;
3231 limit = pkt + BUF_THREAD_ID_SIZE;
3232 while (pkt < limit)
3233 pkt = pack_hex_byte (pkt, *altid++);
3234 return pkt;
3235 }
3236
3237
3238 static const char *
3239 unpack_threadid (const char *inbuf, threadref *id)
3240 {
3241 char *altref;
3242 const char *limit = inbuf + BUF_THREAD_ID_SIZE;
3243 int x, y;
3244
3245 altref = (char *) id;
3246
3247 while (inbuf < limit)
3248 {
3249 x = stubhex (*inbuf++);
3250 y = stubhex (*inbuf++);
3251 *altref++ = (x << 4) | y;
3252 }
3253 return inbuf;
3254 }
3255
3256 /* Externally, threadrefs are 64 bits but internally, they are still
3257 ints. This is due to a mismatch of specifications. We would like
3258 to use 64bit thread references internally. This is an adapter
3259 function. */
3260
3261 void
3262 int_to_threadref (threadref *id, int value)
3263 {
3264 unsigned char *scan;
3265
3266 scan = (unsigned char *) id;
3267 {
3268 int i = 4;
3269 while (i--)
3270 *scan++ = 0;
3271 }
3272 *scan++ = (value >> 24) & 0xff;
3273 *scan++ = (value >> 16) & 0xff;
3274 *scan++ = (value >> 8) & 0xff;
3275 *scan++ = (value & 0xff);
3276 }
3277
3278 static int
3279 threadref_to_int (threadref *ref)
3280 {
3281 int i, value = 0;
3282 unsigned char *scan;
3283
3284 scan = *ref;
3285 scan += 4;
3286 i = 4;
3287 while (i-- > 0)
3288 value = (value << 8) | ((*scan++) & 0xff);
3289 return value;
3290 }
3291
3292 static void
3293 copy_threadref (threadref *dest, threadref *src)
3294 {
3295 int i;
3296 unsigned char *csrc, *cdest;
3297
3298 csrc = (unsigned char *) src;
3299 cdest = (unsigned char *) dest;
3300 i = 8;
3301 while (i--)
3302 *cdest++ = *csrc++;
3303 }
3304
3305 static int
3306 threadmatch (threadref *dest, threadref *src)
3307 {
3308 /* Things are broken right now, so just assume we got a match. */
3309 #if 0
3310 unsigned char *srcp, *destp;
3311 int i, result;
3312 srcp = (char *) src;
3313 destp = (char *) dest;
3314
3315 result = 1;
3316 while (i-- > 0)
3317 result &= (*srcp++ == *destp++) ? 1 : 0;
3318 return result;
3319 #endif
3320 return 1;
3321 }
3322
3323 /*
3324 threadid:1, # always request threadid
3325 context_exists:2,
3326 display:4,
3327 unique_name:8,
3328 more_display:16
3329 */
3330
3331 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
3332
3333 static char *
3334 pack_threadinfo_request (char *pkt, int mode, threadref *id)
3335 {
3336 *pkt++ = 'q'; /* Info Query */
3337 *pkt++ = 'P'; /* process or thread info */
3338 pkt = pack_int (pkt, mode); /* mode */
3339 pkt = pack_threadid (pkt, id); /* threadid */
3340 *pkt = '\0'; /* terminate */
3341 return pkt;
3342 }
3343
3344 /* These values tag the fields in a thread info response packet. */
3345 /* Tagging the fields allows us to request specific fields and to
3346 add more fields as time goes by. */
3347
3348 #define TAG_THREADID 1 /* Echo the thread identifier. */
3349 #define TAG_EXISTS 2 /* Is this process defined enough to
3350 fetch registers and its stack? */
3351 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
3352 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
3353 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
3354 the process. */
3355
3356 int
3357 remote_target::remote_unpack_thread_info_response (const char *pkt,
3358 threadref *expectedref,
3359 gdb_ext_thread_info *info)
3360 {
3361 struct remote_state *rs = get_remote_state ();
3362 int mask, length;
3363 int tag;
3364 threadref ref;
3365 const char *limit = pkt + rs->buf.size (); /* Plausible parsing limit. */
3366 int retval = 1;
3367
3368 /* info->threadid = 0; FIXME: implement zero_threadref. */
3369 info->active = 0;
3370 info->display[0] = '\0';
3371 info->shortname[0] = '\0';
3372 info->more_display[0] = '\0';
3373
3374 /* Assume the characters indicating the packet type have been
3375 stripped. */
3376 pkt = unpack_int (pkt, &mask); /* arg mask */
3377 pkt = unpack_threadid (pkt, &ref);
3378
3379 if (mask == 0)
3380 warning (_("Incomplete response to threadinfo request."));
3381 if (!threadmatch (&ref, expectedref))
3382 { /* This is an answer to a different request. */
3383 warning (_("ERROR RMT Thread info mismatch."));
3384 return 0;
3385 }
3386 copy_threadref (&info->threadid, &ref);
3387
3388 /* Loop on tagged fields , try to bail if something goes wrong. */
3389
3390 /* Packets are terminated with nulls. */
3391 while ((pkt < limit) && mask && *pkt)
3392 {
3393 pkt = unpack_int (pkt, &tag); /* tag */
3394 pkt = unpack_byte (pkt, &length); /* length */
3395 if (!(tag & mask)) /* Tags out of synch with mask. */
3396 {
3397 warning (_("ERROR RMT: threadinfo tag mismatch."));
3398 retval = 0;
3399 break;
3400 }
3401 if (tag == TAG_THREADID)
3402 {
3403 if (length != 16)
3404 {
3405 warning (_("ERROR RMT: length of threadid is not 16."));
3406 retval = 0;
3407 break;
3408 }
3409 pkt = unpack_threadid (pkt, &ref);
3410 mask = mask & ~TAG_THREADID;
3411 continue;
3412 }
3413 if (tag == TAG_EXISTS)
3414 {
3415 info->active = stub_unpack_int (pkt, length);
3416 pkt += length;
3417 mask = mask & ~(TAG_EXISTS);
3418 if (length > 8)
3419 {
3420 warning (_("ERROR RMT: 'exists' length too long."));
3421 retval = 0;
3422 break;
3423 }
3424 continue;
3425 }
3426 if (tag == TAG_THREADNAME)
3427 {
3428 pkt = unpack_string (pkt, &info->shortname[0], length);
3429 mask = mask & ~TAG_THREADNAME;
3430 continue;
3431 }
3432 if (tag == TAG_DISPLAY)
3433 {
3434 pkt = unpack_string (pkt, &info->display[0], length);
3435 mask = mask & ~TAG_DISPLAY;
3436 continue;
3437 }
3438 if (tag == TAG_MOREDISPLAY)
3439 {
3440 pkt = unpack_string (pkt, &info->more_display[0], length);
3441 mask = mask & ~TAG_MOREDISPLAY;
3442 continue;
3443 }
3444 warning (_("ERROR RMT: unknown thread info tag."));
3445 break; /* Not a tag we know about. */
3446 }
3447 return retval;
3448 }
3449
3450 int
3451 remote_target::remote_get_threadinfo (threadref *threadid,
3452 int fieldset,
3453 gdb_ext_thread_info *info)
3454 {
3455 struct remote_state *rs = get_remote_state ();
3456 int result;
3457
3458 pack_threadinfo_request (rs->buf.data (), fieldset, threadid);
3459 putpkt (rs->buf);
3460 getpkt (&rs->buf, 0);
3461
3462 if (rs->buf[0] == '\0')
3463 return 0;
3464
3465 result = remote_unpack_thread_info_response (&rs->buf[2],
3466 threadid, info);
3467 return result;
3468 }
3469
3470 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3471
3472 static char *
3473 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3474 threadref *nextthread)
3475 {
3476 *pkt++ = 'q'; /* info query packet */
3477 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3478 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3479 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3480 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3481 *pkt = '\0';
3482 return pkt;
3483 }
3484
3485 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3486
3487 int
3488 remote_target::parse_threadlist_response (const char *pkt, int result_limit,
3489 threadref *original_echo,
3490 threadref *resultlist,
3491 int *doneflag)
3492 {
3493 struct remote_state *rs = get_remote_state ();
3494 int count, resultcount, done;
3495
3496 resultcount = 0;
3497 /* Assume the 'q' and 'M chars have been stripped. */
3498 const char *limit = pkt + (rs->buf.size () - BUF_THREAD_ID_SIZE);
3499 /* done parse past here */
3500 pkt = unpack_byte (pkt, &count); /* count field */
3501 pkt = unpack_nibble (pkt, &done);
3502 /* The first threadid is the argument threadid. */
3503 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3504 while ((count-- > 0) && (pkt < limit))
3505 {
3506 pkt = unpack_threadid (pkt, resultlist++);
3507 if (resultcount++ >= result_limit)
3508 break;
3509 }
3510 if (doneflag)
3511 *doneflag = done;
3512 return resultcount;
3513 }
3514
3515 /* Fetch the next batch of threads from the remote. Returns -1 if the
3516 qL packet is not supported, 0 on error and 1 on success. */
3517
3518 int
3519 remote_target::remote_get_threadlist (int startflag, threadref *nextthread,
3520 int result_limit, int *done, int *result_count,
3521 threadref *threadlist)
3522 {
3523 struct remote_state *rs = get_remote_state ();
3524 int result = 1;
3525
3526 /* Truncate result limit to be smaller than the packet size. */
3527 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3528 >= get_remote_packet_size ())
3529 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3530
3531 pack_threadlist_request (rs->buf.data (), startflag, result_limit,
3532 nextthread);
3533 putpkt (rs->buf);
3534 getpkt (&rs->buf, 0);
3535 if (rs->buf[0] == '\0')
3536 {
3537 /* Packet not supported. */
3538 return -1;
3539 }
3540
3541 *result_count =
3542 parse_threadlist_response (&rs->buf[2], result_limit,
3543 &rs->echo_nextthread, threadlist, done);
3544
3545 if (!threadmatch (&rs->echo_nextthread, nextthread))
3546 {
3547 /* FIXME: This is a good reason to drop the packet. */
3548 /* Possibly, there is a duplicate response. */
3549 /* Possibilities :
3550 retransmit immediatly - race conditions
3551 retransmit after timeout - yes
3552 exit
3553 wait for packet, then exit
3554 */
3555 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3556 return 0; /* I choose simply exiting. */
3557 }
3558 if (*result_count <= 0)
3559 {
3560 if (*done != 1)
3561 {
3562 warning (_("RMT ERROR : failed to get remote thread list."));
3563 result = 0;
3564 }
3565 return result; /* break; */
3566 }
3567 if (*result_count > result_limit)
3568 {
3569 *result_count = 0;
3570 warning (_("RMT ERROR: threadlist response longer than requested."));
3571 return 0;
3572 }
3573 return result;
3574 }
3575
3576 /* Fetch the list of remote threads, with the qL packet, and call
3577 STEPFUNCTION for each thread found. Stops iterating and returns 1
3578 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3579 STEPFUNCTION returns false. If the packet is not supported,
3580 returns -1. */
3581
3582 int
3583 remote_target::remote_threadlist_iterator (rmt_thread_action stepfunction,
3584 void *context, int looplimit)
3585 {
3586 struct remote_state *rs = get_remote_state ();
3587 int done, i, result_count;
3588 int startflag = 1;
3589 int result = 1;
3590 int loopcount = 0;
3591
3592 done = 0;
3593 while (!done)
3594 {
3595 if (loopcount++ > looplimit)
3596 {
3597 result = 0;
3598 warning (_("Remote fetch threadlist -infinite loop-."));
3599 break;
3600 }
3601 result = remote_get_threadlist (startflag, &rs->nextthread,
3602 MAXTHREADLISTRESULTS,
3603 &done, &result_count,
3604 rs->resultthreadlist);
3605 if (result <= 0)
3606 break;
3607 /* Clear for later iterations. */
3608 startflag = 0;
3609 /* Setup to resume next batch of thread references, set nextthread. */
3610 if (result_count >= 1)
3611 copy_threadref (&rs->nextthread,
3612 &rs->resultthreadlist[result_count - 1]);
3613 i = 0;
3614 while (result_count--)
3615 {
3616 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3617 {
3618 result = 0;
3619 break;
3620 }
3621 }
3622 }
3623 return result;
3624 }
3625
3626 /* A thread found on the remote target. */
3627
3628 struct thread_item
3629 {
3630 explicit thread_item (ptid_t ptid_)
3631 : ptid (ptid_)
3632 {}
3633
3634 thread_item (thread_item &&other) = default;
3635 thread_item &operator= (thread_item &&other) = default;
3636
3637 DISABLE_COPY_AND_ASSIGN (thread_item);
3638
3639 /* The thread's PTID. */
3640 ptid_t ptid;
3641
3642 /* The thread's extra info. */
3643 std::string extra;
3644
3645 /* The thread's name. */
3646 std::string name;
3647
3648 /* The core the thread was running on. -1 if not known. */
3649 int core = -1;
3650
3651 /* The thread handle associated with the thread. */
3652 gdb::byte_vector thread_handle;
3653 };
3654
3655 /* Context passed around to the various methods listing remote
3656 threads. As new threads are found, they're added to the ITEMS
3657 vector. */
3658
3659 struct threads_listing_context
3660 {
3661 /* Return true if this object contains an entry for a thread with ptid
3662 PTID. */
3663
3664 bool contains_thread (ptid_t ptid) const
3665 {
3666 auto match_ptid = [&] (const thread_item &item)
3667 {
3668 return item.ptid == ptid;
3669 };
3670
3671 auto it = std::find_if (this->items.begin (),
3672 this->items.end (),
3673 match_ptid);
3674
3675 return it != this->items.end ();
3676 }
3677
3678 /* Remove the thread with ptid PTID. */
3679
3680 void remove_thread (ptid_t ptid)
3681 {
3682 auto match_ptid = [&] (const thread_item &item)
3683 {
3684 return item.ptid == ptid;
3685 };
3686
3687 auto it = std::remove_if (this->items.begin (),
3688 this->items.end (),
3689 match_ptid);
3690
3691 if (it != this->items.end ())
3692 this->items.erase (it);
3693 }
3694
3695 /* The threads found on the remote target. */
3696 std::vector<thread_item> items;
3697 };
3698
3699 static int
3700 remote_newthread_step (threadref *ref, void *data)
3701 {
3702 struct threads_listing_context *context
3703 = (struct threads_listing_context *) data;
3704 int pid = inferior_ptid.pid ();
3705 int lwp = threadref_to_int (ref);
3706 ptid_t ptid (pid, lwp);
3707
3708 context->items.emplace_back (ptid);
3709
3710 return 1; /* continue iterator */
3711 }
3712
3713 #define CRAZY_MAX_THREADS 1000
3714
3715 ptid_t
3716 remote_target::remote_current_thread (ptid_t oldpid)
3717 {
3718 struct remote_state *rs = get_remote_state ();
3719
3720 putpkt ("qC");
3721 getpkt (&rs->buf, 0);
3722 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3723 {
3724 const char *obuf;
3725 ptid_t result;
3726
3727 result = read_ptid (&rs->buf[2], &obuf);
3728 if (*obuf != '\0')
3729 remote_debug_printf ("warning: garbage in qC reply");
3730
3731 return result;
3732 }
3733 else
3734 return oldpid;
3735 }
3736
3737 /* List remote threads using the deprecated qL packet. */
3738
3739 int
3740 remote_target::remote_get_threads_with_ql (threads_listing_context *context)
3741 {
3742 if (remote_threadlist_iterator (remote_newthread_step, context,
3743 CRAZY_MAX_THREADS) >= 0)
3744 return 1;
3745
3746 return 0;
3747 }
3748
3749 #if defined(HAVE_LIBEXPAT)
3750
3751 static void
3752 start_thread (struct gdb_xml_parser *parser,
3753 const struct gdb_xml_element *element,
3754 void *user_data,
3755 std::vector<gdb_xml_value> &attributes)
3756 {
3757 struct threads_listing_context *data
3758 = (struct threads_listing_context *) user_data;
3759 struct gdb_xml_value *attr;
3760
3761 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3762 ptid_t ptid = read_ptid (id, NULL);
3763
3764 data->items.emplace_back (ptid);
3765 thread_item &item = data->items.back ();
3766
3767 attr = xml_find_attribute (attributes, "core");
3768 if (attr != NULL)
3769 item.core = *(ULONGEST *) attr->value.get ();
3770
3771 attr = xml_find_attribute (attributes, "name");
3772 if (attr != NULL)
3773 item.name = (const char *) attr->value.get ();
3774
3775 attr = xml_find_attribute (attributes, "handle");
3776 if (attr != NULL)
3777 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3778 }
3779
3780 static void
3781 end_thread (struct gdb_xml_parser *parser,
3782 const struct gdb_xml_element *element,
3783 void *user_data, const char *body_text)
3784 {
3785 struct threads_listing_context *data
3786 = (struct threads_listing_context *) user_data;
3787
3788 if (body_text != NULL && *body_text != '\0')
3789 data->items.back ().extra = body_text;
3790 }
3791
3792 const struct gdb_xml_attribute thread_attributes[] = {
3793 { "id", GDB_XML_AF_NONE, NULL, NULL },
3794 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3795 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3796 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3797 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3798 };
3799
3800 const struct gdb_xml_element thread_children[] = {
3801 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3802 };
3803
3804 const struct gdb_xml_element threads_children[] = {
3805 { "thread", thread_attributes, thread_children,
3806 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3807 start_thread, end_thread },
3808 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3809 };
3810
3811 const struct gdb_xml_element threads_elements[] = {
3812 { "threads", NULL, threads_children,
3813 GDB_XML_EF_NONE, NULL, NULL },
3814 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3815 };
3816
3817 #endif
3818
3819 /* List remote threads using qXfer:threads:read. */
3820
3821 int
3822 remote_target::remote_get_threads_with_qxfer (threads_listing_context *context)
3823 {
3824 #if defined(HAVE_LIBEXPAT)
3825 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3826 {
3827 gdb::optional<gdb::char_vector> xml
3828 = target_read_stralloc (this, TARGET_OBJECT_THREADS, NULL);
3829
3830 if (xml && (*xml)[0] != '\0')
3831 {
3832 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3833 threads_elements, xml->data (), context);
3834 }
3835
3836 return 1;
3837 }
3838 #endif
3839
3840 return 0;
3841 }
3842
3843 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3844
3845 int
3846 remote_target::remote_get_threads_with_qthreadinfo (threads_listing_context *context)
3847 {
3848 struct remote_state *rs = get_remote_state ();
3849
3850 if (rs->use_threadinfo_query)
3851 {
3852 const char *bufp;
3853
3854 putpkt ("qfThreadInfo");
3855 getpkt (&rs->buf, 0);
3856 bufp = rs->buf.data ();
3857 if (bufp[0] != '\0') /* q packet recognized */
3858 {
3859 while (*bufp++ == 'm') /* reply contains one or more TID */
3860 {
3861 do
3862 {
3863 ptid_t ptid = read_ptid (bufp, &bufp);
3864 context->items.emplace_back (ptid);
3865 }
3866 while (*bufp++ == ','); /* comma-separated list */
3867 putpkt ("qsThreadInfo");
3868 getpkt (&rs->buf, 0);
3869 bufp = rs->buf.data ();
3870 }
3871 return 1;
3872 }
3873 else
3874 {
3875 /* Packet not recognized. */
3876 rs->use_threadinfo_query = 0;
3877 }
3878 }
3879
3880 return 0;
3881 }
3882
3883 /* Return true if INF only has one non-exited thread. */
3884
3885 static bool
3886 has_single_non_exited_thread (inferior *inf)
3887 {
3888 int count = 0;
3889 for (thread_info *tp ATTRIBUTE_UNUSED : inf->non_exited_threads ())
3890 if (++count > 1)
3891 break;
3892 return count == 1;
3893 }
3894
3895 /* Implement the to_update_thread_list function for the remote
3896 targets. */
3897
3898 void
3899 remote_target::update_thread_list ()
3900 {
3901 struct threads_listing_context context;
3902 int got_list = 0;
3903
3904 /* We have a few different mechanisms to fetch the thread list. Try
3905 them all, starting with the most preferred one first, falling
3906 back to older methods. */
3907 if (remote_get_threads_with_qxfer (&context)
3908 || remote_get_threads_with_qthreadinfo (&context)
3909 || remote_get_threads_with_ql (&context))
3910 {
3911 got_list = 1;
3912
3913 if (context.items.empty ()
3914 && remote_thread_always_alive (inferior_ptid))
3915 {
3916 /* Some targets don't really support threads, but still
3917 reply an (empty) thread list in response to the thread
3918 listing packets, instead of replying "packet not
3919 supported". Exit early so we don't delete the main
3920 thread. */
3921 return;
3922 }
3923
3924 /* CONTEXT now holds the current thread list on the remote
3925 target end. Delete GDB-side threads no longer found on the
3926 target. */
3927 for (thread_info *tp : all_threads_safe ())
3928 {
3929 if (tp->inf->process_target () != this)
3930 continue;
3931
3932 if (!context.contains_thread (tp->ptid))
3933 {
3934 /* Do not remove the thread if it is the last thread in
3935 the inferior. This situation happens when we have a
3936 pending exit process status to process. Otherwise we
3937 may end up with a seemingly live inferior (i.e. pid
3938 != 0) that has no threads. */
3939 if (has_single_non_exited_thread (tp->inf))
3940 continue;
3941
3942 /* Not found. */
3943 delete_thread (tp);
3944 }
3945 }
3946
3947 /* Remove any unreported fork child threads from CONTEXT so
3948 that we don't interfere with follow fork, which is where
3949 creation of such threads is handled. */
3950 remove_new_fork_children (&context);
3951
3952 /* And now add threads we don't know about yet to our list. */
3953 for (thread_item &item : context.items)
3954 {
3955 if (item.ptid != null_ptid)
3956 {
3957 /* In non-stop mode, we assume new found threads are
3958 executing until proven otherwise with a stop reply.
3959 In all-stop, we can only get here if all threads are
3960 stopped. */
3961 bool executing = target_is_non_stop_p ();
3962
3963 remote_notice_new_inferior (item.ptid, executing);
3964
3965 thread_info *tp = find_thread_ptid (this, item.ptid);
3966 remote_thread_info *info = get_remote_thread_info (tp);
3967 info->core = item.core;
3968 info->extra = std::move (item.extra);
3969 info->name = std::move (item.name);
3970 info->thread_handle = std::move (item.thread_handle);
3971 }
3972 }
3973 }
3974
3975 if (!got_list)
3976 {
3977 /* If no thread listing method is supported, then query whether
3978 each known thread is alive, one by one, with the T packet.
3979 If the target doesn't support threads at all, then this is a
3980 no-op. See remote_thread_alive. */
3981 prune_threads ();
3982 }
3983 }
3984
3985 /*
3986 * Collect a descriptive string about the given thread.
3987 * The target may say anything it wants to about the thread
3988 * (typically info about its blocked / runnable state, name, etc.).
3989 * This string will appear in the info threads display.
3990 *
3991 * Optional: targets are not required to implement this function.
3992 */
3993
3994 const char *
3995 remote_target::extra_thread_info (thread_info *tp)
3996 {
3997 struct remote_state *rs = get_remote_state ();
3998 int set;
3999 threadref id;
4000 struct gdb_ext_thread_info threadinfo;
4001
4002 if (rs->remote_desc == 0) /* paranoia */
4003 internal_error (__FILE__, __LINE__,
4004 _("remote_threads_extra_info"));
4005
4006 if (tp->ptid == magic_null_ptid
4007 || (tp->ptid.pid () != 0 && tp->ptid.lwp () == 0))
4008 /* This is the main thread which was added by GDB. The remote
4009 server doesn't know about it. */
4010 return NULL;
4011
4012 std::string &extra = get_remote_thread_info (tp)->extra;
4013
4014 /* If already have cached info, use it. */
4015 if (!extra.empty ())
4016 return extra.c_str ();
4017
4018 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
4019 {
4020 /* If we're using qXfer:threads:read, then the extra info is
4021 included in the XML. So if we didn't have anything cached,
4022 it's because there's really no extra info. */
4023 return NULL;
4024 }
4025
4026 if (rs->use_threadextra_query)
4027 {
4028 char *b = rs->buf.data ();
4029 char *endb = b + get_remote_packet_size ();
4030
4031 xsnprintf (b, endb - b, "qThreadExtraInfo,");
4032 b += strlen (b);
4033 write_ptid (b, endb, tp->ptid);
4034
4035 putpkt (rs->buf);
4036 getpkt (&rs->buf, 0);
4037 if (rs->buf[0] != 0)
4038 {
4039 extra.resize (strlen (rs->buf.data ()) / 2);
4040 hex2bin (rs->buf.data (), (gdb_byte *) &extra[0], extra.size ());
4041 return extra.c_str ();
4042 }
4043 }
4044
4045 /* If the above query fails, fall back to the old method. */
4046 rs->use_threadextra_query = 0;
4047 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
4048 | TAG_MOREDISPLAY | TAG_DISPLAY;
4049 int_to_threadref (&id, tp->ptid.lwp ());
4050 if (remote_get_threadinfo (&id, set, &threadinfo))
4051 if (threadinfo.active)
4052 {
4053 if (*threadinfo.shortname)
4054 string_appendf (extra, " Name: %s", threadinfo.shortname);
4055 if (*threadinfo.display)
4056 {
4057 if (!extra.empty ())
4058 extra += ',';
4059 string_appendf (extra, " State: %s", threadinfo.display);
4060 }
4061 if (*threadinfo.more_display)
4062 {
4063 if (!extra.empty ())
4064 extra += ',';
4065 string_appendf (extra, " Priority: %s", threadinfo.more_display);
4066 }
4067 return extra.c_str ();
4068 }
4069 return NULL;
4070 }
4071 \f
4072
4073 bool
4074 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
4075 struct static_tracepoint_marker *marker)
4076 {
4077 struct remote_state *rs = get_remote_state ();
4078 char *p = rs->buf.data ();
4079
4080 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
4081 p += strlen (p);
4082 p += hexnumstr (p, addr);
4083 putpkt (rs->buf);
4084 getpkt (&rs->buf, 0);
4085 p = rs->buf.data ();
4086
4087 if (*p == 'E')
4088 error (_("Remote failure reply: %s"), p);
4089
4090 if (*p++ == 'm')
4091 {
4092 parse_static_tracepoint_marker_definition (p, NULL, marker);
4093 return true;
4094 }
4095
4096 return false;
4097 }
4098
4099 std::vector<static_tracepoint_marker>
4100 remote_target::static_tracepoint_markers_by_strid (const char *strid)
4101 {
4102 struct remote_state *rs = get_remote_state ();
4103 std::vector<static_tracepoint_marker> markers;
4104 const char *p;
4105 static_tracepoint_marker marker;
4106
4107 /* Ask for a first packet of static tracepoint marker
4108 definition. */
4109 putpkt ("qTfSTM");
4110 getpkt (&rs->buf, 0);
4111 p = rs->buf.data ();
4112 if (*p == 'E')
4113 error (_("Remote failure reply: %s"), p);
4114
4115 while (*p++ == 'm')
4116 {
4117 do
4118 {
4119 parse_static_tracepoint_marker_definition (p, &p, &marker);
4120
4121 if (strid == NULL || marker.str_id == strid)
4122 markers.push_back (std::move (marker));
4123 }
4124 while (*p++ == ','); /* comma-separated list */
4125 /* Ask for another packet of static tracepoint definition. */
4126 putpkt ("qTsSTM");
4127 getpkt (&rs->buf, 0);
4128 p = rs->buf.data ();
4129 }
4130
4131 return markers;
4132 }
4133
4134 \f
4135 /* Implement the to_get_ada_task_ptid function for the remote targets. */
4136
4137 ptid_t
4138 remote_target::get_ada_task_ptid (long lwp, long thread)
4139 {
4140 return ptid_t (inferior_ptid.pid (), lwp, 0);
4141 }
4142 \f
4143
4144 /* Restart the remote side; this is an extended protocol operation. */
4145
4146 void
4147 remote_target::extended_remote_restart ()
4148 {
4149 struct remote_state *rs = get_remote_state ();
4150
4151 /* Send the restart command; for reasons I don't understand the
4152 remote side really expects a number after the "R". */
4153 xsnprintf (rs->buf.data (), get_remote_packet_size (), "R%x", 0);
4154 putpkt (rs->buf);
4155
4156 remote_fileio_reset ();
4157 }
4158 \f
4159 /* Clean up connection to a remote debugger. */
4160
4161 void
4162 remote_target::close ()
4163 {
4164 /* Make sure we leave stdin registered in the event loop. */
4165 terminal_ours ();
4166
4167 trace_reset_local_state ();
4168
4169 delete this;
4170 }
4171
4172 remote_target::~remote_target ()
4173 {
4174 struct remote_state *rs = get_remote_state ();
4175
4176 /* Check for NULL because we may get here with a partially
4177 constructed target/connection. */
4178 if (rs->remote_desc == nullptr)
4179 return;
4180
4181 serial_close (rs->remote_desc);
4182
4183 /* We are destroying the remote target, so we should discard
4184 everything of this target. */
4185 discard_pending_stop_replies_in_queue ();
4186
4187 if (rs->remote_async_inferior_event_token)
4188 delete_async_event_handler (&rs->remote_async_inferior_event_token);
4189
4190 delete rs->notif_state;
4191 }
4192
4193 /* Query the remote side for the text, data and bss offsets. */
4194
4195 void
4196 remote_target::get_offsets ()
4197 {
4198 struct remote_state *rs = get_remote_state ();
4199 char *buf;
4200 char *ptr;
4201 int lose, num_segments = 0, do_sections, do_segments;
4202 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
4203
4204 if (current_program_space->symfile_object_file == NULL)
4205 return;
4206
4207 putpkt ("qOffsets");
4208 getpkt (&rs->buf, 0);
4209 buf = rs->buf.data ();
4210
4211 if (buf[0] == '\000')
4212 return; /* Return silently. Stub doesn't support
4213 this command. */
4214 if (buf[0] == 'E')
4215 {
4216 warning (_("Remote failure reply: %s"), buf);
4217 return;
4218 }
4219
4220 /* Pick up each field in turn. This used to be done with scanf, but
4221 scanf will make trouble if CORE_ADDR size doesn't match
4222 conversion directives correctly. The following code will work
4223 with any size of CORE_ADDR. */
4224 text_addr = data_addr = bss_addr = 0;
4225 ptr = buf;
4226 lose = 0;
4227
4228 if (startswith (ptr, "Text="))
4229 {
4230 ptr += 5;
4231 /* Don't use strtol, could lose on big values. */
4232 while (*ptr && *ptr != ';')
4233 text_addr = (text_addr << 4) + fromhex (*ptr++);
4234
4235 if (startswith (ptr, ";Data="))
4236 {
4237 ptr += 6;
4238 while (*ptr && *ptr != ';')
4239 data_addr = (data_addr << 4) + fromhex (*ptr++);
4240 }
4241 else
4242 lose = 1;
4243
4244 if (!lose && startswith (ptr, ";Bss="))
4245 {
4246 ptr += 5;
4247 while (*ptr && *ptr != ';')
4248 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
4249
4250 if (bss_addr != data_addr)
4251 warning (_("Target reported unsupported offsets: %s"), buf);
4252 }
4253 else
4254 lose = 1;
4255 }
4256 else if (startswith (ptr, "TextSeg="))
4257 {
4258 ptr += 8;
4259 /* Don't use strtol, could lose on big values. */
4260 while (*ptr && *ptr != ';')
4261 text_addr = (text_addr << 4) + fromhex (*ptr++);
4262 num_segments = 1;
4263
4264 if (startswith (ptr, ";DataSeg="))
4265 {
4266 ptr += 9;
4267 while (*ptr && *ptr != ';')
4268 data_addr = (data_addr << 4) + fromhex (*ptr++);
4269 num_segments++;
4270 }
4271 }
4272 else
4273 lose = 1;
4274
4275 if (lose)
4276 error (_("Malformed response to offset query, %s"), buf);
4277 else if (*ptr != '\0')
4278 warning (_("Target reported unsupported offsets: %s"), buf);
4279
4280 objfile *objf = current_program_space->symfile_object_file;
4281 section_offsets offs = objf->section_offsets;
4282
4283 symfile_segment_data_up data = get_symfile_segment_data (objf->obfd);
4284 do_segments = (data != NULL);
4285 do_sections = num_segments == 0;
4286
4287 if (num_segments > 0)
4288 {
4289 segments[0] = text_addr;
4290 segments[1] = data_addr;
4291 }
4292 /* If we have two segments, we can still try to relocate everything
4293 by assuming that the .text and .data offsets apply to the whole
4294 text and data segments. Convert the offsets given in the packet
4295 to base addresses for symfile_map_offsets_to_segments. */
4296 else if (data != nullptr && data->segments.size () == 2)
4297 {
4298 segments[0] = data->segments[0].base + text_addr;
4299 segments[1] = data->segments[1].base + data_addr;
4300 num_segments = 2;
4301 }
4302 /* If the object file has only one segment, assume that it is text
4303 rather than data; main programs with no writable data are rare,
4304 but programs with no code are useless. Of course the code might
4305 have ended up in the data segment... to detect that we would need
4306 the permissions here. */
4307 else if (data && data->segments.size () == 1)
4308 {
4309 segments[0] = data->segments[0].base + text_addr;
4310 num_segments = 1;
4311 }
4312 /* There's no way to relocate by segment. */
4313 else
4314 do_segments = 0;
4315
4316 if (do_segments)
4317 {
4318 int ret = symfile_map_offsets_to_segments (objf->obfd,
4319 data.get (), offs,
4320 num_segments, segments);
4321
4322 if (ret == 0 && !do_sections)
4323 error (_("Can not handle qOffsets TextSeg "
4324 "response with this symbol file"));
4325
4326 if (ret > 0)
4327 do_sections = 0;
4328 }
4329
4330 if (do_sections)
4331 {
4332 offs[SECT_OFF_TEXT (objf)] = text_addr;
4333
4334 /* This is a temporary kludge to force data and bss to use the
4335 same offsets because that's what nlmconv does now. The real
4336 solution requires changes to the stub and remote.c that I
4337 don't have time to do right now. */
4338
4339 offs[SECT_OFF_DATA (objf)] = data_addr;
4340 offs[SECT_OFF_BSS (objf)] = data_addr;
4341 }
4342
4343 objfile_relocate (objf, offs);
4344 }
4345
4346 /* Send interrupt_sequence to remote target. */
4347
4348 void
4349 remote_target::send_interrupt_sequence ()
4350 {
4351 struct remote_state *rs = get_remote_state ();
4352
4353 if (interrupt_sequence_mode == interrupt_sequence_control_c)
4354 remote_serial_write ("\x03", 1);
4355 else if (interrupt_sequence_mode == interrupt_sequence_break)
4356 serial_send_break (rs->remote_desc);
4357 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
4358 {
4359 serial_send_break (rs->remote_desc);
4360 remote_serial_write ("g", 1);
4361 }
4362 else
4363 internal_error (__FILE__, __LINE__,
4364 _("Invalid value for interrupt_sequence_mode: %s."),
4365 interrupt_sequence_mode);
4366 }
4367
4368
4369 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
4370 and extract the PTID. Returns NULL_PTID if not found. */
4371
4372 static ptid_t
4373 stop_reply_extract_thread (const char *stop_reply)
4374 {
4375 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4376 {
4377 const char *p;
4378
4379 /* Txx r:val ; r:val (...) */
4380 p = &stop_reply[3];
4381
4382 /* Look for "register" named "thread". */
4383 while (*p != '\0')
4384 {
4385 const char *p1;
4386
4387 p1 = strchr (p, ':');
4388 if (p1 == NULL)
4389 return null_ptid;
4390
4391 if (strncmp (p, "thread", p1 - p) == 0)
4392 return read_ptid (++p1, &p);
4393
4394 p1 = strchr (p, ';');
4395 if (p1 == NULL)
4396 return null_ptid;
4397 p1++;
4398
4399 p = p1;
4400 }
4401 }
4402
4403 return null_ptid;
4404 }
4405
4406 /* Determine the remote side's current thread. If we have a stop
4407 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4408 "thread" register we can extract the current thread from. If not,
4409 ask the remote which is the current thread with qC. The former
4410 method avoids a roundtrip. */
4411
4412 ptid_t
4413 remote_target::get_current_thread (const char *wait_status)
4414 {
4415 ptid_t ptid = null_ptid;
4416
4417 /* Note we don't use remote_parse_stop_reply as that makes use of
4418 the target architecture, which we haven't yet fully determined at
4419 this point. */
4420 if (wait_status != NULL)
4421 ptid = stop_reply_extract_thread (wait_status);
4422 if (ptid == null_ptid)
4423 ptid = remote_current_thread (inferior_ptid);
4424
4425 return ptid;
4426 }
4427
4428 /* Query the remote target for which is the current thread/process,
4429 add it to our tables, and update INFERIOR_PTID. The caller is
4430 responsible for setting the state such that the remote end is ready
4431 to return the current thread.
4432
4433 This function is called after handling the '?' or 'vRun' packets,
4434 whose response is a stop reply from which we can also try
4435 extracting the thread. If the target doesn't support the explicit
4436 qC query, we infer the current thread from that stop reply, passed
4437 in in WAIT_STATUS, which may be NULL.
4438
4439 The function returns pointer to the main thread of the inferior. */
4440
4441 thread_info *
4442 remote_target::add_current_inferior_and_thread (const char *wait_status)
4443 {
4444 struct remote_state *rs = get_remote_state ();
4445 bool fake_pid_p = false;
4446
4447 switch_to_no_thread ();
4448
4449 /* Now, if we have thread information, update the current thread's
4450 ptid. */
4451 ptid_t curr_ptid = get_current_thread (wait_status);
4452
4453 if (curr_ptid != null_ptid)
4454 {
4455 if (!remote_multi_process_p (rs))
4456 fake_pid_p = true;
4457 }
4458 else
4459 {
4460 /* Without this, some commands which require an active target
4461 (such as kill) won't work. This variable serves (at least)
4462 double duty as both the pid of the target process (if it has
4463 such), and as a flag indicating that a target is active. */
4464 curr_ptid = magic_null_ptid;
4465 fake_pid_p = true;
4466 }
4467
4468 remote_add_inferior (fake_pid_p, curr_ptid.pid (), -1, 1);
4469
4470 /* Add the main thread and switch to it. Don't try reading
4471 registers yet, since we haven't fetched the target description
4472 yet. */
4473 thread_info *tp = add_thread_silent (this, curr_ptid);
4474 switch_to_thread_no_regs (tp);
4475
4476 return tp;
4477 }
4478
4479 /* Print info about a thread that was found already stopped on
4480 connection. */
4481
4482 static void
4483 print_one_stopped_thread (struct thread_info *thread)
4484 {
4485 struct target_waitstatus *ws = &thread->suspend.waitstatus;
4486
4487 switch_to_thread (thread);
4488 thread->suspend.stop_pc = get_frame_pc (get_current_frame ());
4489 set_current_sal_from_frame (get_current_frame ());
4490
4491 thread->suspend.waitstatus_pending_p = 0;
4492
4493 if (ws->kind == TARGET_WAITKIND_STOPPED)
4494 {
4495 enum gdb_signal sig = ws->value.sig;
4496
4497 if (signal_print_state (sig))
4498 gdb::observers::signal_received.notify (sig);
4499 }
4500 gdb::observers::normal_stop.notify (NULL, 1);
4501 }
4502
4503 /* Process all initial stop replies the remote side sent in response
4504 to the ? packet. These indicate threads that were already stopped
4505 on initial connection. We mark these threads as stopped and print
4506 their current frame before giving the user the prompt. */
4507
4508 void
4509 remote_target::process_initial_stop_replies (int from_tty)
4510 {
4511 int pending_stop_replies = stop_reply_queue_length ();
4512 struct thread_info *selected = NULL;
4513 struct thread_info *lowest_stopped = NULL;
4514 struct thread_info *first = NULL;
4515
4516 /* Consume the initial pending events. */
4517 while (pending_stop_replies-- > 0)
4518 {
4519 ptid_t waiton_ptid = minus_one_ptid;
4520 ptid_t event_ptid;
4521 struct target_waitstatus ws;
4522 int ignore_event = 0;
4523
4524 memset (&ws, 0, sizeof (ws));
4525 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4526 if (remote_debug)
4527 print_target_wait_results (waiton_ptid, event_ptid, &ws);
4528
4529 switch (ws.kind)
4530 {
4531 case TARGET_WAITKIND_IGNORE:
4532 case TARGET_WAITKIND_NO_RESUMED:
4533 case TARGET_WAITKIND_SIGNALLED:
4534 case TARGET_WAITKIND_EXITED:
4535 /* We shouldn't see these, but if we do, just ignore. */
4536 remote_debug_printf ("event ignored");
4537 ignore_event = 1;
4538 break;
4539
4540 case TARGET_WAITKIND_EXECD:
4541 xfree (ws.value.execd_pathname);
4542 break;
4543 default:
4544 break;
4545 }
4546
4547 if (ignore_event)
4548 continue;
4549
4550 thread_info *evthread = find_thread_ptid (this, event_ptid);
4551
4552 if (ws.kind == TARGET_WAITKIND_STOPPED)
4553 {
4554 enum gdb_signal sig = ws.value.sig;
4555
4556 /* Stubs traditionally report SIGTRAP as initial signal,
4557 instead of signal 0. Suppress it. */
4558 if (sig == GDB_SIGNAL_TRAP)
4559 sig = GDB_SIGNAL_0;
4560 evthread->suspend.stop_signal = sig;
4561 ws.value.sig = sig;
4562 }
4563
4564 evthread->suspend.waitstatus = ws;
4565
4566 if (ws.kind != TARGET_WAITKIND_STOPPED
4567 || ws.value.sig != GDB_SIGNAL_0)
4568 evthread->suspend.waitstatus_pending_p = 1;
4569
4570 set_executing (this, event_ptid, false);
4571 set_running (this, event_ptid, false);
4572 get_remote_thread_info (evthread)->set_not_resumed ();
4573 }
4574
4575 /* "Notice" the new inferiors before anything related to
4576 registers/memory. */
4577 for (inferior *inf : all_non_exited_inferiors (this))
4578 {
4579 inf->needs_setup = 1;
4580
4581 if (non_stop)
4582 {
4583 thread_info *thread = any_live_thread_of_inferior (inf);
4584 notice_new_inferior (thread, thread->state == THREAD_RUNNING,
4585 from_tty);
4586 }
4587 }
4588
4589 /* If all-stop on top of non-stop, pause all threads. Note this
4590 records the threads' stop pc, so must be done after "noticing"
4591 the inferiors. */
4592 if (!non_stop)
4593 {
4594 stop_all_threads ();
4595
4596 /* If all threads of an inferior were already stopped, we
4597 haven't setup the inferior yet. */
4598 for (inferior *inf : all_non_exited_inferiors (this))
4599 {
4600 if (inf->needs_setup)
4601 {
4602 thread_info *thread = any_live_thread_of_inferior (inf);
4603 switch_to_thread_no_regs (thread);
4604 setup_inferior (0);
4605 }
4606 }
4607 }
4608
4609 /* Now go over all threads that are stopped, and print their current
4610 frame. If all-stop, then if there's a signalled thread, pick
4611 that as current. */
4612 for (thread_info *thread : all_non_exited_threads (this))
4613 {
4614 if (first == NULL)
4615 first = thread;
4616
4617 if (!non_stop)
4618 thread->set_running (false);
4619 else if (thread->state != THREAD_STOPPED)
4620 continue;
4621
4622 if (selected == NULL
4623 && thread->suspend.waitstatus_pending_p)
4624 selected = thread;
4625
4626 if (lowest_stopped == NULL
4627 || thread->inf->num < lowest_stopped->inf->num
4628 || thread->per_inf_num < lowest_stopped->per_inf_num)
4629 lowest_stopped = thread;
4630
4631 if (non_stop)
4632 print_one_stopped_thread (thread);
4633 }
4634
4635 /* In all-stop, we only print the status of one thread, and leave
4636 others with their status pending. */
4637 if (!non_stop)
4638 {
4639 thread_info *thread = selected;
4640 if (thread == NULL)
4641 thread = lowest_stopped;
4642 if (thread == NULL)
4643 thread = first;
4644
4645 print_one_stopped_thread (thread);
4646 }
4647
4648 /* For "info program". */
4649 thread_info *thread = inferior_thread ();
4650 if (thread->state == THREAD_STOPPED)
4651 set_last_target_status (this, inferior_ptid, thread->suspend.waitstatus);
4652 }
4653
4654 /* Start the remote connection and sync state. */
4655
4656 void
4657 remote_target::start_remote (int from_tty, int extended_p)
4658 {
4659 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
4660
4661 struct remote_state *rs = get_remote_state ();
4662 struct packet_config *noack_config;
4663
4664 /* Signal other parts that we're going through the initial setup,
4665 and so things may not be stable yet. E.g., we don't try to
4666 install tracepoints until we've relocated symbols. Also, a
4667 Ctrl-C before we're connected and synced up can't interrupt the
4668 target. Instead, it offers to drop the (potentially wedged)
4669 connection. */
4670 rs->starting_up = true;
4671
4672 QUIT;
4673
4674 if (interrupt_on_connect)
4675 send_interrupt_sequence ();
4676
4677 /* Ack any packet which the remote side has already sent. */
4678 remote_serial_write ("+", 1);
4679
4680 /* The first packet we send to the target is the optional "supported
4681 packets" request. If the target can answer this, it will tell us
4682 which later probes to skip. */
4683 remote_query_supported ();
4684
4685 /* If the stub wants to get a QAllow, compose one and send it. */
4686 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4687 set_permissions ();
4688
4689 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4690 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4691 as a reply to known packet. For packet "vFile:setfs:" it is an
4692 invalid reply and GDB would return error in
4693 remote_hostio_set_filesystem, making remote files access impossible.
4694 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4695 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4696 {
4697 const char v_mustreplyempty[] = "vMustReplyEmpty";
4698
4699 putpkt (v_mustreplyempty);
4700 getpkt (&rs->buf, 0);
4701 if (strcmp (rs->buf.data (), "OK") == 0)
4702 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4703 else if (strcmp (rs->buf.data (), "") != 0)
4704 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4705 rs->buf.data ());
4706 }
4707
4708 /* Next, we possibly activate noack mode.
4709
4710 If the QStartNoAckMode packet configuration is set to AUTO,
4711 enable noack mode if the stub reported a wish for it with
4712 qSupported.
4713
4714 If set to TRUE, then enable noack mode even if the stub didn't
4715 report it in qSupported. If the stub doesn't reply OK, the
4716 session ends with an error.
4717
4718 If FALSE, then don't activate noack mode, regardless of what the
4719 stub claimed should be the default with qSupported. */
4720
4721 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4722 if (packet_config_support (noack_config) != PACKET_DISABLE)
4723 {
4724 putpkt ("QStartNoAckMode");
4725 getpkt (&rs->buf, 0);
4726 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4727 rs->noack_mode = 1;
4728 }
4729
4730 if (extended_p)
4731 {
4732 /* Tell the remote that we are using the extended protocol. */
4733 putpkt ("!");
4734 getpkt (&rs->buf, 0);
4735 }
4736
4737 /* Let the target know which signals it is allowed to pass down to
4738 the program. */
4739 update_signals_program_target ();
4740
4741 /* Next, if the target can specify a description, read it. We do
4742 this before anything involving memory or registers. */
4743 target_find_description ();
4744
4745 /* Next, now that we know something about the target, update the
4746 address spaces in the program spaces. */
4747 update_address_spaces ();
4748
4749 /* On OSs where the list of libraries is global to all
4750 processes, we fetch them early. */
4751 if (gdbarch_has_global_solist (target_gdbarch ()))
4752 solib_add (NULL, from_tty, auto_solib_add);
4753
4754 if (target_is_non_stop_p ())
4755 {
4756 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4757 error (_("Non-stop mode requested, but remote "
4758 "does not support non-stop"));
4759
4760 putpkt ("QNonStop:1");
4761 getpkt (&rs->buf, 0);
4762
4763 if (strcmp (rs->buf.data (), "OK") != 0)
4764 error (_("Remote refused setting non-stop mode with: %s"),
4765 rs->buf.data ());
4766
4767 /* Find about threads and processes the stub is already
4768 controlling. We default to adding them in the running state.
