Avoid another inferior_ptid reference in gdb/remote.c
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 #include "process-stratum-target.h"
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "gdbsupport/filestuff.h"
46 #include "gdbsupport/rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdbsupport/gdb_sys_time.h"
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "gdbsupport/agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "gdbsupport/scoped_restore.h"
76 #include "gdbsupport/environ.h"
77 #include "gdbsupport/byte-vector.h"
78 #include <algorithm>
79 #include <unordered_map>
80
81 /* The remote target. */
82
83 static const char remote_doc[] = N_("\
84 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
85 Specify the serial device it is connected to\n\
86 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
87
88 #define OPAQUETHREADBYTES 8
89
90 /* a 64 bit opaque identifier */
91 typedef unsigned char threadref[OPAQUETHREADBYTES];
92
93 struct gdb_ext_thread_info;
94 struct threads_listing_context;
95 typedef int (*rmt_thread_action) (threadref *ref, void *context);
96 struct protocol_feature;
97 struct packet_reg;
98
99 struct stop_reply;
100 typedef std::unique_ptr<stop_reply> stop_reply_up;
101
102 /* Generic configuration support for packets the stub optionally
103 supports. Allows the user to specify the use of the packet as well
104 as allowing GDB to auto-detect support in the remote stub. */
105
106 enum packet_support
107 {
108 PACKET_SUPPORT_UNKNOWN = 0,
109 PACKET_ENABLE,
110 PACKET_DISABLE
111 };
112
113 /* Analyze a packet's return value and update the packet config
114 accordingly. */
115
116 enum packet_result
117 {
118 PACKET_ERROR,
119 PACKET_OK,
120 PACKET_UNKNOWN
121 };
122
123 struct threads_listing_context;
124
125 /* Stub vCont actions support.
126
127 Each field is a boolean flag indicating whether the stub reports
128 support for the corresponding action. */
129
130 struct vCont_action_support
131 {
132 /* vCont;t */
133 bool t = false;
134
135 /* vCont;r */
136 bool r = false;
137
138 /* vCont;s */
139 bool s = false;
140
141 /* vCont;S */
142 bool S = false;
143 };
144
145 /* About this many threadids fit in a packet. */
146
147 #define MAXTHREADLISTRESULTS 32
148
149 /* Data for the vFile:pread readahead cache. */
150
151 struct readahead_cache
152 {
153 /* Invalidate the readahead cache. */
154 void invalidate ();
155
156 /* Invalidate the readahead cache if it is holding data for FD. */
157 void invalidate_fd (int fd);
158
159 /* Serve pread from the readahead cache. Returns number of bytes
160 read, or 0 if the request can't be served from the cache. */
161 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
162
163 /* The file descriptor for the file that is being cached. -1 if the
164 cache is invalid. */
165 int fd = -1;
166
167 /* The offset into the file that the cache buffer corresponds
168 to. */
169 ULONGEST offset = 0;
170
171 /* The buffer holding the cache contents. */
172 gdb_byte *buf = nullptr;
173 /* The buffer's size. We try to read as much as fits into a packet
174 at a time. */
175 size_t bufsize = 0;
176
177 /* Cache hit and miss counters. */
178 ULONGEST hit_count = 0;
179 ULONGEST miss_count = 0;
180 };
181
182 /* Description of the remote protocol for a given architecture. */
183
184 struct packet_reg
185 {
186 long offset; /* Offset into G packet. */
187 long regnum; /* GDB's internal register number. */
188 LONGEST pnum; /* Remote protocol register number. */
189 int in_g_packet; /* Always part of G packet. */
190 /* long size in bytes; == register_size (target_gdbarch (), regnum);
191 at present. */
192 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
193 at present. */
194 };
195
196 struct remote_arch_state
197 {
198 explicit remote_arch_state (struct gdbarch *gdbarch);
199
200 /* Description of the remote protocol registers. */
201 long sizeof_g_packet;
202
203 /* Description of the remote protocol registers indexed by REGNUM
204 (making an array gdbarch_num_regs in size). */
205 std::unique_ptr<packet_reg[]> regs;
206
207 /* This is the size (in chars) of the first response to the ``g''
208 packet. It is used as a heuristic when determining the maximum
209 size of memory-read and memory-write packets. A target will
210 typically only reserve a buffer large enough to hold the ``g''
211 packet. The size does not include packet overhead (headers and
212 trailers). */
213 long actual_register_packet_size;
214
215 /* This is the maximum size (in chars) of a non read/write packet.
216 It is also used as a cap on the size of read/write packets. */
217 long remote_packet_size;
218 };
219
220 /* Description of the remote protocol state for the currently
221 connected target. This is per-target state, and independent of the
222 selected architecture. */
223
224 class remote_state
225 {
226 public:
227
228 remote_state ();
229 ~remote_state ();
230
231 /* Get the remote arch state for GDBARCH. */
232 struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
233
234 public: /* data */
235
236 /* A buffer to use for incoming packets, and its current size. The
237 buffer is grown dynamically for larger incoming packets.
238 Outgoing packets may also be constructed in this buffer.
239 The size of the buffer is always at least REMOTE_PACKET_SIZE;
240 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
241 packets. */
242 gdb::char_vector buf;
243
244 /* True if we're going through initial connection setup (finding out
245 about the remote side's threads, relocating symbols, etc.). */
246 bool starting_up = false;
247
248 /* If we negotiated packet size explicitly (and thus can bypass
249 heuristics for the largest packet size that will not overflow
250 a buffer in the stub), this will be set to that packet size.
251 Otherwise zero, meaning to use the guessed size. */
252 long explicit_packet_size = 0;
253
254 /* remote_wait is normally called when the target is running and
255 waits for a stop reply packet. But sometimes we need to call it
256 when the target is already stopped. We can send a "?" packet
257 and have remote_wait read the response. Or, if we already have
258 the response, we can stash it in BUF and tell remote_wait to
259 skip calling getpkt. This flag is set when BUF contains a
260 stop reply packet and the target is not waiting. */
261 int cached_wait_status = 0;
262
263 /* True, if in no ack mode. That is, neither GDB nor the stub will
264 expect acks from each other. The connection is assumed to be
265 reliable. */
266 bool noack_mode = false;
267
268 /* True if we're connected in extended remote mode. */
269 bool extended = false;
270
271 /* True if we resumed the target and we're waiting for the target to
272 stop. In the mean time, we can't start another command/query.
273 The remote server wouldn't be ready to process it, so we'd
274 timeout waiting for a reply that would never come and eventually
275 we'd close the connection. This can happen in asynchronous mode
276 because we allow GDB commands while the target is running. */
277 bool waiting_for_stop_reply = false;
278
279 /* The status of the stub support for the various vCont actions. */
280 vCont_action_support supports_vCont;
281
282 /* True if the user has pressed Ctrl-C, but the target hasn't
283 responded to that. */
284 bool ctrlc_pending_p = false;
285
286 /* True if we saw a Ctrl-C while reading or writing from/to the
287 remote descriptor. At that point it is not safe to send a remote
288 interrupt packet, so we instead remember we saw the Ctrl-C and
289 process it once we're done with sending/receiving the current
290 packet, which should be shortly. If however that takes too long,
291 and the user presses Ctrl-C again, we offer to disconnect. */
292 bool got_ctrlc_during_io = false;
293
294 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
295 remote_open knows that we don't have a file open when the program
296 starts. */
297 struct serial *remote_desc = nullptr;
298
299 /* These are the threads which we last sent to the remote system. The
300 TID member will be -1 for all or -2 for not sent yet. */
301 ptid_t general_thread = null_ptid;
302 ptid_t continue_thread = null_ptid;
303
304 /* This is the traceframe which we last selected on the remote system.
305 It will be -1 if no traceframe is selected. */
306 int remote_traceframe_number = -1;
307
308 char *last_pass_packet = nullptr;
309
310 /* The last QProgramSignals packet sent to the target. We bypass
311 sending a new program signals list down to the target if the new
312 packet is exactly the same as the last we sent. IOW, we only let
313 the target know about program signals list changes. */
314 char *last_program_signals_packet = nullptr;
315
316 gdb_signal last_sent_signal = GDB_SIGNAL_0;
317
318 bool last_sent_step = false;
319
320 /* The execution direction of the last resume we got. */
321 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
322
323 char *finished_object = nullptr;
324 char *finished_annex = nullptr;
325 ULONGEST finished_offset = 0;
326
327 /* Should we try the 'ThreadInfo' query packet?
328
329 This variable (NOT available to the user: auto-detect only!)
330 determines whether GDB will use the new, simpler "ThreadInfo"
331 query or the older, more complex syntax for thread queries.
332 This is an auto-detect variable (set to true at each connect,
333 and set to false when the target fails to recognize it). */
334 bool use_threadinfo_query = false;
335 bool use_threadextra_query = false;
336
337 threadref echo_nextthread {};
338 threadref nextthread {};
339 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
340
341 /* The state of remote notification. */
342 struct remote_notif_state *notif_state = nullptr;
343
344 /* The branch trace configuration. */
345 struct btrace_config btrace_config {};
346
347 /* The argument to the last "vFile:setfs:" packet we sent, used
348 to avoid sending repeated unnecessary "vFile:setfs:" packets.
349 Initialized to -1 to indicate that no "vFile:setfs:" packet
350 has yet been sent. */
351 int fs_pid = -1;
352
353 /* A readahead cache for vFile:pread. Often, reading a binary
354 involves a sequence of small reads. E.g., when parsing an ELF
355 file. A readahead cache helps mostly the case of remote
356 debugging on a connection with higher latency, due to the
357 request/reply nature of the RSP. We only cache data for a single
358 file descriptor at a time. */
359 struct readahead_cache readahead_cache;
360
361 /* The list of already fetched and acknowledged stop events. This
362 queue is used for notification Stop, and other notifications
363 don't need queue for their events, because the notification
364 events of Stop can't be consumed immediately, so that events
365 should be queued first, and be consumed by remote_wait_{ns,as}
366 one per time. Other notifications can consume their events
367 immediately, so queue is not needed for them. */
368 std::vector<stop_reply_up> stop_reply_queue;
369
370 /* Asynchronous signal handle registered as event loop source for
371 when we have pending events ready to be passed to the core. */
372 struct async_event_handler *remote_async_inferior_event_token = nullptr;
373
374 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
375 ``forever'' still use the normal timeout mechanism. This is
376 currently used by the ASYNC code to guarentee that target reads
377 during the initial connect always time-out. Once getpkt has been
378 modified to return a timeout indication and, in turn
379 remote_wait()/wait_for_inferior() have gained a timeout parameter
380 this can go away. */
381 int wait_forever_enabled_p = 1;
382
383 private:
384 /* Mapping of remote protocol data for each gdbarch. Usually there
385 is only one entry here, though we may see more with stubs that
386 support multi-process. */
387 std::unordered_map<struct gdbarch *, remote_arch_state>
388 m_arch_states;
389 };
390
391 static const target_info remote_target_info = {
392 "remote",
393 N_("Remote serial target in gdb-specific protocol"),
394 remote_doc
395 };
396
397 class remote_target : public process_stratum_target
398 {
399 public:
400 remote_target () = default;
401 ~remote_target () override;
402
403 const target_info &info () const override
404 { return remote_target_info; }
405
406 thread_control_capabilities get_thread_control_capabilities () override
407 { return tc_schedlock; }
408
409 /* Open a remote connection. */
410 static void open (const char *, int);
411
412 void close () override;
413
414 void detach (inferior *, int) override;
415 void disconnect (const char *, int) override;
416
417 void commit_resume () override;
418 void resume (ptid_t, int, enum gdb_signal) override;
419 ptid_t wait (ptid_t, struct target_waitstatus *, int) override;
420
421 void fetch_registers (struct regcache *, int) override;
422 void store_registers (struct regcache *, int) override;
423 void prepare_to_store (struct regcache *) override;
424
425 void files_info () override;
426
427 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
428
429 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
430 enum remove_bp_reason) override;
431
432
433 bool stopped_by_sw_breakpoint () override;
434 bool supports_stopped_by_sw_breakpoint () override;
435
436 bool stopped_by_hw_breakpoint () override;
437
438 bool supports_stopped_by_hw_breakpoint () override;
439
440 bool stopped_by_watchpoint () override;
441
442 bool stopped_data_address (CORE_ADDR *) override;
443
444 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
445
446 int can_use_hw_breakpoint (enum bptype, int, int) override;
447
448 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
449
450 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
451
452 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
453
454 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
455 struct expression *) override;
456
457 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
458 struct expression *) override;
459
460 void kill () override;
461
462 void load (const char *, int) override;
463
464 void mourn_inferior () override;
465
466 void pass_signals (gdb::array_view<const unsigned char>) override;
467
468 int set_syscall_catchpoint (int, bool, int,
469 gdb::array_view<const int>) override;
470
471 void program_signals (gdb::array_view<const unsigned char>) override;
472
473 bool thread_alive (ptid_t ptid) override;
474
475 const char *thread_name (struct thread_info *) override;
476
477 void update_thread_list () override;
478
479 std::string pid_to_str (ptid_t) override;
480
481 const char *extra_thread_info (struct thread_info *) override;
482
483 ptid_t get_ada_task_ptid (long lwp, long thread) override;
484
485 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
486 int handle_len,
487 inferior *inf) override;
488
489 gdb::byte_vector thread_info_to_thread_handle (struct thread_info *tp)
490 override;
491
492 void stop (ptid_t) override;
493
494 void interrupt () override;
495
496 void pass_ctrlc () override;
497
498 enum target_xfer_status xfer_partial (enum target_object object,
499 const char *annex,
500 gdb_byte *readbuf,
501 const gdb_byte *writebuf,
502 ULONGEST offset, ULONGEST len,
503 ULONGEST *xfered_len) override;
504
505 ULONGEST get_memory_xfer_limit () override;
506
507 void rcmd (const char *command, struct ui_file *output) override;
508
509 char *pid_to_exec_file (int pid) override;
510
511 void log_command (const char *cmd) override
512 {
513 serial_log_command (this, cmd);
514 }
515
516 CORE_ADDR get_thread_local_address (ptid_t ptid,
517 CORE_ADDR load_module_addr,
518 CORE_ADDR offset) override;
519
520 bool can_execute_reverse () override;
521
522 std::vector<mem_region> memory_map () override;
523
524 void flash_erase (ULONGEST address, LONGEST length) override;
525
526 void flash_done () override;
527
528 const struct target_desc *read_description () override;
529
530 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
531 const gdb_byte *pattern, ULONGEST pattern_len,
532 CORE_ADDR *found_addrp) override;
533
534 bool can_async_p () override;
535
536 bool is_async_p () override;
537
538 void async (int) override;
539
540 void thread_events (int) override;
541
542 int can_do_single_step () override;
543
544 void terminal_inferior () override;
545
546 void terminal_ours () override;
547
548 bool supports_non_stop () override;
549
550 bool supports_multi_process () override;
551
552 bool supports_disable_randomization () override;
553
554 bool filesystem_is_local () override;
555
556
557 int fileio_open (struct inferior *inf, const char *filename,
558 int flags, int mode, int warn_if_slow,
559 int *target_errno) override;
560
561 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
562 ULONGEST offset, int *target_errno) override;
563
564 int fileio_pread (int fd, gdb_byte *read_buf, int len,
565 ULONGEST offset, int *target_errno) override;
566
567 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
568
569 int fileio_close (int fd, int *target_errno) override;
570
571 int fileio_unlink (struct inferior *inf,
572 const char *filename,
573 int *target_errno) override;
574
575 gdb::optional<std::string>
576 fileio_readlink (struct inferior *inf,
577 const char *filename,
578 int *target_errno) override;
579
580 bool supports_enable_disable_tracepoint () override;
581
582 bool supports_string_tracing () override;
583
584 bool supports_evaluation_of_breakpoint_conditions () override;
585
586 bool can_run_breakpoint_commands () override;
587
588 void trace_init () override;
589
590 void download_tracepoint (struct bp_location *location) override;
591
592 bool can_download_tracepoint () override;
593
594 void download_trace_state_variable (const trace_state_variable &tsv) override;
595
596 void enable_tracepoint (struct bp_location *location) override;
597
598 void disable_tracepoint (struct bp_location *location) override;
599
600 void trace_set_readonly_regions () override;
601
602 void trace_start () override;
603
604 int get_trace_status (struct trace_status *ts) override;
605
606 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
607 override;
608
609 void trace_stop () override;
610
611 int trace_find (enum trace_find_type type, int num,
612 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
613
614 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
615
616 int save_trace_data (const char *filename) override;
617
618 int upload_tracepoints (struct uploaded_tp **utpp) override;
619
620 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
621
622 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
623
624 int get_min_fast_tracepoint_insn_len () override;
625
626 void set_disconnected_tracing (int val) override;
627
628 void set_circular_trace_buffer (int val) override;
629
630 void set_trace_buffer_size (LONGEST val) override;
631
632 bool set_trace_notes (const char *user, const char *notes,
633 const char *stopnotes) override;
634
635 int core_of_thread (ptid_t ptid) override;
636
637 int verify_memory (const gdb_byte *data,
638 CORE_ADDR memaddr, ULONGEST size) override;
639
640
641 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
642
643 void set_permissions () override;
644
645 bool static_tracepoint_marker_at (CORE_ADDR,
646 struct static_tracepoint_marker *marker)
647 override;
648
649 std::vector<static_tracepoint_marker>
650 static_tracepoint_markers_by_strid (const char *id) override;
651
652 traceframe_info_up traceframe_info () override;
653
654 bool use_agent (bool use) override;
655 bool can_use_agent () override;
656
657 struct btrace_target_info *enable_btrace (ptid_t ptid,
658 const struct btrace_config *conf) override;
659
660 void disable_btrace (struct btrace_target_info *tinfo) override;
661
662 void teardown_btrace (struct btrace_target_info *tinfo) override;
663
664 enum btrace_error read_btrace (struct btrace_data *data,
665 struct btrace_target_info *btinfo,
666 enum btrace_read_type type) override;
667
668 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
669 bool augmented_libraries_svr4_read () override;
670 int follow_fork (int, int) override;
671 void follow_exec (struct inferior *, const char *) override;
672 int insert_fork_catchpoint (int) override;
673 int remove_fork_catchpoint (int) override;
674 int insert_vfork_catchpoint (int) override;
675 int remove_vfork_catchpoint (int) override;
676 int insert_exec_catchpoint (int) override;
677 int remove_exec_catchpoint (int) override;
678 enum exec_direction_kind execution_direction () override;
679
680 public: /* Remote specific methods. */
681
682 void remote_download_command_source (int num, ULONGEST addr,
683 struct command_line *cmds);
684
685 void remote_file_put (const char *local_file, const char *remote_file,
686 int from_tty);
687 void remote_file_get (const char *remote_file, const char *local_file,
688 int from_tty);
689 void remote_file_delete (const char *remote_file, int from_tty);
690
691 int remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
692 ULONGEST offset, int *remote_errno);
693 int remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
694 ULONGEST offset, int *remote_errno);
695 int remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
696 ULONGEST offset, int *remote_errno);
697
698 int remote_hostio_send_command (int command_bytes, int which_packet,
699 int *remote_errno, char **attachment,
700 int *attachment_len);
701 int remote_hostio_set_filesystem (struct inferior *inf,
702 int *remote_errno);
703 /* We should get rid of this and use fileio_open directly. */
704 int remote_hostio_open (struct inferior *inf, const char *filename,
705 int flags, int mode, int warn_if_slow,
706 int *remote_errno);
707 int remote_hostio_close (int fd, int *remote_errno);
708
709 int remote_hostio_unlink (inferior *inf, const char *filename,
710 int *remote_errno);
711
712 struct remote_state *get_remote_state ();
713
714 long get_remote_packet_size (void);
715 long get_memory_packet_size (struct memory_packet_config *config);
716
717 long get_memory_write_packet_size ();
718 long get_memory_read_packet_size ();
719
720 char *append_pending_thread_resumptions (char *p, char *endp,
721 ptid_t ptid);
722 static void open_1 (const char *name, int from_tty, int extended_p);
723 void start_remote (int from_tty, int extended_p);
724 void remote_detach_1 (struct inferior *inf, int from_tty);
725
726 char *append_resumption (char *p, char *endp,
727 ptid_t ptid, int step, gdb_signal siggnal);
728 int remote_resume_with_vcont (ptid_t ptid, int step,
729 gdb_signal siggnal);
730
731 void add_current_inferior_and_thread (char *wait_status);
732
733 ptid_t wait_ns (ptid_t ptid, struct target_waitstatus *status,
734 int options);
735 ptid_t wait_as (ptid_t ptid, target_waitstatus *status,
736 int options);
737
738 ptid_t process_stop_reply (struct stop_reply *stop_reply,
739 target_waitstatus *status);
740
741 void remote_notice_new_inferior (ptid_t currthread, int executing);
742
743 void process_initial_stop_replies (int from_tty);
744
745 thread_info *remote_add_thread (ptid_t ptid, bool running, bool executing);
746
747 void btrace_sync_conf (const btrace_config *conf);
748
749 void remote_btrace_maybe_reopen ();
750
751 void remove_new_fork_children (threads_listing_context *context);
752 void kill_new_fork_children (int pid);
753 void discard_pending_stop_replies (struct inferior *inf);
754 int stop_reply_queue_length ();
755
756 void check_pending_events_prevent_wildcard_vcont
757 (int *may_global_wildcard_vcont);
758
759 void discard_pending_stop_replies_in_queue ();
760 struct stop_reply *remote_notif_remove_queued_reply (ptid_t ptid);
761 struct stop_reply *queued_stop_reply (ptid_t ptid);
762 int peek_stop_reply (ptid_t ptid);
763 void remote_parse_stop_reply (const char *buf, stop_reply *event);
764
765 void remote_stop_ns (ptid_t ptid);
766 void remote_interrupt_as ();
767 void remote_interrupt_ns ();
768
769 char *remote_get_noisy_reply ();
770 int remote_query_attached (int pid);
771 inferior *remote_add_inferior (bool fake_pid_p, int pid, int attached,
772 int try_open_exec);
773
774 ptid_t remote_current_thread (ptid_t oldpid);
775 ptid_t get_current_thread (char *wait_status);
776
777 void set_thread (ptid_t ptid, int gen);
778 void set_general_thread (ptid_t ptid);
779 void set_continue_thread (ptid_t ptid);
780 void set_general_process ();
781
782 char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
783
784 int remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
785 gdb_ext_thread_info *info);
786 int remote_get_threadinfo (threadref *threadid, int fieldset,
787 gdb_ext_thread_info *info);
788
789 int parse_threadlist_response (char *pkt, int result_limit,
790 threadref *original_echo,
791 threadref *resultlist,
792 int *doneflag);
793 int remote_get_threadlist (int startflag, threadref *nextthread,
794 int result_limit, int *done, int *result_count,
795 threadref *threadlist);
796
797 int remote_threadlist_iterator (rmt_thread_action stepfunction,
798 void *context, int looplimit);
799
800 int remote_get_threads_with_ql (threads_listing_context *context);
801 int remote_get_threads_with_qxfer (threads_listing_context *context);
802 int remote_get_threads_with_qthreadinfo (threads_listing_context *context);
803
804 void extended_remote_restart ();
805
806 void get_offsets ();
807
808 void remote_check_symbols ();
809
810 void remote_supported_packet (const struct protocol_feature *feature,
811 enum packet_support support,
812 const char *argument);
813
814 void remote_query_supported ();
815
816 void remote_packet_size (const protocol_feature *feature,
817 packet_support support, const char *value);
818
819 void remote_serial_quit_handler ();
820
821 void remote_detach_pid (int pid);
822
823 void remote_vcont_probe ();
824
825 void remote_resume_with_hc (ptid_t ptid, int step,
826 gdb_signal siggnal);
827
828 void send_interrupt_sequence ();
829 void interrupt_query ();
830
831 void remote_notif_get_pending_events (notif_client *nc);
832
833 int fetch_register_using_p (struct regcache *regcache,
834 packet_reg *reg);
835 int send_g_packet ();
836 void process_g_packet (struct regcache *regcache);
837 void fetch_registers_using_g (struct regcache *regcache);
838 int store_register_using_P (const struct regcache *regcache,
839 packet_reg *reg);
840 void store_registers_using_G (const struct regcache *regcache);
841
842 void set_remote_traceframe ();
843
844 void check_binary_download (CORE_ADDR addr);
845
846 target_xfer_status remote_write_bytes_aux (const char *header,
847 CORE_ADDR memaddr,
848 const gdb_byte *myaddr,
849 ULONGEST len_units,
850 int unit_size,
851 ULONGEST *xfered_len_units,
852 char packet_format,
853 int use_length);
854
855 target_xfer_status remote_write_bytes (CORE_ADDR memaddr,
856 const gdb_byte *myaddr, ULONGEST len,
857 int unit_size, ULONGEST *xfered_len);
858
859 target_xfer_status remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
860 ULONGEST len_units,
861 int unit_size, ULONGEST *xfered_len_units);
862
863 target_xfer_status remote_xfer_live_readonly_partial (gdb_byte *readbuf,
864 ULONGEST memaddr,
865 ULONGEST len,
866 int unit_size,
867 ULONGEST *xfered_len);
868
869 target_xfer_status remote_read_bytes (CORE_ADDR memaddr,
870 gdb_byte *myaddr, ULONGEST len,
871 int unit_size,
872 ULONGEST *xfered_len);
873
874 packet_result remote_send_printf (const char *format, ...)
875 ATTRIBUTE_PRINTF (2, 3);
876
877 target_xfer_status remote_flash_write (ULONGEST address,
878 ULONGEST length, ULONGEST *xfered_len,
879 const gdb_byte *data);
880
881 int readchar (int timeout);
882
883 void remote_serial_write (const char *str, int len);
884
885 int putpkt (const char *buf);
886 int putpkt_binary (const char *buf, int cnt);
887
888 int putpkt (const gdb::char_vector &buf)
889 {
890 return putpkt (buf.data ());
891 }
892
893 void skip_frame ();
894 long read_frame (gdb::char_vector *buf_p);
895 void getpkt (gdb::char_vector *buf, int forever);
896 int getpkt_or_notif_sane_1 (gdb::char_vector *buf, int forever,
897 int expecting_notif, int *is_notif);
898 int getpkt_sane (gdb::char_vector *buf, int forever);
899 int getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
900 int *is_notif);
901 int remote_vkill (int pid);
902 void remote_kill_k ();
903
904 void extended_remote_disable_randomization (int val);
905 int extended_remote_run (const std::string &args);
906
907 void send_environment_packet (const char *action,
908 const char *packet,
909 const char *value);
910
911 void extended_remote_environment_support ();
912 void extended_remote_set_inferior_cwd ();
913
914 target_xfer_status remote_write_qxfer (const char *object_name,
915 const char *annex,
916 const gdb_byte *writebuf,
917 ULONGEST offset, LONGEST len,
918 ULONGEST *xfered_len,
919 struct packet_config *packet);
920
921 target_xfer_status remote_read_qxfer (const char *object_name,
922 const char *annex,
923 gdb_byte *readbuf, ULONGEST offset,
924 LONGEST len,
925 ULONGEST *xfered_len,
926 struct packet_config *packet);
927
928 void push_stop_reply (struct stop_reply *new_event);
929
930 bool vcont_r_supported ();
931
932 void packet_command (const char *args, int from_tty);
933
934 private: /* data fields */
935
936 /* The remote state. Don't reference this directly. Use the
937 get_remote_state method instead. */
938 remote_state m_remote_state;
939 };
940
941 static const target_info extended_remote_target_info = {
942 "extended-remote",
943 N_("Extended remote serial target in gdb-specific protocol"),
944 remote_doc
945 };
946
947 /* Set up the extended remote target by extending the standard remote
948 target and adding to it. */
949
950 class extended_remote_target final : public remote_target
951 {
952 public:
953 const target_info &info () const override
954 { return extended_remote_target_info; }
955
956 /* Open an extended-remote connection. */
957 static void open (const char *, int);
958
959 bool can_create_inferior () override { return true; }
960 void create_inferior (const char *, const std::string &,
961 char **, int) override;
962
963 void detach (inferior *, int) override;
964
965 bool can_attach () override { return true; }
966 void attach (const char *, int) override;
967
968 void post_attach (int) override;
969 bool supports_disable_randomization () override;
970 };
971
972 /* Per-program-space data key. */
973 static const struct program_space_key<char, gdb::xfree_deleter<char>>
974 remote_pspace_data;
975
976 /* The variable registered as the control variable used by the
977 remote exec-file commands. While the remote exec-file setting is
978 per-program-space, the set/show machinery uses this as the
979 location of the remote exec-file value. */
980 static char *remote_exec_file_var;
981
982 /* The size to align memory write packets, when practical. The protocol
983 does not guarantee any alignment, and gdb will generate short
984 writes and unaligned writes, but even as a best-effort attempt this
985 can improve bulk transfers. For instance, if a write is misaligned
986 relative to the target's data bus, the stub may need to make an extra
987 round trip fetching data from the target. This doesn't make a
988 huge difference, but it's easy to do, so we try to be helpful.
989
990 The alignment chosen is arbitrary; usually data bus width is
991 important here, not the possibly larger cache line size. */
992 enum { REMOTE_ALIGN_WRITES = 16 };
993
994 /* Prototypes for local functions. */
995
996 static int hexnumlen (ULONGEST num);
997
998 static int stubhex (int ch);
999
1000 static int hexnumstr (char *, ULONGEST);
1001
1002 static int hexnumnstr (char *, ULONGEST, int);
1003
1004 static CORE_ADDR remote_address_masked (CORE_ADDR);
1005
1006 static void print_packet (const char *);
1007
1008 static int stub_unpack_int (char *buff, int fieldlength);
1009
1010 struct packet_config;
1011
1012 static void show_packet_config_cmd (struct packet_config *config);
1013
1014 static void show_remote_protocol_packet_cmd (struct ui_file *file,
1015 int from_tty,
1016 struct cmd_list_element *c,
1017 const char *value);
1018
1019 static ptid_t read_ptid (const char *buf, const char **obuf);
1020
1021 static void remote_async_inferior_event_handler (gdb_client_data);
1022
1023 static bool remote_read_description_p (struct target_ops *target);
1024
1025 static void remote_console_output (const char *msg);
1026
1027 static void remote_btrace_reset (remote_state *rs);
1028
1029 static void remote_unpush_and_throw (void);
1030
1031 /* For "remote". */
1032
1033 static struct cmd_list_element *remote_cmdlist;
1034
1035 /* For "set remote" and "show remote". */
1036
1037 static struct cmd_list_element *remote_set_cmdlist;
1038 static struct cmd_list_element *remote_show_cmdlist;
1039
1040 /* Controls whether GDB is willing to use range stepping. */
1041
1042 static bool use_range_stepping = true;
1043
1044 /* Private data that we'll store in (struct thread_info)->priv. */
1045 struct remote_thread_info : public private_thread_info
1046 {
1047 std::string extra;
1048 std::string name;
1049 int core = -1;
1050
1051 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
1052 sequence of bytes. */
1053 gdb::byte_vector thread_handle;
1054
1055 /* Whether the target stopped for a breakpoint/watchpoint. */
1056 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
1057
1058 /* This is set to the data address of the access causing the target
1059 to stop for a watchpoint. */
1060 CORE_ADDR watch_data_address = 0;
1061
1062 /* Fields used by the vCont action coalescing implemented in
1063 remote_resume / remote_commit_resume. remote_resume stores each
1064 thread's last resume request in these fields, so that a later
1065 remote_commit_resume knows which is the proper action for this
1066 thread to include in the vCont packet. */
1067
1068 /* True if the last target_resume call for this thread was a step
1069 request, false if a continue request. */
1070 int last_resume_step = 0;
1071
1072 /* The signal specified in the last target_resume call for this
1073 thread. */
1074 gdb_signal last_resume_sig = GDB_SIGNAL_0;
1075
1076 /* Whether this thread was already vCont-resumed on the remote
1077 side. */
1078 int vcont_resumed = 0;
1079 };
1080
1081 remote_state::remote_state ()
1082 : buf (400)
1083 {
1084 }
1085
1086 remote_state::~remote_state ()
1087 {
1088 xfree (this->last_pass_packet);
1089 xfree (this->last_program_signals_packet);
1090 xfree (this->finished_object);
1091 xfree (this->finished_annex);
1092 }
1093
1094 /* Utility: generate error from an incoming stub packet. */
1095 static void
1096 trace_error (char *buf)
1097 {
1098 if (*buf++ != 'E')
1099 return; /* not an error msg */
1100 switch (*buf)
1101 {
1102 case '1': /* malformed packet error */
1103 if (*++buf == '0') /* general case: */
1104 error (_("remote.c: error in outgoing packet."));
1105 else
1106 error (_("remote.c: error in outgoing packet at field #%ld."),
1107 strtol (buf, NULL, 16));
1108 default:
1109 error (_("Target returns error code '%s'."), buf);
1110 }
1111 }
1112
1113 /* Utility: wait for reply from stub, while accepting "O" packets. */
1114
1115 char *
1116 remote_target::remote_get_noisy_reply ()
1117 {
1118 struct remote_state *rs = get_remote_state ();
1119
1120 do /* Loop on reply from remote stub. */
1121 {
1122 char *buf;
1123
1124 QUIT; /* Allow user to bail out with ^C. */
1125 getpkt (&rs->buf, 0);
1126 buf = rs->buf.data ();
1127 if (buf[0] == 'E')
1128 trace_error (buf);
1129 else if (startswith (buf, "qRelocInsn:"))
1130 {
1131 ULONGEST ul;
1132 CORE_ADDR from, to, org_to;
1133 const char *p, *pp;
1134 int adjusted_size = 0;
1135 int relocated = 0;
1136
1137 p = buf + strlen ("qRelocInsn:");
1138 pp = unpack_varlen_hex (p, &ul);
1139 if (*pp != ';')
1140 error (_("invalid qRelocInsn packet: %s"), buf);
1141 from = ul;
1142
1143 p = pp + 1;
1144 unpack_varlen_hex (p, &ul);
1145 to = ul;
1146
1147 org_to = to;
1148
1149 try
1150 {
1151 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
1152 relocated = 1;
1153 }
1154 catch (const gdb_exception &ex)
1155 {
1156 if (ex.error == MEMORY_ERROR)
1157 {
1158 /* Propagate memory errors silently back to the
1159 target. The stub may have limited the range of
1160 addresses we can write to, for example. */
1161 }
1162 else
1163 {
1164 /* Something unexpectedly bad happened. Be verbose
1165 so we can tell what, and propagate the error back
1166 to the stub, so it doesn't get stuck waiting for
1167 a response. */
1168 exception_fprintf (gdb_stderr, ex,
1169 _("warning: relocating instruction: "));
1170 }
1171 putpkt ("E01");
1172 }
1173
1174 if (relocated)
1175 {
1176 adjusted_size = to - org_to;
1177
1178 xsnprintf (buf, rs->buf.size (), "qRelocInsn:%x", adjusted_size);
1179 putpkt (buf);
1180 }
1181 }
1182 else if (buf[0] == 'O' && buf[1] != 'K')
1183 remote_console_output (buf + 1); /* 'O' message from stub */
1184 else
1185 return buf; /* Here's the actual reply. */
1186 }
1187 while (1);
1188 }
1189
1190 struct remote_arch_state *
1191 remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
1192 {
1193 remote_arch_state *rsa;
1194
1195 auto it = this->m_arch_states.find (gdbarch);
1196 if (it == this->m_arch_states.end ())
1197 {
1198 auto p = this->m_arch_states.emplace (std::piecewise_construct,
1199 std::forward_as_tuple (gdbarch),
1200 std::forward_as_tuple (gdbarch));
1201 rsa = &p.first->second;
1202
1203 /* Make sure that the packet buffer is plenty big enough for
1204 this architecture. */
1205 if (this->buf.size () < rsa->remote_packet_size)
1206 this->buf.resize (2 * rsa->remote_packet_size);
1207 }
1208 else
1209 rsa = &it->second;
1210
1211 return rsa;
1212 }
1213
1214 /* Fetch the global remote target state. */
1215
1216 remote_state *
1217 remote_target::get_remote_state ()
1218 {
1219 /* Make sure that the remote architecture state has been
1220 initialized, because doing so might reallocate rs->buf. Any
1221 function which calls getpkt also needs to be mindful of changes
1222 to rs->buf, but this call limits the number of places which run
1223 into trouble. */
1224 m_remote_state.get_remote_arch_state (target_gdbarch ());
1225
1226 return &m_remote_state;
1227 }
1228
1229 /* Fetch the remote exec-file from the current program space. */
1230
1231 static const char *
1232 get_remote_exec_file (void)
1233 {
1234 char *remote_exec_file;
1235
1236 remote_exec_file = remote_pspace_data.get (current_program_space);
1237 if (remote_exec_file == NULL)
1238 return "";
1239
1240 return remote_exec_file;
1241 }
1242
1243 /* Set the remote exec file for PSPACE. */
1244
1245 static void
1246 set_pspace_remote_exec_file (struct program_space *pspace,
1247 const char *remote_exec_file)
1248 {
1249 char *old_file = remote_pspace_data.get (pspace);
1250
1251 xfree (old_file);
1252 remote_pspace_data.set (pspace, xstrdup (remote_exec_file));
1253 }
1254
1255 /* The "set/show remote exec-file" set command hook. */
1256
1257 static void
1258 set_remote_exec_file (const char *ignored, int from_tty,
1259 struct cmd_list_element *c)
1260 {
1261 gdb_assert (remote_exec_file_var != NULL);
1262 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
1263 }
1264
1265 /* The "set/show remote exec-file" show command hook. */
1266
1267 static void
1268 show_remote_exec_file (struct ui_file *file, int from_tty,
1269 struct cmd_list_element *cmd, const char *value)
1270 {
1271 fprintf_filtered (file, "%s\n", get_remote_exec_file ());
1272 }
1273
1274 static int
1275 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1276 {
1277 int regnum, num_remote_regs, offset;
1278 struct packet_reg **remote_regs;
1279
1280 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1281 {
1282 struct packet_reg *r = &regs[regnum];
1283
1284 if (register_size (gdbarch, regnum) == 0)
1285 /* Do not try to fetch zero-sized (placeholder) registers. */
1286 r->pnum = -1;
1287 else
1288 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1289
1290 r->regnum = regnum;
1291 }
1292
1293 /* Define the g/G packet format as the contents of each register
1294 with a remote protocol number, in order of ascending protocol
1295 number. */
1296
1297 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1298 for (num_remote_regs = 0, regnum = 0;
1299 regnum < gdbarch_num_regs (gdbarch);
1300 regnum++)
1301 if (regs[regnum].pnum != -1)
1302 remote_regs[num_remote_regs++] = &regs[regnum];
1303
1304 std::sort (remote_regs, remote_regs + num_remote_regs,
1305 [] (const packet_reg *a, const packet_reg *b)
1306 { return a->pnum < b->pnum; });
1307
1308 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1309 {
1310 remote_regs[regnum]->in_g_packet = 1;
1311 remote_regs[regnum]->offset = offset;
1312 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1313 }
1314
1315 return offset;
1316 }
1317
1318 /* Given the architecture described by GDBARCH, return the remote
1319 protocol register's number and the register's offset in the g/G
1320 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1321 If the target does not have a mapping for REGNUM, return false,
1322 otherwise, return true. */
1323
1324 int
1325 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1326 int *pnum, int *poffset)
1327 {
1328 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1329
1330 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1331
1332 map_regcache_remote_table (gdbarch, regs.data ());
1333
1334 *pnum = regs[regnum].pnum;
1335 *poffset = regs[regnum].offset;
1336
1337 return *pnum != -1;
1338 }
1339
1340 remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1341 {
1342 /* Use the architecture to build a regnum<->pnum table, which will be
1343 1:1 unless a feature set specifies otherwise. */
1344 this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1345
1346 /* Record the maximum possible size of the g packet - it may turn out
1347 to be smaller. */
1348 this->sizeof_g_packet
1349 = map_regcache_remote_table (gdbarch, this->regs.get ());
1350
1351 /* Default maximum number of characters in a packet body. Many
1352 remote stubs have a hardwired buffer size of 400 bytes
1353 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1354 as the maximum packet-size to ensure that the packet and an extra
1355 NUL character can always fit in the buffer. This stops GDB
1356 trashing stubs that try to squeeze an extra NUL into what is
1357 already a full buffer (As of 1999-12-04 that was most stubs). */
1358 this->remote_packet_size = 400 - 1;
1359
1360 /* This one is filled in when a ``g'' packet is received. */
1361 this->actual_register_packet_size = 0;
1362
1363 /* Should rsa->sizeof_g_packet needs more space than the
1364 default, adjust the size accordingly. Remember that each byte is
1365 encoded as two characters. 32 is the overhead for the packet
1366 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1367 (``$NN:G...#NN'') is a better guess, the below has been padded a
1368 little. */
1369 if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1370 this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1371 }
1372
1373 /* Get a pointer to the current remote target. If not connected to a
1374 remote target, return NULL. */
1375
1376 static remote_target *
1377 get_current_remote_target ()
1378 {
1379 target_ops *proc_target = find_target_at (process_stratum);
1380 return dynamic_cast<remote_target *> (proc_target);
1381 }
1382
1383 /* Return the current allowed size of a remote packet. This is
1384 inferred from the current architecture, and should be used to
1385 limit the length of outgoing packets. */
1386 long
1387 remote_target::get_remote_packet_size ()
1388 {
1389 struct remote_state *rs = get_remote_state ();
1390 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1391
1392 if (rs->explicit_packet_size)
1393 return rs->explicit_packet_size;
1394
1395 return rsa->remote_packet_size;
1396 }
1397
1398 static struct packet_reg *
1399 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1400 long regnum)
1401 {
1402 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1403 return NULL;
1404 else
1405 {
1406 struct packet_reg *r = &rsa->regs[regnum];
1407
1408 gdb_assert (r->regnum == regnum);
1409 return r;
1410 }
1411 }
1412
1413 static struct packet_reg *
1414 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1415 LONGEST pnum)
1416 {
1417 int i;
1418
1419 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1420 {
1421 struct packet_reg *r = &rsa->regs[i];
1422
1423 if (r->pnum == pnum)
1424 return r;
1425 }
1426 return NULL;
1427 }
1428
1429 /* Allow the user to specify what sequence to send to the remote
1430 when he requests a program interruption: Although ^C is usually
1431 what remote systems expect (this is the default, here), it is
1432 sometimes preferable to send a break. On other systems such
1433 as the Linux kernel, a break followed by g, which is Magic SysRq g
1434 is required in order to interrupt the execution. */
1435 const char interrupt_sequence_control_c[] = "Ctrl-C";
1436 const char interrupt_sequence_break[] = "BREAK";
1437 const char interrupt_sequence_break_g[] = "BREAK-g";
1438 static const char *const interrupt_sequence_modes[] =
1439 {
1440 interrupt_sequence_control_c,
1441 interrupt_sequence_break,
1442 interrupt_sequence_break_g,
1443 NULL
1444 };
1445 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1446
1447 static void
1448 show_interrupt_sequence (struct ui_file *file, int from_tty,
1449 struct cmd_list_element *c,
1450 const char *value)
1451 {
1452 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1453 fprintf_filtered (file,
1454 _("Send the ASCII ETX character (Ctrl-c) "
1455 "to the remote target to interrupt the "
1456 "execution of the program.\n"));
1457 else if (interrupt_sequence_mode == interrupt_sequence_break)
1458 fprintf_filtered (file,
1459 _("send a break signal to the remote target "
1460 "to interrupt the execution of the program.\n"));
1461 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1462 fprintf_filtered (file,
1463 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1464 "the remote target to interrupt the execution "
1465 "of Linux kernel.\n"));
1466 else
1467 internal_error (__FILE__, __LINE__,
1468 _("Invalid value for interrupt_sequence_mode: %s."),
1469 interrupt_sequence_mode);
1470 }
1471
1472 /* This boolean variable specifies whether interrupt_sequence is sent
1473 to the remote target when gdb connects to it.
1474 This is mostly needed when you debug the Linux kernel: The Linux kernel
1475 expects BREAK g which is Magic SysRq g for connecting gdb. */
1476 static bool interrupt_on_connect = false;
1477
1478 /* This variable is used to implement the "set/show remotebreak" commands.
1479 Since these commands are now deprecated in favor of "set/show remote
1480 interrupt-sequence", it no longer has any effect on the code. */
1481 static bool remote_break;
1482
1483 static void
1484 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1485 {
1486 if (remote_break)
1487 interrupt_sequence_mode = interrupt_sequence_break;
1488 else
1489 interrupt_sequence_mode = interrupt_sequence_control_c;
1490 }
1491
1492 static void
1493 show_remotebreak (struct ui_file *file, int from_tty,
1494 struct cmd_list_element *c,
1495 const char *value)
1496 {
1497 }
1498
1499 /* This variable sets the number of bits in an address that are to be
1500 sent in a memory ("M" or "m") packet. Normally, after stripping
1501 leading zeros, the entire address would be sent. This variable
1502 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1503 initial implementation of remote.c restricted the address sent in
1504 memory packets to ``host::sizeof long'' bytes - (typically 32
1505 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1506 address was never sent. Since fixing this bug may cause a break in
1507 some remote targets this variable is principally provided to
1508 facilitate backward compatibility. */
1509
1510 static unsigned int remote_address_size;
1511
1512 \f
1513 /* User configurable variables for the number of characters in a
1514 memory read/write packet. MIN (rsa->remote_packet_size,
1515 rsa->sizeof_g_packet) is the default. Some targets need smaller
1516 values (fifo overruns, et.al.) and some users need larger values
1517 (speed up transfers). The variables ``preferred_*'' (the user
1518 request), ``current_*'' (what was actually set) and ``forced_*''
1519 (Positive - a soft limit, negative - a hard limit). */
1520
1521 struct memory_packet_config
1522 {
1523 const char *name;
1524 long size;
1525 int fixed_p;
1526 };
1527
1528 /* The default max memory-write-packet-size, when the setting is
1529 "fixed". The 16k is historical. (It came from older GDB's using
1530 alloca for buffers and the knowledge (folklore?) that some hosts
1531 don't cope very well with large alloca calls.) */
1532 #define DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED 16384
1533
1534 /* The minimum remote packet size for memory transfers. Ensures we
1535 can write at least one byte. */
1536 #define MIN_MEMORY_PACKET_SIZE 20
1537
1538 /* Get the memory packet size, assuming it is fixed. */
1539
1540 static long
1541 get_fixed_memory_packet_size (struct memory_packet_config *config)
1542 {
1543 gdb_assert (config->fixed_p);
1544
1545 if (config->size <= 0)
1546 return DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED;
1547 else
1548 return config->size;
1549 }
1550
1551 /* Compute the current size of a read/write packet. Since this makes
1552 use of ``actual_register_packet_size'' the computation is dynamic. */
1553
1554 long
1555 remote_target::get_memory_packet_size (struct memory_packet_config *config)
1556 {
1557 struct remote_state *rs = get_remote_state ();
1558 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1559
1560 long what_they_get;
1561 if (config->fixed_p)
1562 what_they_get = get_fixed_memory_packet_size (config);
1563 else
1564 {
1565 what_they_get = get_remote_packet_size ();
1566 /* Limit the packet to the size specified by the user. */
1567 if (config->size > 0
1568 && what_they_get > config->size)
1569 what_they_get = config->size;
1570
1571 /* Limit it to the size of the targets ``g'' response unless we have
1572 permission from the stub to use a larger packet size. */
1573 if (rs->explicit_packet_size == 0
1574 && rsa->actual_register_packet_size > 0
1575 && what_they_get > rsa->actual_register_packet_size)
1576 what_they_get = rsa->actual_register_packet_size;
1577 }
1578 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1579 what_they_get = MIN_MEMORY_PACKET_SIZE;
1580
1581 /* Make sure there is room in the global buffer for this packet
1582 (including its trailing NUL byte). */
1583 if (rs->buf.size () < what_they_get + 1)
1584 rs->buf.resize (2 * what_they_get);
1585
1586 return what_they_get;
1587 }
1588
1589 /* Update the size of a read/write packet. If they user wants
1590 something really big then do a sanity check. */
1591
1592 static void
1593 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1594 {
1595 int fixed_p = config->fixed_p;
1596 long size = config->size;
1597
1598 if (args == NULL)
1599 error (_("Argument required (integer, `fixed' or `limited')."));
1600 else if (strcmp (args, "hard") == 0
1601 || strcmp (args, "fixed") == 0)
1602 fixed_p = 1;
1603 else if (strcmp (args, "soft") == 0
1604 || strcmp (args, "limit") == 0)
1605 fixed_p = 0;
1606 else
1607 {
1608 char *end;
1609
1610 size = strtoul (args, &end, 0);
1611 if (args == end)
1612 error (_("Invalid %s (bad syntax)."), config->name);
1613
1614 /* Instead of explicitly capping the size of a packet to or
1615 disallowing it, the user is allowed to set the size to
1616 something arbitrarily large. */
1617 }
1618
1619 /* Extra checks? */
1620 if (fixed_p && !config->fixed_p)
1621 {
1622 /* So that the query shows the correct value. */
1623 long query_size = (size <= 0
1624 ? DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED
1625 : size);
1626
1627 if (! query (_("The target may not be able to correctly handle a %s\n"
1628 "of %ld bytes. Change the packet size? "),
1629 config->name, query_size))
1630 error (_("Packet size not changed."));
1631 }
1632 /* Update the config. */
1633 config->fixed_p = fixed_p;
1634 config->size = size;
1635 }
1636
1637 static void
1638 show_memory_packet_size (struct memory_packet_config *config)
1639 {
1640 if (config->size == 0)
1641 printf_filtered (_("The %s is 0 (default). "), config->name);
1642 else
1643 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1644 if (config->fixed_p)
1645 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1646 get_fixed_memory_packet_size (config));
1647 else
1648 {
1649 remote_target *remote = get_current_remote_target ();
1650
1651 if (remote != NULL)
1652 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1653 remote->get_memory_packet_size (config));
1654 else
1655 puts_filtered ("The actual limit will be further reduced "
1656 "dependent on the target.\n");
1657 }
1658 }
1659
1660 static struct memory_packet_config memory_write_packet_config =
1661 {
1662 "memory-write-packet-size",
1663 };
1664
1665 static void
1666 set_memory_write_packet_size (const char *args, int from_tty)
1667 {
1668 set_memory_packet_size (args, &memory_write_packet_config);
1669 }
1670
1671 static void
1672 show_memory_write_packet_size (const char *args, int from_tty)
1673 {
1674 show_memory_packet_size (&memory_write_packet_config);
1675 }
1676
1677 /* Show the number of hardware watchpoints that can be used. */
1678
1679 static void
1680 show_hardware_watchpoint_limit (struct ui_file *file, int from_tty,
1681 struct cmd_list_element *c,
1682 const char *value)
1683 {
1684 fprintf_filtered (file, _("The maximum number of target hardware "
1685 "watchpoints is %s.\n"), value);
1686 }
1687
1688 /* Show the length limit (in bytes) for hardware watchpoints. */
1689
1690 static void
1691 show_hardware_watchpoint_length_limit (struct ui_file *file, int from_tty,
1692 struct cmd_list_element *c,
1693 const char *value)
1694 {
1695 fprintf_filtered (file, _("The maximum length (in bytes) of a target "
1696 "hardware watchpoint is %s.\n"), value);
1697 }
1698
1699 /* Show the number of hardware breakpoints that can be used. */
1700
1701 static void
1702 show_hardware_breakpoint_limit (struct ui_file *file, int from_tty,
1703 struct cmd_list_element *c,
1704 const char *value)
1705 {
1706 fprintf_filtered (file, _("The maximum number of target hardware "
1707 "breakpoints is %s.\n"), value);
1708 }
1709
1710 /* Controls the maximum number of characters to display in the debug output
1711 for each remote packet. The remaining characters are omitted. */
1712
1713 static int remote_packet_max_chars = 512;
1714
1715 /* Show the maximum number of characters to display for each remote packet
1716 when remote debugging is enabled. */
1717
1718 static void
1719 show_remote_packet_max_chars (struct ui_file *file, int from_tty,
1720 struct cmd_list_element *c,
1721 const char *value)
1722 {
1723 fprintf_filtered (file, _("Number of remote packet characters to "
1724 "display is %s.\n"), value);
1725 }
1726
1727 long
1728 remote_target::get_memory_write_packet_size ()
1729 {
1730 return get_memory_packet_size (&memory_write_packet_config);
1731 }
1732
1733 static struct memory_packet_config memory_read_packet_config =
1734 {
1735 "memory-read-packet-size",
1736 };
1737
1738 static void
1739 set_memory_read_packet_size (const char *args, int from_tty)
1740 {
1741 set_memory_packet_size (args, &memory_read_packet_config);
1742 }
1743
1744 static void
1745 show_memory_read_packet_size (const char *args, int from_tty)
1746 {
1747 show_memory_packet_size (&memory_read_packet_config);
1748 }
1749
1750 long
1751 remote_target::get_memory_read_packet_size ()
1752 {
1753 long size = get_memory_packet_size (&memory_read_packet_config);
1754
1755 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1756 extra buffer size argument before the memory read size can be
1757 increased beyond this. */
1758 if (size > get_remote_packet_size ())
1759 size = get_remote_packet_size ();
1760 return size;
1761 }
1762
1763 \f
1764
1765 struct packet_config
1766 {
1767 const char *name;
1768 const char *title;
1769
1770 /* If auto, GDB auto-detects support for this packet or feature,
1771 either through qSupported, or by trying the packet and looking
1772 at the response. If true, GDB assumes the target supports this
1773 packet. If false, the packet is disabled. Configs that don't
1774 have an associated command always have this set to auto. */
1775 enum auto_boolean detect;
1776
1777 /* Does the target support this packet? */
1778 enum packet_support support;
1779 };
1780
1781 static enum packet_support packet_config_support (struct packet_config *config);
1782 static enum packet_support packet_support (int packet);
1783
1784 static void
1785 show_packet_config_cmd (struct packet_config *config)
1786 {
1787 const char *support = "internal-error";
1788
1789 switch (packet_config_support (config))
1790 {
1791 case PACKET_ENABLE:
1792 support = "enabled";
1793 break;
1794 case PACKET_DISABLE:
1795 support = "disabled";
1796 break;
1797 case PACKET_SUPPORT_UNKNOWN:
1798 support = "unknown";
1799 break;
1800 }
1801 switch (config->detect)
1802 {
1803 case AUTO_BOOLEAN_AUTO:
1804 printf_filtered (_("Support for the `%s' packet "
1805 "is auto-detected, currently %s.\n"),
1806 config->name, support);
1807 break;
1808 case AUTO_BOOLEAN_TRUE:
1809 case AUTO_BOOLEAN_FALSE:
1810 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1811 config->name, support);
1812 break;
1813 }
1814 }
1815
1816 static void
1817 add_packet_config_cmd (struct packet_config *config, const char *name,
1818 const char *title, int legacy)
1819 {
1820 char *set_doc;
1821 char *show_doc;
1822 char *cmd_name;
1823
1824 config->name = name;
1825 config->title = title;
1826 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet.",
1827 name, title);
1828 show_doc = xstrprintf ("Show current use of remote "
1829 "protocol `%s' (%s) packet.",
1830 name, title);
1831 /* set/show TITLE-packet {auto,on,off} */
1832 cmd_name = xstrprintf ("%s-packet", title);
1833 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1834 &config->detect, set_doc,
1835 show_doc, NULL, /* help_doc */
1836 NULL,
1837 show_remote_protocol_packet_cmd,
1838 &remote_set_cmdlist, &remote_show_cmdlist);
1839 /* The command code copies the documentation strings. */
1840 xfree (set_doc);
1841 xfree (show_doc);
1842 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1843 if (legacy)
1844 {
1845 char *legacy_name;
1846
1847 legacy_name = xstrprintf ("%s-packet", name);
1848 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1849 &remote_set_cmdlist);
1850 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1851 &remote_show_cmdlist);
1852 }
1853 }
1854
1855 static enum packet_result
1856 packet_check_result (const char *buf)
1857 {
1858 if (buf[0] != '\0')
1859 {
1860 /* The stub recognized the packet request. Check that the
1861 operation succeeded. */
1862 if (buf[0] == 'E'
1863 && isxdigit (buf[1]) && isxdigit (buf[2])
1864 && buf[3] == '\0')
1865 /* "Enn" - definitely an error. */
1866 return PACKET_ERROR;
1867
1868 /* Always treat "E." as an error. This will be used for
1869 more verbose error messages, such as E.memtypes. */
1870 if (buf[0] == 'E' && buf[1] == '.')
1871 return PACKET_ERROR;
1872
1873 /* The packet may or may not be OK. Just assume it is. */
1874 return PACKET_OK;
1875 }
1876 else
1877 /* The stub does not support the packet. */
1878 return PACKET_UNKNOWN;
1879 }
1880
1881 static enum packet_result
1882 packet_check_result (const gdb::char_vector &buf)
1883 {
1884 return packet_check_result (buf.data ());
1885 }
1886
1887 static enum packet_result
1888 packet_ok (const char *buf, struct packet_config *config)
1889 {
1890 enum packet_result result;
1891
1892 if (config->detect != AUTO_BOOLEAN_TRUE
1893 && config->support == PACKET_DISABLE)
1894 internal_error (__FILE__, __LINE__,
1895 _("packet_ok: attempt to use a disabled packet"));
1896
1897 result = packet_check_result (buf);
1898 switch (result)
1899 {
1900 case PACKET_OK:
1901 case PACKET_ERROR:
1902 /* The stub recognized the packet request. */
1903 if (config->support == PACKET_SUPPORT_UNKNOWN)
1904 {
1905 if (remote_debug)
1906 fprintf_unfiltered (gdb_stdlog,
1907 "Packet %s (%s) is supported\n",
1908 config->name, config->title);
1909 config->support = PACKET_ENABLE;
1910 }
1911 break;
1912 case PACKET_UNKNOWN:
1913 /* The stub does not support the packet. */
1914 if (config->detect == AUTO_BOOLEAN_AUTO
1915 && config->support == PACKET_ENABLE)
1916 {
1917 /* If the stub previously indicated that the packet was
1918 supported then there is a protocol error. */
1919 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1920 config->name, config->title);
1921 }
1922 else if (config->detect == AUTO_BOOLEAN_TRUE)
1923 {
1924 /* The user set it wrong. */
1925 error (_("Enabled packet %s (%s) not recognized by stub"),
1926 config->name, config->title);
1927 }
1928
1929 if (remote_debug)
1930 fprintf_unfiltered (gdb_stdlog,
1931 "Packet %s (%s) is NOT supported\n",
1932 config->name, config->title);
1933 config->support = PACKET_DISABLE;
1934 break;
1935 }
1936
1937 return result;
1938 }
1939
1940 static enum packet_result
1941 packet_ok (const gdb::char_vector &buf, struct packet_config *config)
1942 {
1943 return packet_ok (buf.data (), config);
1944 }
1945
1946 enum {
1947 PACKET_vCont = 0,
1948 PACKET_X,
1949 PACKET_qSymbol,
1950 PACKET_P,
1951 PACKET_p,
1952 PACKET_Z0,
1953 PACKET_Z1,
1954 PACKET_Z2,
1955 PACKET_Z3,
1956 PACKET_Z4,
1957 PACKET_vFile_setfs,
1958 PACKET_vFile_open,
1959 PACKET_vFile_pread,
1960 PACKET_vFile_pwrite,
1961 PACKET_vFile_close,
1962 PACKET_vFile_unlink,
1963 PACKET_vFile_readlink,
1964 PACKET_vFile_fstat,
1965 PACKET_qXfer_auxv,
1966 PACKET_qXfer_features,
1967 PACKET_qXfer_exec_file,
1968 PACKET_qXfer_libraries,
1969 PACKET_qXfer_libraries_svr4,
1970 PACKET_qXfer_memory_map,
1971 PACKET_qXfer_osdata,
1972 PACKET_qXfer_threads,
1973 PACKET_qXfer_statictrace_read,
1974 PACKET_qXfer_traceframe_info,
1975 PACKET_qXfer_uib,
1976 PACKET_qGetTIBAddr,
1977 PACKET_qGetTLSAddr,
1978 PACKET_qSupported,
1979 PACKET_qTStatus,
1980 PACKET_QPassSignals,
1981 PACKET_QCatchSyscalls,
1982 PACKET_QProgramSignals,
1983 PACKET_QSetWorkingDir,
1984 PACKET_QStartupWithShell,
1985 PACKET_QEnvironmentHexEncoded,
1986 PACKET_QEnvironmentReset,
1987 PACKET_QEnvironmentUnset,
1988 PACKET_qCRC,
1989 PACKET_qSearch_memory,
1990 PACKET_vAttach,
1991 PACKET_vRun,
1992 PACKET_QStartNoAckMode,
1993 PACKET_vKill,
1994 PACKET_qXfer_siginfo_read,
1995 PACKET_qXfer_siginfo_write,
1996 PACKET_qAttached,
1997
1998 /* Support for conditional tracepoints. */
1999 PACKET_ConditionalTracepoints,
2000
2001 /* Support for target-side breakpoint conditions. */
2002 PACKET_ConditionalBreakpoints,
2003
2004 /* Support for target-side breakpoint commands. */
2005 PACKET_BreakpointCommands,
2006
2007 /* Support for fast tracepoints. */
2008 PACKET_FastTracepoints,
2009
2010 /* Support for static tracepoints. */
2011 PACKET_StaticTracepoints,
2012
2013 /* Support for installing tracepoints while a trace experiment is
2014 running. */
2015 PACKET_InstallInTrace,
2016
2017 PACKET_bc,
2018 PACKET_bs,
2019 PACKET_TracepointSource,
2020 PACKET_QAllow,
2021 PACKET_qXfer_fdpic,
2022 PACKET_QDisableRandomization,
2023 PACKET_QAgent,
2024 PACKET_QTBuffer_size,
2025 PACKET_Qbtrace_off,
2026 PACKET_Qbtrace_bts,
2027 PACKET_Qbtrace_pt,
2028 PACKET_qXfer_btrace,
2029
2030 /* Support for the QNonStop packet. */
2031 PACKET_QNonStop,
2032
2033 /* Support for the QThreadEvents packet. */
2034 PACKET_QThreadEvents,
2035
2036 /* Support for multi-process extensions. */
2037 PACKET_multiprocess_feature,
2038
2039 /* Support for enabling and disabling tracepoints while a trace
2040 experiment is running. */
2041 PACKET_EnableDisableTracepoints_feature,
2042
2043 /* Support for collecting strings using the tracenz bytecode. */
2044 PACKET_tracenz_feature,
2045
2046 /* Support for continuing to run a trace experiment while GDB is
2047 disconnected. */
2048 PACKET_DisconnectedTracing_feature,
2049
2050 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
2051 PACKET_augmented_libraries_svr4_read_feature,
2052
2053 /* Support for the qXfer:btrace-conf:read packet. */
2054 PACKET_qXfer_btrace_conf,
2055
2056 /* Support for the Qbtrace-conf:bts:size packet. */
2057 PACKET_Qbtrace_conf_bts_size,
2058
2059 /* Support for swbreak+ feature. */
2060 PACKET_swbreak_feature,
2061
2062 /* Support for hwbreak+ feature. */
2063 PACKET_hwbreak_feature,
2064
2065 /* Support for fork events. */
2066 PACKET_fork_event_feature,
2067
2068 /* Support for vfork events. */
2069 PACKET_vfork_event_feature,
2070
2071 /* Support for the Qbtrace-conf:pt:size packet. */
2072 PACKET_Qbtrace_conf_pt_size,
2073
2074 /* Support for exec events. */
2075 PACKET_exec_event_feature,
2076
2077 /* Support for query supported vCont actions. */
2078 PACKET_vContSupported,
2079
2080 /* Support remote CTRL-C. */
2081 PACKET_vCtrlC,
2082
2083 /* Support TARGET_WAITKIND_NO_RESUMED. */
2084 PACKET_no_resumed,
2085
2086 PACKET_MAX
2087 };
2088
2089 static struct packet_config remote_protocol_packets[PACKET_MAX];
2090
2091 /* Returns the packet's corresponding "set remote foo-packet" command
2092 state. See struct packet_config for more details. */
2093
2094 static enum auto_boolean
2095 packet_set_cmd_state (int packet)
2096 {
2097 return remote_protocol_packets[packet].detect;
2098 }
2099
2100 /* Returns whether a given packet or feature is supported. This takes
2101 into account the state of the corresponding "set remote foo-packet"
2102 command, which may be used to bypass auto-detection. */
2103
2104 static enum packet_support
2105 packet_config_support (struct packet_config *config)
2106 {
2107 switch (config->detect)
2108 {
2109 case AUTO_BOOLEAN_TRUE:
2110 return PACKET_ENABLE;
2111 case AUTO_BOOLEAN_FALSE:
2112 return PACKET_DISABLE;
2113 case AUTO_BOOLEAN_AUTO:
2114 return config->support;
2115 default:
2116 gdb_assert_not_reached (_("bad switch"));
2117 }
2118 }
2119
2120 /* Same as packet_config_support, but takes the packet's enum value as
2121 argument. */
2122
2123 static enum packet_support
2124 packet_support (int packet)
2125 {
2126 struct packet_config *config = &remote_protocol_packets[packet];
2127
2128 return packet_config_support (config);
2129 }
2130
2131 static void
2132 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
2133 struct cmd_list_element *c,
2134 const char *value)
2135 {
2136 struct packet_config *packet;
2137
2138 for (packet = remote_protocol_packets;
2139 packet < &remote_protocol_packets[PACKET_MAX];
2140 packet++)
2141 {
2142 if (&packet->detect == c->var)
2143 {
2144 show_packet_config_cmd (packet);
2145 return;
2146 }
2147 }
2148 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
2149 c->name);
2150 }
2151
2152 /* Should we try one of the 'Z' requests? */
2153
2154 enum Z_packet_type
2155 {
2156 Z_PACKET_SOFTWARE_BP,
2157 Z_PACKET_HARDWARE_BP,
2158 Z_PACKET_WRITE_WP,
2159 Z_PACKET_READ_WP,
2160 Z_PACKET_ACCESS_WP,
2161 NR_Z_PACKET_TYPES
2162 };
2163
2164 /* For compatibility with older distributions. Provide a ``set remote
2165 Z-packet ...'' command that updates all the Z packet types. */
2166
2167 static enum auto_boolean remote_Z_packet_detect;
2168
2169 static void
2170 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
2171 struct cmd_list_element *c)
2172 {
2173 int i;
2174
2175 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2176 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
2177 }
2178
2179 static void
2180 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
2181 struct cmd_list_element *c,
2182 const char *value)
2183 {
2184 int i;
2185
2186 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2187 {
2188 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
2189 }
2190 }
2191
2192 /* Returns true if the multi-process extensions are in effect. */
2193
2194 static int
2195 remote_multi_process_p (struct remote_state *rs)
2196 {
2197 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
2198 }
2199
2200 /* Returns true if fork events are supported. */
2201
2202 static int
2203 remote_fork_event_p (struct remote_state *rs)
2204 {
2205 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
2206 }
2207
2208 /* Returns true if vfork events are supported. */
2209
2210 static int
2211 remote_vfork_event_p (struct remote_state *rs)
2212 {
2213 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
2214 }
2215
2216 /* Returns true if exec events are supported. */
2217
2218 static int
2219 remote_exec_event_p (struct remote_state *rs)
2220 {
2221 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
2222 }
2223
2224 /* Insert fork catchpoint target routine. If fork events are enabled
2225 then return success, nothing more to do. */
2226
2227 int
2228 remote_target::insert_fork_catchpoint (int pid)
2229 {
2230 struct remote_state *rs = get_remote_state ();
2231
2232 return !remote_fork_event_p (rs);
2233 }
2234
2235 /* Remove fork catchpoint target routine. Nothing to do, just
2236 return success. */
2237
2238 int
2239 remote_target::remove_fork_catchpoint (int pid)
2240 {
2241 return 0;
2242 }
2243
2244 /* Insert vfork catchpoint target routine. If vfork events are enabled
2245 then return success, nothing more to do. */
2246
2247 int
2248 remote_target::insert_vfork_catchpoint (int pid)
2249 {
2250 struct remote_state *rs = get_remote_state ();
2251
2252 return !remote_vfork_event_p (rs);
2253 }
2254
2255 /* Remove vfork catchpoint target routine. Nothing to do, just
2256 return success. */
2257
2258 int
2259 remote_target::remove_vfork_catchpoint (int pid)
2260 {
2261 return 0;
2262 }
2263
2264 /* Insert exec catchpoint target routine. If exec events are
2265 enabled, just return success. */
2266
2267 int
2268 remote_target::insert_exec_catchpoint (int pid)
2269 {
2270 struct remote_state *rs = get_remote_state ();
2271
2272 return !remote_exec_event_p (rs);
2273 }
2274
2275 /* Remove exec catchpoint target routine. Nothing to do, just
2276 return success. */
2277
2278 int
2279 remote_target::remove_exec_catchpoint (int pid)
2280 {
2281 return 0;
2282 }
2283
2284 \f
2285
2286 /* Take advantage of the fact that the TID field is not used, to tag
2287 special ptids with it set to != 0. */
2288 static const ptid_t magic_null_ptid (42000, -1, 1);
2289 static const ptid_t not_sent_ptid (42000, -2, 1);
2290 static const ptid_t any_thread_ptid (42000, 0, 1);
2291
2292 /* Find out if the stub attached to PID (and hence GDB should offer to
2293 detach instead of killing it when bailing out). */
2294
2295 int
2296 remote_target::remote_query_attached (int pid)
2297 {
2298 struct remote_state *rs = get_remote_state ();
2299 size_t size = get_remote_packet_size ();
2300
2301 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2302 return 0;
2303
2304 if (remote_multi_process_p (rs))
2305 xsnprintf (rs->buf.data (), size, "qAttached:%x", pid);
2306 else
2307 xsnprintf (rs->buf.data (), size, "qAttached");
2308
2309 putpkt (rs->buf);
2310 getpkt (&rs->buf, 0);
2311
2312 switch (packet_ok (rs->buf,
2313 &remote_protocol_packets[PACKET_qAttached]))
2314 {
2315 case PACKET_OK:
2316 if (strcmp (rs->buf.data (), "1") == 0)
2317 return 1;
2318 break;
2319 case PACKET_ERROR:
2320 warning (_("Remote failure reply: %s"), rs->buf.data ());
2321 break;
2322 case PACKET_UNKNOWN:
2323 break;
2324 }
2325
2326 return 0;
2327 }
2328
2329 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2330 has been invented by GDB, instead of reported by the target. Since
2331 we can be connected to a remote system before before knowing about
2332 any inferior, mark the target with execution when we find the first
2333 inferior. If ATTACHED is 1, then we had just attached to this
2334 inferior. If it is 0, then we just created this inferior. If it
2335 is -1, then try querying the remote stub to find out if it had
2336 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2337 attempt to open this inferior's executable as the main executable
2338 if no main executable is open already. */
2339
2340 inferior *
2341 remote_target::remote_add_inferior (bool fake_pid_p, int pid, int attached,
2342 int try_open_exec)
2343 {
2344 struct inferior *inf;
2345
2346 /* Check whether this process we're learning about is to be
2347 considered attached, or if is to be considered to have been
2348 spawned by the stub. */
2349 if (attached == -1)
2350 attached = remote_query_attached (pid);
2351
2352 if (gdbarch_has_global_solist (target_gdbarch ()))
2353 {
2354 /* If the target shares code across all inferiors, then every
2355 attach adds a new inferior. */
2356 inf = add_inferior (pid);
2357
2358 /* ... and every inferior is bound to the same program space.
2359 However, each inferior may still have its own address
2360 space. */
2361 inf->aspace = maybe_new_address_space ();
2362 inf->pspace = current_program_space;
2363 }
2364 else
2365 {
2366 /* In the traditional debugging scenario, there's a 1-1 match
2367 between program/address spaces. We simply bind the inferior
2368 to the program space's address space. */
2369 inf = current_inferior ();
2370 inferior_appeared (inf, pid);
2371 }
2372
2373 inf->attach_flag = attached;
2374 inf->fake_pid_p = fake_pid_p;
2375
2376 /* If no main executable is currently open then attempt to
2377 open the file that was executed to create this inferior. */
2378 if (try_open_exec && get_exec_file (0) == NULL)
2379 exec_file_locate_attach (pid, 0, 1);
2380
2381 return inf;
2382 }
2383
2384 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2385 static remote_thread_info *get_remote_thread_info (ptid_t ptid);
2386
2387 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2388 according to RUNNING. */
2389
2390 thread_info *
2391 remote_target::remote_add_thread (ptid_t ptid, bool running, bool executing)
2392 {
2393 struct remote_state *rs = get_remote_state ();
2394 struct thread_info *thread;
2395
2396 /* GDB historically didn't pull threads in the initial connection
2397 setup. If the remote target doesn't even have a concept of
2398 threads (e.g., a bare-metal target), even if internally we
2399 consider that a single-threaded target, mentioning a new thread
2400 might be confusing to the user. Be silent then, preserving the
2401 age old behavior. */
2402 if (rs->starting_up)
2403 thread = add_thread_silent (ptid);
2404 else
2405 thread = add_thread (ptid);
2406
2407 get_remote_thread_info (thread)->vcont_resumed = executing;
2408 set_executing (ptid, executing);
2409 set_running (ptid, running);
2410
2411 return thread;
2412 }
2413
2414 /* Come here when we learn about a thread id from the remote target.
2415 It may be the first time we hear about such thread, so take the
2416 opportunity to add it to GDB's thread list. In case this is the
2417 first time we're noticing its corresponding inferior, add it to
2418 GDB's inferior list as well. EXECUTING indicates whether the
2419 thread is (internally) executing or stopped. */
2420
2421 void
2422 remote_target::remote_notice_new_inferior (ptid_t currthread, int executing)
2423 {
2424 /* In non-stop mode, we assume new found threads are (externally)
2425 running until proven otherwise with a stop reply. In all-stop,
2426 we can only get here if all threads are stopped. */
2427 int running = target_is_non_stop_p () ? 1 : 0;
2428
2429 /* If this is a new thread, add it to GDB's thread list.
2430 If we leave it up to WFI to do this, bad things will happen. */
2431
2432 thread_info *tp = find_thread_ptid (currthread);
2433 if (tp != NULL && tp->state == THREAD_EXITED)
2434 {
2435 /* We're seeing an event on a thread id we knew had exited.
2436 This has to be a new thread reusing the old id. Add it. */
2437 remote_add_thread (currthread, running, executing);
2438 return;
2439 }
2440
2441 if (!in_thread_list (currthread))
2442 {
2443 struct inferior *inf = NULL;
2444 int pid = currthread.pid ();
2445
2446 if (inferior_ptid.is_pid ()
2447 && pid == inferior_ptid.pid ())
2448 {
2449 /* inferior_ptid has no thread member yet. This can happen
2450 with the vAttach -> remote_wait,"TAAthread:" path if the
2451 stub doesn't support qC. This is the first stop reported
2452 after an attach, so this is the main thread. Update the
2453 ptid in the thread list. */
2454 if (in_thread_list (ptid_t (pid)))
2455 thread_change_ptid (inferior_ptid, currthread);
2456 else
2457 {
2458 remote_add_thread (currthread, running, executing);
2459 inferior_ptid = currthread;
2460 }
2461 return;
2462 }
2463
2464 if (magic_null_ptid == inferior_ptid)
2465 {
2466 /* inferior_ptid is not set yet. This can happen with the
2467 vRun -> remote_wait,"TAAthread:" path if the stub
2468 doesn't support qC. This is the first stop reported
2469 after an attach, so this is the main thread. Update the
2470 ptid in the thread list. */
2471 thread_change_ptid (inferior_ptid, currthread);
2472 return;
2473 }
2474
2475 /* When connecting to a target remote, or to a target
2476 extended-remote which already was debugging an inferior, we
2477 may not know about it yet. Add it before adding its child
2478 thread, so notifications are emitted in a sensible order. */
2479 if (find_inferior_pid (currthread.pid ()) == NULL)
2480 {
2481 struct remote_state *rs = get_remote_state ();
2482 bool fake_pid_p = !remote_multi_process_p (rs);
2483
2484 inf = remote_add_inferior (fake_pid_p,
2485 currthread.pid (), -1, 1);
2486 }
2487
2488 /* This is really a new thread. Add it. */
2489 thread_info *new_thr
2490 = remote_add_thread (currthread, running, executing);
2491
2492 /* If we found a new inferior, let the common code do whatever
2493 it needs to with it (e.g., read shared libraries, insert
2494 breakpoints), unless we're just setting up an all-stop
2495 connection. */
2496 if (inf != NULL)
2497 {
2498 struct remote_state *rs = get_remote_state ();
2499
2500 if (!rs->starting_up)
2501 notice_new_inferior (new_thr, executing, 0);
2502 }
2503 }
2504 }
2505
2506 /* Return THREAD's private thread data, creating it if necessary. */
2507
2508 static remote_thread_info *
2509 get_remote_thread_info (thread_info *thread)
2510 {
2511 gdb_assert (thread != NULL);
2512
2513 if (thread->priv == NULL)
2514 thread->priv.reset (new remote_thread_info);
2515
2516 return static_cast<remote_thread_info *> (thread->priv.get ());
2517 }
2518
2519 static remote_thread_info *
2520 get_remote_thread_info (ptid_t ptid)
2521 {
2522 thread_info *thr = find_thread_ptid (ptid);
2523 return get_remote_thread_info (thr);
2524 }
2525
2526 /* Call this function as a result of
2527 1) A halt indication (T packet) containing a thread id
2528 2) A direct query of currthread
2529 3) Successful execution of set thread */
2530
2531 static void
2532 record_currthread (struct remote_state *rs, ptid_t currthread)
2533 {
2534 rs->general_thread = currthread;
2535 }
2536
2537 /* If 'QPassSignals' is supported, tell the remote stub what signals
2538 it can simply pass through to the inferior without reporting. */
2539
2540 void
2541 remote_target::pass_signals (gdb::array_view<const unsigned char> pass_signals)
2542 {
2543 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2544 {
2545 char *pass_packet, *p;
2546 int count = 0;
2547 struct remote_state *rs = get_remote_state ();
2548
2549 gdb_assert (pass_signals.size () < 256);
2550 for (size_t i = 0; i < pass_signals.size (); i++)
2551 {
2552 if (pass_signals[i])
2553 count++;
2554 }
2555 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2556 strcpy (pass_packet, "QPassSignals:");
2557 p = pass_packet + strlen (pass_packet);
2558 for (size_t i = 0; i < pass_signals.size (); i++)
2559 {
2560 if (pass_signals[i])
2561 {
2562 if (i >= 16)
2563 *p++ = tohex (i >> 4);
2564 *p++ = tohex (i & 15);
2565 if (count)
2566 *p++ = ';';
2567 else
2568 break;
2569 count--;
2570 }
2571 }
2572 *p = 0;
2573 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2574 {
2575 putpkt (pass_packet);
2576 getpkt (&rs->buf, 0);
2577 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2578 if (rs->last_pass_packet)
2579 xfree (rs->last_pass_packet);
2580 rs->last_pass_packet = pass_packet;
2581 }
2582 else
2583 xfree (pass_packet);
2584 }
2585 }
2586
2587 /* If 'QCatchSyscalls' is supported, tell the remote stub
2588 to report syscalls to GDB. */
2589
2590 int
2591 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2592 gdb::array_view<const int> syscall_counts)
2593 {
2594 const char *catch_packet;
2595 enum packet_result result;
2596 int n_sysno = 0;
2597
2598 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2599 {
2600 /* Not supported. */
2601 return 1;
2602 }
2603
2604 if (needed && any_count == 0)
2605 {
2606 /* Count how many syscalls are to be caught. */
2607 for (size_t i = 0; i < syscall_counts.size (); i++)
2608 {
2609 if (syscall_counts[i] != 0)
2610 n_sysno++;
2611 }
2612 }
2613
2614 if (remote_debug)
2615 {
2616 fprintf_unfiltered (gdb_stdlog,
2617 "remote_set_syscall_catchpoint "
2618 "pid %d needed %d any_count %d n_sysno %d\n",
2619 pid, needed, any_count, n_sysno);
2620 }
2621
2622 std::string built_packet;
2623 if (needed)
2624 {
2625 /* Prepare a packet with the sysno list, assuming max 8+1
2626 characters for a sysno. If the resulting packet size is too
2627 big, fallback on the non-selective packet. */
2628 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2629 built_packet.reserve (maxpktsz);
2630 built_packet = "QCatchSyscalls:1";
2631 if (any_count == 0)
2632 {
2633 /* Add in each syscall to be caught. */
2634 for (size_t i = 0; i < syscall_counts.size (); i++)
2635 {
2636 if (syscall_counts[i] != 0)
2637 string_appendf (built_packet, ";%zx", i);
2638 }
2639 }
2640 if (built_packet.size () > get_remote_packet_size ())
2641 {
2642 /* catch_packet too big. Fallback to less efficient
2643 non selective mode, with GDB doing the filtering. */
2644 catch_packet = "QCatchSyscalls:1";
2645 }
2646 else
2647 catch_packet = built_packet.c_str ();
2648 }
2649 else
2650 catch_packet = "QCatchSyscalls:0";
2651
2652 struct remote_state *rs = get_remote_state ();
2653
2654 putpkt (catch_packet);
2655 getpkt (&rs->buf, 0);
2656 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2657 if (result == PACKET_OK)
2658 return 0;
2659 else
2660 return -1;
2661 }
2662
2663 /* If 'QProgramSignals' is supported, tell the remote stub what
2664 signals it should pass through to the inferior when detaching. */
2665
2666 void
2667 remote_target::program_signals (gdb::array_view<const unsigned char> signals)
2668 {
2669 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2670 {
2671 char *packet, *p;
2672 int count = 0;
2673 struct remote_state *rs = get_remote_state ();
2674
2675 gdb_assert (signals.size () < 256);
2676 for (size_t i = 0; i < signals.size (); i++)
2677 {
2678 if (signals[i])
2679 count++;
2680 }
2681 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2682 strcpy (packet, "QProgramSignals:");
2683 p = packet + strlen (packet);
2684 for (size_t i = 0; i < signals.size (); i++)
2685 {
2686 if (signal_pass_state (i))
2687 {
2688 if (i >= 16)
2689 *p++ = tohex (i >> 4);
2690 *p++ = tohex (i & 15);
2691 if (count)
2692 *p++ = ';';
2693 else
2694 break;
2695 count--;
2696 }
2697 }
2698 *p = 0;
2699 if (!rs->last_program_signals_packet
2700 || strcmp (rs->last_program_signals_packet, packet) != 0)
2701 {
2702 putpkt (packet);
2703 getpkt (&rs->buf, 0);
2704 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2705 xfree (rs->last_program_signals_packet);
2706 rs->last_program_signals_packet = packet;
2707 }
2708 else
2709 xfree (packet);
2710 }
2711 }
2712
2713 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2714 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2715 thread. If GEN is set, set the general thread, if not, then set
2716 the step/continue thread. */
2717 void
2718 remote_target::set_thread (ptid_t ptid, int gen)
2719 {
2720 struct remote_state *rs = get_remote_state ();
2721 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2722 char *buf = rs->buf.data ();
2723 char *endbuf = buf + get_remote_packet_size ();
2724
2725 if (state == ptid)
2726 return;
2727
2728 *buf++ = 'H';
2729 *buf++ = gen ? 'g' : 'c';
2730 if (ptid == magic_null_ptid)
2731 xsnprintf (buf, endbuf - buf, "0");
2732 else if (ptid == any_thread_ptid)
2733 xsnprintf (buf, endbuf - buf, "0");
2734 else if (ptid == minus_one_ptid)
2735 xsnprintf (buf, endbuf - buf, "-1");
2736 else
2737 write_ptid (buf, endbuf, ptid);
2738 putpkt (rs->buf);
2739 getpkt (&rs->buf, 0);
2740 if (gen)
2741 rs->general_thread = ptid;
2742 else
2743 rs->continue_thread = ptid;
2744 }
2745
2746 void
2747 remote_target::set_general_thread (ptid_t ptid)
2748 {
2749 set_thread (ptid, 1);
2750 }
2751
2752 void
2753 remote_target::set_continue_thread (ptid_t ptid)
2754 {
2755 set_thread (ptid, 0);
2756 }
2757
2758 /* Change the remote current process. Which thread within the process
2759 ends up selected isn't important, as long as it is the same process
2760 as what INFERIOR_PTID points to.
2761
2762 This comes from that fact that there is no explicit notion of
2763 "selected process" in the protocol. The selected process for
2764 general operations is the process the selected general thread
2765 belongs to. */
2766
2767 void
2768 remote_target::set_general_process ()
2769 {
2770 struct remote_state *rs = get_remote_state ();
2771
2772 /* If the remote can't handle multiple processes, don't bother. */
2773 if (!remote_multi_process_p (rs))
2774 return;
2775
2776 /* We only need to change the remote current thread if it's pointing
2777 at some other process. */
2778 if (rs->general_thread.pid () != inferior_ptid.pid ())
2779 set_general_thread (inferior_ptid);
2780 }
2781
2782 \f
2783 /* Return nonzero if this is the main thread that we made up ourselves
2784 to model non-threaded targets as single-threaded. */
2785
2786 static int
2787 remote_thread_always_alive (ptid_t ptid)
2788 {
2789 if (ptid == magic_null_ptid)
2790 /* The main thread is always alive. */
2791 return 1;
2792
2793 if (ptid.pid () != 0 && ptid.lwp () == 0)
2794 /* The main thread is always alive. This can happen after a
2795 vAttach, if the remote side doesn't support
2796 multi-threading. */
2797 return 1;
2798
2799 return 0;
2800 }
2801
2802 /* Return nonzero if the thread PTID is still alive on the remote
2803 system. */
2804
2805 bool
2806 remote_target::thread_alive (ptid_t ptid)
2807 {
2808 struct remote_state *rs = get_remote_state ();
2809 char *p, *endp;
2810
2811 /* Check if this is a thread that we made up ourselves to model
2812 non-threaded targets as single-threaded. */
2813 if (remote_thread_always_alive (ptid))
2814 return 1;
2815
2816 p = rs->buf.data ();
2817 endp = p + get_remote_packet_size ();
2818
2819 *p++ = 'T';
2820 write_ptid (p, endp, ptid);
2821
2822 putpkt (rs->buf);
2823 getpkt (&rs->buf, 0);
2824 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2825 }
2826
2827 /* Return a pointer to a thread name if we know it and NULL otherwise.
2828 The thread_info object owns the memory for the name. */
2829
2830 const char *
2831 remote_target::thread_name (struct thread_info *info)
2832 {
2833 if (info->priv != NULL)
2834 {
2835 const std::string &name = get_remote_thread_info (info)->name;
2836 return !name.empty () ? name.c_str () : NULL;
2837 }
2838
2839 return NULL;
2840 }
2841
2842 /* About these extended threadlist and threadinfo packets. They are
2843 variable length packets but, the fields within them are often fixed
2844 length. They are redundant enough to send over UDP as is the
2845 remote protocol in general. There is a matching unit test module
2846 in libstub. */
2847
2848 /* WARNING: This threadref data structure comes from the remote O.S.,
2849 libstub protocol encoding, and remote.c. It is not particularly
2850 changable. */
2851
2852 /* Right now, the internal structure is int. We want it to be bigger.
2853 Plan to fix this. */
2854
2855 typedef int gdb_threadref; /* Internal GDB thread reference. */
2856
2857 /* gdb_ext_thread_info is an internal GDB data structure which is
2858 equivalent to the reply of the remote threadinfo packet. */
2859
2860 struct gdb_ext_thread_info
2861 {
2862 threadref threadid; /* External form of thread reference. */
2863 int active; /* Has state interesting to GDB?
2864 regs, stack. */
2865 char display[256]; /* Brief state display, name,
2866 blocked/suspended. */
2867 char shortname[32]; /* To be used to name threads. */
2868 char more_display[256]; /* Long info, statistics, queue depth,
2869 whatever. */
2870 };
2871
2872 /* The volume of remote transfers can be limited by submitting
2873 a mask containing bits specifying the desired information.
2874 Use a union of these values as the 'selection' parameter to
2875 get_thread_info. FIXME: Make these TAG names more thread specific. */
2876
2877 #define TAG_THREADID 1
2878 #define TAG_EXISTS 2
2879 #define TAG_DISPLAY 4
2880 #define TAG_THREADNAME 8
2881 #define TAG_MOREDISPLAY 16
2882
2883 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2884
2885 static char *unpack_nibble (char *buf, int *val);
2886
2887 static char *unpack_byte (char *buf, int *value);
2888
2889 static char *pack_int (char *buf, int value);
2890
2891 static char *unpack_int (char *buf, int *value);
2892
2893 static char *unpack_string (char *src, char *dest, int length);
2894
2895 static char *pack_threadid (char *pkt, threadref *id);
2896
2897 static char *unpack_threadid (char *inbuf, threadref *id);
2898
2899 void int_to_threadref (threadref *id, int value);
2900
2901 static int threadref_to_int (threadref *ref);
2902
2903 static void copy_threadref (threadref *dest, threadref *src);
2904
2905 static int threadmatch (threadref *dest, threadref *src);
2906
2907 static char *pack_threadinfo_request (char *pkt, int mode,
2908 threadref *id);
2909
2910 static char *pack_threadlist_request (char *pkt, int startflag,
2911 int threadcount,
2912 threadref *nextthread);
2913
2914 static int remote_newthread_step (threadref *ref, void *context);
2915
2916
2917 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2918 buffer we're allowed to write to. Returns
2919 BUF+CHARACTERS_WRITTEN. */
2920
2921 char *
2922 remote_target::write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2923 {
2924 int pid, tid;
2925 struct remote_state *rs = get_remote_state ();
2926
2927 if (remote_multi_process_p (rs))
2928 {
2929 pid = ptid.pid ();
2930 if (pid < 0)
2931 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2932 else
2933 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2934 }
2935 tid = ptid.lwp ();
2936 if (tid < 0)
2937 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2938 else
2939 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2940
2941 return buf;
2942 }
2943
2944 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
2945 last parsed char. Returns null_ptid if no thread id is found, and
2946 throws an error if the thread id has an invalid format. */
2947
2948 static ptid_t
2949 read_ptid (const char *buf, const char **obuf)
2950 {
2951 const char *p = buf;
2952 const char *pp;
2953 ULONGEST pid = 0, tid = 0;
2954
2955 if (*p == 'p')
2956 {
2957 /* Multi-process ptid. */
2958 pp = unpack_varlen_hex (p + 1, &pid);
2959 if (*pp != '.')