4769 The '?' query below will then tell us about which threads are
4770 stopped. */
4771 this->update_thread_list ();
4772 }
4773 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4774 {
4775 /* Don't assume that the stub can operate in all-stop mode.
4776 Request it explicitly. */
4777 putpkt ("QNonStop:0");
4778 getpkt (&rs->buf, 0);
4779
4780 if (strcmp (rs->buf.data (), "OK") != 0)
4781 error (_("Remote refused setting all-stop mode with: %s"),
4782 rs->buf.data ());
4783 }
4784
4785 /* Upload TSVs regardless of whether the target is running or not. The
4786 remote stub, such as GDBserver, may have some predefined or builtin
4787 TSVs, even if the target is not running. */
4788 if (get_trace_status (current_trace_status ()) != -1)
4789 {
4790 struct uploaded_tsv *uploaded_tsvs = NULL;
4791
4792 upload_trace_state_variables (&uploaded_tsvs);
4793 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4794 }
4795
4796 /* Check whether the target is running now. */
4797 putpkt ("?");
4798 getpkt (&rs->buf, 0);
4799
4800 if (!target_is_non_stop_p ())
4801 {
4802 char *wait_status = NULL;
4803
4804 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4805 {
4806 if (!extended_p)
4807 error (_("The target is not running (try extended-remote?)"));
4808
4809 /* We're connected, but not running. Drop out before we
4810 call start_remote. */
4811 rs->starting_up = false;
4812 return;
4813 }
4814 else
4815 {
4816 /* Save the reply for later. */
4817 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
4818 strcpy (wait_status, rs->buf.data ());
4819 }
4820
4821 /* Fetch thread list. */
4822 target_update_thread_list ();
4823
4824 /* Let the stub know that we want it to return the thread. */
4825 set_continue_thread (minus_one_ptid);
4826
4827 if (thread_count (this) == 0)
4828 {
4829 /* Target has no concept of threads at all. GDB treats
4830 non-threaded target as single-threaded; add a main
4831 thread. */
4832 thread_info *tp = add_current_inferior_and_thread (wait_status);
4833 get_remote_thread_info (tp)->set_resumed ();
4834 }
4835 else
4836 {
4837 /* We have thread information; select the thread the target
4838 says should be current. If we're reconnecting to a
4839 multi-threaded program, this will ideally be the thread
4840 that last reported an event before GDB disconnected. */
4841 ptid_t curr_thread = get_current_thread (wait_status);
4842 if (curr_thread == null_ptid)
4843 {
4844 /* Odd... The target was able to list threads, but not
4845 tell us which thread was current (no "thread"
4846 register in T stop reply?). Just pick the first
4847 thread in the thread list then. */
4848
4849 remote_debug_printf ("warning: couldn't determine remote "
4850 "current thread; picking first in list.");
4851
4852 for (thread_info *tp : all_non_exited_threads (this,
4853 minus_one_ptid))
4854 {
4855 switch_to_thread (tp);
4856 break;
4857 }
4858 }
4859 else
4860 switch_to_thread (find_thread_ptid (this, curr_thread));
4861 }
4862
4863 /* init_wait_for_inferior should be called before get_offsets in order
4864 to manage `inserted' flag in bp loc in a correct state.
4865 breakpoint_init_inferior, called from init_wait_for_inferior, set
4866 `inserted' flag to 0, while before breakpoint_re_set, called from
4867 start_remote, set `inserted' flag to 1. In the initialization of
4868 inferior, breakpoint_init_inferior should be called first, and then
4869 breakpoint_re_set can be called. If this order is broken, state of
4870 `inserted' flag is wrong, and cause some problems on breakpoint
4871 manipulation. */
4872 init_wait_for_inferior ();
4873
4874 get_offsets (); /* Get text, data & bss offsets. */
4875
4876 /* If we could not find a description using qXfer, and we know
4877 how to do it some other way, try again. This is not
4878 supported for non-stop; it could be, but it is tricky if
4879 there are no stopped threads when we connect. */
4880 if (remote_read_description_p (this)
4881 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4882 {
4883 target_clear_description ();
4884 target_find_description ();
4885 }
4886
4887 /* Use the previously fetched status. */
4888 gdb_assert (wait_status != NULL);
4889 strcpy (rs->buf.data (), wait_status);
4890 rs->cached_wait_status = 1;
4891
4892 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4893 }
4894 else
4895 {
4896 /* Clear WFI global state. Do this before finding about new
4897 threads and inferiors, and setting the current inferior.
4898 Otherwise we would clear the proceed status of the current
4899 inferior when we want its stop_soon state to be preserved
4900 (see notice_new_inferior). */
4901 init_wait_for_inferior ();
4902
4903 /* In non-stop, we will either get an "OK", meaning that there
4904 are no stopped threads at this time; or, a regular stop
4905 reply. In the latter case, there may be more than one thread
4906 stopped --- we pull them all out using the vStopped
4907 mechanism. */
4908 if (strcmp (rs->buf.data (), "OK") != 0)
4909 {
4910 struct notif_client *notif = &notif_client_stop;
4911
4912 /* remote_notif_get_pending_replies acks this one, and gets
4913 the rest out. */
4914 rs->notif_state->pending_event[notif_client_stop.id]
4915 = remote_notif_parse (this, notif, rs->buf.data ());
4916 remote_notif_get_pending_events (notif);
4917 }
4918
4919 if (thread_count (this) == 0)
4920 {
4921 if (!extended_p)
4922 error (_("The target is not running (try extended-remote?)"));
4923
4924 /* We're connected, but not running. Drop out before we
4925 call start_remote. */
4926 rs->starting_up = false;
4927 return;
4928 }
4929
4930 /* Report all signals during attach/startup. */
4931 pass_signals ({});
4932
4933 /* If there are already stopped threads, mark them stopped and
4934 report their stops before giving the prompt to the user. */
4935 process_initial_stop_replies (from_tty);
4936
4937 if (target_can_async_p ())
4938 target_async (1);
4939 }
4940
4941 /* If we connected to a live target, do some additional setup. */
4942 if (target_has_execution ())
4943 {
4944 /* No use without a symbol-file. */
4945 if (current_program_space->symfile_object_file)
4946 remote_check_symbols ();
4947 }
4948
4949 /* Possibly the target has been engaged in a trace run started
4950 previously; find out where things are at. */
4951 if (get_trace_status (current_trace_status ()) != -1)
4952 {
4953 struct uploaded_tp *uploaded_tps = NULL;
4954
4955 if (current_trace_status ()->running)
4956 printf_filtered (_("Trace is already running on the target.\n"));
4957
4958 upload_tracepoints (&uploaded_tps);
4959
4960 merge_uploaded_tracepoints (&uploaded_tps);
4961 }
4962
4963 /* Possibly the target has been engaged in a btrace record started
4964 previously; find out where things are at. */
4965 remote_btrace_maybe_reopen ();
4966
4967 /* The thread and inferior lists are now synchronized with the
4968 target, our symbols have been relocated, and we're merged the
4969 target's tracepoints with ours. We're done with basic start
4970 up. */
4971 rs->starting_up = false;
4972
4973 /* Maybe breakpoints are global and need to be inserted now. */
4974 if (breakpoints_should_be_inserted_now ())
4975 insert_breakpoints ();
4976 }
4977
4978 const char *
4979 remote_target::connection_string ()
4980 {
4981 remote_state *rs = get_remote_state ();
4982
4983 if (rs->remote_desc->name != NULL)
4984 return rs->remote_desc->name;
4985 else
4986 return NULL;
4987 }
4988
4989 /* Open a connection to a remote debugger.
4990 NAME is the filename used for communication. */
4991
4992 void
4993 remote_target::open (const char *name, int from_tty)
4994 {
4995 open_1 (name, from_tty, 0);
4996 }
4997
4998 /* Open a connection to a remote debugger using the extended
4999 remote gdb protocol. NAME is the filename used for communication. */
5000
5001 void
5002 extended_remote_target::open (const char *name, int from_tty)
5003 {
5004 open_1 (name, from_tty, 1 /*extended_p */);
5005 }
5006
5007 /* Reset all packets back to "unknown support". Called when opening a
5008 new connection to a remote target. */
5009
5010 static void
5011 reset_all_packet_configs_support (void)
5012 {
5013 int i;
5014
5015 for (i = 0; i < PACKET_MAX; i++)
5016 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
5017 }
5018
5019 /* Initialize all packet configs. */
5020
5021 static void
5022 init_all_packet_configs (void)
5023 {
5024 int i;
5025
5026 for (i = 0; i < PACKET_MAX; i++)
5027 {
5028 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
5029 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
5030 }
5031 }
5032
5033 /* Symbol look-up. */
5034
5035 void
5036 remote_target::remote_check_symbols ()
5037 {
5038 char *tmp;
5039 int end;
5040
5041 /* The remote side has no concept of inferiors that aren't running
5042 yet, it only knows about running processes. If we're connected
5043 but our current inferior is not running, we should not invite the
5044 remote target to request symbol lookups related to its
5045 (unrelated) current process. */
5046 if (!target_has_execution ())
5047 return;
5048
5049 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
5050 return;
5051
5052 /* Make sure the remote is pointing at the right process. Note
5053 there's no way to select "no process". */
5054 set_general_process ();
5055
5056 /* Allocate a message buffer. We can't reuse the input buffer in RS,
5057 because we need both at the same time. */
5058 gdb::char_vector msg (get_remote_packet_size ());
5059 gdb::char_vector reply (get_remote_packet_size ());
5060
5061 /* Invite target to request symbol lookups. */
5062
5063 putpkt ("qSymbol::");
5064 getpkt (&reply, 0);
5065 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
5066
5067 while (startswith (reply.data (), "qSymbol:"))
5068 {
5069 struct bound_minimal_symbol sym;
5070
5071 tmp = &reply[8];
5072 end = hex2bin (tmp, reinterpret_cast <gdb_byte *> (msg.data ()),
5073 strlen (tmp) / 2);
5074 msg[end] = '\0';
5075 sym = lookup_minimal_symbol (msg.data (), NULL, NULL);
5076 if (sym.minsym == NULL)
5077 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol::%s",
5078 &reply[8]);
5079 else
5080 {
5081 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
5082 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
5083
5084 /* If this is a function address, return the start of code
5085 instead of any data function descriptor. */
5086 sym_addr = gdbarch_convert_from_func_ptr_addr
5087 (target_gdbarch (), sym_addr, current_inferior ()->top_target ());
5088
5089 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol:%s:%s",
5090 phex_nz (sym_addr, addr_size), &reply[8]);
5091 }
5092
5093 putpkt (msg.data ());
5094 getpkt (&reply, 0);
5095 }
5096 }
5097
5098 static struct serial *
5099 remote_serial_open (const char *name)
5100 {
5101 static int udp_warning = 0;
5102
5103 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
5104 of in ser-tcp.c, because it is the remote protocol assuming that the
5105 serial connection is reliable and not the serial connection promising
5106 to be. */
5107 if (!udp_warning && startswith (name, "udp:"))
5108 {
5109 warning (_("The remote protocol may be unreliable over UDP.\n"
5110 "Some events may be lost, rendering further debugging "
5111 "impossible."));
5112 udp_warning = 1;
5113 }
5114
5115 return serial_open (name);
5116 }
5117
5118 /* Inform the target of our permission settings. The permission flags
5119 work without this, but if the target knows the settings, it can do
5120 a couple things. First, it can add its own check, to catch cases
5121 that somehow manage to get by the permissions checks in target
5122 methods. Second, if the target is wired to disallow particular
5123 settings (for instance, a system in the field that is not set up to
5124 be able to stop at a breakpoint), it can object to any unavailable
5125 permissions. */
5126
5127 void
5128 remote_target::set_permissions ()
5129 {
5130 struct remote_state *rs = get_remote_state ();
5131
5132 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAllow:"
5133 "WriteReg:%x;WriteMem:%x;"
5134 "InsertBreak:%x;InsertTrace:%x;"
5135 "InsertFastTrace:%x;Stop:%x",
5136 may_write_registers, may_write_memory,
5137 may_insert_breakpoints, may_insert_tracepoints,
5138 may_insert_fast_tracepoints, may_stop);
5139 putpkt (rs->buf);
5140 getpkt (&rs->buf, 0);
5141
5142 /* If the target didn't like the packet, warn the user. Do not try
5143 to undo the user's settings, that would just be maddening. */
5144 if (strcmp (rs->buf.data (), "OK") != 0)
5145 warning (_("Remote refused setting permissions with: %s"),
5146 rs->buf.data ());
5147 }
5148
5149 /* This type describes each known response to the qSupported
5150 packet. */
5151 struct protocol_feature
5152 {
5153 /* The name of this protocol feature. */
5154 const char *name;
5155
5156 /* The default for this protocol feature. */
5157 enum packet_support default_support;
5158
5159 /* The function to call when this feature is reported, or after
5160 qSupported processing if the feature is not supported.
5161 The first argument points to this structure. The second
5162 argument indicates whether the packet requested support be
5163 enabled, disabled, or probed (or the default, if this function
5164 is being called at the end of processing and this feature was
5165 not reported). The third argument may be NULL; if not NULL, it
5166 is a NUL-terminated string taken from the packet following
5167 this feature's name and an equals sign. */
5168 void (*func) (remote_target *remote, const struct protocol_feature *,
5169 enum packet_support, const char *);
5170
5171 /* The corresponding packet for this feature. Only used if
5172 FUNC is remote_supported_packet. */
5173 int packet;
5174 };
5175
5176 static void
5177 remote_supported_packet (remote_target *remote,
5178 const struct protocol_feature *feature,
5179 enum packet_support support,
5180 const char *argument)
5181 {
5182 if (argument)
5183 {
5184 warning (_("Remote qSupported response supplied an unexpected value for"
5185 " \"%s\"."), feature->name);
5186 return;
5187 }
5188
5189 remote_protocol_packets[feature->packet].support = support;
5190 }
5191
5192 void
5193 remote_target::remote_packet_size (const protocol_feature *feature,
5194 enum packet_support support, const char *value)
5195 {
5196 struct remote_state *rs = get_remote_state ();
5197
5198 int packet_size;
5199 char *value_end;
5200
5201 if (support != PACKET_ENABLE)
5202 return;
5203
5204 if (value == NULL || *value == '\0')
5205 {
5206 warning (_("Remote target reported \"%s\" without a size."),
5207 feature->name);
5208 return;
5209 }
5210
5211 errno = 0;
5212 packet_size = strtol (value, &value_end, 16);
5213 if (errno != 0 || *value_end != '\0' || packet_size < 0)
5214 {
5215 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
5216 feature->name, value);
5217 return;
5218 }
5219
5220 /* Record the new maximum packet size. */
5221 rs->explicit_packet_size = packet_size;
5222 }
5223
5224 static void
5225 remote_packet_size (remote_target *remote, const protocol_feature *feature,
5226 enum packet_support support, const char *value)
5227 {
5228 remote->remote_packet_size (feature, support, value);
5229 }
5230
5231 static const struct protocol_feature remote_protocol_features[] = {
5232 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
5233 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
5234 PACKET_qXfer_auxv },
5235 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
5236 PACKET_qXfer_exec_file },
5237 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
5238 PACKET_qXfer_features },
5239 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
5240 PACKET_qXfer_libraries },
5241 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
5242 PACKET_qXfer_libraries_svr4 },
5243 { "augmented-libraries-svr4-read", PACKET_DISABLE,
5244 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
5245 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
5246 PACKET_qXfer_memory_map },
5247 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
5248 PACKET_qXfer_osdata },
5249 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
5250 PACKET_qXfer_threads },
5251 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
5252 PACKET_qXfer_traceframe_info },
5253 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
5254 PACKET_QPassSignals },
5255 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
5256 PACKET_QCatchSyscalls },
5257 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
5258 PACKET_QProgramSignals },
5259 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
5260 PACKET_QSetWorkingDir },
5261 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
5262 PACKET_QStartupWithShell },
5263 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
5264 PACKET_QEnvironmentHexEncoded },
5265 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
5266 PACKET_QEnvironmentReset },
5267 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
5268 PACKET_QEnvironmentUnset },
5269 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
5270 PACKET_QStartNoAckMode },
5271 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
5272 PACKET_multiprocess_feature },
5273 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
5274 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
5275 PACKET_qXfer_siginfo_read },
5276 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
5277 PACKET_qXfer_siginfo_write },
5278 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
5279 PACKET_ConditionalTracepoints },
5280 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
5281 PACKET_ConditionalBreakpoints },
5282 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
5283 PACKET_BreakpointCommands },
5284 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
5285 PACKET_FastTracepoints },
5286 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
5287 PACKET_StaticTracepoints },
5288 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
5289 PACKET_InstallInTrace},
5290 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
5291 PACKET_DisconnectedTracing_feature },
5292 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
5293 PACKET_bc },
5294 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
5295 PACKET_bs },
5296 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
5297 PACKET_TracepointSource },
5298 { "QAllow", PACKET_DISABLE, remote_supported_packet,
5299 PACKET_QAllow },
5300 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
5301 PACKET_EnableDisableTracepoints_feature },
5302 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
5303 PACKET_qXfer_fdpic },
5304 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
5305 PACKET_qXfer_uib },
5306 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
5307 PACKET_QDisableRandomization },
5308 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
5309 { "QTBuffer:size", PACKET_DISABLE,
5310 remote_supported_packet, PACKET_QTBuffer_size},
5311 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
5312 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
5313 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
5314 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
5315 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
5316 PACKET_qXfer_btrace },
5317 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
5318 PACKET_qXfer_btrace_conf },
5319 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
5320 PACKET_Qbtrace_conf_bts_size },
5321 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
5322 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
5323 { "fork-events", PACKET_DISABLE, remote_supported_packet,
5324 PACKET_fork_event_feature },
5325 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
5326 PACKET_vfork_event_feature },
5327 { "exec-events", PACKET_DISABLE, remote_supported_packet,
5328 PACKET_exec_event_feature },
5329 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
5330 PACKET_Qbtrace_conf_pt_size },
5331 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
5332 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
5333 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
5334 { "memory-tagging", PACKET_DISABLE, remote_supported_packet,
5335 PACKET_memory_tagging_feature },
5336 };
5337
5338 static char *remote_support_xml;
5339
5340 /* Register string appended to "xmlRegisters=" in qSupported query. */
5341
5342 void
5343 register_remote_support_xml (const char *xml)
5344 {
5345 #if defined(HAVE_LIBEXPAT)
5346 if (remote_support_xml == NULL)
5347 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
5348 else
5349 {
5350 char *copy = xstrdup (remote_support_xml + 13);
5351 char *saveptr;
5352 char *p = strtok_r (copy, ",", &saveptr);
5353
5354 do
5355 {
5356 if (strcmp (p, xml) == 0)
5357 {
5358 /* already there */
5359 xfree (copy);
5360 return;
5361 }
5362 }
5363 while ((p = strtok_r (NULL, ",", &saveptr)) != NULL);
5364 xfree (copy);
5365
5366 remote_support_xml = reconcat (remote_support_xml,
5367 remote_support_xml, ",", xml,
5368 (char *) NULL);
5369 }
5370 #endif
5371 }
5372
5373 static void
5374 remote_query_supported_append (std::string *msg, const char *append)
5375 {
5376 if (!msg->empty ())
5377 msg->append (";");
5378 msg->append (append);
5379 }
5380
5381 void
5382 remote_target::remote_query_supported ()
5383 {
5384 struct remote_state *rs = get_remote_state ();
5385 char *next;
5386 int i;
5387 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5388
5389 /* The packet support flags are handled differently for this packet
5390 than for most others. We treat an error, a disabled packet, and
5391 an empty response identically: any features which must be reported
5392 to be used will be automatically disabled. An empty buffer
5393 accomplishes this, since that is also the representation for a list
5394 containing no features. */
5395
5396 rs->buf[0] = 0;
5397 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5398 {
5399 std::string q;
5400
5401 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5402 remote_query_supported_append (&q, "multiprocess+");
5403
5404 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5405 remote_query_supported_append (&q, "swbreak+");
5406 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5407 remote_query_supported_append (&q, "hwbreak+");
5408
5409 remote_query_supported_append (&q, "qRelocInsn+");
5410
5411 if (packet_set_cmd_state (PACKET_fork_event_feature)
5412 != AUTO_BOOLEAN_FALSE)
5413 remote_query_supported_append (&q, "fork-events+");
5414 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5415 != AUTO_BOOLEAN_FALSE)
5416 remote_query_supported_append (&q, "vfork-events+");
5417 if (packet_set_cmd_state (PACKET_exec_event_feature)
5418 != AUTO_BOOLEAN_FALSE)
5419 remote_query_supported_append (&q, "exec-events+");
5420
5421 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5422 remote_query_supported_append (&q, "vContSupported+");
5423
5424 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5425 remote_query_supported_append (&q, "QThreadEvents+");
5426
5427 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5428 remote_query_supported_append (&q, "no-resumed+");
5429
5430 if (packet_set_cmd_state (PACKET_memory_tagging_feature)
5431 != AUTO_BOOLEAN_FALSE)
5432 remote_query_supported_append (&q, "memory-tagging+");
5433
5434 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5435 the qSupported:xmlRegisters=i386 handling. */
5436 if (remote_support_xml != NULL
5437 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5438 remote_query_supported_append (&q, remote_support_xml);
5439
5440 q = "qSupported:" + q;
5441 putpkt (q.c_str ());
5442
5443 getpkt (&rs->buf, 0);
5444
5445 /* If an error occured, warn, but do not return - just reset the
5446 buffer to empty and go on to disable features. */
5447 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5448 == PACKET_ERROR)
5449 {
5450 warning (_("Remote failure reply: %s"), rs->buf.data ());
5451 rs->buf[0] = 0;
5452 }
5453 }
5454
5455 memset (seen, 0, sizeof (seen));
5456
5457 next = rs->buf.data ();
5458 while (*next)
5459 {
5460 enum packet_support is_supported;
5461 char *p, *end, *name_end, *value;
5462
5463 /* First separate out this item from the rest of the packet. If
5464 there's another item after this, we overwrite the separator
5465 (terminated strings are much easier to work with). */
5466 p = next;
5467 end = strchr (p, ';');
5468 if (end == NULL)
5469 {
5470 end = p + strlen (p);
5471 next = end;
5472 }
5473 else
5474 {
5475 *end = '\0';
5476 next = end + 1;
5477
5478 if (end == p)
5479 {
5480 warning (_("empty item in \"qSupported\" response"));
5481 continue;
5482 }
5483 }
5484
5485 name_end = strchr (p, '=');
5486 if (name_end)
5487 {
5488 /* This is a name=value entry. */
5489 is_supported = PACKET_ENABLE;
5490 value = name_end + 1;
5491 *name_end = '\0';
5492 }
5493 else
5494 {
5495 value = NULL;
5496 switch (end[-1])
5497 {
5498 case '+':
5499 is_supported = PACKET_ENABLE;
5500 break;
5501
5502 case '-':
5503 is_supported = PACKET_DISABLE;
5504 break;
5505
5506 case '?':
5507 is_supported = PACKET_SUPPORT_UNKNOWN;
5508 break;
5509
5510 default:
5511 warning (_("unrecognized item \"%s\" "
5512 "in \"qSupported\" response"), p);
5513 continue;
5514 }
5515 end[-1] = '\0';
5516 }
5517
5518 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5519 if (strcmp (remote_protocol_features[i].name, p) == 0)
5520 {
5521 const struct protocol_feature *feature;
5522
5523 seen[i] = 1;
5524 feature = &remote_protocol_features[i];
5525 feature->func (this, feature, is_supported, value);
5526 break;
5527 }
5528 }
5529
5530 /* If we increased the packet size, make sure to increase the global
5531 buffer size also. We delay this until after parsing the entire
5532 qSupported packet, because this is the same buffer we were
5533 parsing. */
5534 if (rs->buf.size () < rs->explicit_packet_size)
5535 rs->buf.resize (rs->explicit_packet_size);
5536
5537 /* Handle the defaults for unmentioned features. */
5538 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5539 if (!seen[i])
5540 {
5541 const struct protocol_feature *feature;
5542
5543 feature = &remote_protocol_features[i];
5544 feature->func (this, feature, feature->default_support, NULL);
5545 }
5546 }
5547
5548 /* Serial QUIT handler for the remote serial descriptor.
5549
5550 Defers handling a Ctrl-C until we're done with the current
5551 command/response packet sequence, unless:
5552
5553 - We're setting up the connection. Don't send a remote interrupt
5554 request, as we're not fully synced yet. Quit immediately
5555 instead.
5556
5557 - The target has been resumed in the foreground
5558 (target_terminal::is_ours is false) with a synchronous resume
5559 packet, and we're blocked waiting for the stop reply, thus a
5560 Ctrl-C should be immediately sent to the target.
5561
5562 - We get a second Ctrl-C while still within the same serial read or
5563 write. In that case the serial is seemingly wedged --- offer to
5564 quit/disconnect.
5565
5566 - We see a second Ctrl-C without target response, after having
5567 previously interrupted the target. In that case the target/stub
5568 is probably wedged --- offer to quit/disconnect.
5569 */
5570
5571 void
5572 remote_target::remote_serial_quit_handler ()
5573 {
5574 struct remote_state *rs = get_remote_state ();
5575
5576 if (check_quit_flag ())
5577 {
5578 /* If we're starting up, we're not fully synced yet. Quit
5579 immediately. */
5580 if (rs->starting_up)
5581 quit ();
5582 else if (rs->got_ctrlc_during_io)
5583 {
5584 if (query (_("The target is not responding to GDB commands.\n"
5585 "Stop debugging it? ")))
5586 remote_unpush_and_throw (this);
5587 }
5588 /* If ^C has already been sent once, offer to disconnect. */
5589 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5590 interrupt_query ();
5591 /* All-stop protocol, and blocked waiting for stop reply. Send
5592 an interrupt request. */
5593 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5594 target_interrupt ();
5595 else
5596 rs->got_ctrlc_during_io = 1;
5597 }
5598 }
5599
5600 /* The remote_target that is current while the quit handler is
5601 overridden with remote_serial_quit_handler. */
5602 static remote_target *curr_quit_handler_target;
5603
5604 static void
5605 remote_serial_quit_handler ()
5606 {
5607 curr_quit_handler_target->remote_serial_quit_handler ();
5608 }
5609
5610 /* Remove the remote target from the target stack of each inferior
5611 that is using it. Upper targets depend on it so remove them
5612 first. */
5613
5614 static void
5615 remote_unpush_target (remote_target *target)
5616 {
5617 /* We have to unpush the target from all inferiors, even those that
5618 aren't running. */
5619 scoped_restore_current_inferior restore_current_inferior;
5620
5621 for (inferior *inf : all_inferiors (target))
5622 {
5623 switch_to_inferior_no_thread (inf);
5624 pop_all_targets_at_and_above (process_stratum);
5625 generic_mourn_inferior ();
5626 }
5627
5628 /* Don't rely on target_close doing this when the target is popped
5629 from the last remote inferior above, because something may be
5630 holding a reference to the target higher up on the stack, meaning
5631 target_close won't be called yet. We lost the connection to the
5632 target, so clear these now, otherwise we may later throw
5633 TARGET_CLOSE_ERROR while trying to tell the remote target to
5634 close the file. */
5635 fileio_handles_invalidate_target (target);
5636 }
5637
5638 static void
5639 remote_unpush_and_throw (remote_target *target)
5640 {
5641 remote_unpush_target (target);
5642 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5643 }
5644
5645 void
5646 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5647 {
5648 remote_target *curr_remote = get_current_remote_target ();
5649
5650 if (name == 0)
5651 error (_("To open a remote debug connection, you need to specify what\n"
5652 "serial device is attached to the remote system\n"
5653 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5654
5655 /* If we're connected to a running target, target_preopen will kill it.
5656 Ask this question first, before target_preopen has a chance to kill
5657 anything. */
5658 if (curr_remote != NULL && !target_has_execution ())
5659 {
5660 if (from_tty
5661 && !query (_("Already connected to a remote target. Disconnect? ")))
5662 error (_("Still connected."));
5663 }
5664
5665 /* Here the possibly existing remote target gets unpushed. */
5666 target_preopen (from_tty);
5667
5668 remote_fileio_reset ();
5669 reopen_exec_file ();
5670 reread_symbols ();
5671
5672 remote_target *remote
5673 = (extended_p ? new extended_remote_target () : new remote_target ());
5674 target_ops_up target_holder (remote);
5675
5676 remote_state *rs = remote->get_remote_state ();
5677
5678 /* See FIXME above. */
5679 if (!target_async_permitted)
5680 rs->wait_forever_enabled_p = 1;
5681
5682 rs->remote_desc = remote_serial_open (name);
5683 if (!rs->remote_desc)
5684 perror_with_name (name);
5685
5686 if (baud_rate != -1)
5687 {
5688 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5689 {
5690 /* The requested speed could not be set. Error out to
5691 top level after closing remote_desc. Take care to
5692 set remote_desc to NULL to avoid closing remote_desc
5693 more than once. */
5694 serial_close (rs->remote_desc);
5695 rs->remote_desc = NULL;
5696 perror_with_name (name);
5697 }
5698 }
5699
5700 serial_setparity (rs->remote_desc, serial_parity);
5701 serial_raw (rs->remote_desc);
5702
5703 /* If there is something sitting in the buffer we might take it as a
5704 response to a command, which would be bad. */
5705 serial_flush_input (rs->remote_desc);
5706
5707 if (from_tty)
5708 {
5709 puts_filtered ("Remote debugging using ");
5710 puts_filtered (name);
5711 puts_filtered ("\n");
5712 }
5713
5714 /* Switch to using the remote target now. */
5715 current_inferior ()->push_target (std::move (target_holder));
5716
5717 /* Register extra event sources in the event loop. */
5718 rs->remote_async_inferior_event_token
5719 = create_async_event_handler (remote_async_inferior_event_handler, nullptr,
5720 "remote");
5721 rs->notif_state = remote_notif_state_allocate (remote);
5722
5723 /* Reset the target state; these things will be queried either by
5724 remote_query_supported or as they are needed. */
5725 reset_all_packet_configs_support ();
5726 rs->cached_wait_status = 0;
5727 rs->explicit_packet_size = 0;
5728 rs->noack_mode = 0;
5729 rs->extended = extended_p;
5730 rs->waiting_for_stop_reply = 0;
5731 rs->ctrlc_pending_p = 0;
5732 rs->got_ctrlc_during_io = 0;
5733
5734 rs->general_thread = not_sent_ptid;
5735 rs->continue_thread = not_sent_ptid;
5736 rs->remote_traceframe_number = -1;
5737
5738 rs->last_resume_exec_dir = EXEC_FORWARD;
5739
5740 /* Probe for ability to use "ThreadInfo" query, as required. */
5741 rs->use_threadinfo_query = 1;
5742 rs->use_threadextra_query = 1;
5743
5744 rs->readahead_cache.invalidate ();
5745
5746 if (target_async_permitted)
5747 {
5748 /* FIXME: cagney/1999-09-23: During the initial connection it is
5749 assumed that the target is already ready and able to respond to
5750 requests. Unfortunately remote_start_remote() eventually calls
5751 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5752 around this. Eventually a mechanism that allows
5753 wait_for_inferior() to expect/get timeouts will be
5754 implemented. */
5755 rs->wait_forever_enabled_p = 0;
5756 }
5757
5758 /* First delete any symbols previously loaded from shared libraries. */
5759 no_shared_libraries (NULL, 0);
5760
5761 /* Start the remote connection. If error() or QUIT, discard this
5762 target (we'd otherwise be in an inconsistent state) and then
5763 propogate the error on up the exception chain. This ensures that
5764 the caller doesn't stumble along blindly assuming that the
5765 function succeeded. The CLI doesn't have this problem but other
5766 UI's, such as MI do.
5767
5768 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5769 this function should return an error indication letting the
5770 caller restore the previous state. Unfortunately the command
5771 ``target remote'' is directly wired to this function making that
5772 impossible. On a positive note, the CLI side of this problem has
5773 been fixed - the function set_cmd_context() makes it possible for
5774 all the ``target ....'' commands to share a common callback
5775 function. See cli-dump.c. */
5776 {
5777
5778 try
5779 {
5780 remote->start_remote (from_tty, extended_p);
5781 }
5782 catch (const gdb_exception &ex)
5783 {
5784 /* Pop the partially set up target - unless something else did
5785 already before throwing the exception. */
5786 if (ex.error != TARGET_CLOSE_ERROR)
5787 remote_unpush_target (remote);
5788 throw;
5789 }
5790 }
5791
5792 remote_btrace_reset (rs);
5793
5794 if (target_async_permitted)
5795 rs->wait_forever_enabled_p = 1;
5796 }
5797
5798 /* Detach the specified process. */
5799
5800 void
5801 remote_target::remote_detach_pid (int pid)
5802 {
5803 struct remote_state *rs = get_remote_state ();
5804
5805 /* This should not be necessary, but the handling for D;PID in
5806 GDBserver versions prior to 8.2 incorrectly assumes that the
5807 selected process points to the same process we're detaching,
5808 leading to misbehavior (and possibly GDBserver crashing) when it
5809 does not. Since it's easy and cheap, work around it by forcing
5810 GDBserver to select GDB's current process. */
5811 set_general_process ();
5812
5813 if (remote_multi_process_p (rs))
5814 xsnprintf (rs->buf.data (), get_remote_packet_size (), "D;%x", pid);
5815 else
5816 strcpy (rs->buf.data (), "D");
5817
5818 putpkt (rs->buf);
5819 getpkt (&rs->buf, 0);
5820
5821 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5822 ;
5823 else if (rs->buf[0] == '\0')
5824 error (_("Remote doesn't know how to detach"));
5825 else
5826 error (_("Can't detach process."));
5827 }
5828
5829 /* This detaches a program to which we previously attached, using
5830 inferior_ptid to identify the process. After this is done, GDB
5831 can be used to debug some other program. We better not have left
5832 any breakpoints in the target program or it'll die when it hits
5833 one. */
5834
5835 void
5836 remote_target::remote_detach_1 (inferior *inf, int from_tty)
5837 {
5838 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
5839
5840 int pid = inferior_ptid.pid ();
5841 struct remote_state *rs = get_remote_state ();
5842 int is_fork_parent;
5843
5844 if (!target_has_execution ())
5845 error (_("No process to detach from."));
5846
5847 target_announce_detach (from_tty);
5848
5849 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
5850 {
5851 /* If we're in breakpoints-always-inserted mode, or the inferior
5852 is running, we have to remove breakpoints before detaching.
5853 We don't do this in common code instead because not all
5854 targets support removing breakpoints while the target is
5855 running. The remote target / gdbserver does, though. */
5856 remove_breakpoints_inf (current_inferior ());
5857 }
5858
5859 /* Tell the remote target to detach. */
5860 remote_detach_pid (pid);
5861
5862 for (thread_info *thread : inf->threads ())
5863 {
5864 if (!thread->suspend.waitstatus_pending_p)
5865 continue;
5866
5867 const target_waitstatus &ws = thread->suspend.waitstatus;
5868 if (ws.kind != TARGET_WAITKIND_FORKED
5869 && ws.kind != TARGET_WAITKIND_VFORKED)
5870 continue;
5871
5872 remote_debug_printf ("Detached thread %s has a pending fork event, "
5873 "detaching fork child %d",
5874 thread->ptid.to_string ().c_str (),
5875 ws.value.related_pid.pid ());
5876
5877 remote_detach_pid (ws.value.related_pid.pid ());
5878 }
5879
5880 /* Exit only if this is the only active inferior. */
5881 if (from_tty && !rs->extended && number_of_live_inferiors (this) == 1)
5882 puts_filtered (_("Ending remote debugging.\n"));
5883
5884 thread_info *tp = find_thread_ptid (this, inferior_ptid);
5885
5886 /* Check to see if we are detaching a fork parent. Note that if we
5887 are detaching a fork child, tp == NULL. */
5888 is_fork_parent = (tp != NULL
5889 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5890
5891 /* If doing detach-on-fork, we don't mourn, because that will delete
5892 breakpoints that should be available for the followed inferior. */
5893 if (!is_fork_parent)
5894 {
5895 /* Save the pid as a string before mourning, since that will
5896 unpush the remote target, and we need the string after. */
5897 std::string infpid = target_pid_to_str (ptid_t (pid));
5898
5899 target_mourn_inferior (inferior_ptid);
5900 if (print_inferior_events)
5901 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5902 inf->num, infpid.c_str ());
5903 }
5904 else
5905 {
5906 switch_to_no_thread ();
5907 detach_inferior (current_inferior ());
5908 }
5909 }
5910
5911 void
5912 remote_target::detach (inferior *inf, int from_tty)
5913 {
5914 remote_detach_1 (inf, from_tty);
5915 }
5916
5917 void
5918 extended_remote_target::detach (inferior *inf, int from_tty)
5919 {
5920 remote_detach_1 (inf, from_tty);
5921 }
5922
5923 /* Target follow-fork function for remote targets. On entry, and
5924 at return, the current inferior is the fork parent.
5925
5926 Note that although this is currently only used for extended-remote,
5927 it is named remote_follow_fork in anticipation of using it for the
5928 remote target as well. */
5929
5930 void
5931 remote_target::follow_fork (bool follow_child, bool detach_fork)
5932 {
5933 struct remote_state *rs = get_remote_state ();
5934 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5935
5936 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5937 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5938 {
5939 /* When following the parent and detaching the child, we detach
5940 the child here. For the case of following the child and
5941 detaching the parent, the detach is done in the target-
5942 independent follow fork code in infrun.c. We can't use
5943 target_detach when detaching an unfollowed child because
5944 the client side doesn't know anything about the child. */
5945 if (detach_fork && !follow_child)
5946 {
5947 /* Detach the fork child. */
5948 ptid_t child_ptid;
5949 pid_t child_pid;
5950
5951 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5952 child_pid = child_ptid.pid ();
5953
5954 remote_detach_pid (child_pid);
5955 }
5956 }
5957 }
5958
5959 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5960 in the program space of the new inferior. */
5961
5962 void
5963 remote_target::follow_exec (inferior *follow_inf, ptid_t ptid,
5964 const char *execd_pathname)
5965 {
5966 process_stratum_target::follow_exec (follow_inf, ptid, execd_pathname);
5967
5968 /* We know that this is a target file name, so if it has the "target:"
5969 prefix we strip it off before saving it in the program space. */
5970 if (is_target_filename (execd_pathname))
5971 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5972
5973 set_pspace_remote_exec_file (follow_inf->pspace, execd_pathname);
5974 }
5975
5976 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5977
5978 void
5979 remote_target::disconnect (const char *args, int from_tty)
5980 {
5981 if (args)
5982 error (_("Argument given to \"disconnect\" when remotely debugging."));
5983
5984 /* Make sure we unpush even the extended remote targets. Calling
5985 target_mourn_inferior won't unpush, and
5986 remote_target::mourn_inferior won't unpush if there is more than
5987 one inferior left. */
5988 remote_unpush_target (this);
5989
5990 if (from_tty)
5991 puts_filtered ("Ending remote debugging.\n");
5992 }
5993
5994 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5995 be chatty about it. */
5996
5997 void
5998 extended_remote_target::attach (const char *args, int from_tty)
5999 {
6000 struct remote_state *rs = get_remote_state ();
6001 int pid;
6002 char *wait_status = NULL;
6003
6004 pid = parse_pid_to_attach (args);
6005
6006 /* Remote PID can be freely equal to getpid, do not check it here the same
6007 way as in other targets. */
6008
6009 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
6010 error (_("This target does not support attaching to a process"));
6011
6012 if (from_tty)
6013 {
6014 const char *exec_file = get_exec_file (0);
6015
6016 if (exec_file)
6017 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
6018 target_pid_to_str (ptid_t (pid)).c_str ());
6019 else
6020 printf_unfiltered (_("Attaching to %s\n"),
6021 target_pid_to_str (ptid_t (pid)).c_str ());
6022 }
6023
6024 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vAttach;%x", pid);
6025 putpkt (rs->buf);
6026 getpkt (&rs->buf, 0);
6027
6028 switch (packet_ok (rs->buf,
6029 &remote_protocol_packets[PACKET_vAttach]))
6030 {
6031 case PACKET_OK:
6032 if (!target_is_non_stop_p ())
6033 {
6034 /* Save the reply for later. */
6035 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
6036 strcpy (wait_status, rs->buf.data ());
6037 }
6038 else if (strcmp (rs->buf.data (), "OK") != 0)
6039 error (_("Attaching to %s failed with: %s"),
6040 target_pid_to_str (ptid_t (pid)).c_str (),
6041 rs->buf.data ());
6042 break;
6043 case PACKET_UNKNOWN:
6044 error (_("This target does not support attaching to a process"));
6045 default:
6046 error (_("Attaching to %s failed"),
6047 target_pid_to_str (ptid_t (pid)).c_str ());
6048 }
6049
6050 switch_to_inferior_no_thread (remote_add_inferior (false, pid, 1, 0));
6051
6052 inferior_ptid = ptid_t (pid);
6053
6054 if (target_is_non_stop_p ())
6055 {
6056 /* Get list of threads. */
6057 update_thread_list ();
6058
6059 thread_info *thread = first_thread_of_inferior (current_inferior ());
6060 if (thread != nullptr)
6061 switch_to_thread (thread);
6062
6063 /* Invalidate our notion of the remote current thread. */
6064 record_currthread (rs, minus_one_ptid);
6065 }
6066 else
6067 {
6068 /* Now, if we have thread information, update the main thread's
6069 ptid. */
6070 ptid_t curr_ptid = remote_current_thread (ptid_t (pid));
6071
6072 /* Add the main thread to the thread list. */
6073 thread_info *thr = add_thread_silent (this, curr_ptid);
6074
6075 switch_to_thread (thr);
6076
6077 /* Don't consider the thread stopped until we've processed the
6078 saved stop reply. */
6079 set_executing (this, thr->ptid, true);
6080 }
6081
6082 /* Next, if the target can specify a description, read it. We do
6083 this before anything involving memory or registers. */
6084 target_find_description ();
6085
6086 if (!target_is_non_stop_p ())
6087 {
6088 /* Use the previously fetched status. */
6089 gdb_assert (wait_status != NULL);
6090
6091 if (target_can_async_p ())
6092 {
6093 struct notif_event *reply
6094 = remote_notif_parse (this, &notif_client_stop, wait_status);
6095
6096 push_stop_reply ((struct stop_reply *) reply);
6097
6098 target_async (1);
6099 }
6100 else
6101 {
6102 gdb_assert (wait_status != NULL);
6103 strcpy (rs->buf.data (), wait_status);
6104 rs->cached_wait_status = 1;
6105 }
6106 }
6107 else
6108 {
6109 gdb_assert (wait_status == NULL);
6110
6111 gdb_assert (target_can_async_p ());
6112 target_async (1);
6113 }
6114 }
6115
6116 /* Implementation of the to_post_attach method. */
6117
6118 void
6119 extended_remote_target::post_attach (int pid)
6120 {
6121 /* Get text, data & bss offsets. */
6122 get_offsets ();
6123
6124 /* In certain cases GDB might not have had the chance to start
6125 symbol lookup up until now. This could happen if the debugged
6126 binary is not using shared libraries, the vsyscall page is not
6127 present (on Linux) and the binary itself hadn't changed since the
6128 debugging process was started. */
6129 if (current_program_space->symfile_object_file != NULL)
6130 remote_check_symbols();
6131 }
6132
6133 \f
6134 /* Check for the availability of vCont. This function should also check
6135 the response. */
6136
6137 void
6138 remote_target::remote_vcont_probe ()
6139 {
6140 remote_state *rs = get_remote_state ();
6141 char *buf;
6142
6143 strcpy (rs->buf.data (), "vCont?");
6144 putpkt (rs->buf);
6145 getpkt (&rs->buf, 0);
6146 buf = rs->buf.data ();
6147
6148 /* Make sure that the features we assume are supported. */
6149 if (startswith (buf, "vCont"))
6150 {
6151 char *p = &buf[5];
6152 int support_c, support_C;
6153
6154 rs->supports_vCont.s = 0;
6155 rs->supports_vCont.S = 0;
6156 support_c = 0;
6157 support_C = 0;
6158 rs->supports_vCont.t = 0;
6159 rs->supports_vCont.r = 0;
6160 while (p && *p == ';')
6161 {
6162 p++;
6163 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
6164 rs->supports_vCont.s = 1;
6165 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
6166 rs->supports_vCont.S = 1;
6167 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
6168 support_c = 1;
6169 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
6170 support_C = 1;
6171 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
6172 rs->supports_vCont.t = 1;
6173 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
6174 rs->supports_vCont.r = 1;
6175
6176 p = strchr (p, ';');
6177 }
6178
6179 /* If c, and C are not all supported, we can't use vCont. Clearing
6180 BUF will make packet_ok disable the packet. */
6181 if (!support_c || !support_C)
6182 buf[0] = 0;
6183 }
6184
6185 packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCont]);
6186 rs->supports_vCont_probed = true;
6187 }
6188
6189 /* Helper function for building "vCont" resumptions. Write a
6190 resumption to P. ENDP points to one-passed-the-end of the buffer
6191 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
6192 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
6193 resumed thread should be single-stepped and/or signalled. If PTID
6194 equals minus_one_ptid, then all threads are resumed; if PTID
6195 represents a process, then all threads of the process are resumed;
6196 the thread to be stepped and/or signalled is given in the global
6197 INFERIOR_PTID. */
6198
6199 char *
6200 remote_target::append_resumption (char *p, char *endp,
6201 ptid_t ptid, int step, gdb_signal siggnal)
6202 {
6203 struct remote_state *rs = get_remote_state ();
6204
6205 if (step && siggnal != GDB_SIGNAL_0)
6206 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
6207 else if (step
6208 /* GDB is willing to range step. */
6209 && use_range_stepping
6210 /* Target supports range stepping. */
6211 && rs->supports_vCont.r
6212 /* We don't currently support range stepping multiple
6213 threads with a wildcard (though the protocol allows it,
6214 so stubs shouldn't make an active effort to forbid
6215 it). */
6216 && !(remote_multi_process_p (rs) && ptid.is_pid ()))
6217 {
6218 struct thread_info *tp;
6219
6220 if (ptid == minus_one_ptid)
6221 {
6222 /* If we don't know about the target thread's tid, then
6223 we're resuming magic_null_ptid (see caller). */
6224 tp = find_thread_ptid (this, magic_null_ptid);
6225 }
6226 else
6227 tp = find_thread_ptid (this, ptid);
6228 gdb_assert (tp != NULL);
6229
6230 if (tp->control.may_range_step)
6231 {
6232 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6233
6234 p += xsnprintf (p, endp - p, ";r%s,%s",
6235 phex_nz (tp->control.step_range_start,
6236 addr_size),
6237 phex_nz (tp->control.step_range_end,
6238 addr_size));
6239 }
6240 else
6241 p += xsnprintf (p, endp - p, ";s");
6242 }
6243 else if (step)
6244 p += xsnprintf (p, endp - p, ";s");
6245 else if (siggnal != GDB_SIGNAL_0)
6246 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
6247 else
6248 p += xsnprintf (p, endp - p, ";c");
6249
6250 if (remote_multi_process_p (rs) && ptid.is_pid ())
6251 {
6252 ptid_t nptid;
6253
6254 /* All (-1) threads of process. */
6255 nptid = ptid_t (ptid.pid (), -1, 0);
6256
6257 p += xsnprintf (p, endp - p, ":");
6258 p = write_ptid (p, endp, nptid);
6259 }
6260 else if (ptid != minus_one_ptid)
6261 {
6262 p += xsnprintf (p, endp - p, ":");
6263 p = write_ptid (p, endp, ptid);
6264 }
6265
6266 return p;
6267 }
6268
6269 /* Clear the thread's private info on resume. */
6270
6271 static void
6272 resume_clear_thread_private_info (struct thread_info *thread)
6273 {
6274 if (thread->priv != NULL)
6275 {
6276 remote_thread_info *priv = get_remote_thread_info (thread);
6277
6278 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6279 priv->watch_data_address = 0;
6280 }
6281 }
6282
6283 /* Append a vCont continue-with-signal action for threads that have a
6284 non-zero stop signal. */
6285
6286 char *
6287 remote_target::append_pending_thread_resumptions (char *p, char *endp,
6288 ptid_t ptid)
6289 {
6290 for (thread_info *thread : all_non_exited_threads (this, ptid))
6291 if (inferior_ptid != thread->ptid
6292 && thread->suspend.stop_signal != GDB_SIGNAL_0)
6293 {
6294 p = append_resumption (p, endp, thread->ptid,
6295 0, thread->suspend.stop_signal);
6296 thread->suspend.stop_signal = GDB_SIGNAL_0;
6297 resume_clear_thread_private_info (thread);
6298 }
6299
6300 return p;
6301 }
6302
6303 /* Set the target running, using the packets that use Hc
6304 (c/s/C/S). */
6305
6306 void
6307 remote_target::remote_resume_with_hc (ptid_t ptid, int step,
6308 gdb_signal siggnal)
6309 {
6310 struct remote_state *rs = get_remote_state ();
6311 char *buf;
6312
6313 rs->last_sent_signal = siggnal;
6314 rs->last_sent_step = step;
6315
6316 /* The c/s/C/S resume packets use Hc, so set the continue
6317 thread. */
6318 if (ptid == minus_one_ptid)
6319 set_continue_thread (any_thread_ptid);
6320 else
6321 set_continue_thread (ptid);
6322
6323 for (thread_info *thread : all_non_exited_threads (this))
6324 resume_clear_thread_private_info (thread);
6325
6326 buf = rs->buf.data ();
6327 if (::execution_direction == EXEC_REVERSE)
6328 {
6329 /* We don't pass signals to the target in reverse exec mode. */
6330 if (info_verbose && siggnal != GDB_SIGNAL_0)
6331 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
6332 siggnal);
6333
6334 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
6335 error (_("Remote reverse-step not supported."));
6336 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
6337 error (_("Remote reverse-continue not supported."));
6338
6339 strcpy (buf, step ? "bs" : "bc");
6340 }
6341 else if (siggnal != GDB_SIGNAL_0)
6342 {
6343 buf[0] = step ? 'S' : 'C';
6344 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
6345 buf[2] = tohex (((int) siggnal) & 0xf);
6346 buf[3] = '\0';
6347 }
6348 else
6349 strcpy (buf, step ? "s" : "c");
6350
6351 putpkt (buf);
6352 }
6353
6354 /* Resume the remote inferior by using a "vCont" packet. The thread
6355 to be resumed is PTID; STEP and SIGGNAL indicate whether the
6356 resumed thread should be single-stepped and/or signalled. If PTID
6357 equals minus_one_ptid, then all threads are resumed; the thread to
6358 be stepped and/or signalled is given in the global INFERIOR_PTID.
6359 This function returns non-zero iff it resumes the inferior.
6360
6361 This function issues a strict subset of all possible vCont commands
6362 at the moment. */
6363
6364 int
6365 remote_target::remote_resume_with_vcont (ptid_t ptid, int step,
6366 enum gdb_signal siggnal)
6367 {
6368 struct remote_state *rs = get_remote_state ();
6369 char *p;
6370 char *endp;
6371
6372 /* No reverse execution actions defined for vCont. */
6373 if (::execution_direction == EXEC_REVERSE)
6374 return 0;
6375
6376 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6377 remote_vcont_probe ();
6378
6379 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
6380 return 0;
6381
6382 p = rs->buf.data ();
6383 endp = p + get_remote_packet_size ();
6384
6385 /* If we could generate a wider range of packets, we'd have to worry
6386 about overflowing BUF. Should there be a generic
6387 "multi-part-packet" packet? */
6388
6389 p += xsnprintf (p, endp - p, "vCont");
6390
6391 if (ptid == magic_null_ptid)
6392 {
6393 /* MAGIC_NULL_PTID means that we don't have any active threads,
6394 so we don't have any TID numbers the inferior will
6395 understand. Make sure to only send forms that do not specify
6396 a TID. */
6397 append_resumption (p, endp, minus_one_ptid, step, siggnal);
6398 }
6399 else if (ptid == minus_one_ptid || ptid.is_pid ())
6400 {
6401 /* Resume all threads (of all processes, or of a single
6402 process), with preference for INFERIOR_PTID. This assumes
6403 inferior_ptid belongs to the set of all threads we are about
6404 to resume. */
6405 if (step || siggnal != GDB_SIGNAL_0)
6406 {
6407 /* Step inferior_ptid, with or without signal. */
6408 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
6409 }
6410
6411 /* Also pass down any pending signaled resumption for other
6412 threads not the current. */
6413 p = append_pending_thread_resumptions (p, endp, ptid);
6414
6415 /* And continue others without a signal. */
6416 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
6417 }
6418 else
6419 {
6420 /* Scheduler locking; resume only PTID. */
6421 append_resumption (p, endp, ptid, step, siggnal);
6422 }
6423
6424 gdb_assert (strlen (rs->buf.data ()) < get_remote_packet_size ());
6425 putpkt (rs->buf);
6426
6427 if (target_is_non_stop_p ())
6428 {
6429 /* In non-stop, the stub replies to vCont with "OK". The stop
6430 reply will be reported asynchronously by means of a `%Stop'
6431 notification. */
6432 getpkt (&rs->buf, 0);
6433 if (strcmp (rs->buf.data (), "OK") != 0)
6434 error (_("Unexpected vCont reply in non-stop mode: %s"),
6435 rs->buf.data ());
6436 }
6437
6438 return 1;
6439 }
6440
6441 /* Tell the remote machine to resume. */
6442
6443 void
6444 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
6445 {
6446 struct remote_state *rs = get_remote_state ();
6447
6448 /* When connected in non-stop mode, the core resumes threads
6449 individually. Resuming remote threads directly in target_resume
6450 would thus result in sending one packet per thread. Instead, to
6451 minimize roundtrip latency, here we just store the resume
6452 request (put the thread in RESUMED_PENDING_VCONT state); the actual remote
6453 resumption will be done in remote_target::commit_resume, where we'll be
6454 able to do vCont action coalescing. */
6455 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6456 {
6457 remote_thread_info *remote_thr;
6458
6459 if (minus_one_ptid == ptid || ptid.is_pid ())
6460 remote_thr = get_remote_thread_info (this, inferior_ptid);
6461 else
6462 remote_thr = get_remote_thread_info (this, ptid);
6463
6464 /* We don't expect the core to ask to resume an already resumed (from
6465 its point of view) thread. */
6466 gdb_assert (remote_thr->get_resume_state () == resume_state::NOT_RESUMED);
6467
6468 remote_thr->set_resumed_pending_vcont (step, siggnal);
6469 return;
6470 }
6471
6472 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6473 (explained in remote-notif.c:handle_notification) so
6474 remote_notif_process is not called. We need find a place where
6475 it is safe to start a 'vNotif' sequence. It is good to do it
6476 before resuming inferior, because inferior was stopped and no RSP
6477 traffic at that moment. */
6478 if (!target_is_non_stop_p ())
6479 remote_notif_process (rs->notif_state, &notif_client_stop);
6480
6481 rs->last_resume_exec_dir = ::execution_direction;
6482
6483 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6484 if (!remote_resume_with_vcont (ptid, step, siggnal))
6485 remote_resume_with_hc (ptid, step, siggnal);
6486
6487 /* Update resumed state tracked by the remote target. */
6488 for (thread_info *tp : all_non_exited_threads (this, ptid))
6489 get_remote_thread_info (tp)->set_resumed ();
6490
6491 /* We are about to start executing the inferior, let's register it
6492 with the event loop. NOTE: this is the one place where all the
6493 execution commands end up. We could alternatively do this in each
6494 of the execution commands in infcmd.c. */
6495 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6496 into infcmd.c in order to allow inferior function calls to work
6497 NOT asynchronously. */
6498 if (target_can_async_p ())
6499 target_async (1);
6500
6501 /* We've just told the target to resume. The remote server will
6502 wait for the inferior to stop, and then send a stop reply. In
6503 the mean time, we can't start another command/query ourselves
6504 because the stub wouldn't be ready to process it. This applies
6505 only to the base all-stop protocol, however. In non-stop (which
6506 only supports vCont), the stub replies with an "OK", and is
6507 immediate able to process further serial input. */
6508 if (!target_is_non_stop_p ())
6509 rs->waiting_for_stop_reply = 1;
6510 }
6511
6512 static int is_pending_fork_parent_thread (struct thread_info *thread);
6513
6514 /* Private per-inferior info for target remote processes. */
6515
6516 struct remote_inferior : public private_inferior
6517 {
6518 /* Whether we can send a wildcard vCont for this process. */
6519 bool may_wildcard_vcont = true;
6520 };
6521
6522 /* Get the remote private inferior data associated to INF. */
6523
6524 static remote_inferior *
6525 get_remote_inferior (inferior *inf)
6526 {
6527 if (inf->priv == NULL)
6528 inf->priv.reset (new remote_inferior);
6529
6530 return static_cast<remote_inferior *> (inf->priv.get ());
6531 }
6532
6533 struct stop_reply : public notif_event
6534 {
6535 ~stop_reply ();
6536
6537 /* The identifier of the thread about this event */
6538 ptid_t ptid;
6539
6540 /* The remote state this event is associated with. When the remote
6541 connection, represented by a remote_state object, is closed,
6542 all the associated stop_reply events should be released. */
6543 struct remote_state *rs;
6544
6545 struct target_waitstatus ws;
6546
6547 /* The architecture associated with the expedited registers. */
6548 gdbarch *arch;
6549
6550 /* Expedited registers. This makes remote debugging a bit more
6551 efficient for those targets that provide critical registers as
6552 part of their normal status mechanism (as another roundtrip to
6553 fetch them is avoided). */
6554 std::vector<cached_reg_t> regcache;
6555
6556 enum target_stop_reason stop_reason;
6557
6558 CORE_ADDR watch_data_address;
6559
6560 int core;
6561 };
6562
6563 /* Class used to track the construction of a vCont packet in the
6564 outgoing packet buffer. This is used to send multiple vCont
6565 packets if we have more actions than would fit a single packet. */
6566
6567 class vcont_builder
6568 {
6569 public:
6570 explicit vcont_builder (remote_target *remote)
6571 : m_remote (remote)
6572 {
6573 restart ();
6574 }
6575
6576 void flush ();
6577 void push_action (ptid_t ptid, bool step, gdb_signal siggnal);
6578
6579 private:
6580 void restart ();
6581
6582 /* The remote target. */
6583 remote_target *m_remote;
6584
6585 /* Pointer to the first action. P points here if no action has been
6586 appended yet. */
6587 char *m_first_action;
6588
6589 /* Where the next action will be appended. */
6590 char *m_p;
6591
6592 /* The end of the buffer. Must never write past this. */
6593 char *m_endp;
6594 };
6595
6596 /* Prepare the outgoing buffer for a new vCont packet. */
6597
6598 void
6599 vcont_builder::restart ()
6600 {
6601 struct remote_state *rs = m_remote->get_remote_state ();
6602
6603 m_p = rs->buf.data ();
6604 m_endp = m_p + m_remote->get_remote_packet_size ();
6605 m_p += xsnprintf (m_p, m_endp - m_p, "vCont");
6606 m_first_action = m_p;
6607 }
6608
6609 /* If the vCont packet being built has any action, send it to the
6610 remote end. */
6611
6612 void
6613 vcont_builder::flush ()
6614 {
6615 struct remote_state *rs;
6616
6617 if (m_p == m_first_action)
6618 return;
6619
6620 rs = m_remote->get_remote_state ();
6621 m_remote->putpkt (rs->buf);
6622 m_remote->getpkt (&rs->buf, 0);
6623 if (strcmp (rs->buf.data (), "OK") != 0)
6624 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf.data ());
6625 }
6626
6627 /* The largest action is range-stepping, with its two addresses. This
6628 is more than sufficient. If a new, bigger action is created, it'll
6629 quickly trigger a failed assertion in append_resumption (and we'll
6630 just bump this). */
6631 #define MAX_ACTION_SIZE 200
6632
6633 /* Append a new vCont action in the outgoing packet being built. If
6634 the action doesn't fit the packet along with previous actions, push
6635 what we've got so far to the remote end and start over a new vCont
6636 packet (with the new action). */
6637
6638 void
6639 vcont_builder::push_action (ptid_t ptid, bool step, gdb_signal siggnal)
6640 {
6641 char buf[MAX_ACTION_SIZE + 1];
6642
6643 char *endp = m_remote->append_resumption (buf, buf + sizeof (buf),
6644 ptid, step, siggnal);
6645
6646 /* Check whether this new action would fit in the vCont packet along
6647 with previous actions. If not, send what we've got so far and
6648 start a new vCont packet. */
6649 size_t rsize = endp - buf;
6650 if (rsize > m_endp - m_p)
6651 {
6652 flush ();
6653 restart ();
6654
6655 /* Should now fit. */
6656 gdb_assert (rsize <= m_endp - m_p);
6657 }
6658
6659 memcpy (m_p, buf, rsize);
6660 m_p += rsize;
6661 *m_p = '\0';
6662 }
6663
6664 /* to_commit_resume implementation. */
6665
6666 void
6667 remote_target::commit_resumed ()
6668 {
6669 /* If connected in all-stop mode, we'd send the remote resume
6670 request directly from remote_resume. Likewise if
6671 reverse-debugging, as there are no defined vCont actions for
6672 reverse execution. */
6673 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6674 return;
6675
6676 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6677 instead of resuming all threads of each process individually.
6678 However, if any thread of a process must remain halted, we can't
6679 send wildcard resumes and must send one action per thread.
6680
6681 Care must be taken to not resume threads/processes the server
6682 side already told us are stopped, but the core doesn't know about
6683 yet, because the events are still in the vStopped notification
6684 queue. For example:
6685
6686 #1 => vCont s:p1.1;c
6687 #2 <= OK
6688 #3 <= %Stopped T05 p1.1
6689 #4 => vStopped
6690 #5 <= T05 p1.2
6691 #6 => vStopped
6692 #7 <= OK
6693 #8 (infrun handles the stop for p1.1 and continues stepping)
6694 #9 => vCont s:p1.1;c
6695
6696 The last vCont above would resume thread p1.2 by mistake, because
6697 the server has no idea that the event for p1.2 had not been
6698 handled yet.
6699
6700 The server side must similarly ignore resume actions for the
6701 thread that has a pending %Stopped notification (and any other
6702 threads with events pending), until GDB acks the notification
6703 with vStopped. Otherwise, e.g., the following case is
6704 mishandled:
6705
6706 #1 => g (or any other packet)
6707 #2 <= [registers]
6708 #3 <= %Stopped T05 p1.2
6709 #4 => vCont s:p1.1;c
6710 #5 <= OK
6711
6712 Above, the server must not resume thread p1.2. GDB can't know
6713 that p1.2 stopped until it acks the %Stopped notification, and
6714 since from GDB's perspective all threads should be running, it
6715 sends a "c" action.
6716
6717 Finally, special care must also be given to handling fork/vfork
6718 events. A (v)fork event actually tells us that two processes
6719 stopped -- the parent and the child. Until we follow the fork,
6720 we must not resume the child. Therefore, if we have a pending
6721 fork follow, we must not send a global wildcard resume action
6722 (vCont;c). We can still send process-wide wildcards though. */
6723
6724 /* Start by assuming a global wildcard (vCont;c) is possible. */
6725 bool may_global_wildcard_vcont = true;
6726
6727 /* And assume every process is individually wildcard-able too. */
6728 for (inferior *inf : all_non_exited_inferiors (this))
6729 {
6730 remote_inferior *priv = get_remote_inferior (inf);
6731
6732 priv->may_wildcard_vcont = true;
6733 }
6734
6735 /* Check for any pending events (not reported or processed yet) and
6736 disable process and global wildcard resumes appropriately. */
6737 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6738
6739 bool any_pending_vcont_resume = false;
6740
6741 for (thread_info *tp : all_non_exited_threads (this))
6742 {
6743 remote_thread_info *priv = get_remote_thread_info (tp);
6744
6745 /* If a thread of a process is not meant to be resumed, then we
6746 can't wildcard that process. */
6747 if (priv->get_resume_state () == resume_state::NOT_RESUMED)
6748 {
6749 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6750
6751 /* And if we can't wildcard a process, we can't wildcard
6752 everything either. */
6753 may_global_wildcard_vcont = false;
6754 continue;
6755 }
6756
6757 if (priv->get_resume_state () == resume_state::RESUMED_PENDING_VCONT)
6758 any_pending_vcont_resume = true;
6759
6760 /* If a thread is the parent of an unfollowed fork, then we
6761 can't do a global wildcard, as that would resume the fork
6762 child. */
6763 if (is_pending_fork_parent_thread (tp))
6764 may_global_wildcard_vcont = false;
6765 }
6766
6767 /* We didn't have any resumed thread pending a vCont resume, so nothing to
6768 do. */
6769 if (!any_pending_vcont_resume)
6770 return;
6771
6772 /* Now let's build the vCont packet(s). Actions must be appended
6773 from narrower to wider scopes (thread -> process -> global). If
6774 we end up with too many actions for a single packet vcont_builder
6775 flushes the current vCont packet to the remote side and starts a
6776 new one. */
6777 struct vcont_builder vcont_builder (this);
6778
6779 /* Threads first. */
6780 for (thread_info *tp : all_non_exited_threads (this))
6781 {
6782 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6783
6784 /* If the thread was previously vCont-resumed, no need to send a specific
6785 action for it. If we didn't receive a resume request for it, don't
6786 send an action for it either. */
6787 if (remote_thr->get_resume_state () != resume_state::RESUMED_PENDING_VCONT)
6788 continue;
6789
6790 gdb_assert (!thread_is_in_step_over_chain (tp));
6791
6792 /* We should never be commit-resuming a thread that has a stop reply.
6793 Otherwise, we would end up reporting a stop event for a thread while
6794 it is running on the remote target. */
6795 remote_state *rs = get_remote_state ();
6796 for (const auto &stop_reply : rs->stop_reply_queue)
6797 gdb_assert (stop_reply->ptid != tp->ptid);
6798
6799 const resumed_pending_vcont_info &info
6800 = remote_thr->resumed_pending_vcont_info ();
6801
6802 /* Check if we need to send a specific action for this thread. If not,
6803 it will be included in a wildcard resume instead. */
6804 if (info.step || info.sig != GDB_SIGNAL_0
6805 || !get_remote_inferior (tp->inf)->may_wildcard_vcont)
6806 vcont_builder.push_action (tp->ptid, info.step, info.sig);
6807
6808 remote_thr->set_resumed ();
6809 }
6810
6811 /* Now check whether we can send any process-wide wildcard. This is
6812 to avoid sending a global wildcard in the case nothing is
6813 supposed to be resumed. */
6814 bool any_process_wildcard = false;
6815
6816 for (inferior *inf : all_non_exited_inferiors (this))
6817 {
6818 if (get_remote_inferior (inf)->may_wildcard_vcont)
6819 {
6820 any_process_wildcard = true;
6821 break;
6822 }
6823 }
6824
6825 if (any_process_wildcard)
6826 {
6827 /* If all processes are wildcard-able, then send a single "c"
6828 action, otherwise, send an "all (-1) threads of process"
6829 continue action for each running process, if any. */
6830 if (may_global_wildcard_vcont)
6831 {
6832 vcont_builder.push_action (minus_one_ptid,
6833 false, GDB_SIGNAL_0);
6834 }
6835 else
6836 {
6837 for (inferior *inf : all_non_exited_inferiors (this))
6838 {
6839 if (get_remote_inferior (inf)->may_wildcard_vcont)
6840 {
6841 vcont_builder.push_action (ptid_t (inf->pid),
6842 false, GDB_SIGNAL_0);
6843 }
6844 }
6845 }
6846 }
6847
6848 vcont_builder.flush ();
6849 }
6850
6851 /* Implementation of target_has_pending_events. */
6852
6853 bool
6854 remote_target::has_pending_events ()
6855 {
6856 if (target_can_async_p ())
6857 {
6858 remote_state *rs = get_remote_state ();
6859
6860 if (async_event_handler_marked (rs->remote_async_inferior_event_token))
6861 return true;
6862
6863 /* Note that BUFCNT can be negative, indicating sticky
6864 error. */
6865 if (rs->remote_desc->bufcnt != 0)
6866 return true;
6867 }
6868 return false;
6869 }
6870
6871 \f
6872
6873 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6874 thread, all threads of a remote process, or all threads of all
6875 processes. */
6876
6877 void
6878 remote_target::remote_stop_ns (ptid_t ptid)
6879 {
6880 struct remote_state *rs = get_remote_state ();
6881 char *p = rs->buf.data ();
6882 char *endp = p + get_remote_packet_size ();
6883
6884 /* If any thread that needs to stop was resumed but pending a vCont
6885 resume, generate a phony stop_reply. However, first check
6886 whether the thread wasn't resumed with a signal. Generating a
6887 phony stop in that case would result in losing the signal. */
6888 bool needs_commit = false;
6889 for (thread_info *tp : all_non_exited_threads (this, ptid))
6890 {
6891 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6892
6893 if (remote_thr->get_resume_state ()
6894 == resume_state::RESUMED_PENDING_VCONT)
6895 {
6896 const resumed_pending_vcont_info &info
6897 = remote_thr->resumed_pending_vcont_info ();
6898 if (info.sig != GDB_SIGNAL_0)
6899 {
6900 /* This signal must be forwarded to the inferior. We
6901 could commit-resume just this thread, but its simpler
6902 to just commit-resume everything. */
6903 needs_commit = true;
6904 break;
6905 }
6906 }
6907 }
6908
6909 if (needs_commit)
6910 commit_resumed ();
6911 else
6912 for (thread_info *tp : all_non_exited_threads (this, ptid))
6913 {
6914 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6915
6916 if (remote_thr->get_resume_state ()
6917 == resume_state::RESUMED_PENDING_VCONT)
6918 {
6919 remote_debug_printf ("Enqueueing phony stop reply for thread pending "
6920 "vCont-resume (%d, %ld, %ld)", tp->ptid.pid(),
6921 tp->ptid.lwp (), tp->ptid.tid ());
6922
6923 /* Check that the thread wasn't resumed with a signal.
6924 Generating a phony stop would result in losing the
6925 signal. */
6926 const resumed_pending_vcont_info &info
6927 = remote_thr->resumed_pending_vcont_info ();
6928 gdb_assert (info.sig == GDB_SIGNAL_0);
6929
6930 stop_reply *sr = new stop_reply ();
6931 sr->ptid = tp->ptid;
6932 sr->rs = rs;
6933 sr->ws.kind = TARGET_WAITKIND_STOPPED;
6934 sr->ws.value.sig = GDB_SIGNAL_0;
6935 sr->arch = tp->inf->gdbarch;
6936 sr->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6937 sr->watch_data_address = 0;
6938 sr->core = 0;
6939 this->push_stop_reply (sr);
6940
6941 /* Pretend that this thread was actually resumed on the
6942 remote target, then stopped. If we leave it in the
6943 RESUMED_PENDING_VCONT state and the commit_resumed
6944 method is called while the stop reply is still in the
6945 queue, we'll end up reporting a stop event to the core
6946 for that thread while it is running on the remote
6947 target... that would be bad. */
6948 remote_thr->set_resumed ();
6949 }
6950 }
6951
6952 /* FIXME: This supports_vCont_probed check is a workaround until
6953 packet_support is per-connection. */
6954 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN
6955 || !rs->supports_vCont_probed)
6956 remote_vcont_probe ();
6957
6958 if (!rs->supports_vCont.t)
6959 error (_("Remote server does not support stopping threads"));
6960
6961 if (ptid == minus_one_ptid
6962 || (!remote_multi_process_p (rs) && ptid.is_pid ()))
6963 p += xsnprintf (p, endp - p, "vCont;t");
6964 else
6965 {
6966 ptid_t nptid;
6967
6968 p += xsnprintf (p, endp - p, "vCont;t:");
6969
6970 if (ptid.is_pid ())
6971 /* All (-1) threads of process. */
6972 nptid = ptid_t (ptid.pid (), -1, 0);
6973 else
6974 {
6975 /* Small optimization: if we already have a stop reply for
6976 this thread, no use in telling the stub we want this
6977 stopped. */
6978 if (peek_stop_reply (ptid))
6979 return;
6980
6981 nptid = ptid;
6982 }
6983
6984 write_ptid (p, endp, nptid);
6985 }
6986
6987 /* In non-stop, we get an immediate OK reply. The stop reply will
6988 come in asynchronously by notification. */
6989 putpkt (rs->buf);
6990 getpkt (&rs->buf, 0);
6991 if (strcmp (rs->buf.data (), "OK") != 0)
6992 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid).c_str (),
6993 rs->buf.data ());
6994 }
6995
6996 /* All-stop version of target_interrupt. Sends a break or a ^C to
6997 interrupt the remote target. It is undefined which thread of which
6998 process reports the interrupt. */
6999
7000 void
7001 remote_target::remote_interrupt_as ()
7002 {
7003 struct remote_state *rs = get_remote_state ();
7004
7005 rs->ctrlc_pending_p = 1;
7006
7007 /* If the inferior is stopped already, but the core didn't know
7008 about it yet, just ignore the request. The cached wait status
7009 will be collected in remote_wait. */
7010 if (rs->cached_wait_status)
7011 return;
7012
7013 /* Send interrupt_sequence to remote target. */
7014 send_interrupt_sequence ();
7015 }
7016
7017 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
7018 the remote target. It is undefined which thread of which process
7019 reports the interrupt. Throws an error if the packet is not
7020 supported by the server. */
7021
7022 void
7023 remote_target::remote_interrupt_ns ()
7024 {
7025 struct remote_state *rs = get_remote_state ();
7026 char *p = rs->buf.data ();
7027 char *endp = p + get_remote_packet_size ();
7028
7029 xsnprintf (p, endp - p, "vCtrlC");
7030
7031 /* In non-stop, we get an immediate OK reply. The stop reply will
7032 come in asynchronously by notification. */
7033 putpkt (rs->buf);
7034 getpkt (&rs->buf, 0);
7035
7036 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
7037 {
7038 case PACKET_OK:
7039 break;
7040 case PACKET_UNKNOWN:
7041 error (_("No support for interrupting the remote target."));
7042 case PACKET_ERROR:
7043 error (_("Interrupting target failed: %s"), rs->buf.data ());
7044 }
7045 }
7046
7047 /* Implement the to_stop function for the remote targets. */
7048
7049 void
7050 remote_target::stop (ptid_t ptid)
7051 {
7052 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7053
7054 if (target_is_non_stop_p ())
7055 remote_stop_ns (ptid);
7056 else
7057 {
7058 /* We don't currently have a way to transparently pause the
7059 remote target in all-stop mode. Interrupt it instead. */
7060 remote_interrupt_as ();
7061 }
7062 }
7063
7064 /* Implement the to_interrupt function for the remote targets. */
7065
7066 void
7067 remote_target::interrupt ()
7068 {
7069 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7070
7071 if (target_is_non_stop_p ())
7072 remote_interrupt_ns ();
7073 else
7074 remote_interrupt_as ();
7075 }
7076
7077 /* Implement the to_pass_ctrlc function for the remote targets. */
7078
7079 void
7080 remote_target::pass_ctrlc ()
7081 {
7082 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7083
7084 struct remote_state *rs = get_remote_state ();
7085
7086 /* If we're starting up, we're not fully synced yet. Quit
7087 immediately. */
7088 if (rs->starting_up)
7089 quit ();
7090 /* If ^C has already been sent once, offer to disconnect. */
7091 else if (rs->ctrlc_pending_p)
7092 interrupt_query ();
7093 else
7094 target_interrupt ();
7095 }
7096
7097 /* Ask the user what to do when an interrupt is received. */
7098
7099 void
7100 remote_target::interrupt_query ()
7101 {
7102 struct remote_state *rs = get_remote_state ();
7103
7104 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
7105 {
7106 if (query (_("The target is not responding to interrupt requests.\n"
7107 "Stop debugging it? ")))
7108 {
7109 remote_unpush_target (this);
7110 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
7111 }
7112 }
7113 else
7114 {
7115 if (query (_("Interrupted while waiting for the program.\n"
7116 "Give up waiting? ")))
7117 quit ();
7118 }
7119 }
7120
7121 /* Enable/disable target terminal ownership. Most targets can use
7122 terminal groups to control terminal ownership. Remote targets are
7123 different in that explicit transfer of ownership to/from GDB/target
7124 is required. */
7125
7126 void
7127 remote_target::terminal_inferior ()
7128 {
7129 /* NOTE: At this point we could also register our selves as the
7130 recipient of all input. Any characters typed could then be
7131 passed on down to the target. */
7132 }
7133
7134 void
7135 remote_target::terminal_ours ()
7136 {
7137 }
7138
7139 static void
7140 remote_console_output (const char *msg)
7141 {
7142 const char *p;
7143
7144 for (p = msg; p[0] && p[1]; p += 2)
7145 {
7146 char tb[2];
7147 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
7148
7149 tb[0] = c;
7150 tb[1] = 0;
7151 gdb_stdtarg->puts (tb);
7152 }
7153 gdb_stdtarg->flush ();
7154 }
7155
7156 /* Return the length of the stop reply queue. */
7157
7158 int
7159 remote_target::stop_reply_queue_length ()
7160 {
7161 remote_state *rs = get_remote_state ();
7162 return rs->stop_reply_queue.size ();
7163 }
7164
7165 static void
7166 remote_notif_stop_parse (remote_target *remote,
7167 struct notif_client *self, const char *buf,
7168 struct notif_event *event)
7169 {
7170 remote->remote_parse_stop_reply (buf, (struct stop_reply *) event);
7171 }
7172
7173 static void
7174 remote_notif_stop_ack (remote_target *remote,
7175 struct notif_client *self, const char *buf,
7176 struct notif_event *event)
7177 {
7178 struct stop_reply *stop_reply = (struct stop_reply *) event;
7179
7180 /* acknowledge */
7181 putpkt (remote, self->ack_command);
7182
7183 /* Kind can be TARGET_WAITKIND_IGNORE if we have meanwhile discarded
7184 the notification. It was left in the queue because we need to
7185 acknowledge it and pull the rest of the notifications out. */
7186 if (stop_reply->ws.kind != TARGET_WAITKIND_IGNORE)
7187 remote->push_stop_reply (stop_reply);
7188 }
7189
7190 static int
7191 remote_notif_stop_can_get_pending_events (remote_target *remote,
7192 struct notif_client *self)
7193 {
7194 /* We can't get pending events in remote_notif_process for
7195 notification stop, and we have to do this in remote_wait_ns
7196 instead. If we fetch all queued events from stub, remote stub
7197 may exit and we have no chance to process them back in
7198 remote_wait_ns. */
7199 remote_state *rs = remote->get_remote_state ();
7200 mark_async_event_handler (rs->remote_async_inferior_event_token);
7201 return 0;
7202 }
7203
7204 stop_reply::~stop_reply ()
7205 {
7206 for (cached_reg_t &reg : regcache)
7207 xfree (reg.data);
7208 }
7209
7210 static notif_event_up
7211 remote_notif_stop_alloc_reply ()
7212 {
7213 return notif_event_up (new struct stop_reply ());
7214 }
7215
7216 /* A client of notification Stop. */
7217
7218 struct notif_client notif_client_stop =
7219 {
7220 "Stop",
7221 "vStopped",
7222 remote_notif_stop_parse,
7223 remote_notif_stop_ack,
7224 remote_notif_stop_can_get_pending_events,
7225 remote_notif_stop_alloc_reply,
7226 REMOTE_NOTIF_STOP,
7227 };
7228
7229 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
7230 the pid of the process that owns the threads we want to check, or
7231 -1 if we want to check all threads. */
7232
7233 static int
7234 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
7235 ptid_t thread_ptid)
7236 {
7237 if (ws->kind == TARGET_WAITKIND_FORKED
7238 || ws->kind == TARGET_WAITKIND_VFORKED)
7239 {
7240 if (event_pid == -1 || event_pid == thread_ptid.pid ())
7241 return 1;
7242 }
7243
7244 return 0;
7245 }
7246
7247 /* Return the thread's pending status used to determine whether the
7248 thread is a fork parent stopped at a fork event. */
7249
7250 static struct target_waitstatus *
7251 thread_pending_fork_status (struct thread_info *thread)
7252 {
7253 if (thread->suspend.waitstatus_pending_p)
7254 return &thread->suspend.waitstatus;
7255 else
7256 return &thread->pending_follow;
7257 }
7258
7259 /* Determine if THREAD is a pending fork parent thread. */
7260
7261 static int
7262 is_pending_fork_parent_thread (struct thread_info *thread)
7263 {
7264 struct target_waitstatus *ws = thread_pending_fork_status (thread);
7265 int pid = -1;
7266
7267 return is_pending_fork_parent (ws, pid, thread->ptid);
7268 }
7269
7270 /* If CONTEXT contains any fork child threads that have not been
7271 reported yet, remove them from the CONTEXT list. If such a
7272 thread exists it is because we are stopped at a fork catchpoint
7273 and have not yet called follow_fork, which will set up the
7274 host-side data structures for the new process. */
7275
7276 void
7277 remote_target::remove_new_fork_children (threads_listing_context *context)
7278 {
7279 int pid = -1;
7280 struct notif_client *notif = &notif_client_stop;
7281
7282 /* For any threads stopped at a fork event, remove the corresponding
7283 fork child threads from the CONTEXT list. */
7284 for (thread_info *thread : all_non_exited_threads (this))
7285 {
7286 struct target_waitstatus *ws = thread_pending_fork_status (thread);
7287
7288 if (is_pending_fork_parent (ws, pid, thread->ptid))
7289 context->remove_thread (ws->value.related_pid);
7290 }
7291
7292 /* Check for any pending fork events (not reported or processed yet)
7293 in process PID and remove those fork child threads from the
7294 CONTEXT list as well. */
7295 remote_notif_get_pending_events (notif);
7296 for (auto &event : get_remote_state ()->stop_reply_queue)
7297 if (event->ws.kind == TARGET_WAITKIND_FORKED
7298 || event->ws.kind == TARGET_WAITKIND_VFORKED
7299 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
7300 context->remove_thread (event->ws.value.related_pid);
7301 }
7302
7303 /* Check whether any event pending in the vStopped queue would prevent a
7304 global or process wildcard vCont action. Set *may_global_wildcard to
7305 false if we can't do a global wildcard (vCont;c), and clear the event
7306 inferior's may_wildcard_vcont flag if we can't do a process-wide
7307 wildcard resume (vCont;c:pPID.-1). */
7308
7309 void
7310 remote_target::check_pending_events_prevent_wildcard_vcont
7311 (bool *may_global_wildcard)
7312 {
7313 struct notif_client *notif = &notif_client_stop;
7314
7315 remote_notif_get_pending_events (notif);
7316 for (auto &event : get_remote_state ()->stop_reply_queue)
7317 {
7318 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
7319 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
7320 continue;
7321
7322 if (event->ws.kind == TARGET_WAITKIND_FORKED
7323 || event->ws.kind == TARGET_WAITKIND_VFORKED)
7324 *may_global_wildcard = false;
7325
7326 /* This may be the first time we heard about this process.
7327 Regardless, we must not do a global wildcard resume, otherwise
7328 we'd resume this process too. */
7329 *may_global_wildcard = false;
7330 if (event->ptid != null_ptid)
7331 {
7332 inferior *inf = find_inferior_ptid (this, event->ptid);
7333 if (inf != NULL)
7334 get_remote_inferior (inf)->may_wildcard_vcont = false;
7335 }
7336 }
7337 }
7338
7339 /* Discard all pending stop replies of inferior INF. */
7340
7341 void
7342 remote_target::discard_pending_stop_replies (struct inferior *inf)
7343 {
7344 struct stop_reply *reply;
7345 struct remote_state *rs = get_remote_state ();
7346 struct remote_notif_state *rns = rs->notif_state;
7347
7348 /* This function can be notified when an inferior exists. When the
7349 target is not remote, the notification state is NULL. */
7350 if (rs->remote_desc == NULL)
7351 return;
7352
7353 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
7354
7355 /* Discard the in-flight notification. */
7356 if (reply != NULL && reply->ptid.pid () == inf->pid)
7357 {
7358 /* Leave the notification pending, since the server expects that
7359 we acknowledge it with vStopped. But clear its contents, so
7360 that later on when we acknowledge it, we also discard it. */
7361 reply->ws.kind = TARGET_WAITKIND_IGNORE;
7362
7363 if (remote_debug)
7364 fprintf_unfiltered (gdb_stdlog,
7365 "discarded in-flight notification\n");
7366 }
7367
7368 /* Discard the stop replies we have already pulled with
7369 vStopped. */
7370 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7371 rs->stop_reply_queue.end (),
7372 [=] (const stop_reply_up &event)
7373 {
7374 return event->ptid.pid () == inf->pid;
7375 });
7376 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7377 }
7378
7379 /* Discard the stop replies for RS in stop_reply_queue. */
7380
7381 void
7382 remote_target::discard_pending_stop_replies_in_queue ()
7383 {
7384 remote_state *rs = get_remote_state ();
7385
7386 /* Discard the stop replies we have already pulled with
7387 vStopped. */
7388 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7389 rs->stop_reply_queue.end (),
7390 [=] (const stop_reply_up &event)
7391 {
7392 return event->rs == rs;
7393 });
7394 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7395 }
7396
7397 /* Remove the first reply in 'stop_reply_queue' which matches
7398 PTID. */
7399
7400 struct stop_reply *
7401 remote_target::remote_notif_remove_queued_reply (ptid_t ptid)
7402 {
7403 remote_state *rs = get_remote_state ();
7404
7405 auto iter = std::find_if (rs->stop_reply_queue.begin (),
7406 rs->stop_reply_queue.end (),
7407 [=] (const stop_reply_up &event)
7408 {
7409 return event->ptid.matches (ptid);
7410 });
7411 struct stop_reply *result;
7412 if (iter == rs->stop_reply_queue.end ())
7413 result = nullptr;
7414 else
7415 {
7416 result = iter->release ();
7417 rs->stop_reply_queue.erase (iter);
7418 }
7419
7420 if (notif_debug)
7421 fprintf_unfiltered (gdb_stdlog,
7422 "notif: discard queued event: 'Stop' in %s\n",
7423 target_pid_to_str (ptid).c_str ());
7424
7425 return result;
7426 }
7427
7428 /* Look for a queued stop reply belonging to PTID. If one is found,
7429 remove it from the queue, and return it. Returns NULL if none is
7430 found. If there are still queued events left to process, tell the
7431 event loop to get back to target_wait soon. */
7432
7433 struct stop_reply *
7434 remote_target::queued_stop_reply (ptid_t ptid)
7435 {
7436 remote_state *rs = get_remote_state ();
7437 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
7438
7439 if (!rs->stop_reply_queue.empty ())
7440 {
7441 /* There's still at least an event left. */
7442 mark_async_event_handler (rs->remote_async_inferior_event_token);
7443 }
7444
7445 return r;
7446 }
7447
7448 /* Push a fully parsed stop reply in the stop reply queue. Since we
7449 know that we now have at least one queued event left to pass to the
7450 core side, tell the event loop to get back to target_wait soon. */
7451
7452 void
7453 remote_target::push_stop_reply (struct stop_reply *new_event)
7454 {
7455 remote_state *rs = get_remote_state ();
7456 rs->stop_reply_queue.push_back (stop_reply_up (new_event));
7457
7458 if (notif_debug)
7459 fprintf_unfiltered (gdb_stdlog,
7460 "notif: push 'Stop' %s to queue %d\n",
7461 target_pid_to_str (new_event->ptid).c_str (),
7462 int (rs->stop_reply_queue.size ()));
7463
7464 mark_async_event_handler (rs->remote_async_inferior_event_token);
7465 }
7466
7467 /* Returns true if we have a stop reply for PTID. */
7468
7469 int
7470 remote_target::peek_stop_reply (ptid_t ptid)
7471 {
7472 remote_state *rs = get_remote_state ();
7473 for (auto &event : rs->stop_reply_queue)
7474 if (ptid == event->ptid
7475 && event->ws.kind == TARGET_WAITKIND_STOPPED)
7476 return 1;
7477 return 0;
7478 }
7479
7480 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7481 starting with P and ending with PEND matches PREFIX. */
7482
7483 static int
7484 strprefix (const char *p, const char *pend, const char *prefix)
7485 {
7486 for ( ; p < pend; p++, prefix++)
7487 if (*p != *prefix)
7488 return 0;
7489 return *prefix == '\0';
7490 }
7491
7492 /* Parse the stop reply in BUF. Either the function succeeds, and the
7493 result is stored in EVENT, or throws an error. */
7494
7495 void
7496 remote_target::remote_parse_stop_reply (const char *buf, stop_reply *event)
7497 {
7498 remote_arch_state *rsa = NULL;
7499 ULONGEST addr;
7500 const char *p;
7501 int skipregs = 0;
7502
7503 event->ptid = null_ptid;
7504 event->rs = get_remote_state ();
7505 event->ws.kind = TARGET_WAITKIND_IGNORE;
7506 event->ws.value.integer = 0;
7507 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7508 event->regcache.clear ();
7509 event->core = -1;
7510
7511 switch (buf[0])
7512 {
7513 case 'T': /* Status with PC, SP, FP, ... */
7514 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7515 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7516 ss = signal number
7517 n... = register number
7518 r... = register contents
7519 */
7520
7521 p = &buf[3]; /* after Txx */
7522 while (*p)
7523 {
7524 const char *p1;
7525 int fieldsize;
7526
7527 p1 = strchr (p, ':');
7528 if (p1 == NULL)
7529 error (_("Malformed packet(a) (missing colon): %s\n\
7530 Packet: '%s'\n"),
7531 p, buf);
7532 if (p == p1)
7533 error (_("Malformed packet(a) (missing register number): %s\n\
7534 Packet: '%s'\n"),
7535 p, buf);
7536
7537 /* Some "registers" are actually extended stop information.
7538 Note if you're adding a new entry here: GDB 7.9 and
7539 earlier assume that all register "numbers" that start
7540 with an hex digit are real register numbers. Make sure
7541 the server only sends such a packet if it knows the
7542 client understands it. */
7543
7544 if (strprefix (p, p1, "thread"))
7545 event->ptid = read_ptid (++p1, &p);
7546 else if (strprefix (p, p1, "syscall_entry"))
7547 {
7548 ULONGEST sysno;
7549
7550 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
7551 p = unpack_varlen_hex (++p1, &sysno);
7552 event->ws.value.syscall_number = (int) sysno;
7553 }
7554 else if (strprefix (p, p1, "syscall_return"))
7555 {
7556 ULONGEST sysno;
7557
7558 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
7559 p = unpack_varlen_hex (++p1, &sysno);
7560 event->ws.value.syscall_number = (int) sysno;
7561 }
7562 else if (strprefix (p, p1, "watch")
7563 || strprefix (p, p1, "rwatch")
7564 || strprefix (p, p1, "awatch"))
7565 {
7566 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7567 p = unpack_varlen_hex (++p1, &addr);
7568 event->watch_data_address = (CORE_ADDR) addr;
7569 }
7570 else if (strprefix (p, p1, "swbreak"))
7571 {
7572 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7573
7574 /* Make sure the stub doesn't forget to indicate support
7575 with qSupported. */
7576 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7577 error (_("Unexpected swbreak stop reason"));
7578
7579 /* The value part is documented as "must be empty",
7580 though we ignore it, in case we ever decide to make
7581 use of it in a backward compatible way. */
7582 p = strchrnul (p1 + 1, ';');
7583 }
7584 else if (strprefix (p, p1, "hwbreak"))
7585 {
7586 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7587
7588 /* Make sure the stub doesn't forget to indicate support
7589 with qSupported. */
7590 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7591 error (_("Unexpected hwbreak stop reason"));
7592
7593 /* See above. */
7594 p = strchrnul (p1 + 1, ';');
7595 }
7596 else if (strprefix (p, p1, "library"))
7597 {
7598 event->ws.kind = TARGET_WAITKIND_LOADED;
7599 p = strchrnul (p1 + 1, ';');
7600 }
7601 else if (strprefix (p, p1, "replaylog"))
7602 {
7603 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
7604 /* p1 will indicate "begin" or "end", but it makes
7605 no difference for now, so ignore it. */
7606 p = strchrnul (p1 + 1, ';');
7607 }
7608 else if (strprefix (p, p1, "core"))
7609 {
7610 ULONGEST c;
7611
7612 p = unpack_varlen_hex (++p1, &c);
7613 event->core = c;
7614 }
7615 else if (strprefix (p, p1, "fork"))
7616 {
7617 event->ws.value.related_pid = read_ptid (++p1, &p);
7618 event->ws.kind = TARGET_WAITKIND_FORKED;
7619 }
7620 else if (strprefix (p, p1, "vfork"))
7621 {
7622 event->ws.value.related_pid = read_ptid (++p1, &p);
7623 event->ws.kind = TARGET_WAITKIND_VFORKED;
7624 }
7625 else if (strprefix (p, p1, "vforkdone"))
7626 {
7627 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
7628 p = strchrnul (p1 + 1, ';');
7629 }
7630 else if (strprefix (p, p1, "exec"))
7631 {
7632 ULONGEST ignored;
7633 int pathlen;
7634
7635 /* Determine the length of the execd pathname. */
7636 p = unpack_varlen_hex (++p1, &ignored);
7637 pathlen = (p - p1) / 2;
7638
7639 /* Save the pathname for event reporting and for
7640 the next run command. */
7641 gdb::unique_xmalloc_ptr<char[]> pathname
7642 ((char *) xmalloc (pathlen + 1));
7643 hex2bin (p1, (gdb_byte *) pathname.get (), pathlen);
7644 pathname[pathlen] = '\0';
7645
7646 /* This is freed during event handling. */
7647 event->ws.value.execd_pathname = pathname.release ();
7648 event->ws.kind = TARGET_WAITKIND_EXECD;
7649
7650 /* Skip the registers included in this packet, since
7651 they may be for an architecture different from the
7652 one used by the original program. */
7653 skipregs = 1;
7654 }
7655 else if (strprefix (p, p1, "create"))
7656 {
7657 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
7658 p = strchrnul (p1 + 1, ';');
7659 }
7660 else
7661 {
7662 ULONGEST pnum;
7663 const char *p_temp;
7664
7665 if (skipregs)
7666 {
7667 p = strchrnul (p1 + 1, ';');
7668 p++;
7669 continue;
7670 }
7671
7672 /* Maybe a real ``P'' register number. */
7673 p_temp = unpack_varlen_hex (p, &pnum);
7674 /* If the first invalid character is the colon, we got a
7675 register number. Otherwise, it's an unknown stop
7676 reason. */
7677 if (p_temp == p1)
7678 {
7679 /* If we haven't parsed the event's thread yet, find
7680 it now, in order to find the architecture of the
7681 reported expedited registers. */
7682 if (event->ptid == null_ptid)
7683 {
7684 /* If there is no thread-id information then leave
7685 the event->ptid as null_ptid. Later in
7686 process_stop_reply we will pick a suitable
7687 thread. */
7688 const char *thr = strstr (p1 + 1, ";thread:");
7689 if (thr != NULL)
7690 event->ptid = read_ptid (thr + strlen (";thread:"),
7691 NULL);
7692 }
7693
7694 if (rsa == NULL)
7695 {
7696 inferior *inf
7697 = (event->ptid == null_ptid
7698 ? NULL
7699 : find_inferior_ptid (this, event->ptid));
7700 /* If this is the first time we learn anything
7701 about this process, skip the registers
7702 included in this packet, since we don't yet
7703 know which architecture to use to parse them.