2960 error (_("invalid remote ptid: %s"), p);
2961
2962 p = pp;
2963 pp = unpack_varlen_hex (p + 1, &tid);
2964 if (obuf)
2965 *obuf = pp;
2966 return ptid_t (pid, tid, 0);
2967 }
2968
2969 /* No multi-process. Just a tid. */
2970 pp = unpack_varlen_hex (p, &tid);
2971
2972 /* Return null_ptid when no thread id is found. */
2973 if (p == pp)
2974 {
2975 if (obuf)
2976 *obuf = pp;
2977 return null_ptid;
2978 }
2979
2980 /* Since the stub is not sending a process id, then default to
2981 what's in inferior_ptid, unless it's null at this point. If so,
2982 then since there's no way to know the pid of the reported
2983 threads, use the magic number. */
2984 if (inferior_ptid == null_ptid)
2985 pid = magic_null_ptid.pid ();
2986 else
2987 pid = inferior_ptid.pid ();
2988
2989 if (obuf)
2990 *obuf = pp;
2991 return ptid_t (pid, tid, 0);
2992 }
2993
2994 static int
2995 stubhex (int ch)
2996 {
2997 if (ch >= 'a' && ch <= 'f')
2998 return ch - 'a' + 10;
2999 if (ch >= '0' && ch <= '9')
3000 return ch - '0';
3001 if (ch >= 'A' && ch <= 'F')
3002 return ch - 'A' + 10;
3003 return -1;
3004 }
3005
3006 static int
3007 stub_unpack_int (char *buff, int fieldlength)
3008 {
3009 int nibble;
3010 int retval = 0;
3011
3012 while (fieldlength)
3013 {
3014 nibble = stubhex (*buff++);
3015 retval |= nibble;
3016 fieldlength--;
3017 if (fieldlength)
3018 retval = retval << 4;
3019 }
3020 return retval;
3021 }
3022
3023 static char *
3024 unpack_nibble (char *buf, int *val)
3025 {
3026 *val = fromhex (*buf++);
3027 return buf;
3028 }
3029
3030 static char *
3031 unpack_byte (char *buf, int *value)
3032 {
3033 *value = stub_unpack_int (buf, 2);
3034 return buf + 2;
3035 }
3036
3037 static char *
3038 pack_int (char *buf, int value)
3039 {
3040 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
3041 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
3042 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
3043 buf = pack_hex_byte (buf, (value & 0xff));
3044 return buf;
3045 }
3046
3047 static char *
3048 unpack_int (char *buf, int *value)
3049 {
3050 *value = stub_unpack_int (buf, 8);
3051 return buf + 8;
3052 }
3053
3054 #if 0 /* Currently unused, uncomment when needed. */
3055 static char *pack_string (char *pkt, char *string);
3056
3057 static char *
3058 pack_string (char *pkt, char *string)
3059 {
3060 char ch;
3061 int len;
3062
3063 len = strlen (string);
3064 if (len > 200)
3065 len = 200; /* Bigger than most GDB packets, junk??? */
3066 pkt = pack_hex_byte (pkt, len);
3067 while (len-- > 0)
3068 {
3069 ch = *string++;
3070 if ((ch == '\0') || (ch == '#'))
3071 ch = '*'; /* Protect encapsulation. */
3072 *pkt++ = ch;
3073 }
3074 return pkt;
3075 }
3076 #endif /* 0 (unused) */
3077
3078 static char *
3079 unpack_string (char *src, char *dest, int length)
3080 {
3081 while (length--)
3082 *dest++ = *src++;
3083 *dest = '\0';
3084 return src;
3085 }
3086
3087 static char *
3088 pack_threadid (char *pkt, threadref *id)
3089 {
3090 char *limit;
3091 unsigned char *altid;
3092
3093 altid = (unsigned char *) id;
3094 limit = pkt + BUF_THREAD_ID_SIZE;
3095 while (pkt < limit)
3096 pkt = pack_hex_byte (pkt, *altid++);
3097 return pkt;
3098 }
3099
3100
3101 static char *
3102 unpack_threadid (char *inbuf, threadref *id)
3103 {
3104 char *altref;
3105 char *limit = inbuf + BUF_THREAD_ID_SIZE;
3106 int x, y;
3107
3108 altref = (char *) id;
3109
3110 while (inbuf < limit)
3111 {
3112 x = stubhex (*inbuf++);
3113 y = stubhex (*inbuf++);
3114 *altref++ = (x << 4) | y;
3115 }
3116 return inbuf;
3117 }
3118
3119 /* Externally, threadrefs are 64 bits but internally, they are still
3120 ints. This is due to a mismatch of specifications. We would like
3121 to use 64bit thread references internally. This is an adapter
3122 function. */
3123
3124 void
3125 int_to_threadref (threadref *id, int value)
3126 {
3127 unsigned char *scan;
3128
3129 scan = (unsigned char *) id;
3130 {
3131 int i = 4;
3132 while (i--)
3133 *scan++ = 0;
3134 }
3135 *scan++ = (value >> 24) & 0xff;
3136 *scan++ = (value >> 16) & 0xff;
3137 *scan++ = (value >> 8) & 0xff;
3138 *scan++ = (value & 0xff);
3139 }
3140
3141 static int
3142 threadref_to_int (threadref *ref)
3143 {
3144 int i, value = 0;
3145 unsigned char *scan;
3146
3147 scan = *ref;
3148 scan += 4;
3149 i = 4;
3150 while (i-- > 0)
3151 value = (value << 8) | ((*scan++) & 0xff);
3152 return value;
3153 }
3154
3155 static void
3156 copy_threadref (threadref *dest, threadref *src)
3157 {
3158 int i;
3159 unsigned char *csrc, *cdest;
3160
3161 csrc = (unsigned char *) src;
3162 cdest = (unsigned char *) dest;
3163 i = 8;
3164 while (i--)
3165 *cdest++ = *csrc++;
3166 }
3167
3168 static int
3169 threadmatch (threadref *dest, threadref *src)
3170 {
3171 /* Things are broken right now, so just assume we got a match. */
3172 #if 0
3173 unsigned char *srcp, *destp;
3174 int i, result;
3175 srcp = (char *) src;
3176 destp = (char *) dest;
3177
3178 result = 1;
3179 while (i-- > 0)
3180 result &= (*srcp++ == *destp++) ? 1 : 0;
3181 return result;
3182 #endif
3183 return 1;
3184 }
3185
3186 /*
3187 threadid:1, # always request threadid
3188 context_exists:2,
3189 display:4,
3190 unique_name:8,
3191 more_display:16
3192 */
3193
3194 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
3195
3196 static char *
3197 pack_threadinfo_request (char *pkt, int mode, threadref *id)
3198 {
3199 *pkt++ = 'q'; /* Info Query */
3200 *pkt++ = 'P'; /* process or thread info */
3201 pkt = pack_int (pkt, mode); /* mode */
3202 pkt = pack_threadid (pkt, id); /* threadid */
3203 *pkt = '\0'; /* terminate */
3204 return pkt;
3205 }
3206
3207 /* These values tag the fields in a thread info response packet. */
3208 /* Tagging the fields allows us to request specific fields and to
3209 add more fields as time goes by. */
3210
3211 #define TAG_THREADID 1 /* Echo the thread identifier. */
3212 #define TAG_EXISTS 2 /* Is this process defined enough to
3213 fetch registers and its stack? */
3214 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
3215 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
3216 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
3217 the process. */
3218
3219 int
3220 remote_target::remote_unpack_thread_info_response (char *pkt,
3221 threadref *expectedref,
3222 gdb_ext_thread_info *info)
3223 {
3224 struct remote_state *rs = get_remote_state ();
3225 int mask, length;
3226 int tag;
3227 threadref ref;
3228 char *limit = pkt + rs->buf.size (); /* Plausible parsing limit. */
3229 int retval = 1;
3230
3231 /* info->threadid = 0; FIXME: implement zero_threadref. */
3232 info->active = 0;
3233 info->display[0] = '\0';
3234 info->shortname[0] = '\0';
3235 info->more_display[0] = '\0';
3236
3237 /* Assume the characters indicating the packet type have been
3238 stripped. */
3239 pkt = unpack_int (pkt, &mask); /* arg mask */
3240 pkt = unpack_threadid (pkt, &ref);
3241
3242 if (mask == 0)
3243 warning (_("Incomplete response to threadinfo request."));
3244 if (!threadmatch (&ref, expectedref))
3245 { /* This is an answer to a different request. */
3246 warning (_("ERROR RMT Thread info mismatch."));
3247 return 0;
3248 }
3249 copy_threadref (&info->threadid, &ref);
3250
3251 /* Loop on tagged fields , try to bail if something goes wrong. */
3252
3253 /* Packets are terminated with nulls. */
3254 while ((pkt < limit) && mask && *pkt)
3255 {
3256 pkt = unpack_int (pkt, &tag); /* tag */
3257 pkt = unpack_byte (pkt, &length); /* length */
3258 if (!(tag & mask)) /* Tags out of synch with mask. */
3259 {
3260 warning (_("ERROR RMT: threadinfo tag mismatch."));
3261 retval = 0;
3262 break;
3263 }
3264 if (tag == TAG_THREADID)
3265 {
3266 if (length != 16)
3267 {
3268 warning (_("ERROR RMT: length of threadid is not 16."));
3269 retval = 0;
3270 break;
3271 }
3272 pkt = unpack_threadid (pkt, &ref);
3273 mask = mask & ~TAG_THREADID;
3274 continue;
3275 }
3276 if (tag == TAG_EXISTS)
3277 {
3278 info->active = stub_unpack_int (pkt, length);
3279 pkt += length;
3280 mask = mask & ~(TAG_EXISTS);
3281 if (length > 8)
3282 {
3283 warning (_("ERROR RMT: 'exists' length too long."));
3284 retval = 0;
3285 break;
3286 }
3287 continue;
3288 }
3289 if (tag == TAG_THREADNAME)
3290 {
3291 pkt = unpack_string (pkt, &info->shortname[0], length);
3292 mask = mask & ~TAG_THREADNAME;
3293 continue;
3294 }
3295 if (tag == TAG_DISPLAY)
3296 {
3297 pkt = unpack_string (pkt, &info->display[0], length);
3298 mask = mask & ~TAG_DISPLAY;
3299 continue;
3300 }
3301 if (tag == TAG_MOREDISPLAY)
3302 {
3303 pkt = unpack_string (pkt, &info->more_display[0], length);
3304 mask = mask & ~TAG_MOREDISPLAY;
3305 continue;
3306 }
3307 warning (_("ERROR RMT: unknown thread info tag."));
3308 break; /* Not a tag we know about. */
3309 }
3310 return retval;
3311 }
3312
3313 int
3314 remote_target::remote_get_threadinfo (threadref *threadid,
3315 int fieldset,
3316 gdb_ext_thread_info *info)
3317 {
3318 struct remote_state *rs = get_remote_state ();
3319 int result;
3320
3321 pack_threadinfo_request (rs->buf.data (), fieldset, threadid);
3322 putpkt (rs->buf);
3323 getpkt (&rs->buf, 0);
3324
3325 if (rs->buf[0] == '\0')
3326 return 0;
3327
3328 result = remote_unpack_thread_info_response (&rs->buf[2],
3329 threadid, info);
3330 return result;
3331 }
3332
3333 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3334
3335 static char *
3336 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3337 threadref *nextthread)
3338 {
3339 *pkt++ = 'q'; /* info query packet */
3340 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3341 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3342 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3343 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3344 *pkt = '\0';
3345 return pkt;
3346 }
3347
3348 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3349
3350 int
3351 remote_target::parse_threadlist_response (char *pkt, int result_limit,
3352 threadref *original_echo,
3353 threadref *resultlist,
3354 int *doneflag)
3355 {
3356 struct remote_state *rs = get_remote_state ();
3357 char *limit;
3358 int count, resultcount, done;
3359
3360 resultcount = 0;
3361 /* Assume the 'q' and 'M chars have been stripped. */
3362 limit = pkt + (rs->buf.size () - BUF_THREAD_ID_SIZE);
3363 /* done parse past here */
3364 pkt = unpack_byte (pkt, &count); /* count field */
3365 pkt = unpack_nibble (pkt, &done);
3366 /* The first threadid is the argument threadid. */
3367 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3368 while ((count-- > 0) && (pkt < limit))
3369 {
3370 pkt = unpack_threadid (pkt, resultlist++);
3371 if (resultcount++ >= result_limit)
3372 break;
3373 }
3374 if (doneflag)
3375 *doneflag = done;
3376 return resultcount;
3377 }
3378
3379 /* Fetch the next batch of threads from the remote. Returns -1 if the
3380 qL packet is not supported, 0 on error and 1 on success. */
3381
3382 int
3383 remote_target::remote_get_threadlist (int startflag, threadref *nextthread,
3384 int result_limit, int *done, int *result_count,
3385 threadref *threadlist)
3386 {
3387 struct remote_state *rs = get_remote_state ();
3388 int result = 1;
3389
3390 /* Truncate result limit to be smaller than the packet size. */
3391 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3392 >= get_remote_packet_size ())
3393 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3394
3395 pack_threadlist_request (rs->buf.data (), startflag, result_limit,
3396 nextthread);
3397 putpkt (rs->buf);
3398 getpkt (&rs->buf, 0);
3399 if (rs->buf[0] == '\0')
3400 {
3401 /* Packet not supported. */
3402 return -1;
3403 }
3404
3405 *result_count =
3406 parse_threadlist_response (&rs->buf[2], result_limit,
3407 &rs->echo_nextthread, threadlist, done);
3408
3409 if (!threadmatch (&rs->echo_nextthread, nextthread))
3410 {
3411 /* FIXME: This is a good reason to drop the packet. */
3412 /* Possibly, there is a duplicate response. */
3413 /* Possibilities :
3414 retransmit immediatly - race conditions
3415 retransmit after timeout - yes
3416 exit
3417 wait for packet, then exit
3418 */
3419 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3420 return 0; /* I choose simply exiting. */
3421 }
3422 if (*result_count <= 0)
3423 {
3424 if (*done != 1)
3425 {
3426 warning (_("RMT ERROR : failed to get remote thread list."));
3427 result = 0;
3428 }
3429 return result; /* break; */
3430 }
3431 if (*result_count > result_limit)
3432 {
3433 *result_count = 0;
3434 warning (_("RMT ERROR: threadlist response longer than requested."));
3435 return 0;
3436 }
3437 return result;
3438 }
3439
3440 /* Fetch the list of remote threads, with the qL packet, and call
3441 STEPFUNCTION for each thread found. Stops iterating and returns 1
3442 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3443 STEPFUNCTION returns false. If the packet is not supported,
3444 returns -1. */
3445
3446 int
3447 remote_target::remote_threadlist_iterator (rmt_thread_action stepfunction,
3448 void *context, int looplimit)
3449 {
3450 struct remote_state *rs = get_remote_state ();
3451 int done, i, result_count;
3452 int startflag = 1;
3453 int result = 1;
3454 int loopcount = 0;
3455
3456 done = 0;
3457 while (!done)
3458 {
3459 if (loopcount++ > looplimit)
3460 {
3461 result = 0;
3462 warning (_("Remote fetch threadlist -infinite loop-."));
3463 break;
3464 }
3465 result = remote_get_threadlist (startflag, &rs->nextthread,
3466 MAXTHREADLISTRESULTS,
3467 &done, &result_count,
3468 rs->resultthreadlist);
3469 if (result <= 0)
3470 break;
3471 /* Clear for later iterations. */
3472 startflag = 0;
3473 /* Setup to resume next batch of thread references, set nextthread. */
3474 if (result_count >= 1)
3475 copy_threadref (&rs->nextthread,
3476 &rs->resultthreadlist[result_count - 1]);
3477 i = 0;
3478 while (result_count--)
3479 {
3480 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3481 {
3482 result = 0;
3483 break;
3484 }
3485 }
3486 }
3487 return result;
3488 }
3489
3490 /* A thread found on the remote target. */
3491
3492 struct thread_item
3493 {
3494 explicit thread_item (ptid_t ptid_)
3495 : ptid (ptid_)
3496 {}
3497
3498 thread_item (thread_item &&other) = default;
3499 thread_item &operator= (thread_item &&other) = default;
3500
3501 DISABLE_COPY_AND_ASSIGN (thread_item);
3502
3503 /* The thread's PTID. */
3504 ptid_t ptid;
3505
3506 /* The thread's extra info. */
3507 std::string extra;
3508
3509 /* The thread's name. */
3510 std::string name;
3511
3512 /* The core the thread was running on. -1 if not known. */
3513 int core = -1;
3514
3515 /* The thread handle associated with the thread. */
3516 gdb::byte_vector thread_handle;
3517 };
3518
3519 /* Context passed around to the various methods listing remote
3520 threads. As new threads are found, they're added to the ITEMS
3521 vector. */
3522
3523 struct threads_listing_context
3524 {
3525 /* Return true if this object contains an entry for a thread with ptid
3526 PTID. */
3527
3528 bool contains_thread (ptid_t ptid) const
3529 {
3530 auto match_ptid = [&] (const thread_item &item)
3531 {
3532 return item.ptid == ptid;
3533 };
3534
3535 auto it = std::find_if (this->items.begin (),
3536 this->items.end (),
3537 match_ptid);
3538
3539 return it != this->items.end ();
3540 }
3541
3542 /* Remove the thread with ptid PTID. */
3543
3544 void remove_thread (ptid_t ptid)
3545 {
3546 auto match_ptid = [&] (const thread_item &item)
3547 {
3548 return item.ptid == ptid;
3549 };
3550
3551 auto it = std::remove_if (this->items.begin (),
3552 this->items.end (),
3553 match_ptid);
3554
3555 if (it != this->items.end ())
3556 this->items.erase (it);
3557 }
3558
3559 /* The threads found on the remote target. */
3560 std::vector<thread_item> items;
3561 };
3562
3563 static int
3564 remote_newthread_step (threadref *ref, void *data)
3565 {
3566 struct threads_listing_context *context
3567 = (struct threads_listing_context *) data;
3568 int pid = inferior_ptid.pid ();
3569 int lwp = threadref_to_int (ref);
3570 ptid_t ptid (pid, lwp);
3571
3572 context->items.emplace_back (ptid);
3573
3574 return 1; /* continue iterator */
3575 }
3576
3577 #define CRAZY_MAX_THREADS 1000
3578
3579 ptid_t
3580 remote_target::remote_current_thread (ptid_t oldpid)
3581 {
3582 struct remote_state *rs = get_remote_state ();
3583
3584 putpkt ("qC");
3585 getpkt (&rs->buf, 0);
3586 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3587 {
3588 const char *obuf;
3589 ptid_t result;
3590
3591 result = read_ptid (&rs->buf[2], &obuf);
3592 if (*obuf != '\0' && remote_debug)
3593 fprintf_unfiltered (gdb_stdlog,
3594 "warning: garbage in qC reply\n");
3595
3596 return result;
3597 }
3598 else
3599 return oldpid;
3600 }
3601
3602 /* List remote threads using the deprecated qL packet. */
3603
3604 int
3605 remote_target::remote_get_threads_with_ql (threads_listing_context *context)
3606 {
3607 if (remote_threadlist_iterator (remote_newthread_step, context,
3608 CRAZY_MAX_THREADS) >= 0)
3609 return 1;
3610
3611 return 0;
3612 }
3613
3614 #if defined(HAVE_LIBEXPAT)
3615
3616 static void
3617 start_thread (struct gdb_xml_parser *parser,
3618 const struct gdb_xml_element *element,
3619 void *user_data,
3620 std::vector<gdb_xml_value> &attributes)
3621 {
3622 struct threads_listing_context *data
3623 = (struct threads_listing_context *) user_data;
3624 struct gdb_xml_value *attr;
3625
3626 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3627 ptid_t ptid = read_ptid (id, NULL);
3628
3629 data->items.emplace_back (ptid);
3630 thread_item &item = data->items.back ();
3631
3632 attr = xml_find_attribute (attributes, "core");
3633 if (attr != NULL)
3634 item.core = *(ULONGEST *) attr->value.get ();
3635
3636 attr = xml_find_attribute (attributes, "name");
3637 if (attr != NULL)
3638 item.name = (const char *) attr->value.get ();
3639
3640 attr = xml_find_attribute (attributes, "handle");
3641 if (attr != NULL)
3642 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3643 }
3644
3645 static void
3646 end_thread (struct gdb_xml_parser *parser,
3647 const struct gdb_xml_element *element,
3648 void *user_data, const char *body_text)
3649 {
3650 struct threads_listing_context *data
3651 = (struct threads_listing_context *) user_data;
3652
3653 if (body_text != NULL && *body_text != '\0')
3654 data->items.back ().extra = body_text;
3655 }
3656
3657 const struct gdb_xml_attribute thread_attributes[] = {
3658 { "id", GDB_XML_AF_NONE, NULL, NULL },
3659 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3660 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3661 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3662 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3663 };
3664
3665 const struct gdb_xml_element thread_children[] = {
3666 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3667 };
3668
3669 const struct gdb_xml_element threads_children[] = {
3670 { "thread", thread_attributes, thread_children,
3671 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3672 start_thread, end_thread },
3673 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3674 };
3675
3676 const struct gdb_xml_element threads_elements[] = {
3677 { "threads", NULL, threads_children,
3678 GDB_XML_EF_NONE, NULL, NULL },
3679 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3680 };
3681
3682 #endif
3683
3684 /* List remote threads using qXfer:threads:read. */
3685
3686 int
3687 remote_target::remote_get_threads_with_qxfer (threads_listing_context *context)
3688 {
3689 #if defined(HAVE_LIBEXPAT)
3690 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3691 {
3692 gdb::optional<gdb::char_vector> xml
3693 = target_read_stralloc (this, TARGET_OBJECT_THREADS, NULL);
3694
3695 if (xml && (*xml)[0] != '\0')
3696 {
3697 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3698 threads_elements, xml->data (), context);
3699 }
3700
3701 return 1;
3702 }
3703 #endif
3704
3705 return 0;
3706 }
3707
3708 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3709
3710 int
3711 remote_target::remote_get_threads_with_qthreadinfo (threads_listing_context *context)
3712 {
3713 struct remote_state *rs = get_remote_state ();
3714
3715 if (rs->use_threadinfo_query)
3716 {
3717 const char *bufp;
3718
3719 putpkt ("qfThreadInfo");
3720 getpkt (&rs->buf, 0);
3721 bufp = rs->buf.data ();
3722 if (bufp[0] != '\0') /* q packet recognized */
3723 {
3724 while (*bufp++ == 'm') /* reply contains one or more TID */
3725 {
3726 do
3727 {
3728 ptid_t ptid = read_ptid (bufp, &bufp);
3729 context->items.emplace_back (ptid);
3730 }
3731 while (*bufp++ == ','); /* comma-separated list */
3732 putpkt ("qsThreadInfo");
3733 getpkt (&rs->buf, 0);
3734 bufp = rs->buf.data ();
3735 }
3736 return 1;
3737 }
3738 else
3739 {
3740 /* Packet not recognized. */
3741 rs->use_threadinfo_query = 0;
3742 }
3743 }
3744
3745 return 0;
3746 }
3747
3748 /* Implement the to_update_thread_list function for the remote
3749 targets. */
3750
3751 void
3752 remote_target::update_thread_list ()
3753 {
3754 struct threads_listing_context context;
3755 int got_list = 0;
3756
3757 /* We have a few different mechanisms to fetch the thread list. Try
3758 them all, starting with the most preferred one first, falling
3759 back to older methods. */
3760 if (remote_get_threads_with_qxfer (&context)
3761 || remote_get_threads_with_qthreadinfo (&context)
3762 || remote_get_threads_with_ql (&context))
3763 {
3764 got_list = 1;
3765
3766 if (context.items.empty ()
3767 && remote_thread_always_alive (inferior_ptid))
3768 {
3769 /* Some targets don't really support threads, but still
3770 reply an (empty) thread list in response to the thread
3771 listing packets, instead of replying "packet not
3772 supported". Exit early so we don't delete the main
3773 thread. */
3774 return;
3775 }
3776
3777 /* CONTEXT now holds the current thread list on the remote
3778 target end. Delete GDB-side threads no longer found on the
3779 target. */
3780 for (thread_info *tp : all_threads_safe ())
3781 {
3782 if (!context.contains_thread (tp->ptid))
3783 {
3784 /* Not found. */
3785 delete_thread (tp);
3786 }
3787 }
3788
3789 /* Remove any unreported fork child threads from CONTEXT so
3790 that we don't interfere with follow fork, which is where
3791 creation of such threads is handled. */
3792 remove_new_fork_children (&context);
3793
3794 /* And now add threads we don't know about yet to our list. */
3795 for (thread_item &item : context.items)
3796 {
3797 if (item.ptid != null_ptid)
3798 {
3799 /* In non-stop mode, we assume new found threads are
3800 executing until proven otherwise with a stop reply.
3801 In all-stop, we can only get here if all threads are
3802 stopped. */
3803 int executing = target_is_non_stop_p () ? 1 : 0;
3804
3805 remote_notice_new_inferior (item.ptid, executing);
3806
3807 thread_info *tp = find_thread_ptid (item.ptid);
3808 remote_thread_info *info = get_remote_thread_info (tp);
3809 info->core = item.core;
3810 info->extra = std::move (item.extra);
3811 info->name = std::move (item.name);
3812 info->thread_handle = std::move (item.thread_handle);
3813 }
3814 }
3815 }
3816
3817 if (!got_list)
3818 {
3819 /* If no thread listing method is supported, then query whether
3820 each known thread is alive, one by one, with the T packet.
3821 If the target doesn't support threads at all, then this is a
3822 no-op. See remote_thread_alive. */
3823 prune_threads ();
3824 }
3825 }
3826
3827 /*
3828 * Collect a descriptive string about the given thread.
3829 * The target may say anything it wants to about the thread
3830 * (typically info about its blocked / runnable state, name, etc.).
3831 * This string will appear in the info threads display.
3832 *
3833 * Optional: targets are not required to implement this function.
3834 */
3835
3836 const char *
3837 remote_target::extra_thread_info (thread_info *tp)
3838 {
3839 struct remote_state *rs = get_remote_state ();
3840 int set;
3841 threadref id;
3842 struct gdb_ext_thread_info threadinfo;
3843
3844 if (rs->remote_desc == 0) /* paranoia */
3845 internal_error (__FILE__, __LINE__,
3846 _("remote_threads_extra_info"));
3847
3848 if (tp->ptid == magic_null_ptid
3849 || (tp->ptid.pid () != 0 && tp->ptid.lwp () == 0))
3850 /* This is the main thread which was added by GDB. The remote
3851 server doesn't know about it. */
3852 return NULL;
3853
3854 std::string &extra = get_remote_thread_info (tp)->extra;
3855
3856 /* If already have cached info, use it. */
3857 if (!extra.empty ())
3858 return extra.c_str ();
3859
3860 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3861 {
3862 /* If we're using qXfer:threads:read, then the extra info is
3863 included in the XML. So if we didn't have anything cached,
3864 it's because there's really no extra info. */
3865 return NULL;
3866 }
3867
3868 if (rs->use_threadextra_query)
3869 {
3870 char *b = rs->buf.data ();
3871 char *endb = b + get_remote_packet_size ();
3872
3873 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3874 b += strlen (b);
3875 write_ptid (b, endb, tp->ptid);
3876
3877 putpkt (rs->buf);
3878 getpkt (&rs->buf, 0);
3879 if (rs->buf[0] != 0)
3880 {
3881 extra.resize (strlen (rs->buf.data ()) / 2);
3882 hex2bin (rs->buf.data (), (gdb_byte *) &extra[0], extra.size ());
3883 return extra.c_str ();
3884 }
3885 }
3886
3887 /* If the above query fails, fall back to the old method. */
3888 rs->use_threadextra_query = 0;
3889 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3890 | TAG_MOREDISPLAY | TAG_DISPLAY;
3891 int_to_threadref (&id, tp->ptid.lwp ());
3892 if (remote_get_threadinfo (&id, set, &threadinfo))
3893 if (threadinfo.active)
3894 {
3895 if (*threadinfo.shortname)
3896 string_appendf (extra, " Name: %s", threadinfo.shortname);
3897 if (*threadinfo.display)
3898 {
3899 if (!extra.empty ())
3900 extra += ',';
3901 string_appendf (extra, " State: %s", threadinfo.display);
3902 }
3903 if (*threadinfo.more_display)
3904 {
3905 if (!extra.empty ())
3906 extra += ',';
3907 string_appendf (extra, " Priority: %s", threadinfo.more_display);
3908 }
3909 return extra.c_str ();
3910 }
3911 return NULL;
3912 }
3913 \f
3914
3915 bool
3916 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
3917 struct static_tracepoint_marker *marker)
3918 {
3919 struct remote_state *rs = get_remote_state ();
3920 char *p = rs->buf.data ();
3921
3922 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3923 p += strlen (p);
3924 p += hexnumstr (p, addr);
3925 putpkt (rs->buf);
3926 getpkt (&rs->buf, 0);
3927 p = rs->buf.data ();
3928
3929 if (*p == 'E')
3930 error (_("Remote failure reply: %s"), p);
3931
3932 if (*p++ == 'm')
3933 {
3934 parse_static_tracepoint_marker_definition (p, NULL, marker);
3935 return true;
3936 }
3937
3938 return false;
3939 }
3940
3941 std::vector<static_tracepoint_marker>
3942 remote_target::static_tracepoint_markers_by_strid (const char *strid)
3943 {
3944 struct remote_state *rs = get_remote_state ();
3945 std::vector<static_tracepoint_marker> markers;
3946 const char *p;
3947 static_tracepoint_marker marker;
3948
3949 /* Ask for a first packet of static tracepoint marker
3950 definition. */
3951 putpkt ("qTfSTM");
3952 getpkt (&rs->buf, 0);
3953 p = rs->buf.data ();
3954 if (*p == 'E')
3955 error (_("Remote failure reply: %s"), p);
3956
3957 while (*p++ == 'm')
3958 {
3959 do
3960 {
3961 parse_static_tracepoint_marker_definition (p, &p, &marker);
3962
3963 if (strid == NULL || marker.str_id == strid)
3964 markers.push_back (std::move (marker));
3965 }
3966 while (*p++ == ','); /* comma-separated list */
3967 /* Ask for another packet of static tracepoint definition. */
3968 putpkt ("qTsSTM");
3969 getpkt (&rs->buf, 0);
3970 p = rs->buf.data ();
3971 }
3972
3973 return markers;
3974 }
3975
3976 \f
3977 /* Implement the to_get_ada_task_ptid function for the remote targets. */
3978
3979 ptid_t
3980 remote_target::get_ada_task_ptid (long lwp, long thread)
3981 {
3982 return ptid_t (inferior_ptid.pid (), lwp, 0);
3983 }
3984 \f
3985
3986 /* Restart the remote side; this is an extended protocol operation. */
3987
3988 void
3989 remote_target::extended_remote_restart ()
3990 {
3991 struct remote_state *rs = get_remote_state ();
3992
3993 /* Send the restart command; for reasons I don't understand the
3994 remote side really expects a number after the "R". */
3995 xsnprintf (rs->buf.data (), get_remote_packet_size (), "R%x", 0);
3996 putpkt (rs->buf);
3997
3998 remote_fileio_reset ();
3999 }
4000 \f
4001 /* Clean up connection to a remote debugger. */
4002
4003 void
4004 remote_target::close ()
4005 {
4006 /* Make sure we leave stdin registered in the event loop. */
4007 terminal_ours ();
4008
4009 /* We don't have a connection to the remote stub anymore. Get rid
4010 of all the inferiors and their threads we were controlling.
4011 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
4012 will be unable to find the thread corresponding to (pid, 0, 0). */
4013 inferior_ptid = null_ptid;
4014 discard_all_inferiors ();
4015
4016 trace_reset_local_state ();
4017
4018 delete this;
4019 }
4020
4021 remote_target::~remote_target ()
4022 {
4023 struct remote_state *rs = get_remote_state ();
4024
4025 /* Check for NULL because we may get here with a partially
4026 constructed target/connection. */
4027 if (rs->remote_desc == nullptr)
4028 return;
4029
4030 serial_close (rs->remote_desc);
4031
4032 /* We are destroying the remote target, so we should discard
4033 everything of this target. */
4034 discard_pending_stop_replies_in_queue ();
4035
4036 if (rs->remote_async_inferior_event_token)
4037 delete_async_event_handler (&rs->remote_async_inferior_event_token);
4038
4039 delete rs->notif_state;
4040 }
4041
4042 /* Query the remote side for the text, data and bss offsets. */
4043
4044 void
4045 remote_target::get_offsets ()
4046 {
4047 struct remote_state *rs = get_remote_state ();
4048 char *buf;
4049 char *ptr;
4050 int lose, num_segments = 0, do_sections, do_segments;
4051 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
4052 struct symfile_segment_data *data;
4053
4054 if (symfile_objfile == NULL)
4055 return;
4056
4057 putpkt ("qOffsets");
4058 getpkt (&rs->buf, 0);
4059 buf = rs->buf.data ();
4060
4061 if (buf[0] == '\000')
4062 return; /* Return silently. Stub doesn't support
4063 this command. */
4064 if (buf[0] == 'E')
4065 {
4066 warning (_("Remote failure reply: %s"), buf);
4067 return;
4068 }
4069
4070 /* Pick up each field in turn. This used to be done with scanf, but
4071 scanf will make trouble if CORE_ADDR size doesn't match
4072 conversion directives correctly. The following code will work
4073 with any size of CORE_ADDR. */
4074 text_addr = data_addr = bss_addr = 0;
4075 ptr = buf;
4076 lose = 0;
4077
4078 if (startswith (ptr, "Text="))
4079 {
4080 ptr += 5;
4081 /* Don't use strtol, could lose on big values. */
4082 while (*ptr && *ptr != ';')
4083 text_addr = (text_addr << 4) + fromhex (*ptr++);
4084
4085 if (startswith (ptr, ";Data="))
4086 {
4087 ptr += 6;
4088 while (*ptr && *ptr != ';')
4089 data_addr = (data_addr << 4) + fromhex (*ptr++);
4090 }
4091 else
4092 lose = 1;
4093
4094 if (!lose && startswith (ptr, ";Bss="))
4095 {
4096 ptr += 5;
4097 while (*ptr && *ptr != ';')
4098 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
4099
4100 if (bss_addr != data_addr)
4101 warning (_("Target reported unsupported offsets: %s"), buf);
4102 }
4103 else
4104 lose = 1;
4105 }
4106 else if (startswith (ptr, "TextSeg="))
4107 {
4108 ptr += 8;
4109 /* Don't use strtol, could lose on big values. */
4110 while (*ptr && *ptr != ';')
4111 text_addr = (text_addr << 4) + fromhex (*ptr++);
4112 num_segments = 1;
4113
4114 if (startswith (ptr, ";DataSeg="))
4115 {
4116 ptr += 9;
4117 while (*ptr && *ptr != ';')
4118 data_addr = (data_addr << 4) + fromhex (*ptr++);
4119 num_segments++;
4120 }
4121 }
4122 else
4123 lose = 1;
4124
4125 if (lose)
4126 error (_("Malformed response to offset query, %s"), buf);
4127 else if (*ptr != '\0')
4128 warning (_("Target reported unsupported offsets: %s"), buf);
4129
4130 section_offsets offs = symfile_objfile->section_offsets;
4131
4132 data = get_symfile_segment_data (symfile_objfile->obfd);
4133 do_segments = (data != NULL);
4134 do_sections = num_segments == 0;
4135
4136 if (num_segments > 0)
4137 {
4138 segments[0] = text_addr;
4139 segments[1] = data_addr;
4140 }
4141 /* If we have two segments, we can still try to relocate everything
4142 by assuming that the .text and .data offsets apply to the whole
4143 text and data segments. Convert the offsets given in the packet
4144 to base addresses for symfile_map_offsets_to_segments. */
4145 else if (data && data->num_segments == 2)
4146 {
4147 segments[0] = data->segment_bases[0] + text_addr;
4148 segments[1] = data->segment_bases[1] + data_addr;
4149 num_segments = 2;
4150 }
4151 /* If the object file has only one segment, assume that it is text
4152 rather than data; main programs with no writable data are rare,
4153 but programs with no code are useless. Of course the code might
4154 have ended up in the data segment... to detect that we would need
4155 the permissions here. */
4156 else if (data && data->num_segments == 1)
4157 {
4158 segments[0] = data->segment_bases[0] + text_addr;
4159 num_segments = 1;
4160 }
4161 /* There's no way to relocate by segment. */
4162 else
4163 do_segments = 0;
4164
4165 if (do_segments)
4166 {
4167 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
4168 offs, num_segments, segments);
4169
4170 if (ret == 0 && !do_sections)
4171 error (_("Can not handle qOffsets TextSeg "
4172 "response with this symbol file"));
4173
4174 if (ret > 0)
4175 do_sections = 0;
4176 }
4177
4178 if (data)
4179 free_symfile_segment_data (data);
4180
4181 if (do_sections)
4182 {
4183 offs[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
4184
4185 /* This is a temporary kludge to force data and bss to use the
4186 same offsets because that's what nlmconv does now. The real
4187 solution requires changes to the stub and remote.c that I
4188 don't have time to do right now. */
4189
4190 offs[SECT_OFF_DATA (symfile_objfile)] = data_addr;
4191 offs[SECT_OFF_BSS (symfile_objfile)] = data_addr;
4192 }
4193
4194 objfile_relocate (symfile_objfile, offs);
4195 }
4196
4197 /* Send interrupt_sequence to remote target. */
4198
4199 void
4200 remote_target::send_interrupt_sequence ()
4201 {
4202 struct remote_state *rs = get_remote_state ();
4203
4204 if (interrupt_sequence_mode == interrupt_sequence_control_c)
4205 remote_serial_write ("\x03", 1);
4206 else if (interrupt_sequence_mode == interrupt_sequence_break)
4207 serial_send_break (rs->remote_desc);
4208 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
4209 {
4210 serial_send_break (rs->remote_desc);
4211 remote_serial_write ("g", 1);
4212 }
4213 else
4214 internal_error (__FILE__, __LINE__,
4215 _("Invalid value for interrupt_sequence_mode: %s."),
4216 interrupt_sequence_mode);
4217 }
4218
4219
4220 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
4221 and extract the PTID. Returns NULL_PTID if not found. */
4222
4223 static ptid_t
4224 stop_reply_extract_thread (char *stop_reply)
4225 {
4226 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4227 {
4228 const char *p;
4229
4230 /* Txx r:val ; r:val (...) */
4231 p = &stop_reply[3];
4232
4233 /* Look for "register" named "thread". */
4234 while (*p != '\0')
4235 {
4236 const char *p1;
4237
4238 p1 = strchr (p, ':');
4239 if (p1 == NULL)
4240 return null_ptid;
4241
4242 if (strncmp (p, "thread", p1 - p) == 0)
4243 return read_ptid (++p1, &p);
4244
4245 p1 = strchr (p, ';');
4246 if (p1 == NULL)
4247 return null_ptid;
4248 p1++;
4249
4250 p = p1;
4251 }
4252 }
4253
4254 return null_ptid;
4255 }
4256
4257 /* Determine the remote side's current thread. If we have a stop
4258 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4259 "thread" register we can extract the current thread from. If not,
4260 ask the remote which is the current thread with qC. The former
4261 method avoids a roundtrip. */
4262
4263 ptid_t
4264 remote_target::get_current_thread (char *wait_status)
4265 {
4266 ptid_t ptid = null_ptid;
4267
4268 /* Note we don't use remote_parse_stop_reply as that makes use of
4269 the target architecture, which we haven't yet fully determined at
4270 this point. */
4271 if (wait_status != NULL)
4272 ptid = stop_reply_extract_thread (wait_status);
4273 if (ptid == null_ptid)
4274 ptid = remote_current_thread (inferior_ptid);
4275
4276 return ptid;
4277 }
4278
4279 /* Query the remote target for which is the current thread/process,
4280 add it to our tables, and update INFERIOR_PTID. The caller is
4281 responsible for setting the state such that the remote end is ready
4282 to return the current thread.
4283
4284 This function is called after handling the '?' or 'vRun' packets,
4285 whose response is a stop reply from which we can also try
4286 extracting the thread. If the target doesn't support the explicit
4287 qC query, we infer the current thread from that stop reply, passed
4288 in in WAIT_STATUS, which may be NULL. */
4289
4290 void
4291 remote_target::add_current_inferior_and_thread (char *wait_status)
4292 {
4293 struct remote_state *rs = get_remote_state ();
4294 bool fake_pid_p = false;
4295
4296 inferior_ptid = null_ptid;
4297
4298 /* Now, if we have thread information, update inferior_ptid. */
4299 ptid_t curr_ptid = get_current_thread (wait_status);
4300
4301 if (curr_ptid != null_ptid)
4302 {
4303 if (!remote_multi_process_p (rs))
4304 fake_pid_p = true;
4305 }
4306 else
4307 {
4308 /* Without this, some commands which require an active target
4309 (such as kill) won't work. This variable serves (at least)
4310 double duty as both the pid of the target process (if it has
4311 such), and as a flag indicating that a target is active. */
4312 curr_ptid = magic_null_ptid;
4313 fake_pid_p = true;
4314 }
4315
4316 remote_add_inferior (fake_pid_p, curr_ptid.pid (), -1, 1);
4317
4318 /* Add the main thread and switch to it. Don't try reading
4319 registers yet, since we haven't fetched the target description
4320 yet. */
4321 thread_info *tp = add_thread_silent (curr_ptid);
4322 switch_to_thread_no_regs (tp);
4323 }
4324
4325 /* Print info about a thread that was found already stopped on
4326 connection. */
4327
4328 static void
4329 print_one_stopped_thread (struct thread_info *thread)
4330 {
4331 struct target_waitstatus *ws = &thread->suspend.waitstatus;
4332
4333 switch_to_thread (thread);
4334 thread->suspend.stop_pc = get_frame_pc (get_current_frame ());
4335 set_current_sal_from_frame (get_current_frame ());
4336
4337 thread->suspend.waitstatus_pending_p = 0;
4338
4339 if (ws->kind == TARGET_WAITKIND_STOPPED)
4340 {
4341 enum gdb_signal sig = ws->value.sig;
4342
4343 if (signal_print_state (sig))
4344 gdb::observers::signal_received.notify (sig);
4345 }
4346 gdb::observers::normal_stop.notify (NULL, 1);
4347 }
4348
4349 /* Process all initial stop replies the remote side sent in response
4350 to the ? packet. These indicate threads that were already stopped
4351 on initial connection. We mark these threads as stopped and print
4352 their current frame before giving the user the prompt. */
4353
4354 void
4355 remote_target::process_initial_stop_replies (int from_tty)
4356 {
4357 int pending_stop_replies = stop_reply_queue_length ();
4358 struct thread_info *selected = NULL;
4359 struct thread_info *lowest_stopped = NULL;
4360 struct thread_info *first = NULL;
4361
4362 /* Consume the initial pending events. */
4363 while (pending_stop_replies-- > 0)
4364 {
4365 ptid_t waiton_ptid = minus_one_ptid;
4366 ptid_t event_ptid;
4367 struct target_waitstatus ws;
4368 int ignore_event = 0;
4369
4370 memset (&ws, 0, sizeof (ws));
4371 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4372 if (remote_debug)
4373 print_target_wait_results (waiton_ptid, event_ptid, &ws);
4374
4375 switch (ws.kind)
4376 {
4377 case TARGET_WAITKIND_IGNORE:
4378 case TARGET_WAITKIND_NO_RESUMED:
4379 case TARGET_WAITKIND_SIGNALLED:
4380 case TARGET_WAITKIND_EXITED:
4381 /* We shouldn't see these, but if we do, just ignore. */
4382 if (remote_debug)
4383 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
4384 ignore_event = 1;
4385 break;
4386
4387 case TARGET_WAITKIND_EXECD:
4388 xfree (ws.value.execd_pathname);
4389 break;
4390 default:
4391 break;
4392 }
4393
4394 if (ignore_event)
4395 continue;
4396
4397 struct thread_info *evthread = find_thread_ptid (event_ptid);
4398
4399 if (ws.kind == TARGET_WAITKIND_STOPPED)
4400 {
4401 enum gdb_signal sig = ws.value.sig;
4402
4403 /* Stubs traditionally report SIGTRAP as initial signal,
4404 instead of signal 0. Suppress it. */
4405 if (sig == GDB_SIGNAL_TRAP)
4406 sig = GDB_SIGNAL_0;
4407 evthread->suspend.stop_signal = sig;
4408 ws.value.sig = sig;
4409 }
4410
4411 evthread->suspend.waitstatus = ws;
4412
4413 if (ws.kind != TARGET_WAITKIND_STOPPED
4414 || ws.value.sig != GDB_SIGNAL_0)
4415 evthread->suspend.waitstatus_pending_p = 1;
4416
4417 set_executing (event_ptid, 0);
4418 set_running (event_ptid, 0);
4419 get_remote_thread_info (evthread)->vcont_resumed = 0;
4420 }
4421
4422 /* "Notice" the new inferiors before anything related to
4423 registers/memory. */
4424 for (inferior *inf : all_non_exited_inferiors ())
4425 {
4426 inf->needs_setup = 1;
4427
4428 if (non_stop)
4429 {
4430 thread_info *thread = any_live_thread_of_inferior (inf);
4431 notice_new_inferior (thread, thread->state == THREAD_RUNNING,
4432 from_tty);
4433 }
4434 }
4435
4436 /* If all-stop on top of non-stop, pause all threads. Note this
4437 records the threads' stop pc, so must be done after "noticing"
4438 the inferiors. */
4439 if (!non_stop)
4440 {
4441 stop_all_threads ();
4442
4443 /* If all threads of an inferior were already stopped, we
4444 haven't setup the inferior yet. */
4445 for (inferior *inf : all_non_exited_inferiors ())
4446 {
4447 if (inf->needs_setup)
4448 {
4449 thread_info *thread = any_live_thread_of_inferior (inf);
4450 switch_to_thread_no_regs (thread);
4451 setup_inferior (0);
4452 }
4453 }
4454 }
4455
4456 /* Now go over all threads that are stopped, and print their current
4457 frame. If all-stop, then if there's a signalled thread, pick
4458 that as current. */
4459 for (thread_info *thread : all_non_exited_threads ())
4460 {
4461 if (first == NULL)
4462 first = thread;
4463
4464 if (!non_stop)
4465 thread->set_running (false);
4466 else if (thread->state != THREAD_STOPPED)
4467 continue;
4468
4469 if (selected == NULL
4470 && thread->suspend.waitstatus_pending_p)
4471 selected = thread;
4472
4473 if (lowest_stopped == NULL
4474 || thread->inf->num < lowest_stopped->inf->num
4475 || thread->per_inf_num < lowest_stopped->per_inf_num)
4476 lowest_stopped = thread;
4477
4478 if (non_stop)
4479 print_one_stopped_thread (thread);
4480 }
4481
4482 /* In all-stop, we only print the status of one thread, and leave
4483 others with their status pending. */
4484 if (!non_stop)
4485 {
4486 thread_info *thread = selected;
4487 if (thread == NULL)
4488 thread = lowest_stopped;
4489 if (thread == NULL)
4490 thread = first;
4491
4492 print_one_stopped_thread (thread);
4493 }
4494
4495 /* For "info program". */
4496 thread_info *thread = inferior_thread ();
4497 if (thread->state == THREAD_STOPPED)
4498 set_last_target_status (inferior_ptid, thread->suspend.waitstatus);
4499 }
4500
4501 /* Start the remote connection and sync state. */
4502
4503 void
4504 remote_target::start_remote (int from_tty, int extended_p)
4505 {
4506 struct remote_state *rs = get_remote_state ();
4507 struct packet_config *noack_config;
4508 char *wait_status = NULL;
4509
4510 /* Signal other parts that we're going through the initial setup,
4511 and so things may not be stable yet. E.g., we don't try to
4512 install tracepoints until we've relocated symbols. Also, a
4513 Ctrl-C before we're connected and synced up can't interrupt the
4514 target. Instead, it offers to drop the (potentially wedged)
4515 connection. */
4516 rs->starting_up = 1;
4517
4518 QUIT;
4519
4520 if (interrupt_on_connect)
4521 send_interrupt_sequence ();
4522
4523 /* Ack any packet which the remote side has already sent. */
4524 remote_serial_write ("+", 1);
4525
4526 /* The first packet we send to the target is the optional "supported
4527 packets" request. If the target can answer this, it will tell us
4528 which later probes to skip. */
4529 remote_query_supported ();
4530
4531 /* If the stub wants to get a QAllow, compose one and send it. */
4532 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4533 set_permissions ();
4534
4535 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4536 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4537 as a reply to known packet. For packet "vFile:setfs:" it is an
4538 invalid reply and GDB would return error in
4539 remote_hostio_set_filesystem, making remote files access impossible.
4540 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4541 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4542 {
4543 const char v_mustreplyempty[] = "vMustReplyEmpty";
4544
4545 putpkt (v_mustreplyempty);
4546 getpkt (&rs->buf, 0);
4547 if (strcmp (rs->buf.data (), "OK") == 0)
4548 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4549 else if (strcmp (rs->buf.data (), "") != 0)
4550 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4551 rs->buf.data ());
4552 }
4553
4554 /* Next, we possibly activate noack mode.
4555
4556 If the QStartNoAckMode packet configuration is set to AUTO,
4557 enable noack mode if the stub reported a wish for it with
4558 qSupported.
4559
4560 If set to TRUE, then enable noack mode even if the stub didn't
4561 report it in qSupported. If the stub doesn't reply OK, the
4562 session ends with an error.
4563
4564 If FALSE, then don't activate noack mode, regardless of what the
4565 stub claimed should be the default with qSupported. */
4566
4567 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4568 if (packet_config_support (noack_config) != PACKET_DISABLE)
4569 {
4570 putpkt ("QStartNoAckMode");
4571 getpkt (&rs->buf, 0);
4572 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4573 rs->noack_mode = 1;
4574 }
4575
4576 if (extended_p)
4577 {
4578 /* Tell the remote that we are using the extended protocol. */
4579 putpkt ("!");
4580 getpkt (&rs->buf, 0);
4581 }
4582
4583 /* Let the target know which signals it is allowed to pass down to
4584 the program. */
4585 update_signals_program_target ();
4586
4587 /* Next, if the target can specify a description, read it. We do
4588 this before anything involving memory or registers. */
4589 target_find_description ();
4590
4591 /* Next, now that we know something about the target, update the
4592 address spaces in the program spaces. */
4593 update_address_spaces ();
4594
4595 /* On OSs where the list of libraries is global to all
4596 processes, we fetch them early. */
4597 if (gdbarch_has_global_solist (target_gdbarch ()))
4598 solib_add (NULL, from_tty, auto_solib_add);
4599
4600 if (target_is_non_stop_p ())
4601 {
4602 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4603 error (_("Non-stop mode requested, but remote "
4604 "does not support non-stop"));
4605
4606 putpkt ("QNonStop:1");
4607 getpkt (&rs->buf, 0);
4608
4609 if (strcmp (rs->buf.data (), "OK") != 0)
4610 error (_("Remote refused setting non-stop mode with: %s"),
4611 rs->buf.data ());
4612
4613 /* Find about threads and processes the stub is already
4614 controlling. We default to adding them in the running state.
4615 The '?' query below will then tell us about which threads are
4616 stopped. */
4617 this->update_thread_list ();
4618 }
4619 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4620 {
4621 /* Don't assume that the stub can operate in all-stop mode.
4622 Request it explicitly. */
4623 putpkt ("QNonStop:0");
4624 getpkt (&rs->buf, 0);
4625
4626 if (strcmp (rs->buf.data (), "OK") != 0)
4627 error (_("Remote refused setting all-stop mode with: %s"),
4628 rs->buf.data ());
4629 }
4630
4631 /* Upload TSVs regardless of whether the target is running or not. The
4632 remote stub, such as GDBserver, may have some predefined or builtin
4633 TSVs, even if the target is not running. */
4634 if (get_trace_status (current_trace_status ()) != -1)
4635 {
4636 struct uploaded_tsv *uploaded_tsvs = NULL;
4637
4638 upload_trace_state_variables (&uploaded_tsvs);
4639 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4640 }
4641
4642 /* Check whether the target is running now. */
4643 putpkt ("?");
4644 getpkt (&rs->buf, 0);
4645
4646 if (!target_is_non_stop_p ())
4647 {
4648 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4649 {
4650 if (!extended_p)
4651 error (_("The target is not running (try extended-remote?)"));
4652
4653 /* We're connected, but not running. Drop out before we
4654 call start_remote. */
4655 rs->starting_up = 0;
4656 return;
4657 }
4658 else
4659 {
4660 /* Save the reply for later. */
4661 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
4662 strcpy (wait_status, rs->buf.data ());
4663 }
4664
4665 /* Fetch thread list. */
4666 target_update_thread_list ();
4667
4668 /* Let the stub know that we want it to return the thread. */
4669 set_continue_thread (minus_one_ptid);
4670
4671 if (thread_count () == 0)
4672 {
4673 /* Target has no concept of threads at all. GDB treats
4674 non-threaded target as single-threaded; add a main
4675 thread. */
4676 add_current_inferior_and_thread (wait_status);
4677 }
4678 else
4679 {
4680 /* We have thread information; select the thread the target
4681 says should be current. If we're reconnecting to a
4682 multi-threaded program, this will ideally be the thread
4683 that last reported an event before GDB disconnected. */
4684 inferior_ptid = get_current_thread (wait_status);
4685 if (inferior_ptid == null_ptid)
4686 {
4687 /* Odd... The target was able to list threads, but not
4688 tell us which thread was current (no "thread"
4689 register in T stop reply?). Just pick the first
4690 thread in the thread list then. */
4691
4692 if (remote_debug)
4693 fprintf_unfiltered (gdb_stdlog,
4694 "warning: couldn't determine remote "
4695 "current thread; picking first in list.\n");
4696
4697 inferior_ptid = inferior_list->thread_list->ptid;
4698 }
4699 }
4700
4701 /* init_wait_for_inferior should be called before get_offsets in order
4702 to manage `inserted' flag in bp loc in a correct state.
4703 breakpoint_init_inferior, called from init_wait_for_inferior, set
4704 `inserted' flag to 0, while before breakpoint_re_set, called from
4705 start_remote, set `inserted' flag to 1. In the initialization of
4706 inferior, breakpoint_init_inferior should be called first, and then
4707 breakpoint_re_set can be called. If this order is broken, state of
4708 `inserted' flag is wrong, and cause some problems on breakpoint
4709 manipulation. */
4710 init_wait_for_inferior ();
4711
4712 get_offsets (); /* Get text, data & bss offsets. */
4713
4714 /* If we could not find a description using qXfer, and we know
4715 how to do it some other way, try again. This is not
4716 supported for non-stop; it could be, but it is tricky if
4717 there are no stopped threads when we connect. */
4718 if (remote_read_description_p (this)
4719 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4720 {
4721 target_clear_description ();
4722 target_find_description ();
4723 }
4724
4725 /* Use the previously fetched status. */
4726 gdb_assert (wait_status != NULL);
4727 strcpy (rs->buf.data (), wait_status);
4728 rs->cached_wait_status = 1;
4729
4730 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4731 }
4732 else
4733 {
4734 /* Clear WFI global state. Do this before finding about new
4735 threads and inferiors, and setting the current inferior.
4736 Otherwise we would clear the proceed status of the current
4737 inferior when we want its stop_soon state to be preserved
4738 (see notice_new_inferior). */
4739 init_wait_for_inferior ();
4740
4741 /* In non-stop, we will either get an "OK", meaning that there
4742 are no stopped threads at this time; or, a regular stop
4743 reply. In the latter case, there may be more than one thread
4744 stopped --- we pull them all out using the vStopped
4745 mechanism. */
4746 if (strcmp (rs->buf.data (), "OK") != 0)
4747 {
4748 struct notif_client *notif = &notif_client_stop;
4749
4750 /* remote_notif_get_pending_replies acks this one, and gets
4751 the rest out. */
4752 rs->notif_state->pending_event[notif_client_stop.id]
4753 = remote_notif_parse (this, notif, rs->buf.data ());
4754 remote_notif_get_pending_events (notif);
4755 }
4756
4757 if (thread_count () == 0)
4758 {
4759 if (!extended_p)
4760 error (_("The target is not running (try extended-remote?)"));
4761
4762 /* We're connected, but not running. Drop out before we
4763 call start_remote. */
4764 rs->starting_up = 0;
4765 return;
4766 }
4767
4768 /* In non-stop mode, any cached wait status will be stored in
4769 the stop reply queue. */
4770 gdb_assert (wait_status == NULL);
4771
4772 /* Report all signals during attach/startup. */
4773 pass_signals ({});
4774
4775 /* If there are already stopped threads, mark them stopped and
4776 report their stops before giving the prompt to the user. */
4777 process_initial_stop_replies (from_tty);
4778
4779 if (target_can_async_p ())
4780 target_async (1);
4781 }
4782
4783 /* If we connected to a live target, do some additional setup. */
4784 if (target_has_execution)
4785 {
4786 if (symfile_objfile) /* No use without a symbol-file. */
4787 remote_check_symbols ();
4788 }
4789
4790 /* Possibly the target has been engaged in a trace run started
4791 previously; find out where things are at. */
4792 if (get_trace_status (current_trace_status ()) != -1)
4793 {
4794 struct uploaded_tp *uploaded_tps = NULL;
4795
4796 if (current_trace_status ()->running)
4797 printf_filtered (_("Trace is already running on the target.\n"));
4798
4799 upload_tracepoints (&uploaded_tps);
4800
4801 merge_uploaded_tracepoints (&uploaded_tps);
4802 }
4803
4804 /* Possibly the target has been engaged in a btrace record started
4805 previously; find out where things are at. */
4806 remote_btrace_maybe_reopen ();
4807
4808 /* The thread and inferior lists are now synchronized with the
4809 target, our symbols have been relocated, and we're merged the
4810 target's tracepoints with ours. We're done with basic start
4811 up. */
4812 rs->starting_up = 0;
4813
4814 /* Maybe breakpoints are global and need to be inserted now. */
4815 if (breakpoints_should_be_inserted_now ())
4816 insert_breakpoints ();
4817 }
4818
4819 /* Open a connection to a remote debugger.