7704 We'll determine the architecture later when
7705 we process the stop reply and retrieve the
7706 target description, via
7707 remote_notice_new_inferior ->
7708 post_create_inferior. */
7709 if (inf == NULL)
7710 {
7711 p = strchrnul (p1 + 1, ';');
7712 p++;
7713 continue;
7714 }
7715
7716 event->arch = inf->gdbarch;
7717 rsa = event->rs->get_remote_arch_state (event->arch);
7718 }
7719
7720 packet_reg *reg
7721 = packet_reg_from_pnum (event->arch, rsa, pnum);
7722 cached_reg_t cached_reg;
7723
7724 if (reg == NULL)
7725 error (_("Remote sent bad register number %s: %s\n\
7726 Packet: '%s'\n"),
7727 hex_string (pnum), p, buf);
7728
7729 cached_reg.num = reg->regnum;
7730 cached_reg.data = (gdb_byte *)
7731 xmalloc (register_size (event->arch, reg->regnum));
7732
7733 p = p1 + 1;
7734 fieldsize = hex2bin (p, cached_reg.data,
7735 register_size (event->arch, reg->regnum));
7736 p += 2 * fieldsize;
7737 if (fieldsize < register_size (event->arch, reg->regnum))
7738 warning (_("Remote reply is too short: %s"), buf);
7739
7740 event->regcache.push_back (cached_reg);
7741 }
7742 else
7743 {
7744 /* Not a number. Silently skip unknown optional
7745 info. */
7746 p = strchrnul (p1 + 1, ';');
7747 }
7748 }
7749
7750 if (*p != ';')
7751 error (_("Remote register badly formatted: %s\nhere: %s"),
7752 buf, p);
7753 ++p;
7754 }
7755
7756 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7757 break;
7758
7759 /* fall through */
7760 case 'S': /* Old style status, just signal only. */
7761 {
7762 int sig;
7763
7764 event->ws.kind = TARGET_WAITKIND_STOPPED;
7765 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7766 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7767 event->ws.value.sig = (enum gdb_signal) sig;
7768 else
7769 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7770 }
7771 break;
7772 case 'w': /* Thread exited. */
7773 {
7774 ULONGEST value;
7775
7776 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7777 p = unpack_varlen_hex (&buf[1], &value);
7778 event->ws.value.integer = value;
7779 if (*p != ';')
7780 error (_("stop reply packet badly formatted: %s"), buf);
7781 event->ptid = read_ptid (++p, NULL);
7782 break;
7783 }
7784 case 'W': /* Target exited. */
7785 case 'X':
7786 {
7787 ULONGEST value;
7788
7789 /* GDB used to accept only 2 hex chars here. Stubs should
7790 only send more if they detect GDB supports multi-process
7791 support. */
7792 p = unpack_varlen_hex (&buf[1], &value);
7793
7794 if (buf[0] == 'W')
7795 {
7796 /* The remote process exited. */
7797 event->ws.kind = TARGET_WAITKIND_EXITED;
7798 event->ws.value.integer = value;
7799 }
7800 else
7801 {
7802 /* The remote process exited with a signal. */
7803 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7804 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7805 event->ws.value.sig = (enum gdb_signal) value;
7806 else
7807 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7808 }
7809
7810 /* If no process is specified, return null_ptid, and let the
7811 caller figure out the right process to use. */
7812 int pid = 0;
7813 if (*p == '\0')
7814 ;
7815 else if (*p == ';')
7816 {
7817 p++;
7818
7819 if (*p == '\0')
7820 ;
7821 else if (startswith (p, "process:"))
7822 {
7823 ULONGEST upid;
7824
7825 p += sizeof ("process:") - 1;
7826 unpack_varlen_hex (p, &upid);
7827 pid = upid;
7828 }
7829 else
7830 error (_("unknown stop reply packet: %s"), buf);
7831 }
7832 else
7833 error (_("unknown stop reply packet: %s"), buf);
7834 event->ptid = ptid_t (pid);
7835 }
7836 break;
7837 case 'N':
7838 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7839 event->ptid = minus_one_ptid;
7840 break;
7841 }
7842 }
7843
7844 /* When the stub wants to tell GDB about a new notification reply, it
7845 sends a notification (%Stop, for example). Those can come it at
7846 any time, hence, we have to make sure that any pending
7847 putpkt/getpkt sequence we're making is finished, before querying
7848 the stub for more events with the corresponding ack command
7849 (vStopped, for example). E.g., if we started a vStopped sequence
7850 immediately upon receiving the notification, something like this
7851 could happen:
7852
7853 1.1) --> Hg 1
7854 1.2) <-- OK
7855 1.3) --> g
7856 1.4) <-- %Stop
7857 1.5) --> vStopped
7858 1.6) <-- (registers reply to step #1.3)
7859
7860 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7861 query.
7862
7863 To solve this, whenever we parse a %Stop notification successfully,
7864 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7865 doing whatever we were doing:
7866
7867 2.1) --> Hg 1
7868 2.2) <-- OK
7869 2.3) --> g
7870 2.4) <-- %Stop
7871 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7872 2.5) <-- (registers reply to step #2.3)
7873
7874 Eventually after step #2.5, we return to the event loop, which
7875 notices there's an event on the
7876 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7877 associated callback --- the function below. At this point, we're
7878 always safe to start a vStopped sequence. :
7879
7880 2.6) --> vStopped
7881 2.7) <-- T05 thread:2
7882 2.8) --> vStopped
7883 2.9) --> OK
7884 */
7885
7886 void
7887 remote_target::remote_notif_get_pending_events (notif_client *nc)
7888 {
7889 struct remote_state *rs = get_remote_state ();
7890
7891 if (rs->notif_state->pending_event[nc->id] != NULL)
7892 {
7893 if (notif_debug)
7894 fprintf_unfiltered (gdb_stdlog,
7895 "notif: process: '%s' ack pending event\n",
7896 nc->name);
7897
7898 /* acknowledge */
7899 nc->ack (this, nc, rs->buf.data (),
7900 rs->notif_state->pending_event[nc->id]);
7901 rs->notif_state->pending_event[nc->id] = NULL;
7902
7903 while (1)
7904 {
7905 getpkt (&rs->buf, 0);
7906 if (strcmp (rs->buf.data (), "OK") == 0)
7907 break;
7908 else
7909 remote_notif_ack (this, nc, rs->buf.data ());
7910 }
7911 }
7912 else
7913 {
7914 if (notif_debug)
7915 fprintf_unfiltered (gdb_stdlog,
7916 "notif: process: '%s' no pending reply\n",
7917 nc->name);
7918 }
7919 }
7920
7921 /* Wrapper around remote_target::remote_notif_get_pending_events to
7922 avoid having to export the whole remote_target class. */
7923
7924 void
7925 remote_notif_get_pending_events (remote_target *remote, notif_client *nc)
7926 {
7927 remote->remote_notif_get_pending_events (nc);
7928 }
7929
7930 /* Called from process_stop_reply when the stop packet we are responding
7931 to didn't include a process-id or thread-id. STATUS is the stop event
7932 we are responding to.
7933
7934 It is the task of this function to select a suitable thread (or process)
7935 and return its ptid, this is the thread (or process) we will assume the
7936 stop event came from.
7937
7938 In some cases there isn't really any choice about which thread (or
7939 process) is selected, a basic remote with a single process containing a
7940 single thread might choose not to send any process-id or thread-id in
7941 its stop packets, this function will select and return the one and only
7942 thread.
7943
7944 However, if a target supports multiple threads (or processes) and still
7945 doesn't include a thread-id (or process-id) in its stop packet then
7946 first, this is a badly behaving target, and second, we're going to have
7947 to select a thread (or process) at random and use that. This function
7948 will print a warning to the user if it detects that there is the
7949 possibility that GDB is guessing which thread (or process) to
7950 report.
7951
7952 Note that this is called before GDB fetches the updated thread list from the
7953 target. So it's possible for the stop reply to be ambiguous and for GDB to
7954 not realize it. For example, if there's initially one thread, the target
7955 spawns a second thread, and then sends a stop reply without an id that
7956 concerns the first thread. GDB will assume the stop reply is about the
7957 first thread - the only thread it knows about - without printing a warning.
7958 Anyway, if the remote meant for the stop reply to be about the second thread,
7959 then it would be really broken, because GDB doesn't know about that thread
7960 yet. */
7961
7962 ptid_t
7963 remote_target::select_thread_for_ambiguous_stop_reply
7964 (const struct target_waitstatus *status)
7965 {
7966 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
7967
7968 /* Some stop events apply to all threads in an inferior, while others
7969 only apply to a single thread. */
7970 bool process_wide_stop
7971 = (status->kind == TARGET_WAITKIND_EXITED
7972 || status->kind == TARGET_WAITKIND_SIGNALLED);
7973
7974 remote_debug_printf ("process_wide_stop = %d", process_wide_stop);
7975
7976 thread_info *first_resumed_thread = nullptr;
7977 bool ambiguous = false;
7978
7979 /* Consider all non-exited threads of the target, find the first resumed
7980 one. */
7981 for (thread_info *thr : all_non_exited_threads (this))
7982 {
7983 remote_thread_info *remote_thr = get_remote_thread_info (thr);
7984
7985 if (remote_thr->get_resume_state () != resume_state::RESUMED)
7986 continue;
7987
7988 if (first_resumed_thread == nullptr)
7989 first_resumed_thread = thr;
7990 else if (!process_wide_stop
7991 || first_resumed_thread->ptid.pid () != thr->ptid.pid ())
7992 ambiguous = true;
7993 }
7994
7995 remote_debug_printf ("first resumed thread is %s",
7996 pid_to_str (first_resumed_thread->ptid).c_str ());
7997 remote_debug_printf ("is this guess ambiguous? = %d", ambiguous);
7998
7999 gdb_assert (first_resumed_thread != nullptr);
8000
8001 /* Warn if the remote target is sending ambiguous stop replies. */
8002 if (ambiguous)
8003 {
8004 static bool warned = false;
8005
8006 if (!warned)
8007 {
8008 /* If you are seeing this warning then the remote target has
8009 stopped without specifying a thread-id, but the target
8010 does have multiple threads (or inferiors), and so GDB is
8011 having to guess which thread stopped.
8012
8013 Examples of what might cause this are the target sending
8014 and 'S' stop packet, or a 'T' stop packet and not
8015 including a thread-id.
8016
8017 Additionally, the target might send a 'W' or 'X packet
8018 without including a process-id, when the target has
8019 multiple running inferiors. */
8020 if (process_wide_stop)
8021 warning (_("multi-inferior target stopped without "
8022 "sending a process-id, using first "
8023 "non-exited inferior"));
8024 else
8025 warning (_("multi-threaded target stopped without "
8026 "sending a thread-id, using first "
8027 "non-exited thread"));
8028 warned = true;
8029 }
8030 }
8031
8032 /* If this is a stop for all threads then don't use a particular threads
8033 ptid, instead create a new ptid where only the pid field is set. */
8034 if (process_wide_stop)
8035 return ptid_t (first_resumed_thread->ptid.pid ());
8036 else
8037 return first_resumed_thread->ptid;
8038 }
8039
8040 /* Called when it is decided that STOP_REPLY holds the info of the
8041 event that is to be returned to the core. This function always
8042 destroys STOP_REPLY. */
8043
8044 ptid_t
8045 remote_target::process_stop_reply (struct stop_reply *stop_reply,
8046 struct target_waitstatus *status)
8047 {
8048 *status = stop_reply->ws;
8049 ptid_t ptid = stop_reply->ptid;
8050
8051 /* If no thread/process was reported by the stub then select a suitable
8052 thread/process. */
8053 if (ptid == null_ptid)
8054 ptid = select_thread_for_ambiguous_stop_reply (status);
8055 gdb_assert (ptid != null_ptid);
8056
8057 if (status->kind != TARGET_WAITKIND_EXITED
8058 && status->kind != TARGET_WAITKIND_SIGNALLED
8059 && status->kind != TARGET_WAITKIND_NO_RESUMED)
8060 {
8061 /* Expedited registers. */
8062 if (!stop_reply->regcache.empty ())
8063 {
8064 struct regcache *regcache
8065 = get_thread_arch_regcache (this, ptid, stop_reply->arch);
8066
8067 for (cached_reg_t &reg : stop_reply->regcache)
8068 {
8069 regcache->raw_supply (reg.num, reg.data);
8070 xfree (reg.data);
8071 }
8072
8073 stop_reply->regcache.clear ();
8074 }
8075
8076 remote_notice_new_inferior (ptid, false);
8077 remote_thread_info *remote_thr = get_remote_thread_info (this, ptid);
8078 remote_thr->core = stop_reply->core;
8079 remote_thr->stop_reason = stop_reply->stop_reason;
8080 remote_thr->watch_data_address = stop_reply->watch_data_address;
8081
8082 if (target_is_non_stop_p ())
8083 {
8084 /* If the target works in non-stop mode, a stop-reply indicates that
8085 only this thread stopped. */
8086 remote_thr->set_not_resumed ();
8087 }
8088 else
8089 {
8090 /* If the target works in all-stop mode, a stop-reply indicates that
8091 all the target's threads stopped. */
8092 for (thread_info *tp : all_non_exited_threads (this))
8093 get_remote_thread_info (tp)->set_not_resumed ();
8094 }
8095 }
8096
8097 delete stop_reply;
8098 return ptid;
8099 }
8100
8101 /* The non-stop mode version of target_wait. */
8102
8103 ptid_t
8104 remote_target::wait_ns (ptid_t ptid, struct target_waitstatus *status,
8105 target_wait_flags options)
8106 {
8107 struct remote_state *rs = get_remote_state ();
8108 struct stop_reply *stop_reply;
8109 int ret;
8110 int is_notif = 0;
8111
8112 /* If in non-stop mode, get out of getpkt even if a
8113 notification is received. */
8114
8115 ret = getpkt_or_notif_sane (&rs->buf, 0 /* forever */, &is_notif);
8116 while (1)
8117 {
8118 if (ret != -1 && !is_notif)
8119 switch (rs->buf[0])
8120 {
8121 case 'E': /* Error of some sort. */
8122 /* We're out of sync with the target now. Did it continue
8123 or not? We can't tell which thread it was in non-stop,
8124 so just ignore this. */
8125 warning (_("Remote failure reply: %s"), rs->buf.data ());
8126 break;
8127 case 'O': /* Console output. */
8128 remote_console_output (&rs->buf[1]);
8129 break;
8130 default:
8131 warning (_("Invalid remote reply: %s"), rs->buf.data ());
8132 break;
8133 }
8134
8135 /* Acknowledge a pending stop reply that may have arrived in the
8136 mean time. */
8137 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
8138 remote_notif_get_pending_events (&notif_client_stop);
8139
8140 /* If indeed we noticed a stop reply, we're done. */
8141 stop_reply = queued_stop_reply (ptid);
8142 if (stop_reply != NULL)
8143 return process_stop_reply (stop_reply, status);
8144
8145 /* Still no event. If we're just polling for an event, then
8146 return to the event loop. */
8147 if (options & TARGET_WNOHANG)
8148 {
8149 status->kind = TARGET_WAITKIND_IGNORE;
8150 return minus_one_ptid;
8151 }
8152
8153 /* Otherwise do a blocking wait. */
8154 ret = getpkt_or_notif_sane (&rs->buf, 1 /* forever */, &is_notif);
8155 }
8156 }
8157
8158 /* Return the first resumed thread. */
8159
8160 static ptid_t
8161 first_remote_resumed_thread (remote_target *target)
8162 {
8163 for (thread_info *tp : all_non_exited_threads (target, minus_one_ptid))
8164 if (tp->resumed)
8165 return tp->ptid;
8166 return null_ptid;
8167 }
8168
8169 /* Wait until the remote machine stops, then return, storing status in
8170 STATUS just as `wait' would. */
8171
8172 ptid_t
8173 remote_target::wait_as (ptid_t ptid, target_waitstatus *status,
8174 target_wait_flags options)
8175 {
8176 struct remote_state *rs = get_remote_state ();
8177 ptid_t event_ptid = null_ptid;
8178 char *buf;
8179 struct stop_reply *stop_reply;
8180
8181 again:
8182
8183 status->kind = TARGET_WAITKIND_IGNORE;
8184 status->value.integer = 0;
8185
8186 stop_reply = queued_stop_reply (ptid);
8187 if (stop_reply != NULL)
8188 return process_stop_reply (stop_reply, status);
8189
8190 if (rs->cached_wait_status)
8191 /* Use the cached wait status, but only once. */
8192 rs->cached_wait_status = 0;
8193 else
8194 {
8195 int ret;
8196 int is_notif;
8197 int forever = ((options & TARGET_WNOHANG) == 0
8198 && rs->wait_forever_enabled_p);
8199
8200 if (!rs->waiting_for_stop_reply)
8201 {
8202 status->kind = TARGET_WAITKIND_NO_RESUMED;
8203 return minus_one_ptid;
8204 }
8205
8206 /* FIXME: cagney/1999-09-27: If we're in async mode we should
8207 _never_ wait for ever -> test on target_is_async_p().
8208 However, before we do that we need to ensure that the caller
8209 knows how to take the target into/out of async mode. */
8210 ret = getpkt_or_notif_sane (&rs->buf, forever, &is_notif);
8211
8212 /* GDB gets a notification. Return to core as this event is
8213 not interesting. */
8214 if (ret != -1 && is_notif)
8215 return minus_one_ptid;
8216
8217 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
8218 return minus_one_ptid;
8219 }
8220
8221 buf = rs->buf.data ();
8222
8223 /* Assume that the target has acknowledged Ctrl-C unless we receive
8224 an 'F' or 'O' packet. */
8225 if (buf[0] != 'F' && buf[0] != 'O')
8226 rs->ctrlc_pending_p = 0;
8227
8228 switch (buf[0])
8229 {
8230 case 'E': /* Error of some sort. */
8231 /* We're out of sync with the target now. Did it continue or
8232 not? Not is more likely, so report a stop. */
8233 rs->waiting_for_stop_reply = 0;
8234
8235 warning (_("Remote failure reply: %s"), buf);
8236 status->kind = TARGET_WAITKIND_STOPPED;
8237 status->value.sig = GDB_SIGNAL_0;
8238 break;
8239 case 'F': /* File-I/O request. */
8240 /* GDB may access the inferior memory while handling the File-I/O
8241 request, but we don't want GDB accessing memory while waiting
8242 for a stop reply. See the comments in putpkt_binary. Set
8243 waiting_for_stop_reply to 0 temporarily. */
8244 rs->waiting_for_stop_reply = 0;
8245 remote_fileio_request (this, buf, rs->ctrlc_pending_p);
8246 rs->ctrlc_pending_p = 0;
8247 /* GDB handled the File-I/O request, and the target is running
8248 again. Keep waiting for events. */
8249 rs->waiting_for_stop_reply = 1;
8250 break;
8251 case 'N': case 'T': case 'S': case 'X': case 'W':
8252 {
8253 /* There is a stop reply to handle. */
8254 rs->waiting_for_stop_reply = 0;
8255
8256 stop_reply
8257 = (struct stop_reply *) remote_notif_parse (this,
8258 &notif_client_stop,
8259 rs->buf.data ());
8260
8261 event_ptid = process_stop_reply (stop_reply, status);
8262 break;
8263 }
8264 case 'O': /* Console output. */
8265 remote_console_output (buf + 1);
8266 break;
8267 case '\0':
8268 if (rs->last_sent_signal != GDB_SIGNAL_0)
8269 {
8270 /* Zero length reply means that we tried 'S' or 'C' and the
8271 remote system doesn't support it. */
8272 target_terminal::ours_for_output ();
8273 printf_filtered
8274 ("Can't send signals to this remote system. %s not sent.\n",
8275 gdb_signal_to_name (rs->last_sent_signal));
8276 rs->last_sent_signal = GDB_SIGNAL_0;
8277 target_terminal::inferior ();
8278
8279 strcpy (buf, rs->last_sent_step ? "s" : "c");
8280 putpkt (buf);
8281 break;
8282 }
8283 /* fallthrough */
8284 default:
8285 warning (_("Invalid remote reply: %s"), buf);
8286 break;
8287 }
8288
8289 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
8290 return minus_one_ptid;
8291 else if (status->kind == TARGET_WAITKIND_IGNORE)
8292 {
8293 /* Nothing interesting happened. If we're doing a non-blocking
8294 poll, we're done. Otherwise, go back to waiting. */
8295 if (options & TARGET_WNOHANG)
8296 return minus_one_ptid;
8297 else
8298 goto again;
8299 }
8300 else if (status->kind != TARGET_WAITKIND_EXITED
8301 && status->kind != TARGET_WAITKIND_SIGNALLED)
8302 {
8303 if (event_ptid != null_ptid)
8304 record_currthread (rs, event_ptid);
8305 else
8306 event_ptid = first_remote_resumed_thread (this);
8307 }
8308 else
8309 {
8310 /* A process exit. Invalidate our notion of current thread. */
8311 record_currthread (rs, minus_one_ptid);
8312 /* It's possible that the packet did not include a pid. */
8313 if (event_ptid == null_ptid)
8314 event_ptid = first_remote_resumed_thread (this);
8315 /* EVENT_PTID could still be NULL_PTID. Double-check. */
8316 if (event_ptid == null_ptid)
8317 event_ptid = magic_null_ptid;
8318 }
8319
8320 return event_ptid;
8321 }
8322
8323 /* Wait until the remote machine stops, then return, storing status in
8324 STATUS just as `wait' would. */
8325
8326 ptid_t
8327 remote_target::wait (ptid_t ptid, struct target_waitstatus *status,
8328 target_wait_flags options)
8329 {
8330 REMOTE_SCOPED_DEBUG_ENTER_EXIT;
8331
8332 remote_state *rs = get_remote_state ();
8333
8334 /* Start by clearing the flag that asks for our wait method to be called,
8335 we'll mark it again at the end if needed. */
8336 if (target_is_async_p ())
8337 clear_async_event_handler (rs->remote_async_inferior_event_token);
8338
8339 ptid_t event_ptid;
8340
8341 if (target_is_non_stop_p ())
8342 event_ptid = wait_ns (ptid, status, options);
8343 else
8344 event_ptid = wait_as (ptid, status, options);
8345
8346 if (target_is_async_p ())
8347 {
8348 /* If there are events left in the queue, or unacknowledged
8349 notifications, then tell the event loop to call us again. */
8350 if (!rs->stop_reply_queue.empty ()
8351 || rs->notif_state->pending_event[notif_client_stop.id] != nullptr)
8352 mark_async_event_handler (rs->remote_async_inferior_event_token);
8353 }
8354
8355 return event_ptid;
8356 }
8357
8358 /* Fetch a single register using a 'p' packet. */
8359
8360 int
8361 remote_target::fetch_register_using_p (struct regcache *regcache,
8362 packet_reg *reg)
8363 {
8364 struct gdbarch *gdbarch = regcache->arch ();
8365 struct remote_state *rs = get_remote_state ();
8366 char *buf, *p;
8367 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8368 int i;
8369
8370 if (packet_support (PACKET_p) == PACKET_DISABLE)
8371 return 0;
8372
8373 if (reg->pnum == -1)
8374 return 0;
8375
8376 p = rs->buf.data ();
8377 *p++ = 'p';
8378 p += hexnumstr (p, reg->pnum);
8379 *p++ = '\0';
8380 putpkt (rs->buf);
8381 getpkt (&rs->buf, 0);
8382
8383 buf = rs->buf.data ();
8384
8385 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_p]))
8386 {
8387 case PACKET_OK:
8388 break;
8389 case PACKET_UNKNOWN:
8390 return 0;
8391 case PACKET_ERROR:
8392 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
8393 gdbarch_register_name (regcache->arch (),
8394 reg->regnum),
8395 buf);
8396 }
8397
8398 /* If this register is unfetchable, tell the regcache. */
8399 if (buf[0] == 'x')
8400 {
8401 regcache->raw_supply (reg->regnum, NULL);
8402 return 1;
8403 }
8404
8405 /* Otherwise, parse and supply the value. */
8406 p = buf;
8407 i = 0;
8408 while (p[0] != 0)
8409 {
8410 if (p[1] == 0)
8411 error (_("fetch_register_using_p: early buf termination"));
8412
8413 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
8414 p += 2;
8415 }
8416 regcache->raw_supply (reg->regnum, regp);
8417 return 1;
8418 }
8419
8420 /* Fetch the registers included in the target's 'g' packet. */
8421
8422 int
8423 remote_target::send_g_packet ()
8424 {
8425 struct remote_state *rs = get_remote_state ();
8426 int buf_len;
8427
8428 xsnprintf (rs->buf.data (), get_remote_packet_size (), "g");
8429 putpkt (rs->buf);
8430 getpkt (&rs->buf, 0);
8431 if (packet_check_result (rs->buf) == PACKET_ERROR)
8432 error (_("Could not read registers; remote failure reply '%s'"),
8433 rs->buf.data ());
8434
8435 /* We can get out of synch in various cases. If the first character
8436 in the buffer is not a hex character, assume that has happened
8437 and try to fetch another packet to read. */
8438 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
8439 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
8440 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
8441 && rs->buf[0] != 'x') /* New: unavailable register value. */
8442 {
8443 remote_debug_printf ("Bad register packet; fetching a new packet");
8444 getpkt (&rs->buf, 0);
8445 }
8446
8447 buf_len = strlen (rs->buf.data ());
8448
8449 /* Sanity check the received packet. */
8450 if (buf_len % 2 != 0)
8451 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf.data ());
8452
8453 return buf_len / 2;
8454 }
8455
8456 void
8457 remote_target::process_g_packet (struct regcache *regcache)
8458 {
8459 struct gdbarch *gdbarch = regcache->arch ();
8460 struct remote_state *rs = get_remote_state ();
8461 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8462 int i, buf_len;
8463 char *p;
8464 char *regs;
8465
8466 buf_len = strlen (rs->buf.data ());
8467
8468 /* Further sanity checks, with knowledge of the architecture. */
8469 if (buf_len > 2 * rsa->sizeof_g_packet)
8470 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
8471 "bytes): %s"),
8472 rsa->sizeof_g_packet, buf_len / 2,
8473 rs->buf.data ());
8474
8475 /* Save the size of the packet sent to us by the target. It is used
8476 as a heuristic when determining the max size of packets that the
8477 target can safely receive. */
8478 if (rsa->actual_register_packet_size == 0)
8479 rsa->actual_register_packet_size = buf_len;
8480
8481 /* If this is smaller than we guessed the 'g' packet would be,
8482 update our records. A 'g' reply that doesn't include a register's
8483 value implies either that the register is not available, or that
8484 the 'p' packet must be used. */
8485 if (buf_len < 2 * rsa->sizeof_g_packet)
8486 {
8487 long sizeof_g_packet = buf_len / 2;
8488
8489 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8490 {
8491 long offset = rsa->regs[i].offset;
8492 long reg_size = register_size (gdbarch, i);
8493
8494 if (rsa->regs[i].pnum == -1)
8495 continue;
8496
8497 if (offset >= sizeof_g_packet)
8498 rsa->regs[i].in_g_packet = 0;
8499 else if (offset + reg_size > sizeof_g_packet)
8500 error (_("Truncated register %d in remote 'g' packet"), i);
8501 else
8502 rsa->regs[i].in_g_packet = 1;
8503 }
8504
8505 /* Looks valid enough, we can assume this is the correct length
8506 for a 'g' packet. It's important not to adjust
8507 rsa->sizeof_g_packet if we have truncated registers otherwise
8508 this "if" won't be run the next time the method is called
8509 with a packet of the same size and one of the internal errors
8510 below will trigger instead. */
8511 rsa->sizeof_g_packet = sizeof_g_packet;
8512 }
8513
8514 regs = (char *) alloca (rsa->sizeof_g_packet);
8515
8516 /* Unimplemented registers read as all bits zero. */
8517 memset (regs, 0, rsa->sizeof_g_packet);
8518
8519 /* Reply describes registers byte by byte, each byte encoded as two
8520 hex characters. Suck them all up, then supply them to the
8521 register cacheing/storage mechanism. */
8522
8523 p = rs->buf.data ();
8524 for (i = 0; i < rsa->sizeof_g_packet; i++)
8525 {
8526 if (p[0] == 0 || p[1] == 0)
8527 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
8528 internal_error (__FILE__, __LINE__,
8529 _("unexpected end of 'g' packet reply"));
8530
8531 if (p[0] == 'x' && p[1] == 'x')
8532 regs[i] = 0; /* 'x' */
8533 else
8534 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
8535 p += 2;
8536 }
8537
8538 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8539 {
8540 struct packet_reg *r = &rsa->regs[i];
8541 long reg_size = register_size (gdbarch, i);
8542
8543 if (r->in_g_packet)
8544 {
8545 if ((r->offset + reg_size) * 2 > strlen (rs->buf.data ()))
8546 /* This shouldn't happen - we adjusted in_g_packet above. */
8547 internal_error (__FILE__, __LINE__,
8548 _("unexpected end of 'g' packet reply"));
8549 else if (rs->buf[r->offset * 2] == 'x')
8550 {
8551 gdb_assert (r->offset * 2 < strlen (rs->buf.data ()));
8552 /* The register isn't available, mark it as such (at
8553 the same time setting the value to zero). */
8554 regcache->raw_supply (r->regnum, NULL);
8555 }
8556 else
8557 regcache->raw_supply (r->regnum, regs + r->offset);
8558 }
8559 }
8560 }
8561
8562 void
8563 remote_target::fetch_registers_using_g (struct regcache *regcache)
8564 {
8565 send_g_packet ();
8566 process_g_packet (regcache);
8567 }
8568
8569 /* Make the remote selected traceframe match GDB's selected
8570 traceframe. */
8571
8572 void
8573 remote_target::set_remote_traceframe ()
8574 {
8575 int newnum;
8576 struct remote_state *rs = get_remote_state ();
8577
8578 if (rs->remote_traceframe_number == get_traceframe_number ())
8579 return;
8580
8581 /* Avoid recursion, remote_trace_find calls us again. */
8582 rs->remote_traceframe_number = get_traceframe_number ();
8583
8584 newnum = target_trace_find (tfind_number,
8585 get_traceframe_number (), 0, 0, NULL);
8586
8587 /* Should not happen. If it does, all bets are off. */
8588 if (newnum != get_traceframe_number ())
8589 warning (_("could not set remote traceframe"));
8590 }
8591
8592 void
8593 remote_target::fetch_registers (struct regcache *regcache, int regnum)
8594 {
8595 struct gdbarch *gdbarch = regcache->arch ();
8596 struct remote_state *rs = get_remote_state ();
8597 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8598 int i;
8599
8600 set_remote_traceframe ();
8601 set_general_thread (regcache->ptid ());
8602
8603 if (regnum >= 0)
8604 {
8605 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8606
8607 gdb_assert (reg != NULL);
8608
8609 /* If this register might be in the 'g' packet, try that first -
8610 we are likely to read more than one register. If this is the
8611 first 'g' packet, we might be overly optimistic about its
8612 contents, so fall back to 'p'. */
8613 if (reg->in_g_packet)
8614 {
8615 fetch_registers_using_g (regcache);
8616 if (reg->in_g_packet)
8617 return;
8618 }
8619
8620 if (fetch_register_using_p (regcache, reg))
8621 return;
8622
8623 /* This register is not available. */
8624 regcache->raw_supply (reg->regnum, NULL);
8625
8626 return;
8627 }
8628
8629 fetch_registers_using_g (regcache);
8630
8631 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8632 if (!rsa->regs[i].in_g_packet)
8633 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8634 {
8635 /* This register is not available. */
8636 regcache->raw_supply (i, NULL);
8637 }
8638 }
8639
8640 /* Prepare to store registers. Since we may send them all (using a
8641 'G' request), we have to read out the ones we don't want to change
8642 first. */
8643
8644 void
8645 remote_target::prepare_to_store (struct regcache *regcache)
8646 {
8647 struct remote_state *rs = get_remote_state ();
8648 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8649 int i;
8650
8651 /* Make sure the entire registers array is valid. */
8652 switch (packet_support (PACKET_P))
8653 {
8654 case PACKET_DISABLE:
8655 case PACKET_SUPPORT_UNKNOWN:
8656 /* Make sure all the necessary registers are cached. */
8657 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8658 if (rsa->regs[i].in_g_packet)
8659 regcache->raw_update (rsa->regs[i].regnum);
8660 break;
8661 case PACKET_ENABLE:
8662 break;
8663 }
8664 }
8665
8666 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8667 packet was not recognized. */
8668
8669 int
8670 remote_target::store_register_using_P (const struct regcache *regcache,
8671 packet_reg *reg)
8672 {
8673 struct gdbarch *gdbarch = regcache->arch ();
8674 struct remote_state *rs = get_remote_state ();
8675 /* Try storing a single register. */
8676 char *buf = rs->buf.data ();
8677 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8678 char *p;
8679
8680 if (packet_support (PACKET_P) == PACKET_DISABLE)
8681 return 0;
8682
8683 if (reg->pnum == -1)
8684 return 0;
8685
8686 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8687 p = buf + strlen (buf);
8688 regcache->raw_collect (reg->regnum, regp);
8689 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8690 putpkt (rs->buf);
8691 getpkt (&rs->buf, 0);
8692
8693 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8694 {
8695 case PACKET_OK:
8696 return 1;
8697 case PACKET_ERROR:
8698 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8699 gdbarch_register_name (gdbarch, reg->regnum), rs->buf.data ());
8700 case PACKET_UNKNOWN:
8701 return 0;
8702 default:
8703 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8704 }
8705 }
8706
8707 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8708 contents of the register cache buffer. FIXME: ignores errors. */
8709
8710 void
8711 remote_target::store_registers_using_G (const struct regcache *regcache)
8712 {
8713 struct remote_state *rs = get_remote_state ();
8714 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8715 gdb_byte *regs;
8716 char *p;
8717
8718 /* Extract all the registers in the regcache copying them into a
8719 local buffer. */
8720 {
8721 int i;
8722
8723 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8724 memset (regs, 0, rsa->sizeof_g_packet);
8725 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8726 {
8727 struct packet_reg *r = &rsa->regs[i];
8728
8729 if (r->in_g_packet)
8730 regcache->raw_collect (r->regnum, regs + r->offset);
8731 }
8732 }
8733
8734 /* Command describes registers byte by byte,
8735 each byte encoded as two hex characters. */
8736 p = rs->buf.data ();
8737 *p++ = 'G';
8738 bin2hex (regs, p, rsa->sizeof_g_packet);
8739 putpkt (rs->buf);
8740 getpkt (&rs->buf, 0);
8741 if (packet_check_result (rs->buf) == PACKET_ERROR)
8742 error (_("Could not write registers; remote failure reply '%s'"),
8743 rs->buf.data ());
8744 }
8745
8746 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8747 of the register cache buffer. FIXME: ignores errors. */
8748
8749 void
8750 remote_target::store_registers (struct regcache *regcache, int regnum)
8751 {
8752 struct gdbarch *gdbarch = regcache->arch ();
8753 struct remote_state *rs = get_remote_state ();
8754 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8755 int i;
8756
8757 set_remote_traceframe ();
8758 set_general_thread (regcache->ptid ());
8759
8760 if (regnum >= 0)
8761 {
8762 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8763
8764 gdb_assert (reg != NULL);
8765
8766 /* Always prefer to store registers using the 'P' packet if
8767 possible; we often change only a small number of registers.
8768 Sometimes we change a larger number; we'd need help from a
8769 higher layer to know to use 'G'. */
8770 if (store_register_using_P (regcache, reg))
8771 return;
8772
8773 /* For now, don't complain if we have no way to write the
8774 register. GDB loses track of unavailable registers too
8775 easily. Some day, this may be an error. We don't have
8776 any way to read the register, either... */
8777 if (!reg->in_g_packet)
8778 return;
8779
8780 store_registers_using_G (regcache);
8781 return;
8782 }
8783
8784 store_registers_using_G (regcache);
8785
8786 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8787 if (!rsa->regs[i].in_g_packet)
8788 if (!store_register_using_P (regcache, &rsa->regs[i]))
8789 /* See above for why we do not issue an error here. */
8790 continue;
8791 }
8792 \f
8793
8794 /* Return the number of hex digits in num. */
8795
8796 static int
8797 hexnumlen (ULONGEST num)
8798 {
8799 int i;
8800
8801 for (i = 0; num != 0; i++)
8802 num >>= 4;
8803
8804 return std::max (i, 1);
8805 }
8806
8807 /* Set BUF to the minimum number of hex digits representing NUM. */
8808
8809 static int
8810 hexnumstr (char *buf, ULONGEST num)
8811 {
8812 int len = hexnumlen (num);
8813
8814 return hexnumnstr (buf, num, len);
8815 }
8816
8817
8818 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8819
8820 static int
8821 hexnumnstr (char *buf, ULONGEST num, int width)
8822 {
8823 int i;
8824
8825 buf[width] = '\0';
8826
8827 for (i = width - 1; i >= 0; i--)
8828 {
8829 buf[i] = "0123456789abcdef"[(num & 0xf)];
8830 num >>= 4;
8831 }
8832
8833 return width;
8834 }
8835
8836 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8837
8838 static CORE_ADDR
8839 remote_address_masked (CORE_ADDR addr)
8840 {
8841 unsigned int address_size = remote_address_size;
8842
8843 /* If "remoteaddresssize" was not set, default to target address size. */
8844 if (!address_size)
8845 address_size = gdbarch_addr_bit (target_gdbarch ());
8846
8847 if (address_size > 0
8848 && address_size < (sizeof (ULONGEST) * 8))
8849 {
8850 /* Only create a mask when that mask can safely be constructed
8851 in a ULONGEST variable. */
8852 ULONGEST mask = 1;
8853
8854 mask = (mask << address_size) - 1;
8855 addr &= mask;
8856 }
8857 return addr;
8858 }
8859
8860 /* Determine whether the remote target supports binary downloading.
8861 This is accomplished by sending a no-op memory write of zero length
8862 to the target at the specified address. It does not suffice to send
8863 the whole packet, since many stubs strip the eighth bit and
8864 subsequently compute a wrong checksum, which causes real havoc with
8865 remote_write_bytes.
8866
8867 NOTE: This can still lose if the serial line is not eight-bit
8868 clean. In cases like this, the user should clear "remote
8869 X-packet". */
8870
8871 void
8872 remote_target::check_binary_download (CORE_ADDR addr)
8873 {
8874 struct remote_state *rs = get_remote_state ();
8875
8876 switch (packet_support (PACKET_X))
8877 {
8878 case PACKET_DISABLE:
8879 break;
8880 case PACKET_ENABLE:
8881 break;
8882 case PACKET_SUPPORT_UNKNOWN:
8883 {
8884 char *p;
8885
8886 p = rs->buf.data ();
8887 *p++ = 'X';
8888 p += hexnumstr (p, (ULONGEST) addr);
8889 *p++ = ',';
8890 p += hexnumstr (p, (ULONGEST) 0);
8891 *p++ = ':';
8892 *p = '\0';
8893
8894 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8895 getpkt (&rs->buf, 0);
8896
8897 if (rs->buf[0] == '\0')
8898 {
8899 remote_debug_printf ("binary downloading NOT supported by target");
8900 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8901 }
8902 else
8903 {
8904 remote_debug_printf ("binary downloading supported by target");
8905 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8906 }
8907 break;
8908 }
8909 }
8910 }
8911
8912 /* Helper function to resize the payload in order to try to get a good
8913 alignment. We try to write an amount of data such that the next write will
8914 start on an address aligned on REMOTE_ALIGN_WRITES. */
8915
8916 static int
8917 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8918 {
8919 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8920 }
8921
8922 /* Write memory data directly to the remote machine.
8923 This does not inform the data cache; the data cache uses this.
8924 HEADER is the starting part of the packet.
8925 MEMADDR is the address in the remote memory space.
8926 MYADDR is the address of the buffer in our space.
8927 LEN_UNITS is the number of addressable units to write.
8928 UNIT_SIZE is the length in bytes of an addressable unit.
8929 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8930 should send data as binary ('X'), or hex-encoded ('M').
8931
8932 The function creates packet of the form
8933 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8934
8935 where encoding of <DATA> is terminated by PACKET_FORMAT.
8936
8937 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8938 are omitted.
8939
8940 Return the transferred status, error or OK (an
8941 'enum target_xfer_status' value). Save the number of addressable units
8942 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8943
8944 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8945 exchange between gdb and the stub could look like (?? in place of the
8946 checksum):
8947
8948 -> $m1000,4#??
8949 <- aaaabbbbccccdddd
8950
8951 -> $M1000,3:eeeeffffeeee#??
8952 <- OK
8953
8954 -> $m1000,4#??
8955 <- eeeeffffeeeedddd */
8956
8957 target_xfer_status
8958 remote_target::remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8959 const gdb_byte *myaddr,
8960 ULONGEST len_units,
8961 int unit_size,
8962 ULONGEST *xfered_len_units,
8963 char packet_format, int use_length)
8964 {
8965 struct remote_state *rs = get_remote_state ();
8966 char *p;
8967 char *plen = NULL;
8968 int plenlen = 0;
8969 int todo_units;
8970 int units_written;
8971 int payload_capacity_bytes;
8972 int payload_length_bytes;
8973
8974 if (packet_format != 'X' && packet_format != 'M')
8975 internal_error (__FILE__, __LINE__,
8976 _("remote_write_bytes_aux: bad packet format"));
8977
8978 if (len_units == 0)
8979 return TARGET_XFER_EOF;
8980
8981 payload_capacity_bytes = get_memory_write_packet_size ();
8982
8983 /* The packet buffer will be large enough for the payload;
8984 get_memory_packet_size ensures this. */
8985 rs->buf[0] = '\0';
8986
8987 /* Compute the size of the actual payload by subtracting out the
8988 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8989
8990 payload_capacity_bytes -= strlen ("$,:#NN");
8991 if (!use_length)
8992 /* The comma won't be used. */
8993 payload_capacity_bytes += 1;
8994 payload_capacity_bytes -= strlen (header);
8995 payload_capacity_bytes -= hexnumlen (memaddr);
8996
8997 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8998
8999 strcat (rs->buf.data (), header);
9000 p = rs->buf.data () + strlen (header);
9001
9002 /* Compute a best guess of the number of bytes actually transfered. */
9003 if (packet_format == 'X')
9004 {
9005 /* Best guess at number of bytes that will fit. */
9006 todo_units = std::min (len_units,
9007 (ULONGEST) payload_capacity_bytes / unit_size);
9008 if (use_length)
9009 payload_capacity_bytes -= hexnumlen (todo_units);
9010 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
9011 }
9012 else
9013 {
9014 /* Number of bytes that will fit. */
9015 todo_units
9016 = std::min (len_units,
9017 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
9018 if (use_length)
9019 payload_capacity_bytes -= hexnumlen (todo_units);
9020 todo_units = std::min (todo_units,
9021 (payload_capacity_bytes / unit_size) / 2);
9022 }
9023
9024 if (todo_units <= 0)
9025 internal_error (__FILE__, __LINE__,
9026 _("minimum packet size too small to write data"));
9027
9028 /* If we already need another packet, then try to align the end
9029 of this packet to a useful boundary. */
9030 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
9031 todo_units = align_for_efficient_write (todo_units, memaddr);
9032
9033 /* Append "<memaddr>". */
9034 memaddr = remote_address_masked (memaddr);
9035 p += hexnumstr (p, (ULONGEST) memaddr);
9036
9037 if (use_length)
9038 {
9039 /* Append ",". */
9040 *p++ = ',';
9041
9042 /* Append the length and retain its location and size. It may need to be
9043 adjusted once the packet body has been created. */
9044 plen = p;
9045 plenlen = hexnumstr (p, (ULONGEST) todo_units);
9046 p += plenlen;
9047 }
9048
9049 /* Append ":". */
9050 *p++ = ':';
9051 *p = '\0';
9052
9053 /* Append the packet body. */
9054 if (packet_format == 'X')
9055 {
9056 /* Binary mode. Send target system values byte by byte, in
9057 increasing byte addresses. Only escape certain critical
9058 characters. */
9059 payload_length_bytes =
9060 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
9061 &units_written, payload_capacity_bytes);
9062
9063 /* If not all TODO units fit, then we'll need another packet. Make
9064 a second try to keep the end of the packet aligned. Don't do
9065 this if the packet is tiny. */
9066 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
9067 {
9068 int new_todo_units;
9069
9070 new_todo_units = align_for_efficient_write (units_written, memaddr);
9071
9072 if (new_todo_units != units_written)
9073 payload_length_bytes =
9074 remote_escape_output (myaddr, new_todo_units, unit_size,
9075 (gdb_byte *) p, &units_written,
9076 payload_capacity_bytes);
9077 }
9078
9079 p += payload_length_bytes;
9080 if (use_length && units_written < todo_units)
9081 {
9082 /* Escape chars have filled up the buffer prematurely,
9083 and we have actually sent fewer units than planned.
9084 Fix-up the length field of the packet. Use the same
9085 number of characters as before. */
9086 plen += hexnumnstr (plen, (ULONGEST) units_written,
9087 plenlen);
9088 *plen = ':'; /* overwrite \0 from hexnumnstr() */
9089 }
9090 }
9091 else
9092 {
9093 /* Normal mode: Send target system values byte by byte, in
9094 increasing byte addresses. Each byte is encoded as a two hex
9095 value. */
9096 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
9097 units_written = todo_units;
9098 }
9099
9100 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
9101 getpkt (&rs->buf, 0);
9102
9103 if (rs->buf[0] == 'E')
9104 return TARGET_XFER_E_IO;
9105
9106 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
9107 send fewer units than we'd planned. */
9108 *xfered_len_units = (ULONGEST) units_written;
9109 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
9110 }
9111
9112 /* Write memory data directly to the remote machine.
9113 This does not inform the data cache; the data cache uses this.
9114 MEMADDR is the address in the remote memory space.
9115 MYADDR is the address of the buffer in our space.
9116 LEN is the number of bytes.
9117
9118 Return the transferred status, error or OK (an
9119 'enum target_xfer_status' value). Save the number of bytes
9120 transferred in *XFERED_LEN. Only transfer a single packet. */
9121
9122 target_xfer_status
9123 remote_target::remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr,
9124 ULONGEST len, int unit_size,
9125 ULONGEST *xfered_len)
9126 {
9127 const char *packet_format = NULL;
9128
9129 /* Check whether the target supports binary download. */
9130 check_binary_download (memaddr);
9131
9132 switch (packet_support (PACKET_X))
9133 {
9134 case PACKET_ENABLE:
9135 packet_format = "X";
9136 break;
9137 case PACKET_DISABLE:
9138 packet_format = "M";
9139 break;
9140 case PACKET_SUPPORT_UNKNOWN:
9141 internal_error (__FILE__, __LINE__,
9142 _("remote_write_bytes: bad internal state"));
9143 default:
9144 internal_error (__FILE__, __LINE__, _("bad switch"));
9145 }
9146
9147 return remote_write_bytes_aux (packet_format,
9148 memaddr, myaddr, len, unit_size, xfered_len,
9149 packet_format[0], 1);
9150 }
9151
9152 /* Read memory data directly from the remote machine.
9153 This does not use the data cache; the data cache uses this.
9154 MEMADDR is the address in the remote memory space.
9155 MYADDR is the address of the buffer in our space.
9156 LEN_UNITS is the number of addressable memory units to read..
9157 UNIT_SIZE is the length in bytes of an addressable unit.
9158
9159 Return the transferred status, error or OK (an
9160 'enum target_xfer_status' value). Save the number of bytes
9161 transferred in *XFERED_LEN_UNITS.
9162
9163 See the comment of remote_write_bytes_aux for an example of
9164 memory read/write exchange between gdb and the stub. */
9165
9166 target_xfer_status
9167 remote_target::remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
9168 ULONGEST len_units,
9169 int unit_size, ULONGEST *xfered_len_units)
9170 {
9171 struct remote_state *rs = get_remote_state ();
9172 int buf_size_bytes; /* Max size of packet output buffer. */
9173 char *p;
9174 int todo_units;
9175 int decoded_bytes;
9176
9177 buf_size_bytes = get_memory_read_packet_size ();
9178 /* The packet buffer will be large enough for the payload;
9179 get_memory_packet_size ensures this. */
9180
9181 /* Number of units that will fit. */
9182 todo_units = std::min (len_units,
9183 (ULONGEST) (buf_size_bytes / unit_size) / 2);
9184
9185 /* Construct "m"<memaddr>","<len>". */
9186 memaddr = remote_address_masked (memaddr);
9187 p = rs->buf.data ();
9188 *p++ = 'm';
9189 p += hexnumstr (p, (ULONGEST) memaddr);
9190 *p++ = ',';
9191 p += hexnumstr (p, (ULONGEST) todo_units);
9192 *p = '\0';
9193 putpkt (rs->buf);
9194 getpkt (&rs->buf, 0);
9195 if (rs->buf[0] == 'E'
9196 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
9197 && rs->buf[3] == '\0')
9198 return TARGET_XFER_E_IO;
9199 /* Reply describes memory byte by byte, each byte encoded as two hex
9200 characters. */
9201 p = rs->buf.data ();
9202 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
9203 /* Return what we have. Let higher layers handle partial reads. */
9204 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
9205 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
9206 }
9207
9208 /* Using the set of read-only target sections of remote, read live
9209 read-only memory.
9210
9211 For interface/parameters/return description see target.h,
9212 to_xfer_partial. */
9213
9214 target_xfer_status
9215 remote_target::remote_xfer_live_readonly_partial (gdb_byte *readbuf,
9216 ULONGEST memaddr,
9217 ULONGEST len,
9218 int unit_size,
9219 ULONGEST *xfered_len)
9220 {
9221 const struct target_section *secp;
9222
9223 secp = target_section_by_addr (this, memaddr);
9224 if (secp != NULL
9225 && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
9226 {
9227 ULONGEST memend = memaddr + len;
9228
9229 const target_section_table *table = target_get_section_table (this);
9230 for (const target_section &p : *table)
9231 {
9232 if (memaddr >= p.addr)
9233 {
9234 if (memend <= p.endaddr)
9235 {
9236 /* Entire transfer is within this section. */
9237 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
9238 xfered_len);
9239 }
9240 else if (memaddr >= p.endaddr)
9241 {
9242 /* This section ends before the transfer starts. */
9243 continue;
9244 }
9245 else
9246 {
9247 /* This section overlaps the transfer. Just do half. */
9248 len = p.endaddr - memaddr;
9249 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
9250 xfered_len);
9251 }
9252 }
9253 }
9254 }
9255
9256 return TARGET_XFER_EOF;
9257 }
9258
9259 /* Similar to remote_read_bytes_1, but it reads from the remote stub
9260 first if the requested memory is unavailable in traceframe.
9261 Otherwise, fall back to remote_read_bytes_1. */
9262
9263 target_xfer_status
9264 remote_target::remote_read_bytes (CORE_ADDR memaddr,
9265 gdb_byte *myaddr, ULONGEST len, int unit_size,
9266 ULONGEST *xfered_len)
9267 {
9268 if (len == 0)
9269 return TARGET_XFER_EOF;
9270
9271 if (get_traceframe_number () != -1)
9272 {
9273 std::vector<mem_range> available;
9274
9275 /* If we fail to get the set of available memory, then the
9276 target does not support querying traceframe info, and so we
9277 attempt reading from the traceframe anyway (assuming the
9278 target implements the old QTro packet then). */
9279 if (traceframe_available_memory (&available, memaddr, len))
9280 {
9281 if (available.empty () || available[0].start != memaddr)
9282 {
9283 enum target_xfer_status res;
9284
9285 /* Don't read into the traceframe's available
9286 memory. */
9287 if (!available.empty ())
9288 {
9289 LONGEST oldlen = len;
9290
9291 len = available[0].start - memaddr;
9292 gdb_assert (len <= oldlen);
9293 }
9294
9295 /* This goes through the topmost target again. */
9296 res = remote_xfer_live_readonly_partial (myaddr, memaddr,
9297 len, unit_size, xfered_len);
9298 if (res == TARGET_XFER_OK)
9299 return TARGET_XFER_OK;
9300 else
9301 {
9302 /* No use trying further, we know some memory starting
9303 at MEMADDR isn't available. */
9304 *xfered_len = len;
9305 return (*xfered_len != 0) ?
9306 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
9307 }
9308 }
9309
9310 /* Don't try to read more than how much is available, in
9311 case the target implements the deprecated QTro packet to
9312 cater for older GDBs (the target's knowledge of read-only
9313 sections may be outdated by now). */
9314 len = available[0].length;
9315 }
9316 }
9317
9318 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
9319 }
9320
9321 \f
9322
9323 /* Sends a packet with content determined by the printf format string
9324 FORMAT and the remaining arguments, then gets the reply. Returns
9325 whether the packet was a success, a failure, or unknown. */
9326
9327 packet_result
9328 remote_target::remote_send_printf (const char *format, ...)
9329 {
9330 struct remote_state *rs = get_remote_state ();
9331 int max_size = get_remote_packet_size ();
9332 va_list ap;
9333
9334 va_start (ap, format);
9335
9336 rs->buf[0] = '\0';
9337 int size = vsnprintf (rs->buf.data (), max_size, format, ap);
9338
9339 va_end (ap);
9340
9341 if (size >= max_size)
9342 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
9343
9344 if (putpkt (rs->buf) < 0)
9345 error (_("Communication problem with target."));
9346
9347 rs->buf[0] = '\0';
9348 getpkt (&rs->buf, 0);
9349
9350 return packet_check_result (rs->buf);
9351 }
9352
9353 /* Flash writing can take quite some time. We'll set
9354 effectively infinite timeout for flash operations.
9355 In future, we'll need to decide on a better approach. */
9356 static const int remote_flash_timeout = 1000;
9357
9358 void
9359 remote_target::flash_erase (ULONGEST address, LONGEST length)
9360 {
9361 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
9362 enum packet_result ret;
9363 scoped_restore restore_timeout
9364 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9365
9366 ret = remote_send_printf ("vFlashErase:%s,%s",
9367 phex (address, addr_size),
9368 phex (length, 4));
9369 switch (ret)
9370 {
9371 case PACKET_UNKNOWN:
9372 error (_("Remote target does not support flash erase"));
9373 case PACKET_ERROR:
9374 error (_("Error erasing flash with vFlashErase packet"));
9375 default:
9376 break;
9377 }
9378 }
9379
9380 target_xfer_status
9381 remote_target::remote_flash_write (ULONGEST address,
9382 ULONGEST length, ULONGEST *xfered_len,
9383 const gdb_byte *data)
9384 {
9385 scoped_restore restore_timeout
9386 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9387 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
9388 xfered_len,'X', 0);
9389 }
9390
9391 void
9392 remote_target::flash_done ()
9393 {
9394 int ret;
9395
9396 scoped_restore restore_timeout
9397 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9398
9399 ret = remote_send_printf ("vFlashDone");
9400
9401 switch (ret)
9402 {
9403 case PACKET_UNKNOWN:
9404 error (_("Remote target does not support vFlashDone"));
9405 case PACKET_ERROR:
9406 error (_("Error finishing flash operation"));
9407 default:
9408 break;
9409 }
9410 }
9411
9412 void
9413 remote_target::files_info ()
9414 {
9415 puts_filtered ("Debugging a target over a serial line.\n");
9416 }
9417 \f
9418 /* Stuff for dealing with the packets which are part of this protocol.
9419 See comment at top of file for details. */
9420
9421 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
9422 error to higher layers. Called when a serial error is detected.
9423 The exception message is STRING, followed by a colon and a blank,
9424 the system error message for errno at function entry and final dot
9425 for output compatibility with throw_perror_with_name. */
9426
9427 static void
9428 unpush_and_perror (remote_target *target, const char *string)
9429 {
9430 int saved_errno = errno;
9431
9432 remote_unpush_target (target);
9433 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
9434 safe_strerror (saved_errno));
9435 }
9436
9437 /* Read a single character from the remote end. The current quit
9438 handler is overridden to avoid quitting in the middle of packet
9439 sequence, as that would break communication with the remote server.
9440 See remote_serial_quit_handler for more detail. */
9441
9442 int
9443 remote_target::readchar (int timeout)
9444 {
9445 int ch;
9446 struct remote_state *rs = get_remote_state ();
9447
9448 {
9449 scoped_restore restore_quit_target
9450 = make_scoped_restore (&curr_quit_handler_target, this);
9451 scoped_restore restore_quit
9452 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9453
9454 rs->got_ctrlc_during_io = 0;
9455
9456 ch = serial_readchar (rs->remote_desc, timeout);
9457
9458 if (rs->got_ctrlc_during_io)
9459 set_quit_flag ();
9460 }
9461
9462 if (ch >= 0)
9463 return ch;
9464
9465 switch ((enum serial_rc) ch)
9466 {
9467 case SERIAL_EOF:
9468 remote_unpush_target (this);
9469 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
9470 /* no return */
9471 case SERIAL_ERROR:
9472 unpush_and_perror (this, _("Remote communication error. "
9473 "Target disconnected."));
9474 /* no return */
9475 case SERIAL_TIMEOUT:
9476 break;
9477 }
9478 return ch;
9479 }
9480
9481 /* Wrapper for serial_write that closes the target and throws if
9482 writing fails. The current quit handler is overridden to avoid
9483 quitting in the middle of packet sequence, as that would break
9484 communication with the remote server. See
9485 remote_serial_quit_handler for more detail. */
9486
9487 void
9488 remote_target::remote_serial_write (const char *str, int len)
9489 {
9490 struct remote_state *rs = get_remote_state ();
9491
9492 scoped_restore restore_quit_target
9493 = make_scoped_restore (&curr_quit_handler_target, this);
9494 scoped_restore restore_quit
9495 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9496
9497 rs->got_ctrlc_during_io = 0;
9498
9499 if (serial_write (rs->remote_desc, str, len))
9500 {
9501 unpush_and_perror (this, _("Remote communication error. "
9502 "Target disconnected."));
9503 }
9504
9505 if (rs->got_ctrlc_during_io)
9506 set_quit_flag ();
9507 }
9508
9509 /* Return a string representing an escaped version of BUF, of len N.
9510 E.g. \n is converted to \\n, \t to \\t, etc. */
9511
9512 static std::string
9513 escape_buffer (const char *buf, int n)
9514 {
9515 string_file stb;
9516
9517 stb.putstrn (buf, n, '\\');
9518 return std::move (stb.string ());
9519 }
9520
9521 /* Display a null-terminated packet on stdout, for debugging, using C
9522 string notation. */
9523
9524 static void
9525 print_packet (const char *buf)
9526 {
9527 puts_filtered ("\"");
9528 fputstr_filtered (buf, '"', gdb_stdout);
9529 puts_filtered ("\"");
9530 }
9531
9532 int
9533 remote_target::putpkt (const char *buf)
9534 {
9535 return putpkt_binary (buf, strlen (buf));
9536 }
9537
9538 /* Wrapper around remote_target::putpkt to avoid exporting
9539 remote_target. */
9540
9541 int
9542 putpkt (remote_target *remote, const char *buf)
9543 {
9544 return remote->putpkt (buf);
9545 }
9546
9547 /* Send a packet to the remote machine, with error checking. The data
9548 of the packet is in BUF. The string in BUF can be at most
9549 get_remote_packet_size () - 5 to account for the $, # and checksum,
9550 and for a possible /0 if we are debugging (remote_debug) and want
9551 to print the sent packet as a string. */
9552
9553 int
9554 remote_target::putpkt_binary (const char *buf, int cnt)
9555 {
9556 struct remote_state *rs = get_remote_state ();
9557 int i;
9558 unsigned char csum = 0;
9559 gdb::def_vector<char> data (cnt + 6);
9560 char *buf2 = data.data ();
9561
9562 int ch;
9563 int tcount = 0;
9564 char *p;
9565
9566 /* Catch cases like trying to read memory or listing threads while
9567 we're waiting for a stop reply. The remote server wouldn't be
9568 ready to handle this request, so we'd hang and timeout. We don't
9569 have to worry about this in synchronous mode, because in that
9570 case it's not possible to issue a command while the target is
9571 running. This is not a problem in non-stop mode, because in that
9572 case, the stub is always ready to process serial input. */
9573 if (!target_is_non_stop_p ()
9574 && target_is_async_p ()
9575 && rs->waiting_for_stop_reply)
9576 {
9577 error (_("Cannot execute this command while the target is running.\n"
9578 "Use the \"interrupt\" command to stop the target\n"
9579 "and then try again."));
9580 }
9581
9582 /* We're sending out a new packet. Make sure we don't look at a
9583 stale cached response. */
9584 rs->cached_wait_status = 0;
9585
9586 /* Copy the packet into buffer BUF2, encapsulating it
9587 and giving it a checksum. */
9588
9589 p = buf2;
9590 *p++ = '$';
9591
9592 for (i = 0; i < cnt; i++)
9593 {
9594 csum += buf[i];
9595 *p++ = buf[i];
9596 }
9597 *p++ = '#';
9598 *p++ = tohex ((csum >> 4) & 0xf);
9599 *p++ = tohex (csum & 0xf);
9600
9601 /* Send it over and over until we get a positive ack. */
9602
9603 while (1)
9604 {
9605 if (remote_debug)
9606 {
9607 *p = '\0';
9608
9609 int len = (int) (p - buf2);
9610 int max_chars;
9611
9612 if (remote_packet_max_chars < 0)
9613 max_chars = len;
9614 else
9615 max_chars = remote_packet_max_chars;
9616
9617 std::string str
9618 = escape_buffer (buf2, std::min (len, max_chars));
9619
9620 if (len > max_chars)
9621 remote_debug_printf_nofunc
9622 ("Sending packet: %s [%d bytes omitted]", str.c_str (),
9623 len - max_chars);
9624 else
9625 remote_debug_printf_nofunc ("Sending packet: %s", str.c_str ());
9626 }
9627 remote_serial_write (buf2, p - buf2);
9628
9629 /* If this is a no acks version of the remote protocol, send the
9630 packet and move on. */
9631 if (rs->noack_mode)
9632 break;
9633
9634 /* Read until either a timeout occurs (-2) or '+' is read.
9635 Handle any notification that arrives in the mean time. */
9636 while (1)
9637 {
9638 ch = readchar (remote_timeout);
9639
9640 switch (ch)
9641 {
9642 case '+':
9643 remote_debug_printf_nofunc ("Received Ack");
9644 return 1;
9645 case '-':
9646 remote_debug_printf_nofunc ("Received Nak");
9647 /* FALLTHROUGH */
9648 case SERIAL_TIMEOUT:
9649 tcount++;
9650 if (tcount > 3)
9651 return 0;
9652 break; /* Retransmit buffer. */
9653 case '$':
9654 {
9655 remote_debug_printf ("Packet instead of Ack, ignoring it");
9656 /* It's probably an old response sent because an ACK
9657 was lost. Gobble up the packet and ack it so it
9658 doesn't get retransmitted when we resend this
9659 packet. */
9660 skip_frame ();
9661 remote_serial_write ("+", 1);
9662 continue; /* Now, go look for +. */
9663 }
9664
9665 case '%':
9666 {
9667 int val;
9668
9669 /* If we got a notification, handle it, and go back to looking
9670 for an ack. */
9671 /* We've found the start of a notification. Now
9672 collect the data. */
9673 val = read_frame (&rs->buf);
9674 if (val >= 0)
9675 {
9676 remote_debug_printf_nofunc
9677 (" Notification received: %s",
9678 escape_buffer (rs->buf.data (), val).c_str ());
9679
9680 handle_notification (rs->notif_state, rs->buf.data ());
9681 /* We're in sync now, rewait for the ack. */
9682 tcount = 0;
9683 }
9684 else
9685 remote_debug_printf_nofunc ("Junk: %c%s", ch & 0177,
9686 rs->buf.data ());
9687 continue;
9688 }
9689 /* fall-through */
9690 default:
9691 remote_debug_printf_nofunc ("Junk: %c%s", ch & 0177,
9692 rs->buf.data ());
9693 continue;
9694 }
9695 break; /* Here to retransmit. */
9696 }
9697
9698 #if 0
9699 /* This is wrong. If doing a long backtrace, the user should be
9700 able to get out next time we call QUIT, without anything as
9701 violent as interrupt_query. If we want to provide a way out of
9702 here without getting to the next QUIT, it should be based on
9703 hitting ^C twice as in remote_wait. */
9704 if (quit_flag)
9705 {
9706 quit_flag = 0;
9707 interrupt_query ();
9708 }
9709 #endif
9710 }
9711
9712 return 0;
9713 }
9714
9715 /* Come here after finding the start of a frame when we expected an
9716 ack. Do our best to discard the rest of this packet. */
9717
9718 void
9719 remote_target::skip_frame ()
9720 {
9721 int c;
9722
9723 while (1)
9724 {
9725 c = readchar (remote_timeout);
9726 switch (c)
9727 {
9728 case SERIAL_TIMEOUT:
9729 /* Nothing we can do. */
9730 return;
9731 case '#':
9732 /* Discard the two bytes of checksum and stop. */
9733 c = readchar (remote_timeout);
9734 if (c >= 0)
9735 c = readchar (remote_timeout);
9736
9737 return;
9738 case '*': /* Run length encoding. */
9739 /* Discard the repeat count. */
9740 c = readchar (remote_timeout);
9741 if (c < 0)
9742 return;
9743 break;
9744 default:
9745 /* A regular character. */
9746 break;
9747 }
9748 }
9749 }
9750
9751 /* Come here after finding the start of the frame. Collect the rest
9752 into *BUF, verifying the checksum, length, and handling run-length
9753 compression. NUL terminate the buffer. If there is not enough room,
9754 expand *BUF.
9755
9756 Returns -1 on error, number of characters in buffer (ignoring the
9757 trailing NULL) on success. (could be extended to return one of the
9758 SERIAL status indications). */
9759
9760 long
9761 remote_target::read_frame (gdb::char_vector *buf_p)
9762 {
9763 unsigned char csum;
9764 long bc;
9765 int c;
9766 char *buf = buf_p->data ();
9767 struct remote_state *rs = get_remote_state ();
9768
9769 csum = 0;
9770 bc = 0;
9771
9772 while (1)
9773 {
9774 c = readchar (remote_timeout);
9775 switch (c)
9776 {
9777 case SERIAL_TIMEOUT:
9778 remote_debug_printf ("Timeout in mid-packet, retrying");
9779 return -1;
9780
9781 case '$':
9782 remote_debug_printf ("Saw new packet start in middle of old one");
9783 return -1; /* Start a new packet, count retries. */
9784
9785 case '#':
9786 {
9787 unsigned char pktcsum;
9788 int check_0 = 0;
9789 int check_1 = 0;
9790
9791 buf[bc] = '\0';
9792
9793 check_0 = readchar (remote_timeout);
9794 if (check_0 >= 0)
9795 check_1 = readchar (remote_timeout);
9796
9797 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9798 {
9799 remote_debug_printf ("Timeout in checksum, retrying");
9800 return -1;
9801 }
9802 else if (check_0 < 0 || check_1 < 0)
9803 {
9804 remote_debug_printf ("Communication error in checksum");
9805 return -1;
9806 }
9807
9808 /* Don't recompute the checksum; with no ack packets we
9809 don't have any way to indicate a packet retransmission
9810 is necessary. */
9811 if (rs->noack_mode)
9812 return bc;
9813
9814 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9815 if (csum == pktcsum)
9816 return bc;
9817
9818 remote_debug_printf
9819 ("Bad checksum, sentsum=0x%x, csum=0x%x, buf=%s",
9820 pktcsum, csum, escape_buffer (buf, bc).c_str ());
9821
9822 /* Number of characters in buffer ignoring trailing
9823 NULL. */
9824 return -1;
9825 }
9826 case '*': /* Run length encoding. */
9827 {
9828 int repeat;
9829
9830 csum += c;
9831 c = readchar (remote_timeout);
9832 csum += c;
9833 repeat = c - ' ' + 3; /* Compute repeat count. */
9834
9835 /* The character before ``*'' is repeated. */
9836
9837 if (repeat > 0 && repeat <= 255 && bc > 0)
9838 {
9839 if (bc + repeat - 1 >= buf_p->size () - 1)
9840 {
9841 /* Make some more room in the buffer. */
9842 buf_p->resize (buf_p->size () + repeat);
9843 buf = buf_p->data ();
9844 }
9845
9846 memset (&buf[bc], buf[bc - 1], repeat);
9847 bc += repeat;
9848 continue;
9849 }
9850
9851 buf[bc] = '\0';
9852 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9853 return -1;
9854 }
9855 default:
9856 if (bc >= buf_p->size () - 1)
9857 {
9858 /* Make some more room in the buffer. */
9859 buf_p->resize (buf_p->size () * 2);
9860 buf = buf_p->data ();
9861 }
9862
9863 buf[bc++] = c;
9864 csum += c;
9865 continue;
9866 }
9867 }
9868 }
9869
9870 /* Set this to the maximum number of seconds to wait instead of waiting forever
9871 in target_wait(). If this timer times out, then it generates an error and
9872 the command is aborted. This replaces most of the need for timeouts in the
9873 GDB test suite, and makes it possible to distinguish between a hung target
9874 and one with slow communications. */
9875
9876 static int watchdog = 0;
9877 static void
9878 show_watchdog (struct ui_file *file, int from_tty,
9879 struct cmd_list_element *c, const char *value)
9880 {
9881 fprintf_filtered (file, _("Watchdog timer is %s.\n"), value);
9882 }
9883
9884 /* Read a packet from the remote machine, with error checking, and
9885 store it in *BUF. Resize *BUF if necessary to hold the result. If
9886 FOREVER, wait forever rather than timing out; this is used (in
9887 synchronous mode) to wait for a target that is is executing user
9888 code to stop. */
9889 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9890 don't have to change all the calls to getpkt to deal with the
9891 return value, because at the moment I don't know what the right
9892 thing to do it for those. */
9893
9894 void
9895 remote_target::getpkt (gdb::char_vector *buf, int forever)
9896 {
9897 getpkt_sane (buf, forever);
9898 }
9899
9900
9901 /* Read a packet from the remote machine, with error checking, and
9902 store it in *BUF. Resize *BUF if necessary to hold the result. If
9903 FOREVER, wait forever rather than timing out; this is used (in
9904 synchronous mode) to wait for a target that is is executing user
9905 code to stop. If FOREVER == 0, this function is allowed to time
9906 out gracefully and return an indication of this to the caller.
9907 Otherwise return the number of bytes read. If EXPECTING_NOTIF,
9908 consider receiving a notification enough reason to return to the
9909 caller. *IS_NOTIF is an output boolean that indicates whether *BUF
9910 holds a notification or not (a regular packet). */
9911
9912 int
9913 remote_target::getpkt_or_notif_sane_1 (gdb::char_vector *buf,
9914 int forever, int expecting_notif,
9915 int *is_notif)
9916 {
9917 struct remote_state *rs = get_remote_state ();
9918 int c;
9919 int tries;
9920 int timeout;
9921 int val = -1;
9922
9923 /* We're reading a new response. Make sure we don't look at a
9924 previously cached response. */
9925 rs->cached_wait_status = 0;
9926
9927 strcpy (buf->data (), "timeout");
9928
9929 if (forever)
9930 timeout = watchdog > 0 ? watchdog : -1;
9931 else if (expecting_notif)
9932 timeout = 0; /* There should already be a char in the buffer. If
9933 not, bail out. */
9934 else
9935 timeout = remote_timeout;
9936
9937 #define MAX_TRIES 3
9938
9939 /* Process any number of notifications, and then return when
9940 we get a packet. */
9941 for (;;)
9942 {
9943 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9944 times. */
9945 for (tries = 1; tries <= MAX_TRIES; tries++)
9946 {
9947 /* This can loop forever if the remote side sends us
9948 characters continuously, but if it pauses, we'll get
9949 SERIAL_TIMEOUT from readchar because of timeout. Then
9950 we'll count that as a retry.
9951
9952 Note that even when forever is set, we will only wait
9953 forever prior to the start of a packet. After that, we
9954 expect characters to arrive at a brisk pace. They should
9955 show up within remote_timeout intervals. */
9956 do
9957 c = readchar (timeout);
9958 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9959
9960 if (c == SERIAL_TIMEOUT)
9961 {
9962 if (expecting_notif)
9963 return -1; /* Don't complain, it's normal to not get
9964 anything in this case. */
9965
9966 if (forever) /* Watchdog went off? Kill the target. */
9967 {
9968 remote_unpush_target (this);
9969 throw_error (TARGET_CLOSE_ERROR,
9970 _("Watchdog timeout has expired. "
9971 "Target detached."));
9972 }
9973
9974 remote_debug_printf ("Timed out.");
9975 }
9976 else
9977 {
9978 /* We've found the start of a packet or notification.
9979 Now collect the data. */
9980 val = read_frame (buf);
9981 if (val >= 0)
9982 break;
9983 }
9984
9985 remote_serial_write ("-", 1);
9986 }
9987
9988 if (tries > MAX_TRIES)
9989 {
9990 /* We have tried hard enough, and just can't receive the
9991 packet/notification. Give up. */
9992 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9993
9994 /* Skip the ack char if we're in no-ack mode. */
9995 if (!rs->noack_mode)
9996 remote_serial_write ("+", 1);
9997 return -1;
9998 }
9999
10000 /* If we got an ordinary packet, return that to our caller. */
10001 if (c == '$')
10002 {
10003 if (remote_debug)
10004 {
10005 int max_chars;
10006
10007 if (remote_packet_max_chars < 0)
10008 max_chars = val;
10009 else
10010 max_chars = remote_packet_max_chars;
10011
10012 std::string str
10013 = escape_buffer (buf->data (),
10014 std::min (val, max_chars));
10015
10016 if (val > max_chars)
10017 remote_debug_printf_nofunc
10018 ("Packet received: %s [%d bytes omitted]", str.c_str (),
10019 val - max_chars);
10020 else
10021 remote_debug_printf_nofunc ("Packet received: %s",
10022 str.c_str ());
10023 }
10024
10025 /* Skip the ack char if we're in no-ack mode. */
10026 if (!rs->noack_mode)
10027 remote_serial_write ("+", 1);
10028 if (is_notif != NULL)
10029 *is_notif = 0;
10030 return val;
10031 }
10032
10033 /* If we got a notification, handle it, and go back to looking
10034 for a packet. */
10035 else
10036 {
10037 gdb_assert (c == '%');
10038
10039 remote_debug_printf_nofunc
10040 (" Notification received: %s",
10041 escape_buffer (buf->data (), val).c_str ());
10042
10043 if (is_notif != NULL)
10044 *is_notif = 1;
10045
10046 handle_notification (rs->notif_state, buf->data ());
10047
10048 /* Notifications require no acknowledgement. */
10049
10050 if (expecting_notif)
10051 return val;
10052 }
10053 }
10054 }
10055
10056 int
10057 remote_target::getpkt_sane (gdb::char_vector *buf, int forever)
10058 {
10059 return getpkt_or_notif_sane_1 (buf, forever, 0, NULL);
10060 }
10061
10062 int
10063 remote_target::getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
10064 int *is_notif)
10065 {
10066 return getpkt_or_notif_sane_1 (buf, forever, 1, is_notif);
10067 }
10068
10069 /* Kill any new fork children of process PID that haven't been
10070 processed by follow_fork. */
10071
10072 void
10073 remote_target::kill_new_fork_children (int pid)
10074 {
10075 remote_state *rs = get_remote_state ();
10076 struct notif_client *notif = &notif_client_stop;
10077
10078 /* Kill the fork child threads of any threads in process PID
10079 that are stopped at a fork event. */
10080 for (thread_info *thread : all_non_exited_threads (this))
10081 {
10082 struct target_waitstatus *ws = &thread->pending_follow;
10083
10084 if (is_pending_fork_parent (ws, pid, thread->ptid))
10085 {
10086 int child_pid = ws->value.related_pid.pid ();
10087 int res;
10088
10089 res = remote_vkill (child_pid);
10090 if (res != 0)
10091 error (_("Can't kill fork child process %d"), child_pid);
10092 }
10093 }
10094
10095 /* Check for any pending fork events (not reported or processed yet)
10096 in process PID and kill those fork child threads as well. */
10097 remote_notif_get_pending_events (notif);
10098 for (auto &event : rs->stop_reply_queue)
10099 if (is_pending_fork_parent (&event->ws, pid, event->ptid))
10100 {
10101 int child_pid = event->ws.value.related_pid.pid ();
10102 int res;
10103
10104 res = remote_vkill (child_pid);
10105 if (res != 0)
10106 error (_("Can't kill fork child process %d"), child_pid);
10107 }
10108 }
10109
10110 \f
10111 /* Target hook to kill the current inferior. */
10112
10113 void
10114 remote_target::kill ()
10115 {
10116 int res = -1;
10117 int pid = inferior_ptid.pid ();
10118 struct remote_state *rs = get_remote_state ();
10119
10120 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
10121 {
10122 /* If we're stopped while forking and we haven't followed yet,
10123 kill the child task. We need to do this before killing the
10124 parent task because if this is a vfork then the parent will
10125 be sleeping. */
10126 kill_new_fork_children (pid);
10127
10128 res = remote_vkill (pid);
10129 if (res == 0)
10130 {
10131 target_mourn_inferior (inferior_ptid);
10132 return;
10133 }
10134 }
10135
10136 /* If we are in 'target remote' mode and we are killing the only
10137 inferior, then we will tell gdbserver to exit and unpush the
10138 target. */
10139 if (res == -1 && !remote_multi_process_p (rs)
10140 && number_of_live_inferiors (this) == 1)
10141 {
10142 remote_kill_k ();
10143
10144 /* We've killed the remote end, we get to mourn it. If we are
10145 not in extended mode, mourning the inferior also unpushes
10146 remote_ops from the target stack, which closes the remote
10147 connection. */
10148 target_mourn_inferior (inferior_ptid);
10149
10150 return;
10151 }
10152
10153 error (_("Can't kill process"));
10154 }
10155
10156 /* Send a kill request to the target using the 'vKill' packet. */
10157
10158 int
10159 remote_target::remote_vkill (int pid)
10160 {
10161 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
10162 return -1;
10163
10164 remote_state *rs = get_remote_state ();
10165
10166 /* Tell the remote target to detach. */
10167 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vKill;%x", pid);
10168 putpkt (rs->buf);
10169 getpkt (&rs->buf, 0);
10170
10171 switch (packet_ok (rs->buf,
10172 &remote_protocol_packets[PACKET_vKill]))
10173 {
10174 case PACKET_OK:
10175 return 0;
10176 case PACKET_ERROR:
10177 return 1;
10178 case PACKET_UNKNOWN:
10179 return -1;
10180 default:
10181 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
10182 }
10183 }
10184
10185 /* Send a kill request to the target using the 'k' packet. */
10186
10187 void
10188 remote_target::remote_kill_k ()
10189 {
10190 /* Catch errors so the user can quit from gdb even when we
10191 aren't on speaking terms with the remote system. */
10192 try
10193 {
10194 putpkt ("k");
10195 }
10196 catch (const gdb_exception_error &ex)
10197 {
10198 if (ex.error == TARGET_CLOSE_ERROR)
10199 {
10200 /* If we got an (EOF) error that caused the target
10201 to go away, then we're done, that's what we wanted.
10202 "k" is susceptible to cause a premature EOF, given
10203 that the remote server isn't actually required to
10204 reply to "k", and it can happen that it doesn't
10205 even get to reply ACK to the "k". */
10206 return;
10207 }
10208
10209 /* Otherwise, something went wrong. We didn't actually kill
10210 the target. Just propagate the exception, and let the
10211 user or higher layers decide what to do. */
10212 throw;
10213 }
10214 }
10215
10216 void
10217 remote_target::mourn_inferior ()
10218 {
10219 struct remote_state *rs = get_remote_state ();
10220
10221 /* We're no longer interested in notification events of an inferior
10222 that exited or was killed/detached. */
10223 discard_pending_stop_replies (current_inferior ());
10224
10225 /* In 'target remote' mode with one inferior, we close the connection. */
10226 if (!rs->extended && number_of_live_inferiors (this) <= 1)
10227 {
10228 remote_unpush_target (this);
10229 return;
10230 }
10231
10232 /* In case we got here due to an error, but we're going to stay
10233 connected. */
10234 rs->waiting_for_stop_reply = 0;
10235
10236 /* If the current general thread belonged to the process we just
10237 detached from or has exited, the remote side current general
10238 thread becomes undefined. Considering a case like this:
10239
10240 - We just got here due to a detach.
10241 - The process that we're detaching from happens to immediately
10242 report a global breakpoint being hit in non-stop mode, in the
10243 same thread we had selected before.
10244 - GDB attaches to this process again.
10245 - This event happens to be the next event we handle.
10246
10247 GDB would consider that the current general thread didn't need to
10248 be set on the stub side (with Hg), since for all it knew,
10249 GENERAL_THREAD hadn't changed.
10250
10251 Notice that although in all-stop mode, the remote server always
10252 sets the current thread to the thread reporting the stop event,
10253 that doesn't happen in non-stop mode; in non-stop, the stub *must
10254 not* change the current thread when reporting a breakpoint hit,
10255 due to the decoupling of event reporting and event handling.
10256
10257 To keep things simple, we always invalidate our notion of the
10258 current thread. */
10259 record_currthread (rs, minus_one_ptid);
10260
10261 /* Call common code to mark the inferior as not running. */
10262 generic_mourn_inferior ();
10263 }
10264
10265 bool
10266 extended_remote_target::supports_disable_randomization ()
10267 {
10268 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
10269 }
10270
10271 void
10272 remote_target::extended_remote_disable_randomization (int val)
10273 {
10274 struct remote_state *rs = get_remote_state ();
10275 char *reply;
10276
10277 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10278 "QDisableRandomization:%x", val);
10279 putpkt (rs->buf);
10280 reply = remote_get_noisy_reply ();
10281 if (*reply == '\0')
10282 error (_("Target does not support QDisableRandomization."));
10283 if (strcmp (reply, "OK") != 0)
10284 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
10285 }
10286
10287 int
10288 remote_target::extended_remote_run (const std::string &args)
10289 {
10290 struct remote_state *rs = get_remote_state ();
10291 int len;
10292 const char *remote_exec_file = get_remote_exec_file ();
10293
10294 /* If the user has disabled vRun support, or we have detected that
10295 support is not available, do not try it. */
10296 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
10297 return -1;
10298
10299 strcpy (rs->buf.data (), "vRun;");
10300 len = strlen (rs->buf.data ());
10301
10302 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
10303 error (_("Remote file name too long for run packet"));
10304 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf.data () + len,
10305 strlen (remote_exec_file));
10306
10307 if (!args.empty ())
10308 {
10309 int i;
10310
10311 gdb_argv argv (args.c_str ());
10312 for (i = 0; argv[i] != NULL; i++)
10313 {
10314 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
10315 error (_("Argument list too long for run packet"));
10316 rs->buf[len++] = ';';
10317 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf.data () + len,
10318 strlen (argv[i]));
10319 }
10320 }
10321
10322 rs->buf[len++] = '\0';
10323
10324 putpkt (rs->buf);
10325 getpkt (&rs->buf, 0);
10326
10327 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
10328 {
10329 case PACKET_OK:
10330 /* We have a wait response. All is well. */
10331 return 0;
10332 case PACKET_UNKNOWN:
10333 return -1;
10334 case PACKET_ERROR:
10335 if (remote_exec_file[0] == '\0')
10336 error (_("Running the default executable on the remote target failed; "
10337 "try \"set remote exec-file\"?"));
10338 else
10339 error (_("Running \"%s\" on the remote target failed"),
10340 remote_exec_file);
10341 default:
10342 gdb_assert_not_reached (_("bad switch"));
10343 }
10344 }
10345
10346 /* Helper function to send set/unset environment packets. ACTION is
10347 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
10348 or "QEnvironmentUnsetVariable". VALUE is the variable to be
10349 sent. */
10350
10351 void
10352 remote_target::send_environment_packet (const char *action,
10353 const char *packet,
10354 const char *value)
10355 {
10356 remote_state *rs = get_remote_state ();
10357
10358 /* Convert the environment variable to an hex string, which
10359 is the best format to be transmitted over the wire. */
10360 std::string encoded_value = bin2hex ((const gdb_byte *) value,
10361 strlen (value));
10362
10363 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10364 "%s:%s", packet, encoded_value.c_str ());
10365
10366 putpkt (rs->buf);
10367 getpkt (&rs->buf, 0);
10368 if (strcmp (rs->buf.data (), "OK") != 0)
10369 warning (_("Unable to %s environment variable '%s' on remote."),
10370 action, value);
10371 }
10372
10373 /* Helper function to handle the QEnvironment* packets. */
10374
10375 void
10376 remote_target::extended_remote_environment_support ()
10377 {
10378 remote_state *rs = get_remote_state ();
10379
10380 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
10381 {
10382 putpkt ("QEnvironmentReset");
10383 getpkt (&rs->buf, 0);
10384 if (strcmp (rs->buf.data (), "OK") != 0)
10385 warning (_("Unable to reset environment on remote."));
10386 }
10387
10388 gdb_environ *e = &current_inferior ()->environment;
10389
10390 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
10391 for (const std::string &el : e->user_set_env ())
10392 send_environment_packet ("set", "QEnvironmentHexEncoded",
10393 el.c_str ());
10394
10395 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
10396 for (const std::string &el : e->user_unset_env ())
10397 send_environment_packet ("unset", "QEnvironmentUnset", el.c_str ());
10398 }
10399
10400 /* Helper function to set the current working directory for the
10401 inferior in the remote target. */
10402
10403 void
10404 remote_target::extended_remote_set_inferior_cwd ()
10405 {
10406 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
10407 {
10408 const char *inferior_cwd = get_inferior_cwd ();
10409 remote_state *rs = get_remote_state ();
10410
10411 if (inferior_cwd != NULL)
10412 {
10413 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
10414 strlen (inferior_cwd));
10415
10416 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10417 "QSetWorkingDir:%s", hexpath.c_str ());
10418 }
10419 else
10420 {
10421 /* An empty inferior_cwd means that the user wants us to
10422 reset the remote server's inferior's cwd. */
10423 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10424 "QSetWorkingDir:");
10425 }
10426
10427 putpkt (rs->buf);
10428 getpkt (&rs->buf, 0);
10429 if (packet_ok (rs->buf,
10430 &remote_protocol_packets[PACKET_QSetWorkingDir])
10431 != PACKET_OK)
10432 error (_("\
10433 Remote replied unexpectedly while setting the inferior's working\n\
10434 directory: %s"),
10435 rs->buf.data ());
10436
10437 }
10438 }
10439
10440 /* In the extended protocol we want to be able to do things like
10441 "run" and have them basically work as expected. So we need
10442 a special create_inferior function. We support changing the
10443 executable file and the command line arguments, but not the
10444 environment. */
10445
10446 void
10447 extended_remote_target::create_inferior (const char *exec_file,
10448 const std::string &args,
10449 char **env, int from_tty)
10450 {
10451 int run_worked;
10452 char *stop_reply;
10453 struct remote_state *rs = get_remote_state ();
10454 const char *remote_exec_file = get_remote_exec_file ();
10455
10456 /* If running asynchronously, register the target file descriptor
10457 with the event loop. */
10458 if (target_can_async_p ())
10459 target_async (1);
10460
10461 /* Disable address space randomization if requested (and supported). */
10462 if (supports_disable_randomization ())
10463 extended_remote_disable_randomization (disable_randomization);
10464
10465 /* If startup-with-shell is on, we inform gdbserver to start the
10466 remote inferior using a shell. */
10467 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
10468 {
10469 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10470 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
10471 putpkt (rs->buf);
10472 getpkt (&rs->buf, 0);
10473 if (strcmp (rs->buf.data (), "OK") != 0)
10474 error (_("\
10475 Remote replied unexpectedly while setting startup-with-shell: %s"),
10476 rs->buf.data ());
10477 }
10478
10479 extended_remote_environment_support ();
10480
10481 extended_remote_set_inferior_cwd ();
10482
10483 /* Now restart the remote server. */
10484 run_worked = extended_remote_run (args) != -1;
10485 if (!run_worked)
10486 {
10487 /* vRun was not supported. Fail if we need it to do what the
10488 user requested. */
10489 if (remote_exec_file[0])
10490 error (_("Remote target does not support \"set remote exec-file\""));
10491 if (!args.empty ())
10492 error (_("Remote target does not support \"set args\" or run ARGS"));
10493
10494 /* Fall back to "R". */
10495 extended_remote_restart ();
10496 }
10497
10498 /* vRun's success return is a stop reply. */
10499 stop_reply = run_worked ? rs->buf.data () : NULL;
10500 add_current_inferior_and_thread (stop_reply);
10501
10502 /* Get updated offsets, if the stub uses qOffsets. */
10503 get_offsets ();
10504 }
10505 \f
10506
10507 /* Given a location's target info BP_TGT and the packet buffer BUF, output
10508 the list of conditions (in agent expression bytecode format), if any, the
10509 target needs to evaluate. The output is placed into the packet buffer
10510 started from BUF and ended at BUF_END. */
10511
10512 static int
10513 remote_add_target_side_condition (struct gdbarch *gdbarch,
10514 struct bp_target_info *bp_tgt, char *buf,
10515 char *buf_end)
10516 {
10517 if (bp_tgt->conditions.empty ())
10518 return 0;
10519
10520 buf += strlen (buf);
10521 xsnprintf (buf, buf_end - buf, "%s", ";");
10522 buf++;
10523
10524 /* Send conditions to the target. */
10525 for (agent_expr *aexpr : bp_tgt->conditions)
10526 {
10527 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10528 buf += strlen (buf);
10529 for (int i = 0; i < aexpr->len; ++i)
10530 buf = pack_hex_byte (buf, aexpr->buf[i]);
10531 *buf = '\0';
10532 }
10533 return 0;
10534 }
10535
10536 static void
10537 remote_add_target_side_commands (struct gdbarch *gdbarch,
10538 struct bp_target_info *bp_tgt, char *buf)
10539 {
10540 if (bp_tgt->tcommands.empty ())
10541 return;
10542
10543 buf += strlen (buf);
10544
10545 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10546 buf += strlen (buf);
10547
10548 /* Concatenate all the agent expressions that are commands into the
10549 cmds parameter. */
10550 for (agent_expr *aexpr : bp_tgt->tcommands)
10551 {
10552 sprintf (buf, "X%x,", aexpr->len);
10553 buf += strlen (buf);
10554 for (int i = 0; i < aexpr->len; ++i)
10555 buf = pack_hex_byte (buf, aexpr->buf[i]);
10556 *buf = '\0';
10557 }
10558 }
10559
10560 /* Insert a breakpoint. On targets that have software breakpoint
10561 support, we ask the remote target to do the work; on targets
10562 which don't, we insert a traditional memory breakpoint. */
10563
10564 int
10565 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10566 struct bp_target_info *bp_tgt)
10567 {
10568 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10569 If it succeeds, then set the support to PACKET_ENABLE. If it
10570 fails, and the user has explicitly requested the Z support then
10571 report an error, otherwise, mark it disabled and go on. */
10572
10573 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10574 {
10575 CORE_ADDR addr = bp_tgt->reqstd_address;
10576 struct remote_state *rs;
10577 char *p, *endbuf;
10578
10579 /* Make sure the remote is pointing at the right process, if
10580 necessary. */
10581 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10582 set_general_process ();
10583
10584 rs = get_remote_state ();
10585 p = rs->buf.data ();
10586 endbuf = p + get_remote_packet_size ();
10587
10588 *(p++) = 'Z';
10589 *(p++) = '0';
10590 *(p++) = ',';
10591 addr = (ULONGEST) remote_address_masked (addr);
10592 p += hexnumstr (p, addr);
10593 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10594
10595 if (supports_evaluation_of_breakpoint_conditions ())
10596 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10597
10598 if (can_run_breakpoint_commands ())
10599 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10600
10601 putpkt (rs->buf);
10602 getpkt (&rs->buf, 0);
10603
10604 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10605 {
10606 case PACKET_ERROR:
10607 return -1;
10608 case PACKET_OK:
10609 return 0;
10610 case PACKET_UNKNOWN:
10611 break;
10612 }
10613 }
10614
10615 /* If this breakpoint has target-side commands but this stub doesn't
10616 support Z0 packets, throw error. */
10617 if (!bp_tgt->tcommands.empty ())
10618 throw_error (NOT_SUPPORTED_ERROR, _("\
10619 Target doesn't support breakpoints that have target side commands."));
10620
10621 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10622 }
10623
10624 int
10625 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10626 struct bp_target_info *bp_tgt,
10627 enum remove_bp_reason reason)
10628 {
10629 CORE_ADDR addr = bp_tgt->placed_address;
10630 struct remote_state *rs = get_remote_state ();
10631
10632 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10633 {
10634 char *p = rs->buf.data ();
10635 char *endbuf = p + get_remote_packet_size ();
10636
10637 /* Make sure the remote is pointing at the right process, if
10638 necessary. */
10639 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10640 set_general_process ();
10641
10642 *(p++) = 'z';
10643 *(p++) = '0';
10644 *(p++) = ',';
10645
10646 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10647 p += hexnumstr (p, addr);
10648 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10649
10650 putpkt (rs->buf);
10651 getpkt (&rs->buf, 0);
10652
10653 return (rs->buf[0] == 'E');
10654 }
10655
10656 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10657 }
10658
10659 static enum Z_packet_type
10660 watchpoint_to_Z_packet (int type)
10661 {
10662 switch (type)
10663 {
10664 case hw_write:
10665 return Z_PACKET_WRITE_WP;
10666 break;
10667 case hw_read:
10668 return Z_PACKET_READ_WP;
10669 break;
10670 case hw_access:
10671 return Z_PACKET_ACCESS_WP;
10672 break;
10673 default:
10674 internal_error (__FILE__, __LINE__,
10675 _("hw_bp_to_z: bad watchpoint type %d"), type);
10676 }
10677 }
10678
10679 int
10680 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10681 enum target_hw_bp_type type, struct expression *cond)
10682 {
10683 struct remote_state *rs = get_remote_state ();
10684 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10685 char *p;
10686 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10687
10688 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10689 return 1;
10690
10691 /* Make sure the remote is pointing at the right process, if
10692 necessary. */
10693 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10694 set_general_process ();
10695
10696 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "Z%x,", packet);
10697 p = strchr (rs->buf.data (), '\0');
10698 addr = remote_address_masked (addr);
10699 p += hexnumstr (p, (ULONGEST) addr);
10700 xsnprintf (p, endbuf - p, ",%x", len);
10701
10702 putpkt (rs->buf);
10703 getpkt (&rs->buf, 0);
10704
10705 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10706 {
10707 case PACKET_ERROR:
10708 return -1;
10709 case PACKET_UNKNOWN:
10710 return 1;
10711 case PACKET_OK:
10712 return 0;
10713 }
10714 internal_error (__FILE__, __LINE__,
10715 _("remote_insert_watchpoint: reached end of function"));
10716 }
10717
10718 bool
10719 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10720 CORE_ADDR start, int length)
10721 {
10722 CORE_ADDR diff = remote_address_masked (addr - start);
10723
10724 return diff < length;
10725 }
10726
10727
10728 int
10729 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10730 enum target_hw_bp_type type, struct expression *cond)
10731 {
10732 struct remote_state *rs = get_remote_state ();
10733 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10734 char *p;
10735 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10736
10737 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10738 return -1;
10739
10740 /* Make sure the remote is pointing at the right process, if
10741 necessary. */
10742 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10743 set_general_process ();
10744
10745 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "z%x,", packet);
10746 p = strchr (rs->buf.data (), '\0');
10747 addr = remote_address_masked (addr);
10748 p += hexnumstr (p, (ULONGEST) addr);
10749 xsnprintf (p, endbuf - p, ",%x", len);
10750 putpkt (rs->buf);
10751 getpkt (&rs->buf, 0);
10752
10753 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10754 {
10755 case PACKET_ERROR:
10756 case PACKET_UNKNOWN:
10757 return -1;
10758 case PACKET_OK:
10759 return 0;
10760 }
10761 internal_error (__FILE__, __LINE__,
10762 _("remote_remove_watchpoint: reached end of function"));
10763 }
10764
10765
10766 static int remote_hw_watchpoint_limit = -1;
10767 static int remote_hw_watchpoint_length_limit = -1;
10768 static int remote_hw_breakpoint_limit = -1;
10769
10770 int
10771 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10772 {
10773 if (remote_hw_watchpoint_length_limit == 0)
10774 return 0;
10775 else if (remote_hw_watchpoint_length_limit < 0)
10776 return 1;
10777 else if (len <= remote_hw_watchpoint_length_limit)
10778 return 1;
10779 else
10780 return 0;
10781 }
10782
10783 int
10784 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10785 {
10786 if (type == bp_hardware_breakpoint)
10787 {
10788 if (remote_hw_breakpoint_limit == 0)
10789 return 0;
10790 else if (remote_hw_breakpoint_limit < 0)
10791 return 1;
10792 else if (cnt <= remote_hw_breakpoint_limit)
10793 return 1;
10794 }
10795 else
10796 {
10797 if (remote_hw_watchpoint_limit == 0)
10798 return 0;
10799 else if (remote_hw_watchpoint_limit < 0)
10800 return 1;
10801 else if (ot)
10802 return -1;
10803 else if (cnt <= remote_hw_watchpoint_limit)
10804 return 1;
10805 }
10806 return -1;
10807 }
10808
10809 /* The to_stopped_by_sw_breakpoint method of target remote. */
10810
10811 bool
10812 remote_target::stopped_by_sw_breakpoint ()
10813 {
10814 struct thread_info *thread = inferior_thread ();
10815
10816 return (thread->priv != NULL
10817 && (get_remote_thread_info (thread)->stop_reason
10818 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10819 }
10820
10821 /* The to_supports_stopped_by_sw_breakpoint method of target
10822 remote. */
10823
10824 bool
10825 remote_target::supports_stopped_by_sw_breakpoint ()
10826 {
10827 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10828 }
10829
10830 /* The to_stopped_by_hw_breakpoint method of target remote. */
10831
10832 bool
10833 remote_target::stopped_by_hw_breakpoint ()
10834 {
10835 struct thread_info *thread = inferior_thread ();
10836
10837 return (thread->priv != NULL
10838 && (get_remote_thread_info (thread)->stop_reason
10839 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10840 }
10841
10842 /* The to_supports_stopped_by_hw_breakpoint method of target
10843 remote. */
10844
10845 bool
10846 remote_target::supports_stopped_by_hw_breakpoint ()
10847 {
10848 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10849 }
10850
10851 bool
10852 remote_target::stopped_by_watchpoint ()
10853 {
10854 struct thread_info *thread = inferior_thread ();
10855
10856 return (thread->priv != NULL
10857 && (get_remote_thread_info (thread)->stop_reason
10858 == TARGET_STOPPED_BY_WATCHPOINT));
10859 }
10860
10861 bool
10862 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10863 {
10864 struct thread_info *thread = inferior_thread ();
10865
10866 if (thread->priv != NULL
10867 && (get_remote_thread_info (thread)->stop_reason
10868 == TARGET_STOPPED_BY_WATCHPOINT))
10869 {
10870 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10871 return true;
10872 }
10873
10874 return false;
10875 }
10876
10877
10878 int
10879 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10880 struct bp_target_info *bp_tgt)
10881 {
10882 CORE_ADDR addr = bp_tgt->reqstd_address;
10883 struct remote_state *rs;
10884 char *p, *endbuf;
10885 char *message;
10886
10887 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10888 return -1;
10889
10890 /* Make sure the remote is pointing at the right process, if
10891 necessary. */
10892 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10893 set_general_process ();
10894
10895 rs = get_remote_state ();
10896 p = rs->buf.data ();
10897 endbuf = p + get_remote_packet_size ();
10898
10899 *(p++) = 'Z';
10900 *(p++) = '1';
10901 *(p++) = ',';
10902
10903 addr = remote_address_masked (addr);
10904 p += hexnumstr (p, (ULONGEST) addr);
10905 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10906
10907 if (supports_evaluation_of_breakpoint_conditions ())
10908 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10909
10910 if (can_run_breakpoint_commands ())
10911 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10912
10913 putpkt (rs->buf);
10914 getpkt (&rs->buf, 0);
10915
10916 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10917 {
10918 case PACKET_ERROR:
10919 if (rs->buf[1] == '.')