4820 NAME is the filename used for communication. */
4821
4822 void
4823 remote_target::open (const char *name, int from_tty)
4824 {
4825 open_1 (name, from_tty, 0);
4826 }
4827
4828 /* Open a connection to a remote debugger using the extended
4829 remote gdb protocol. NAME is the filename used for communication. */
4830
4831 void
4832 extended_remote_target::open (const char *name, int from_tty)
4833 {
4834 open_1 (name, from_tty, 1 /*extended_p */);
4835 }
4836
4837 /* Reset all packets back to "unknown support". Called when opening a
4838 new connection to a remote target. */
4839
4840 static void
4841 reset_all_packet_configs_support (void)
4842 {
4843 int i;
4844
4845 for (i = 0; i < PACKET_MAX; i++)
4846 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4847 }
4848
4849 /* Initialize all packet configs. */
4850
4851 static void
4852 init_all_packet_configs (void)
4853 {
4854 int i;
4855
4856 for (i = 0; i < PACKET_MAX; i++)
4857 {
4858 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4859 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4860 }
4861 }
4862
4863 /* Symbol look-up. */
4864
4865 void
4866 remote_target::remote_check_symbols ()
4867 {
4868 char *tmp;
4869 int end;
4870
4871 /* The remote side has no concept of inferiors that aren't running
4872 yet, it only knows about running processes. If we're connected
4873 but our current inferior is not running, we should not invite the
4874 remote target to request symbol lookups related to its
4875 (unrelated) current process. */
4876 if (!target_has_execution)
4877 return;
4878
4879 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4880 return;
4881
4882 /* Make sure the remote is pointing at the right process. Note
4883 there's no way to select "no process". */
4884 set_general_process ();
4885
4886 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4887 because we need both at the same time. */
4888 gdb::char_vector msg (get_remote_packet_size ());
4889 gdb::char_vector reply (get_remote_packet_size ());
4890
4891 /* Invite target to request symbol lookups. */
4892
4893 putpkt ("qSymbol::");
4894 getpkt (&reply, 0);
4895 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4896
4897 while (startswith (reply.data (), "qSymbol:"))
4898 {
4899 struct bound_minimal_symbol sym;
4900
4901 tmp = &reply[8];
4902 end = hex2bin (tmp, reinterpret_cast <gdb_byte *> (msg.data ()),
4903 strlen (tmp) / 2);
4904 msg[end] = '\0';
4905 sym = lookup_minimal_symbol (msg.data (), NULL, NULL);
4906 if (sym.minsym == NULL)
4907 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol::%s",
4908 &reply[8]);
4909 else
4910 {
4911 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4912 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4913
4914 /* If this is a function address, return the start of code
4915 instead of any data function descriptor. */
4916 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4917 sym_addr,
4918 current_top_target ());
4919
4920 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol:%s:%s",
4921 phex_nz (sym_addr, addr_size), &reply[8]);
4922 }
4923
4924 putpkt (msg.data ());
4925 getpkt (&reply, 0);
4926 }
4927 }
4928
4929 static struct serial *
4930 remote_serial_open (const char *name)
4931 {
4932 static int udp_warning = 0;
4933
4934 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
4935 of in ser-tcp.c, because it is the remote protocol assuming that the
4936 serial connection is reliable and not the serial connection promising
4937 to be. */
4938 if (!udp_warning && startswith (name, "udp:"))
4939 {
4940 warning (_("The remote protocol may be unreliable over UDP.\n"
4941 "Some events may be lost, rendering further debugging "
4942 "impossible."));
4943 udp_warning = 1;
4944 }
4945
4946 return serial_open (name);
4947 }
4948
4949 /* Inform the target of our permission settings. The permission flags
4950 work without this, but if the target knows the settings, it can do
4951 a couple things. First, it can add its own check, to catch cases
4952 that somehow manage to get by the permissions checks in target
4953 methods. Second, if the target is wired to disallow particular
4954 settings (for instance, a system in the field that is not set up to
4955 be able to stop at a breakpoint), it can object to any unavailable
4956 permissions. */
4957
4958 void
4959 remote_target::set_permissions ()
4960 {
4961 struct remote_state *rs = get_remote_state ();
4962
4963 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAllow:"
4964 "WriteReg:%x;WriteMem:%x;"
4965 "InsertBreak:%x;InsertTrace:%x;"
4966 "InsertFastTrace:%x;Stop:%x",
4967 may_write_registers, may_write_memory,
4968 may_insert_breakpoints, may_insert_tracepoints,
4969 may_insert_fast_tracepoints, may_stop);
4970 putpkt (rs->buf);
4971 getpkt (&rs->buf, 0);
4972
4973 /* If the target didn't like the packet, warn the user. Do not try
4974 to undo the user's settings, that would just be maddening. */
4975 if (strcmp (rs->buf.data (), "OK") != 0)
4976 warning (_("Remote refused setting permissions with: %s"),
4977 rs->buf.data ());
4978 }
4979
4980 /* This type describes each known response to the qSupported
4981 packet. */
4982 struct protocol_feature
4983 {
4984 /* The name of this protocol feature. */
4985 const char *name;
4986
4987 /* The default for this protocol feature. */
4988 enum packet_support default_support;
4989
4990 /* The function to call when this feature is reported, or after
4991 qSupported processing if the feature is not supported.
4992 The first argument points to this structure. The second
4993 argument indicates whether the packet requested support be
4994 enabled, disabled, or probed (or the default, if this function
4995 is being called at the end of processing and this feature was
4996 not reported). The third argument may be NULL; if not NULL, it
4997 is a NUL-terminated string taken from the packet following
4998 this feature's name and an equals sign. */
4999 void (*func) (remote_target *remote, const struct protocol_feature *,
5000 enum packet_support, const char *);
5001
5002 /* The corresponding packet for this feature. Only used if
5003 FUNC is remote_supported_packet. */
5004 int packet;
5005 };
5006
5007 static void
5008 remote_supported_packet (remote_target *remote,
5009 const struct protocol_feature *feature,
5010 enum packet_support support,
5011 const char *argument)
5012 {
5013 if (argument)
5014 {
5015 warning (_("Remote qSupported response supplied an unexpected value for"
5016 " \"%s\"."), feature->name);
5017 return;
5018 }
5019
5020 remote_protocol_packets[feature->packet].support = support;
5021 }
5022
5023 void
5024 remote_target::remote_packet_size (const protocol_feature *feature,
5025 enum packet_support support, const char *value)
5026 {
5027 struct remote_state *rs = get_remote_state ();
5028
5029 int packet_size;
5030 char *value_end;
5031
5032 if (support != PACKET_ENABLE)
5033 return;
5034
5035 if (value == NULL || *value == '\0')
5036 {
5037 warning (_("Remote target reported \"%s\" without a size."),
5038 feature->name);
5039 return;
5040 }
5041
5042 errno = 0;
5043 packet_size = strtol (value, &value_end, 16);
5044 if (errno != 0 || *value_end != '\0' || packet_size < 0)
5045 {
5046 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
5047 feature->name, value);
5048 return;
5049 }
5050
5051 /* Record the new maximum packet size. */
5052 rs->explicit_packet_size = packet_size;
5053 }
5054
5055 static void
5056 remote_packet_size (remote_target *remote, const protocol_feature *feature,
5057 enum packet_support support, const char *value)
5058 {
5059 remote->remote_packet_size (feature, support, value);
5060 }
5061
5062 static const struct protocol_feature remote_protocol_features[] = {
5063 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
5064 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
5065 PACKET_qXfer_auxv },
5066 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
5067 PACKET_qXfer_exec_file },
5068 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
5069 PACKET_qXfer_features },
5070 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
5071 PACKET_qXfer_libraries },
5072 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
5073 PACKET_qXfer_libraries_svr4 },
5074 { "augmented-libraries-svr4-read", PACKET_DISABLE,
5075 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
5076 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
5077 PACKET_qXfer_memory_map },
5078 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
5079 PACKET_qXfer_osdata },
5080 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
5081 PACKET_qXfer_threads },
5082 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
5083 PACKET_qXfer_traceframe_info },
5084 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
5085 PACKET_QPassSignals },
5086 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
5087 PACKET_QCatchSyscalls },
5088 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
5089 PACKET_QProgramSignals },
5090 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
5091 PACKET_QSetWorkingDir },
5092 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
5093 PACKET_QStartupWithShell },
5094 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
5095 PACKET_QEnvironmentHexEncoded },
5096 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
5097 PACKET_QEnvironmentReset },
5098 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
5099 PACKET_QEnvironmentUnset },
5100 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
5101 PACKET_QStartNoAckMode },
5102 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
5103 PACKET_multiprocess_feature },
5104 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
5105 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
5106 PACKET_qXfer_siginfo_read },
5107 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
5108 PACKET_qXfer_siginfo_write },
5109 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
5110 PACKET_ConditionalTracepoints },
5111 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
5112 PACKET_ConditionalBreakpoints },
5113 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
5114 PACKET_BreakpointCommands },
5115 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
5116 PACKET_FastTracepoints },
5117 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
5118 PACKET_StaticTracepoints },
5119 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
5120 PACKET_InstallInTrace},
5121 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
5122 PACKET_DisconnectedTracing_feature },
5123 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
5124 PACKET_bc },
5125 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
5126 PACKET_bs },
5127 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
5128 PACKET_TracepointSource },
5129 { "QAllow", PACKET_DISABLE, remote_supported_packet,
5130 PACKET_QAllow },
5131 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
5132 PACKET_EnableDisableTracepoints_feature },
5133 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
5134 PACKET_qXfer_fdpic },
5135 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
5136 PACKET_qXfer_uib },
5137 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
5138 PACKET_QDisableRandomization },
5139 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
5140 { "QTBuffer:size", PACKET_DISABLE,
5141 remote_supported_packet, PACKET_QTBuffer_size},
5142 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
5143 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
5144 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
5145 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
5146 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
5147 PACKET_qXfer_btrace },
5148 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
5149 PACKET_qXfer_btrace_conf },
5150 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
5151 PACKET_Qbtrace_conf_bts_size },
5152 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
5153 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
5154 { "fork-events", PACKET_DISABLE, remote_supported_packet,
5155 PACKET_fork_event_feature },
5156 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
5157 PACKET_vfork_event_feature },
5158 { "exec-events", PACKET_DISABLE, remote_supported_packet,
5159 PACKET_exec_event_feature },
5160 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
5161 PACKET_Qbtrace_conf_pt_size },
5162 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
5163 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
5164 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
5165 };
5166
5167 static char *remote_support_xml;
5168
5169 /* Register string appended to "xmlRegisters=" in qSupported query. */
5170
5171 void
5172 register_remote_support_xml (const char *xml)
5173 {
5174 #if defined(HAVE_LIBEXPAT)
5175 if (remote_support_xml == NULL)
5176 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
5177 else
5178 {
5179 char *copy = xstrdup (remote_support_xml + 13);
5180 char *saveptr;
5181 char *p = strtok_r (copy, ",", &saveptr);
5182
5183 do
5184 {
5185 if (strcmp (p, xml) == 0)
5186 {
5187 /* already there */
5188 xfree (copy);
5189 return;
5190 }
5191 }
5192 while ((p = strtok_r (NULL, ",", &saveptr)) != NULL);
5193 xfree (copy);
5194
5195 remote_support_xml = reconcat (remote_support_xml,
5196 remote_support_xml, ",", xml,
5197 (char *) NULL);
5198 }
5199 #endif
5200 }
5201
5202 static void
5203 remote_query_supported_append (std::string *msg, const char *append)
5204 {
5205 if (!msg->empty ())
5206 msg->append (";");
5207 msg->append (append);
5208 }
5209
5210 void
5211 remote_target::remote_query_supported ()
5212 {
5213 struct remote_state *rs = get_remote_state ();
5214 char *next;
5215 int i;
5216 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5217
5218 /* The packet support flags are handled differently for this packet
5219 than for most others. We treat an error, a disabled packet, and
5220 an empty response identically: any features which must be reported
5221 to be used will be automatically disabled. An empty buffer
5222 accomplishes this, since that is also the representation for a list
5223 containing no features. */
5224
5225 rs->buf[0] = 0;
5226 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5227 {
5228 std::string q;
5229
5230 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5231 remote_query_supported_append (&q, "multiprocess+");
5232
5233 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5234 remote_query_supported_append (&q, "swbreak+");
5235 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5236 remote_query_supported_append (&q, "hwbreak+");
5237
5238 remote_query_supported_append (&q, "qRelocInsn+");
5239
5240 if (packet_set_cmd_state (PACKET_fork_event_feature)
5241 != AUTO_BOOLEAN_FALSE)
5242 remote_query_supported_append (&q, "fork-events+");
5243 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5244 != AUTO_BOOLEAN_FALSE)
5245 remote_query_supported_append (&q, "vfork-events+");
5246 if (packet_set_cmd_state (PACKET_exec_event_feature)
5247 != AUTO_BOOLEAN_FALSE)
5248 remote_query_supported_append (&q, "exec-events+");
5249
5250 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5251 remote_query_supported_append (&q, "vContSupported+");
5252
5253 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5254 remote_query_supported_append (&q, "QThreadEvents+");
5255
5256 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5257 remote_query_supported_append (&q, "no-resumed+");
5258
5259 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5260 the qSupported:xmlRegisters=i386 handling. */
5261 if (remote_support_xml != NULL
5262 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5263 remote_query_supported_append (&q, remote_support_xml);
5264
5265 q = "qSupported:" + q;
5266 putpkt (q.c_str ());
5267
5268 getpkt (&rs->buf, 0);
5269
5270 /* If an error occured, warn, but do not return - just reset the
5271 buffer to empty and go on to disable features. */
5272 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5273 == PACKET_ERROR)
5274 {
5275 warning (_("Remote failure reply: %s"), rs->buf.data ());
5276 rs->buf[0] = 0;
5277 }
5278 }
5279
5280 memset (seen, 0, sizeof (seen));
5281
5282 next = rs->buf.data ();
5283 while (*next)
5284 {
5285 enum packet_support is_supported;
5286 char *p, *end, *name_end, *value;
5287
5288 /* First separate out this item from the rest of the packet. If
5289 there's another item after this, we overwrite the separator
5290 (terminated strings are much easier to work with). */
5291 p = next;
5292 end = strchr (p, ';');
5293 if (end == NULL)
5294 {
5295 end = p + strlen (p);
5296 next = end;
5297 }
5298 else
5299 {
5300 *end = '\0';
5301 next = end + 1;
5302
5303 if (end == p)
5304 {
5305 warning (_("empty item in \"qSupported\" response"));
5306 continue;
5307 }
5308 }
5309
5310 name_end = strchr (p, '=');
5311 if (name_end)
5312 {
5313 /* This is a name=value entry. */
5314 is_supported = PACKET_ENABLE;
5315 value = name_end + 1;
5316 *name_end = '\0';
5317 }
5318 else
5319 {
5320 value = NULL;
5321 switch (end[-1])
5322 {
5323 case '+':
5324 is_supported = PACKET_ENABLE;
5325 break;
5326
5327 case '-':
5328 is_supported = PACKET_DISABLE;
5329 break;
5330
5331 case '?':
5332 is_supported = PACKET_SUPPORT_UNKNOWN;
5333 break;
5334
5335 default:
5336 warning (_("unrecognized item \"%s\" "
5337 "in \"qSupported\" response"), p);
5338 continue;
5339 }
5340 end[-1] = '\0';
5341 }
5342
5343 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5344 if (strcmp (remote_protocol_features[i].name, p) == 0)
5345 {
5346 const struct protocol_feature *feature;
5347
5348 seen[i] = 1;
5349 feature = &remote_protocol_features[i];
5350 feature->func (this, feature, is_supported, value);
5351 break;
5352 }
5353 }
5354
5355 /* If we increased the packet size, make sure to increase the global
5356 buffer size also. We delay this until after parsing the entire
5357 qSupported packet, because this is the same buffer we were
5358 parsing. */
5359 if (rs->buf.size () < rs->explicit_packet_size)
5360 rs->buf.resize (rs->explicit_packet_size);
5361
5362 /* Handle the defaults for unmentioned features. */
5363 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5364 if (!seen[i])
5365 {
5366 const struct protocol_feature *feature;
5367
5368 feature = &remote_protocol_features[i];
5369 feature->func (this, feature, feature->default_support, NULL);
5370 }
5371 }
5372
5373 /* Serial QUIT handler for the remote serial descriptor.
5374
5375 Defers handling a Ctrl-C until we're done with the current
5376 command/response packet sequence, unless:
5377
5378 - We're setting up the connection. Don't send a remote interrupt
5379 request, as we're not fully synced yet. Quit immediately
5380 instead.
5381
5382 - The target has been resumed in the foreground
5383 (target_terminal::is_ours is false) with a synchronous resume
5384 packet, and we're blocked waiting for the stop reply, thus a
5385 Ctrl-C should be immediately sent to the target.
5386
5387 - We get a second Ctrl-C while still within the same serial read or
5388 write. In that case the serial is seemingly wedged --- offer to
5389 quit/disconnect.
5390
5391 - We see a second Ctrl-C without target response, after having
5392 previously interrupted the target. In that case the target/stub
5393 is probably wedged --- offer to quit/disconnect.
5394 */
5395
5396 void
5397 remote_target::remote_serial_quit_handler ()
5398 {
5399 struct remote_state *rs = get_remote_state ();
5400
5401 if (check_quit_flag ())
5402 {
5403 /* If we're starting up, we're not fully synced yet. Quit
5404 immediately. */
5405 if (rs->starting_up)
5406 quit ();
5407 else if (rs->got_ctrlc_during_io)
5408 {
5409 if (query (_("The target is not responding to GDB commands.\n"
5410 "Stop debugging it? ")))
5411 remote_unpush_and_throw ();
5412 }
5413 /* If ^C has already been sent once, offer to disconnect. */
5414 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5415 interrupt_query ();
5416 /* All-stop protocol, and blocked waiting for stop reply. Send
5417 an interrupt request. */
5418 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5419 target_interrupt ();
5420 else
5421 rs->got_ctrlc_during_io = 1;
5422 }
5423 }
5424
5425 /* The remote_target that is current while the quit handler is
5426 overridden with remote_serial_quit_handler. */
5427 static remote_target *curr_quit_handler_target;
5428
5429 static void
5430 remote_serial_quit_handler ()
5431 {
5432 curr_quit_handler_target->remote_serial_quit_handler ();
5433 }
5434
5435 /* Remove any of the remote.c targets from target stack. Upper targets depend
5436 on it so remove them first. */
5437
5438 static void
5439 remote_unpush_target (void)
5440 {
5441 pop_all_targets_at_and_above (process_stratum);
5442 }
5443
5444 static void
5445 remote_unpush_and_throw (void)
5446 {
5447 remote_unpush_target ();
5448 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5449 }
5450
5451 void
5452 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5453 {
5454 remote_target *curr_remote = get_current_remote_target ();
5455
5456 if (name == 0)
5457 error (_("To open a remote debug connection, you need to specify what\n"
5458 "serial device is attached to the remote system\n"
5459 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5460
5461 /* If we're connected to a running target, target_preopen will kill it.
5462 Ask this question first, before target_preopen has a chance to kill
5463 anything. */
5464 if (curr_remote != NULL && !have_inferiors ())
5465 {
5466 if (from_tty
5467 && !query (_("Already connected to a remote target. Disconnect? ")))
5468 error (_("Still connected."));
5469 }
5470
5471 /* Here the possibly existing remote target gets unpushed. */
5472 target_preopen (from_tty);
5473
5474 remote_fileio_reset ();
5475 reopen_exec_file ();
5476 reread_symbols ();
5477
5478 remote_target *remote
5479 = (extended_p ? new extended_remote_target () : new remote_target ());
5480 target_ops_up target_holder (remote);
5481
5482 remote_state *rs = remote->get_remote_state ();
5483
5484 /* See FIXME above. */
5485 if (!target_async_permitted)
5486 rs->wait_forever_enabled_p = 1;
5487
5488 rs->remote_desc = remote_serial_open (name);
5489 if (!rs->remote_desc)
5490 perror_with_name (name);
5491
5492 if (baud_rate != -1)
5493 {
5494 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5495 {
5496 /* The requested speed could not be set. Error out to
5497 top level after closing remote_desc. Take care to
5498 set remote_desc to NULL to avoid closing remote_desc
5499 more than once. */
5500 serial_close (rs->remote_desc);
5501 rs->remote_desc = NULL;
5502 perror_with_name (name);
5503 }
5504 }
5505
5506 serial_setparity (rs->remote_desc, serial_parity);
5507 serial_raw (rs->remote_desc);
5508
5509 /* If there is something sitting in the buffer we might take it as a
5510 response to a command, which would be bad. */
5511 serial_flush_input (rs->remote_desc);
5512
5513 if (from_tty)
5514 {
5515 puts_filtered ("Remote debugging using ");
5516 puts_filtered (name);
5517 puts_filtered ("\n");
5518 }
5519
5520 /* Switch to using the remote target now. */
5521 push_target (std::move (target_holder));
5522
5523 /* Register extra event sources in the event loop. */
5524 rs->remote_async_inferior_event_token
5525 = create_async_event_handler (remote_async_inferior_event_handler,
5526 remote);
5527 rs->notif_state = remote_notif_state_allocate (remote);
5528
5529 /* Reset the target state; these things will be queried either by
5530 remote_query_supported or as they are needed. */
5531 reset_all_packet_configs_support ();
5532 rs->cached_wait_status = 0;
5533 rs->explicit_packet_size = 0;
5534 rs->noack_mode = 0;
5535 rs->extended = extended_p;
5536 rs->waiting_for_stop_reply = 0;
5537 rs->ctrlc_pending_p = 0;
5538 rs->got_ctrlc_during_io = 0;
5539
5540 rs->general_thread = not_sent_ptid;
5541 rs->continue_thread = not_sent_ptid;
5542 rs->remote_traceframe_number = -1;
5543
5544 rs->last_resume_exec_dir = EXEC_FORWARD;
5545
5546 /* Probe for ability to use "ThreadInfo" query, as required. */
5547 rs->use_threadinfo_query = 1;
5548 rs->use_threadextra_query = 1;
5549
5550 rs->readahead_cache.invalidate ();
5551
5552 if (target_async_permitted)
5553 {
5554 /* FIXME: cagney/1999-09-23: During the initial connection it is
5555 assumed that the target is already ready and able to respond to
5556 requests. Unfortunately remote_start_remote() eventually calls
5557 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5558 around this. Eventually a mechanism that allows
5559 wait_for_inferior() to expect/get timeouts will be
5560 implemented. */
5561 rs->wait_forever_enabled_p = 0;
5562 }
5563
5564 /* First delete any symbols previously loaded from shared libraries. */
5565 no_shared_libraries (NULL, 0);
5566
5567 /* Start the remote connection. If error() or QUIT, discard this
5568 target (we'd otherwise be in an inconsistent state) and then
5569 propogate the error on up the exception chain. This ensures that
5570 the caller doesn't stumble along blindly assuming that the
5571 function succeeded. The CLI doesn't have this problem but other
5572 UI's, such as MI do.
5573
5574 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5575 this function should return an error indication letting the
5576 caller restore the previous state. Unfortunately the command
5577 ``target remote'' is directly wired to this function making that
5578 impossible. On a positive note, the CLI side of this problem has
5579 been fixed - the function set_cmd_context() makes it possible for
5580 all the ``target ....'' commands to share a common callback
5581 function. See cli-dump.c. */
5582 {
5583
5584 try
5585 {
5586 remote->start_remote (from_tty, extended_p);
5587 }
5588 catch (const gdb_exception &ex)
5589 {
5590 /* Pop the partially set up target - unless something else did
5591 already before throwing the exception. */
5592 if (ex.error != TARGET_CLOSE_ERROR)
5593 remote_unpush_target ();
5594 throw;
5595 }
5596 }
5597
5598 remote_btrace_reset (rs);
5599
5600 if (target_async_permitted)
5601 rs->wait_forever_enabled_p = 1;
5602 }
5603
5604 /* Detach the specified process. */
5605
5606 void
5607 remote_target::remote_detach_pid (int pid)
5608 {
5609 struct remote_state *rs = get_remote_state ();
5610
5611 /* This should not be necessary, but the handling for D;PID in
5612 GDBserver versions prior to 8.2 incorrectly assumes that the
5613 selected process points to the same process we're detaching,
5614 leading to misbehavior (and possibly GDBserver crashing) when it
5615 does not. Since it's easy and cheap, work around it by forcing
5616 GDBserver to select GDB's current process. */
5617 set_general_process ();
5618
5619 if (remote_multi_process_p (rs))
5620 xsnprintf (rs->buf.data (), get_remote_packet_size (), "D;%x", pid);
5621 else
5622 strcpy (rs->buf.data (), "D");
5623
5624 putpkt (rs->buf);
5625 getpkt (&rs->buf, 0);
5626
5627 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5628 ;
5629 else if (rs->buf[0] == '\0')
5630 error (_("Remote doesn't know how to detach"));
5631 else
5632 error (_("Can't detach process."));
5633 }
5634
5635 /* This detaches a program to which we previously attached, using
5636 inferior_ptid to identify the process. After this is done, GDB
5637 can be used to debug some other program. We better not have left
5638 any breakpoints in the target program or it'll die when it hits
5639 one. */
5640
5641 void
5642 remote_target::remote_detach_1 (inferior *inf, int from_tty)
5643 {
5644 int pid = inferior_ptid.pid ();
5645 struct remote_state *rs = get_remote_state ();
5646 int is_fork_parent;
5647
5648 if (!target_has_execution)
5649 error (_("No process to detach from."));
5650
5651 target_announce_detach (from_tty);
5652
5653 /* Tell the remote target to detach. */
5654 remote_detach_pid (pid);
5655
5656 /* Exit only if this is the only active inferior. */
5657 if (from_tty && !rs->extended && number_of_live_inferiors () == 1)
5658 puts_filtered (_("Ending remote debugging.\n"));
5659
5660 struct thread_info *tp = find_thread_ptid (inferior_ptid);
5661
5662 /* Check to see if we are detaching a fork parent. Note that if we
5663 are detaching a fork child, tp == NULL. */
5664 is_fork_parent = (tp != NULL
5665 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5666
5667 /* If doing detach-on-fork, we don't mourn, because that will delete
5668 breakpoints that should be available for the followed inferior. */
5669 if (!is_fork_parent)
5670 {
5671 /* Save the pid as a string before mourning, since that will
5672 unpush the remote target, and we need the string after. */
5673 std::string infpid = target_pid_to_str (ptid_t (pid));
5674
5675 target_mourn_inferior (inferior_ptid);
5676 if (print_inferior_events)
5677 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5678 inf->num, infpid.c_str ());
5679 }
5680 else
5681 {
5682 inferior_ptid = null_ptid;
5683 detach_inferior (current_inferior ());
5684 }
5685 }
5686
5687 void
5688 remote_target::detach (inferior *inf, int from_tty)
5689 {
5690 remote_detach_1 (inf, from_tty);
5691 }
5692
5693 void
5694 extended_remote_target::detach (inferior *inf, int from_tty)
5695 {
5696 remote_detach_1 (inf, from_tty);
5697 }
5698
5699 /* Target follow-fork function for remote targets. On entry, and
5700 at return, the current inferior is the fork parent.
5701
5702 Note that although this is currently only used for extended-remote,
5703 it is named remote_follow_fork in anticipation of using it for the
5704 remote target as well. */
5705
5706 int
5707 remote_target::follow_fork (int follow_child, int detach_fork)
5708 {
5709 struct remote_state *rs = get_remote_state ();
5710 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5711
5712 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5713 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5714 {
5715 /* When following the parent and detaching the child, we detach
5716 the child here. For the case of following the child and
5717 detaching the parent, the detach is done in the target-
5718 independent follow fork code in infrun.c. We can't use
5719 target_detach when detaching an unfollowed child because
5720 the client side doesn't know anything about the child. */
5721 if (detach_fork && !follow_child)
5722 {
5723 /* Detach the fork child. */
5724 ptid_t child_ptid;
5725 pid_t child_pid;
5726
5727 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5728 child_pid = child_ptid.pid ();
5729
5730 remote_detach_pid (child_pid);
5731 }
5732 }
5733 return 0;
5734 }
5735
5736 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5737 in the program space of the new inferior. On entry and at return the
5738 current inferior is the exec'ing inferior. INF is the new exec'd
5739 inferior, which may be the same as the exec'ing inferior unless
5740 follow-exec-mode is "new". */
5741
5742 void
5743 remote_target::follow_exec (struct inferior *inf, const char *execd_pathname)
5744 {
5745 /* We know that this is a target file name, so if it has the "target:"
5746 prefix we strip it off before saving it in the program space. */
5747 if (is_target_filename (execd_pathname))
5748 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5749
5750 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5751 }
5752
5753 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5754
5755 void
5756 remote_target::disconnect (const char *args, int from_tty)
5757 {
5758 if (args)
5759 error (_("Argument given to \"disconnect\" when remotely debugging."));
5760
5761 /* Make sure we unpush even the extended remote targets. Calling
5762 target_mourn_inferior won't unpush, and remote_mourn won't
5763 unpush if there is more than one inferior left. */
5764 unpush_target (this);
5765 generic_mourn_inferior ();
5766
5767 if (from_tty)
5768 puts_filtered ("Ending remote debugging.\n");
5769 }
5770
5771 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5772 be chatty about it. */
5773
5774 void
5775 extended_remote_target::attach (const char *args, int from_tty)
5776 {
5777 struct remote_state *rs = get_remote_state ();
5778 int pid;
5779 char *wait_status = NULL;
5780
5781 pid = parse_pid_to_attach (args);
5782
5783 /* Remote PID can be freely equal to getpid, do not check it here the same
5784 way as in other targets. */
5785
5786 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5787 error (_("This target does not support attaching to a process"));
5788
5789 if (from_tty)
5790 {
5791 const char *exec_file = get_exec_file (0);
5792
5793 if (exec_file)
5794 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5795 target_pid_to_str (ptid_t (pid)).c_str ());
5796 else
5797 printf_unfiltered (_("Attaching to %s\n"),
5798 target_pid_to_str (ptid_t (pid)).c_str ());
5799 }
5800
5801 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vAttach;%x", pid);
5802 putpkt (rs->buf);
5803 getpkt (&rs->buf, 0);
5804
5805 switch (packet_ok (rs->buf,
5806 &remote_protocol_packets[PACKET_vAttach]))
5807 {
5808 case PACKET_OK:
5809 if (!target_is_non_stop_p ())
5810 {
5811 /* Save the reply for later. */
5812 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
5813 strcpy (wait_status, rs->buf.data ());
5814 }
5815 else if (strcmp (rs->buf.data (), "OK") != 0)
5816 error (_("Attaching to %s failed with: %s"),
5817 target_pid_to_str (ptid_t (pid)).c_str (),
5818 rs->buf.data ());
5819 break;
5820 case PACKET_UNKNOWN:
5821 error (_("This target does not support attaching to a process"));
5822 default:
5823 error (_("Attaching to %s failed"),
5824 target_pid_to_str (ptid_t (pid)).c_str ());
5825 }
5826
5827 set_current_inferior (remote_add_inferior (false, pid, 1, 0));
5828
5829 inferior_ptid = ptid_t (pid);
5830
5831 if (target_is_non_stop_p ())
5832 {
5833 struct thread_info *thread;
5834
5835 /* Get list of threads. */
5836 update_thread_list ();
5837
5838 thread = first_thread_of_inferior (current_inferior ());
5839 if (thread)
5840 inferior_ptid = thread->ptid;
5841 else
5842 inferior_ptid = ptid_t (pid);
5843
5844 /* Invalidate our notion of the remote current thread. */
5845 record_currthread (rs, minus_one_ptid);
5846 }
5847 else
5848 {
5849 /* Now, if we have thread information, update inferior_ptid. */
5850 inferior_ptid = remote_current_thread (inferior_ptid);
5851
5852 /* Add the main thread to the thread list. */
5853 thread_info *thr = add_thread_silent (inferior_ptid);
5854 /* Don't consider the thread stopped until we've processed the
5855 saved stop reply. */
5856 set_executing (thr->ptid, true);
5857 }
5858
5859 /* Next, if the target can specify a description, read it. We do
5860 this before anything involving memory or registers. */
5861 target_find_description ();
5862
5863 if (!target_is_non_stop_p ())
5864 {
5865 /* Use the previously fetched status. */
5866 gdb_assert (wait_status != NULL);
5867
5868 if (target_can_async_p ())
5869 {
5870 struct notif_event *reply
5871 = remote_notif_parse (this, &notif_client_stop, wait_status);
5872
5873 push_stop_reply ((struct stop_reply *) reply);
5874
5875 target_async (1);
5876 }
5877 else
5878 {
5879 gdb_assert (wait_status != NULL);
5880 strcpy (rs->buf.data (), wait_status);
5881 rs->cached_wait_status = 1;
5882 }
5883 }
5884 else
5885 gdb_assert (wait_status == NULL);
5886 }
5887
5888 /* Implementation of the to_post_attach method. */
5889
5890 void
5891 extended_remote_target::post_attach (int pid)
5892 {
5893 /* Get text, data & bss offsets. */
5894 get_offsets ();
5895
5896 /* In certain cases GDB might not have had the chance to start
5897 symbol lookup up until now. This could happen if the debugged
5898 binary is not using shared libraries, the vsyscall page is not
5899 present (on Linux) and the binary itself hadn't changed since the
5900 debugging process was started. */
5901 if (symfile_objfile != NULL)
5902 remote_check_symbols();
5903 }
5904
5905 \f
5906 /* Check for the availability of vCont. This function should also check
5907 the response. */
5908
5909 void
5910 remote_target::remote_vcont_probe ()
5911 {
5912 remote_state *rs = get_remote_state ();
5913 char *buf;
5914
5915 strcpy (rs->buf.data (), "vCont?");
5916 putpkt (rs->buf);
5917 getpkt (&rs->buf, 0);
5918 buf = rs->buf.data ();
5919
5920 /* Make sure that the features we assume are supported. */
5921 if (startswith (buf, "vCont"))
5922 {
5923 char *p = &buf[5];
5924 int support_c, support_C;
5925
5926 rs->supports_vCont.s = 0;
5927 rs->supports_vCont.S = 0;
5928 support_c = 0;
5929 support_C = 0;
5930 rs->supports_vCont.t = 0;
5931 rs->supports_vCont.r = 0;
5932 while (p && *p == ';')
5933 {
5934 p++;
5935 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
5936 rs->supports_vCont.s = 1;
5937 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
5938 rs->supports_vCont.S = 1;
5939 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
5940 support_c = 1;
5941 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
5942 support_C = 1;
5943 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
5944 rs->supports_vCont.t = 1;
5945 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
5946 rs->supports_vCont.r = 1;
5947
5948 p = strchr (p, ';');
5949 }
5950
5951 /* If c, and C are not all supported, we can't use vCont. Clearing
5952 BUF will make packet_ok disable the packet. */
5953 if (!support_c || !support_C)
5954 buf[0] = 0;
5955 }
5956
5957 packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCont]);
5958 }
5959
5960 /* Helper function for building "vCont" resumptions. Write a
5961 resumption to P. ENDP points to one-passed-the-end of the buffer
5962 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
5963 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
5964 resumed thread should be single-stepped and/or signalled. If PTID
5965 equals minus_one_ptid, then all threads are resumed; if PTID
5966 represents a process, then all threads of the process are resumed;
5967 the thread to be stepped and/or signalled is given in the global
5968 INFERIOR_PTID. */
5969
5970 char *
5971 remote_target::append_resumption (char *p, char *endp,
5972 ptid_t ptid, int step, gdb_signal siggnal)
5973 {
5974 struct remote_state *rs = get_remote_state ();
5975
5976 if (step && siggnal != GDB_SIGNAL_0)
5977 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
5978 else if (step
5979 /* GDB is willing to range step. */
5980 && use_range_stepping
5981 /* Target supports range stepping. */
5982 && rs->supports_vCont.r
5983 /* We don't currently support range stepping multiple
5984 threads with a wildcard (though the protocol allows it,
5985 so stubs shouldn't make an active effort to forbid
5986 it). */
5987 && !(remote_multi_process_p (rs) && ptid.is_pid ()))
5988 {
5989 struct thread_info *tp;
5990
5991 if (ptid == minus_one_ptid)
5992 {
5993 /* If we don't know about the target thread's tid, then
5994 we're resuming magic_null_ptid (see caller). */
5995 tp = find_thread_ptid (magic_null_ptid);
5996 }
5997 else
5998 tp = find_thread_ptid (ptid);
5999 gdb_assert (tp != NULL);
6000
6001 if (tp->control.may_range_step)
6002 {
6003 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6004
6005 p += xsnprintf (p, endp - p, ";r%s,%s",
6006 phex_nz (tp->control.step_range_start,
6007 addr_size),
6008 phex_nz (tp->control.step_range_end,
6009 addr_size));
6010 }
6011 else
6012 p += xsnprintf (p, endp - p, ";s");
6013 }
6014 else if (step)
6015 p += xsnprintf (p, endp - p, ";s");
6016 else if (siggnal != GDB_SIGNAL_0)
6017 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
6018 else
6019 p += xsnprintf (p, endp - p, ";c");
6020
6021 if (remote_multi_process_p (rs) && ptid.is_pid ())
6022 {
6023 ptid_t nptid;
6024
6025 /* All (-1) threads of process. */
6026 nptid = ptid_t (ptid.pid (), -1, 0);
6027
6028 p += xsnprintf (p, endp - p, ":");
6029 p = write_ptid (p, endp, nptid);
6030 }
6031 else if (ptid != minus_one_ptid)
6032 {
6033 p += xsnprintf (p, endp - p, ":");
6034 p = write_ptid (p, endp, ptid);
6035 }
6036
6037 return p;
6038 }
6039
6040 /* Clear the thread's private info on resume. */
6041
6042 static void
6043 resume_clear_thread_private_info (struct thread_info *thread)
6044 {
6045 if (thread->priv != NULL)
6046 {
6047 remote_thread_info *priv = get_remote_thread_info (thread);
6048
6049 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6050 priv->watch_data_address = 0;
6051 }
6052 }
6053
6054 /* Append a vCont continue-with-signal action for threads that have a
6055 non-zero stop signal. */
6056
6057 char *
6058 remote_target::append_pending_thread_resumptions (char *p, char *endp,
6059 ptid_t ptid)
6060 {
6061 for (thread_info *thread : all_non_exited_threads (ptid))
6062 if (inferior_ptid != thread->ptid
6063 && thread->suspend.stop_signal != GDB_SIGNAL_0)
6064 {
6065 p = append_resumption (p, endp, thread->ptid,
6066 0, thread->suspend.stop_signal);
6067 thread->suspend.stop_signal = GDB_SIGNAL_0;
6068 resume_clear_thread_private_info (thread);
6069 }
6070
6071 return p;
6072 }
6073
6074 /* Set the target running, using the packets that use Hc
6075 (c/s/C/S). */
6076
6077 void
6078 remote_target::remote_resume_with_hc (ptid_t ptid, int step,
6079 gdb_signal siggnal)
6080 {
6081 struct remote_state *rs = get_remote_state ();
6082 char *buf;
6083
6084 rs->last_sent_signal = siggnal;
6085 rs->last_sent_step = step;
6086
6087 /* The c/s/C/S resume packets use Hc, so set the continue
6088 thread. */
6089 if (ptid == minus_one_ptid)
6090 set_continue_thread (any_thread_ptid);
6091 else
6092 set_continue_thread (ptid);
6093
6094 for (thread_info *thread : all_non_exited_threads ())
6095 resume_clear_thread_private_info (thread);
6096
6097 buf = rs->buf.data ();
6098 if (::execution_direction == EXEC_REVERSE)
6099 {
6100 /* We don't pass signals to the target in reverse exec mode. */
6101 if (info_verbose && siggnal != GDB_SIGNAL_0)
6102 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
6103 siggnal);
6104
6105 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
6106 error (_("Remote reverse-step not supported."));
6107 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
6108 error (_("Remote reverse-continue not supported."));
6109
6110 strcpy (buf, step ? "bs" : "bc");
6111 }
6112 else if (siggnal != GDB_SIGNAL_0)
6113 {
6114 buf[0] = step ? 'S' : 'C';
6115 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
6116 buf[2] = tohex (((int) siggnal) & 0xf);
6117 buf[3] = '\0';
6118 }
6119 else
6120 strcpy (buf, step ? "s" : "c");
6121
6122 putpkt (buf);
6123 }
6124
6125 /* Resume the remote inferior by using a "vCont" packet. The thread
6126 to be resumed is PTID; STEP and SIGGNAL indicate whether the
6127 resumed thread should be single-stepped and/or signalled. If PTID
6128 equals minus_one_ptid, then all threads are resumed; the thread to
6129 be stepped and/or signalled is given in the global INFERIOR_PTID.
6130 This function returns non-zero iff it resumes the inferior.
6131
6132 This function issues a strict subset of all possible vCont commands
6133 at the moment. */
6134
6135 int
6136 remote_target::remote_resume_with_vcont (ptid_t ptid, int step,
6137 enum gdb_signal siggnal)
6138 {
6139 struct remote_state *rs = get_remote_state ();
6140 char *p;
6141 char *endp;
6142
6143 /* No reverse execution actions defined for vCont. */
6144 if (::execution_direction == EXEC_REVERSE)
6145 return 0;
6146
6147 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6148 remote_vcont_probe ();
6149
6150 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
6151 return 0;
6152
6153 p = rs->buf.data ();
6154 endp = p + get_remote_packet_size ();
6155
6156 /* If we could generate a wider range of packets, we'd have to worry
6157 about overflowing BUF. Should there be a generic
6158 "multi-part-packet" packet? */
6159
6160 p += xsnprintf (p, endp - p, "vCont");
6161
6162 if (ptid == magic_null_ptid)
6163 {
6164 /* MAGIC_NULL_PTID means that we don't have any active threads,
6165 so we don't have any TID numbers the inferior will
6166 understand. Make sure to only send forms that do not specify
6167 a TID. */
6168 append_resumption (p, endp, minus_one_ptid, step, siggnal);
6169 }
6170 else if (ptid == minus_one_ptid || ptid.is_pid ())
6171 {
6172 /* Resume all threads (of all processes, or of a single
6173 process), with preference for INFERIOR_PTID. This assumes
6174 inferior_ptid belongs to the set of all threads we are about
6175 to resume. */
6176 if (step || siggnal != GDB_SIGNAL_0)
6177 {
6178 /* Step inferior_ptid, with or without signal. */
6179 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
6180 }
6181
6182 /* Also pass down any pending signaled resumption for other
6183 threads not the current. */
6184 p = append_pending_thread_resumptions (p, endp, ptid);
6185
6186 /* And continue others without a signal. */
6187 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
6188 }
6189 else
6190 {
6191 /* Scheduler locking; resume only PTID. */
6192 append_resumption (p, endp, ptid, step, siggnal);
6193 }
6194
6195 gdb_assert (strlen (rs->buf.data ()) < get_remote_packet_size ());
6196 putpkt (rs->buf);
6197
6198 if (target_is_non_stop_p ())
6199 {
6200 /* In non-stop, the stub replies to vCont with "OK". The stop
6201 reply will be reported asynchronously by means of a `%Stop'
6202 notification. */
6203 getpkt (&rs->buf, 0);
6204 if (strcmp (rs->buf.data (), "OK") != 0)
6205 error (_("Unexpected vCont reply in non-stop mode: %s"),
6206 rs->buf.data ());
6207 }
6208
6209 return 1;
6210 }
6211
6212 /* Tell the remote machine to resume. */
6213
6214 void
6215 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
6216 {
6217 struct remote_state *rs = get_remote_state ();
6218
6219 /* When connected in non-stop mode, the core resumes threads
6220 individually. Resuming remote threads directly in target_resume
6221 would thus result in sending one packet per thread. Instead, to
6222 minimize roundtrip latency, here we just store the resume
6223 request; the actual remote resumption will be done in
6224 target_commit_resume / remote_commit_resume, where we'll be able
6225 to do vCont action coalescing. */
6226 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6227 {
6228 remote_thread_info *remote_thr;
6229
6230 if (minus_one_ptid == ptid || ptid.is_pid ())
6231 remote_thr = get_remote_thread_info (inferior_ptid);
6232 else
6233 remote_thr = get_remote_thread_info (ptid);
6234
6235 remote_thr->last_resume_step = step;
6236 remote_thr->last_resume_sig = siggnal;
6237 return;
6238 }
6239
6240 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6241 (explained in remote-notif.c:handle_notification) so
6242 remote_notif_process is not called. We need find a place where
6243 it is safe to start a 'vNotif' sequence. It is good to do it
6244 before resuming inferior, because inferior was stopped and no RSP
6245 traffic at that moment. */
6246 if (!target_is_non_stop_p ())
6247 remote_notif_process (rs->notif_state, &notif_client_stop);
6248
6249 rs->last_resume_exec_dir = ::execution_direction;
6250
6251 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6252 if (!remote_resume_with_vcont (ptid, step, siggnal))
6253 remote_resume_with_hc (ptid, step, siggnal);
6254
6255 /* We are about to start executing the inferior, let's register it
6256 with the event loop. NOTE: this is the one place where all the
6257 execution commands end up. We could alternatively do this in each
6258 of the execution commands in infcmd.c. */
6259 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6260 into infcmd.c in order to allow inferior function calls to work
6261 NOT asynchronously. */
6262 if (target_can_async_p ())
6263 target_async (1);
6264
6265 /* We've just told the target to resume. The remote server will
6266 wait for the inferior to stop, and then send a stop reply. In
6267 the mean time, we can't start another command/query ourselves
6268 because the stub wouldn't be ready to process it. This applies
6269 only to the base all-stop protocol, however. In non-stop (which
6270 only supports vCont), the stub replies with an "OK", and is
6271 immediate able to process further serial input. */
6272 if (!target_is_non_stop_p ())
6273 rs->waiting_for_stop_reply = 1;
6274 }
6275
6276 static int is_pending_fork_parent_thread (struct thread_info *thread);
6277
6278 /* Private per-inferior info for target remote processes. */
6279
6280 struct remote_inferior : public private_inferior
6281 {
6282 /* Whether we can send a wildcard vCont for this process. */
6283 bool may_wildcard_vcont = true;
6284 };
6285
6286 /* Get the remote private inferior data associated to INF. */
6287
6288 static remote_inferior *
6289 get_remote_inferior (inferior *inf)
6290 {
6291 if (inf->priv == NULL)
6292 inf->priv.reset (new remote_inferior);
6293
6294 return static_cast<remote_inferior *> (inf->priv.get ());
6295 }
6296
6297 /* Class used to track the construction of a vCont packet in the
6298 outgoing packet buffer. This is used to send multiple vCont
6299 packets if we have more actions than would fit a single packet. */
6300
6301 class vcont_builder
6302 {
6303 public:
6304 explicit vcont_builder (remote_target *remote)
6305 : m_remote (remote)
6306 {
6307 restart ();
6308 }
6309
6310 void flush ();
6311 void push_action (ptid_t ptid, bool step, gdb_signal siggnal);
6312
6313 private:
6314 void restart ();
6315
6316 /* The remote target. */
6317 remote_target *m_remote;
6318
6319 /* Pointer to the first action. P points here if no action has been
6320 appended yet. */
6321 char *m_first_action;
6322
6323 /* Where the next action will be appended. */
6324 char *m_p;
6325
6326 /* The end of the buffer. Must never write past this. */
6327 char *m_endp;
6328 };
6329
6330 /* Prepare the outgoing buffer for a new vCont packet. */
6331
6332 void
6333 vcont_builder::restart ()
6334 {
6335 struct remote_state *rs = m_remote->get_remote_state ();
6336
6337 m_p = rs->buf.data ();
6338 m_endp = m_p + m_remote->get_remote_packet_size ();
6339 m_p += xsnprintf (m_p, m_endp - m_p, "vCont");
6340 m_first_action = m_p;
6341 }
6342
6343 /* If the vCont packet being built has any action, send it to the
6344 remote end. */
6345
6346 void
6347 vcont_builder::flush ()
6348 {
6349 struct remote_state *rs;
6350
6351 if (m_p == m_first_action)
6352 return;
6353
6354 rs = m_remote->get_remote_state ();
6355 m_remote->putpkt (rs->buf);
6356 m_remote->getpkt (&rs->buf, 0);
6357 if (strcmp (rs->buf.data (), "OK") != 0)
6358 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf.data ());
6359 }
6360
6361 /* The largest action is range-stepping, with its two addresses. This
6362 is more than sufficient. If a new, bigger action is created, it'll
6363 quickly trigger a failed assertion in append_resumption (and we'll
6364 just bump this). */
6365 #define MAX_ACTION_SIZE 200
6366
6367 /* Append a new vCont action in the outgoing packet being built. If
6368 the action doesn't fit the packet along with previous actions, push
6369 what we've got so far to the remote end and start over a new vCont
6370 packet (with the new action). */
6371
6372 void
6373 vcont_builder::push_action (ptid_t ptid, bool step, gdb_signal siggnal)
6374 {
6375 char buf[MAX_ACTION_SIZE + 1];
6376
6377 char *endp = m_remote->append_resumption (buf, buf + sizeof (buf),
6378 ptid, step, siggnal);
6379
6380 /* Check whether this new action would fit in the vCont packet along
6381 with previous actions. If not, send what we've got so far and
6382 start a new vCont packet. */
6383 size_t rsize = endp - buf;
6384 if (rsize > m_endp - m_p)
6385 {
6386 flush ();
6387 restart ();
6388
6389 /* Should now fit. */
6390 gdb_assert (rsize <= m_endp - m_p);
6391 }
6392
6393 memcpy (m_p, buf, rsize);
6394 m_p += rsize;
6395 *m_p = '\0';
6396 }
6397
6398 /* to_commit_resume implementation. */
6399
6400 void
6401 remote_target::commit_resume ()
6402 {
6403 int any_process_wildcard;
6404 int may_global_wildcard_vcont;
6405
6406 /* If connected in all-stop mode, we'd send the remote resume
6407 request directly from remote_resume. Likewise if
6408 reverse-debugging, as there are no defined vCont actions for
6409 reverse execution. */
6410 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6411 return;
6412
6413 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6414 instead of resuming all threads of each process individually.
6415 However, if any thread of a process must remain halted, we can't
6416 send wildcard resumes and must send one action per thread.
6417
6418 Care must be taken to not resume threads/processes the server
6419 side already told us are stopped, but the core doesn't know about
6420 yet, because the events are still in the vStopped notification
6421 queue. For example:
6422
6423 #1 => vCont s:p1.1;c
6424 #2 <= OK
6425 #3 <= %Stopped T05 p1.1
6426 #4 => vStopped
6427 #5 <= T05 p1.2
6428 #6 => vStopped
6429 #7 <= OK
6430 #8 (infrun handles the stop for p1.1 and continues stepping)
6431 #9 => vCont s:p1.1;c
6432
6433 The last vCont above would resume thread p1.2 by mistake, because
6434 the server has no idea that the event for p1.2 had not been
6435 handled yet.
6436
6437 The server side must similarly ignore resume actions for the
6438 thread that has a pending %Stopped notification (and any other
6439 threads with events pending), until GDB acks the notification
6440 with vStopped. Otherwise, e.g., the following case is
6441 mishandled:
6442
6443 #1 => g (or any other packet)
6444 #2 <= [registers]
6445 #3 <= %Stopped T05 p1.2
6446 #4 => vCont s:p1.1;c
6447 #5 <= OK
6448
6449 Above, the server must not resume thread p1.2. GDB can't know
6450 that p1.2 stopped until it acks the %Stopped notification, and
6451 since from GDB's perspective all threads should be running, it
6452 sends a "c" action.