10920 {
10921 message = strchr (&rs->buf[2], '.');
10922 if (message)
10923 error (_("Remote failure reply: %s"), message + 1);
10924 }
10925 return -1;
10926 case PACKET_UNKNOWN:
10927 return -1;
10928 case PACKET_OK:
10929 return 0;
10930 }
10931 internal_error (__FILE__, __LINE__,
10932 _("remote_insert_hw_breakpoint: reached end of function"));
10933 }
10934
10935
10936 int
10937 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10938 struct bp_target_info *bp_tgt)
10939 {
10940 CORE_ADDR addr;
10941 struct remote_state *rs = get_remote_state ();
10942 char *p = rs->buf.data ();
10943 char *endbuf = p + get_remote_packet_size ();
10944
10945 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10946 return -1;
10947
10948 /* Make sure the remote is pointing at the right process, if
10949 necessary. */
10950 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10951 set_general_process ();
10952
10953 *(p++) = 'z';
10954 *(p++) = '1';
10955 *(p++) = ',';
10956
10957 addr = remote_address_masked (bp_tgt->placed_address);
10958 p += hexnumstr (p, (ULONGEST) addr);
10959 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10960
10961 putpkt (rs->buf);
10962 getpkt (&rs->buf, 0);
10963
10964 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10965 {
10966 case PACKET_ERROR:
10967 case PACKET_UNKNOWN:
10968 return -1;
10969 case PACKET_OK:
10970 return 0;
10971 }
10972 internal_error (__FILE__, __LINE__,
10973 _("remote_remove_hw_breakpoint: reached end of function"));
10974 }
10975
10976 /* Verify memory using the "qCRC:" request. */
10977
10978 int
10979 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10980 {
10981 struct remote_state *rs = get_remote_state ();
10982 unsigned long host_crc, target_crc;
10983 char *tmp;
10984
10985 /* It doesn't make sense to use qCRC if the remote target is
10986 connected but not running. */
10987 if (target_has_execution ()
10988 && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10989 {
10990 enum packet_result result;
10991
10992 /* Make sure the remote is pointing at the right process. */
10993 set_general_process ();
10994
10995 /* FIXME: assumes lma can fit into long. */
10996 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qCRC:%lx,%lx",
10997 (long) lma, (long) size);
10998 putpkt (rs->buf);
10999
11000 /* Be clever; compute the host_crc before waiting for target
11001 reply. */
11002 host_crc = xcrc32 (data, size, 0xffffffff);
11003
11004 getpkt (&rs->buf, 0);
11005
11006 result = packet_ok (rs->buf,
11007 &remote_protocol_packets[PACKET_qCRC]);
11008 if (result == PACKET_ERROR)
11009 return -1;
11010 else if (result == PACKET_OK)
11011 {
11012 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
11013 target_crc = target_crc * 16 + fromhex (*tmp);
11014
11015 return (host_crc == target_crc);
11016 }
11017 }
11018
11019 return simple_verify_memory (this, data, lma, size);
11020 }
11021
11022 /* compare-sections command
11023
11024 With no arguments, compares each loadable section in the exec bfd
11025 with the same memory range on the target, and reports mismatches.
11026 Useful for verifying the image on the target against the exec file. */
11027
11028 static void
11029 compare_sections_command (const char *args, int from_tty)
11030 {
11031 asection *s;
11032 const char *sectname;
11033 bfd_size_type size;
11034 bfd_vma lma;
11035 int matched = 0;
11036 int mismatched = 0;
11037 int res;
11038 int read_only = 0;
11039
11040 if (!current_program_space->exec_bfd ())
11041 error (_("command cannot be used without an exec file"));
11042
11043 if (args != NULL && strcmp (args, "-r") == 0)
11044 {
11045 read_only = 1;
11046 args = NULL;
11047 }
11048
11049 for (s = current_program_space->exec_bfd ()->sections; s; s = s->next)
11050 {
11051 if (!(s->flags & SEC_LOAD))
11052 continue; /* Skip non-loadable section. */
11053
11054 if (read_only && (s->flags & SEC_READONLY) == 0)
11055 continue; /* Skip writeable sections */
11056
11057 size = bfd_section_size (s);
11058 if (size == 0)
11059 continue; /* Skip zero-length section. */
11060
11061 sectname = bfd_section_name (s);
11062 if (args && strcmp (args, sectname) != 0)
11063 continue; /* Not the section selected by user. */
11064
11065 matched = 1; /* Do this section. */
11066 lma = s->lma;
11067
11068 gdb::byte_vector sectdata (size);
11069 bfd_get_section_contents (current_program_space->exec_bfd (), s,
11070 sectdata.data (), 0, size);
11071
11072 res = target_verify_memory (sectdata.data (), lma, size);
11073
11074 if (res == -1)
11075 error (_("target memory fault, section %s, range %s -- %s"), sectname,
11076 paddress (target_gdbarch (), lma),
11077 paddress (target_gdbarch (), lma + size));
11078
11079 printf_filtered ("Section %s, range %s -- %s: ", sectname,
11080 paddress (target_gdbarch (), lma),
11081 paddress (target_gdbarch (), lma + size));
11082 if (res)
11083 printf_filtered ("matched.\n");
11084 else
11085 {
11086 printf_filtered ("MIS-MATCHED!\n");
11087 mismatched++;
11088 }
11089 }
11090 if (mismatched > 0)
11091 warning (_("One or more sections of the target image does not match\n\
11092 the loaded file\n"));
11093 if (args && !matched)
11094 printf_filtered (_("No loaded section named '%s'.\n"), args);
11095 }
11096
11097 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
11098 into remote target. The number of bytes written to the remote
11099 target is returned, or -1 for error. */
11100
11101 target_xfer_status
11102 remote_target::remote_write_qxfer (const char *object_name,
11103 const char *annex, const gdb_byte *writebuf,
11104 ULONGEST offset, LONGEST len,
11105 ULONGEST *xfered_len,
11106 struct packet_config *packet)
11107 {
11108 int i, buf_len;
11109 ULONGEST n;
11110 struct remote_state *rs = get_remote_state ();
11111 int max_size = get_memory_write_packet_size ();
11112
11113 if (packet_config_support (packet) == PACKET_DISABLE)
11114 return TARGET_XFER_E_IO;
11115
11116 /* Insert header. */
11117 i = snprintf (rs->buf.data (), max_size,
11118 "qXfer:%s:write:%s:%s:",
11119 object_name, annex ? annex : "",
11120 phex_nz (offset, sizeof offset));
11121 max_size -= (i + 1);
11122
11123 /* Escape as much data as fits into rs->buf. */
11124 buf_len = remote_escape_output
11125 (writebuf, len, 1, (gdb_byte *) rs->buf.data () + i, &max_size, max_size);
11126
11127 if (putpkt_binary (rs->buf.data (), i + buf_len) < 0
11128 || getpkt_sane (&rs->buf, 0) < 0
11129 || packet_ok (rs->buf, packet) != PACKET_OK)
11130 return TARGET_XFER_E_IO;
11131
11132 unpack_varlen_hex (rs->buf.data (), &n);
11133
11134 *xfered_len = n;
11135 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11136 }
11137
11138 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
11139 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
11140 number of bytes read is returned, or 0 for EOF, or -1 for error.
11141 The number of bytes read may be less than LEN without indicating an
11142 EOF. PACKET is checked and updated to indicate whether the remote
11143 target supports this object. */
11144
11145 target_xfer_status
11146 remote_target::remote_read_qxfer (const char *object_name,
11147 const char *annex,
11148 gdb_byte *readbuf, ULONGEST offset,
11149 LONGEST len,
11150 ULONGEST *xfered_len,
11151 struct packet_config *packet)
11152 {
11153 struct remote_state *rs = get_remote_state ();
11154 LONGEST i, n, packet_len;
11155
11156 if (packet_config_support (packet) == PACKET_DISABLE)
11157 return TARGET_XFER_E_IO;
11158
11159 /* Check whether we've cached an end-of-object packet that matches
11160 this request. */
11161 if (rs->finished_object)
11162 {
11163 if (strcmp (object_name, rs->finished_object) == 0
11164 && strcmp (annex ? annex : "", rs->finished_annex) == 0
11165 && offset == rs->finished_offset)
11166 return TARGET_XFER_EOF;
11167
11168
11169 /* Otherwise, we're now reading something different. Discard
11170 the cache. */
11171 xfree (rs->finished_object);
11172 xfree (rs->finished_annex);
11173 rs->finished_object = NULL;
11174 rs->finished_annex = NULL;
11175 }
11176
11177 /* Request only enough to fit in a single packet. The actual data
11178 may not, since we don't know how much of it will need to be escaped;
11179 the target is free to respond with slightly less data. We subtract
11180 five to account for the response type and the protocol frame. */
11181 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
11182 snprintf (rs->buf.data (), get_remote_packet_size () - 4,
11183 "qXfer:%s:read:%s:%s,%s",
11184 object_name, annex ? annex : "",
11185 phex_nz (offset, sizeof offset),
11186 phex_nz (n, sizeof n));
11187 i = putpkt (rs->buf);
11188 if (i < 0)
11189 return TARGET_XFER_E_IO;
11190
11191 rs->buf[0] = '\0';
11192 packet_len = getpkt_sane (&rs->buf, 0);
11193 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
11194 return TARGET_XFER_E_IO;
11195
11196 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
11197 error (_("Unknown remote qXfer reply: %s"), rs->buf.data ());
11198
11199 /* 'm' means there is (or at least might be) more data after this
11200 batch. That does not make sense unless there's at least one byte
11201 of data in this reply. */
11202 if (rs->buf[0] == 'm' && packet_len == 1)
11203 error (_("Remote qXfer reply contained no data."));
11204
11205 /* Got some data. */
11206 i = remote_unescape_input ((gdb_byte *) rs->buf.data () + 1,
11207 packet_len - 1, readbuf, n);
11208
11209 /* 'l' is an EOF marker, possibly including a final block of data,
11210 or possibly empty. If we have the final block of a non-empty
11211 object, record this fact to bypass a subsequent partial read. */
11212 if (rs->buf[0] == 'l' && offset + i > 0)
11213 {
11214 rs->finished_object = xstrdup (object_name);
11215 rs->finished_annex = xstrdup (annex ? annex : "");
11216 rs->finished_offset = offset + i;
11217 }
11218
11219 if (i == 0)
11220 return TARGET_XFER_EOF;
11221 else
11222 {
11223 *xfered_len = i;
11224 return TARGET_XFER_OK;
11225 }
11226 }
11227
11228 enum target_xfer_status
11229 remote_target::xfer_partial (enum target_object object,
11230 const char *annex, gdb_byte *readbuf,
11231 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
11232 ULONGEST *xfered_len)
11233 {
11234 struct remote_state *rs;
11235 int i;
11236 char *p2;
11237 char query_type;
11238 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
11239
11240 set_remote_traceframe ();
11241 set_general_thread (inferior_ptid);
11242
11243 rs = get_remote_state ();
11244
11245 /* Handle memory using the standard memory routines. */
11246 if (object == TARGET_OBJECT_MEMORY)
11247 {
11248 /* If the remote target is connected but not running, we should
11249 pass this request down to a lower stratum (e.g. the executable
11250 file). */
11251 if (!target_has_execution ())
11252 return TARGET_XFER_EOF;
11253
11254 if (writebuf != NULL)
11255 return remote_write_bytes (offset, writebuf, len, unit_size,
11256 xfered_len);
11257 else
11258 return remote_read_bytes (offset, readbuf, len, unit_size,
11259 xfered_len);
11260 }
11261
11262 /* Handle extra signal info using qxfer packets. */
11263 if (object == TARGET_OBJECT_SIGNAL_INFO)
11264 {
11265 if (readbuf)
11266 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
11267 xfered_len, &remote_protocol_packets
11268 [PACKET_qXfer_siginfo_read]);
11269 else
11270 return remote_write_qxfer ("siginfo", annex,
11271 writebuf, offset, len, xfered_len,
11272 &remote_protocol_packets
11273 [PACKET_qXfer_siginfo_write]);
11274 }
11275
11276 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
11277 {
11278 if (readbuf)
11279 return remote_read_qxfer ("statictrace", annex,
11280 readbuf, offset, len, xfered_len,
11281 &remote_protocol_packets
11282 [PACKET_qXfer_statictrace_read]);
11283 else
11284 return TARGET_XFER_E_IO;
11285 }
11286
11287 /* Only handle flash writes. */
11288 if (writebuf != NULL)
11289 {
11290 switch (object)
11291 {
11292 case TARGET_OBJECT_FLASH:
11293 return remote_flash_write (offset, len, xfered_len,
11294 writebuf);
11295
11296 default:
11297 return TARGET_XFER_E_IO;
11298 }
11299 }
11300
11301 /* Map pre-existing objects onto letters. DO NOT do this for new
11302 objects!!! Instead specify new query packets. */
11303 switch (object)
11304 {
11305 case TARGET_OBJECT_AVR:
11306 query_type = 'R';
11307 break;
11308
11309 case TARGET_OBJECT_AUXV:
11310 gdb_assert (annex == NULL);
11311 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
11312 xfered_len,
11313 &remote_protocol_packets[PACKET_qXfer_auxv]);
11314
11315 case TARGET_OBJECT_AVAILABLE_FEATURES:
11316 return remote_read_qxfer
11317 ("features", annex, readbuf, offset, len, xfered_len,
11318 &remote_protocol_packets[PACKET_qXfer_features]);
11319
11320 case TARGET_OBJECT_LIBRARIES:
11321 return remote_read_qxfer
11322 ("libraries", annex, readbuf, offset, len, xfered_len,
11323 &remote_protocol_packets[PACKET_qXfer_libraries]);
11324
11325 case TARGET_OBJECT_LIBRARIES_SVR4:
11326 return remote_read_qxfer
11327 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
11328 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
11329
11330 case TARGET_OBJECT_MEMORY_MAP:
11331 gdb_assert (annex == NULL);
11332 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
11333 xfered_len,
11334 &remote_protocol_packets[PACKET_qXfer_memory_map]);
11335
11336 case TARGET_OBJECT_OSDATA:
11337 /* Should only get here if we're connected. */
11338 gdb_assert (rs->remote_desc);
11339 return remote_read_qxfer
11340 ("osdata", annex, readbuf, offset, len, xfered_len,
11341 &remote_protocol_packets[PACKET_qXfer_osdata]);
11342
11343 case TARGET_OBJECT_THREADS:
11344 gdb_assert (annex == NULL);
11345 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
11346 xfered_len,
11347 &remote_protocol_packets[PACKET_qXfer_threads]);
11348
11349 case TARGET_OBJECT_TRACEFRAME_INFO:
11350 gdb_assert (annex == NULL);
11351 return remote_read_qxfer
11352 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
11353 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
11354
11355 case TARGET_OBJECT_FDPIC:
11356 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
11357 xfered_len,
11358 &remote_protocol_packets[PACKET_qXfer_fdpic]);
11359
11360 case TARGET_OBJECT_OPENVMS_UIB:
11361 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
11362 xfered_len,
11363 &remote_protocol_packets[PACKET_qXfer_uib]);
11364
11365 case TARGET_OBJECT_BTRACE:
11366 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
11367 xfered_len,
11368 &remote_protocol_packets[PACKET_qXfer_btrace]);
11369
11370 case TARGET_OBJECT_BTRACE_CONF:
11371 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
11372 len, xfered_len,
11373 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
11374
11375 case TARGET_OBJECT_EXEC_FILE:
11376 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
11377 len, xfered_len,
11378 &remote_protocol_packets[PACKET_qXfer_exec_file]);
11379
11380 default:
11381 return TARGET_XFER_E_IO;
11382 }
11383
11384 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
11385 large enough let the caller deal with it. */
11386 if (len < get_remote_packet_size ())
11387 return TARGET_XFER_E_IO;
11388 len = get_remote_packet_size ();
11389
11390 /* Except for querying the minimum buffer size, target must be open. */
11391 if (!rs->remote_desc)
11392 error (_("remote query is only available after target open"));
11393
11394 gdb_assert (annex != NULL);
11395 gdb_assert (readbuf != NULL);
11396
11397 p2 = rs->buf.data ();
11398 *p2++ = 'q';
11399 *p2++ = query_type;
11400
11401 /* We used one buffer char for the remote protocol q command and
11402 another for the query type. As the remote protocol encapsulation
11403 uses 4 chars plus one extra in case we are debugging
11404 (remote_debug), we have PBUFZIZ - 7 left to pack the query
11405 string. */
11406 i = 0;
11407 while (annex[i] && (i < (get_remote_packet_size () - 8)))
11408 {
11409 /* Bad caller may have sent forbidden characters. */
11410 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
11411 *p2++ = annex[i];
11412 i++;
11413 }
11414 *p2 = '\0';
11415 gdb_assert (annex[i] == '\0');
11416
11417 i = putpkt (rs->buf);
11418 if (i < 0)
11419 return TARGET_XFER_E_IO;
11420
11421 getpkt (&rs->buf, 0);
11422 strcpy ((char *) readbuf, rs->buf.data ());
11423
11424 *xfered_len = strlen ((char *) readbuf);
11425 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11426 }
11427
11428 /* Implementation of to_get_memory_xfer_limit. */
11429
11430 ULONGEST
11431 remote_target::get_memory_xfer_limit ()
11432 {
11433 return get_memory_write_packet_size ();
11434 }
11435
11436 int
11437 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
11438 const gdb_byte *pattern, ULONGEST pattern_len,
11439 CORE_ADDR *found_addrp)
11440 {
11441 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
11442 struct remote_state *rs = get_remote_state ();
11443 int max_size = get_memory_write_packet_size ();
11444 struct packet_config *packet =
11445 &remote_protocol_packets[PACKET_qSearch_memory];
11446 /* Number of packet bytes used to encode the pattern;
11447 this could be more than PATTERN_LEN due to escape characters. */
11448 int escaped_pattern_len;
11449 /* Amount of pattern that was encodable in the packet. */
11450 int used_pattern_len;
11451 int i;
11452 int found;
11453 ULONGEST found_addr;
11454
11455 auto read_memory = [=] (CORE_ADDR addr, gdb_byte *result, size_t len)
11456 {
11457 return (target_read (this, TARGET_OBJECT_MEMORY, NULL, result, addr, len)
11458 == len);
11459 };
11460
11461 /* Don't go to the target if we don't have to. This is done before
11462 checking packet_config_support to avoid the possibility that a
11463 success for this edge case means the facility works in
11464 general. */
11465 if (pattern_len > search_space_len)
11466 return 0;
11467 if (pattern_len == 0)
11468 {
11469 *found_addrp = start_addr;
11470 return 1;
11471 }
11472
11473 /* If we already know the packet isn't supported, fall back to the simple
11474 way of searching memory. */
11475
11476 if (packet_config_support (packet) == PACKET_DISABLE)
11477 {
11478 /* Target doesn't provided special support, fall back and use the
11479 standard support (copy memory and do the search here). */
11480 return simple_search_memory (read_memory, start_addr, search_space_len,
11481 pattern, pattern_len, found_addrp);
11482 }
11483
11484 /* Make sure the remote is pointing at the right process. */
11485 set_general_process ();
11486
11487 /* Insert header. */
11488 i = snprintf (rs->buf.data (), max_size,
11489 "qSearch:memory:%s;%s;",
11490 phex_nz (start_addr, addr_size),
11491 phex_nz (search_space_len, sizeof (search_space_len)));
11492 max_size -= (i + 1);
11493
11494 /* Escape as much data as fits into rs->buf. */
11495 escaped_pattern_len =
11496 remote_escape_output (pattern, pattern_len, 1,
11497 (gdb_byte *) rs->buf.data () + i,
11498 &used_pattern_len, max_size);
11499
11500 /* Bail if the pattern is too large. */
11501 if (used_pattern_len != pattern_len)
11502 error (_("Pattern is too large to transmit to remote target."));
11503
11504 if (putpkt_binary (rs->buf.data (), i + escaped_pattern_len) < 0
11505 || getpkt_sane (&rs->buf, 0) < 0
11506 || packet_ok (rs->buf, packet) != PACKET_OK)
11507 {
11508 /* The request may not have worked because the command is not
11509 supported. If so, fall back to the simple way. */
11510 if (packet_config_support (packet) == PACKET_DISABLE)
11511 {
11512 return simple_search_memory (read_memory, start_addr, search_space_len,
11513 pattern, pattern_len, found_addrp);
11514 }
11515 return -1;
11516 }
11517
11518 if (rs->buf[0] == '0')
11519 found = 0;
11520 else if (rs->buf[0] == '1')
11521 {
11522 found = 1;
11523 if (rs->buf[1] != ',')
11524 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11525 unpack_varlen_hex (&rs->buf[2], &found_addr);
11526 *found_addrp = found_addr;
11527 }
11528 else
11529 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11530
11531 return found;
11532 }
11533
11534 void
11535 remote_target::rcmd (const char *command, struct ui_file *outbuf)
11536 {
11537 struct remote_state *rs = get_remote_state ();
11538 char *p = rs->buf.data ();
11539
11540 if (!rs->remote_desc)
11541 error (_("remote rcmd is only available after target open"));
11542
11543 /* Send a NULL command across as an empty command. */
11544 if (command == NULL)
11545 command = "";
11546
11547 /* The query prefix. */
11548 strcpy (rs->buf.data (), "qRcmd,");
11549 p = strchr (rs->buf.data (), '\0');
11550
11551 if ((strlen (rs->buf.data ()) + strlen (command) * 2 + 8/*misc*/)
11552 > get_remote_packet_size ())
11553 error (_("\"monitor\" command ``%s'' is too long."), command);
11554
11555 /* Encode the actual command. */
11556 bin2hex ((const gdb_byte *) command, p, strlen (command));
11557
11558 if (putpkt (rs->buf) < 0)
11559 error (_("Communication problem with target."));
11560
11561 /* get/display the response */
11562 while (1)
11563 {
11564 char *buf;
11565
11566 /* XXX - see also remote_get_noisy_reply(). */
11567 QUIT; /* Allow user to bail out with ^C. */
11568 rs->buf[0] = '\0';
11569 if (getpkt_sane (&rs->buf, 0) == -1)
11570 {
11571 /* Timeout. Continue to (try to) read responses.
11572 This is better than stopping with an error, assuming the stub
11573 is still executing the (long) monitor command.
11574 If needed, the user can interrupt gdb using C-c, obtaining
11575 an effect similar to stop on timeout. */
11576 continue;
11577 }
11578 buf = rs->buf.data ();
11579 if (buf[0] == '\0')
11580 error (_("Target does not support this command."));
11581 if (buf[0] == 'O' && buf[1] != 'K')
11582 {
11583 remote_console_output (buf + 1); /* 'O' message from stub. */
11584 continue;
11585 }
11586 if (strcmp (buf, "OK") == 0)
11587 break;
11588 if (strlen (buf) == 3 && buf[0] == 'E'
11589 && isdigit (buf[1]) && isdigit (buf[2]))
11590 {
11591 error (_("Protocol error with Rcmd"));
11592 }
11593 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11594 {
11595 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11596
11597 fputc_unfiltered (c, outbuf);
11598 }
11599 break;
11600 }
11601 }
11602
11603 std::vector<mem_region>
11604 remote_target::memory_map ()
11605 {
11606 std::vector<mem_region> result;
11607 gdb::optional<gdb::char_vector> text
11608 = target_read_stralloc (current_inferior ()->top_target (),
11609 TARGET_OBJECT_MEMORY_MAP, NULL);
11610
11611 if (text)
11612 result = parse_memory_map (text->data ());
11613
11614 return result;
11615 }
11616
11617 static void
11618 packet_command (const char *args, int from_tty)
11619 {
11620 remote_target *remote = get_current_remote_target ();
11621
11622 if (remote == nullptr)
11623 error (_("command can only be used with remote target"));
11624
11625 remote->packet_command (args, from_tty);
11626 }
11627
11628 void
11629 remote_target::packet_command (const char *args, int from_tty)
11630 {
11631 if (!args)
11632 error (_("remote-packet command requires packet text as argument"));
11633
11634 puts_filtered ("sending: ");
11635 print_packet (args);
11636 puts_filtered ("\n");
11637 putpkt (args);
11638
11639 remote_state *rs = get_remote_state ();
11640
11641 getpkt (&rs->buf, 0);
11642 puts_filtered ("received: ");
11643 print_packet (rs->buf.data ());
11644 puts_filtered ("\n");
11645 }
11646
11647 #if 0
11648 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11649
11650 static void display_thread_info (struct gdb_ext_thread_info *info);
11651
11652 static void threadset_test_cmd (char *cmd, int tty);
11653
11654 static void threadalive_test (char *cmd, int tty);
11655
11656 static void threadlist_test_cmd (char *cmd, int tty);
11657
11658 int get_and_display_threadinfo (threadref *ref);
11659
11660 static void threadinfo_test_cmd (char *cmd, int tty);
11661
11662 static int thread_display_step (threadref *ref, void *context);
11663
11664 static void threadlist_update_test_cmd (char *cmd, int tty);
11665
11666 static void init_remote_threadtests (void);
11667
11668 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11669
11670 static void
11671 threadset_test_cmd (const char *cmd, int tty)
11672 {
11673 int sample_thread = SAMPLE_THREAD;
11674
11675 printf_filtered (_("Remote threadset test\n"));
11676 set_general_thread (sample_thread);
11677 }
11678
11679
11680 static void
11681 threadalive_test (const char *cmd, int tty)
11682 {
11683 int sample_thread = SAMPLE_THREAD;
11684 int pid = inferior_ptid.pid ();
11685 ptid_t ptid = ptid_t (pid, sample_thread, 0);
11686
11687 if (remote_thread_alive (ptid))
11688 printf_filtered ("PASS: Thread alive test\n");
11689 else
11690 printf_filtered ("FAIL: Thread alive test\n");
11691 }
11692
11693 void output_threadid (char *title, threadref *ref);
11694
11695 void
11696 output_threadid (char *title, threadref *ref)
11697 {
11698 char hexid[20];
11699
11700 pack_threadid (&hexid[0], ref); /* Convert thread id into hex. */
11701 hexid[16] = 0;
11702 printf_filtered ("%s %s\n", title, (&hexid[0]));
11703 }
11704
11705 static void
11706 threadlist_test_cmd (const char *cmd, int tty)
11707 {
11708 int startflag = 1;
11709 threadref nextthread;
11710 int done, result_count;
11711 threadref threadlist[3];
11712
11713 printf_filtered ("Remote Threadlist test\n");
11714 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11715 &result_count, &threadlist[0]))
11716 printf_filtered ("FAIL: threadlist test\n");
11717 else
11718 {
11719 threadref *scan = threadlist;
11720 threadref *limit = scan + result_count;
11721
11722 while (scan < limit)
11723 output_threadid (" thread ", scan++);
11724 }
11725 }
11726
11727 void
11728 display_thread_info (struct gdb_ext_thread_info *info)
11729 {
11730 output_threadid ("Threadid: ", &info->threadid);
11731 printf_filtered ("Name: %s\n ", info->shortname);
11732 printf_filtered ("State: %s\n", info->display);
11733 printf_filtered ("other: %s\n\n", info->more_display);
11734 }
11735
11736 int
11737 get_and_display_threadinfo (threadref *ref)
11738 {
11739 int result;
11740 int set;
11741 struct gdb_ext_thread_info threadinfo;
11742
11743 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11744 | TAG_MOREDISPLAY | TAG_DISPLAY;
11745 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11746 display_thread_info (&threadinfo);
11747 return result;
11748 }
11749
11750 static void
11751 threadinfo_test_cmd (const char *cmd, int tty)
11752 {
11753 int athread = SAMPLE_THREAD;
11754 threadref thread;
11755 int set;
11756
11757 int_to_threadref (&thread, athread);
11758 printf_filtered ("Remote Threadinfo test\n");
11759 if (!get_and_display_threadinfo (&thread))
11760 printf_filtered ("FAIL cannot get thread info\n");
11761 }
11762
11763 static int
11764 thread_display_step (threadref *ref, void *context)
11765 {
11766 /* output_threadid(" threadstep ",ref); *//* simple test */
11767 return get_and_display_threadinfo (ref);
11768 }
11769
11770 static void
11771 threadlist_update_test_cmd (const char *cmd, int tty)
11772 {
11773 printf_filtered ("Remote Threadlist update test\n");
11774 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11775 }
11776
11777 static void
11778 init_remote_threadtests (void)
11779 {
11780 add_com ("tlist", class_obscure, threadlist_test_cmd,
11781 _("Fetch and print the remote list of "
11782 "thread identifiers, one pkt only."));
11783 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11784 _("Fetch and display info about one thread."));
11785 add_com ("tset", class_obscure, threadset_test_cmd,
11786 _("Test setting to a different thread."));
11787 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11788 _("Iterate through updating all remote thread info."));
11789 add_com ("talive", class_obscure, threadalive_test,
11790 _("Remote thread alive test."));
11791 }
11792
11793 #endif /* 0 */
11794
11795 /* Convert a thread ID to a string. */
11796
11797 std::string
11798 remote_target::pid_to_str (ptid_t ptid)
11799 {
11800 struct remote_state *rs = get_remote_state ();
11801
11802 if (ptid == null_ptid)
11803 return normal_pid_to_str (ptid);
11804 else if (ptid.is_pid ())
11805 {
11806 /* Printing an inferior target id. */
11807
11808 /* When multi-process extensions are off, there's no way in the
11809 remote protocol to know the remote process id, if there's any
11810 at all. There's one exception --- when we're connected with
11811 target extended-remote, and we manually attached to a process
11812 with "attach PID". We don't record anywhere a flag that
11813 allows us to distinguish that case from the case of
11814 connecting with extended-remote and the stub already being
11815 attached to a process, and reporting yes to qAttached, hence
11816 no smart special casing here. */
11817 if (!remote_multi_process_p (rs))
11818 return "Remote target";
11819
11820 return normal_pid_to_str (ptid);
11821 }
11822 else
11823 {
11824 if (magic_null_ptid == ptid)
11825 return "Thread <main>";
11826 else if (remote_multi_process_p (rs))
11827 if (ptid.lwp () == 0)
11828 return normal_pid_to_str (ptid);
11829 else
11830 return string_printf ("Thread %d.%ld",
11831 ptid.pid (), ptid.lwp ());
11832 else
11833 return string_printf ("Thread %ld", ptid.lwp ());
11834 }
11835 }
11836
11837 /* Get the address of the thread local variable in OBJFILE which is
11838 stored at OFFSET within the thread local storage for thread PTID. */
11839
11840 CORE_ADDR
11841 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11842 CORE_ADDR offset)
11843 {
11844 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11845 {
11846 struct remote_state *rs = get_remote_state ();
11847 char *p = rs->buf.data ();
11848 char *endp = p + get_remote_packet_size ();
11849 enum packet_result result;
11850
11851 strcpy (p, "qGetTLSAddr:");
11852 p += strlen (p);
11853 p = write_ptid (p, endp, ptid);
11854 *p++ = ',';
11855 p += hexnumstr (p, offset);
11856 *p++ = ',';
11857 p += hexnumstr (p, lm);
11858 *p++ = '\0';
11859
11860 putpkt (rs->buf);
11861 getpkt (&rs->buf, 0);
11862 result = packet_ok (rs->buf,
11863 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11864 if (result == PACKET_OK)
11865 {
11866 ULONGEST addr;
11867
11868 unpack_varlen_hex (rs->buf.data (), &addr);
11869 return addr;
11870 }
11871 else if (result == PACKET_UNKNOWN)
11872 throw_error (TLS_GENERIC_ERROR,
11873 _("Remote target doesn't support qGetTLSAddr packet"));
11874 else
11875 throw_error (TLS_GENERIC_ERROR,
11876 _("Remote target failed to process qGetTLSAddr request"));
11877 }
11878 else
11879 throw_error (TLS_GENERIC_ERROR,
11880 _("TLS not supported or disabled on this target"));
11881 /* Not reached. */
11882 return 0;
11883 }
11884
11885 /* Provide thread local base, i.e. Thread Information Block address.
11886 Returns 1 if ptid is found and thread_local_base is non zero. */
11887
11888 bool
11889 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11890 {
11891 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11892 {
11893 struct remote_state *rs = get_remote_state ();
11894 char *p = rs->buf.data ();
11895 char *endp = p + get_remote_packet_size ();
11896 enum packet_result result;
11897
11898 strcpy (p, "qGetTIBAddr:");
11899 p += strlen (p);
11900 p = write_ptid (p, endp, ptid);
11901 *p++ = '\0';
11902
11903 putpkt (rs->buf);
11904 getpkt (&rs->buf, 0);
11905 result = packet_ok (rs->buf,
11906 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11907 if (result == PACKET_OK)
11908 {
11909 ULONGEST val;
11910 unpack_varlen_hex (rs->buf.data (), &val);
11911 if (addr)
11912 *addr = (CORE_ADDR) val;
11913 return true;
11914 }
11915 else if (result == PACKET_UNKNOWN)
11916 error (_("Remote target doesn't support qGetTIBAddr packet"));
11917 else
11918 error (_("Remote target failed to process qGetTIBAddr request"));
11919 }
11920 else
11921 error (_("qGetTIBAddr not supported or disabled on this target"));
11922 /* Not reached. */
11923 return false;
11924 }
11925
11926 /* Support for inferring a target description based on the current
11927 architecture and the size of a 'g' packet. While the 'g' packet
11928 can have any size (since optional registers can be left off the
11929 end), some sizes are easily recognizable given knowledge of the
11930 approximate architecture. */
11931
11932 struct remote_g_packet_guess
11933 {
11934 remote_g_packet_guess (int bytes_, const struct target_desc *tdesc_)
11935 : bytes (bytes_),
11936 tdesc (tdesc_)
11937 {
11938 }
11939
11940 int bytes;
11941 const struct target_desc *tdesc;
11942 };
11943
11944 struct remote_g_packet_data : public allocate_on_obstack
11945 {
11946 std::vector<remote_g_packet_guess> guesses;
11947 };
11948
11949 static struct gdbarch_data *remote_g_packet_data_handle;
11950
11951 static void *
11952 remote_g_packet_data_init (struct obstack *obstack)
11953 {
11954 return new (obstack) remote_g_packet_data;
11955 }
11956
11957 void
11958 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11959 const struct target_desc *tdesc)
11960 {
11961 struct remote_g_packet_data *data
11962 = ((struct remote_g_packet_data *)
11963 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11964
11965 gdb_assert (tdesc != NULL);
11966
11967 for (const remote_g_packet_guess &guess : data->guesses)
11968 if (guess.bytes == bytes)
11969 internal_error (__FILE__, __LINE__,
11970 _("Duplicate g packet description added for size %d"),
11971 bytes);
11972
11973 data->guesses.emplace_back (bytes, tdesc);
11974 }
11975
11976 /* Return true if remote_read_description would do anything on this target
11977 and architecture, false otherwise. */
11978
11979 static bool
11980 remote_read_description_p (struct target_ops *target)
11981 {
11982 struct remote_g_packet_data *data
11983 = ((struct remote_g_packet_data *)
11984 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11985
11986 return !data->guesses.empty ();
11987 }
11988
11989 const struct target_desc *
11990 remote_target::read_description ()
11991 {
11992 struct remote_g_packet_data *data
11993 = ((struct remote_g_packet_data *)
11994 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11995
11996 /* Do not try this during initial connection, when we do not know
11997 whether there is a running but stopped thread. */
11998 if (!target_has_execution () || inferior_ptid == null_ptid)
11999 return beneath ()->read_description ();
12000
12001 if (!data->guesses.empty ())
12002 {
12003 int bytes = send_g_packet ();
12004
12005 for (const remote_g_packet_guess &guess : data->guesses)
12006 if (guess.bytes == bytes)
12007 return guess.tdesc;
12008
12009 /* We discard the g packet. A minor optimization would be to
12010 hold on to it, and fill the register cache once we have selected
12011 an architecture, but it's too tricky to do safely. */
12012 }
12013
12014 return beneath ()->read_description ();
12015 }
12016
12017 /* Remote file transfer support. This is host-initiated I/O, not
12018 target-initiated; for target-initiated, see remote-fileio.c. */
12019
12020 /* If *LEFT is at least the length of STRING, copy STRING to
12021 *BUFFER, update *BUFFER to point to the new end of the buffer, and
12022 decrease *LEFT. Otherwise raise an error. */
12023
12024 static void
12025 remote_buffer_add_string (char **buffer, int *left, const char *string)
12026 {
12027 int len = strlen (string);
12028
12029 if (len > *left)
12030 error (_("Packet too long for target."));
12031
12032 memcpy (*buffer, string, len);
12033 *buffer += len;
12034 *left -= len;
12035
12036 /* NUL-terminate the buffer as a convenience, if there is
12037 room. */
12038 if (*left)
12039 **buffer = '\0';
12040 }
12041
12042 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
12043 *BUFFER, update *BUFFER to point to the new end of the buffer, and
12044 decrease *LEFT. Otherwise raise an error. */
12045
12046 static void
12047 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
12048 int len)
12049 {
12050 if (2 * len > *left)
12051 error (_("Packet too long for target."));
12052
12053 bin2hex (bytes, *buffer, len);
12054 *buffer += 2 * len;
12055 *left -= 2 * len;
12056
12057 /* NUL-terminate the buffer as a convenience, if there is
12058 room. */
12059 if (*left)
12060 **buffer = '\0';
12061 }
12062
12063 /* If *LEFT is large enough, convert VALUE to hex and add it to
12064 *BUFFER, update *BUFFER to point to the new end of the buffer, and
12065 decrease *LEFT. Otherwise raise an error. */
12066
12067 static void
12068 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
12069 {
12070 int len = hexnumlen (value);
12071
12072 if (len > *left)
12073 error (_("Packet too long for target."));
12074
12075 hexnumstr (*buffer, value);
12076 *buffer += len;
12077 *left -= len;
12078
12079 /* NUL-terminate the buffer as a convenience, if there is
12080 room. */
12081 if (*left)
12082 **buffer = '\0';
12083 }
12084
12085 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
12086 value, *REMOTE_ERRNO to the remote error number or zero if none
12087 was included, and *ATTACHMENT to point to the start of the annex
12088 if any. The length of the packet isn't needed here; there may
12089 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
12090
12091 Return 0 if the packet could be parsed, -1 if it could not. If
12092 -1 is returned, the other variables may not be initialized. */
12093
12094 static int
12095 remote_hostio_parse_result (const char *buffer, int *retcode,
12096 int *remote_errno, const char **attachment)
12097 {
12098 char *p, *p2;
12099
12100 *remote_errno = 0;
12101 *attachment = NULL;
12102
12103 if (buffer[0] != 'F')
12104 return -1;
12105
12106 errno = 0;
12107 *retcode = strtol (&buffer[1], &p, 16);
12108 if (errno != 0 || p == &buffer[1])
12109 return -1;
12110
12111 /* Check for ",errno". */
12112 if (*p == ',')
12113 {
12114 errno = 0;
12115 *remote_errno = strtol (p + 1, &p2, 16);
12116 if (errno != 0 || p + 1 == p2)
12117 return -1;
12118 p = p2;
12119 }
12120
12121 /* Check for ";attachment". If there is no attachment, the
12122 packet should end here. */
12123 if (*p == ';')
12124 {
12125 *attachment = p + 1;
12126 return 0;
12127 }
12128 else if (*p == '\0')
12129 return 0;
12130 else
12131 return -1;
12132 }
12133
12134 /* Send a prepared I/O packet to the target and read its response.
12135 The prepared packet is in the global RS->BUF before this function
12136 is called, and the answer is there when we return.
12137
12138 COMMAND_BYTES is the length of the request to send, which may include
12139 binary data. WHICH_PACKET is the packet configuration to check
12140 before attempting a packet. If an error occurs, *REMOTE_ERRNO
12141 is set to the error number and -1 is returned. Otherwise the value
12142 returned by the function is returned.
12143
12144 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
12145 attachment is expected; an error will be reported if there's a
12146 mismatch. If one is found, *ATTACHMENT will be set to point into
12147 the packet buffer and *ATTACHMENT_LEN will be set to the
12148 attachment's length. */
12149
12150 int
12151 remote_target::remote_hostio_send_command (int command_bytes, int which_packet,
12152 int *remote_errno, const char **attachment,
12153 int *attachment_len)
12154 {
12155 struct remote_state *rs = get_remote_state ();
12156 int ret, bytes_read;
12157 const char *attachment_tmp;
12158
12159 if (packet_support (which_packet) == PACKET_DISABLE)
12160 {
12161 *remote_errno = FILEIO_ENOSYS;
12162 return -1;
12163 }
12164
12165 putpkt_binary (rs->buf.data (), command_bytes);
12166 bytes_read = getpkt_sane (&rs->buf, 0);
12167
12168 /* If it timed out, something is wrong. Don't try to parse the
12169 buffer. */
12170 if (bytes_read < 0)
12171 {
12172 *remote_errno = FILEIO_EINVAL;
12173 return -1;
12174 }
12175
12176 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
12177 {
12178 case PACKET_ERROR:
12179 *remote_errno = FILEIO_EINVAL;
12180 return -1;
12181 case PACKET_UNKNOWN:
12182 *remote_errno = FILEIO_ENOSYS;
12183 return -1;
12184 case PACKET_OK:
12185 break;
12186 }
12187
12188 if (remote_hostio_parse_result (rs->buf.data (), &ret, remote_errno,
12189 &attachment_tmp))
12190 {
12191 *remote_errno = FILEIO_EINVAL;
12192 return -1;
12193 }
12194
12195 /* Make sure we saw an attachment if and only if we expected one. */
12196 if ((attachment_tmp == NULL && attachment != NULL)
12197 || (attachment_tmp != NULL && attachment == NULL))
12198 {
12199 *remote_errno = FILEIO_EINVAL;
12200 return -1;
12201 }
12202
12203 /* If an attachment was found, it must point into the packet buffer;
12204 work out how many bytes there were. */
12205 if (attachment_tmp != NULL)
12206 {
12207 *attachment = attachment_tmp;
12208 *attachment_len = bytes_read - (*attachment - rs->buf.data ());
12209 }
12210
12211 return ret;
12212 }
12213
12214 /* See declaration.h. */
12215
12216 void
12217 readahead_cache::invalidate ()
12218 {
12219 this->fd = -1;
12220 }
12221
12222 /* See declaration.h. */
12223
12224 void
12225 readahead_cache::invalidate_fd (int fd)
12226 {
12227 if (this->fd == fd)
12228 this->fd = -1;
12229 }
12230
12231 /* Set the filesystem remote_hostio functions that take FILENAME
12232 arguments will use. Return 0 on success, or -1 if an error
12233 occurs (and set *REMOTE_ERRNO). */
12234
12235 int
12236 remote_target::remote_hostio_set_filesystem (struct inferior *inf,
12237 int *remote_errno)
12238 {
12239 struct remote_state *rs = get_remote_state ();
12240 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
12241 char *p = rs->buf.data ();
12242 int left = get_remote_packet_size () - 1;
12243 char arg[9];
12244 int ret;
12245
12246 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
12247 return 0;
12248
12249 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
12250 return 0;
12251
12252 remote_buffer_add_string (&p, &left, "vFile:setfs:");
12253
12254 xsnprintf (arg, sizeof (arg), "%x", required_pid);
12255 remote_buffer_add_string (&p, &left, arg);
12256
12257 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_setfs,
12258 remote_errno, NULL, NULL);
12259
12260 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
12261 return 0;
12262
12263 if (ret == 0)
12264 rs->fs_pid = required_pid;
12265
12266 return ret;
12267 }
12268
12269 /* Implementation of to_fileio_open. */
12270
12271 int
12272 remote_target::remote_hostio_open (inferior *inf, const char *filename,
12273 int flags, int mode, int warn_if_slow,
12274 int *remote_errno)
12275 {
12276 struct remote_state *rs = get_remote_state ();
12277 char *p = rs->buf.data ();
12278 int left = get_remote_packet_size () - 1;
12279
12280 if (warn_if_slow)
12281 {
12282 static int warning_issued = 0;
12283
12284 printf_unfiltered (_("Reading %s from remote target...\n"),
12285 filename);
12286
12287 if (!warning_issued)
12288 {
12289 warning (_("File transfers from remote targets can be slow."