6453
6454 Finally, special care must also be given to handling fork/vfork
6455 events. A (v)fork event actually tells us that two processes
6456 stopped -- the parent and the child. Until we follow the fork,
6457 we must not resume the child. Therefore, if we have a pending
6458 fork follow, we must not send a global wildcard resume action
6459 (vCont;c). We can still send process-wide wildcards though. */
6460
6461 /* Start by assuming a global wildcard (vCont;c) is possible. */
6462 may_global_wildcard_vcont = 1;
6463
6464 /* And assume every process is individually wildcard-able too. */
6465 for (inferior *inf : all_non_exited_inferiors ())
6466 {
6467 remote_inferior *priv = get_remote_inferior (inf);
6468
6469 priv->may_wildcard_vcont = true;
6470 }
6471
6472 /* Check for any pending events (not reported or processed yet) and
6473 disable process and global wildcard resumes appropriately. */
6474 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6475
6476 for (thread_info *tp : all_non_exited_threads ())
6477 {
6478 /* If a thread of a process is not meant to be resumed, then we
6479 can't wildcard that process. */
6480 if (!tp->executing)
6481 {
6482 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6483
6484 /* And if we can't wildcard a process, we can't wildcard
6485 everything either. */
6486 may_global_wildcard_vcont = 0;
6487 continue;
6488 }
6489
6490 /* If a thread is the parent of an unfollowed fork, then we
6491 can't do a global wildcard, as that would resume the fork
6492 child. */
6493 if (is_pending_fork_parent_thread (tp))
6494 may_global_wildcard_vcont = 0;
6495 }
6496
6497 /* Now let's build the vCont packet(s). Actions must be appended
6498 from narrower to wider scopes (thread -> process -> global). If
6499 we end up with too many actions for a single packet vcont_builder
6500 flushes the current vCont packet to the remote side and starts a
6501 new one. */
6502 struct vcont_builder vcont_builder (this);
6503
6504 /* Threads first. */
6505 for (thread_info *tp : all_non_exited_threads ())
6506 {
6507 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6508
6509 if (!tp->executing || remote_thr->vcont_resumed)
6510 continue;
6511
6512 gdb_assert (!thread_is_in_step_over_chain (tp));
6513
6514 if (!remote_thr->last_resume_step
6515 && remote_thr->last_resume_sig == GDB_SIGNAL_0
6516 && get_remote_inferior (tp->inf)->may_wildcard_vcont)
6517 {
6518 /* We'll send a wildcard resume instead. */
6519 remote_thr->vcont_resumed = 1;
6520 continue;
6521 }
6522
6523 vcont_builder.push_action (tp->ptid,
6524 remote_thr->last_resume_step,
6525 remote_thr->last_resume_sig);
6526 remote_thr->vcont_resumed = 1;
6527 }
6528
6529 /* Now check whether we can send any process-wide wildcard. This is
6530 to avoid sending a global wildcard in the case nothing is
6531 supposed to be resumed. */
6532 any_process_wildcard = 0;
6533
6534 for (inferior *inf : all_non_exited_inferiors ())
6535 {
6536 if (get_remote_inferior (inf)->may_wildcard_vcont)
6537 {
6538 any_process_wildcard = 1;
6539 break;
6540 }
6541 }
6542
6543 if (any_process_wildcard)
6544 {
6545 /* If all processes are wildcard-able, then send a single "c"
6546 action, otherwise, send an "all (-1) threads of process"
6547 continue action for each running process, if any. */
6548 if (may_global_wildcard_vcont)
6549 {
6550 vcont_builder.push_action (minus_one_ptid,
6551 false, GDB_SIGNAL_0);
6552 }
6553 else
6554 {
6555 for (inferior *inf : all_non_exited_inferiors ())
6556 {
6557 if (get_remote_inferior (inf)->may_wildcard_vcont)
6558 {
6559 vcont_builder.push_action (ptid_t (inf->pid),
6560 false, GDB_SIGNAL_0);
6561 }
6562 }
6563 }
6564 }
6565
6566 vcont_builder.flush ();
6567 }
6568
6569 \f
6570
6571 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6572 thread, all threads of a remote process, or all threads of all
6573 processes. */
6574
6575 void
6576 remote_target::remote_stop_ns (ptid_t ptid)
6577 {
6578 struct remote_state *rs = get_remote_state ();
6579 char *p = rs->buf.data ();
6580 char *endp = p + get_remote_packet_size ();
6581
6582 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6583 remote_vcont_probe ();
6584
6585 if (!rs->supports_vCont.t)
6586 error (_("Remote server does not support stopping threads"));
6587
6588 if (ptid == minus_one_ptid
6589 || (!remote_multi_process_p (rs) && ptid.is_pid ()))
6590 p += xsnprintf (p, endp - p, "vCont;t");
6591 else
6592 {
6593 ptid_t nptid;
6594
6595 p += xsnprintf (p, endp - p, "vCont;t:");
6596
6597 if (ptid.is_pid ())
6598 /* All (-1) threads of process. */
6599 nptid = ptid_t (ptid.pid (), -1, 0);
6600 else
6601 {
6602 /* Small optimization: if we already have a stop reply for
6603 this thread, no use in telling the stub we want this
6604 stopped. */
6605 if (peek_stop_reply (ptid))
6606 return;
6607
6608 nptid = ptid;
6609 }
6610
6611 write_ptid (p, endp, nptid);
6612 }
6613
6614 /* In non-stop, we get an immediate OK reply. The stop reply will
6615 come in asynchronously by notification. */
6616 putpkt (rs->buf);
6617 getpkt (&rs->buf, 0);
6618 if (strcmp (rs->buf.data (), "OK") != 0)
6619 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid).c_str (),
6620 rs->buf.data ());
6621 }
6622
6623 /* All-stop version of target_interrupt. Sends a break or a ^C to
6624 interrupt the remote target. It is undefined which thread of which
6625 process reports the interrupt. */
6626
6627 void
6628 remote_target::remote_interrupt_as ()
6629 {
6630 struct remote_state *rs = get_remote_state ();
6631
6632 rs->ctrlc_pending_p = 1;
6633
6634 /* If the inferior is stopped already, but the core didn't know
6635 about it yet, just ignore the request. The cached wait status
6636 will be collected in remote_wait. */
6637 if (rs->cached_wait_status)
6638 return;
6639
6640 /* Send interrupt_sequence to remote target. */
6641 send_interrupt_sequence ();
6642 }
6643
6644 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6645 the remote target. It is undefined which thread of which process
6646 reports the interrupt. Throws an error if the packet is not
6647 supported by the server. */
6648
6649 void
6650 remote_target::remote_interrupt_ns ()
6651 {
6652 struct remote_state *rs = get_remote_state ();
6653 char *p = rs->buf.data ();
6654 char *endp = p + get_remote_packet_size ();
6655
6656 xsnprintf (p, endp - p, "vCtrlC");
6657
6658 /* In non-stop, we get an immediate OK reply. The stop reply will
6659 come in asynchronously by notification. */
6660 putpkt (rs->buf);
6661 getpkt (&rs->buf, 0);
6662
6663 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6664 {
6665 case PACKET_OK:
6666 break;
6667 case PACKET_UNKNOWN:
6668 error (_("No support for interrupting the remote target."));
6669 case PACKET_ERROR:
6670 error (_("Interrupting target failed: %s"), rs->buf.data ());
6671 }
6672 }
6673
6674 /* Implement the to_stop function for the remote targets. */
6675
6676 void
6677 remote_target::stop (ptid_t ptid)
6678 {
6679 if (remote_debug)
6680 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6681
6682 if (target_is_non_stop_p ())
6683 remote_stop_ns (ptid);
6684 else
6685 {
6686 /* We don't currently have a way to transparently pause the
6687 remote target in all-stop mode. Interrupt it instead. */
6688 remote_interrupt_as ();
6689 }
6690 }
6691
6692 /* Implement the to_interrupt function for the remote targets. */
6693
6694 void
6695 remote_target::interrupt ()
6696 {
6697 if (remote_debug)
6698 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6699
6700 if (target_is_non_stop_p ())
6701 remote_interrupt_ns ();
6702 else
6703 remote_interrupt_as ();
6704 }
6705
6706 /* Implement the to_pass_ctrlc function for the remote targets. */
6707
6708 void
6709 remote_target::pass_ctrlc ()
6710 {
6711 struct remote_state *rs = get_remote_state ();
6712
6713 if (remote_debug)
6714 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6715
6716 /* If we're starting up, we're not fully synced yet. Quit
6717 immediately. */
6718 if (rs->starting_up)
6719 quit ();
6720 /* If ^C has already been sent once, offer to disconnect. */
6721 else if (rs->ctrlc_pending_p)
6722 interrupt_query ();
6723 else
6724 target_interrupt ();
6725 }
6726
6727 /* Ask the user what to do when an interrupt is received. */
6728
6729 void
6730 remote_target::interrupt_query ()
6731 {
6732 struct remote_state *rs = get_remote_state ();
6733
6734 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6735 {
6736 if (query (_("The target is not responding to interrupt requests.\n"
6737 "Stop debugging it? ")))
6738 {
6739 remote_unpush_target ();
6740 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6741 }
6742 }
6743 else
6744 {
6745 if (query (_("Interrupted while waiting for the program.\n"
6746 "Give up waiting? ")))
6747 quit ();
6748 }
6749 }
6750
6751 /* Enable/disable target terminal ownership. Most targets can use
6752 terminal groups to control terminal ownership. Remote targets are
6753 different in that explicit transfer of ownership to/from GDB/target
6754 is required. */
6755
6756 void
6757 remote_target::terminal_inferior ()
6758 {
6759 /* NOTE: At this point we could also register our selves as the
6760 recipient of all input. Any characters typed could then be
6761 passed on down to the target. */
6762 }
6763
6764 void
6765 remote_target::terminal_ours ()
6766 {
6767 }
6768
6769 static void
6770 remote_console_output (const char *msg)
6771 {
6772 const char *p;
6773
6774 for (p = msg; p[0] && p[1]; p += 2)
6775 {
6776 char tb[2];
6777 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6778
6779 tb[0] = c;
6780 tb[1] = 0;
6781 fputs_unfiltered (tb, gdb_stdtarg);
6782 }
6783 gdb_flush (gdb_stdtarg);
6784 }
6785
6786 struct stop_reply : public notif_event
6787 {
6788 ~stop_reply ();
6789
6790 /* The identifier of the thread about this event */
6791 ptid_t ptid;
6792
6793 /* The remote state this event is associated with. When the remote
6794 connection, represented by a remote_state object, is closed,
6795 all the associated stop_reply events should be released. */
6796 struct remote_state *rs;
6797
6798 struct target_waitstatus ws;
6799
6800 /* The architecture associated with the expedited registers. */
6801 gdbarch *arch;
6802
6803 /* Expedited registers. This makes remote debugging a bit more
6804 efficient for those targets that provide critical registers as
6805 part of their normal status mechanism (as another roundtrip to
6806 fetch them is avoided). */
6807 std::vector<cached_reg_t> regcache;
6808
6809 enum target_stop_reason stop_reason;
6810
6811 CORE_ADDR watch_data_address;
6812
6813 int core;
6814 };
6815
6816 /* Return the length of the stop reply queue. */
6817
6818 int
6819 remote_target::stop_reply_queue_length ()
6820 {
6821 remote_state *rs = get_remote_state ();
6822 return rs->stop_reply_queue.size ();
6823 }
6824
6825 static void
6826 remote_notif_stop_parse (remote_target *remote,
6827 struct notif_client *self, const char *buf,
6828 struct notif_event *event)
6829 {
6830 remote->remote_parse_stop_reply (buf, (struct stop_reply *) event);
6831 }
6832
6833 static void
6834 remote_notif_stop_ack (remote_target *remote,
6835 struct notif_client *self, const char *buf,
6836 struct notif_event *event)
6837 {
6838 struct stop_reply *stop_reply = (struct stop_reply *) event;
6839
6840 /* acknowledge */
6841 putpkt (remote, self->ack_command);
6842
6843 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6844 {
6845 /* We got an unknown stop reply. */
6846 error (_("Unknown stop reply"));
6847 }
6848
6849 remote->push_stop_reply (stop_reply);
6850 }
6851
6852 static int
6853 remote_notif_stop_can_get_pending_events (remote_target *remote,
6854 struct notif_client *self)
6855 {
6856 /* We can't get pending events in remote_notif_process for
6857 notification stop, and we have to do this in remote_wait_ns
6858 instead. If we fetch all queued events from stub, remote stub
6859 may exit and we have no chance to process them back in
6860 remote_wait_ns. */
6861 remote_state *rs = remote->get_remote_state ();
6862 mark_async_event_handler (rs->remote_async_inferior_event_token);
6863 return 0;
6864 }
6865
6866 stop_reply::~stop_reply ()
6867 {
6868 for (cached_reg_t &reg : regcache)
6869 xfree (reg.data);
6870 }
6871
6872 static notif_event_up
6873 remote_notif_stop_alloc_reply ()
6874 {
6875 return notif_event_up (new struct stop_reply ());
6876 }
6877
6878 /* A client of notification Stop. */
6879
6880 struct notif_client notif_client_stop =
6881 {
6882 "Stop",
6883 "vStopped",
6884 remote_notif_stop_parse,
6885 remote_notif_stop_ack,
6886 remote_notif_stop_can_get_pending_events,
6887 remote_notif_stop_alloc_reply,
6888 REMOTE_NOTIF_STOP,
6889 };
6890
6891 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
6892 the pid of the process that owns the threads we want to check, or
6893 -1 if we want to check all threads. */
6894
6895 static int
6896 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6897 ptid_t thread_ptid)
6898 {
6899 if (ws->kind == TARGET_WAITKIND_FORKED
6900 || ws->kind == TARGET_WAITKIND_VFORKED)
6901 {
6902 if (event_pid == -1 || event_pid == thread_ptid.pid ())
6903 return 1;
6904 }
6905
6906 return 0;
6907 }
6908
6909 /* Return the thread's pending status used to determine whether the
6910 thread is a fork parent stopped at a fork event. */
6911
6912 static struct target_waitstatus *
6913 thread_pending_fork_status (struct thread_info *thread)
6914 {
6915 if (thread->suspend.waitstatus_pending_p)
6916 return &thread->suspend.waitstatus;
6917 else
6918 return &thread->pending_follow;
6919 }
6920
6921 /* Determine if THREAD is a pending fork parent thread. */
6922
6923 static int
6924 is_pending_fork_parent_thread (struct thread_info *thread)
6925 {
6926 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6927 int pid = -1;
6928
6929 return is_pending_fork_parent (ws, pid, thread->ptid);
6930 }
6931
6932 /* If CONTEXT contains any fork child threads that have not been
6933 reported yet, remove them from the CONTEXT list. If such a
6934 thread exists it is because we are stopped at a fork catchpoint
6935 and have not yet called follow_fork, which will set up the
6936 host-side data structures for the new process. */
6937
6938 void
6939 remote_target::remove_new_fork_children (threads_listing_context *context)
6940 {
6941 int pid = -1;
6942 struct notif_client *notif = &notif_client_stop;
6943
6944 /* For any threads stopped at a fork event, remove the corresponding
6945 fork child threads from the CONTEXT list. */
6946 for (thread_info *thread : all_non_exited_threads ())
6947 {
6948 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6949
6950 if (is_pending_fork_parent (ws, pid, thread->ptid))
6951 context->remove_thread (ws->value.related_pid);
6952 }
6953
6954 /* Check for any pending fork events (not reported or processed yet)
6955 in process PID and remove those fork child threads from the
6956 CONTEXT list as well. */
6957 remote_notif_get_pending_events (notif);
6958 for (auto &event : get_remote_state ()->stop_reply_queue)
6959 if (event->ws.kind == TARGET_WAITKIND_FORKED
6960 || event->ws.kind == TARGET_WAITKIND_VFORKED
6961 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
6962 context->remove_thread (event->ws.value.related_pid);
6963 }
6964
6965 /* Check whether any event pending in the vStopped queue would prevent
6966 a global or process wildcard vCont action. Clear
6967 *may_global_wildcard if we can't do a global wildcard (vCont;c),
6968 and clear the event inferior's may_wildcard_vcont flag if we can't
6969 do a process-wide wildcard resume (vCont;c:pPID.-1). */
6970
6971 void
6972 remote_target::check_pending_events_prevent_wildcard_vcont
6973 (int *may_global_wildcard)
6974 {
6975 struct notif_client *notif = &notif_client_stop;
6976
6977 remote_notif_get_pending_events (notif);
6978 for (auto &event : get_remote_state ()->stop_reply_queue)
6979 {
6980 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
6981 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
6982 continue;
6983
6984 if (event->ws.kind == TARGET_WAITKIND_FORKED
6985 || event->ws.kind == TARGET_WAITKIND_VFORKED)
6986 *may_global_wildcard = 0;
6987
6988 struct inferior *inf = find_inferior_ptid (event->ptid);
6989
6990 /* This may be the first time we heard about this process.
6991 Regardless, we must not do a global wildcard resume, otherwise
6992 we'd resume this process too. */
6993 *may_global_wildcard = 0;
6994 if (inf != NULL)
6995 get_remote_inferior (inf)->may_wildcard_vcont = false;
6996 }
6997 }
6998
6999 /* Discard all pending stop replies of inferior INF. */
7000
7001 void
7002 remote_target::discard_pending_stop_replies (struct inferior *inf)
7003 {
7004 struct stop_reply *reply;
7005 struct remote_state *rs = get_remote_state ();
7006 struct remote_notif_state *rns = rs->notif_state;
7007
7008 /* This function can be notified when an inferior exists. When the
7009 target is not remote, the notification state is NULL. */
7010 if (rs->remote_desc == NULL)
7011 return;
7012
7013 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
7014
7015 /* Discard the in-flight notification. */
7016 if (reply != NULL && reply->ptid.pid () == inf->pid)
7017 {
7018 delete reply;
7019 rns->pending_event[notif_client_stop.id] = NULL;
7020 }
7021
7022 /* Discard the stop replies we have already pulled with
7023 vStopped. */
7024 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7025 rs->stop_reply_queue.end (),
7026 [=] (const stop_reply_up &event)
7027 {
7028 return event->ptid.pid () == inf->pid;
7029 });
7030 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7031 }
7032
7033 /* Discard the stop replies for RS in stop_reply_queue. */
7034
7035 void
7036 remote_target::discard_pending_stop_replies_in_queue ()
7037 {
7038 remote_state *rs = get_remote_state ();
7039
7040 /* Discard the stop replies we have already pulled with
7041 vStopped. */
7042 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7043 rs->stop_reply_queue.end (),
7044 [=] (const stop_reply_up &event)
7045 {
7046 return event->rs == rs;
7047 });
7048 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7049 }
7050
7051 /* Remove the first reply in 'stop_reply_queue' which matches
7052 PTID. */
7053
7054 struct stop_reply *
7055 remote_target::remote_notif_remove_queued_reply (ptid_t ptid)
7056 {
7057 remote_state *rs = get_remote_state ();
7058
7059 auto iter = std::find_if (rs->stop_reply_queue.begin (),
7060 rs->stop_reply_queue.end (),
7061 [=] (const stop_reply_up &event)
7062 {
7063 return event->ptid.matches (ptid);
7064 });
7065 struct stop_reply *result;
7066 if (iter == rs->stop_reply_queue.end ())
7067 result = nullptr;
7068 else
7069 {
7070 result = iter->release ();
7071 rs->stop_reply_queue.erase (iter);
7072 }
7073
7074 if (notif_debug)
7075 fprintf_unfiltered (gdb_stdlog,
7076 "notif: discard queued event: 'Stop' in %s\n",
7077 target_pid_to_str (ptid).c_str ());
7078
7079 return result;
7080 }
7081
7082 /* Look for a queued stop reply belonging to PTID. If one is found,
7083 remove it from the queue, and return it. Returns NULL if none is
7084 found. If there are still queued events left to process, tell the
7085 event loop to get back to target_wait soon. */
7086
7087 struct stop_reply *
7088 remote_target::queued_stop_reply (ptid_t ptid)
7089 {
7090 remote_state *rs = get_remote_state ();
7091 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
7092
7093 if (!rs->stop_reply_queue.empty ())
7094 {
7095 /* There's still at least an event left. */
7096 mark_async_event_handler (rs->remote_async_inferior_event_token);
7097 }
7098
7099 return r;
7100 }
7101
7102 /* Push a fully parsed stop reply in the stop reply queue. Since we
7103 know that we now have at least one queued event left to pass to the
7104 core side, tell the event loop to get back to target_wait soon. */
7105
7106 void
7107 remote_target::push_stop_reply (struct stop_reply *new_event)
7108 {
7109 remote_state *rs = get_remote_state ();
7110 rs->stop_reply_queue.push_back (stop_reply_up (new_event));
7111
7112 if (notif_debug)
7113 fprintf_unfiltered (gdb_stdlog,
7114 "notif: push 'Stop' %s to queue %d\n",
7115 target_pid_to_str (new_event->ptid).c_str (),
7116 int (rs->stop_reply_queue.size ()));
7117
7118 mark_async_event_handler (rs->remote_async_inferior_event_token);
7119 }
7120
7121 /* Returns true if we have a stop reply for PTID. */
7122
7123 int
7124 remote_target::peek_stop_reply (ptid_t ptid)
7125 {
7126 remote_state *rs = get_remote_state ();
7127 for (auto &event : rs->stop_reply_queue)
7128 if (ptid == event->ptid
7129 && event->ws.kind == TARGET_WAITKIND_STOPPED)
7130 return 1;
7131 return 0;
7132 }
7133
7134 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7135 starting with P and ending with PEND matches PREFIX. */
7136
7137 static int
7138 strprefix (const char *p, const char *pend, const char *prefix)
7139 {
7140 for ( ; p < pend; p++, prefix++)
7141 if (*p != *prefix)
7142 return 0;
7143 return *prefix == '\0';
7144 }
7145
7146 /* Parse the stop reply in BUF. Either the function succeeds, and the
7147 result is stored in EVENT, or throws an error. */
7148
7149 void
7150 remote_target::remote_parse_stop_reply (const char *buf, stop_reply *event)
7151 {
7152 remote_arch_state *rsa = NULL;
7153 ULONGEST addr;
7154 const char *p;
7155 int skipregs = 0;
7156
7157 event->ptid = null_ptid;
7158 event->rs = get_remote_state ();
7159 event->ws.kind = TARGET_WAITKIND_IGNORE;
7160 event->ws.value.integer = 0;
7161 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7162 event->regcache.clear ();
7163 event->core = -1;
7164
7165 switch (buf[0])
7166 {
7167 case 'T': /* Status with PC, SP, FP, ... */
7168 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7169 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7170 ss = signal number
7171 n... = register number
7172 r... = register contents
7173 */
7174
7175 p = &buf[3]; /* after Txx */
7176 while (*p)
7177 {
7178 const char *p1;
7179 int fieldsize;
7180
7181 p1 = strchr (p, ':');
7182 if (p1 == NULL)
7183 error (_("Malformed packet(a) (missing colon): %s\n\
7184 Packet: '%s'\n"),
7185 p, buf);
7186 if (p == p1)
7187 error (_("Malformed packet(a) (missing register number): %s\n\
7188 Packet: '%s'\n"),
7189 p, buf);
7190
7191 /* Some "registers" are actually extended stop information.
7192 Note if you're adding a new entry here: GDB 7.9 and
7193 earlier assume that all register "numbers" that start
7194 with an hex digit are real register numbers. Make sure
7195 the server only sends such a packet if it knows the
7196 client understands it. */
7197
7198 if (strprefix (p, p1, "thread"))
7199 event->ptid = read_ptid (++p1, &p);
7200 else if (strprefix (p, p1, "syscall_entry"))
7201 {
7202 ULONGEST sysno;
7203
7204 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
7205 p = unpack_varlen_hex (++p1, &sysno);
7206 event->ws.value.syscall_number = (int) sysno;
7207 }
7208 else if (strprefix (p, p1, "syscall_return"))
7209 {
7210 ULONGEST sysno;
7211
7212 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
7213 p = unpack_varlen_hex (++p1, &sysno);
7214 event->ws.value.syscall_number = (int) sysno;
7215 }
7216 else if (strprefix (p, p1, "watch")
7217 || strprefix (p, p1, "rwatch")
7218 || strprefix (p, p1, "awatch"))
7219 {
7220 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7221 p = unpack_varlen_hex (++p1, &addr);
7222 event->watch_data_address = (CORE_ADDR) addr;
7223 }
7224 else if (strprefix (p, p1, "swbreak"))
7225 {
7226 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7227
7228 /* Make sure the stub doesn't forget to indicate support
7229 with qSupported. */
7230 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7231 error (_("Unexpected swbreak stop reason"));
7232
7233 /* The value part is documented as "must be empty",
7234 though we ignore it, in case we ever decide to make
7235 use of it in a backward compatible way. */
7236 p = strchrnul (p1 + 1, ';');
7237 }
7238 else if (strprefix (p, p1, "hwbreak"))
7239 {
7240 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7241
7242 /* Make sure the stub doesn't forget to indicate support
7243 with qSupported. */
7244 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7245 error (_("Unexpected hwbreak stop reason"));
7246
7247 /* See above. */
7248 p = strchrnul (p1 + 1, ';');
7249 }
7250 else if (strprefix (p, p1, "library"))
7251 {
7252 event->ws.kind = TARGET_WAITKIND_LOADED;
7253 p = strchrnul (p1 + 1, ';');
7254 }
7255 else if (strprefix (p, p1, "replaylog"))
7256 {
7257 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
7258 /* p1 will indicate "begin" or "end", but it makes
7259 no difference for now, so ignore it. */
7260 p = strchrnul (p1 + 1, ';');
7261 }
7262 else if (strprefix (p, p1, "core"))
7263 {
7264 ULONGEST c;
7265
7266 p = unpack_varlen_hex (++p1, &c);
7267 event->core = c;
7268 }
7269 else if (strprefix (p, p1, "fork"))
7270 {
7271 event->ws.value.related_pid = read_ptid (++p1, &p);
7272 event->ws.kind = TARGET_WAITKIND_FORKED;
7273 }
7274 else if (strprefix (p, p1, "vfork"))
7275 {
7276 event->ws.value.related_pid = read_ptid (++p1, &p);
7277 event->ws.kind = TARGET_WAITKIND_VFORKED;
7278 }
7279 else if (strprefix (p, p1, "vforkdone"))
7280 {
7281 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
7282 p = strchrnul (p1 + 1, ';');
7283 }
7284 else if (strprefix (p, p1, "exec"))
7285 {
7286 ULONGEST ignored;
7287 int pathlen;
7288
7289 /* Determine the length of the execd pathname. */
7290 p = unpack_varlen_hex (++p1, &ignored);
7291 pathlen = (p - p1) / 2;
7292
7293 /* Save the pathname for event reporting and for
7294 the next run command. */
7295 gdb::unique_xmalloc_ptr<char[]> pathname
7296 ((char *) xmalloc (pathlen + 1));
7297 hex2bin (p1, (gdb_byte *) pathname.get (), pathlen);
7298 pathname[pathlen] = '\0';
7299
7300 /* This is freed during event handling. */
7301 event->ws.value.execd_pathname = pathname.release ();
7302 event->ws.kind = TARGET_WAITKIND_EXECD;
7303
7304 /* Skip the registers included in this packet, since
7305 they may be for an architecture different from the
7306 one used by the original program. */
7307 skipregs = 1;
7308 }
7309 else if (strprefix (p, p1, "create"))
7310 {
7311 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
7312 p = strchrnul (p1 + 1, ';');
7313 }
7314 else
7315 {
7316 ULONGEST pnum;
7317 const char *p_temp;
7318
7319 if (skipregs)
7320 {
7321 p = strchrnul (p1 + 1, ';');
7322 p++;
7323 continue;
7324 }
7325
7326 /* Maybe a real ``P'' register number. */
7327 p_temp = unpack_varlen_hex (p, &pnum);
7328 /* If the first invalid character is the colon, we got a
7329 register number. Otherwise, it's an unknown stop
7330 reason. */
7331 if (p_temp == p1)
7332 {
7333 /* If we haven't parsed the event's thread yet, find
7334 it now, in order to find the architecture of the
7335 reported expedited registers. */
7336 if (event->ptid == null_ptid)
7337 {
7338 const char *thr = strstr (p1 + 1, ";thread:");
7339 if (thr != NULL)
7340 event->ptid = read_ptid (thr + strlen (";thread:"),
7341 NULL);
7342 else
7343 {
7344 /* Either the current thread hasn't changed,
7345 or the inferior is not multi-threaded.
7346 The event must be for the thread we last
7347 set as (or learned as being) current. */
7348 event->ptid = event->rs->general_thread;
7349 }
7350 }
7351
7352 if (rsa == NULL)
7353 {
7354 inferior *inf = (event->ptid == null_ptid
7355 ? NULL
7356 : find_inferior_ptid (event->ptid));
7357 /* If this is the first time we learn anything
7358 about this process, skip the registers
7359 included in this packet, since we don't yet
7360 know which architecture to use to parse them.
7361 We'll determine the architecture later when
7362 we process the stop reply and retrieve the
7363 target description, via
7364 remote_notice_new_inferior ->
7365 post_create_inferior. */
7366 if (inf == NULL)
7367 {
7368 p = strchrnul (p1 + 1, ';');
7369 p++;
7370 continue;
7371 }
7372
7373 event->arch = inf->gdbarch;
7374 rsa = event->rs->get_remote_arch_state (event->arch);
7375 }
7376
7377 packet_reg *reg
7378 = packet_reg_from_pnum (event->arch, rsa, pnum);
7379 cached_reg_t cached_reg;
7380
7381 if (reg == NULL)
7382 error (_("Remote sent bad register number %s: %s\n\
7383 Packet: '%s'\n"),
7384 hex_string (pnum), p, buf);
7385
7386 cached_reg.num = reg->regnum;
7387 cached_reg.data = (gdb_byte *)
7388 xmalloc (register_size (event->arch, reg->regnum));
7389
7390 p = p1 + 1;
7391 fieldsize = hex2bin (p, cached_reg.data,
7392 register_size (event->arch, reg->regnum));
7393 p += 2 * fieldsize;
7394 if (fieldsize < register_size (event->arch, reg->regnum))
7395 warning (_("Remote reply is too short: %s"), buf);
7396
7397 event->regcache.push_back (cached_reg);
7398 }
7399 else
7400 {
7401 /* Not a number. Silently skip unknown optional
7402 info. */
7403 p = strchrnul (p1 + 1, ';');
7404 }
7405 }
7406
7407 if (*p != ';')
7408 error (_("Remote register badly formatted: %s\nhere: %s"),
7409 buf, p);
7410 ++p;
7411 }
7412
7413 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7414 break;
7415
7416 /* fall through */
7417 case 'S': /* Old style status, just signal only. */
7418 {
7419 int sig;
7420
7421 event->ws.kind = TARGET_WAITKIND_STOPPED;
7422 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7423 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7424 event->ws.value.sig = (enum gdb_signal) sig;
7425 else
7426 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7427 }
7428 break;
7429 case 'w': /* Thread exited. */
7430 {
7431 ULONGEST value;
7432
7433 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7434 p = unpack_varlen_hex (&buf[1], &value);
7435 event->ws.value.integer = value;
7436 if (*p != ';')
7437 error (_("stop reply packet badly formatted: %s"), buf);
7438 event->ptid = read_ptid (++p, NULL);
7439 break;
7440 }
7441 case 'W': /* Target exited. */
7442 case 'X':
7443 {
7444 ULONGEST value;
7445
7446 /* GDB used to accept only 2 hex chars here. Stubs should
7447 only send more if they detect GDB supports multi-process
7448 support. */
7449 p = unpack_varlen_hex (&buf[1], &value);
7450
7451 if (buf[0] == 'W')
7452 {
7453 /* The remote process exited. */
7454 event->ws.kind = TARGET_WAITKIND_EXITED;
7455 event->ws.value.integer = value;
7456 }
7457 else
7458 {
7459 /* The remote process exited with a signal. */
7460 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7461 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7462 event->ws.value.sig = (enum gdb_signal) value;
7463 else
7464 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7465 }
7466
7467 /* If no process is specified, return null_ptid, and let the
7468 caller figure out the right process to use. */
7469 int pid = 0;
7470 if (*p == '\0')
7471 ;
7472 else if (*p == ';')
7473 {
7474 p++;
7475
7476 if (*p == '\0')
7477 ;
7478 else if (startswith (p, "process:"))
7479 {
7480 ULONGEST upid;
7481
7482 p += sizeof ("process:") - 1;
7483 unpack_varlen_hex (p, &upid);
7484 pid = upid;
7485 }
7486 else
7487 error (_("unknown stop reply packet: %s"), buf);
7488 }
7489 else
7490 error (_("unknown stop reply packet: %s"), buf);
7491 event->ptid = ptid_t (pid);
7492 }
7493 break;
7494 case 'N':
7495 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7496 event->ptid = minus_one_ptid;
7497 break;
7498 }
7499
7500 if (target_is_non_stop_p () && event->ptid == null_ptid)
7501 error (_("No process or thread specified in stop reply: %s"), buf);
7502 }
7503
7504 /* When the stub wants to tell GDB about a new notification reply, it
7505 sends a notification (%Stop, for example). Those can come it at
7506 any time, hence, we have to make sure that any pending
7507 putpkt/getpkt sequence we're making is finished, before querying
7508 the stub for more events with the corresponding ack command
7509 (vStopped, for example). E.g., if we started a vStopped sequence
7510 immediately upon receiving the notification, something like this
7511 could happen:
7512
7513 1.1) --> Hg 1
7514 1.2) <-- OK
7515 1.3) --> g
7516 1.4) <-- %Stop
7517 1.5) --> vStopped
7518 1.6) <-- (registers reply to step #1.3)
7519
7520 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7521 query.
7522
7523 To solve this, whenever we parse a %Stop notification successfully,
7524 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7525 doing whatever we were doing:
7526
7527 2.1) --> Hg 1
7528 2.2) <-- OK
7529 2.3) --> g
7530 2.4) <-- %Stop
7531 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7532 2.5) <-- (registers reply to step #2.3)
7533
7534 Eventually after step #2.5, we return to the event loop, which
7535 notices there's an event on the
7536 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7537 associated callback --- the function below. At this point, we're
7538 always safe to start a vStopped sequence. :
7539
7540 2.6) --> vStopped
7541 2.7) <-- T05 thread:2
7542 2.8) --> vStopped
7543 2.9) --> OK
7544 */
7545
7546 void
7547 remote_target::remote_notif_get_pending_events (notif_client *nc)
7548 {
7549 struct remote_state *rs = get_remote_state ();
7550
7551 if (rs->notif_state->pending_event[nc->id] != NULL)
7552 {
7553 if (notif_debug)
7554 fprintf_unfiltered (gdb_stdlog,
7555 "notif: process: '%s' ack pending event\n",
7556 nc->name);
7557
7558 /* acknowledge */
7559 nc->ack (this, nc, rs->buf.data (),
7560 rs->notif_state->pending_event[nc->id]);
7561 rs->notif_state->pending_event[nc->id] = NULL;
7562
7563 while (1)
7564 {
7565 getpkt (&rs->buf, 0);
7566 if (strcmp (rs->buf.data (), "OK") == 0)
7567 break;
7568 else
7569 remote_notif_ack (this, nc, rs->buf.data ());
7570 }
7571 }
7572 else
7573 {
7574 if (notif_debug)
7575 fprintf_unfiltered (gdb_stdlog,
7576 "notif: process: '%s' no pending reply\n",
7577 nc->name);
7578 }
7579 }
7580
7581 /* Wrapper around remote_target::remote_notif_get_pending_events to
7582 avoid having to export the whole remote_target class. */
7583
7584 void
7585 remote_notif_get_pending_events (remote_target *remote, notif_client *nc)
7586 {
7587 remote->remote_notif_get_pending_events (nc);
7588 }
7589
7590 /* Called when it is decided that STOP_REPLY holds the info of the
7591 event that is to be returned to the core. This function always
7592 destroys STOP_REPLY. */
7593
7594 ptid_t
7595 remote_target::process_stop_reply (struct stop_reply *stop_reply,
7596 struct target_waitstatus *status)
7597 {
7598 ptid_t ptid;
7599
7600 *status = stop_reply->ws;
7601 ptid = stop_reply->ptid;
7602
7603 /* If no thread/process was reported by the stub, assume the current
7604 inferior. */
7605 if (ptid == null_ptid)
7606 ptid = inferior_ptid;
7607
7608 if (status->kind != TARGET_WAITKIND_EXITED
7609 && status->kind != TARGET_WAITKIND_SIGNALLED
7610 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7611 {
7612 /* Expedited registers. */
7613 if (!stop_reply->regcache.empty ())
7614 {
7615 struct regcache *regcache
7616 = get_thread_arch_regcache (ptid, stop_reply->arch);
7617
7618 for (cached_reg_t &reg : stop_reply->regcache)
7619 {
7620 regcache->raw_supply (reg.num, reg.data);
7621 xfree (reg.data);
7622 }
7623
7624 stop_reply->regcache.clear ();
7625 }
7626
7627 remote_notice_new_inferior (ptid, 0);
7628 remote_thread_info *remote_thr = get_remote_thread_info (ptid);
7629 remote_thr->core = stop_reply->core;
7630 remote_thr->stop_reason = stop_reply->stop_reason;
7631 remote_thr->watch_data_address = stop_reply->watch_data_address;
7632 remote_thr->vcont_resumed = 0;
7633 }
7634
7635 delete stop_reply;
7636 return ptid;
7637 }
7638
7639 /* The non-stop mode version of target_wait. */
7640
7641 ptid_t
7642 remote_target::wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
7643 {
7644 struct remote_state *rs = get_remote_state ();
7645 struct stop_reply *stop_reply;
7646 int ret;
7647 int is_notif = 0;
7648
7649 /* If in non-stop mode, get out of getpkt even if a
7650 notification is received. */
7651
7652 ret = getpkt_or_notif_sane (&rs->buf, 0 /* forever */, &is_notif);
7653 while (1)
7654 {
7655 if (ret != -1 && !is_notif)
7656 switch (rs->buf[0])
7657 {
7658 case 'E': /* Error of some sort. */
7659 /* We're out of sync with the target now. Did it continue
7660 or not? We can't tell which thread it was in non-stop,
7661 so just ignore this. */
7662 warning (_("Remote failure reply: %s"), rs->buf.data ());
7663 break;
7664 case 'O': /* Console output. */
7665 remote_console_output (&rs->buf[1]);
7666 break;
7667 default:
7668 warning (_("Invalid remote reply: %s"), rs->buf.data ());
7669 break;
7670 }
7671
7672 /* Acknowledge a pending stop reply that may have arrived in the
7673 mean time. */
7674 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7675 remote_notif_get_pending_events (&notif_client_stop);
7676
7677 /* If indeed we noticed a stop reply, we're done. */
7678 stop_reply = queued_stop_reply (ptid);
7679 if (stop_reply != NULL)
7680 return process_stop_reply (stop_reply, status);
7681
7682 /* Still no event. If we're just polling for an event, then
7683 return to the event loop. */
7684 if (options & TARGET_WNOHANG)
7685 {
7686 status->kind = TARGET_WAITKIND_IGNORE;
7687 return minus_one_ptid;
7688 }
7689
7690 /* Otherwise do a blocking wait. */
7691 ret = getpkt_or_notif_sane (&rs->buf, 1 /* forever */, &is_notif);
7692 }
7693 }
7694
7695 /* Return the first resumed thread. */
7696
7697 static ptid_t
7698 first_remote_resumed_thread ()
7699 {
7700 for (thread_info *tp : all_non_exited_threads (minus_one_ptid))
7701 if (tp->resumed)
7702 return tp->ptid;
7703 return null_ptid;
7704 }
7705
7706 /* Wait until the remote machine stops, then return, storing status in
7707 STATUS just as `wait' would. */
7708
7709 ptid_t
7710 remote_target::wait_as (ptid_t ptid, target_waitstatus *status, int options)
7711 {
7712 struct remote_state *rs = get_remote_state ();
7713 ptid_t event_ptid = null_ptid;
7714 char *buf;
7715 struct stop_reply *stop_reply;
7716
7717 again:
7718
7719 status->kind = TARGET_WAITKIND_IGNORE;
7720 status->value.integer = 0;
7721
7722 stop_reply = queued_stop_reply (ptid);
7723 if (stop_reply != NULL)
7724 return process_stop_reply (stop_reply, status);
7725
7726 if (rs->cached_wait_status)
7727 /* Use the cached wait status, but only once. */
7728 rs->cached_wait_status = 0;
7729 else
7730 {
7731 int ret;
7732 int is_notif;
7733 int forever = ((options & TARGET_WNOHANG) == 0
7734 && rs->wait_forever_enabled_p);
7735
7736 if (!rs->waiting_for_stop_reply)
7737 {
7738 status->kind = TARGET_WAITKIND_NO_RESUMED;
7739 return minus_one_ptid;
7740 }
7741
7742 /* FIXME: cagney/1999-09-27: If we're in async mode we should
7743 _never_ wait for ever -> test on target_is_async_p().
7744 However, before we do that we need to ensure that the caller
7745 knows how to take the target into/out of async mode. */
7746 ret = getpkt_or_notif_sane (&rs->buf, forever, &is_notif);
7747
7748 /* GDB gets a notification. Return to core as this event is
7749 not interesting. */
7750 if (ret != -1 && is_notif)
7751 return minus_one_ptid;
7752
7753 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7754 return minus_one_ptid;
7755 }
7756
7757 buf = rs->buf.data ();
7758
7759 /* Assume that the target has acknowledged Ctrl-C unless we receive
7760 an 'F' or 'O' packet. */
7761 if (buf[0] != 'F' && buf[0] != 'O')
7762 rs->ctrlc_pending_p = 0;
7763
7764 switch (buf[0])
7765 {
7766 case 'E': /* Error of some sort. */
7767 /* We're out of sync with the target now. Did it continue or
7768 not? Not is more likely, so report a stop. */
7769 rs->waiting_for_stop_reply = 0;
7770
7771 warning (_("Remote failure reply: %s"), buf);
7772 status->kind = TARGET_WAITKIND_STOPPED;
7773 status->value.sig = GDB_SIGNAL_0;
7774 break;
7775 case 'F': /* File-I/O request. */
7776 /* GDB may access the inferior memory while handling the File-I/O
7777 request, but we don't want GDB accessing memory while waiting
7778 for a stop reply. See the comments in putpkt_binary. Set
7779 waiting_for_stop_reply to 0 temporarily. */
7780 rs->waiting_for_stop_reply = 0;
7781 remote_fileio_request (this, buf, rs->ctrlc_pending_p);
7782 rs->ctrlc_pending_p = 0;
7783 /* GDB handled the File-I/O request, and the target is running
7784 again. Keep waiting for events. */
7785 rs->waiting_for_stop_reply = 1;
7786 break;
7787 case 'N': case 'T': case 'S': case 'X': case 'W':
7788 {
7789 /* There is a stop reply to handle. */
7790 rs->waiting_for_stop_reply = 0;
7791
7792 stop_reply
7793 = (struct stop_reply *) remote_notif_parse (this,
7794 &notif_client_stop,
7795 rs->buf.data ());
7796
7797 event_ptid = process_stop_reply (stop_reply, status);
7798 break;
7799 }
7800 case 'O': /* Console output. */
7801 remote_console_output (buf + 1);
7802 break;
7803 case '\0':
7804 if (rs->last_sent_signal != GDB_SIGNAL_0)
7805 {
7806 /* Zero length reply means that we tried 'S' or 'C' and the
7807 remote system doesn't support it. */
7808 target_terminal::ours_for_output ();
7809 printf_filtered
7810 ("Can't send signals to this remote system. %s not sent.\n",
7811 gdb_signal_to_name (rs->last_sent_signal));
7812 rs->last_sent_signal = GDB_SIGNAL_0;
7813 target_terminal::inferior ();
7814
7815 strcpy (buf, rs->last_sent_step ? "s" : "c");
7816 putpkt (buf);
7817 break;
7818 }
7819 /* fallthrough */
7820 default:
7821 warning (_("Invalid remote reply: %s"), buf);
7822 break;
7823 }
7824
7825 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7826 return minus_one_ptid;
7827 else if (status->kind == TARGET_WAITKIND_IGNORE)
7828 {
7829 /* Nothing interesting happened. If we're doing a non-blocking
7830 poll, we're done. Otherwise, go back to waiting. */
7831 if (options & TARGET_WNOHANG)
7832 return minus_one_ptid;
7833 else
7834 goto again;
7835 }
7836 else if (status->kind != TARGET_WAITKIND_EXITED
7837 && status->kind != TARGET_WAITKIND_SIGNALLED)
7838 {
7839 if (event_ptid != null_ptid)
7840 record_currthread (rs, event_ptid);
7841 else
7842 event_ptid = first_remote_resumed_thread ();
7843 }
7844 else
7845 {
7846 /* A process exit. Invalidate our notion of current thread. */
7847 record_currthread (rs, minus_one_ptid);
7848 /* It's possible that the packet did not include a pid. */
7849 if (event_ptid == null_ptid)
7850 event_ptid = first_remote_resumed_thread ();
7851 /* EVENT_PTID could still be NULL_PTID. Double-check. */
7852 if (event_ptid == null_ptid)
7853 event_ptid = magic_null_ptid;
7854 }
7855
7856 return event_ptid;
7857 }
7858
7859 /* Wait until the remote machine stops, then return, storing status in
7860 STATUS just as `wait' would. */
7861
7862 ptid_t
7863 remote_target::wait (ptid_t ptid, struct target_waitstatus *status, int options)
7864 {
7865 ptid_t event_ptid;
7866
7867 if (target_is_non_stop_p ())
7868 event_ptid = wait_ns (ptid, status, options);
7869 else
7870 event_ptid = wait_as (ptid, status, options);
7871
7872 if (target_is_async_p ())
7873 {
7874 remote_state *rs = get_remote_state ();
7875
7876 /* If there are are events left in the queue tell the event loop
7877 to return here. */
7878 if (!rs->stop_reply_queue.empty ())
7879 mark_async_event_handler (rs->remote_async_inferior_event_token);
7880 }
7881
7882 return event_ptid;
7883 }
7884
7885 /* Fetch a single register using a 'p' packet. */
7886
7887 int
7888 remote_target::fetch_register_using_p (struct regcache *regcache,
7889 packet_reg *reg)
7890 {
7891 struct gdbarch *gdbarch = regcache->arch ();
7892 struct remote_state *rs = get_remote_state ();
7893 char *buf, *p;
7894 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7895 int i;
7896
7897 if (packet_support (PACKET_p) == PACKET_DISABLE)
7898 return 0;
7899
7900 if (reg->pnum == -1)
7901 return 0;
7902
7903 p = rs->buf.data ();
7904 *p++ = 'p';
7905 p += hexnumstr (p, reg->pnum);
7906 *p++ = '\0';
7907 putpkt (rs->buf);
7908 getpkt (&rs->buf, 0);
7909
7910 buf = rs->buf.data ();
7911
7912 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_p]))
7913 {
7914 case PACKET_OK:
7915 break;
7916 case PACKET_UNKNOWN:
7917 return 0;
7918 case PACKET_ERROR:
7919 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
7920 gdbarch_register_name (regcache->arch (),
7921 reg->regnum),
7922 buf);
7923 }
7924
7925 /* If this register is unfetchable, tell the regcache. */
7926 if (buf[0] == 'x')
7927 {
7928 regcache->raw_supply (reg->regnum, NULL);
7929 return 1;
7930 }
7931
7932 /* Otherwise, parse and supply the value. */
7933 p = buf;
7934 i = 0;
7935 while (p[0] != 0)
7936 {
7937 if (p[1] == 0)
7938 error (_("fetch_register_using_p: early buf termination"));
7939
7940 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
7941 p += 2;
7942 }
7943 regcache->raw_supply (reg->regnum, regp);
7944 return 1;
7945 }
7946
7947 /* Fetch the registers included in the target's 'g' packet. */
7948
7949 int
7950 remote_target::send_g_packet ()
7951 {
7952 struct remote_state *rs = get_remote_state ();
7953 int buf_len;
7954
7955 xsnprintf (rs->buf.data (), get_remote_packet_size (), "g");
7956 putpkt (rs->buf);
7957 getpkt (&rs->buf, 0);
7958 if (packet_check_result (rs->buf) == PACKET_ERROR)
7959 error (_("Could not read registers; remote failure reply '%s'"),
7960 rs->buf.data ());
7961
7962 /* We can get out of synch in various cases. If the first character
7963 in the buffer is not a hex character, assume that has happened
7964 and try to fetch another packet to read. */
7965 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
7966 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
7967 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
7968 && rs->buf[0] != 'x') /* New: unavailable register value. */
7969 {
7970 if (remote_debug)
7971 fprintf_unfiltered (gdb_stdlog,
7972 "Bad register packet; fetching a new packet\n");
7973 getpkt (&rs->buf, 0);
7974 }
7975
7976 buf_len = strlen (rs->buf.data ());
7977
7978 /* Sanity check the received packet. */
7979 if (buf_len % 2 != 0)
7980 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf.data ());
7981
7982 return buf_len / 2;
7983 }
7984
7985 void
7986 remote_target::process_g_packet (struct regcache *regcache)
7987 {
7988 struct gdbarch *gdbarch = regcache->arch ();
7989 struct remote_state *rs = get_remote_state ();
7990 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
7991 int i, buf_len;
7992 char *p;
7993 char *regs;
7994
7995 buf_len = strlen (rs->buf.data ());
7996
7997 /* Further sanity checks, with knowledge of the architecture. */
7998 if (buf_len > 2 * rsa->sizeof_g_packet)
7999 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
8000 "bytes): %s"),
8001 rsa->sizeof_g_packet, buf_len / 2,
8002 rs->buf.data ());
8003
8004 /* Save the size of the packet sent to us by the target. It is used
8005 as a heuristic when determining the max size of packets that the
8006 target can safely receive. */
8007 if (rsa->actual_register_packet_size == 0)
8008 rsa->actual_register_packet_size = buf_len;
8009
8010 /* If this is smaller than we guessed the 'g' packet would be,
8011 update our records. A 'g' reply that doesn't include a register's
8012 value implies either that the register is not available, or that
8013 the 'p' packet must be used. */
8014 if (buf_len < 2 * rsa->sizeof_g_packet)
8015 {
8016 long sizeof_g_packet = buf_len / 2;
8017
8018 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8019 {
8020 long offset = rsa->regs[i].offset;
8021 long reg_size = register_size (gdbarch, i);
8022
8023 if (rsa->regs[i].pnum == -1)
8024 continue;
8025
8026 if (offset >= sizeof_g_packet)
8027 rsa->regs[i].in_g_packet = 0;
8028 else if (offset + reg_size > sizeof_g_packet)
8029 error (_("Truncated register %d in remote 'g' packet"), i);
8030 else
8031 rsa->regs[i].in_g_packet = 1;
8032 }
8033
8034 /* Looks valid enough, we can assume this is the correct length
8035 for a 'g' packet. It's important not to adjust
8036 rsa->sizeof_g_packet if we have truncated registers otherwise
8037 this "if" won't be run the next time the method is called
8038 with a packet of the same size and one of the internal errors
8039 below will trigger instead. */
8040 rsa->sizeof_g_packet = sizeof_g_packet;
8041 }
8042
8043 regs = (char *) alloca (rsa->sizeof_g_packet);
8044
8045 /* Unimplemented registers read as all bits zero. */
8046 memset (regs, 0, rsa->sizeof_g_packet);
8047
8048 /* Reply describes registers byte by byte, each byte encoded as two
8049 hex characters. Suck them all up, then supply them to the
8050 register cacheing/storage mechanism. */
8051
8052 p = rs->buf.data ();
8053 for (i = 0; i < rsa->sizeof_g_packet; i++)
8054 {
8055 if (p[0] == 0 || p[1] == 0)
8056 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
8057 internal_error (__FILE__, __LINE__,
8058 _("unexpected end of 'g' packet reply"));
8059
8060 if (p[0] == 'x' && p[1] == 'x')
8061 regs[i] = 0; /* 'x' */
8062 else
8063 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
8064 p += 2;
8065 }
8066
8067 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8068 {
8069 struct packet_reg *r = &rsa->regs[i];
8070 long reg_size = register_size (gdbarch, i);
8071
8072 if (r->in_g_packet)
8073 {
8074 if ((r->offset + reg_size) * 2 > strlen (rs->buf.data ()))
8075 /* This shouldn't happen - we adjusted in_g_packet above. */
8076 internal_error (__FILE__, __LINE__,
8077 _("unexpected end of 'g' packet reply"));
8078 else if (rs->buf[r->offset * 2] == 'x')
8079 {
8080 gdb_assert (r->offset * 2 < strlen (rs->buf.data ()));
8081 /* The register isn't available, mark it as such (at
8082 the same time setting the value to zero). */
8083 regcache->raw_supply (r->regnum, NULL);
8084 }
8085 else
8086 regcache->raw_supply (r->regnum, regs + r->offset);
8087 }
8088 }
8089 }
8090
8091 void
8092 remote_target::fetch_registers_using_g (struct regcache *regcache)
8093 {
8094 send_g_packet ();
8095 process_g_packet (regcache);
8096 }
8097
8098 /* Make the remote selected traceframe match GDB's selected
8099 traceframe. */
8100
8101 void
8102 remote_target::set_remote_traceframe ()
8103 {
8104 int newnum;
8105 struct remote_state *rs = get_remote_state ();
8106
8107 if (rs->remote_traceframe_number == get_traceframe_number ())
8108 return;
8109
8110 /* Avoid recursion, remote_trace_find calls us again. */
8111 rs->remote_traceframe_number = get_traceframe_number ();
8112
8113 newnum = target_trace_find (tfind_number,
8114 get_traceframe_number (), 0, 0, NULL);
8115
8116 /* Should not happen. If it does, all bets are off. */
8117 if (newnum != get_traceframe_number ())
8118 warning (_("could not set remote traceframe"));
8119 }
8120
8121 void
8122 remote_target::fetch_registers (struct regcache *regcache, int regnum)
8123 {
8124 struct gdbarch *gdbarch = regcache->arch ();
8125 struct remote_state *rs = get_remote_state ();
8126 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8127 int i;
8128
8129 set_remote_traceframe ();
8130 set_general_thread (regcache->ptid ());
8131
8132 if (regnum >= 0)
8133 {
8134 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8135
8136 gdb_assert (reg != NULL);
8137
8138 /* If this register might be in the 'g' packet, try that first -
8139 we are likely to read more than one register. If this is the
8140 first 'g' packet, we might be overly optimistic about its
8141 contents, so fall back to 'p'. */
8142 if (reg->in_g_packet)
8143 {
8144 fetch_registers_using_g (regcache);
8145 if (reg->in_g_packet)
8146 return;
8147 }
8148
8149 if (fetch_register_using_p (regcache, reg))
8150 return;
8151
8152 /* This register is not available. */
8153 regcache->raw_supply (reg->regnum, NULL);
8154
8155 return;
8156 }
8157
8158 fetch_registers_using_g (regcache);
8159
8160 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8161 if (!rsa->regs[i].in_g_packet)
8162 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8163 {
8164 /* This register is not available. */
8165 regcache->raw_supply (i, NULL);
8166 }
8167 }
8168
8169 /* Prepare to store registers. Since we may send them all (using a
8170 'G' request), we have to read out the ones we don't want to change
8171 first. */
8172
8173 void
8174 remote_target::prepare_to_store (struct regcache *regcache)
8175 {
8176 struct remote_state *rs = get_remote_state ();
8177 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8178 int i;
8179
8180 /* Make sure the entire registers array is valid. */
8181 switch (packet_support (PACKET_P))
8182 {
8183 case PACKET_DISABLE:
8184 case PACKET_SUPPORT_UNKNOWN:
8185 /* Make sure all the necessary registers are cached. */
8186 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8187 if (rsa->regs[i].in_g_packet)
8188 regcache->raw_update (rsa->regs[i].regnum);
8189 break;
8190 case PACKET_ENABLE:
8191 break;
8192 }
8193 }
8194
8195 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8196 packet was not recognized. */
8197
8198 int
8199 remote_target::store_register_using_P (const struct regcache *regcache,
8200 packet_reg *reg)
8201 {
8202 struct gdbarch *gdbarch = regcache->arch ();
8203 struct remote_state *rs = get_remote_state ();
8204 /* Try storing a single register. */
8205 char *buf = rs->buf.data ();
8206 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8207 char *p;
8208
8209 if (packet_support (PACKET_P) == PACKET_DISABLE)
8210 return 0;
8211
8212 if (reg->pnum == -1)
8213 return 0;
8214
8215 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8216 p = buf + strlen (buf);
8217 regcache->raw_collect (reg->regnum, regp);
8218 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8219 putpkt (rs->buf);
8220 getpkt (&rs->buf, 0);
8221
8222 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8223 {
8224 case PACKET_OK:
8225 return 1;
8226 case PACKET_ERROR:
8227 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8228 gdbarch_register_name (gdbarch, reg->regnum), rs->buf.data ());
8229 case PACKET_UNKNOWN:
8230 return 0;
8231 default:
8232 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8233 }
8234 }
8235
8236 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8237 contents of the register cache buffer. FIXME: ignores errors. */
8238
8239 void
8240 remote_target::store_registers_using_G (const struct regcache *regcache)
8241 {
8242 struct remote_state *rs = get_remote_state ();
8243 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8244 gdb_byte *regs;
8245 char *p;
8246
8247 /* Extract all the registers in the regcache copying them into a
8248 local buffer. */
8249 {
8250 int i;
8251
8252 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8253 memset (regs, 0, rsa->sizeof_g_packet);
8254 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8255 {
8256 struct packet_reg *r = &rsa->regs[i];
8257
8258 if (r->in_g_packet)
8259 regcache->raw_collect (r->regnum, regs + r->offset);
8260 }
8261 }
8262
8263 /* Command describes registers byte by byte,
8264 each byte encoded as two hex characters. */
8265 p = rs->buf.data ();
8266 *p++ = 'G';
8267 bin2hex (regs, p, rsa->sizeof_g_packet);
8268 putpkt (rs->buf);
8269 getpkt (&rs->buf, 0);
8270 if (packet_check_result (rs->buf) == PACKET_ERROR)
8271 error (_("Could not write registers; remote failure reply '%s'"),
8272 rs->buf.data ());
8273 }
8274
8275 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8276 of the register cache buffer. FIXME: ignores errors. */
8277
8278 void
8279 remote_target::store_registers (struct regcache *regcache, int regnum)
8280 {
8281 struct gdbarch *gdbarch = regcache->arch ();
8282 struct remote_state *rs = get_remote_state ();
8283 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8284 int i;
8285
8286 set_remote_traceframe ();
8287 set_general_thread (regcache->ptid ());
8288
8289 if (regnum >= 0)
8290 {
8291 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8292
8293 gdb_assert (reg != NULL);
8294
8295 /* Always prefer to store registers using the 'P' packet if
8296 possible; we often change only a small number of registers.