12290 " Use \"set sysroot\" to access files locally"
12291 " instead."));
12292 warning_issued = 1;
12293 }
12294 }
12295
12296 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12297 return -1;
12298
12299 remote_buffer_add_string (&p, &left, "vFile:open:");
12300
12301 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12302 strlen (filename));
12303 remote_buffer_add_string (&p, &left, ",");
12304
12305 remote_buffer_add_int (&p, &left, flags);
12306 remote_buffer_add_string (&p, &left, ",");
12307
12308 remote_buffer_add_int (&p, &left, mode);
12309
12310 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_open,
12311 remote_errno, NULL, NULL);
12312 }
12313
12314 int
12315 remote_target::fileio_open (struct inferior *inf, const char *filename,
12316 int flags, int mode, int warn_if_slow,
12317 int *remote_errno)
12318 {
12319 return remote_hostio_open (inf, filename, flags, mode, warn_if_slow,
12320 remote_errno);
12321 }
12322
12323 /* Implementation of to_fileio_pwrite. */
12324
12325 int
12326 remote_target::remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
12327 ULONGEST offset, int *remote_errno)
12328 {
12329 struct remote_state *rs = get_remote_state ();
12330 char *p = rs->buf.data ();
12331 int left = get_remote_packet_size ();
12332 int out_len;
12333
12334 rs->readahead_cache.invalidate_fd (fd);
12335
12336 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
12337
12338 remote_buffer_add_int (&p, &left, fd);
12339 remote_buffer_add_string (&p, &left, ",");
12340
12341 remote_buffer_add_int (&p, &left, offset);
12342 remote_buffer_add_string (&p, &left, ",");
12343
12344 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
12345 (get_remote_packet_size ()
12346 - (p - rs->buf.data ())));
12347
12348 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pwrite,
12349 remote_errno, NULL, NULL);
12350 }
12351
12352 int
12353 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
12354 ULONGEST offset, int *remote_errno)
12355 {
12356 return remote_hostio_pwrite (fd, write_buf, len, offset, remote_errno);
12357 }
12358
12359 /* Helper for the implementation of to_fileio_pread. Read the file
12360 from the remote side with vFile:pread. */
12361
12362 int
12363 remote_target::remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
12364 ULONGEST offset, int *remote_errno)
12365 {
12366 struct remote_state *rs = get_remote_state ();
12367 char *p = rs->buf.data ();
12368 const char *attachment;
12369 int left = get_remote_packet_size ();
12370 int ret, attachment_len;
12371 int read_len;
12372
12373 remote_buffer_add_string (&p, &left, "vFile:pread:");
12374
12375 remote_buffer_add_int (&p, &left, fd);
12376 remote_buffer_add_string (&p, &left, ",");
12377
12378 remote_buffer_add_int (&p, &left, len);
12379 remote_buffer_add_string (&p, &left, ",");
12380
12381 remote_buffer_add_int (&p, &left, offset);
12382
12383 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pread,
12384 remote_errno, &attachment,
12385 &attachment_len);
12386
12387 if (ret < 0)
12388 return ret;
12389
12390 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12391 read_buf, len);
12392 if (read_len != ret)
12393 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
12394
12395 return ret;
12396 }
12397
12398 /* See declaration.h. */
12399
12400 int
12401 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
12402 ULONGEST offset)
12403 {
12404 if (this->fd == fd
12405 && this->offset <= offset
12406 && offset < this->offset + this->bufsize)
12407 {
12408 ULONGEST max = this->offset + this->bufsize;
12409
12410 if (offset + len > max)
12411 len = max - offset;
12412
12413 memcpy (read_buf, this->buf + offset - this->offset, len);
12414 return len;
12415 }
12416
12417 return 0;
12418 }
12419
12420 /* Implementation of to_fileio_pread. */
12421
12422 int
12423 remote_target::remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
12424 ULONGEST offset, int *remote_errno)
12425 {
12426 int ret;
12427 struct remote_state *rs = get_remote_state ();
12428 readahead_cache *cache = &rs->readahead_cache;
12429
12430 ret = cache->pread (fd, read_buf, len, offset);
12431 if (ret > 0)
12432 {
12433 cache->hit_count++;
12434
12435 remote_debug_printf ("readahead cache hit %s",
12436 pulongest (cache->hit_count));
12437 return ret;
12438 }
12439
12440 cache->miss_count++;
12441
12442 remote_debug_printf ("readahead cache miss %s",
12443 pulongest (cache->miss_count));
12444
12445 cache->fd = fd;
12446 cache->offset = offset;
12447 cache->bufsize = get_remote_packet_size ();
12448 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
12449
12450 ret = remote_hostio_pread_vFile (cache->fd, cache->buf, cache->bufsize,
12451 cache->offset, remote_errno);
12452 if (ret <= 0)
12453 {
12454 cache->invalidate_fd (fd);
12455 return ret;
12456 }
12457
12458 cache->bufsize = ret;
12459 return cache->pread (fd, read_buf, len, offset);
12460 }
12461
12462 int
12463 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
12464 ULONGEST offset, int *remote_errno)
12465 {
12466 return remote_hostio_pread (fd, read_buf, len, offset, remote_errno);
12467 }
12468
12469 /* Implementation of to_fileio_close. */
12470
12471 int
12472 remote_target::remote_hostio_close (int fd, int *remote_errno)
12473 {
12474 struct remote_state *rs = get_remote_state ();
12475 char *p = rs->buf.data ();
12476 int left = get_remote_packet_size () - 1;
12477
12478 rs->readahead_cache.invalidate_fd (fd);
12479
12480 remote_buffer_add_string (&p, &left, "vFile:close:");
12481
12482 remote_buffer_add_int (&p, &left, fd);
12483
12484 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_close,
12485 remote_errno, NULL, NULL);
12486 }
12487
12488 int
12489 remote_target::fileio_close (int fd, int *remote_errno)
12490 {
12491 return remote_hostio_close (fd, remote_errno);
12492 }
12493
12494 /* Implementation of to_fileio_unlink. */
12495
12496 int
12497 remote_target::remote_hostio_unlink (inferior *inf, const char *filename,
12498 int *remote_errno)
12499 {
12500 struct remote_state *rs = get_remote_state ();
12501 char *p = rs->buf.data ();
12502 int left = get_remote_packet_size () - 1;
12503
12504 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12505 return -1;
12506
12507 remote_buffer_add_string (&p, &left, "vFile:unlink:");
12508
12509 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12510 strlen (filename));
12511
12512 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_unlink,
12513 remote_errno, NULL, NULL);
12514 }
12515
12516 int
12517 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12518 int *remote_errno)
12519 {
12520 return remote_hostio_unlink (inf, filename, remote_errno);
12521 }
12522
12523 /* Implementation of to_fileio_readlink. */
12524
12525 gdb::optional<std::string>
12526 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12527 int *remote_errno)
12528 {
12529 struct remote_state *rs = get_remote_state ();
12530 char *p = rs->buf.data ();
12531 const char *attachment;
12532 int left = get_remote_packet_size ();
12533 int len, attachment_len;
12534 int read_len;
12535
12536 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12537 return {};
12538
12539 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12540
12541 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12542 strlen (filename));
12543
12544 len = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_readlink,
12545 remote_errno, &attachment,
12546 &attachment_len);
12547
12548 if (len < 0)
12549 return {};
12550
12551 std::string ret (len, '\0');
12552
12553 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12554 (gdb_byte *) &ret[0], len);
12555 if (read_len != len)
12556 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12557
12558 return ret;
12559 }
12560
12561 /* Implementation of to_fileio_fstat. */
12562
12563 int
12564 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12565 {
12566 struct remote_state *rs = get_remote_state ();
12567 char *p = rs->buf.data ();
12568 int left = get_remote_packet_size ();
12569 int attachment_len, ret;
12570 const char *attachment;
12571 struct fio_stat fst;
12572 int read_len;
12573
12574 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12575
12576 remote_buffer_add_int (&p, &left, fd);
12577
12578 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_fstat,
12579 remote_errno, &attachment,
12580 &attachment_len);
12581 if (ret < 0)
12582 {
12583 if (*remote_errno != FILEIO_ENOSYS)
12584 return ret;
12585
12586 /* Strictly we should return -1, ENOSYS here, but when
12587 "set sysroot remote:" was implemented in August 2008
12588 BFD's need for a stat function was sidestepped with
12589 this hack. This was not remedied until March 2015
12590 so we retain the previous behavior to avoid breaking
12591 compatibility.
12592
12593 Note that the memset is a March 2015 addition; older
12594 GDBs set st_size *and nothing else* so the structure
12595 would have garbage in all other fields. This might
12596 break something but retaining the previous behavior
12597 here would be just too wrong. */
12598
12599 memset (st, 0, sizeof (struct stat));
12600 st->st_size = INT_MAX;
12601 return 0;
12602 }
12603
12604 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12605 (gdb_byte *) &fst, sizeof (fst));
12606
12607 if (read_len != ret)
12608 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12609
12610 if (read_len != sizeof (fst))
12611 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12612 read_len, (int) sizeof (fst));
12613
12614 remote_fileio_to_host_stat (&fst, st);
12615
12616 return 0;
12617 }
12618
12619 /* Implementation of to_filesystem_is_local. */
12620
12621 bool
12622 remote_target::filesystem_is_local ()
12623 {
12624 /* Valgrind GDB presents itself as a remote target but works
12625 on the local filesystem: it does not implement remote get
12626 and users are not expected to set a sysroot. To handle
12627 this case we treat the remote filesystem as local if the
12628 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12629 does not support vFile:open. */
12630 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
12631 {
12632 enum packet_support ps = packet_support (PACKET_vFile_open);
12633
12634 if (ps == PACKET_SUPPORT_UNKNOWN)
12635 {
12636 int fd, remote_errno;
12637
12638 /* Try opening a file to probe support. The supplied
12639 filename is irrelevant, we only care about whether
12640 the stub recognizes the packet or not. */
12641 fd = remote_hostio_open (NULL, "just probing",
12642 FILEIO_O_RDONLY, 0700, 0,
12643 &remote_errno);
12644
12645 if (fd >= 0)
12646 remote_hostio_close (fd, &remote_errno);
12647
12648 ps = packet_support (PACKET_vFile_open);
12649 }
12650
12651 if (ps == PACKET_DISABLE)
12652 {
12653 static int warning_issued = 0;
12654
12655 if (!warning_issued)
12656 {
12657 warning (_("remote target does not support file"
12658 " transfer, attempting to access files"
12659 " from local filesystem."));
12660 warning_issued = 1;
12661 }
12662
12663 return true;
12664 }
12665 }
12666
12667 return false;
12668 }
12669
12670 static int
12671 remote_fileio_errno_to_host (int errnum)
12672 {
12673 switch (errnum)
12674 {
12675 case FILEIO_EPERM:
12676 return EPERM;
12677 case FILEIO_ENOENT:
12678 return ENOENT;
12679 case FILEIO_EINTR:
12680 return EINTR;
12681 case FILEIO_EIO:
12682 return EIO;
12683 case FILEIO_EBADF:
12684 return EBADF;
12685 case FILEIO_EACCES:
12686 return EACCES;
12687 case FILEIO_EFAULT:
12688 return EFAULT;
12689 case FILEIO_EBUSY:
12690 return EBUSY;
12691 case FILEIO_EEXIST:
12692 return EEXIST;
12693 case FILEIO_ENODEV:
12694 return ENODEV;
12695 case FILEIO_ENOTDIR:
12696 return ENOTDIR;
12697 case FILEIO_EISDIR:
12698 return EISDIR;
12699 case FILEIO_EINVAL:
12700 return EINVAL;
12701 case FILEIO_ENFILE:
12702 return ENFILE;
12703 case FILEIO_EMFILE:
12704 return EMFILE;
12705 case FILEIO_EFBIG:
12706 return EFBIG;
12707 case FILEIO_ENOSPC:
12708 return ENOSPC;
12709 case FILEIO_ESPIPE:
12710 return ESPIPE;
12711 case FILEIO_EROFS:
12712 return EROFS;
12713 case FILEIO_ENOSYS:
12714 return ENOSYS;
12715 case FILEIO_ENAMETOOLONG:
12716 return ENAMETOOLONG;
12717 }
12718 return -1;
12719 }
12720
12721 static char *
12722 remote_hostio_error (int errnum)
12723 {
12724 int host_error = remote_fileio_errno_to_host (errnum);
12725
12726 if (host_error == -1)
12727 error (_("Unknown remote I/O error %d"), errnum);
12728 else
12729 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12730 }
12731
12732 /* A RAII wrapper around a remote file descriptor. */
12733
12734 class scoped_remote_fd
12735 {
12736 public:
12737 scoped_remote_fd (remote_target *remote, int fd)
12738 : m_remote (remote), m_fd (fd)
12739 {
12740 }
12741
12742 ~scoped_remote_fd ()
12743 {
12744 if (m_fd != -1)
12745 {
12746 try
12747 {
12748 int remote_errno;
12749 m_remote->remote_hostio_close (m_fd, &remote_errno);
12750 }
12751 catch (...)
12752 {
12753 /* Swallow exception before it escapes the dtor. If
12754 something goes wrong, likely the connection is gone,
12755 and there's nothing else that can be done. */
12756 }
12757 }
12758 }
12759
12760 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12761
12762 /* Release ownership of the file descriptor, and return it. */
12763 ATTRIBUTE_UNUSED_RESULT int release () noexcept
12764 {
12765 int fd = m_fd;
12766 m_fd = -1;
12767 return fd;
12768 }
12769
12770 /* Return the owned file descriptor. */
12771 int get () const noexcept
12772 {
12773 return m_fd;
12774 }
12775
12776 private:
12777 /* The remote target. */
12778 remote_target *m_remote;
12779
12780 /* The owned remote I/O file descriptor. */
12781 int m_fd;
12782 };
12783
12784 void
12785 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12786 {
12787 remote_target *remote = get_current_remote_target ();
12788
12789 if (remote == nullptr)
12790 error (_("command can only be used with remote target"));
12791
12792 remote->remote_file_put (local_file, remote_file, from_tty);
12793 }
12794
12795 void
12796 remote_target::remote_file_put (const char *local_file, const char *remote_file,
12797 int from_tty)
12798 {
12799 int retcode, remote_errno, bytes, io_size;
12800 int bytes_in_buffer;
12801 int saw_eof;
12802 ULONGEST offset;
12803
12804 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12805 if (file == NULL)
12806 perror_with_name (local_file);
12807
12808 scoped_remote_fd fd
12809 (this, remote_hostio_open (NULL,
12810 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12811 | FILEIO_O_TRUNC),
12812 0700, 0, &remote_errno));
12813 if (fd.get () == -1)
12814 remote_hostio_error (remote_errno);
12815
12816 /* Send up to this many bytes at once. They won't all fit in the
12817 remote packet limit, so we'll transfer slightly fewer. */
12818 io_size = get_remote_packet_size ();
12819 gdb::byte_vector buffer (io_size);
12820
12821 bytes_in_buffer = 0;
12822 saw_eof = 0;
12823 offset = 0;
12824 while (bytes_in_buffer || !saw_eof)
12825 {
12826 if (!saw_eof)
12827 {
12828 bytes = fread (buffer.data () + bytes_in_buffer, 1,
12829 io_size - bytes_in_buffer,
12830 file.get ());
12831 if (bytes == 0)
12832 {
12833 if (ferror (file.get ()))
12834 error (_("Error reading %s."), local_file);
12835 else
12836 {
12837 /* EOF. Unless there is something still in the
12838 buffer from the last iteration, we are done. */
12839 saw_eof = 1;
12840 if (bytes_in_buffer == 0)
12841 break;
12842 }
12843 }
12844 }
12845 else
12846 bytes = 0;
12847
12848 bytes += bytes_in_buffer;
12849 bytes_in_buffer = 0;
12850
12851 retcode = remote_hostio_pwrite (fd.get (), buffer.data (), bytes,
12852 offset, &remote_errno);
12853
12854 if (retcode < 0)
12855 remote_hostio_error (remote_errno);
12856 else if (retcode == 0)
12857 error (_("Remote write of %d bytes returned 0!"), bytes);
12858 else if (retcode < bytes)
12859 {
12860 /* Short write. Save the rest of the read data for the next
12861 write. */
12862 bytes_in_buffer = bytes - retcode;
12863 memmove (buffer.data (), buffer.data () + retcode, bytes_in_buffer);
12864 }
12865
12866 offset += retcode;
12867 }
12868
12869 if (remote_hostio_close (fd.release (), &remote_errno))
12870 remote_hostio_error (remote_errno);
12871
12872 if (from_tty)
12873 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12874 }
12875
12876 void
12877 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12878 {
12879 remote_target *remote = get_current_remote_target ();
12880
12881 if (remote == nullptr)
12882 error (_("command can only be used with remote target"));
12883
12884 remote->remote_file_get (remote_file, local_file, from_tty);
12885 }
12886
12887 void
12888 remote_target::remote_file_get (const char *remote_file, const char *local_file,
12889 int from_tty)
12890 {
12891 int remote_errno, bytes, io_size;
12892 ULONGEST offset;
12893
12894 scoped_remote_fd fd
12895 (this, remote_hostio_open (NULL,
12896 remote_file, FILEIO_O_RDONLY, 0, 0,
12897 &remote_errno));
12898 if (fd.get () == -1)
12899 remote_hostio_error (remote_errno);
12900
12901 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12902 if (file == NULL)
12903 perror_with_name (local_file);
12904
12905 /* Send up to this many bytes at once. They won't all fit in the
12906 remote packet limit, so we'll transfer slightly fewer. */
12907 io_size = get_remote_packet_size ();
12908 gdb::byte_vector buffer (io_size);
12909
12910 offset = 0;
12911 while (1)
12912 {
12913 bytes = remote_hostio_pread (fd.get (), buffer.data (), io_size, offset,
12914 &remote_errno);
12915 if (bytes == 0)
12916 /* Success, but no bytes, means end-of-file. */
12917 break;
12918 if (bytes == -1)
12919 remote_hostio_error (remote_errno);
12920
12921 offset += bytes;
12922
12923 bytes = fwrite (buffer.data (), 1, bytes, file.get ());
12924 if (bytes == 0)
12925 perror_with_name (local_file);
12926 }
12927
12928 if (remote_hostio_close (fd.release (), &remote_errno))
12929 remote_hostio_error (remote_errno);
12930
12931 if (from_tty)
12932 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12933 }
12934
12935 void
12936 remote_file_delete (const char *remote_file, int from_tty)
12937 {
12938 remote_target *remote = get_current_remote_target ();
12939
12940 if (remote == nullptr)
12941 error (_("command can only be used with remote target"));
12942
12943 remote->remote_file_delete (remote_file, from_tty);
12944 }
12945
12946 void
12947 remote_target::remote_file_delete (const char *remote_file, int from_tty)
12948 {
12949 int retcode, remote_errno;
12950
12951 retcode = remote_hostio_unlink (NULL, remote_file, &remote_errno);
12952 if (retcode == -1)
12953 remote_hostio_error (remote_errno);
12954
12955 if (from_tty)
12956 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12957 }
12958
12959 static void
12960 remote_put_command (const char *args, int from_tty)
12961 {
12962 if (args == NULL)
12963 error_no_arg (_("file to put"));
12964
12965 gdb_argv argv (args);
12966 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12967 error (_("Invalid parameters to remote put"));
12968
12969 remote_file_put (argv[0], argv[1], from_tty);
12970 }
12971
12972 static void
12973 remote_get_command (const char *args, int from_tty)
12974 {
12975 if (args == NULL)
12976 error_no_arg (_("file to get"));
12977
12978 gdb_argv argv (args);
12979 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12980 error (_("Invalid parameters to remote get"));
12981
12982 remote_file_get (argv[0], argv[1], from_tty);
12983 }
12984
12985 static void
12986 remote_delete_command (const char *args, int from_tty)
12987 {
12988 if (args == NULL)
12989 error_no_arg (_("file to delete"));
12990
12991 gdb_argv argv (args);
12992 if (argv[0] == NULL || argv[1] != NULL)
12993 error (_("Invalid parameters to remote delete"));
12994
12995 remote_file_delete (argv[0], from_tty);
12996 }
12997
12998 bool
12999 remote_target::can_execute_reverse ()
13000 {
13001 if (packet_support (PACKET_bs) == PACKET_ENABLE
13002 || packet_support (PACKET_bc) == PACKET_ENABLE)
13003 return true;
13004 else
13005 return false;
13006 }
13007
13008 bool
13009 remote_target::supports_non_stop ()
13010 {
13011 return true;
13012 }
13013
13014 bool
13015 remote_target::supports_disable_randomization ()
13016 {
13017 /* Only supported in extended mode. */
13018 return false;
13019 }
13020
13021 bool
13022 remote_target::supports_multi_process ()
13023 {
13024 struct remote_state *rs = get_remote_state ();
13025
13026 return remote_multi_process_p (rs);
13027 }
13028
13029 static int
13030 remote_supports_cond_tracepoints ()
13031 {
13032 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
13033 }
13034
13035 bool
13036 remote_target::supports_evaluation_of_breakpoint_conditions ()
13037 {
13038 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
13039 }
13040
13041 static int
13042 remote_supports_fast_tracepoints ()
13043 {
13044 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
13045 }
13046
13047 static int
13048 remote_supports_static_tracepoints ()
13049 {
13050 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
13051 }
13052
13053 static int
13054 remote_supports_install_in_trace ()
13055 {
13056 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
13057 }
13058
13059 bool
13060 remote_target::supports_enable_disable_tracepoint ()
13061 {
13062 return (packet_support (PACKET_EnableDisableTracepoints_feature)
13063 == PACKET_ENABLE);
13064 }
13065
13066 bool
13067 remote_target::supports_string_tracing ()
13068 {
13069 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
13070 }
13071
13072 bool
13073 remote_target::can_run_breakpoint_commands ()
13074 {
13075 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
13076 }
13077
13078 void
13079 remote_target::trace_init ()
13080 {
13081 struct remote_state *rs = get_remote_state ();
13082
13083 putpkt ("QTinit");
13084 remote_get_noisy_reply ();
13085 if (strcmp (rs->buf.data (), "OK") != 0)
13086 error (_("Target does not support this command."));
13087 }
13088
13089 /* Recursive routine to walk through command list including loops, and
13090 download packets for each command. */
13091
13092 void
13093 remote_target::remote_download_command_source (int num, ULONGEST addr,
13094 struct command_line *cmds)
13095 {
13096 struct remote_state *rs = get_remote_state ();
13097 struct command_line *cmd;
13098
13099 for (cmd = cmds; cmd; cmd = cmd->next)
13100 {
13101 QUIT; /* Allow user to bail out with ^C. */
13102 strcpy (rs->buf.data (), "QTDPsrc:");
13103 encode_source_string (num, addr, "cmd", cmd->line,
13104 rs->buf.data () + strlen (rs->buf.data ()),
13105 rs->buf.size () - strlen (rs->buf.data ()));
13106 putpkt (rs->buf);
13107 remote_get_noisy_reply ();
13108 if (strcmp (rs->buf.data (), "OK"))
13109 warning (_("Target does not support source download."));
13110
13111 if (cmd->control_type == while_control
13112 || cmd->control_type == while_stepping_control)
13113 {
13114 remote_download_command_source (num, addr, cmd->body_list_0.get ());
13115
13116 QUIT; /* Allow user to bail out with ^C. */
13117 strcpy (rs->buf.data (), "QTDPsrc:");
13118 encode_source_string (num, addr, "cmd", "end",
13119 rs->buf.data () + strlen (rs->buf.data ()),
13120 rs->buf.size () - strlen (rs->buf.data ()));
13121 putpkt (rs->buf);
13122 remote_get_noisy_reply ();
13123 if (strcmp (rs->buf.data (), "OK"))
13124 warning (_("Target does not support source download."));
13125 }
13126 }
13127 }
13128
13129 void
13130 remote_target::download_tracepoint (struct bp_location *loc)
13131 {
13132 CORE_ADDR tpaddr;
13133 char addrbuf[40];
13134 std::vector<std::string> tdp_actions;
13135 std::vector<std::string> stepping_actions;
13136 char *pkt;
13137 struct breakpoint *b = loc->owner;
13138 struct tracepoint *t = (struct tracepoint *) b;
13139 struct remote_state *rs = get_remote_state ();
13140 int ret;
13141 const char *err_msg = _("Tracepoint packet too large for target.");
13142 size_t size_left;
13143
13144 /* We use a buffer other than rs->buf because we'll build strings
13145 across multiple statements, and other statements in between could
13146 modify rs->buf. */
13147 gdb::char_vector buf (get_remote_packet_size ());
13148
13149 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
13150
13151 tpaddr = loc->address;
13152 strcpy (addrbuf, phex (tpaddr, sizeof (CORE_ADDR)));
13153 ret = snprintf (buf.data (), buf.size (), "QTDP:%x:%s:%c:%lx:%x",
13154 b->number, addrbuf, /* address */
13155 (b->enable_state == bp_enabled ? 'E' : 'D'),
13156 t->step_count, t->pass_count);
13157
13158 if (ret < 0 || ret >= buf.size ())
13159 error ("%s", err_msg);
13160
13161 /* Fast tracepoints are mostly handled by the target, but we can
13162 tell the target how big of an instruction block should be moved
13163 around. */
13164 if (b->type == bp_fast_tracepoint)
13165 {
13166 /* Only test for support at download time; we may not know
13167 target capabilities at definition time. */
13168 if (remote_supports_fast_tracepoints ())
13169 {
13170 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
13171 NULL))
13172 {
13173 size_left = buf.size () - strlen (buf.data ());
13174 ret = snprintf (buf.data () + strlen (buf.data ()),
13175 size_left, ":F%x",
13176 gdb_insn_length (loc->gdbarch, tpaddr));
13177
13178 if (ret < 0 || ret >= size_left)
13179 error ("%s", err_msg);
13180 }
13181 else
13182 /* If it passed validation at definition but fails now,
13183 something is very wrong. */
13184 internal_error (__FILE__, __LINE__,
13185 _("Fast tracepoint not "
13186 "valid during download"));
13187 }
13188 else
13189 /* Fast tracepoints are functionally identical to regular
13190 tracepoints, so don't take lack of support as a reason to
13191 give up on the trace run. */
13192 warning (_("Target does not support fast tracepoints, "
13193 "downloading %d as regular tracepoint"), b->number);
13194 }
13195 else if (b->type == bp_static_tracepoint)
13196 {
13197 /* Only test for support at download time; we may not know
13198 target capabilities at definition time. */
13199 if (remote_supports_static_tracepoints ())
13200 {
13201 struct static_tracepoint_marker marker;
13202
13203 if (target_static_tracepoint_marker_at (tpaddr, &marker))
13204 {
13205 size_left = buf.size () - strlen (buf.data ());
13206 ret = snprintf (buf.data () + strlen (buf.data ()),
13207 size_left, ":S");
13208
13209 if (ret < 0 || ret >= size_left)
13210 error ("%s", err_msg);
13211 }
13212 else
13213 error (_("Static tracepoint not valid during download"));
13214 }
13215 else
13216 /* Fast tracepoints are functionally identical to regular
13217 tracepoints, so don't take lack of support as a reason
13218 to give up on the trace run. */
13219 error (_("Target does not support static tracepoints"));
13220 }
13221 /* If the tracepoint has a conditional, make it into an agent
13222 expression and append to the definition. */
13223 if (loc->cond)
13224 {
13225 /* Only test support at download time, we may not know target
13226 capabilities at definition time. */
13227 if (remote_supports_cond_tracepoints ())
13228 {
13229 agent_expr_up aexpr = gen_eval_for_expr (tpaddr,
13230 loc->cond.get ());
13231
13232 size_left = buf.size () - strlen (buf.data ());
13233
13234 ret = snprintf (buf.data () + strlen (buf.data ()),
13235 size_left, ":X%x,", aexpr->len);
13236
13237 if (ret < 0 || ret >= size_left)
13238 error ("%s", err_msg);
13239
13240 size_left = buf.size () - strlen (buf.data ());
13241
13242 /* Two bytes to encode each aexpr byte, plus the terminating
13243 null byte. */
13244 if (aexpr->len * 2 + 1 > size_left)
13245 error ("%s", err_msg);
13246
13247 pkt = buf.data () + strlen (buf.data ());
13248
13249 for (int ndx = 0; ndx < aexpr->len; ++ndx)
13250 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
13251 *pkt = '\0';
13252 }
13253 else
13254 warning (_("Target does not support conditional tracepoints, "
13255 "ignoring tp %d cond"), b->number);
13256 }
13257
13258 if (b->commands || *default_collect)
13259 {
13260 size_left = buf.size () - strlen (buf.data ());
13261
13262 ret = snprintf (buf.data () + strlen (buf.data ()),
13263 size_left, "-");
13264
13265 if (ret < 0 || ret >= size_left)
13266 error ("%s", err_msg);
13267 }
13268
13269 putpkt (buf.data ());
13270 remote_get_noisy_reply ();
13271 if (strcmp (rs->buf.data (), "OK"))
13272 error (_("Target does not support tracepoints."));
13273
13274 /* do_single_steps (t); */
13275 for (auto action_it = tdp_actions.begin ();
13276 action_it != tdp_actions.end (); action_it++)
13277 {
13278 QUIT; /* Allow user to bail out with ^C. */
13279
13280 bool has_more = ((action_it + 1) != tdp_actions.end ()
13281 || !stepping_actions.empty ());
13282
13283 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%c",
13284 b->number, addrbuf, /* address */
13285 action_it->c_str (),
13286 has_more ? '-' : 0);
13287
13288 if (ret < 0 || ret >= buf.size ())
13289 error ("%s", err_msg);
13290
13291 putpkt (buf.data ());
13292 remote_get_noisy_reply ();
13293 if (strcmp (rs->buf.data (), "OK"))
13294 error (_("Error on target while setting tracepoints."));
13295 }
13296
13297 for (auto action_it = stepping_actions.begin ();
13298 action_it != stepping_actions.end (); action_it++)
13299 {
13300 QUIT; /* Allow user to bail out with ^C. */
13301
13302 bool is_first = action_it == stepping_actions.begin ();
13303 bool has_more = (action_it + 1) != stepping_actions.end ();
13304
13305 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%s%s",
13306 b->number, addrbuf, /* address */
13307 is_first ? "S" : "",
13308 action_it->c_str (),
13309 has_more ? "-" : "");
13310
13311 if (ret < 0 || ret >= buf.size ())
13312 error ("%s", err_msg);
13313
13314 putpkt (buf.data ());
13315 remote_get_noisy_reply ();
13316 if (strcmp (rs->buf.data (), "OK"))
13317 error (_("Error on target while setting tracepoints."));
13318 }
13319
13320 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
13321 {
13322 if (b->location != NULL)
13323 {
13324 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13325
13326 if (ret < 0 || ret >= buf.size ())
13327 error ("%s", err_msg);
13328
13329 encode_source_string (b->number, loc->address, "at",
13330 event_location_to_string (b->location.get ()),
13331 buf.data () + strlen (buf.data ()),
13332 buf.size () - strlen (buf.data ()));
13333 putpkt (buf.data ());
13334 remote_get_noisy_reply ();
13335 if (strcmp (rs->buf.data (), "OK"))
13336 warning (_("Target does not support source download."));
13337 }
13338 if (b->cond_string)
13339 {
13340 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13341
13342 if (ret < 0 || ret >= buf.size ())
13343 error ("%s", err_msg);
13344
13345 encode_source_string (b->number, loc->address,
13346 "cond", b->cond_string,
13347 buf.data () + strlen (buf.data ()),
13348 buf.size () - strlen (buf.data ()));
13349 putpkt (buf.data ());
13350 remote_get_noisy_reply ();
13351 if (strcmp (rs->buf.data (), "OK"))
13352 warning (_("Target does not support source download."));
13353 }
13354 remote_download_command_source (b->number, loc->address,
13355 breakpoint_commands (b));
13356 }
13357 }
13358
13359 bool
13360 remote_target::can_download_tracepoint ()
13361 {
13362 struct remote_state *rs = get_remote_state ();
13363 struct trace_status *ts;
13364 int status;
13365
13366 /* Don't try to install tracepoints until we've relocated our
13367 symbols, and fetched and merged the target's tracepoint list with
13368 ours. */
13369 if (rs->starting_up)
13370 return false;
13371
13372 ts = current_trace_status ();
13373 status = get_trace_status (ts);
13374
13375 if (status == -1 || !ts->running_known || !ts->running)
13376 return false;
13377
13378 /* If we are in a tracing experiment, but remote stub doesn't support
13379 installing tracepoint in trace, we have to return. */
13380 if (!remote_supports_install_in_trace ())
13381 return false;
13382
13383 return true;
13384 }
13385
13386
13387 void
13388 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
13389 {
13390 struct remote_state *rs = get_remote_state ();
13391 char *p;
13392
13393 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDV:%x:%s:%x:",
13394 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
13395 tsv.builtin);
13396 p = rs->buf.data () + strlen (rs->buf.data ());
13397 if ((p - rs->buf.data ()) + tsv.name.length () * 2
13398 >= get_remote_packet_size ())
13399 error (_("Trace state variable name too long for tsv definition packet"));
13400 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
13401 *p++ = '\0';
13402 putpkt (rs->buf);
13403 remote_get_noisy_reply ();
13404 if (rs->buf[0] == '\0')
13405 error (_("Target does not support this command."));
13406 if (strcmp (rs->buf.data (), "OK") != 0)
13407 error (_("Error on target while downloading trace state variable."));
13408 }
13409
13410 void
13411 remote_target::enable_tracepoint (struct bp_location *location)
13412 {
13413 struct remote_state *rs = get_remote_state ();
13414
13415 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTEnable:%x:%s",
13416 location->owner->number,
13417 phex (location->address, sizeof (CORE_ADDR)));
13418 putpkt (rs->buf);
13419 remote_get_noisy_reply ();
13420 if (rs->buf[0] == '\0')
13421 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
13422 if (strcmp (rs->buf.data (), "OK") != 0)
13423 error (_("Error on target while enabling tracepoint."));
13424 }
13425
13426 void
13427 remote_target::disable_tracepoint (struct bp_location *location)
13428 {
13429 struct remote_state *rs = get_remote_state ();
13430
13431 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDisable:%x:%s",
13432 location->owner->number,
13433 phex (location->address, sizeof (CORE_ADDR)));
13434 putpkt (rs->buf);
13435 remote_get_noisy_reply ();
13436 if (rs->buf[0] == '\0')
13437 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
13438 if (strcmp (rs->buf.data (), "OK") != 0)
13439 error (_("Error on target while disabling tracepoint."));
13440 }
13441
13442 void
13443 remote_target::trace_set_readonly_regions ()
13444 {
13445 asection *s;
13446 bfd_size_type size;
13447 bfd_vma vma;
13448 int anysecs = 0;
13449 int offset = 0;
13450
13451 if (!current_program_space->exec_bfd ())
13452 return; /* No information to give. */
13453
13454 struct remote_state *rs = get_remote_state ();
13455
13456 strcpy (rs->buf.data (), "QTro");
13457 offset = strlen (rs->buf.data ());
13458 for (s = current_program_space->exec_bfd ()->sections; s; s = s->next)
13459 {
13460 char tmp1[40], tmp2[40];
13461 int sec_length;
13462
13463 if ((s->flags & SEC_LOAD) == 0 ||
13464 /* (s->flags & SEC_CODE) == 0 || */
13465 (s->flags & SEC_READONLY) == 0)
13466 continue;
13467
13468 anysecs = 1;
13469 vma = bfd_section_vma (s);
13470 size = bfd_section_size (s);
13471 sprintf_vma (tmp1, vma);
13472 sprintf_vma (tmp2, vma + size);
13473 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
13474 if (offset + sec_length + 1 > rs->buf.size ())
13475 {
13476 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
13477 warning (_("\
13478 Too many sections for read-only sections definition packet."));
13479 break;
13480 }
13481 xsnprintf (rs->buf.data () + offset, rs->buf.size () - offset, ":%s,%s",
13482 tmp1, tmp2);
13483 offset += sec_length;
13484 }
13485 if (anysecs)
13486 {
13487 putpkt (rs->buf);
13488 getpkt (&rs->buf, 0);
13489 }
13490 }
13491
13492 void
13493 remote_target::trace_start ()
13494 {
13495 struct remote_state *rs = get_remote_state ();
13496
13497 putpkt ("QTStart");
13498 remote_get_noisy_reply ();
13499 if (rs->buf[0] == '\0')
13500 error (_("Target does not support this command."));
13501 if (strcmp (rs->buf.data (), "OK") != 0)
13502 error (_("Bogus reply from target: %s"), rs->buf.data ());
13503 }
13504
13505 int
13506 remote_target::get_trace_status (struct trace_status *ts)
13507 {
13508 /* Initialize it just to avoid a GCC false warning. */
13509 char *p = NULL;
13510 enum packet_result result;
13511 struct remote_state *rs = get_remote_state ();
13512
13513 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
13514 return -1;
13515
13516 /* FIXME we need to get register block size some other way. */
13517 trace_regblock_size
13518 = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
13519
13520 putpkt ("qTStatus");
13521
13522 try
13523 {
13524 p = remote_get_noisy_reply ();
13525 }
13526 catch (const gdb_exception_error &ex)
13527 {
13528 if (ex.error != TARGET_CLOSE_ERROR)
13529 {
13530 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
13531 return -1;
13532 }
13533 throw;
13534 }
13535
13536 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
13537
13538 /* If the remote target doesn't do tracing, flag it. */
13539 if (result == PACKET_UNKNOWN)
13540 return -1;
13541
13542 /* We're working with a live target. */
13543 ts->filename = NULL;
13544
13545 if (*p++ != 'T')
13546 error (_("Bogus trace status reply from target: %s"), rs->buf.data ());
13547
13548 /* Function 'parse_trace_status' sets default value of each field of
13549 'ts' at first, so we don't have to do it here. */
13550 parse_trace_status (p, ts);
13551
13552 return ts->running;
13553 }
13554
13555 void
13556 remote_target::get_tracepoint_status (struct breakpoint *bp,
13557 struct uploaded_tp *utp)
13558 {
13559 struct remote_state *rs = get_remote_state ();
13560 char *reply;
13561 struct tracepoint *tp = (struct tracepoint *) bp;
13562 size_t size = get_remote_packet_size ();
13563
13564 if (tp)
13565 {
13566 tp->hit_count = 0;
13567 tp->traceframe_usage = 0;
13568 for (bp_location *loc : tp->locations ())
13569 {
13570 /* If the tracepoint was never downloaded, don't go asking for
13571 any status. */
13572 if (tp->number_on_target == 0)
13573 continue;
13574 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", tp->number_on_target,
13575 phex_nz (loc->address, 0));
13576 putpkt (rs->buf);
13577 reply = remote_get_noisy_reply ();
13578 if (reply && *reply)
13579 {
13580 if (*reply == 'V')
13581 parse_tracepoint_status (reply + 1, bp, utp);
13582 }
13583 }
13584 }
13585 else if (utp)
13586 {
13587 utp->hit_count = 0;
13588 utp->traceframe_usage = 0;
13589 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", utp->number,
13590 phex_nz (utp->addr, 0));
13591 putpkt (rs->buf);
13592 reply = remote_get_noisy_reply ();
13593 if (reply && *reply)
13594 {
13595 if (*reply == 'V')
13596 parse_tracepoint_status (reply + 1, bp, utp);
13597 }
13598 }
13599 }
13600
13601 void
13602 remote_target::trace_stop ()
13603 {
13604 struct remote_state *rs = get_remote_state ();
13605
13606 putpkt ("QTStop");
13607 remote_get_noisy_reply ();
13608 if (rs->buf[0] == '\0')
13609 error (_("Target does not support this command."));
13610 if (strcmp (rs->buf.data (), "OK") != 0)
13611 error (_("Bogus reply from target: %s"), rs->buf.data ());
13612 }
13613
13614 int
13615 remote_target::trace_find (enum trace_find_type type, int num,
13616 CORE_ADDR addr1, CORE_ADDR addr2,
13617 int *tpp)
13618 {
13619 struct remote_state *rs = get_remote_state ();
13620 char *endbuf = rs->buf.data () + get_remote_packet_size ();
13621 char *p, *reply;
13622 int target_frameno = -1, target_tracept = -1;
13623
13624 /* Lookups other than by absolute frame number depend on the current
13625 trace selected, so make sure it is correct on the remote end
13626 first. */
13627 if (type != tfind_number)
13628 set_remote_traceframe ();
13629
13630 p = rs->buf.data ();
13631 strcpy (p, "QTFrame:");
13632 p = strchr (p, '\0');
13633 switch (type)
13634 {
13635 case tfind_number:
13636 xsnprintf (p, endbuf - p, "%x", num);
13637 break;
13638 case tfind_pc:
13639 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13640 break;
13641 case tfind_tp:
13642 xsnprintf (p, endbuf - p, "tdp:%x", num);
13643 break;
13644 case tfind_range:
13645 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13646 phex_nz (addr2, 0));
13647 break;
13648 case tfind_outside:
13649 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13650 phex_nz (addr2, 0));
13651 break;
13652 default:
13653 error (_("Unknown trace find type %d"), type);
13654 }
13655
13656 putpkt (rs->buf);
13657 reply = remote_get_noisy_reply ();
13658 if (*reply == '\0')
13659 error (_("Target does not support this command."));
13660
13661 while (reply && *reply)
13662 switch (*reply)
13663 {
13664 case 'F':
13665 p = ++reply;
13666 target_frameno = (int) strtol (p, &reply, 16);
13667 if (reply == p)
13668 error (_("Unable to parse trace frame number"));
13669 /* Don't update our remote traceframe number cache on failure
13670 to select a remote traceframe. */
13671 if (target_frameno == -1)
13672 return -1;
13673 break;
13674 case 'T':
13675 p = ++reply;
13676 target_tracept = (int) strtol (p, &reply, 16);
13677 if (reply == p)
13678 error (_("Unable to parse tracepoint number"));
13679 break;
13680 case 'O': /* "OK"? */
13681 if (reply[1] == 'K' && reply[2] == '\0')
13682 reply += 2;
13683 else
13684 error (_("Bogus reply from target: %s"), reply);
13685 break;
13686 default:
13687 error (_("Bogus reply from target: %s"), reply);
13688 }
13689 if (tpp)
13690 *tpp = target_tracept;
13691
13692 rs->remote_traceframe_number = target_frameno;
13693 return target_frameno;
13694 }
13695
13696 bool
13697 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13698 {
13699 struct remote_state *rs = get_remote_state ();
13700 char *reply;
13701 ULONGEST uval;
13702
13703 set_remote_traceframe ();
13704
13705 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTV:%x", tsvnum);
13706 putpkt (rs->buf);
13707 reply = remote_get_noisy_reply ();
13708 if (reply && *reply)
13709 {
13710 if (*reply == 'V')
13711 {
13712 unpack_varlen_hex (reply + 1, &uval);
13713 *val = (LONGEST) uval;
13714 return true;
13715 }
13716 }
13717 return false;
13718 }
13719
13720 int
13721 remote_target::save_trace_data (const char *filename)
13722 {
13723 struct remote_state *rs = get_remote_state ();
13724 char *p, *reply;
13725
13726 p = rs->buf.data ();
13727 strcpy (p, "QTSave:");
13728 p += strlen (p);
13729 if ((p - rs->buf.data ()) + strlen (filename) * 2
13730 >= get_remote_packet_size ())
13731 error (_("Remote file name too long for trace save packet"));
13732 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13733 *p++ = '\0';
13734 putpkt (rs->buf);
13735 reply = remote_get_noisy_reply ();
13736 if (*reply == '\0')
13737 error (_("Target does not support this command."));
13738 if (strcmp (reply, "OK") != 0)
13739 error (_("Bogus reply from target: %s"), reply);
13740 return 0;
13741 }
13742
13743 /* This is basically a memory transfer, but needs to be its own packet
13744 because we don't know how the target actually organizes its trace
13745 memory, plus we want to be able to ask for as much as possible, but
13746 not be unhappy if we don't get as much as we ask for. */
13747
13748 LONGEST
13749 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13750 {
13751 struct remote_state *rs = get_remote_state ();
13752 char *reply;
13753 char *p;
13754 int rslt;
13755
13756 p = rs->buf.data ();
13757 strcpy (p, "qTBuffer:");
13758 p += strlen (p);
13759 p += hexnumstr (p, offset);
13760 *p++ = ',';
13761 p += hexnumstr (p, len);
13762 *p++ = '\0';
13763
13764 putpkt (rs->buf);
13765 reply = remote_get_noisy_reply ();
13766 if (reply && *reply)
13767 {
13768 /* 'l' by itself means we're at the end of the buffer and
13769 there is nothing more to get. */
13770 if (*reply == 'l')
13771 return 0;
13772
13773 /* Convert the reply into binary. Limit the number of bytes to
13774 convert according to our passed-in buffer size, rather than
13775 what was returned in the packet; if the target is
13776 unexpectedly generous and gives us a bigger reply than we
13777 asked for, we don't want to crash. */
13778 rslt = hex2bin (reply, buf, len);
13779 return rslt;
13780 }
13781
13782 /* Something went wrong, flag as an error. */
13783 return -1;
13784 }
13785
13786 void
13787 remote_target::set_disconnected_tracing (int val)
13788 {
13789 struct remote_state *rs = get_remote_state ();
13790
13791 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13792 {
13793 char *reply;
13794
13795 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13796 "QTDisconnected:%x", val);
13797 putpkt (rs->buf);
13798 reply = remote_get_noisy_reply ();
13799 if (*reply == '\0')
13800 error (_("Target does not support this command."));
13801 if (strcmp (reply, "OK") != 0)
13802 error (_("Bogus reply from target: %s"), reply);
13803 }
13804 else if (val)
13805 warning (_("Target does not support disconnected tracing."));
13806 }
13807
13808 int
13809 remote_target::core_of_thread (ptid_t ptid)
13810 {
13811 thread_info *info = find_thread_ptid (this, ptid);
13812
13813 if (info != NULL && info->priv != NULL)
13814 return get_remote_thread_info (info)->core;
13815
13816 return -1;
13817 }
13818
13819 void
13820 remote_target::set_circular_trace_buffer (int val)
13821 {
13822 struct remote_state *rs = get_remote_state ();
13823 char *reply;
13824
13825 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13826 "QTBuffer:circular:%x", val);
13827 putpkt (rs->buf);
13828 reply = remote_get_noisy_reply ();
13829 if (*reply == '\0')
13830 error (_("Target does not support this command."));
13831 if (strcmp (reply, "OK") != 0)
13832 error (_("Bogus reply from target: %s"), reply);
13833 }
13834
13835 traceframe_info_up
13836 remote_target::traceframe_info ()
13837 {
13838 gdb::optional<gdb::char_vector> text
13839 = target_read_stralloc (current_inferior ()->top_target (),
13840 TARGET_OBJECT_TRACEFRAME_INFO,
13841 NULL);
13842 if (text)
13843 return parse_traceframe_info (text->data ());
13844
13845 return NULL;
13846 }
13847
13848 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13849 instruction on which a fast tracepoint may be placed. Returns -1
13850 if the packet is not supported, and 0 if the minimum instruction
13851 length is unknown. */
13852
13853 int
13854 remote_target::get_min_fast_tracepoint_insn_len ()
13855 {
13856 struct remote_state *rs = get_remote_state ();
13857 char *reply;
13858
13859 /* If we're not debugging a process yet, the IPA can't be
13860 loaded. */
13861 if (!target_has_execution ())
13862 return 0;
13863
13864 /* Make sure the remote is pointing at the right process. */
13865 set_general_process ();
13866
13867 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTMinFTPILen");
13868 putpkt (rs->buf);
13869 reply = remote_get_noisy_reply ();
13870 if (*reply == '\0')
13871 return -1;
13872 else
13873 {
13874 ULONGEST min_insn_len;
13875
13876 unpack_varlen_hex (reply, &min_insn_len);
13877
13878 return (int) min_insn_len;
13879 }
13880 }
13881
13882 void
13883 remote_target::set_trace_buffer_size (LONGEST val)
13884 {
13885 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13886 {
13887 struct remote_state *rs = get_remote_state ();
13888 char *buf = rs->buf.data ();
13889 char *endbuf = buf + get_remote_packet_size ();
13890 enum packet_result result;
13891
13892 gdb_assert (val >= 0 || val == -1);
13893 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13894 /* Send -1 as literal "-1" to avoid host size dependency. */
13895 if (val < 0)
13896 {
13897 *buf++ = '-';
13898 buf += hexnumstr (buf, (ULONGEST) -val);
13899 }
13900 else
13901 buf += hexnumstr (buf, (ULONGEST) val);
13902
13903 putpkt (rs->buf);
13904 remote_get_noisy_reply ();
13905 result = packet_ok (rs->buf,
13906 &remote_protocol_packets[PACKET_QTBuffer_size]);
13907
13908 if (result != PACKET_OK)
13909 warning (_("Bogus reply from target: %s"), rs->buf.data ());
13910 }
13911 }
13912
13913 bool
13914 remote_target::set_trace_notes (const char *user, const char *notes,
13915 const char *stop_notes)
13916 {
13917 struct remote_state *rs = get_remote_state ();
13918 char *reply;
13919 char *buf = rs->buf.data ();
13920 char *endbuf = buf + get_remote_packet_size ();
13921 int nbytes;
13922
13923 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13924 if (user)
13925 {
13926 buf += xsnprintf (buf, endbuf - buf, "user:");
13927 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13928 buf += 2 * nbytes;
13929 *buf++ = ';';
13930 }
13931 if (notes)
13932 {
13933 buf += xsnprintf (buf, endbuf - buf, "notes:");
13934 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13935 buf += 2 * nbytes;
13936 *buf++ = ';';
13937 }
13938 if (stop_notes)
13939 {
13940 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13941 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13942 buf += 2 * nbytes;
13943 *buf++ = ';';
13944 }
13945 /* Ensure the buffer is terminated. */
13946 *buf = '\0';
13947
13948 putpkt (rs->buf);
13949 reply = remote_get_noisy_reply ();
13950 if (*reply == '\0')
13951 return false;
13952
13953 if (strcmp (reply, "OK") != 0)
13954 error (_("Bogus reply from target: %s"), reply);
13955
13956 return true;
13957 }
13958
13959 bool
13960 remote_target::use_agent (bool use)
13961 {
13962 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13963 {
13964 struct remote_state *rs = get_remote_state ();
13965
13966 /* If the stub supports QAgent. */
13967 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAgent:%d", use);
13968 putpkt (rs->buf);
13969 getpkt (&rs->buf, 0);
13970
13971 if (strcmp (rs->buf.data (), "OK") == 0)
13972 {
13973 ::use_agent = use;
13974 return true;
13975 }
13976 }
13977
13978 return false;
13979 }
13980
13981 bool
13982 remote_target::can_use_agent ()
13983 {
13984 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13985 }
13986
13987 struct btrace_target_info
13988 {
13989 /* The ptid of the traced thread. */
13990 ptid_t ptid;
13991
13992 /* The obtained branch trace configuration. */
13993 struct btrace_config conf;
13994 };
13995
13996 /* Reset our idea of our target's btrace configuration. */
13997
13998 static void
13999 remote_btrace_reset (remote_state *rs)
14000 {
14001 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
14002 }
14003
14004 /* Synchronize the configuration with the target. */
14005
14006 void
14007 remote_target::btrace_sync_conf (const btrace_config *conf)
14008 {
14009 struct packet_config *packet;
14010 struct remote_state *rs;
14011 char *buf, *pos, *endbuf;
14012
14013 rs = get_remote_state ();
14014 buf = rs->buf.data ();
14015 endbuf = buf + get_remote_packet_size ();
14016
14017 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
14018 if (packet_config_support (packet) == PACKET_ENABLE
14019 && conf->bts.size != rs->btrace_config.bts.size)
14020 {
14021 pos = buf;
14022 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
14023 conf->bts.size);
14024
14025 putpkt (buf);
14026 getpkt (&rs->buf, 0);
14027
14028 if (packet_ok (buf, packet) == PACKET_ERROR)
14029 {
14030 if (buf[0] == 'E' && buf[1] == '.')