8297 Sometimes we change a larger number; we'd need help from a
8298 higher layer to know to use 'G'. */
8299 if (store_register_using_P (regcache, reg))
8300 return;
8301
8302 /* For now, don't complain if we have no way to write the
8303 register. GDB loses track of unavailable registers too
8304 easily. Some day, this may be an error. We don't have
8305 any way to read the register, either... */
8306 if (!reg->in_g_packet)
8307 return;
8308
8309 store_registers_using_G (regcache);
8310 return;
8311 }
8312
8313 store_registers_using_G (regcache);
8314
8315 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8316 if (!rsa->regs[i].in_g_packet)
8317 if (!store_register_using_P (regcache, &rsa->regs[i]))
8318 /* See above for why we do not issue an error here. */
8319 continue;
8320 }
8321 \f
8322
8323 /* Return the number of hex digits in num. */
8324
8325 static int
8326 hexnumlen (ULONGEST num)
8327 {
8328 int i;
8329
8330 for (i = 0; num != 0; i++)
8331 num >>= 4;
8332
8333 return std::max (i, 1);
8334 }
8335
8336 /* Set BUF to the minimum number of hex digits representing NUM. */
8337
8338 static int
8339 hexnumstr (char *buf, ULONGEST num)
8340 {
8341 int len = hexnumlen (num);
8342
8343 return hexnumnstr (buf, num, len);
8344 }
8345
8346
8347 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8348
8349 static int
8350 hexnumnstr (char *buf, ULONGEST num, int width)
8351 {
8352 int i;
8353
8354 buf[width] = '\0';
8355
8356 for (i = width - 1; i >= 0; i--)
8357 {
8358 buf[i] = "0123456789abcdef"[(num & 0xf)];
8359 num >>= 4;
8360 }
8361
8362 return width;
8363 }
8364
8365 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8366
8367 static CORE_ADDR
8368 remote_address_masked (CORE_ADDR addr)
8369 {
8370 unsigned int address_size = remote_address_size;
8371
8372 /* If "remoteaddresssize" was not set, default to target address size. */
8373 if (!address_size)
8374 address_size = gdbarch_addr_bit (target_gdbarch ());
8375
8376 if (address_size > 0
8377 && address_size < (sizeof (ULONGEST) * 8))
8378 {
8379 /* Only create a mask when that mask can safely be constructed
8380 in a ULONGEST variable. */
8381 ULONGEST mask = 1;
8382
8383 mask = (mask << address_size) - 1;
8384 addr &= mask;
8385 }
8386 return addr;
8387 }
8388
8389 /* Determine whether the remote target supports binary downloading.
8390 This is accomplished by sending a no-op memory write of zero length
8391 to the target at the specified address. It does not suffice to send
8392 the whole packet, since many stubs strip the eighth bit and
8393 subsequently compute a wrong checksum, which causes real havoc with
8394 remote_write_bytes.
8395
8396 NOTE: This can still lose if the serial line is not eight-bit
8397 clean. In cases like this, the user should clear "remote
8398 X-packet". */
8399
8400 void
8401 remote_target::check_binary_download (CORE_ADDR addr)
8402 {
8403 struct remote_state *rs = get_remote_state ();
8404
8405 switch (packet_support (PACKET_X))
8406 {
8407 case PACKET_DISABLE:
8408 break;
8409 case PACKET_ENABLE:
8410 break;
8411 case PACKET_SUPPORT_UNKNOWN:
8412 {
8413 char *p;
8414
8415 p = rs->buf.data ();
8416 *p++ = 'X';
8417 p += hexnumstr (p, (ULONGEST) addr);
8418 *p++ = ',';
8419 p += hexnumstr (p, (ULONGEST) 0);
8420 *p++ = ':';
8421 *p = '\0';
8422
8423 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8424 getpkt (&rs->buf, 0);
8425
8426 if (rs->buf[0] == '\0')
8427 {
8428 if (remote_debug)
8429 fprintf_unfiltered (gdb_stdlog,
8430 "binary downloading NOT "
8431 "supported by target\n");
8432 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8433 }
8434 else
8435 {
8436 if (remote_debug)
8437 fprintf_unfiltered (gdb_stdlog,
8438 "binary downloading supported by target\n");
8439 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8440 }
8441 break;
8442 }
8443 }
8444 }
8445
8446 /* Helper function to resize the payload in order to try to get a good
8447 alignment. We try to write an amount of data such that the next write will
8448 start on an address aligned on REMOTE_ALIGN_WRITES. */
8449
8450 static int
8451 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8452 {
8453 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8454 }
8455
8456 /* Write memory data directly to the remote machine.
8457 This does not inform the data cache; the data cache uses this.
8458 HEADER is the starting part of the packet.
8459 MEMADDR is the address in the remote memory space.
8460 MYADDR is the address of the buffer in our space.
8461 LEN_UNITS is the number of addressable units to write.
8462 UNIT_SIZE is the length in bytes of an addressable unit.
8463 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8464 should send data as binary ('X'), or hex-encoded ('M').
8465
8466 The function creates packet of the form
8467 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8468
8469 where encoding of <DATA> is terminated by PACKET_FORMAT.
8470
8471 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8472 are omitted.
8473
8474 Return the transferred status, error or OK (an
8475 'enum target_xfer_status' value). Save the number of addressable units
8476 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8477
8478 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8479 exchange between gdb and the stub could look like (?? in place of the
8480 checksum):
8481
8482 -> $m1000,4#??
8483 <- aaaabbbbccccdddd
8484
8485 -> $M1000,3:eeeeffffeeee#??
8486 <- OK
8487
8488 -> $m1000,4#??
8489 <- eeeeffffeeeedddd */
8490
8491 target_xfer_status
8492 remote_target::remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8493 const gdb_byte *myaddr,
8494 ULONGEST len_units,
8495 int unit_size,
8496 ULONGEST *xfered_len_units,
8497 char packet_format, int use_length)
8498 {
8499 struct remote_state *rs = get_remote_state ();
8500 char *p;
8501 char *plen = NULL;
8502 int plenlen = 0;
8503 int todo_units;
8504 int units_written;
8505 int payload_capacity_bytes;
8506 int payload_length_bytes;
8507
8508 if (packet_format != 'X' && packet_format != 'M')
8509 internal_error (__FILE__, __LINE__,
8510 _("remote_write_bytes_aux: bad packet format"));
8511
8512 if (len_units == 0)
8513 return TARGET_XFER_EOF;
8514
8515 payload_capacity_bytes = get_memory_write_packet_size ();
8516
8517 /* The packet buffer will be large enough for the payload;
8518 get_memory_packet_size ensures this. */
8519 rs->buf[0] = '\0';
8520
8521 /* Compute the size of the actual payload by subtracting out the
8522 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8523
8524 payload_capacity_bytes -= strlen ("$,:#NN");
8525 if (!use_length)
8526 /* The comma won't be used. */
8527 payload_capacity_bytes += 1;
8528 payload_capacity_bytes -= strlen (header);
8529 payload_capacity_bytes -= hexnumlen (memaddr);
8530
8531 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8532
8533 strcat (rs->buf.data (), header);
8534 p = rs->buf.data () + strlen (header);
8535
8536 /* Compute a best guess of the number of bytes actually transfered. */
8537 if (packet_format == 'X')
8538 {
8539 /* Best guess at number of bytes that will fit. */
8540 todo_units = std::min (len_units,
8541 (ULONGEST) payload_capacity_bytes / unit_size);
8542 if (use_length)
8543 payload_capacity_bytes -= hexnumlen (todo_units);
8544 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8545 }
8546 else
8547 {
8548 /* Number of bytes that will fit. */
8549 todo_units
8550 = std::min (len_units,
8551 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8552 if (use_length)
8553 payload_capacity_bytes -= hexnumlen (todo_units);
8554 todo_units = std::min (todo_units,
8555 (payload_capacity_bytes / unit_size) / 2);
8556 }
8557
8558 if (todo_units <= 0)
8559 internal_error (__FILE__, __LINE__,
8560 _("minimum packet size too small to write data"));
8561
8562 /* If we already need another packet, then try to align the end
8563 of this packet to a useful boundary. */
8564 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8565 todo_units = align_for_efficient_write (todo_units, memaddr);
8566
8567 /* Append "<memaddr>". */
8568 memaddr = remote_address_masked (memaddr);
8569 p += hexnumstr (p, (ULONGEST) memaddr);
8570
8571 if (use_length)
8572 {
8573 /* Append ",". */
8574 *p++ = ',';
8575
8576 /* Append the length and retain its location and size. It may need to be
8577 adjusted once the packet body has been created. */
8578 plen = p;
8579 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8580 p += plenlen;
8581 }
8582
8583 /* Append ":". */
8584 *p++ = ':';
8585 *p = '\0';
8586
8587 /* Append the packet body. */
8588 if (packet_format == 'X')
8589 {
8590 /* Binary mode. Send target system values byte by byte, in
8591 increasing byte addresses. Only escape certain critical
8592 characters. */
8593 payload_length_bytes =
8594 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8595 &units_written, payload_capacity_bytes);
8596
8597 /* If not all TODO units fit, then we'll need another packet. Make
8598 a second try to keep the end of the packet aligned. Don't do
8599 this if the packet is tiny. */
8600 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8601 {
8602 int new_todo_units;
8603
8604 new_todo_units = align_for_efficient_write (units_written, memaddr);
8605
8606 if (new_todo_units != units_written)
8607 payload_length_bytes =
8608 remote_escape_output (myaddr, new_todo_units, unit_size,
8609 (gdb_byte *) p, &units_written,
8610 payload_capacity_bytes);
8611 }
8612
8613 p += payload_length_bytes;
8614 if (use_length && units_written < todo_units)
8615 {
8616 /* Escape chars have filled up the buffer prematurely,
8617 and we have actually sent fewer units than planned.
8618 Fix-up the length field of the packet. Use the same
8619 number of characters as before. */
8620 plen += hexnumnstr (plen, (ULONGEST) units_written,
8621 plenlen);
8622 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8623 }
8624 }
8625 else
8626 {
8627 /* Normal mode: Send target system values byte by byte, in
8628 increasing byte addresses. Each byte is encoded as a two hex
8629 value. */
8630 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8631 units_written = todo_units;
8632 }
8633
8634 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8635 getpkt (&rs->buf, 0);
8636
8637 if (rs->buf[0] == 'E')
8638 return TARGET_XFER_E_IO;
8639
8640 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8641 send fewer units than we'd planned. */
8642 *xfered_len_units = (ULONGEST) units_written;
8643 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8644 }
8645
8646 /* Write memory data directly to the remote machine.
8647 This does not inform the data cache; the data cache uses this.
8648 MEMADDR is the address in the remote memory space.
8649 MYADDR is the address of the buffer in our space.
8650 LEN is the number of bytes.
8651
8652 Return the transferred status, error or OK (an
8653 'enum target_xfer_status' value). Save the number of bytes
8654 transferred in *XFERED_LEN. Only transfer a single packet. */
8655
8656 target_xfer_status
8657 remote_target::remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr,
8658 ULONGEST len, int unit_size,
8659 ULONGEST *xfered_len)
8660 {
8661 const char *packet_format = NULL;
8662
8663 /* Check whether the target supports binary download. */
8664 check_binary_download (memaddr);
8665
8666 switch (packet_support (PACKET_X))
8667 {
8668 case PACKET_ENABLE:
8669 packet_format = "X";
8670 break;
8671 case PACKET_DISABLE:
8672 packet_format = "M";
8673 break;
8674 case PACKET_SUPPORT_UNKNOWN:
8675 internal_error (__FILE__, __LINE__,
8676 _("remote_write_bytes: bad internal state"));
8677 default:
8678 internal_error (__FILE__, __LINE__, _("bad switch"));
8679 }
8680
8681 return remote_write_bytes_aux (packet_format,
8682 memaddr, myaddr, len, unit_size, xfered_len,
8683 packet_format[0], 1);
8684 }
8685
8686 /* Read memory data directly from the remote machine.
8687 This does not use the data cache; the data cache uses this.
8688 MEMADDR is the address in the remote memory space.
8689 MYADDR is the address of the buffer in our space.
8690 LEN_UNITS is the number of addressable memory units to read..
8691 UNIT_SIZE is the length in bytes of an addressable unit.
8692
8693 Return the transferred status, error or OK (an
8694 'enum target_xfer_status' value). Save the number of bytes
8695 transferred in *XFERED_LEN_UNITS.
8696
8697 See the comment of remote_write_bytes_aux for an example of
8698 memory read/write exchange between gdb and the stub. */
8699
8700 target_xfer_status
8701 remote_target::remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
8702 ULONGEST len_units,
8703 int unit_size, ULONGEST *xfered_len_units)
8704 {
8705 struct remote_state *rs = get_remote_state ();
8706 int buf_size_bytes; /* Max size of packet output buffer. */
8707 char *p;
8708 int todo_units;
8709 int decoded_bytes;
8710
8711 buf_size_bytes = get_memory_read_packet_size ();
8712 /* The packet buffer will be large enough for the payload;
8713 get_memory_packet_size ensures this. */
8714
8715 /* Number of units that will fit. */
8716 todo_units = std::min (len_units,
8717 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8718
8719 /* Construct "m"<memaddr>","<len>". */
8720 memaddr = remote_address_masked (memaddr);
8721 p = rs->buf.data ();
8722 *p++ = 'm';
8723 p += hexnumstr (p, (ULONGEST) memaddr);
8724 *p++ = ',';
8725 p += hexnumstr (p, (ULONGEST) todo_units);
8726 *p = '\0';
8727 putpkt (rs->buf);
8728 getpkt (&rs->buf, 0);
8729 if (rs->buf[0] == 'E'
8730 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8731 && rs->buf[3] == '\0')
8732 return TARGET_XFER_E_IO;
8733 /* Reply describes memory byte by byte, each byte encoded as two hex
8734 characters. */
8735 p = rs->buf.data ();
8736 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8737 /* Return what we have. Let higher layers handle partial reads. */
8738 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8739 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8740 }
8741
8742 /* Using the set of read-only target sections of remote, read live
8743 read-only memory.
8744
8745 For interface/parameters/return description see target.h,
8746 to_xfer_partial. */
8747
8748 target_xfer_status
8749 remote_target::remote_xfer_live_readonly_partial (gdb_byte *readbuf,
8750 ULONGEST memaddr,
8751 ULONGEST len,
8752 int unit_size,
8753 ULONGEST *xfered_len)
8754 {
8755 struct target_section *secp;
8756 struct target_section_table *table;
8757
8758 secp = target_section_by_addr (this, memaddr);
8759 if (secp != NULL
8760 && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
8761 {
8762 struct target_section *p;
8763 ULONGEST memend = memaddr + len;
8764
8765 table = target_get_section_table (this);
8766
8767 for (p = table->sections; p < table->sections_end; p++)
8768 {
8769 if (memaddr >= p->addr)
8770 {
8771 if (memend <= p->endaddr)
8772 {
8773 /* Entire transfer is within this section. */
8774 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8775 xfered_len);
8776 }
8777 else if (memaddr >= p->endaddr)
8778 {
8779 /* This section ends before the transfer starts. */
8780 continue;
8781 }
8782 else
8783 {
8784 /* This section overlaps the transfer. Just do half. */
8785 len = p->endaddr - memaddr;
8786 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8787 xfered_len);
8788 }
8789 }
8790 }
8791 }
8792
8793 return TARGET_XFER_EOF;
8794 }
8795
8796 /* Similar to remote_read_bytes_1, but it reads from the remote stub
8797 first if the requested memory is unavailable in traceframe.
8798 Otherwise, fall back to remote_read_bytes_1. */
8799
8800 target_xfer_status
8801 remote_target::remote_read_bytes (CORE_ADDR memaddr,
8802 gdb_byte *myaddr, ULONGEST len, int unit_size,
8803 ULONGEST *xfered_len)
8804 {
8805 if (len == 0)
8806 return TARGET_XFER_EOF;
8807
8808 if (get_traceframe_number () != -1)
8809 {
8810 std::vector<mem_range> available;
8811
8812 /* If we fail to get the set of available memory, then the
8813 target does not support querying traceframe info, and so we
8814 attempt reading from the traceframe anyway (assuming the
8815 target implements the old QTro packet then). */
8816 if (traceframe_available_memory (&available, memaddr, len))
8817 {
8818 if (available.empty () || available[0].start != memaddr)
8819 {
8820 enum target_xfer_status res;
8821
8822 /* Don't read into the traceframe's available
8823 memory. */
8824 if (!available.empty ())
8825 {
8826 LONGEST oldlen = len;
8827
8828 len = available[0].start - memaddr;
8829 gdb_assert (len <= oldlen);
8830 }
8831
8832 /* This goes through the topmost target again. */
8833 res = remote_xfer_live_readonly_partial (myaddr, memaddr,
8834 len, unit_size, xfered_len);
8835 if (res == TARGET_XFER_OK)
8836 return TARGET_XFER_OK;
8837 else
8838 {
8839 /* No use trying further, we know some memory starting
8840 at MEMADDR isn't available. */
8841 *xfered_len = len;
8842 return (*xfered_len != 0) ?
8843 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
8844 }
8845 }
8846
8847 /* Don't try to read more than how much is available, in
8848 case the target implements the deprecated QTro packet to
8849 cater for older GDBs (the target's knowledge of read-only
8850 sections may be outdated by now). */
8851 len = available[0].length;
8852 }
8853 }
8854
8855 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8856 }
8857
8858 \f
8859
8860 /* Sends a packet with content determined by the printf format string
8861 FORMAT and the remaining arguments, then gets the reply. Returns
8862 whether the packet was a success, a failure, or unknown. */
8863
8864 packet_result
8865 remote_target::remote_send_printf (const char *format, ...)
8866 {
8867 struct remote_state *rs = get_remote_state ();
8868 int max_size = get_remote_packet_size ();
8869 va_list ap;
8870
8871 va_start (ap, format);
8872
8873 rs->buf[0] = '\0';
8874 int size = vsnprintf (rs->buf.data (), max_size, format, ap);
8875
8876 va_end (ap);
8877
8878 if (size >= max_size)
8879 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
8880
8881 if (putpkt (rs->buf) < 0)
8882 error (_("Communication problem with target."));
8883
8884 rs->buf[0] = '\0';
8885 getpkt (&rs->buf, 0);
8886
8887 return packet_check_result (rs->buf);
8888 }
8889
8890 /* Flash writing can take quite some time. We'll set
8891 effectively infinite timeout for flash operations.
8892 In future, we'll need to decide on a better approach. */
8893 static const int remote_flash_timeout = 1000;
8894
8895 void
8896 remote_target::flash_erase (ULONGEST address, LONGEST length)
8897 {
8898 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8899 enum packet_result ret;
8900 scoped_restore restore_timeout
8901 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8902
8903 ret = remote_send_printf ("vFlashErase:%s,%s",
8904 phex (address, addr_size),
8905 phex (length, 4));
8906 switch (ret)
8907 {
8908 case PACKET_UNKNOWN:
8909 error (_("Remote target does not support flash erase"));
8910 case PACKET_ERROR:
8911 error (_("Error erasing flash with vFlashErase packet"));
8912 default:
8913 break;
8914 }
8915 }
8916
8917 target_xfer_status
8918 remote_target::remote_flash_write (ULONGEST address,
8919 ULONGEST length, ULONGEST *xfered_len,
8920 const gdb_byte *data)
8921 {
8922 scoped_restore restore_timeout
8923 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8924 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
8925 xfered_len,'X', 0);
8926 }
8927
8928 void
8929 remote_target::flash_done ()
8930 {
8931 int ret;
8932
8933 scoped_restore restore_timeout
8934 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8935
8936 ret = remote_send_printf ("vFlashDone");
8937
8938 switch (ret)
8939 {
8940 case PACKET_UNKNOWN:
8941 error (_("Remote target does not support vFlashDone"));
8942 case PACKET_ERROR:
8943 error (_("Error finishing flash operation"));
8944 default:
8945 break;
8946 }
8947 }
8948
8949 void
8950 remote_target::files_info ()
8951 {
8952 puts_filtered ("Debugging a target over a serial line.\n");
8953 }
8954 \f
8955 /* Stuff for dealing with the packets which are part of this protocol.
8956 See comment at top of file for details. */
8957
8958 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
8959 error to higher layers. Called when a serial error is detected.
8960 The exception message is STRING, followed by a colon and a blank,
8961 the system error message for errno at function entry and final dot
8962 for output compatibility with throw_perror_with_name. */
8963
8964 static void
8965 unpush_and_perror (const char *string)
8966 {
8967 int saved_errno = errno;
8968
8969 remote_unpush_target ();
8970 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
8971 safe_strerror (saved_errno));
8972 }
8973
8974 /* Read a single character from the remote end. The current quit
8975 handler is overridden to avoid quitting in the middle of packet
8976 sequence, as that would break communication with the remote server.
8977 See remote_serial_quit_handler for more detail. */
8978
8979 int
8980 remote_target::readchar (int timeout)
8981 {
8982 int ch;
8983 struct remote_state *rs = get_remote_state ();
8984
8985 {
8986 scoped_restore restore_quit_target
8987 = make_scoped_restore (&curr_quit_handler_target, this);
8988 scoped_restore restore_quit
8989 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
8990
8991 rs->got_ctrlc_during_io = 0;
8992
8993 ch = serial_readchar (rs->remote_desc, timeout);
8994
8995 if (rs->got_ctrlc_during_io)
8996 set_quit_flag ();
8997 }
8998
8999 if (ch >= 0)
9000 return ch;
9001
9002 switch ((enum serial_rc) ch)
9003 {
9004 case SERIAL_EOF:
9005 remote_unpush_target ();
9006 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
9007 /* no return */
9008 case SERIAL_ERROR:
9009 unpush_and_perror (_("Remote communication error. "
9010 "Target disconnected."));
9011 /* no return */
9012 case SERIAL_TIMEOUT:
9013 break;
9014 }
9015 return ch;
9016 }
9017
9018 /* Wrapper for serial_write that closes the target and throws if
9019 writing fails. The current quit handler is overridden to avoid
9020 quitting in the middle of packet sequence, as that would break
9021 communication with the remote server. See
9022 remote_serial_quit_handler for more detail. */
9023
9024 void
9025 remote_target::remote_serial_write (const char *str, int len)
9026 {
9027 struct remote_state *rs = get_remote_state ();
9028
9029 scoped_restore restore_quit_target
9030 = make_scoped_restore (&curr_quit_handler_target, this);
9031 scoped_restore restore_quit
9032 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9033
9034 rs->got_ctrlc_during_io = 0;
9035
9036 if (serial_write (rs->remote_desc, str, len))
9037 {
9038 unpush_and_perror (_("Remote communication error. "
9039 "Target disconnected."));
9040 }
9041
9042 if (rs->got_ctrlc_during_io)
9043 set_quit_flag ();
9044 }
9045
9046 /* Return a string representing an escaped version of BUF, of len N.
9047 E.g. \n is converted to \\n, \t to \\t, etc. */
9048
9049 static std::string
9050 escape_buffer (const char *buf, int n)
9051 {
9052 string_file stb;
9053
9054 stb.putstrn (buf, n, '\\');
9055 return std::move (stb.string ());
9056 }
9057
9058 /* Display a null-terminated packet on stdout, for debugging, using C
9059 string notation. */
9060
9061 static void
9062 print_packet (const char *buf)
9063 {
9064 puts_filtered ("\"");
9065 fputstr_filtered (buf, '"', gdb_stdout);
9066 puts_filtered ("\"");
9067 }
9068
9069 int
9070 remote_target::putpkt (const char *buf)
9071 {
9072 return putpkt_binary (buf, strlen (buf));
9073 }
9074
9075 /* Wrapper around remote_target::putpkt to avoid exporting
9076 remote_target. */
9077
9078 int
9079 putpkt (remote_target *remote, const char *buf)
9080 {
9081 return remote->putpkt (buf);
9082 }
9083
9084 /* Send a packet to the remote machine, with error checking. The data
9085 of the packet is in BUF. The string in BUF can be at most
9086 get_remote_packet_size () - 5 to account for the $, # and checksum,
9087 and for a possible /0 if we are debugging (remote_debug) and want
9088 to print the sent packet as a string. */
9089
9090 int
9091 remote_target::putpkt_binary (const char *buf, int cnt)
9092 {
9093 struct remote_state *rs = get_remote_state ();
9094 int i;
9095 unsigned char csum = 0;
9096 gdb::def_vector<char> data (cnt + 6);
9097 char *buf2 = data.data ();
9098
9099 int ch;
9100 int tcount = 0;
9101 char *p;
9102
9103 /* Catch cases like trying to read memory or listing threads while
9104 we're waiting for a stop reply. The remote server wouldn't be
9105 ready to handle this request, so we'd hang and timeout. We don't
9106 have to worry about this in synchronous mode, because in that
9107 case it's not possible to issue a command while the target is
9108 running. This is not a problem in non-stop mode, because in that
9109 case, the stub is always ready to process serial input. */
9110 if (!target_is_non_stop_p ()
9111 && target_is_async_p ()
9112 && rs->waiting_for_stop_reply)
9113 {
9114 error (_("Cannot execute this command while the target is running.\n"
9115 "Use the \"interrupt\" command to stop the target\n"
9116 "and then try again."));
9117 }
9118
9119 /* We're sending out a new packet. Make sure we don't look at a
9120 stale cached response. */
9121 rs->cached_wait_status = 0;
9122
9123 /* Copy the packet into buffer BUF2, encapsulating it
9124 and giving it a checksum. */
9125
9126 p = buf2;
9127 *p++ = '$';
9128
9129 for (i = 0; i < cnt; i++)
9130 {
9131 csum += buf[i];
9132 *p++ = buf[i];
9133 }
9134 *p++ = '#';
9135 *p++ = tohex ((csum >> 4) & 0xf);
9136 *p++ = tohex (csum & 0xf);
9137
9138 /* Send it over and over until we get a positive ack. */
9139
9140 while (1)
9141 {
9142 int started_error_output = 0;
9143
9144 if (remote_debug)
9145 {
9146 *p = '\0';
9147
9148 int len = (int) (p - buf2);
9149 int max_chars;
9150
9151 if (remote_packet_max_chars < 0)
9152 max_chars = len;
9153 else
9154 max_chars = remote_packet_max_chars;
9155
9156 std::string str
9157 = escape_buffer (buf2, std::min (len, max_chars));
9158
9159 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
9160
9161 if (len > max_chars)
9162 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9163 len - max_chars);
9164
9165 fprintf_unfiltered (gdb_stdlog, "...");
9166
9167 gdb_flush (gdb_stdlog);
9168 }
9169 remote_serial_write (buf2, p - buf2);
9170
9171 /* If this is a no acks version of the remote protocol, send the
9172 packet and move on. */
9173 if (rs->noack_mode)
9174 break;
9175
9176 /* Read until either a timeout occurs (-2) or '+' is read.
9177 Handle any notification that arrives in the mean time. */
9178 while (1)
9179 {
9180 ch = readchar (remote_timeout);
9181
9182 if (remote_debug)
9183 {
9184 switch (ch)
9185 {
9186 case '+':
9187 case '-':
9188 case SERIAL_TIMEOUT:
9189 case '$':
9190 case '%':
9191 if (started_error_output)
9192 {
9193 putchar_unfiltered ('\n');
9194 started_error_output = 0;
9195 }
9196 }
9197 }
9198
9199 switch (ch)
9200 {
9201 case '+':
9202 if (remote_debug)
9203 fprintf_unfiltered (gdb_stdlog, "Ack\n");
9204 return 1;
9205 case '-':
9206 if (remote_debug)
9207 fprintf_unfiltered (gdb_stdlog, "Nak\n");
9208 /* FALLTHROUGH */
9209 case SERIAL_TIMEOUT:
9210 tcount++;
9211 if (tcount > 3)
9212 return 0;
9213 break; /* Retransmit buffer. */
9214 case '$':
9215 {
9216 if (remote_debug)
9217 fprintf_unfiltered (gdb_stdlog,
9218 "Packet instead of Ack, ignoring it\n");
9219 /* It's probably an old response sent because an ACK
9220 was lost. Gobble up the packet and ack it so it
9221 doesn't get retransmitted when we resend this
9222 packet. */
9223 skip_frame ();
9224 remote_serial_write ("+", 1);
9225 continue; /* Now, go look for +. */
9226 }
9227
9228 case '%':
9229 {
9230 int val;
9231
9232 /* If we got a notification, handle it, and go back to looking
9233 for an ack. */
9234 /* We've found the start of a notification. Now
9235 collect the data. */
9236 val = read_frame (&rs->buf);
9237 if (val >= 0)
9238 {
9239 if (remote_debug)
9240 {
9241 std::string str = escape_buffer (rs->buf.data (), val);
9242
9243 fprintf_unfiltered (gdb_stdlog,
9244 " Notification received: %s\n",
9245 str.c_str ());
9246 }
9247 handle_notification (rs->notif_state, rs->buf.data ());
9248 /* We're in sync now, rewait for the ack. */
9249 tcount = 0;
9250 }
9251 else
9252 {
9253 if (remote_debug)
9254 {
9255 if (!started_error_output)
9256 {
9257 started_error_output = 1;
9258 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9259 }
9260 fputc_unfiltered (ch & 0177, gdb_stdlog);
9261 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf.data ());
9262 }
9263 }
9264 continue;
9265 }
9266 /* fall-through */
9267 default:
9268 if (remote_debug)
9269 {
9270 if (!started_error_output)
9271 {
9272 started_error_output = 1;
9273 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9274 }
9275 fputc_unfiltered (ch & 0177, gdb_stdlog);
9276 }
9277 continue;
9278 }
9279 break; /* Here to retransmit. */
9280 }
9281
9282 #if 0
9283 /* This is wrong. If doing a long backtrace, the user should be
9284 able to get out next time we call QUIT, without anything as
9285 violent as interrupt_query. If we want to provide a way out of
9286 here without getting to the next QUIT, it should be based on
9287 hitting ^C twice as in remote_wait. */
9288 if (quit_flag)
9289 {
9290 quit_flag = 0;
9291 interrupt_query ();
9292 }
9293 #endif
9294 }
9295
9296 return 0;
9297 }
9298
9299 /* Come here after finding the start of a frame when we expected an
9300 ack. Do our best to discard the rest of this packet. */
9301
9302 void
9303 remote_target::skip_frame ()
9304 {
9305 int c;
9306
9307 while (1)
9308 {
9309 c = readchar (remote_timeout);
9310 switch (c)
9311 {
9312 case SERIAL_TIMEOUT:
9313 /* Nothing we can do. */
9314 return;
9315 case '#':
9316 /* Discard the two bytes of checksum and stop. */
9317 c = readchar (remote_timeout);
9318 if (c >= 0)
9319 c = readchar (remote_timeout);
9320
9321 return;
9322 case '*': /* Run length encoding. */
9323 /* Discard the repeat count. */
9324 c = readchar (remote_timeout);
9325 if (c < 0)
9326 return;
9327 break;
9328 default:
9329 /* A regular character. */
9330 break;
9331 }
9332 }
9333 }
9334
9335 /* Come here after finding the start of the frame. Collect the rest
9336 into *BUF, verifying the checksum, length, and handling run-length
9337 compression. NUL terminate the buffer. If there is not enough room,
9338 expand *BUF.
9339
9340 Returns -1 on error, number of characters in buffer (ignoring the
9341 trailing NULL) on success. (could be extended to return one of the
9342 SERIAL status indications). */
9343
9344 long
9345 remote_target::read_frame (gdb::char_vector *buf_p)
9346 {
9347 unsigned char csum;
9348 long bc;
9349 int c;
9350 char *buf = buf_p->data ();
9351 struct remote_state *rs = get_remote_state ();
9352
9353 csum = 0;
9354 bc = 0;
9355
9356 while (1)
9357 {
9358 c = readchar (remote_timeout);
9359 switch (c)
9360 {
9361 case SERIAL_TIMEOUT:
9362 if (remote_debug)
9363 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
9364 return -1;
9365 case '$':
9366 if (remote_debug)
9367 fputs_filtered ("Saw new packet start in middle of old one\n",
9368 gdb_stdlog);
9369 return -1; /* Start a new packet, count retries. */
9370 case '#':
9371 {
9372 unsigned char pktcsum;
9373 int check_0 = 0;
9374 int check_1 = 0;
9375
9376 buf[bc] = '\0';
9377
9378 check_0 = readchar (remote_timeout);
9379 if (check_0 >= 0)
9380 check_1 = readchar (remote_timeout);
9381
9382 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9383 {
9384 if (remote_debug)
9385 fputs_filtered ("Timeout in checksum, retrying\n",
9386 gdb_stdlog);
9387 return -1;
9388 }
9389 else if (check_0 < 0 || check_1 < 0)
9390 {
9391 if (remote_debug)
9392 fputs_filtered ("Communication error in checksum\n",
9393 gdb_stdlog);
9394 return -1;
9395 }
9396
9397 /* Don't recompute the checksum; with no ack packets we
9398 don't have any way to indicate a packet retransmission
9399 is necessary. */
9400 if (rs->noack_mode)
9401 return bc;
9402
9403 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9404 if (csum == pktcsum)
9405 return bc;
9406
9407 if (remote_debug)
9408 {
9409 std::string str = escape_buffer (buf, bc);
9410
9411 fprintf_unfiltered (gdb_stdlog,
9412 "Bad checksum, sentsum=0x%x, "
9413 "csum=0x%x, buf=%s\n",
9414 pktcsum, csum, str.c_str ());
9415 }
9416 /* Number of characters in buffer ignoring trailing
9417 NULL. */
9418 return -1;
9419 }
9420 case '*': /* Run length encoding. */
9421 {
9422 int repeat;
9423
9424 csum += c;
9425 c = readchar (remote_timeout);
9426 csum += c;
9427 repeat = c - ' ' + 3; /* Compute repeat count. */
9428
9429 /* The character before ``*'' is repeated. */
9430
9431 if (repeat > 0 && repeat <= 255 && bc > 0)
9432 {
9433 if (bc + repeat - 1 >= buf_p->size () - 1)
9434 {
9435 /* Make some more room in the buffer. */
9436 buf_p->resize (buf_p->size () + repeat);
9437 buf = buf_p->data ();
9438 }
9439
9440 memset (&buf[bc], buf[bc - 1], repeat);
9441 bc += repeat;
9442 continue;
9443 }
9444
9445 buf[bc] = '\0';
9446 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9447 return -1;
9448 }
9449 default:
9450 if (bc >= buf_p->size () - 1)
9451 {
9452 /* Make some more room in the buffer. */
9453 buf_p->resize (buf_p->size () * 2);
9454 buf = buf_p->data ();
9455 }
9456
9457 buf[bc++] = c;
9458 csum += c;
9459 continue;
9460 }
9461 }
9462 }
9463
9464 /* Set this to the maximum number of seconds to wait instead of waiting forever
9465 in target_wait(). If this timer times out, then it generates an error and
9466 the command is aborted. This replaces most of the need for timeouts in the
9467 GDB test suite, and makes it possible to distinguish between a hung target
9468 and one with slow communications. */
9469
9470 static int watchdog = 0;
9471 static void
9472 show_watchdog (struct ui_file *file, int from_tty,
9473 struct cmd_list_element *c, const char *value)
9474 {
9475 fprintf_filtered (file, _("Watchdog timer is %s.\n"), value);
9476 }
9477
9478 /* Read a packet from the remote machine, with error checking, and
9479 store it in *BUF. Resize *BUF if necessary to hold the result. If
9480 FOREVER, wait forever rather than timing out; this is used (in
9481 synchronous mode) to wait for a target that is is executing user
9482 code to stop. */
9483 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9484 don't have to change all the calls to getpkt to deal with the
9485 return value, because at the moment I don't know what the right
9486 thing to do it for those. */
9487
9488 void
9489 remote_target::getpkt (gdb::char_vector *buf, int forever)
9490 {
9491 getpkt_sane (buf, forever);
9492 }
9493
9494
9495 /* Read a packet from the remote machine, with error checking, and
9496 store it in *BUF. Resize *BUF if necessary to hold the result. If
9497 FOREVER, wait forever rather than timing out; this is used (in
9498 synchronous mode) to wait for a target that is is executing user
9499 code to stop. If FOREVER == 0, this function is allowed to time
9500 out gracefully and return an indication of this to the caller.
9501 Otherwise return the number of bytes read. If EXPECTING_NOTIF,
9502 consider receiving a notification enough reason to return to the
9503 caller. *IS_NOTIF is an output boolean that indicates whether *BUF
9504 holds a notification or not (a regular packet). */
9505
9506 int
9507 remote_target::getpkt_or_notif_sane_1 (gdb::char_vector *buf,
9508 int forever, int expecting_notif,
9509 int *is_notif)
9510 {
9511 struct remote_state *rs = get_remote_state ();
9512 int c;
9513 int tries;
9514 int timeout;
9515 int val = -1;
9516
9517 /* We're reading a new response. Make sure we don't look at a
9518 previously cached response. */
9519 rs->cached_wait_status = 0;
9520
9521 strcpy (buf->data (), "timeout");
9522
9523 if (forever)
9524 timeout = watchdog > 0 ? watchdog : -1;
9525 else if (expecting_notif)
9526 timeout = 0; /* There should already be a char in the buffer. If
9527 not, bail out. */
9528 else
9529 timeout = remote_timeout;
9530
9531 #define MAX_TRIES 3
9532
9533 /* Process any number of notifications, and then return when
9534 we get a packet. */
9535 for (;;)
9536 {
9537 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9538 times. */
9539 for (tries = 1; tries <= MAX_TRIES; tries++)
9540 {
9541 /* This can loop forever if the remote side sends us
9542 characters continuously, but if it pauses, we'll get
9543 SERIAL_TIMEOUT from readchar because of timeout. Then
9544 we'll count that as a retry.
9545
9546 Note that even when forever is set, we will only wait
9547 forever prior to the start of a packet. After that, we
9548 expect characters to arrive at a brisk pace. They should
9549 show up within remote_timeout intervals. */
9550 do
9551 c = readchar (timeout);
9552 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9553
9554 if (c == SERIAL_TIMEOUT)
9555 {
9556 if (expecting_notif)
9557 return -1; /* Don't complain, it's normal to not get
9558 anything in this case. */
9559
9560 if (forever) /* Watchdog went off? Kill the target. */
9561 {
9562 remote_unpush_target ();
9563 throw_error (TARGET_CLOSE_ERROR,
9564 _("Watchdog timeout has expired. "
9565 "Target detached."));
9566 }
9567 if (remote_debug)
9568 fputs_filtered ("Timed out.\n", gdb_stdlog);
9569 }
9570 else
9571 {
9572 /* We've found the start of a packet or notification.
9573 Now collect the data. */
9574 val = read_frame (buf);
9575 if (val >= 0)
9576 break;
9577 }
9578
9579 remote_serial_write ("-", 1);
9580 }
9581
9582 if (tries > MAX_TRIES)
9583 {
9584 /* We have tried hard enough, and just can't receive the
9585 packet/notification. Give up. */
9586 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9587
9588 /* Skip the ack char if we're in no-ack mode. */
9589 if (!rs->noack_mode)
9590 remote_serial_write ("+", 1);
9591 return -1;
9592 }
9593
9594 /* If we got an ordinary packet, return that to our caller. */
9595 if (c == '$')
9596 {
9597 if (remote_debug)
9598 {
9599 int max_chars;
9600
9601 if (remote_packet_max_chars < 0)
9602 max_chars = val;
9603 else
9604 max_chars = remote_packet_max_chars;
9605
9606 std::string str
9607 = escape_buffer (buf->data (),
9608 std::min (val, max_chars));
9609
9610 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9611 str.c_str ());
9612
9613 if (val > max_chars)
9614 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9615 val - max_chars);
9616
9617 fprintf_unfiltered (gdb_stdlog, "\n");
9618 }
9619
9620 /* Skip the ack char if we're in no-ack mode. */
9621 if (!rs->noack_mode)
9622 remote_serial_write ("+", 1);
9623 if (is_notif != NULL)
9624 *is_notif = 0;
9625 return val;
9626 }
9627
9628 /* If we got a notification, handle it, and go back to looking
9629 for a packet. */
9630 else
9631 {
9632 gdb_assert (c == '%');
9633
9634 if (remote_debug)
9635 {
9636 std::string str = escape_buffer (buf->data (), val);
9637
9638 fprintf_unfiltered (gdb_stdlog,
9639 " Notification received: %s\n",
9640 str.c_str ());
9641 }
9642 if (is_notif != NULL)
9643 *is_notif = 1;
9644
9645 handle_notification (rs->notif_state, buf->data ());
9646
9647 /* Notifications require no acknowledgement. */
9648
9649 if (expecting_notif)
9650 return val;
9651 }
9652 }
9653 }
9654
9655 int
9656 remote_target::getpkt_sane (gdb::char_vector *buf, int forever)
9657 {
9658 return getpkt_or_notif_sane_1 (buf, forever, 0, NULL);
9659 }
9660
9661 int
9662 remote_target::getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
9663 int *is_notif)
9664 {
9665 return getpkt_or_notif_sane_1 (buf, forever, 1, is_notif);
9666 }
9667
9668 /* Kill any new fork children of process PID that haven't been
9669 processed by follow_fork. */
9670
9671 void
9672 remote_target::kill_new_fork_children (int pid)
9673 {
9674 remote_state *rs = get_remote_state ();
9675 struct notif_client *notif = &notif_client_stop;
9676
9677 /* Kill the fork child threads of any threads in process PID
9678 that are stopped at a fork event. */
9679 for (thread_info *thread : all_non_exited_threads ())
9680 {
9681 struct target_waitstatus *ws = &thread->pending_follow;
9682
9683 if (is_pending_fork_parent (ws, pid, thread->ptid))
9684 {
9685 int child_pid = ws->value.related_pid.pid ();
9686 int res;
9687
9688 res = remote_vkill (child_pid);
9689 if (res != 0)
9690 error (_("Can't kill fork child process %d"), child_pid);
9691 }
9692 }
9693
9694 /* Check for any pending fork events (not reported or processed yet)
9695 in process PID and kill those fork child threads as well. */
9696 remote_notif_get_pending_events (notif);
9697 for (auto &event : rs->stop_reply_queue)
9698 if (is_pending_fork_parent (&event->ws, pid, event->ptid))
9699 {
9700 int child_pid = event->ws.value.related_pid.pid ();
9701 int res;
9702
9703 res = remote_vkill (child_pid);
9704 if (res != 0)
9705 error (_("Can't kill fork child process %d"), child_pid);
9706 }
9707 }
9708
9709 \f
9710 /* Target hook to kill the current inferior. */
9711
9712 void
9713 remote_target::kill ()
9714 {
9715 int res = -1;
9716 int pid = inferior_ptid.pid ();
9717 struct remote_state *rs = get_remote_state ();
9718
9719 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9720 {
9721 /* If we're stopped while forking and we haven't followed yet,
9722 kill the child task. We need to do this before killing the
9723 parent task because if this is a vfork then the parent will
9724 be sleeping. */
9725 kill_new_fork_children (pid);
9726
9727 res = remote_vkill (pid);
9728 if (res == 0)
9729 {
9730 target_mourn_inferior (inferior_ptid);
9731 return;
9732 }
9733 }
9734
9735 /* If we are in 'target remote' mode and we are killing the only
9736 inferior, then we will tell gdbserver to exit and unpush the
9737 target. */
9738 if (res == -1 && !remote_multi_process_p (rs)
9739 && number_of_live_inferiors () == 1)
9740 {
9741 remote_kill_k ();
9742
9743 /* We've killed the remote end, we get to mourn it. If we are
9744 not in extended mode, mourning the inferior also unpushes
9745 remote_ops from the target stack, which closes the remote
9746 connection. */
9747 target_mourn_inferior (inferior_ptid);
9748
9749 return;
9750 }
9751
9752 error (_("Can't kill process"));
9753 }
9754
9755 /* Send a kill request to the target using the 'vKill' packet. */
9756
9757 int
9758 remote_target::remote_vkill (int pid)
9759 {
9760 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9761 return -1;
9762
9763 remote_state *rs = get_remote_state ();
9764
9765 /* Tell the remote target to detach. */
9766 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vKill;%x", pid);
9767 putpkt (rs->buf);
9768 getpkt (&rs->buf, 0);
9769
9770 switch (packet_ok (rs->buf,
9771 &remote_protocol_packets[PACKET_vKill]))
9772 {
9773 case PACKET_OK:
9774 return 0;
9775 case PACKET_ERROR:
9776 return 1;
9777 case PACKET_UNKNOWN:
9778 return -1;
9779 default:
9780 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9781 }
9782 }
9783
9784 /* Send a kill request to the target using the 'k' packet. */
9785
9786 void
9787 remote_target::remote_kill_k ()
9788 {
9789 /* Catch errors so the user can quit from gdb even when we
9790 aren't on speaking terms with the remote system. */
9791 try
9792 {
9793 putpkt ("k");
9794 }
9795 catch (const gdb_exception_error &ex)
9796 {
9797 if (ex.error == TARGET_CLOSE_ERROR)
9798 {
9799 /* If we got an (EOF) error that caused the target
9800 to go away, then we're done, that's what we wanted.
9801 "k" is susceptible to cause a premature EOF, given
9802 that the remote server isn't actually required to
9803 reply to "k", and it can happen that it doesn't
9804 even get to reply ACK to the "k". */
9805 return;
9806 }
9807
9808 /* Otherwise, something went wrong. We didn't actually kill
9809 the target. Just propagate the exception, and let the
9810 user or higher layers decide what to do. */
9811 throw;
9812 }
9813 }
9814
9815 void
9816 remote_target::mourn_inferior ()
9817 {
9818 struct remote_state *rs = get_remote_state ();
9819
9820 /* We're no longer interested in notification events of an inferior
9821 that exited or was killed/detached. */
9822 discard_pending_stop_replies (current_inferior ());
9823
9824 /* In 'target remote' mode with one inferior, we close the connection. */
9825 if (!rs->extended && number_of_live_inferiors () <= 1)
9826 {
9827 unpush_target (this);
9828
9829 /* remote_close takes care of doing most of the clean up. */
9830 generic_mourn_inferior ();
9831 return;
9832 }
9833
9834 /* In case we got here due to an error, but we're going to stay
9835 connected. */
9836 rs->waiting_for_stop_reply = 0;
9837
9838 /* If the current general thread belonged to the process we just
9839 detached from or has exited, the remote side current general
9840 thread becomes undefined. Considering a case like this:
9841
9842 - We just got here due to a detach.
9843 - The process that we're detaching from happens to immediately
9844 report a global breakpoint being hit in non-stop mode, in the
9845 same thread we had selected before.
9846 - GDB attaches to this process again.
9847 - This event happens to be the next event we handle.
9848
9849 GDB would consider that the current general thread didn't need to
9850 be set on the stub side (with Hg), since for all it knew,
9851 GENERAL_THREAD hadn't changed.
9852
9853 Notice that although in all-stop mode, the remote server always
9854 sets the current thread to the thread reporting the stop event,
9855 that doesn't happen in non-stop mode; in non-stop, the stub *must
9856 not* change the current thread when reporting a breakpoint hit,
9857 due to the decoupling of event reporting and event handling.
9858
9859 To keep things simple, we always invalidate our notion of the
9860 current thread. */
9861 record_currthread (rs, minus_one_ptid);
9862
9863 /* Call common code to mark the inferior as not running. */
9864 generic_mourn_inferior ();
9865 }
9866
9867 bool
9868 extended_remote_target::supports_disable_randomization ()
9869 {
9870 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
9871 }
9872
9873 void
9874 remote_target::extended_remote_disable_randomization (int val)
9875 {
9876 struct remote_state *rs = get_remote_state ();
9877 char *reply;
9878
9879 xsnprintf (rs->buf.data (), get_remote_packet_size (),
9880 "QDisableRandomization:%x", val);
9881 putpkt (rs->buf);
9882 reply = remote_get_noisy_reply ();
9883 if (*reply == '\0')
9884 error (_("Target does not support QDisableRandomization."));
9885 if (strcmp (reply, "OK") != 0)
9886 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
9887 }
9888
9889 int
9890 remote_target::extended_remote_run (const std::string &args)
9891 {
9892 struct remote_state *rs = get_remote_state ();
9893 int len;
9894 const char *remote_exec_file = get_remote_exec_file ();
9895
9896 /* If the user has disabled vRun support, or we have detected that
9897 support is not available, do not try it. */
9898 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
9899 return -1;
9900
9901 strcpy (rs->buf.data (), "vRun;");
9902 len = strlen (rs->buf.data ());
9903
9904 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
9905 error (_("Remote file name too long for run packet"));
9906 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf.data () + len,
9907 strlen (remote_exec_file));
9908
9909 if (!args.empty ())
9910 {
9911 int i;
9912
9913 gdb_argv argv (args.c_str ());
9914 for (i = 0; argv[i] != NULL; i++)
9915 {
9916 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
9917 error (_("Argument list too long for run packet"));
9918 rs->buf[len++] = ';';
9919 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf.data () + len,
9920 strlen (argv[i]));
9921 }
9922 }
9923
9924 rs->buf[len++] = '\0';
9925
9926 putpkt (rs->buf);
9927 getpkt (&rs->buf, 0);
9928
9929 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
9930 {
9931 case PACKET_OK:
9932 /* We have a wait response. All is well. */
9933 return 0;
9934 case PACKET_UNKNOWN:
9935 return -1;
9936 case PACKET_ERROR:
9937 if (remote_exec_file[0] == '\0')
9938 error (_("Running the default executable on the remote target failed; "
9939 "try \"set remote exec-file\"?"));
9940 else
9941 error (_("Running \"%s\" on the remote target failed"),
9942 remote_exec_file);
9943 default:
9944 gdb_assert_not_reached (_("bad switch"));
9945 }
9946 }
9947
9948 /* Helper function to send set/unset environment packets. ACTION is
9949 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
9950 or "QEnvironmentUnsetVariable". VALUE is the variable to be
9951 sent. */
9952
9953 void
9954 remote_target::send_environment_packet (const char *action,
9955 const char *packet,
9956 const char *value)
9957 {
9958 remote_state *rs = get_remote_state ();
9959
9960 /* Convert the environment variable to an hex string, which
9961 is the best format to be transmitted over the wire. */
9962 std::string encoded_value = bin2hex ((const gdb_byte *) value,
9963 strlen (value));
9964
9965 xsnprintf (rs->buf.data (), get_remote_packet_size (),
9966 "%s:%s", packet, encoded_value.c_str ());
9967
9968 putpkt (rs->buf);
9969 getpkt (&rs->buf, 0);
9970 if (strcmp (rs->buf.data (), "OK") != 0)
9971 warning (_("Unable to %s environment variable '%s' on remote."),
9972 action, value);
9973 }
9974
9975 /* Helper function to handle the QEnvironment* packets. */
9976
9977 void
9978 remote_target::extended_remote_environment_support ()
9979 {
9980 remote_state *rs = get_remote_state ();
9981
9982 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
9983 {
9984 putpkt ("QEnvironmentReset");
9985 getpkt (&rs->buf, 0);
9986 if (strcmp (rs->buf.data (), "OK") != 0)
9987 warning (_("Unable to reset environment on remote."));
9988 }
9989
9990 gdb_environ *e = &current_inferior ()->environment;
9991
9992 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
9993 for (const std::string &el : e->user_set_env ())
9994 send_environment_packet ("set", "QEnvironmentHexEncoded",
9995 el.c_str ());
9996
9997 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
9998 for (const std::string &el : e->user_unset_env ())
9999 send_environment_packet ("unset", "QEnvironmentUnset", el.c_str ());
10000 }
10001
10002 /* Helper function to set the current working directory for the
10003 inferior in the remote target. */
10004
10005 void
10006 remote_target::extended_remote_set_inferior_cwd ()
10007 {
10008 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
10009 {
10010 const char *inferior_cwd = get_inferior_cwd ();
10011 remote_state *rs = get_remote_state ();
10012
10013 if (inferior_cwd != NULL)
10014 {
10015 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
10016 strlen (inferior_cwd));
10017
10018 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10019 "QSetWorkingDir:%s", hexpath.c_str ());
10020 }
10021 else
10022 {
10023 /* An empty inferior_cwd means that the user wants us to
10024 reset the remote server's inferior's cwd. */
10025 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10026 "QSetWorkingDir:");
10027 }
10028
10029 putpkt (rs->buf);
10030 getpkt (&rs->buf, 0);
10031 if (packet_ok (rs->buf,
10032 &remote_protocol_packets[PACKET_QSetWorkingDir])
10033 != PACKET_OK)
10034 error (_("\
10035 Remote replied unexpectedly while setting the inferior's working\n\
10036 directory: %s"),
10037 rs->buf.data ());
10038
10039 }
10040 }
10041
10042 /* In the extended protocol we want to be able to do things like
10043 "run" and have them basically work as expected. So we need
10044 a special create_inferior function. We support changing the
10045 executable file and the command line arguments, but not the
10046 environment. */
10047
10048 void
10049 extended_remote_target::create_inferior (const char *exec_file,
10050 const std::string &args,
10051 char **env, int from_tty)
10052 {
10053 int run_worked;
10054 char *stop_reply;
10055 struct remote_state *rs = get_remote_state ();
10056 const char *remote_exec_file = get_remote_exec_file ();
10057
10058 /* If running asynchronously, register the target file descriptor
10059 with the event loop. */
10060 if (target_can_async_p ())
10061 target_async (1);
10062
10063 /* Disable address space randomization if requested (and supported). */
10064 if (supports_disable_randomization ())
10065 extended_remote_disable_randomization (disable_randomization);
10066
10067 /* If startup-with-shell is on, we inform gdbserver to start the
10068 remote inferior using a shell. */
10069 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
10070 {
10071 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10072 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
10073 putpkt (rs->buf);
10074 getpkt (&rs->buf, 0);
10075 if (strcmp (rs->buf.data (), "OK") != 0)
10076 error (_("\
10077 Remote replied unexpectedly while setting startup-with-shell: %s"),
10078 rs->buf.data ());
10079 }
10080
10081 extended_remote_environment_support ();
10082
10083 extended_remote_set_inferior_cwd ();
10084
10085 /* Now restart the remote server. */
10086 run_worked = extended_remote_run (args) != -1;
10087 if (!run_worked)
10088 {
10089 /* vRun was not supported. Fail if we need it to do what the
10090 user requested. */
10091 if (remote_exec_file[0])
10092 error (_("Remote target does not support \"set remote exec-file\""));
10093 if (!args.empty ())
10094 error (_("Remote target does not support \"set args\" or run ARGS"));
10095
10096 /* Fall back to "R". */
10097 extended_remote_restart ();
10098 }
10099
10100 /* vRun's success return is a stop reply. */
10101 stop_reply = run_worked ? rs->buf.data () : NULL;
10102 add_current_inferior_and_thread (stop_reply);
10103
10104 /* Get updated offsets, if the stub uses qOffsets. */
10105 get_offsets ();
10106 }
10107 \f
10108
10109 /* Given a location's target info BP_TGT and the packet buffer BUF, output
10110 the list of conditions (in agent expression bytecode format), if any, the
10111 target needs to evaluate. The output is placed into the packet buffer
10112 started from BUF and ended at BUF_END. */
10113
10114 static int
10115 remote_add_target_side_condition (struct gdbarch *gdbarch,
10116 struct bp_target_info *bp_tgt, char *buf,
10117 char *buf_end)
10118 {
10119 if (bp_tgt->conditions.empty ())
10120 return 0;
10121
10122 buf += strlen (buf);
10123 xsnprintf (buf, buf_end - buf, "%s", ";");
10124 buf++;
10125
10126 /* Send conditions to the target. */
10127 for (agent_expr *aexpr : bp_tgt->conditions)
10128 {
10129 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10130 buf += strlen (buf);
10131 for (int i = 0; i < aexpr->len; ++i)
10132 buf = pack_hex_byte (buf, aexpr->buf[i]);
10133 *buf = '\0';
10134 }
10135 return 0;
10136 }
10137
10138 static void
10139 remote_add_target_side_commands (struct gdbarch *gdbarch,
10140 struct bp_target_info *bp_tgt, char *buf)
10141 {
10142 if (bp_tgt->tcommands.empty ())
10143 return;
10144
10145 buf += strlen (buf);
10146
10147 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10148 buf += strlen (buf);
10149
10150 /* Concatenate all the agent expressions that are commands into the
10151 cmds parameter. */
10152 for (agent_expr *aexpr : bp_tgt->tcommands)
10153 {
10154 sprintf (buf, "X%x,", aexpr->len);
10155 buf += strlen (buf);
10156 for (int i = 0; i < aexpr->len; ++i)
10157 buf = pack_hex_byte (buf, aexpr->buf[i]);
10158 *buf = '\0';
10159 }
10160 }
10161
10162 /* Insert a breakpoint. On targets that have software breakpoint
10163 support, we ask the remote target to do the work; on targets
10164 which don't, we insert a traditional memory breakpoint. */
10165
10166 int
10167 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10168 struct bp_target_info *bp_tgt)
10169 {
10170 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10171 If it succeeds, then set the support to PACKET_ENABLE. If it
10172 fails, and the user has explicitly requested the Z support then
10173 report an error, otherwise, mark it disabled and go on. */
10174
10175 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10176 {
10177 CORE_ADDR addr = bp_tgt->reqstd_address;
10178 struct remote_state *rs;
10179 char *p, *endbuf;
10180
10181 /* Make sure the remote is pointing at the right process, if
10182 necessary. */
10183 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10184 set_general_process ();
10185
10186 rs = get_remote_state ();
10187 p = rs->buf.data ();
10188 endbuf = p + get_remote_packet_size ();
10189
10190 *(p++) = 'Z';
10191 *(p++) = '0';
10192 *(p++) = ',';
10193 addr = (ULONGEST) remote_address_masked (addr);
10194 p += hexnumstr (p, addr);
10195 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10196
10197 if (supports_evaluation_of_breakpoint_conditions ())
10198 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10199
10200 if (can_run_breakpoint_commands ())
10201 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10202
10203 putpkt (rs->buf);
10204 getpkt (&rs->buf, 0);
10205
10206 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10207 {
10208 case PACKET_ERROR:
10209 return -1;
10210 case PACKET_OK:
10211 return 0;
10212 case PACKET_UNKNOWN:
10213 break;
10214 }
10215 }
10216
10217 /* If this breakpoint has target-side commands but this stub doesn't
10218 support Z0 packets, throw error. */
10219 if (!bp_tgt->tcommands.empty ())
10220 throw_error (NOT_SUPPORTED_ERROR, _("\
10221 Target doesn't support breakpoints that have target side commands."));
10222
10223 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10224 }
10225
10226 int
10227 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10228 struct bp_target_info *bp_tgt,
10229 enum remove_bp_reason reason)
10230 {
10231 CORE_ADDR addr = bp_tgt->placed_address;
10232 struct remote_state *rs = get_remote_state ();
10233
10234 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10235 {
10236 char *p = rs->buf.data ();
10237 char *endbuf = p + get_remote_packet_size ();
10238
10239 /* Make sure the remote is pointing at the right process, if
10240 necessary. */
10241 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10242 set_general_process ();
10243
10244 *(p++) = 'z';
10245 *(p++) = '0';
10246 *(p++) = ',';
10247
10248 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10249 p += hexnumstr (p, addr);
10250 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10251
10252 putpkt (rs->buf);
10253 getpkt (&rs->buf, 0);
10254
10255 return (rs->buf[0] == 'E');
10256 }
10257
10258 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10259 }
10260
10261 static enum Z_packet_type
10262 watchpoint_to_Z_packet (int type)
10263 {
10264 switch (type)
10265 {
10266 case hw_write:
10267 return Z_PACKET_WRITE_WP;
10268 break;
10269 case hw_read:
10270 return Z_PACKET_READ_WP;
10271 break;
10272 case hw_access:
10273 return Z_PACKET_ACCESS_WP;
10274 break;
10275 default:
10276 internal_error (__FILE__, __LINE__,
10277 _("hw_bp_to_z: bad watchpoint type %d"), type);
10278 }
10279 }
10280
10281 int
10282 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10283 enum target_hw_bp_type type, struct expression *cond)
10284 {
10285 struct remote_state *rs = get_remote_state ();
10286 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10287 char *p;
10288 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10289
10290 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10291 return 1;
10292
10293 /* Make sure the remote is pointing at the right process, if
10294 necessary. */
10295 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10296 set_general_process ();
10297
10298 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "Z%x,", packet);
10299 p = strchr (rs->buf.data (), '\0');
10300 addr = remote_address_masked (addr);
10301 p += hexnumstr (p, (ULONGEST) addr);
10302 xsnprintf (p, endbuf - p, ",%x", len);
10303
10304 putpkt (rs->buf);
10305 getpkt (&rs->buf, 0);
10306
10307 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10308 {
10309 case PACKET_ERROR:
10310 return -1;
10311 case PACKET_UNKNOWN:
10312 return 1;
10313 case PACKET_OK:
10314 return 0;
10315 }
10316 internal_error (__FILE__, __LINE__,
10317 _("remote_insert_watchpoint: reached end of function"));
10318 }
10319
10320 bool
10321 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10322 CORE_ADDR start, int length)
10323 {
10324 CORE_ADDR diff = remote_address_masked (addr - start);
10325
10326 return diff < length;
10327 }
10328
10329
10330 int
10331 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10332 enum target_hw_bp_type type, struct expression *cond)
10333 {
10334 struct remote_state *rs = get_remote_state ();
10335 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10336 char *p;
10337 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10338
10339 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10340 return -1;
10341
10342 /* Make sure the remote is pointing at the right process, if
10343 necessary. */
10344 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10345 set_general_process ();
10346
10347 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "z%x,", packet);
10348 p = strchr (rs->buf.data (), '\0');
10349 addr = remote_address_masked (addr);
10350 p += hexnumstr (p, (ULONGEST) addr);
10351 xsnprintf (p, endbuf - p, ",%x", len);
10352 putpkt (rs->buf);
10353 getpkt (&rs->buf, 0);
10354
10355 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10356 {
10357 case PACKET_ERROR:
10358 case PACKET_UNKNOWN:
10359 return -1;
10360 case PACKET_OK:
10361 return 0;
10362 }
10363 internal_error (__FILE__, __LINE__,
10364 _("remote_remove_watchpoint: reached end of function"));
10365 }
10366
10367
10368 static int remote_hw_watchpoint_limit = -1;
10369 static int remote_hw_watchpoint_length_limit = -1;
10370 static int remote_hw_breakpoint_limit = -1;
10371
10372 int
10373 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10374 {
10375 if (remote_hw_watchpoint_length_limit == 0)
10376 return 0;
10377 else if (remote_hw_watchpoint_length_limit < 0)
10378 return 1;
10379 else if (len <= remote_hw_watchpoint_length_limit)
10380 return 1;
10381 else
10382 return 0;
10383 }
10384
10385 int
10386 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10387 {
10388 if (type == bp_hardware_breakpoint)
10389 {
10390 if (remote_hw_breakpoint_limit == 0)
10391 return 0;
10392 else if (remote_hw_breakpoint_limit < 0)
10393 return 1;
10394 else if (cnt <= remote_hw_breakpoint_limit)
10395 return 1;
10396 }
10397 else
10398 {
10399 if (remote_hw_watchpoint_limit == 0)
10400 return 0;
10401 else if (remote_hw_watchpoint_limit < 0)
10402 return 1;
10403 else if (ot)
10404 return -1;
10405 else if (cnt <= remote_hw_watchpoint_limit)
10406 return 1;
10407 }
10408 return -1;
10409 }
10410
10411 /* The to_stopped_by_sw_breakpoint method of target remote. */
10412
10413 bool
10414 remote_target::stopped_by_sw_breakpoint ()
10415 {
10416 struct thread_info *thread = inferior_thread ();
10417
10418 return (thread->priv != NULL
10419 && (get_remote_thread_info (thread)->stop_reason
10420 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10421 }
10422
10423 /* The to_supports_stopped_by_sw_breakpoint method of target
10424 remote. */
10425
10426 bool
10427 remote_target::supports_stopped_by_sw_breakpoint ()
10428 {
10429 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10430 }
10431
10432 /* The to_stopped_by_hw_breakpoint method of target remote. */
10433
10434 bool
10435 remote_target::stopped_by_hw_breakpoint ()
10436 {
10437 struct thread_info *thread = inferior_thread ();
10438
10439 return (thread->priv != NULL
10440 && (get_remote_thread_info (thread)->stop_reason
10441 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10442 }
10443
10444 /* The to_supports_stopped_by_hw_breakpoint method of target
10445 remote. */
10446
10447 bool
10448 remote_target::supports_stopped_by_hw_breakpoint ()
10449 {
10450 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10451 }
10452
10453 bool
10454 remote_target::stopped_by_watchpoint ()
10455 {
10456 struct thread_info *thread = inferior_thread ();
10457
10458 return (thread->priv != NULL
10459 && (get_remote_thread_info (thread)->stop_reason
10460 == TARGET_STOPPED_BY_WATCHPOINT));
10461 }
10462
10463 bool
10464 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10465 {
10466 struct thread_info *thread = inferior_thread ();
10467
10468 if (thread->priv != NULL
10469 && (get_remote_thread_info (thread)->stop_reason
10470 == TARGET_STOPPED_BY_WATCHPOINT))
10471 {
10472 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10473 return true;
10474 }
10475
10476 return false;
10477 }
10478
10479
10480 int
10481 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10482 struct bp_target_info *bp_tgt)
10483 {
10484 CORE_ADDR addr = bp_tgt->reqstd_address;
10485 struct remote_state *rs;
10486 char *p, *endbuf;
10487 char *message;
10488
10489 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10490 return -1;
10491
10492 /* Make sure the remote is pointing at the right process, if
10493 necessary. */
10494 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10495 set_general_process ();
10496
10497 rs = get_remote_state ();
10498 p = rs->buf.data ();
10499 endbuf = p + get_remote_packet_size ();
10500
10501 *(p++) = 'Z';
10502 *(p++) = '1';
10503 *(p++) = ',';
10504
10505 addr = remote_address_masked (addr);
10506 p += hexnumstr (p, (ULONGEST) addr);
10507 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10508
10509 if (supports_evaluation_of_breakpoint_conditions ())
10510 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10511
10512 if (can_run_breakpoint_commands ())
10513 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10514
10515 putpkt (rs->buf);
10516 getpkt (&rs->buf, 0);
10517
10518 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10519 {
10520 case PACKET_ERROR:
10521 if (rs->buf[1] == '.')
10522 {
10523 message = strchr (&rs->buf[2], '.');
10524 if (message)
10525 error (_("Remote failure reply: %s"), message + 1);
10526 }
10527 return -1;
10528 case PACKET_UNKNOWN:
10529 return -1;
10530 case PACKET_OK:
10531 return 0;
10532 }
10533 internal_error (__FILE__, __LINE__,
10534 _("remote_insert_hw_breakpoint: reached end of function"));
10535 }
10536
10537
10538 int
10539 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10540 struct bp_target_info *bp_tgt)
10541 {
10542 CORE_ADDR addr;
10543 struct remote_state *rs = get_remote_state ();
10544 char *p = rs->buf.data ();
10545 char *endbuf = p + get_remote_packet_size ();
10546
10547 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10548 return -1;
10549
10550 /* Make sure the remote is pointing at the right process, if
10551 necessary. */
10552 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10553 set_general_process ();
10554
10555 *(p++) = 'z';
10556 *(p++) = '1';
10557 *(p++) = ',';
10558
10559 addr = remote_address_masked (bp_tgt->placed_address);
10560 p += hexnumstr (p, (ULONGEST) addr);
10561 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10562
10563 putpkt (rs->buf);
10564 getpkt (&rs->buf, 0);
10565
10566 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10567 {
10568 case PACKET_ERROR:
10569 case PACKET_UNKNOWN:
10570 return -1;
10571 case PACKET_OK:
10572 return 0;
10573 }
10574 internal_error (__FILE__, __LINE__,
10575 _("remote_remove_hw_breakpoint: reached end of function"));
10576 }
10577
10578 /* Verify memory using the "qCRC:" request. */
10579
10580 int
10581 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10582 {
10583 struct remote_state *rs = get_remote_state ();
10584 unsigned long host_crc, target_crc;
10585 char *tmp;
10586
10587 /* It doesn't make sense to use qCRC if the remote target is
10588 connected but not running. */
10589 if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10590 {
10591 enum packet_result result;
10592
10593 /* Make sure the remote is pointing at the right process. */
10594 set_general_process ();
10595
10596 /* FIXME: assumes lma can fit into long. */
10597 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qCRC:%lx,%lx",
10598 (long) lma, (long) size);
10599 putpkt (rs->buf);
10600
10601 /* Be clever; compute the host_crc before waiting for target
10602 reply. */
10603 host_crc = xcrc32 (data, size, 0xffffffff);
10604
10605 getpkt (&rs->buf, 0);
10606
10607 result = packet_ok (rs->buf,
10608 &remote_protocol_packets[PACKET_qCRC]);
10609 if (result == PACKET_ERROR)
10610 return -1;
10611 else if (result == PACKET_OK)
10612 {
10613 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10614 target_crc = target_crc * 16 + fromhex (*tmp);
10615
10616 return (host_crc == target_crc);
10617 }
10618 }
10619
10620 return simple_verify_memory (this, data, lma, size);
10621 }
10622
10623 /* compare-sections command
10624
10625 With no arguments, compares each loadable section in the exec bfd
10626 with the same memory range on the target, and reports mismatches.
10627 Useful for verifying the image on the target against the exec file. */
10628
10629 static void
10630 compare_sections_command (const char *args, int from_tty)
10631 {
10632 asection *s;
10633 const char *sectname;
10634 bfd_size_type size;
10635 bfd_vma lma;
10636 int matched = 0;
10637 int mismatched = 0;
10638 int res;
10639 int read_only = 0;
10640
10641 if (!exec_bfd)
10642 error (_("command cannot be used without an exec file"));
10643
10644 if (args != NULL && strcmp (args, "-r") == 0)
10645 {
10646 read_only = 1;
10647 args = NULL;
10648 }
10649
10650 for (s = exec_bfd->sections; s; s = s->next)
10651 {
10652 if (!(s->flags & SEC_LOAD))
10653 continue; /* Skip non-loadable section. */
10654
10655 if (read_only && (s->flags & SEC_READONLY) == 0)
10656 continue; /* Skip writeable sections */
10657
10658 size = bfd_section_size (s);
10659 if (size == 0)
10660 continue; /* Skip zero-length section. */
10661
10662 sectname = bfd_section_name (s);
10663 if (args && strcmp (args, sectname) != 0)
10664 continue; /* Not the section selected by user. */
10665
10666 matched = 1; /* Do this section. */
10667 lma = s->lma;
10668
10669 gdb::byte_vector sectdata (size);
10670 bfd_get_section_contents (exec_bfd, s, sectdata.data (), 0, size);
10671
10672 res = target_verify_memory (sectdata.data (), lma, size);
10673
10674 if (res == -1)
10675 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10676 paddress (target_gdbarch (), lma),
10677 paddress (target_gdbarch (), lma + size));
10678
10679 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10680 paddress (target_gdbarch (), lma),
10681 paddress (target_gdbarch (), lma + size));
10682 if (res)
10683 printf_filtered ("matched.\n");
10684 else
10685 {
10686 printf_filtered ("MIS-MATCHED!\n");
10687 mismatched++;
10688 }
10689 }
10690 if (mismatched > 0)
10691 warning (_("One or more sections of the target image does not match\n\
10692 the loaded file\n"));
10693 if (args && !matched)
10694 printf_filtered (_("No loaded section named '%s'.\n"), args);
10695 }
10696
10697 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10698 into remote target. The number of bytes written to the remote
10699 target is returned, or -1 for error. */
10700
10701 target_xfer_status
10702 remote_target::remote_write_qxfer (const char *object_name,
10703 const char *annex, const gdb_byte *writebuf,
10704 ULONGEST offset, LONGEST len,
10705 ULONGEST *xfered_len,
10706 struct packet_config *packet)
10707 {
10708 int i, buf_len;
10709 ULONGEST n;
10710 struct remote_state *rs = get_remote_state ();
10711 int max_size = get_memory_write_packet_size ();
10712
10713 if (packet_config_support (packet) == PACKET_DISABLE)
10714 return TARGET_XFER_E_IO;
10715
10716 /* Insert header. */
10717 i = snprintf (rs->buf.data (), max_size,
10718 "qXfer:%s:write:%s:%s:",
10719 object_name, annex ? annex : "",
10720 phex_nz (offset, sizeof offset));
10721 max_size -= (i + 1);
10722
10723 /* Escape as much data as fits into rs->buf. */
10724 buf_len = remote_escape_output
10725 (writebuf, len, 1, (gdb_byte *) rs->buf.data () + i, &max_size, max_size);
10726
10727 if (putpkt_binary (rs->buf.data (), i + buf_len) < 0
10728 || getpkt_sane (&rs->buf, 0) < 0
10729 || packet_ok (rs->buf, packet) != PACKET_OK)
10730 return TARGET_XFER_E_IO;
10731
10732 unpack_varlen_hex (rs->buf.data (), &n);
10733
10734 *xfered_len = n;
10735 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10736 }
10737
10738 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10739 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10740 number of bytes read is returned, or 0 for EOF, or -1 for error.
10741 The number of bytes read may be less than LEN without indicating an
10742 EOF. PACKET is checked and updated to indicate whether the remote
10743 target supports this object. */
10744
10745 target_xfer_status
10746 remote_target::remote_read_qxfer (const char *object_name,
10747 const char *annex,
10748 gdb_byte *readbuf, ULONGEST offset,
10749 LONGEST len,
10750 ULONGEST *xfered_len,
10751 struct packet_config *packet)
10752 {
10753 struct remote_state *rs = get_remote_state ();
10754 LONGEST i, n, packet_len;
10755
10756 if (packet_config_support (packet) == PACKET_DISABLE)
10757 return TARGET_XFER_E_IO;
10758
10759 /* Check whether we've cached an end-of-object packet that matches
10760 this request. */
10761 if (rs->finished_object)
10762 {
10763 if (strcmp (object_name, rs->finished_object) == 0
10764 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10765 && offset == rs->finished_offset)
10766 return TARGET_XFER_EOF;
10767
10768
10769 /* Otherwise, we're now reading something different. Discard
10770 the cache. */
10771 xfree (rs->finished_object);
10772 xfree (rs->finished_annex);
10773 rs->finished_object = NULL;
10774 rs->finished_annex = NULL;
10775 }
10776
10777 /* Request only enough to fit in a single packet. The actual data
10778 may not, since we don't know how much of it will need to be escaped;
10779 the target is free to respond with slightly less data. We subtract
10780 five to account for the response type and the protocol frame. */
10781 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10782 snprintf (rs->buf.data (), get_remote_packet_size () - 4,
10783 "qXfer:%s:read:%s:%s,%s",
10784 object_name, annex ? annex : "",
10785 phex_nz (offset, sizeof offset),
10786 phex_nz (n, sizeof n));
10787 i = putpkt (rs->buf);
10788 if (i < 0)
10789 return TARGET_XFER_E_IO;
10790
10791 rs->buf[0] = '\0';
10792 packet_len = getpkt_sane (&rs->buf, 0);
10793 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10794 return TARGET_XFER_E_IO;
10795
10796 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10797 error (_("Unknown remote qXfer reply: %s"), rs->buf.data ());
10798
10799 /* 'm' means there is (or at least might be) more data after this
10800 batch. That does not make sense unless there's at least one byte
10801 of data in this reply. */
10802 if (rs->buf[0] == 'm' && packet_len == 1)
10803 error (_("Remote qXfer reply contained no data."));
10804
10805 /* Got some data. */
10806 i = remote_unescape_input ((gdb_byte *) rs->buf.data () + 1,
10807 packet_len - 1, readbuf, n);
10808
10809 /* 'l' is an EOF marker, possibly including a final block of data,
10810 or possibly empty. If we have the final block of a non-empty
10811 object, record this fact to bypass a subsequent partial read. */
10812 if (rs->buf[0] == 'l' && offset + i > 0)
10813 {
10814 rs->finished_object = xstrdup (object_name);
10815 rs->finished_annex = xstrdup (annex ? annex : "");
10816 rs->finished_offset = offset + i;
10817 }
10818
10819 if (i == 0)
10820 return TARGET_XFER_EOF;
10821 else
10822 {
10823 *xfered_len = i;
10824 return TARGET_XFER_OK;
10825 }
10826 }
10827
10828 enum target_xfer_status
10829 remote_target::xfer_partial (enum target_object object,
10830 const char *annex, gdb_byte *readbuf,
10831 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
10832 ULONGEST *xfered_len)
10833 {
10834 struct remote_state *rs;
10835 int i;
10836 char *p2;
10837 char query_type;
10838 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
10839
10840 set_remote_traceframe ();
10841 set_general_thread (inferior_ptid);
10842
10843 rs = get_remote_state ();
10844
10845 /* Handle memory using the standard memory routines. */
10846 if (object == TARGET_OBJECT_MEMORY)
10847 {
10848 /* If the remote target is connected but not running, we should
10849 pass this request down to a lower stratum (e.g. the executable
10850 file). */
10851 if (!target_has_execution)
10852 return TARGET_XFER_EOF;
10853
10854 if (writebuf != NULL)
10855 return remote_write_bytes (offset, writebuf, len, unit_size,
10856 xfered_len);
10857 else
10858 return remote_read_bytes (offset, readbuf, len, unit_size,
10859 xfered_len);
10860 }
10861
10862 /* Handle extra signal info using qxfer packets. */
10863 if (object == TARGET_OBJECT_SIGNAL_INFO)
10864 {
10865 if (readbuf)
10866 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
10867 xfered_len, &remote_protocol_packets
10868 [PACKET_qXfer_siginfo_read]);
10869 else
10870 return remote_write_qxfer ("siginfo", annex,
10871 writebuf, offset, len, xfered_len,
10872 &remote_protocol_packets
10873 [PACKET_qXfer_siginfo_write]);
10874 }
10875
10876 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
10877 {
10878 if (readbuf)
10879 return remote_read_qxfer ("statictrace", annex,
10880 readbuf, offset, len, xfered_len,
10881 &remote_protocol_packets
10882 [PACKET_qXfer_statictrace_read]);
10883 else
10884 return TARGET_XFER_E_IO;
10885 }
10886
10887 /* Only handle flash writes. */
10888 if (writebuf != NULL)
10889 {
10890 switch (object)
10891 {
10892 case TARGET_OBJECT_FLASH:
10893 return remote_flash_write (offset, len, xfered_len,
10894 writebuf);
10895
10896 default:
10897 return TARGET_XFER_E_IO;
10898 }
10899 }
10900
10901 /* Map pre-existing objects onto letters. DO NOT do this for new
10902 objects!!! Instead specify new query packets. */
10903 switch (object)
10904 {
10905 case TARGET_OBJECT_AVR:
10906 query_type = 'R';
10907 break;
10908
10909 case TARGET_OBJECT_AUXV:
10910 gdb_assert (annex == NULL);
10911 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
10912 xfered_len,
10913 &remote_protocol_packets[PACKET_qXfer_auxv]);
10914
10915 case TARGET_OBJECT_AVAILABLE_FEATURES:
10916 return remote_read_qxfer
10917 ("features", annex, readbuf, offset, len, xfered_len,
10918 &remote_protocol_packets[PACKET_qXfer_features]);
10919
10920 case TARGET_OBJECT_LIBRARIES:
10921 return remote_read_qxfer
10922 ("libraries", annex, readbuf, offset, len, xfered_len,
10923 &remote_protocol_packets[PACKET_qXfer_libraries]);
10924
10925 case TARGET_OBJECT_LIBRARIES_SVR4:
10926 return remote_read_qxfer
10927 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
10928 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
10929
10930 case TARGET_OBJECT_MEMORY_MAP:
10931 gdb_assert (annex == NULL);
10932 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
10933 xfered_len,
10934 &remote_protocol_packets[PACKET_qXfer_memory_map]);
10935
10936 case TARGET_OBJECT_OSDATA:
10937 /* Should only get here if we're connected. */
10938 gdb_assert (rs->remote_desc);
10939 return remote_read_qxfer
10940 ("osdata", annex, readbuf, offset, len, xfered_len,
10941 &remote_protocol_packets[PACKET_qXfer_osdata]);
10942
10943 case TARGET_OBJECT_THREADS:
10944 gdb_assert (annex == NULL);
10945 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
10946 xfered_len,
10947 &remote_protocol_packets[PACKET_qXfer_threads]);
10948
10949 case TARGET_OBJECT_TRACEFRAME_INFO:
10950 gdb_assert (annex == NULL);
10951 return remote_read_qxfer
10952 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
10953 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
10954
10955 case TARGET_OBJECT_FDPIC:
10956 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
10957 xfered_len,
10958 &remote_protocol_packets[PACKET_qXfer_fdpic]);
10959
10960 case TARGET_OBJECT_OPENVMS_UIB:
10961 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
10962 xfered_len,
10963 &remote_protocol_packets[PACKET_qXfer_uib]);
10964
10965 case TARGET_OBJECT_BTRACE:
10966 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
10967 xfered_len,
10968 &remote_protocol_packets[PACKET_qXfer_btrace]);
10969
10970 case TARGET_OBJECT_BTRACE_CONF:
10971 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
10972 len, xfered_len,
10973 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
10974
10975 case TARGET_OBJECT_EXEC_FILE:
10976 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
10977 len, xfered_len,
10978 &remote_protocol_packets[PACKET_qXfer_exec_file]);
10979
10980 default:
10981 return TARGET_XFER_E_IO;
10982 }
10983
10984 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
10985 large enough let the caller deal with it. */
10986 if (len < get_remote_packet_size ())
10987 return TARGET_XFER_E_IO;
10988 len = get_remote_packet_size ();
10989
10990 /* Except for querying the minimum buffer size, target must be open. */
10991 if (!rs->remote_desc)
10992 error (_("remote query is only available after target open"));
10993
10994 gdb_assert (annex != NULL);
10995 gdb_assert (readbuf != NULL);
10996
10997 p2 = rs->buf.data ();
10998 *p2++ = 'q';
10999 *p2++ = query_type;
11000
11001 /* We used one buffer char for the remote protocol q command and
11002 another for the query type. As the remote protocol encapsulation
11003 uses 4 chars plus one extra in case we are debugging
11004 (remote_debug), we have PBUFZIZ - 7 left to pack the query
11005 string. */
11006 i = 0;
11007 while (annex[i] && (i < (get_remote_packet_size () - 8)))
11008 {
11009 /* Bad caller may have sent forbidden characters. */
11010 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
11011 *p2++ = annex[i];
11012 i++;
11013 }
11014 *p2 = '\0';
11015 gdb_assert (annex[i] == '\0');
11016
11017 i = putpkt (rs->buf);
11018 if (i < 0)
11019 return TARGET_XFER_E_IO;
11020
11021 getpkt (&rs->buf, 0);
11022 strcpy ((char *) readbuf, rs->buf.data ());
11023
11024 *xfered_len = strlen ((char *) readbuf);
11025 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11026 }
11027
11028 /* Implementation of to_get_memory_xfer_limit. */
11029
11030 ULONGEST
11031 remote_target::get_memory_xfer_limit ()
11032 {
11033 return get_memory_write_packet_size ();
11034 }
11035
11036 int
11037 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
11038 const gdb_byte *pattern, ULONGEST pattern_len,
11039 CORE_ADDR *found_addrp)
11040 {
11041 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
11042 struct remote_state *rs = get_remote_state ();
11043 int max_size = get_memory_write_packet_size ();
11044 struct packet_config *packet =
11045 &remote_protocol_packets[PACKET_qSearch_memory];
11046 /* Number of packet bytes used to encode the pattern;
11047 this could be more than PATTERN_LEN due to escape characters. */
11048 int escaped_pattern_len;
11049 /* Amount of pattern that was encodable in the packet. */
11050 int used_pattern_len;
11051 int i;
11052 int found;
11053 ULONGEST found_addr;
11054
11055 /* Don't go to the target if we don't have to. This is done before
11056 checking packet_config_support to avoid the possibility that a
11057 success for this edge case means the facility works in
11058 general. */
11059 if (pattern_len > search_space_len)
11060 return 0;
11061 if (pattern_len == 0)
11062 {
11063 *found_addrp = start_addr;
11064 return 1;
11065 }
11066
11067 /* If we already know the packet isn't supported, fall back to the simple
11068 way of searching memory. */
11069
11070 if (packet_config_support (packet) == PACKET_DISABLE)
11071 {
11072 /* Target doesn't provided special support, fall back and use the
11073 standard support (copy memory and do the search here). */
11074 return simple_search_memory (this, start_addr, search_space_len,
11075 pattern, pattern_len, found_addrp);
11076 }
11077
11078 /* Make sure the remote is pointing at the right process. */
11079 set_general_process ();
11080
11081 /* Insert header. */
11082 i = snprintf (rs->buf.data (), max_size,
11083 "qSearch:memory:%s;%s;",
11084 phex_nz (start_addr, addr_size),
11085 phex_nz (search_space_len, sizeof (search_space_len)));
11086 max_size -= (i + 1);
11087
11088 /* Escape as much data as fits into rs->buf. */
11089 escaped_pattern_len =
11090 remote_escape_output (pattern, pattern_len, 1,
11091 (gdb_byte *) rs->buf.data () + i,
11092 &used_pattern_len, max_size);
11093
11094 /* Bail if the pattern is too large. */
11095 if (used_pattern_len != pattern_len)
11096 error (_("Pattern is too large to transmit to remote target."));
11097
11098 if (putpkt_binary (rs->buf.data (), i + escaped_pattern_len) < 0
11099 || getpkt_sane (&rs->buf, 0) < 0
11100 || packet_ok (rs->buf, packet) != PACKET_OK)
11101 {
11102 /* The request may not have worked because the command is not
11103 supported. If so, fall back to the simple way. */
11104 if (packet_config_support (packet) == PACKET_DISABLE)
11105 {
11106 return simple_search_memory (this, start_addr, search_space_len,
11107 pattern, pattern_len, found_addrp);
11108 }
11109 return -1;
11110 }
11111
11112 if (rs->buf[0] == '0')
11113 found = 0;
11114 else if (rs->buf[0] == '1')
11115 {
11116 found = 1;
11117 if (rs->buf[1] != ',')
11118 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11119 unpack_varlen_hex (&rs->buf[2], &found_addr);
11120 *found_addrp = found_addr;
11121 }
11122 else
11123 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11124
11125 return found;
11126 }
11127
11128 void
11129 remote_target::rcmd (const char *command, struct ui_file *outbuf)
11130 {
11131 struct remote_state *rs = get_remote_state ();
11132 char *p = rs->buf.data ();
11133
11134 if (!rs->remote_desc)
11135 error (_("remote rcmd is only available after target open"));
11136
11137 /* Send a NULL command across as an empty command. */
11138 if (command == NULL)
11139 command = "";
11140
11141 /* The query prefix. */
11142 strcpy (rs->buf.data (), "qRcmd,");
11143 p = strchr (rs->buf.data (), '\0');
11144
11145 if ((strlen (rs->buf.data ()) + strlen (command) * 2 + 8/*misc*/)
11146 > get_remote_packet_size ())
11147 error (_("\"monitor\" command ``%s'' is too long."), command);
11148
11149 /* Encode the actual command. */
11150 bin2hex ((const gdb_byte *) command, p, strlen (command));
11151
11152 if (putpkt (rs->buf) < 0)
11153 error (_("Communication problem with target."));
11154
11155 /* get/display the response */
11156 while (1)
11157 {
11158 char *buf;
11159
11160 /* XXX - see also remote_get_noisy_reply(). */
11161 QUIT; /* Allow user to bail out with ^C. */
11162 rs->buf[0] = '\0';
11163 if (getpkt_sane (&rs->buf, 0) == -1)
11164 {
11165 /* Timeout. Continue to (try to) read responses.
11166 This is better than stopping with an error, assuming the stub
11167 is still executing the (long) monitor command.