14031 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
14032 else
14033 error (_("Failed to configure the BTS buffer size."));
14034 }
14035
14036 rs->btrace_config.bts.size = conf->bts.size;
14037 }
14038
14039 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
14040 if (packet_config_support (packet) == PACKET_ENABLE
14041 && conf->pt.size != rs->btrace_config.pt.size)
14042 {
14043 pos = buf;
14044 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
14045 conf->pt.size);
14046
14047 putpkt (buf);
14048 getpkt (&rs->buf, 0);
14049
14050 if (packet_ok (buf, packet) == PACKET_ERROR)
14051 {
14052 if (buf[0] == 'E' && buf[1] == '.')
14053 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
14054 else
14055 error (_("Failed to configure the trace buffer size."));
14056 }
14057
14058 rs->btrace_config.pt.size = conf->pt.size;
14059 }
14060 }
14061
14062 /* Read the current thread's btrace configuration from the target and
14063 store it into CONF. */
14064
14065 static void
14066 btrace_read_config (struct btrace_config *conf)
14067 {
14068 gdb::optional<gdb::char_vector> xml
14069 = target_read_stralloc (current_inferior ()->top_target (),
14070 TARGET_OBJECT_BTRACE_CONF, "");
14071 if (xml)
14072 parse_xml_btrace_conf (conf, xml->data ());
14073 }
14074
14075 /* Maybe reopen target btrace. */
14076
14077 void
14078 remote_target::remote_btrace_maybe_reopen ()
14079 {
14080 struct remote_state *rs = get_remote_state ();
14081 int btrace_target_pushed = 0;
14082 #if !defined (HAVE_LIBIPT)
14083 int warned = 0;
14084 #endif
14085
14086 /* Don't bother walking the entirety of the remote thread list when
14087 we know the feature isn't supported by the remote. */
14088 if (packet_support (PACKET_qXfer_btrace_conf) != PACKET_ENABLE)
14089 return;
14090
14091 scoped_restore_current_thread restore_thread;
14092
14093 for (thread_info *tp : all_non_exited_threads (this))
14094 {
14095 set_general_thread (tp->ptid);
14096
14097 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
14098 btrace_read_config (&rs->btrace_config);
14099
14100 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
14101 continue;
14102
14103 #if !defined (HAVE_LIBIPT)
14104 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
14105 {
14106 if (!warned)
14107 {
14108 warned = 1;
14109 warning (_("Target is recording using Intel Processor Trace "
14110 "but support was disabled at compile time."));
14111 }
14112
14113 continue;
14114 }
14115 #endif /* !defined (HAVE_LIBIPT) */
14116
14117 /* Push target, once, but before anything else happens. This way our
14118 changes to the threads will be cleaned up by unpushing the target
14119 in case btrace_read_config () throws. */
14120 if (!btrace_target_pushed)
14121 {
14122 btrace_target_pushed = 1;
14123 record_btrace_push_target ();
14124 printf_filtered (_("Target is recording using %s.\n"),
14125 btrace_format_string (rs->btrace_config.format));
14126 }
14127
14128 tp->btrace.target = XCNEW (struct btrace_target_info);
14129 tp->btrace.target->ptid = tp->ptid;
14130 tp->btrace.target->conf = rs->btrace_config;
14131 }
14132 }
14133
14134 /* Enable branch tracing. */
14135
14136 struct btrace_target_info *
14137 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
14138 {
14139 struct btrace_target_info *tinfo = NULL;
14140 struct packet_config *packet = NULL;
14141 struct remote_state *rs = get_remote_state ();
14142 char *buf = rs->buf.data ();
14143 char *endbuf = buf + get_remote_packet_size ();
14144
14145 switch (conf->format)
14146 {
14147 case BTRACE_FORMAT_BTS:
14148 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
14149 break;
14150
14151 case BTRACE_FORMAT_PT:
14152 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
14153 break;
14154 }
14155
14156 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
14157 error (_("Target does not support branch tracing."));
14158
14159 btrace_sync_conf (conf);
14160
14161 set_general_thread (ptid);
14162
14163 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
14164 putpkt (rs->buf);
14165 getpkt (&rs->buf, 0);
14166
14167 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
14168 {
14169 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
14170 error (_("Could not enable branch tracing for %s: %s"),
14171 target_pid_to_str (ptid).c_str (), &rs->buf[2]);
14172 else
14173 error (_("Could not enable branch tracing for %s."),
14174 target_pid_to_str (ptid).c_str ());
14175 }
14176
14177 tinfo = XCNEW (struct btrace_target_info);
14178 tinfo->ptid = ptid;
14179
14180 /* If we fail to read the configuration, we lose some information, but the
14181 tracing itself is not impacted. */
14182 try
14183 {
14184 btrace_read_config (&tinfo->conf);
14185 }
14186 catch (const gdb_exception_error &err)
14187 {
14188 if (err.message != NULL)
14189 warning ("%s", err.what ());
14190 }
14191
14192 return tinfo;
14193 }
14194
14195 /* Disable branch tracing. */
14196
14197 void
14198 remote_target::disable_btrace (struct btrace_target_info *tinfo)
14199 {
14200 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
14201 struct remote_state *rs = get_remote_state ();
14202 char *buf = rs->buf.data ();
14203 char *endbuf = buf + get_remote_packet_size ();
14204
14205 if (packet_config_support (packet) != PACKET_ENABLE)
14206 error (_("Target does not support branch tracing."));
14207
14208 set_general_thread (tinfo->ptid);
14209
14210 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
14211 putpkt (rs->buf);
14212 getpkt (&rs->buf, 0);
14213
14214 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
14215 {
14216 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
14217 error (_("Could not disable branch tracing for %s: %s"),
14218 target_pid_to_str (tinfo->ptid).c_str (), &rs->buf[2]);
14219 else
14220 error (_("Could not disable branch tracing for %s."),
14221 target_pid_to_str (tinfo->ptid).c_str ());
14222 }
14223
14224 xfree (tinfo);
14225 }
14226
14227 /* Teardown branch tracing. */
14228
14229 void
14230 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
14231 {
14232 /* We must not talk to the target during teardown. */
14233 xfree (tinfo);
14234 }
14235
14236 /* Read the branch trace. */
14237
14238 enum btrace_error
14239 remote_target::read_btrace (struct btrace_data *btrace,
14240 struct btrace_target_info *tinfo,
14241 enum btrace_read_type type)
14242 {
14243 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
14244 const char *annex;
14245
14246 if (packet_config_support (packet) != PACKET_ENABLE)
14247 error (_("Target does not support branch tracing."));
14248
14249 #if !defined(HAVE_LIBEXPAT)
14250 error (_("Cannot process branch tracing result. XML parsing not supported."));
14251 #endif
14252
14253 switch (type)
14254 {
14255 case BTRACE_READ_ALL:
14256 annex = "all";
14257 break;
14258 case BTRACE_READ_NEW:
14259 annex = "new";
14260 break;
14261 case BTRACE_READ_DELTA:
14262 annex = "delta";
14263 break;
14264 default:
14265 internal_error (__FILE__, __LINE__,
14266 _("Bad branch tracing read type: %u."),
14267 (unsigned int) type);
14268 }
14269
14270 gdb::optional<gdb::char_vector> xml
14271 = target_read_stralloc (current_inferior ()->top_target (),
14272 TARGET_OBJECT_BTRACE, annex);
14273 if (!xml)
14274 return BTRACE_ERR_UNKNOWN;
14275
14276 parse_xml_btrace (btrace, xml->data ());
14277
14278 return BTRACE_ERR_NONE;
14279 }
14280
14281 const struct btrace_config *
14282 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
14283 {
14284 return &tinfo->conf;
14285 }
14286
14287 bool
14288 remote_target::augmented_libraries_svr4_read ()
14289 {
14290 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
14291 == PACKET_ENABLE);
14292 }
14293
14294 /* Implementation of to_load. */
14295
14296 void
14297 remote_target::load (const char *name, int from_tty)
14298 {
14299 generic_load (name, from_tty);
14300 }
14301
14302 /* Accepts an integer PID; returns a string representing a file that
14303 can be opened on the remote side to get the symbols for the child
14304 process. Returns NULL if the operation is not supported. */
14305
14306 char *
14307 remote_target::pid_to_exec_file (int pid)
14308 {
14309 static gdb::optional<gdb::char_vector> filename;
14310 char *annex = NULL;
14311
14312 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
14313 return NULL;
14314
14315 inferior *inf = find_inferior_pid (this, pid);
14316 if (inf == NULL)
14317 internal_error (__FILE__, __LINE__,
14318 _("not currently attached to process %d"), pid);
14319
14320 if (!inf->fake_pid_p)
14321 {
14322 const int annex_size = 9;
14323
14324 annex = (char *) alloca (annex_size);
14325 xsnprintf (annex, annex_size, "%x", pid);
14326 }
14327
14328 filename = target_read_stralloc (current_inferior ()->top_target (),
14329 TARGET_OBJECT_EXEC_FILE, annex);
14330
14331 return filename ? filename->data () : nullptr;
14332 }
14333
14334 /* Implement the to_can_do_single_step target_ops method. */
14335
14336 int
14337 remote_target::can_do_single_step ()
14338 {
14339 /* We can only tell whether target supports single step or not by
14340 supported s and S vCont actions if the stub supports vContSupported
14341 feature. If the stub doesn't support vContSupported feature,
14342 we have conservatively to think target doesn't supports single
14343 step. */
14344 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
14345 {
14346 struct remote_state *rs = get_remote_state ();
14347
14348 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14349 remote_vcont_probe ();
14350
14351 return rs->supports_vCont.s && rs->supports_vCont.S;
14352 }
14353 else
14354 return 0;
14355 }
14356
14357 /* Implementation of the to_execution_direction method for the remote
14358 target. */
14359
14360 enum exec_direction_kind
14361 remote_target::execution_direction ()
14362 {
14363 struct remote_state *rs = get_remote_state ();
14364
14365 return rs->last_resume_exec_dir;
14366 }
14367
14368 /* Return pointer to the thread_info struct which corresponds to
14369 THREAD_HANDLE (having length HANDLE_LEN). */
14370
14371 thread_info *
14372 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
14373 int handle_len,
14374 inferior *inf)
14375 {
14376 for (thread_info *tp : all_non_exited_threads (this))
14377 {
14378 remote_thread_info *priv = get_remote_thread_info (tp);
14379
14380 if (tp->inf == inf && priv != NULL)
14381 {
14382 if (handle_len != priv->thread_handle.size ())
14383 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
14384 handle_len, priv->thread_handle.size ());
14385 if (memcmp (thread_handle, priv->thread_handle.data (),
14386 handle_len) == 0)
14387 return tp;
14388 }
14389 }
14390
14391 return NULL;
14392 }
14393
14394 gdb::byte_vector
14395 remote_target::thread_info_to_thread_handle (struct thread_info *tp)
14396 {
14397 remote_thread_info *priv = get_remote_thread_info (tp);
14398 return priv->thread_handle;
14399 }
14400
14401 bool
14402 remote_target::can_async_p ()
14403 {
14404 struct remote_state *rs = get_remote_state ();
14405
14406 /* We don't go async if the user has explicitly prevented it with the
14407 "maint set target-async" command. */
14408 if (!target_async_permitted)
14409 return false;
14410
14411 /* We're async whenever the serial device is. */
14412 return serial_can_async_p (rs->remote_desc);
14413 }
14414
14415 bool
14416 remote_target::is_async_p ()
14417 {
14418 struct remote_state *rs = get_remote_state ();
14419
14420 if (!target_async_permitted)
14421 /* We only enable async when the user specifically asks for it. */
14422 return false;
14423
14424 /* We're async whenever the serial device is. */
14425 return serial_is_async_p (rs->remote_desc);
14426 }
14427
14428 /* Pass the SERIAL event on and up to the client. One day this code
14429 will be able to delay notifying the client of an event until the
14430 point where an entire packet has been received. */
14431
14432 static serial_event_ftype remote_async_serial_handler;
14433
14434 static void
14435 remote_async_serial_handler (struct serial *scb, void *context)
14436 {
14437 /* Don't propogate error information up to the client. Instead let
14438 the client find out about the error by querying the target. */
14439 inferior_event_handler (INF_REG_EVENT);
14440 }
14441
14442 static void
14443 remote_async_inferior_event_handler (gdb_client_data data)
14444 {
14445 inferior_event_handler (INF_REG_EVENT);
14446 }
14447
14448 int
14449 remote_target::async_wait_fd ()
14450 {
14451 struct remote_state *rs = get_remote_state ();
14452 return rs->remote_desc->fd;
14453 }
14454
14455 void
14456 remote_target::async (int enable)
14457 {
14458 struct remote_state *rs = get_remote_state ();
14459
14460 if (enable)
14461 {
14462 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
14463
14464 /* If there are pending events in the stop reply queue tell the
14465 event loop to process them. */
14466 if (!rs->stop_reply_queue.empty ())
14467 mark_async_event_handler (rs->remote_async_inferior_event_token);
14468 /* For simplicity, below we clear the pending events token
14469 without remembering whether it is marked, so here we always
14470 mark it. If there's actually no pending notification to
14471 process, this ends up being a no-op (other than a spurious
14472 event-loop wakeup). */
14473 if (target_is_non_stop_p ())
14474 mark_async_event_handler (rs->notif_state->get_pending_events_token);
14475 }
14476 else
14477 {
14478 serial_async (rs->remote_desc, NULL, NULL);
14479 /* If the core is disabling async, it doesn't want to be
14480 disturbed with target events. Clear all async event sources
14481 too. */
14482 clear_async_event_handler (rs->remote_async_inferior_event_token);
14483 if (target_is_non_stop_p ())
14484 clear_async_event_handler (rs->notif_state->get_pending_events_token);
14485 }
14486 }
14487
14488 /* Implementation of the to_thread_events method. */
14489
14490 void
14491 remote_target::thread_events (int enable)
14492 {
14493 struct remote_state *rs = get_remote_state ();
14494 size_t size = get_remote_packet_size ();
14495
14496 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
14497 return;
14498
14499 xsnprintf (rs->buf.data (), size, "QThreadEvents:%x", enable ? 1 : 0);
14500 putpkt (rs->buf);
14501 getpkt (&rs->buf, 0);
14502
14503 switch (packet_ok (rs->buf,
14504 &remote_protocol_packets[PACKET_QThreadEvents]))
14505 {
14506 case PACKET_OK:
14507 if (strcmp (rs->buf.data (), "OK") != 0)
14508 error (_("Remote refused setting thread events: %s"), rs->buf.data ());
14509 break;
14510 case PACKET_ERROR:
14511 warning (_("Remote failure reply: %s"), rs->buf.data ());
14512 break;
14513 case PACKET_UNKNOWN:
14514 break;
14515 }
14516 }
14517
14518 static void
14519 show_remote_cmd (const char *args, int from_tty)
14520 {
14521 /* We can't just use cmd_show_list here, because we want to skip
14522 the redundant "show remote Z-packet" and the legacy aliases. */
14523 struct cmd_list_element *list = remote_show_cmdlist;
14524 struct ui_out *uiout = current_uiout;
14525
14526 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
14527 for (; list != NULL; list = list->next)
14528 if (strcmp (list->name, "Z-packet") == 0)
14529 continue;
14530 else if (list->type == not_set_cmd)
14531 /* Alias commands are exactly like the original, except they
14532 don't have the normal type. */
14533 continue;
14534 else
14535 {
14536 ui_out_emit_tuple option_emitter (uiout, "option");
14537
14538 uiout->field_string ("name", list->name);
14539 uiout->text (": ");
14540 if (list->type == show_cmd)
14541 do_show_command (NULL, from_tty, list);
14542 else
14543 cmd_func (list, NULL, from_tty);
14544 }
14545 }
14546
14547
14548 /* Function to be called whenever a new objfile (shlib) is detected. */
14549 static void
14550 remote_new_objfile (struct objfile *objfile)
14551 {
14552 remote_target *remote = get_current_remote_target ();
14553
14554 /* First, check whether the current inferior's process target is a remote
14555 target. */
14556 if (remote == nullptr)
14557 return;
14558
14559 /* When we are attaching or handling a fork child and the shared library
14560 subsystem reads the list of loaded libraries, we receive new objfile
14561 events in between each found library. The libraries are read in an
14562 undefined order, so if we gave the remote side a chance to look up
14563 symbols between each objfile, we might give it an inconsistent picture
14564 of the inferior. It could appear that a library A appears loaded but
14565 a library B does not, even though library A requires library B. That
14566 would present a state that couldn't normally exist in the inferior.
14567
14568 So, skip these events, we'll give the remote a chance to look up symbols
14569 once all the loaded libraries and their symbols are known to GDB. */
14570 if (current_inferior ()->in_initial_library_scan)
14571 return;
14572
14573 remote->remote_check_symbols ();
14574 }
14575
14576 /* Pull all the tracepoints defined on the target and create local
14577 data structures representing them. We don't want to create real
14578 tracepoints yet, we don't want to mess up the user's existing
14579 collection. */
14580
14581 int
14582 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
14583 {
14584 struct remote_state *rs = get_remote_state ();
14585 char *p;
14586
14587 /* Ask for a first packet of tracepoint definition. */
14588 putpkt ("qTfP");
14589 getpkt (&rs->buf, 0);
14590 p = rs->buf.data ();
14591 while (*p && *p != 'l')
14592 {
14593 parse_tracepoint_definition (p, utpp);
14594 /* Ask for another packet of tracepoint definition. */
14595 putpkt ("qTsP");
14596 getpkt (&rs->buf, 0);
14597 p = rs->buf.data ();
14598 }
14599 return 0;
14600 }
14601
14602 int
14603 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
14604 {
14605 struct remote_state *rs = get_remote_state ();
14606 char *p;
14607
14608 /* Ask for a first packet of variable definition. */
14609 putpkt ("qTfV");
14610 getpkt (&rs->buf, 0);
14611 p = rs->buf.data ();
14612 while (*p && *p != 'l')
14613 {
14614 parse_tsv_definition (p, utsvp);
14615 /* Ask for another packet of variable definition. */
14616 putpkt ("qTsV");
14617 getpkt (&rs->buf, 0);
14618 p = rs->buf.data ();
14619 }
14620 return 0;
14621 }
14622
14623 /* The "set/show range-stepping" show hook. */
14624
14625 static void
14626 show_range_stepping (struct ui_file *file, int from_tty,
14627 struct cmd_list_element *c,
14628 const char *value)
14629 {
14630 fprintf_filtered (file,
14631 _("Debugger's willingness to use range stepping "
14632 "is %s.\n"), value);
14633 }
14634
14635 /* Return true if the vCont;r action is supported by the remote
14636 stub. */
14637
14638 bool
14639 remote_target::vcont_r_supported ()
14640 {
14641 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14642 remote_vcont_probe ();
14643
14644 return (packet_support (PACKET_vCont) == PACKET_ENABLE
14645 && get_remote_state ()->supports_vCont.r);
14646 }
14647
14648 /* The "set/show range-stepping" set hook. */
14649
14650 static void
14651 set_range_stepping (const char *ignore_args, int from_tty,
14652 struct cmd_list_element *c)
14653 {
14654 /* When enabling, check whether range stepping is actually supported
14655 by the target, and warn if not. */
14656 if (use_range_stepping)
14657 {
14658 remote_target *remote = get_current_remote_target ();
14659 if (remote == NULL
14660 || !remote->vcont_r_supported ())
14661 warning (_("Range stepping is not supported by the current target"));
14662 }
14663 }
14664
14665 static void
14666 show_remote_debug (struct ui_file *file, int from_tty,
14667 struct cmd_list_element *c, const char *value)
14668 {
14669 fprintf_filtered (file, _("Debugging of remote protocol is %s.\n"),
14670 value);
14671 }
14672
14673 static void
14674 show_remote_timeout (struct ui_file *file, int from_tty,
14675 struct cmd_list_element *c, const char *value)
14676 {
14677 fprintf_filtered (file,
14678 _("Timeout limit to wait for target to respond is %s.\n"),
14679 value);
14680 }
14681
14682 /* Implement the "supports_memory_tagging" target_ops method. */
14683
14684 bool
14685 remote_target::supports_memory_tagging ()
14686 {
14687 return remote_memory_tagging_p ();
14688 }
14689
14690 /* Create the qMemTags packet given ADDRESS, LEN and TYPE. */
14691
14692 static void
14693 create_fetch_memtags_request (gdb::char_vector &packet, CORE_ADDR address,
14694 size_t len, int type)
14695 {
14696 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
14697
14698 std::string request = string_printf ("qMemTags:%s,%s:%s",
14699 phex_nz (address, addr_size),
14700 phex_nz (len, sizeof (len)),
14701 phex_nz (type, sizeof (type)));
14702
14703 strcpy (packet.data (), request.c_str ());
14704 }
14705
14706 /* Parse the qMemTags packet reply into TAGS.
14707
14708 Return true if successful, false otherwise. */
14709
14710 static bool
14711 parse_fetch_memtags_reply (const gdb::char_vector &reply,
14712 gdb::byte_vector &tags)
14713 {
14714 if (reply.empty () || reply[0] == 'E' || reply[0] != 'm')
14715 return false;
14716
14717 /* Copy the tag data. */
14718 tags = hex2bin (reply.data () + 1);
14719
14720 return true;
14721 }
14722
14723 /* Create the QMemTags packet given ADDRESS, LEN, TYPE and TAGS. */
14724
14725 static void
14726 create_store_memtags_request (gdb::char_vector &packet, CORE_ADDR address,
14727 size_t len, int type,
14728 const gdb::byte_vector &tags)
14729 {
14730 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
14731
14732 /* Put together the main packet, address and length. */
14733 std::string request = string_printf ("QMemTags:%s,%s:%s:",
14734 phex_nz (address, addr_size),
14735 phex_nz (len, sizeof (len)),
14736 phex_nz (type, sizeof (type)));
14737 request += bin2hex (tags.data (), tags.size ());
14738
14739 /* Check if we have exceeded the maximum packet size. */
14740 if (packet.size () < request.length ())
14741 error (_("Contents too big for packet QMemTags."));
14742
14743 strcpy (packet.data (), request.c_str ());
14744 }
14745
14746 /* Implement the "fetch_memtags" target_ops method. */
14747
14748 bool
14749 remote_target::fetch_memtags (CORE_ADDR address, size_t len,
14750 gdb::byte_vector &tags, int type)
14751 {
14752 /* Make sure the qMemTags packet is supported. */
14753 if (!remote_memory_tagging_p ())
14754 gdb_assert_not_reached ("remote fetch_memtags called with packet disabled");
14755
14756 struct remote_state *rs = get_remote_state ();
14757
14758 create_fetch_memtags_request (rs->buf, address, len, type);
14759
14760 putpkt (rs->buf);
14761 getpkt (&rs->buf, 0);
14762
14763 return parse_fetch_memtags_reply (rs->buf, tags);
14764 }
14765
14766 /* Implement the "store_memtags" target_ops method. */
14767
14768 bool
14769 remote_target::store_memtags (CORE_ADDR address, size_t len,
14770 const gdb::byte_vector &tags, int type)
14771 {
14772 /* Make sure the QMemTags packet is supported. */
14773 if (!remote_memory_tagging_p ())
14774 gdb_assert_not_reached ("remote store_memtags called with packet disabled");
14775
14776 struct remote_state *rs = get_remote_state ();
14777
14778 create_store_memtags_request (rs->buf, address, len, type, tags);
14779
14780 putpkt (rs->buf);
14781 getpkt (&rs->buf, 0);
14782
14783 /* Verify if the request was successful. */
14784 return packet_check_result (rs->buf.data ()) == PACKET_OK;
14785 }
14786
14787 /* Return true if remote target T is non-stop. */
14788
14789 bool
14790 remote_target_is_non_stop_p (remote_target *t)
14791 {
14792 scoped_restore_current_thread restore_thread;
14793 switch_to_target_no_thread (t);
14794
14795 return target_is_non_stop_p ();
14796 }
14797
14798 #if GDB_SELF_TEST
14799
14800 namespace selftests {
14801
14802 static void
14803 test_memory_tagging_functions ()
14804 {
14805 remote_target remote;
14806
14807 struct packet_config *config
14808 = &remote_protocol_packets[PACKET_memory_tagging_feature];
14809
14810 scoped_restore restore_memtag_support_
14811 = make_scoped_restore (&config->support);
14812
14813 /* Test memory tagging packet support. */
14814 config->support = PACKET_SUPPORT_UNKNOWN;
14815 SELF_CHECK (remote.supports_memory_tagging () == false);
14816 config->support = PACKET_DISABLE;
14817 SELF_CHECK (remote.supports_memory_tagging () == false);
14818 config->support = PACKET_ENABLE;
14819 SELF_CHECK (remote.supports_memory_tagging () == true);
14820
14821 /* Setup testing. */
14822 gdb::char_vector packet;
14823 gdb::byte_vector tags, bv;
14824 std::string expected, reply;
14825 packet.resize (32000);
14826
14827 /* Test creating a qMemTags request. */
14828
14829 expected = "qMemTags:0,0:0";
14830 create_fetch_memtags_request (packet, 0x0, 0x0, 0);
14831 SELF_CHECK (strcmp (packet.data (), expected.c_str ()) == 0);
14832
14833 expected = "qMemTags:deadbeef,10:1";
14834 create_fetch_memtags_request (packet, 0xdeadbeef, 16, 1);
14835 SELF_CHECK (strcmp (packet.data (), expected.c_str ()) == 0);
14836
14837 /* Test parsing a qMemTags reply. */
14838
14839 /* Error reply, tags vector unmodified. */
14840 reply = "E00";
14841 strcpy (packet.data (), reply.c_str ());
14842 tags.resize (0);
14843 SELF_CHECK (parse_fetch_memtags_reply (packet, tags) == false);
14844 SELF_CHECK (tags.size () == 0);
14845
14846 /* Valid reply, tags vector updated. */
14847 tags.resize (0);
14848 bv.resize (0);
14849
14850 for (int i = 0; i < 5; i++)
14851 bv.push_back (i);
14852
14853 reply = "m" + bin2hex (bv.data (), bv.size ());
14854 strcpy (packet.data (), reply.c_str ());
14855
14856 SELF_CHECK (parse_fetch_memtags_reply (packet, tags) == true);
14857 SELF_CHECK (tags.size () == 5);
14858
14859 for (int i = 0; i < 5; i++)
14860 SELF_CHECK (tags[i] == i);
14861
14862 /* Test creating a QMemTags request. */
14863
14864 /* Empty tag data. */
14865 tags.resize (0);
14866 expected = "QMemTags:0,0:0:";
14867 create_store_memtags_request (packet, 0x0, 0x0, 0, tags);
14868 SELF_CHECK (memcmp (packet.data (), expected.c_str (),
14869 expected.length ()) == 0);
14870
14871 /* Non-empty tag data. */
14872 tags.resize (0);
14873 for (int i = 0; i < 5; i++)
14874 tags.push_back (i);
14875 expected = "QMemTags:deadbeef,ff:1:0001020304";
14876 create_store_memtags_request (packet, 0xdeadbeef, 255, 1, tags);
14877 SELF_CHECK (memcmp (packet.data (), expected.c_str (),
14878 expected.length ()) == 0);
14879 }
14880
14881 } // namespace selftests
14882 #endif /* GDB_SELF_TEST */
14883
14884 void _initialize_remote ();
14885 void
14886 _initialize_remote ()
14887 {
14888 /* architecture specific data */
14889 remote_g_packet_data_handle =
14890 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14891
14892 add_target (remote_target_info, remote_target::open);
14893 add_target (extended_remote_target_info, extended_remote_target::open);
14894
14895 /* Hook into new objfile notification. */
14896 gdb::observers::new_objfile.attach (remote_new_objfile, "remote");
14897
14898 #if 0
14899 init_remote_threadtests ();
14900 #endif
14901
14902 /* set/show remote ... */
14903
14904 add_basic_prefix_cmd ("remote", class_maintenance, _("\
14905 Remote protocol specific variables.\n\
14906 Configure various remote-protocol specific variables such as\n\
14907 the packets being used."),
14908 &remote_set_cmdlist,
14909 0 /* allow-unknown */, &setlist);
14910 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14911 Remote protocol specific variables.\n\
14912 Configure various remote-protocol specific variables such as\n\
14913 the packets being used."),
14914 &remote_show_cmdlist,
14915 0 /* allow-unknown */, &showlist);
14916
14917 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14918 Compare section data on target to the exec file.\n\
14919 Argument is a single section name (default: all loaded sections).\n\
14920 To compare only read-only loaded sections, specify the -r option."),
14921 &cmdlist);
14922
14923 add_cmd ("packet", class_maintenance, packet_command, _("\
14924 Send an arbitrary packet to a remote target.\n\
14925 maintenance packet TEXT\n\
14926 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14927 this command sends the string TEXT to the inferior, and displays the\n\
14928 response packet. GDB supplies the initial `$' character, and the\n\
14929 terminating `#' character and checksum."),
14930 &maintenancelist);
14931
14932 set_show_commands remotebreak_cmds
14933 = add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14934 Set whether to send break if interrupted."), _("\
14935 Show whether to send break if interrupted."), _("\
14936 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14937 set_remotebreak, show_remotebreak,
14938 &setlist, &showlist);
14939 deprecate_cmd (remotebreak_cmds.set, "set remote interrupt-sequence");
14940 deprecate_cmd (remotebreak_cmds.show, "show remote interrupt-sequence");
14941
14942 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14943 interrupt_sequence_modes, &interrupt_sequence_mode,
14944 _("\
14945 Set interrupt sequence to remote target."), _("\
14946 Show interrupt sequence to remote target."), _("\
14947 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14948 NULL, show_interrupt_sequence,
14949 &remote_set_cmdlist,
14950 &remote_show_cmdlist);
14951
14952 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14953 &interrupt_on_connect, _("\
14954 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14955 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14956 If set, interrupt sequence is sent to remote target."),
14957 NULL, NULL,
14958 &remote_set_cmdlist, &remote_show_cmdlist);
14959
14960 /* Install commands for configuring memory read/write packets. */
14961
14962 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14963 Set the maximum number of bytes per memory write packet (deprecated)."),
14964 &setlist);
14965 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14966 Show the maximum number of bytes per memory write packet (deprecated)."),
14967 &showlist);
14968 add_cmd ("memory-write-packet-size", no_class,
14969 set_memory_write_packet_size, _("\
14970 Set the maximum number of bytes per memory-write packet.\n\
14971 Specify the number of bytes in a packet or 0 (zero) for the\n\
14972 default packet size. The actual limit is further reduced\n\
14973 dependent on the target. Specify ``fixed'' to disable the\n\
14974 further restriction and ``limit'' to enable that restriction."),
14975 &remote_set_cmdlist);
14976 add_cmd ("memory-read-packet-size", no_class,
14977 set_memory_read_packet_size, _("\
14978 Set the maximum number of bytes per memory-read packet.\n\
14979 Specify the number of bytes in a packet or 0 (zero) for the\n\
14980 default packet size. The actual limit is further reduced\n\
14981 dependent on the target. Specify ``fixed'' to disable the\n\
14982 further restriction and ``limit'' to enable that restriction."),
14983 &remote_set_cmdlist);
14984 add_cmd ("memory-write-packet-size", no_class,
14985 show_memory_write_packet_size,
14986 _("Show the maximum number of bytes per memory-write packet."),
14987 &remote_show_cmdlist);
14988 add_cmd ("memory-read-packet-size", no_class,
14989 show_memory_read_packet_size,
14990 _("Show the maximum number of bytes per memory-read packet."),
14991 &remote_show_cmdlist);
14992
14993 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-limit", no_class,
14994 &remote_hw_watchpoint_limit, _("\
14995 Set the maximum number of target hardware watchpoints."), _("\
14996 Show the maximum number of target hardware watchpoints."), _("\
14997 Specify \"unlimited\" for unlimited hardware watchpoints."),
14998 NULL, show_hardware_watchpoint_limit,
14999 &remote_set_cmdlist,
15000 &remote_show_cmdlist);
15001 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-length-limit",
15002 no_class,
15003 &remote_hw_watchpoint_length_limit, _("\
15004 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
15005 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
15006 Specify \"unlimited\" to allow watchpoints of unlimited size."),
15007 NULL, show_hardware_watchpoint_length_limit,
15008 &remote_set_cmdlist, &remote_show_cmdlist);
15009 add_setshow_zuinteger_unlimited_cmd ("hardware-breakpoint-limit", no_class,
15010 &remote_hw_breakpoint_limit, _("\
15011 Set the maximum number of target hardware breakpoints."), _("\
15012 Show the maximum number of target hardware breakpoints."), _("\
15013 Specify \"unlimited\" for unlimited hardware breakpoints."),
15014 NULL, show_hardware_breakpoint_limit,
15015 &remote_set_cmdlist, &remote_show_cmdlist);
15016
15017 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
15018 &remote_address_size, _("\
15019 Set the maximum size of the address (in bits) in a memory packet."), _("\
15020 Show the maximum size of the address (in bits) in a memory packet."), NULL,
15021 NULL,
15022 NULL, /* FIXME: i18n: */
15023 &setlist, &showlist);
15024
15025 init_all_packet_configs ();
15026
15027 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
15028 "X", "binary-download", 1);
15029
15030 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
15031 "vCont", "verbose-resume", 0);
15032
15033 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
15034 "QPassSignals", "pass-signals", 0);
15035
15036 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
15037 "QCatchSyscalls", "catch-syscalls", 0);
15038
15039 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
15040 "QProgramSignals", "program-signals", 0);
15041
15042 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
15043 "QSetWorkingDir", "set-working-dir", 0);
15044
15045 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
15046 "QStartupWithShell", "startup-with-shell", 0);
15047
15048 add_packet_config_cmd (&remote_protocol_packets
15049 [PACKET_QEnvironmentHexEncoded],
15050 "QEnvironmentHexEncoded", "environment-hex-encoded",
15051 0);
15052
15053 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
15054 "QEnvironmentReset", "environment-reset",
15055 0);
15056
15057 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
15058 "QEnvironmentUnset", "environment-unset",
15059 0);
15060
15061 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
15062 "qSymbol", "symbol-lookup", 0);
15063
15064 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
15065 "P", "set-register", 1);
15066
15067 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
15068 "p", "fetch-register", 1);
15069
15070 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
15071 "Z0", "software-breakpoint", 0);
15072
15073 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
15074 "Z1", "hardware-breakpoint", 0);
15075
15076 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
15077 "Z2", "write-watchpoint", 0);
15078
15079 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
15080 "Z3", "read-watchpoint", 0);
15081
15082 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
15083 "Z4", "access-watchpoint", 0);
15084
15085 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
15086 "qXfer:auxv:read", "read-aux-vector", 0);
15087
15088 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
15089 "qXfer:exec-file:read", "pid-to-exec-file", 0);
15090
15091 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
15092 "qXfer:features:read", "target-features", 0);
15093
15094 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
15095 "qXfer:libraries:read", "library-info", 0);
15096
15097 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
15098 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
15099
15100 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
15101 "qXfer:memory-map:read", "memory-map", 0);
15102
15103 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
15104 "qXfer:osdata:read", "osdata", 0);
15105
15106 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
15107 "qXfer:threads:read", "threads", 0);
15108
15109 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
15110 "qXfer:siginfo:read", "read-siginfo-object", 0);
15111
15112 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
15113 "qXfer:siginfo:write", "write-siginfo-object", 0);
15114
15115 add_packet_config_cmd
15116 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
15117 "qXfer:traceframe-info:read", "traceframe-info", 0);
15118
15119 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
15120 "qXfer:uib:read", "unwind-info-block", 0);
15121
15122 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
15123 "qGetTLSAddr", "get-thread-local-storage-address",
15124 0);
15125
15126 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
15127 "qGetTIBAddr", "get-thread-information-block-address",
15128 0);
15129
15130 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
15131 "bc", "reverse-continue", 0);
15132
15133 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
15134 "bs", "reverse-step", 0);
15135
15136 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
15137 "qSupported", "supported-packets", 0);
15138
15139 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
15140 "qSearch:memory", "search-memory", 0);
15141
15142 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
15143 "qTStatus", "trace-status", 0);
15144
15145 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
15146 "vFile:setfs", "hostio-setfs", 0);
15147
15148 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
15149 "vFile:open", "hostio-open", 0);
15150
15151 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
15152 "vFile:pread", "hostio-pread", 0);
15153
15154 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
15155 "vFile:pwrite", "hostio-pwrite", 0);
15156
15157 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
15158 "vFile:close", "hostio-close", 0);
15159
15160 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
15161 "vFile:unlink", "hostio-unlink", 0);
15162
15163 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
15164 "vFile:readlink", "hostio-readlink", 0);
15165
15166 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
15167 "vFile:fstat", "hostio-fstat", 0);
15168
15169 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
15170 "vAttach", "attach", 0);
15171
15172 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
15173 "vRun", "run", 0);
15174
15175 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
15176 "QStartNoAckMode", "noack", 0);
15177
15178 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
15179 "vKill", "kill", 0);
15180
15181 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
15182 "qAttached", "query-attached", 0);
15183
15184 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
15185 "ConditionalTracepoints",
15186 "conditional-tracepoints", 0);
15187
15188 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
15189 "ConditionalBreakpoints",
15190 "conditional-breakpoints", 0);
15191
15192 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
15193 "BreakpointCommands",
15194 "breakpoint-commands", 0);
15195
15196 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
15197 "FastTracepoints", "fast-tracepoints", 0);
15198
15199 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
15200 "TracepointSource", "TracepointSource", 0);
15201
15202 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
15203 "QAllow", "allow", 0);
15204
15205 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
15206 "StaticTracepoints", "static-tracepoints", 0);
15207
15208 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
15209 "InstallInTrace", "install-in-trace", 0);
15210
15211 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
15212 "qXfer:statictrace:read", "read-sdata-object", 0);
15213
15214 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
15215 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
15216
15217 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
15218 "QDisableRandomization", "disable-randomization", 0);
15219
15220 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
15221 "QAgent", "agent", 0);
15222
15223 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
15224 "QTBuffer:size", "trace-buffer-size", 0);
15225
15226 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
15227 "Qbtrace:off", "disable-btrace", 0);
15228
15229 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
15230 "Qbtrace:bts", "enable-btrace-bts", 0);
15231
15232 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
15233 "Qbtrace:pt", "enable-btrace-pt", 0);
15234
15235 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
15236 "qXfer:btrace", "read-btrace", 0);
15237
15238 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
15239 "qXfer:btrace-conf", "read-btrace-conf", 0);
15240
15241 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
15242 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
15243
15244 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
15245 "multiprocess-feature", "multiprocess-feature", 0);
15246
15247 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
15248 "swbreak-feature", "swbreak-feature", 0);
15249
15250 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
15251 "hwbreak-feature", "hwbreak-feature", 0);
15252
15253 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
15254 "fork-event-feature", "fork-event-feature", 0);
15255
15256 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
15257 "vfork-event-feature", "vfork-event-feature", 0);
15258
15259 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
15260 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
15261
15262 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
15263 "vContSupported", "verbose-resume-supported", 0);
15264
15265 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
15266 "exec-event-feature", "exec-event-feature", 0);
15267
15268 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
15269 "vCtrlC", "ctrl-c", 0);
15270
15271 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
15272 "QThreadEvents", "thread-events", 0);
15273
15274 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
15275 "N stop reply", "no-resumed-stop-reply", 0);
15276
15277 add_packet_config_cmd (&remote_protocol_packets[PACKET_memory_tagging_feature],
15278 "memory-tagging-feature", "memory-tagging-feature", 0);
15279
15280 /* Assert that we've registered "set remote foo-packet" commands
15281 for all packet configs. */
15282 {
15283 int i;
15284
15285 for (i = 0; i < PACKET_MAX; i++)
15286 {
15287 /* Ideally all configs would have a command associated. Some
15288 still don't though. */
15289 int excepted;
15290
15291 switch (i)
15292 {
15293 case PACKET_QNonStop:
15294 case PACKET_EnableDisableTracepoints_feature:
15295 case PACKET_tracenz_feature:
15296 case PACKET_DisconnectedTracing_feature:
15297 case PACKET_augmented_libraries_svr4_read_feature:
15298 case PACKET_qCRC:
15299 /* Additions to this list need to be well justified:
15300 pre-existing packets are OK; new packets are not. */
15301 excepted = 1;
15302 break;
15303 default:
15304 excepted = 0;
15305 break;
15306 }
15307
15308 /* This catches both forgetting to add a config command, and
15309 forgetting to remove a packet from the exception list. */
15310 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
15311 }
15312 }
15313
15314 /* Keep the old ``set remote Z-packet ...'' working. Each individual
15315 Z sub-packet has its own set and show commands, but users may
15316 have sets to this variable in their .gdbinit files (or in their
15317 documentation). */
15318 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
15319 &remote_Z_packet_detect, _("\
15320 Set use of remote protocol `Z' packets."), _("\
15321 Show use of remote protocol `Z' packets."), _("\
15322 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
15323 packets."),
15324 set_remote_protocol_Z_packet_cmd,
15325 show_remote_protocol_Z_packet_cmd,
15326 /* FIXME: i18n: Use of remote protocol
15327 `Z' packets is %s. */
15328 &remote_set_cmdlist, &remote_show_cmdlist);
15329
15330 add_basic_prefix_cmd ("remote", class_files, _("\
15331 Manipulate files on the remote system.\n\
15332 Transfer files to and from the remote target system."),
15333 &remote_cmdlist,
15334 0 /* allow-unknown */, &cmdlist);
15335
15336 add_cmd ("put", class_files, remote_put_command,
15337 _("Copy a local file to the remote system."),
15338 &remote_cmdlist);
15339
15340 add_cmd ("get", class_files, remote_get_command,
15341 _("Copy a remote file to the local system."),
15342 &remote_cmdlist);
15343
15344 add_cmd ("delete", class_files, remote_delete_command,
15345 _("Delete a remote file."),
15346 &remote_cmdlist);
15347
15348 add_setshow_string_noescape_cmd ("exec-file", class_files,
15349 &remote_exec_file_var, _("\
15350 Set the remote pathname for \"run\"."), _("\
15351 Show the remote pathname for \"run\"."), NULL,
15352 set_remote_exec_file,
15353 show_remote_exec_file,
15354 &remote_set_cmdlist,
15355 &remote_show_cmdlist);
15356
15357 add_setshow_boolean_cmd ("range-stepping", class_run,
15358 &use_range_stepping, _("\
15359 Enable or disable range stepping."), _("\
15360 Show whether target-assisted range stepping is enabled."), _("\
15361 If on, and the target supports it, when stepping a source line, GDB\n\
15362 tells the target to step the corresponding range of addresses itself instead\n\
15363 of issuing multiple single-steps. This speeds up source level\n\
15364 stepping. If off, GDB always issues single-steps, even if range\n\
15365 stepping is supported by the target. The default is on."),
15366 set_range_stepping,
15367 show_range_stepping,
15368 &setlist,
15369 &showlist);
15370
15371 add_setshow_zinteger_cmd ("watchdog", class_maintenance, &watchdog, _("\
15372 Set watchdog timer."), _("\
15373 Show watchdog timer."), _("\
15374 When non-zero, this timeout is used instead of waiting forever for a target\n\
15375 to finish a low-level step or continue operation. If the specified amount\n\
15376 of time passes without a response from the target, an error occurs."),
15377 NULL,
15378 show_watchdog,
15379 &setlist, &showlist);
15380
15381 add_setshow_zuinteger_unlimited_cmd ("remote-packet-max-chars", no_class,
15382 &remote_packet_max_chars, _("\
15383 Set the maximum number of characters to display for each remote packet."), _("\
15384 Show the maximum number of characters to display for each remote packet."), _("\
15385 Specify \"unlimited\" to display all the characters."),
15386 NULL, show_remote_packet_max_chars,
15387 &setdebuglist, &showdebuglist);
15388
15389 add_setshow_boolean_cmd ("remote", no_class, &remote_debug,
15390 _("Set debugging of remote protocol."),
15391 _("Show debugging of remote protocol."),
15392 _("\
15393 When enabled, each packet sent or received with the remote target\n\
15394 is displayed."),
15395 NULL,
15396 show_remote_debug,
15397 &setdebuglist, &showdebuglist);
15398
15399 add_setshow_zuinteger_unlimited_cmd ("remotetimeout", no_class,
15400 &remote_timeout, _("\
15401 Set timeout limit to wait for target to respond."), _("\
15402 Show timeout limit to wait for target to respond."), _("\
15403 This value is used to set the time limit for gdb to wait for a response\n\
15404 from the target."),
15405 NULL,
15406 show_remote_timeout,
15407 &setlist, &showlist);
15408
15409 /* Eventually initialize fileio. See fileio.c */
15410 initialize_remote_fileio (&remote_set_cmdlist, &remote_show_cmdlist);
15411
15412 #if GDB_SELF_TEST
15413 selftests::register_test ("remote_memory_tagging",
15414 selftests::test_memory_tagging_functions);
15415 #endif
15416 }
This page took 0.318518 seconds and 3 git commands to generate.