11168 If needed, the user can interrupt gdb using C-c, obtaining
11169 an effect similar to stop on timeout. */
11170 continue;
11171 }
11172 buf = rs->buf.data ();
11173 if (buf[0] == '\0')
11174 error (_("Target does not support this command."));
11175 if (buf[0] == 'O' && buf[1] != 'K')
11176 {
11177 remote_console_output (buf + 1); /* 'O' message from stub. */
11178 continue;
11179 }
11180 if (strcmp (buf, "OK") == 0)
11181 break;
11182 if (strlen (buf) == 3 && buf[0] == 'E'
11183 && isdigit (buf[1]) && isdigit (buf[2]))
11184 {
11185 error (_("Protocol error with Rcmd"));
11186 }
11187 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11188 {
11189 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11190
11191 fputc_unfiltered (c, outbuf);
11192 }
11193 break;
11194 }
11195 }
11196
11197 std::vector<mem_region>
11198 remote_target::memory_map ()
11199 {
11200 std::vector<mem_region> result;
11201 gdb::optional<gdb::char_vector> text
11202 = target_read_stralloc (current_top_target (), TARGET_OBJECT_MEMORY_MAP, NULL);
11203
11204 if (text)
11205 result = parse_memory_map (text->data ());
11206
11207 return result;
11208 }
11209
11210 static void
11211 packet_command (const char *args, int from_tty)
11212 {
11213 remote_target *remote = get_current_remote_target ();
11214
11215 if (remote == nullptr)
11216 error (_("command can only be used with remote target"));
11217
11218 remote->packet_command (args, from_tty);
11219 }
11220
11221 void
11222 remote_target::packet_command (const char *args, int from_tty)
11223 {
11224 if (!args)
11225 error (_("remote-packet command requires packet text as argument"));
11226
11227 puts_filtered ("sending: ");
11228 print_packet (args);
11229 puts_filtered ("\n");
11230 putpkt (args);
11231
11232 remote_state *rs = get_remote_state ();
11233
11234 getpkt (&rs->buf, 0);
11235 puts_filtered ("received: ");
11236 print_packet (rs->buf.data ());
11237 puts_filtered ("\n");
11238 }
11239
11240 #if 0
11241 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11242
11243 static void display_thread_info (struct gdb_ext_thread_info *info);
11244
11245 static void threadset_test_cmd (char *cmd, int tty);
11246
11247 static void threadalive_test (char *cmd, int tty);
11248
11249 static void threadlist_test_cmd (char *cmd, int tty);
11250
11251 int get_and_display_threadinfo (threadref *ref);
11252
11253 static void threadinfo_test_cmd (char *cmd, int tty);
11254
11255 static int thread_display_step (threadref *ref, void *context);
11256
11257 static void threadlist_update_test_cmd (char *cmd, int tty);
11258
11259 static void init_remote_threadtests (void);
11260
11261 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11262
11263 static void
11264 threadset_test_cmd (const char *cmd, int tty)
11265 {
11266 int sample_thread = SAMPLE_THREAD;
11267
11268 printf_filtered (_("Remote threadset test\n"));
11269 set_general_thread (sample_thread);
11270 }
11271
11272
11273 static void
11274 threadalive_test (const char *cmd, int tty)
11275 {
11276 int sample_thread = SAMPLE_THREAD;
11277 int pid = inferior_ptid.pid ();
11278 ptid_t ptid = ptid_t (pid, sample_thread, 0);
11279
11280 if (remote_thread_alive (ptid))
11281 printf_filtered ("PASS: Thread alive test\n");
11282 else
11283 printf_filtered ("FAIL: Thread alive test\n");
11284 }
11285
11286 void output_threadid (char *title, threadref *ref);
11287
11288 void
11289 output_threadid (char *title, threadref *ref)
11290 {
11291 char hexid[20];
11292
11293 pack_threadid (&hexid[0], ref); /* Convert thread id into hex. */
11294 hexid[16] = 0;
11295 printf_filtered ("%s %s\n", title, (&hexid[0]));
11296 }
11297
11298 static void
11299 threadlist_test_cmd (const char *cmd, int tty)
11300 {
11301 int startflag = 1;
11302 threadref nextthread;
11303 int done, result_count;
11304 threadref threadlist[3];
11305
11306 printf_filtered ("Remote Threadlist test\n");
11307 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11308 &result_count, &threadlist[0]))
11309 printf_filtered ("FAIL: threadlist test\n");
11310 else
11311 {
11312 threadref *scan = threadlist;
11313 threadref *limit = scan + result_count;
11314
11315 while (scan < limit)
11316 output_threadid (" thread ", scan++);
11317 }
11318 }
11319
11320 void
11321 display_thread_info (struct gdb_ext_thread_info *info)
11322 {
11323 output_threadid ("Threadid: ", &info->threadid);
11324 printf_filtered ("Name: %s\n ", info->shortname);
11325 printf_filtered ("State: %s\n", info->display);
11326 printf_filtered ("other: %s\n\n", info->more_display);
11327 }
11328
11329 int
11330 get_and_display_threadinfo (threadref *ref)
11331 {
11332 int result;
11333 int set;
11334 struct gdb_ext_thread_info threadinfo;
11335
11336 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11337 | TAG_MOREDISPLAY | TAG_DISPLAY;
11338 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11339 display_thread_info (&threadinfo);
11340 return result;
11341 }
11342
11343 static void
11344 threadinfo_test_cmd (const char *cmd, int tty)
11345 {
11346 int athread = SAMPLE_THREAD;
11347 threadref thread;
11348 int set;
11349
11350 int_to_threadref (&thread, athread);
11351 printf_filtered ("Remote Threadinfo test\n");
11352 if (!get_and_display_threadinfo (&thread))
11353 printf_filtered ("FAIL cannot get thread info\n");
11354 }
11355
11356 static int
11357 thread_display_step (threadref *ref, void *context)
11358 {
11359 /* output_threadid(" threadstep ",ref); *//* simple test */
11360 return get_and_display_threadinfo (ref);
11361 }
11362
11363 static void
11364 threadlist_update_test_cmd (const char *cmd, int tty)
11365 {
11366 printf_filtered ("Remote Threadlist update test\n");
11367 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11368 }
11369
11370 static void
11371 init_remote_threadtests (void)
11372 {
11373 add_com ("tlist", class_obscure, threadlist_test_cmd,
11374 _("Fetch and print the remote list of "
11375 "thread identifiers, one pkt only."));
11376 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11377 _("Fetch and display info about one thread."));
11378 add_com ("tset", class_obscure, threadset_test_cmd,
11379 _("Test setting to a different thread."));
11380 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11381 _("Iterate through updating all remote thread info."));
11382 add_com ("talive", class_obscure, threadalive_test,
11383 _("Remote thread alive test."));
11384 }
11385
11386 #endif /* 0 */
11387
11388 /* Convert a thread ID to a string. */
11389
11390 std::string
11391 remote_target::pid_to_str (ptid_t ptid)
11392 {
11393 struct remote_state *rs = get_remote_state ();
11394
11395 if (ptid == null_ptid)
11396 return normal_pid_to_str (ptid);
11397 else if (ptid.is_pid ())
11398 {
11399 /* Printing an inferior target id. */
11400
11401 /* When multi-process extensions are off, there's no way in the
11402 remote protocol to know the remote process id, if there's any
11403 at all. There's one exception --- when we're connected with
11404 target extended-remote, and we manually attached to a process
11405 with "attach PID". We don't record anywhere a flag that
11406 allows us to distinguish that case from the case of
11407 connecting with extended-remote and the stub already being
11408 attached to a process, and reporting yes to qAttached, hence
11409 no smart special casing here. */
11410 if (!remote_multi_process_p (rs))
11411 return "Remote target";
11412
11413 return normal_pid_to_str (ptid);
11414 }
11415 else
11416 {
11417 if (magic_null_ptid == ptid)
11418 return "Thread <main>";
11419 else if (remote_multi_process_p (rs))
11420 if (ptid.lwp () == 0)
11421 return normal_pid_to_str (ptid);
11422 else
11423 return string_printf ("Thread %d.%ld",
11424 ptid.pid (), ptid.lwp ());
11425 else
11426 return string_printf ("Thread %ld", ptid.lwp ());
11427 }
11428 }
11429
11430 /* Get the address of the thread local variable in OBJFILE which is
11431 stored at OFFSET within the thread local storage for thread PTID. */
11432
11433 CORE_ADDR
11434 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11435 CORE_ADDR offset)
11436 {
11437 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11438 {
11439 struct remote_state *rs = get_remote_state ();
11440 char *p = rs->buf.data ();
11441 char *endp = p + get_remote_packet_size ();
11442 enum packet_result result;
11443
11444 strcpy (p, "qGetTLSAddr:");
11445 p += strlen (p);
11446 p = write_ptid (p, endp, ptid);
11447 *p++ = ',';
11448 p += hexnumstr (p, offset);
11449 *p++ = ',';
11450 p += hexnumstr (p, lm);
11451 *p++ = '\0';
11452
11453 putpkt (rs->buf);
11454 getpkt (&rs->buf, 0);
11455 result = packet_ok (rs->buf,
11456 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11457 if (result == PACKET_OK)
11458 {
11459 ULONGEST addr;
11460
11461 unpack_varlen_hex (rs->buf.data (), &addr);
11462 return addr;
11463 }
11464 else if (result == PACKET_UNKNOWN)
11465 throw_error (TLS_GENERIC_ERROR,
11466 _("Remote target doesn't support qGetTLSAddr packet"));
11467 else
11468 throw_error (TLS_GENERIC_ERROR,
11469 _("Remote target failed to process qGetTLSAddr request"));
11470 }
11471 else
11472 throw_error (TLS_GENERIC_ERROR,
11473 _("TLS not supported or disabled on this target"));
11474 /* Not reached. */
11475 return 0;
11476 }
11477
11478 /* Provide thread local base, i.e. Thread Information Block address.
11479 Returns 1 if ptid is found and thread_local_base is non zero. */
11480
11481 bool
11482 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11483 {
11484 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11485 {
11486 struct remote_state *rs = get_remote_state ();
11487 char *p = rs->buf.data ();
11488 char *endp = p + get_remote_packet_size ();
11489 enum packet_result result;
11490
11491 strcpy (p, "qGetTIBAddr:");
11492 p += strlen (p);
11493 p = write_ptid (p, endp, ptid);
11494 *p++ = '\0';
11495
11496 putpkt (rs->buf);
11497 getpkt (&rs->buf, 0);
11498 result = packet_ok (rs->buf,
11499 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11500 if (result == PACKET_OK)
11501 {
11502 ULONGEST val;
11503 unpack_varlen_hex (rs->buf.data (), &val);
11504 if (addr)
11505 *addr = (CORE_ADDR) val;
11506 return true;
11507 }
11508 else if (result == PACKET_UNKNOWN)
11509 error (_("Remote target doesn't support qGetTIBAddr packet"));
11510 else
11511 error (_("Remote target failed to process qGetTIBAddr request"));
11512 }
11513 else
11514 error (_("qGetTIBAddr not supported or disabled on this target"));
11515 /* Not reached. */
11516 return false;
11517 }
11518
11519 /* Support for inferring a target description based on the current
11520 architecture and the size of a 'g' packet. While the 'g' packet
11521 can have any size (since optional registers can be left off the
11522 end), some sizes are easily recognizable given knowledge of the
11523 approximate architecture. */
11524
11525 struct remote_g_packet_guess
11526 {
11527 remote_g_packet_guess (int bytes_, const struct target_desc *tdesc_)
11528 : bytes (bytes_),
11529 tdesc (tdesc_)
11530 {
11531 }
11532
11533 int bytes;
11534 const struct target_desc *tdesc;
11535 };
11536
11537 struct remote_g_packet_data : public allocate_on_obstack
11538 {
11539 std::vector<remote_g_packet_guess> guesses;
11540 };
11541
11542 static struct gdbarch_data *remote_g_packet_data_handle;
11543
11544 static void *
11545 remote_g_packet_data_init (struct obstack *obstack)
11546 {
11547 return new (obstack) remote_g_packet_data;
11548 }
11549
11550 void
11551 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11552 const struct target_desc *tdesc)
11553 {
11554 struct remote_g_packet_data *data
11555 = ((struct remote_g_packet_data *)
11556 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11557
11558 gdb_assert (tdesc != NULL);
11559
11560 for (const remote_g_packet_guess &guess : data->guesses)
11561 if (guess.bytes == bytes)
11562 internal_error (__FILE__, __LINE__,
11563 _("Duplicate g packet description added for size %d"),
11564 bytes);
11565
11566 data->guesses.emplace_back (bytes, tdesc);
11567 }
11568
11569 /* Return true if remote_read_description would do anything on this target
11570 and architecture, false otherwise. */
11571
11572 static bool
11573 remote_read_description_p (struct target_ops *target)
11574 {
11575 struct remote_g_packet_data *data
11576 = ((struct remote_g_packet_data *)
11577 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11578
11579 return !data->guesses.empty ();
11580 }
11581
11582 const struct target_desc *
11583 remote_target::read_description ()
11584 {
11585 struct remote_g_packet_data *data
11586 = ((struct remote_g_packet_data *)
11587 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11588
11589 /* Do not try this during initial connection, when we do not know
11590 whether there is a running but stopped thread. */
11591 if (!target_has_execution || inferior_ptid == null_ptid)
11592 return beneath ()->read_description ();
11593
11594 if (!data->guesses.empty ())
11595 {
11596 int bytes = send_g_packet ();
11597
11598 for (const remote_g_packet_guess &guess : data->guesses)
11599 if (guess.bytes == bytes)
11600 return guess.tdesc;
11601
11602 /* We discard the g packet. A minor optimization would be to
11603 hold on to it, and fill the register cache once we have selected
11604 an architecture, but it's too tricky to do safely. */
11605 }
11606
11607 return beneath ()->read_description ();
11608 }
11609
11610 /* Remote file transfer support. This is host-initiated I/O, not
11611 target-initiated; for target-initiated, see remote-fileio.c. */
11612
11613 /* If *LEFT is at least the length of STRING, copy STRING to
11614 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11615 decrease *LEFT. Otherwise raise an error. */
11616
11617 static void
11618 remote_buffer_add_string (char **buffer, int *left, const char *string)
11619 {
11620 int len = strlen (string);
11621
11622 if (len > *left)
11623 error (_("Packet too long for target."));
11624
11625 memcpy (*buffer, string, len);
11626 *buffer += len;
11627 *left -= len;
11628
11629 /* NUL-terminate the buffer as a convenience, if there is
11630 room. */
11631 if (*left)
11632 **buffer = '\0';
11633 }
11634
11635 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11636 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11637 decrease *LEFT. Otherwise raise an error. */
11638
11639 static void
11640 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11641 int len)
11642 {
11643 if (2 * len > *left)
11644 error (_("Packet too long for target."));
11645
11646 bin2hex (bytes, *buffer, len);
11647 *buffer += 2 * len;
11648 *left -= 2 * len;
11649
11650 /* NUL-terminate the buffer as a convenience, if there is
11651 room. */
11652 if (*left)
11653 **buffer = '\0';
11654 }
11655
11656 /* If *LEFT is large enough, convert VALUE to hex and add it to
11657 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11658 decrease *LEFT. Otherwise raise an error. */
11659
11660 static void
11661 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11662 {
11663 int len = hexnumlen (value);
11664
11665 if (len > *left)
11666 error (_("Packet too long for target."));
11667
11668 hexnumstr (*buffer, value);
11669 *buffer += len;
11670 *left -= len;
11671
11672 /* NUL-terminate the buffer as a convenience, if there is
11673 room. */
11674 if (*left)
11675 **buffer = '\0';
11676 }
11677
11678 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11679 value, *REMOTE_ERRNO to the remote error number or zero if none
11680 was included, and *ATTACHMENT to point to the start of the annex
11681 if any. The length of the packet isn't needed here; there may
11682 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11683
11684 Return 0 if the packet could be parsed, -1 if it could not. If
11685 -1 is returned, the other variables may not be initialized. */
11686
11687 static int
11688 remote_hostio_parse_result (char *buffer, int *retcode,
11689 int *remote_errno, char **attachment)
11690 {
11691 char *p, *p2;
11692
11693 *remote_errno = 0;
11694 *attachment = NULL;
11695
11696 if (buffer[0] != 'F')
11697 return -1;
11698
11699 errno = 0;
11700 *retcode = strtol (&buffer[1], &p, 16);
11701 if (errno != 0 || p == &buffer[1])
11702 return -1;
11703
11704 /* Check for ",errno". */
11705 if (*p == ',')
11706 {
11707 errno = 0;
11708 *remote_errno = strtol (p + 1, &p2, 16);
11709 if (errno != 0 || p + 1 == p2)
11710 return -1;
11711 p = p2;
11712 }
11713
11714 /* Check for ";attachment". If there is no attachment, the
11715 packet should end here. */
11716 if (*p == ';')
11717 {
11718 *attachment = p + 1;
11719 return 0;
11720 }
11721 else if (*p == '\0')
11722 return 0;
11723 else
11724 return -1;
11725 }
11726
11727 /* Send a prepared I/O packet to the target and read its response.
11728 The prepared packet is in the global RS->BUF before this function
11729 is called, and the answer is there when we return.
11730
11731 COMMAND_BYTES is the length of the request to send, which may include
11732 binary data. WHICH_PACKET is the packet configuration to check
11733 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11734 is set to the error number and -1 is returned. Otherwise the value
11735 returned by the function is returned.
11736
11737 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11738 attachment is expected; an error will be reported if there's a
11739 mismatch. If one is found, *ATTACHMENT will be set to point into
11740 the packet buffer and *ATTACHMENT_LEN will be set to the
11741 attachment's length. */
11742
11743 int
11744 remote_target::remote_hostio_send_command (int command_bytes, int which_packet,
11745 int *remote_errno, char **attachment,
11746 int *attachment_len)
11747 {
11748 struct remote_state *rs = get_remote_state ();
11749 int ret, bytes_read;
11750 char *attachment_tmp;
11751
11752 if (packet_support (which_packet) == PACKET_DISABLE)
11753 {
11754 *remote_errno = FILEIO_ENOSYS;
11755 return -1;
11756 }
11757
11758 putpkt_binary (rs->buf.data (), command_bytes);
11759 bytes_read = getpkt_sane (&rs->buf, 0);
11760
11761 /* If it timed out, something is wrong. Don't try to parse the
11762 buffer. */
11763 if (bytes_read < 0)
11764 {
11765 *remote_errno = FILEIO_EINVAL;
11766 return -1;
11767 }
11768
11769 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11770 {
11771 case PACKET_ERROR:
11772 *remote_errno = FILEIO_EINVAL;
11773 return -1;
11774 case PACKET_UNKNOWN:
11775 *remote_errno = FILEIO_ENOSYS;
11776 return -1;
11777 case PACKET_OK:
11778 break;
11779 }
11780
11781 if (remote_hostio_parse_result (rs->buf.data (), &ret, remote_errno,
11782 &attachment_tmp))
11783 {
11784 *remote_errno = FILEIO_EINVAL;
11785 return -1;
11786 }
11787
11788 /* Make sure we saw an attachment if and only if we expected one. */
11789 if ((attachment_tmp == NULL && attachment != NULL)
11790 || (attachment_tmp != NULL && attachment == NULL))
11791 {
11792 *remote_errno = FILEIO_EINVAL;
11793 return -1;
11794 }
11795
11796 /* If an attachment was found, it must point into the packet buffer;
11797 work out how many bytes there were. */
11798 if (attachment_tmp != NULL)
11799 {
11800 *attachment = attachment_tmp;
11801 *attachment_len = bytes_read - (*attachment - rs->buf.data ());
11802 }
11803
11804 return ret;
11805 }
11806
11807 /* See declaration.h. */
11808
11809 void
11810 readahead_cache::invalidate ()
11811 {
11812 this->fd = -1;
11813 }
11814
11815 /* See declaration.h. */
11816
11817 void
11818 readahead_cache::invalidate_fd (int fd)
11819 {
11820 if (this->fd == fd)
11821 this->fd = -1;
11822 }
11823
11824 /* Set the filesystem remote_hostio functions that take FILENAME
11825 arguments will use. Return 0 on success, or -1 if an error
11826 occurs (and set *REMOTE_ERRNO). */
11827
11828 int
11829 remote_target::remote_hostio_set_filesystem (struct inferior *inf,
11830 int *remote_errno)
11831 {
11832 struct remote_state *rs = get_remote_state ();
11833 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
11834 char *p = rs->buf.data ();
11835 int left = get_remote_packet_size () - 1;
11836 char arg[9];
11837 int ret;
11838
11839 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11840 return 0;
11841
11842 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11843 return 0;
11844
11845 remote_buffer_add_string (&p, &left, "vFile:setfs:");
11846
11847 xsnprintf (arg, sizeof (arg), "%x", required_pid);
11848 remote_buffer_add_string (&p, &left, arg);
11849
11850 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_setfs,
11851 remote_errno, NULL, NULL);
11852
11853 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11854 return 0;
11855
11856 if (ret == 0)
11857 rs->fs_pid = required_pid;
11858
11859 return ret;
11860 }
11861
11862 /* Implementation of to_fileio_open. */
11863
11864 int
11865 remote_target::remote_hostio_open (inferior *inf, const char *filename,
11866 int flags, int mode, int warn_if_slow,
11867 int *remote_errno)
11868 {
11869 struct remote_state *rs = get_remote_state ();
11870 char *p = rs->buf.data ();
11871 int left = get_remote_packet_size () - 1;
11872
11873 if (warn_if_slow)
11874 {
11875 static int warning_issued = 0;
11876
11877 printf_unfiltered (_("Reading %s from remote target...\n"),
11878 filename);
11879
11880 if (!warning_issued)
11881 {
11882 warning (_("File transfers from remote targets can be slow."
11883 " Use \"set sysroot\" to access files locally"
11884 " instead."));
11885 warning_issued = 1;
11886 }
11887 }
11888
11889 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11890 return -1;
11891
11892 remote_buffer_add_string (&p, &left, "vFile:open:");
11893
11894 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11895 strlen (filename));
11896 remote_buffer_add_string (&p, &left, ",");
11897
11898 remote_buffer_add_int (&p, &left, flags);
11899 remote_buffer_add_string (&p, &left, ",");
11900
11901 remote_buffer_add_int (&p, &left, mode);
11902
11903 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_open,
11904 remote_errno, NULL, NULL);
11905 }
11906
11907 int
11908 remote_target::fileio_open (struct inferior *inf, const char *filename,
11909 int flags, int mode, int warn_if_slow,
11910 int *remote_errno)
11911 {
11912 return remote_hostio_open (inf, filename, flags, mode, warn_if_slow,
11913 remote_errno);
11914 }
11915
11916 /* Implementation of to_fileio_pwrite. */
11917
11918 int
11919 remote_target::remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
11920 ULONGEST offset, int *remote_errno)
11921 {
11922 struct remote_state *rs = get_remote_state ();
11923 char *p = rs->buf.data ();
11924 int left = get_remote_packet_size ();
11925 int out_len;
11926
11927 rs->readahead_cache.invalidate_fd (fd);
11928
11929 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
11930
11931 remote_buffer_add_int (&p, &left, fd);
11932 remote_buffer_add_string (&p, &left, ",");
11933
11934 remote_buffer_add_int (&p, &left, offset);
11935 remote_buffer_add_string (&p, &left, ",");
11936
11937 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
11938 (get_remote_packet_size ()
11939 - (p - rs->buf.data ())));
11940
11941 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pwrite,
11942 remote_errno, NULL, NULL);
11943 }
11944
11945 int
11946 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
11947 ULONGEST offset, int *remote_errno)
11948 {
11949 return remote_hostio_pwrite (fd, write_buf, len, offset, remote_errno);
11950 }
11951
11952 /* Helper for the implementation of to_fileio_pread. Read the file
11953 from the remote side with vFile:pread. */
11954
11955 int
11956 remote_target::remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
11957 ULONGEST offset, int *remote_errno)
11958 {
11959 struct remote_state *rs = get_remote_state ();
11960 char *p = rs->buf.data ();
11961 char *attachment;
11962 int left = get_remote_packet_size ();
11963 int ret, attachment_len;
11964 int read_len;
11965
11966 remote_buffer_add_string (&p, &left, "vFile:pread:");
11967
11968 remote_buffer_add_int (&p, &left, fd);
11969 remote_buffer_add_string (&p, &left, ",");
11970
11971 remote_buffer_add_int (&p, &left, len);
11972 remote_buffer_add_string (&p, &left, ",");
11973
11974 remote_buffer_add_int (&p, &left, offset);
11975
11976 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pread,
11977 remote_errno, &attachment,
11978 &attachment_len);
11979
11980 if (ret < 0)
11981 return ret;
11982
11983 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11984 read_buf, len);
11985 if (read_len != ret)
11986 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
11987
11988 return ret;
11989 }
11990
11991 /* See declaration.h. */
11992
11993 int
11994 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
11995 ULONGEST offset)
11996 {
11997 if (this->fd == fd
11998 && this->offset <= offset
11999 && offset < this->offset + this->bufsize)
12000 {
12001 ULONGEST max = this->offset + this->bufsize;
12002
12003 if (offset + len > max)
12004 len = max - offset;
12005
12006 memcpy (read_buf, this->buf + offset - this->offset, len);
12007 return len;
12008 }
12009
12010 return 0;
12011 }
12012
12013 /* Implementation of to_fileio_pread. */
12014
12015 int
12016 remote_target::remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
12017 ULONGEST offset, int *remote_errno)
12018 {
12019 int ret;
12020 struct remote_state *rs = get_remote_state ();
12021 readahead_cache *cache = &rs->readahead_cache;
12022
12023 ret = cache->pread (fd, read_buf, len, offset);
12024 if (ret > 0)
12025 {
12026 cache->hit_count++;
12027
12028 if (remote_debug)
12029 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
12030 pulongest (cache->hit_count));
12031 return ret;
12032 }
12033
12034 cache->miss_count++;
12035 if (remote_debug)
12036 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
12037 pulongest (cache->miss_count));
12038
12039 cache->fd = fd;
12040 cache->offset = offset;
12041 cache->bufsize = get_remote_packet_size ();
12042 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
12043
12044 ret = remote_hostio_pread_vFile (cache->fd, cache->buf, cache->bufsize,
12045 cache->offset, remote_errno);
12046 if (ret <= 0)
12047 {
12048 cache->invalidate_fd (fd);
12049 return ret;
12050 }
12051
12052 cache->bufsize = ret;
12053 return cache->pread (fd, read_buf, len, offset);
12054 }
12055
12056 int
12057 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
12058 ULONGEST offset, int *remote_errno)
12059 {
12060 return remote_hostio_pread (fd, read_buf, len, offset, remote_errno);
12061 }
12062
12063 /* Implementation of to_fileio_close. */
12064
12065 int
12066 remote_target::remote_hostio_close (int fd, int *remote_errno)
12067 {
12068 struct remote_state *rs = get_remote_state ();
12069 char *p = rs->buf.data ();
12070 int left = get_remote_packet_size () - 1;
12071
12072 rs->readahead_cache.invalidate_fd (fd);
12073
12074 remote_buffer_add_string (&p, &left, "vFile:close:");
12075
12076 remote_buffer_add_int (&p, &left, fd);
12077
12078 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_close,
12079 remote_errno, NULL, NULL);
12080 }
12081
12082 int
12083 remote_target::fileio_close (int fd, int *remote_errno)
12084 {
12085 return remote_hostio_close (fd, remote_errno);
12086 }
12087
12088 /* Implementation of to_fileio_unlink. */
12089
12090 int
12091 remote_target::remote_hostio_unlink (inferior *inf, const char *filename,
12092 int *remote_errno)
12093 {
12094 struct remote_state *rs = get_remote_state ();
12095 char *p = rs->buf.data ();
12096 int left = get_remote_packet_size () - 1;
12097
12098 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12099 return -1;
12100
12101 remote_buffer_add_string (&p, &left, "vFile:unlink:");
12102
12103 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12104 strlen (filename));
12105
12106 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_unlink,
12107 remote_errno, NULL, NULL);
12108 }
12109
12110 int
12111 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12112 int *remote_errno)
12113 {
12114 return remote_hostio_unlink (inf, filename, remote_errno);
12115 }
12116
12117 /* Implementation of to_fileio_readlink. */
12118
12119 gdb::optional<std::string>
12120 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12121 int *remote_errno)
12122 {
12123 struct remote_state *rs = get_remote_state ();
12124 char *p = rs->buf.data ();
12125 char *attachment;
12126 int left = get_remote_packet_size ();
12127 int len, attachment_len;
12128 int read_len;
12129
12130 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12131 return {};
12132
12133 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12134
12135 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12136 strlen (filename));
12137
12138 len = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_readlink,
12139 remote_errno, &attachment,
12140 &attachment_len);
12141
12142 if (len < 0)
12143 return {};
12144
12145 std::string ret (len, '\0');
12146
12147 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12148 (gdb_byte *) &ret[0], len);
12149 if (read_len != len)
12150 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12151
12152 return ret;
12153 }
12154
12155 /* Implementation of to_fileio_fstat. */
12156
12157 int
12158 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12159 {
12160 struct remote_state *rs = get_remote_state ();
12161 char *p = rs->buf.data ();
12162 int left = get_remote_packet_size ();
12163 int attachment_len, ret;
12164 char *attachment;
12165 struct fio_stat fst;
12166 int read_len;
12167
12168 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12169
12170 remote_buffer_add_int (&p, &left, fd);
12171
12172 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_fstat,
12173 remote_errno, &attachment,
12174 &attachment_len);
12175 if (ret < 0)
12176 {
12177 if (*remote_errno != FILEIO_ENOSYS)
12178 return ret;
12179
12180 /* Strictly we should return -1, ENOSYS here, but when
12181 "set sysroot remote:" was implemented in August 2008
12182 BFD's need for a stat function was sidestepped with
12183 this hack. This was not remedied until March 2015
12184 so we retain the previous behavior to avoid breaking
12185 compatibility.
12186
12187 Note that the memset is a March 2015 addition; older
12188 GDBs set st_size *and nothing else* so the structure
12189 would have garbage in all other fields. This might
12190 break something but retaining the previous behavior
12191 here would be just too wrong. */
12192
12193 memset (st, 0, sizeof (struct stat));
12194 st->st_size = INT_MAX;
12195 return 0;
12196 }
12197
12198 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12199 (gdb_byte *) &fst, sizeof (fst));
12200
12201 if (read_len != ret)
12202 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12203
12204 if (read_len != sizeof (fst))
12205 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12206 read_len, (int) sizeof (fst));
12207
12208 remote_fileio_to_host_stat (&fst, st);
12209
12210 return 0;
12211 }
12212
12213 /* Implementation of to_filesystem_is_local. */
12214
12215 bool
12216 remote_target::filesystem_is_local ()
12217 {
12218 /* Valgrind GDB presents itself as a remote target but works
12219 on the local filesystem: it does not implement remote get
12220 and users are not expected to set a sysroot. To handle
12221 this case we treat the remote filesystem as local if the
12222 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12223 does not support vFile:open. */
12224 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
12225 {
12226 enum packet_support ps = packet_support (PACKET_vFile_open);
12227
12228 if (ps == PACKET_SUPPORT_UNKNOWN)
12229 {
12230 int fd, remote_errno;
12231
12232 /* Try opening a file to probe support. The supplied
12233 filename is irrelevant, we only care about whether
12234 the stub recognizes the packet or not. */
12235 fd = remote_hostio_open (NULL, "just probing",
12236 FILEIO_O_RDONLY, 0700, 0,
12237 &remote_errno);
12238
12239 if (fd >= 0)
12240 remote_hostio_close (fd, &remote_errno);
12241
12242 ps = packet_support (PACKET_vFile_open);
12243 }
12244
12245 if (ps == PACKET_DISABLE)
12246 {
12247 static int warning_issued = 0;
12248
12249 if (!warning_issued)
12250 {
12251 warning (_("remote target does not support file"
12252 " transfer, attempting to access files"
12253 " from local filesystem."));
12254 warning_issued = 1;
12255 }
12256
12257 return true;
12258 }
12259 }
12260
12261 return false;
12262 }
12263
12264 static int
12265 remote_fileio_errno_to_host (int errnum)
12266 {
12267 switch (errnum)
12268 {
12269 case FILEIO_EPERM:
12270 return EPERM;
12271 case FILEIO_ENOENT:
12272 return ENOENT;
12273 case FILEIO_EINTR:
12274 return EINTR;
12275 case FILEIO_EIO:
12276 return EIO;
12277 case FILEIO_EBADF:
12278 return EBADF;
12279 case FILEIO_EACCES:
12280 return EACCES;
12281 case FILEIO_EFAULT:
12282 return EFAULT;
12283 case FILEIO_EBUSY:
12284 return EBUSY;
12285 case FILEIO_EEXIST:
12286 return EEXIST;
12287 case FILEIO_ENODEV:
12288 return ENODEV;
12289 case FILEIO_ENOTDIR:
12290 return ENOTDIR;
12291 case FILEIO_EISDIR:
12292 return EISDIR;
12293 case FILEIO_EINVAL:
12294 return EINVAL;
12295 case FILEIO_ENFILE:
12296 return ENFILE;
12297 case FILEIO_EMFILE:
12298 return EMFILE;
12299 case FILEIO_EFBIG:
12300 return EFBIG;
12301 case FILEIO_ENOSPC:
12302 return ENOSPC;
12303 case FILEIO_ESPIPE:
12304 return ESPIPE;
12305 case FILEIO_EROFS:
12306 return EROFS;
12307 case FILEIO_ENOSYS:
12308 return ENOSYS;
12309 case FILEIO_ENAMETOOLONG:
12310 return ENAMETOOLONG;
12311 }
12312 return -1;
12313 }
12314
12315 static char *
12316 remote_hostio_error (int errnum)
12317 {
12318 int host_error = remote_fileio_errno_to_host (errnum);
12319
12320 if (host_error == -1)
12321 error (_("Unknown remote I/O error %d"), errnum);
12322 else
12323 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12324 }
12325
12326 /* A RAII wrapper around a remote file descriptor. */
12327
12328 class scoped_remote_fd
12329 {
12330 public:
12331 scoped_remote_fd (remote_target *remote, int fd)
12332 : m_remote (remote), m_fd (fd)
12333 {
12334 }
12335
12336 ~scoped_remote_fd ()
12337 {
12338 if (m_fd != -1)
12339 {
12340 try
12341 {
12342 int remote_errno;
12343 m_remote->remote_hostio_close (m_fd, &remote_errno);
12344 }
12345 catch (...)
12346 {
12347 /* Swallow exception before it escapes the dtor. If
12348 something goes wrong, likely the connection is gone,
12349 and there's nothing else that can be done. */
12350 }
12351 }
12352 }
12353
12354 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12355
12356 /* Release ownership of the file descriptor, and return it. */
12357 ATTRIBUTE_UNUSED_RESULT int release () noexcept
12358 {
12359 int fd = m_fd;
12360 m_fd = -1;
12361 return fd;
12362 }
12363
12364 /* Return the owned file descriptor. */
12365 int get () const noexcept
12366 {
12367 return m_fd;
12368 }
12369
12370 private:
12371 /* The remote target. */
12372 remote_target *m_remote;
12373
12374 /* The owned remote I/O file descriptor. */
12375 int m_fd;
12376 };
12377
12378 void
12379 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12380 {
12381 remote_target *remote = get_current_remote_target ();
12382
12383 if (remote == nullptr)
12384 error (_("command can only be used with remote target"));
12385
12386 remote->remote_file_put (local_file, remote_file, from_tty);
12387 }
12388
12389 void
12390 remote_target::remote_file_put (const char *local_file, const char *remote_file,
12391 int from_tty)
12392 {
12393 int retcode, remote_errno, bytes, io_size;
12394 int bytes_in_buffer;
12395 int saw_eof;
12396 ULONGEST offset;
12397
12398 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12399 if (file == NULL)
12400 perror_with_name (local_file);
12401
12402 scoped_remote_fd fd
12403 (this, remote_hostio_open (NULL,
12404 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12405 | FILEIO_O_TRUNC),
12406 0700, 0, &remote_errno));
12407 if (fd.get () == -1)
12408 remote_hostio_error (remote_errno);
12409
12410 /* Send up to this many bytes at once. They won't all fit in the
12411 remote packet limit, so we'll transfer slightly fewer. */
12412 io_size = get_remote_packet_size ();
12413 gdb::byte_vector buffer (io_size);
12414
12415 bytes_in_buffer = 0;
12416 saw_eof = 0;
12417 offset = 0;
12418 while (bytes_in_buffer || !saw_eof)
12419 {
12420 if (!saw_eof)
12421 {
12422 bytes = fread (buffer.data () + bytes_in_buffer, 1,
12423 io_size - bytes_in_buffer,
12424 file.get ());
12425 if (bytes == 0)
12426 {
12427 if (ferror (file.get ()))
12428 error (_("Error reading %s."), local_file);
12429 else
12430 {
12431 /* EOF. Unless there is something still in the
12432 buffer from the last iteration, we are done. */
12433 saw_eof = 1;
12434 if (bytes_in_buffer == 0)
12435 break;
12436 }
12437 }
12438 }
12439 else
12440 bytes = 0;
12441
12442 bytes += bytes_in_buffer;
12443 bytes_in_buffer = 0;
12444
12445 retcode = remote_hostio_pwrite (fd.get (), buffer.data (), bytes,
12446 offset, &remote_errno);
12447
12448 if (retcode < 0)
12449 remote_hostio_error (remote_errno);
12450 else if (retcode == 0)
12451 error (_("Remote write of %d bytes returned 0!"), bytes);
12452 else if (retcode < bytes)
12453 {
12454 /* Short write. Save the rest of the read data for the next
12455 write. */
12456 bytes_in_buffer = bytes - retcode;
12457 memmove (buffer.data (), buffer.data () + retcode, bytes_in_buffer);
12458 }
12459
12460 offset += retcode;
12461 }
12462
12463 if (remote_hostio_close (fd.release (), &remote_errno))
12464 remote_hostio_error (remote_errno);
12465
12466 if (from_tty)
12467 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12468 }
12469
12470 void
12471 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12472 {
12473 remote_target *remote = get_current_remote_target ();
12474
12475 if (remote == nullptr)
12476 error (_("command can only be used with remote target"));
12477
12478 remote->remote_file_get (remote_file, local_file, from_tty);
12479 }
12480
12481 void
12482 remote_target::remote_file_get (const char *remote_file, const char *local_file,
12483 int from_tty)
12484 {
12485 int remote_errno, bytes, io_size;
12486 ULONGEST offset;
12487
12488 scoped_remote_fd fd
12489 (this, remote_hostio_open (NULL,
12490 remote_file, FILEIO_O_RDONLY, 0, 0,
12491 &remote_errno));
12492 if (fd.get () == -1)
12493 remote_hostio_error (remote_errno);
12494
12495 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12496 if (file == NULL)
12497 perror_with_name (local_file);
12498
12499 /* Send up to this many bytes at once. They won't all fit in the
12500 remote packet limit, so we'll transfer slightly fewer. */
12501 io_size = get_remote_packet_size ();
12502 gdb::byte_vector buffer (io_size);
12503
12504 offset = 0;
12505 while (1)
12506 {
12507 bytes = remote_hostio_pread (fd.get (), buffer.data (), io_size, offset,
12508 &remote_errno);
12509 if (bytes == 0)
12510 /* Success, but no bytes, means end-of-file. */
12511 break;
12512 if (bytes == -1)
12513 remote_hostio_error (remote_errno);
12514
12515 offset += bytes;
12516
12517 bytes = fwrite (buffer.data (), 1, bytes, file.get ());
12518 if (bytes == 0)
12519 perror_with_name (local_file);
12520 }
12521
12522 if (remote_hostio_close (fd.release (), &remote_errno))
12523 remote_hostio_error (remote_errno);
12524
12525 if (from_tty)
12526 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12527 }
12528
12529 void
12530 remote_file_delete (const char *remote_file, int from_tty)
12531 {
12532 remote_target *remote = get_current_remote_target ();
12533
12534 if (remote == nullptr)
12535 error (_("command can only be used with remote target"));
12536
12537 remote->remote_file_delete (remote_file, from_tty);
12538 }
12539
12540 void
12541 remote_target::remote_file_delete (const char *remote_file, int from_tty)
12542 {
12543 int retcode, remote_errno;
12544
12545 retcode = remote_hostio_unlink (NULL, remote_file, &remote_errno);
12546 if (retcode == -1)
12547 remote_hostio_error (remote_errno);
12548
12549 if (from_tty)
12550 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12551 }
12552
12553 static void
12554 remote_put_command (const char *args, int from_tty)
12555 {
12556 if (args == NULL)
12557 error_no_arg (_("file to put"));
12558
12559 gdb_argv argv (args);
12560 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12561 error (_("Invalid parameters to remote put"));
12562
12563 remote_file_put (argv[0], argv[1], from_tty);
12564 }
12565
12566 static void
12567 remote_get_command (const char *args, int from_tty)
12568 {
12569 if (args == NULL)
12570 error_no_arg (_("file to get"));
12571
12572 gdb_argv argv (args);
12573 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12574 error (_("Invalid parameters to remote get"));
12575
12576 remote_file_get (argv[0], argv[1], from_tty);
12577 }
12578
12579 static void
12580 remote_delete_command (const char *args, int from_tty)
12581 {
12582 if (args == NULL)
12583 error_no_arg (_("file to delete"));
12584
12585 gdb_argv argv (args);
12586 if (argv[0] == NULL || argv[1] != NULL)
12587 error (_("Invalid parameters to remote delete"));
12588
12589 remote_file_delete (argv[0], from_tty);
12590 }
12591
12592 static void
12593 remote_command (const char *args, int from_tty)
12594 {
12595 help_list (remote_cmdlist, "remote ", all_commands, gdb_stdout);
12596 }
12597
12598 bool
12599 remote_target::can_execute_reverse ()
12600 {
12601 if (packet_support (PACKET_bs) == PACKET_ENABLE
12602 || packet_support (PACKET_bc) == PACKET_ENABLE)
12603 return true;
12604 else
12605 return false;
12606 }
12607
12608 bool
12609 remote_target::supports_non_stop ()
12610 {
12611 return true;
12612 }
12613
12614 bool
12615 remote_target::supports_disable_randomization ()
12616 {
12617 /* Only supported in extended mode. */
12618 return false;
12619 }
12620
12621 bool
12622 remote_target::supports_multi_process ()
12623 {
12624 struct remote_state *rs = get_remote_state ();
12625
12626 return remote_multi_process_p (rs);
12627 }
12628
12629 static int
12630 remote_supports_cond_tracepoints ()
12631 {
12632 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12633 }
12634
12635 bool
12636 remote_target::supports_evaluation_of_breakpoint_conditions ()
12637 {
12638 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12639 }
12640
12641 static int
12642 remote_supports_fast_tracepoints ()
12643 {
12644 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12645 }
12646
12647 static int
12648 remote_supports_static_tracepoints ()
12649 {
12650 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12651 }
12652
12653 static int
12654 remote_supports_install_in_trace ()
12655 {
12656 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12657 }
12658
12659 bool
12660 remote_target::supports_enable_disable_tracepoint ()
12661 {
12662 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12663 == PACKET_ENABLE);
12664 }
12665
12666 bool
12667 remote_target::supports_string_tracing ()
12668 {
12669 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12670 }
12671
12672 bool
12673 remote_target::can_run_breakpoint_commands ()
12674 {
12675 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12676 }
12677
12678 void
12679 remote_target::trace_init ()
12680 {
12681 struct remote_state *rs = get_remote_state ();
12682
12683 putpkt ("QTinit");
12684 remote_get_noisy_reply ();
12685 if (strcmp (rs->buf.data (), "OK") != 0)
12686 error (_("Target does not support this command."));
12687 }
12688
12689 /* Recursive routine to walk through command list including loops, and
12690 download packets for each command. */
12691
12692 void
12693 remote_target::remote_download_command_source (int num, ULONGEST addr,
12694 struct command_line *cmds)
12695 {
12696 struct remote_state *rs = get_remote_state ();
12697 struct command_line *cmd;
12698
12699 for (cmd = cmds; cmd; cmd = cmd->next)
12700 {
12701 QUIT; /* Allow user to bail out with ^C. */
12702 strcpy (rs->buf.data (), "QTDPsrc:");
12703 encode_source_string (num, addr, "cmd", cmd->line,
12704 rs->buf.data () + strlen (rs->buf.data ()),
12705 rs->buf.size () - strlen (rs->buf.data ()));
12706 putpkt (rs->buf);
12707 remote_get_noisy_reply ();
12708 if (strcmp (rs->buf.data (), "OK"))
12709 warning (_("Target does not support source download."));
12710
12711 if (cmd->control_type == while_control
12712 || cmd->control_type == while_stepping_control)
12713 {
12714 remote_download_command_source (num, addr, cmd->body_list_0.get ());
12715
12716 QUIT; /* Allow user to bail out with ^C. */
12717 strcpy (rs->buf.data (), "QTDPsrc:");
12718 encode_source_string (num, addr, "cmd", "end",
12719 rs->buf.data () + strlen (rs->buf.data ()),
12720 rs->buf.size () - strlen (rs->buf.data ()));
12721 putpkt (rs->buf);
12722 remote_get_noisy_reply ();
12723 if (strcmp (rs->buf.data (), "OK"))
12724 warning (_("Target does not support source download."));
12725 }
12726 }
12727 }
12728
12729 void
12730 remote_target::download_tracepoint (struct bp_location *loc)
12731 {
12732 CORE_ADDR tpaddr;
12733 char addrbuf[40];
12734 std::vector<std::string> tdp_actions;
12735 std::vector<std::string> stepping_actions;
12736 char *pkt;
12737 struct breakpoint *b = loc->owner;
12738 struct tracepoint *t = (struct tracepoint *) b;
12739 struct remote_state *rs = get_remote_state ();
12740 int ret;
12741 const char *err_msg = _("Tracepoint packet too large for target.");
12742 size_t size_left;
12743
12744 /* We use a buffer other than rs->buf because we'll build strings
12745 across multiple statements, and other statements in between could
12746 modify rs->buf. */
12747 gdb::char_vector buf (get_remote_packet_size ());
12748
12749 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12750
12751 tpaddr = loc->address;
12752 sprintf_vma (addrbuf, tpaddr);
12753 ret = snprintf (buf.data (), buf.size (), "QTDP:%x:%s:%c:%lx:%x",
12754 b->number, addrbuf, /* address */
12755 (b->enable_state == bp_enabled ? 'E' : 'D'),
12756 t->step_count, t->pass_count);
12757
12758 if (ret < 0 || ret >= buf.size ())
12759 error ("%s", err_msg);
12760
12761 /* Fast tracepoints are mostly handled by the target, but we can
12762 tell the target how big of an instruction block should be moved
12763 around. */
12764 if (b->type == bp_fast_tracepoint)
12765 {
12766 /* Only test for support at download time; we may not know
12767 target capabilities at definition time. */
12768 if (remote_supports_fast_tracepoints ())
12769 {
12770 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12771 NULL))
12772 {
12773 size_left = buf.size () - strlen (buf.data ());
12774 ret = snprintf (buf.data () + strlen (buf.data ()),
12775 size_left, ":F%x",
12776 gdb_insn_length (loc->gdbarch, tpaddr));
12777
12778 if (ret < 0 || ret >= size_left)
12779 error ("%s", err_msg);
12780 }
12781 else
12782 /* If it passed validation at definition but fails now,
12783 something is very wrong. */
12784 internal_error (__FILE__, __LINE__,
12785 _("Fast tracepoint not "
12786 "valid during download"));
12787 }
12788 else
12789 /* Fast tracepoints are functionally identical to regular
12790 tracepoints, so don't take lack of support as a reason to
12791 give up on the trace run. */
12792 warning (_("Target does not support fast tracepoints, "
12793 "downloading %d as regular tracepoint"), b->number);
12794 }
12795 else if (b->type == bp_static_tracepoint)
12796 {
12797 /* Only test for support at download time; we may not know
12798 target capabilities at definition time. */
12799 if (remote_supports_static_tracepoints ())
12800 {
12801 struct static_tracepoint_marker marker;
12802
12803 if (target_static_tracepoint_marker_at (tpaddr, &marker))
12804 {
12805 size_left = buf.size () - strlen (buf.data ());
12806 ret = snprintf (buf.data () + strlen (buf.data ()),
12807 size_left, ":S");
12808
12809 if (ret < 0 || ret >= size_left)
12810 error ("%s", err_msg);
12811 }
12812 else
12813 error (_("Static tracepoint not valid during download"));
12814 }
12815 else
12816 /* Fast tracepoints are functionally identical to regular
12817 tracepoints, so don't take lack of support as a reason
12818 to give up on the trace run. */
12819 error (_("Target does not support static tracepoints"));
12820 }
12821 /* If the tracepoint has a conditional, make it into an agent
12822 expression and append to the definition. */
12823 if (loc->cond)
12824 {
12825 /* Only test support at download time, we may not know target
12826 capabilities at definition time. */
12827 if (remote_supports_cond_tracepoints ())
12828 {
12829 agent_expr_up aexpr = gen_eval_for_expr (tpaddr,
12830 loc->cond.get ());
12831
12832 size_left = buf.size () - strlen (buf.data ());
12833
12834 ret = snprintf (buf.data () + strlen (buf.data ()),
12835 size_left, ":X%x,", aexpr->len);
12836
12837 if (ret < 0 || ret >= size_left)
12838 error ("%s", err_msg);
12839
12840 size_left = buf.size () - strlen (buf.data ());
12841
12842 /* Two bytes to encode each aexpr byte, plus the terminating
12843 null byte. */
12844 if (aexpr->len * 2 + 1 > size_left)
12845 error ("%s", err_msg);
12846
12847 pkt = buf.data () + strlen (buf.data ());
12848
12849 for (int ndx = 0; ndx < aexpr->len; ++ndx)
12850 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
12851 *pkt = '\0';
12852 }
12853 else
12854 warning (_("Target does not support conditional tracepoints, "
12855 "ignoring tp %d cond"), b->number);
12856 }
12857
12858 if (b->commands || *default_collect)
12859 {
12860 size_left = buf.size () - strlen (buf.data ());
12861
12862 ret = snprintf (buf.data () + strlen (buf.data ()),
12863 size_left, "-");
12864
12865 if (ret < 0 || ret >= size_left)
12866 error ("%s", err_msg);
12867 }
12868
12869 putpkt (buf.data ());
12870 remote_get_noisy_reply ();
12871 if (strcmp (rs->buf.data (), "OK"))
12872 error (_("Target does not support tracepoints."));
12873
12874 /* do_single_steps (t); */
12875 for (auto action_it = tdp_actions.begin ();
12876 action_it != tdp_actions.end (); action_it++)
12877 {
12878 QUIT; /* Allow user to bail out with ^C. */
12879
12880 bool has_more = ((action_it + 1) != tdp_actions.end ()
12881 || !stepping_actions.empty ());
12882
12883 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%c",
12884 b->number, addrbuf, /* address */
12885 action_it->c_str (),
12886 has_more ? '-' : 0);
12887
12888 if (ret < 0 || ret >= buf.size ())
12889 error ("%s", err_msg);
12890
12891 putpkt (buf.data ());
12892 remote_get_noisy_reply ();
12893 if (strcmp (rs->buf.data (), "OK"))
12894 error (_("Error on target while setting tracepoints."));
12895 }
12896
12897 for (auto action_it = stepping_actions.begin ();
12898 action_it != stepping_actions.end (); action_it++)
12899 {
12900 QUIT; /* Allow user to bail out with ^C. */
12901
12902 bool is_first = action_it == stepping_actions.begin ();
12903 bool has_more = (action_it + 1) != stepping_actions.end ();
12904
12905 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%s%s",
12906 b->number, addrbuf, /* address */
12907 is_first ? "S" : "",
12908 action_it->c_str (),
12909 has_more ? "-" : "");
12910
12911 if (ret < 0 || ret >= buf.size ())
12912 error ("%s", err_msg);
12913
12914 putpkt (buf.data ());
12915 remote_get_noisy_reply ();
12916 if (strcmp (rs->buf.data (), "OK"))
12917 error (_("Error on target while setting tracepoints."));
12918 }
12919
12920 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
12921 {
12922 if (b->location != NULL)
12923 {
12924 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
12925
12926 if (ret < 0 || ret >= buf.size ())
12927 error ("%s", err_msg);
12928
12929 encode_source_string (b->number, loc->address, "at",
12930 event_location_to_string (b->location.get ()),
12931 buf.data () + strlen (buf.data ()),
12932 buf.size () - strlen (buf.data ()));
12933 putpkt (buf.data ());
12934 remote_get_noisy_reply ();
12935 if (strcmp (rs->buf.data (), "OK"))
12936 warning (_("Target does not support source download."));
12937 }
12938 if (b->cond_string)
12939 {
12940 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
12941
12942 if (ret < 0 || ret >= buf.size ())
12943 error ("%s", err_msg);
12944
12945 encode_source_string (b->number, loc->address,
12946 "cond", b->cond_string,
12947 buf.data () + strlen (buf.data ()),
12948 buf.size () - strlen (buf.data ()));
12949 putpkt (buf.data ());
12950 remote_get_noisy_reply ();
12951 if (strcmp (rs->buf.data (), "OK"))
12952 warning (_("Target does not support source download."));
12953 }
12954 remote_download_command_source (b->number, loc->address,
12955 breakpoint_commands (b));
12956 }
12957 }
12958
12959 bool
12960 remote_target::can_download_tracepoint ()
12961 {
12962 struct remote_state *rs = get_remote_state ();
12963 struct trace_status *ts;
12964 int status;
12965
12966 /* Don't try to install tracepoints until we've relocated our
12967 symbols, and fetched and merged the target's tracepoint list with
12968 ours. */
12969 if (rs->starting_up)
12970 return false;
12971
12972 ts = current_trace_status ();
12973 status = get_trace_status (ts);
12974
12975 if (status == -1 || !ts->running_known || !ts->running)
12976 return false;
12977
12978 /* If we are in a tracing experiment, but remote stub doesn't support
12979 installing tracepoint in trace, we have to return. */
12980 if (!remote_supports_install_in_trace ())
12981 return false;
12982
12983 return true;
12984 }
12985
12986
12987 void
12988 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
12989 {
12990 struct remote_state *rs = get_remote_state ();
12991 char *p;
12992
12993 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDV:%x:%s:%x:",
12994 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
12995 tsv.builtin);
12996 p = rs->buf.data () + strlen (rs->buf.data ());
12997 if ((p - rs->buf.data ()) + tsv.name.length () * 2
12998 >= get_remote_packet_size ())
12999 error (_("Trace state variable name too long for tsv definition packet"));
13000 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
13001 *p++ = '\0';
13002 putpkt (rs->buf);
13003 remote_get_noisy_reply ();
13004 if (rs->buf[0] == '\0')
13005 error (_("Target does not support this command."));
13006 if (strcmp (rs->buf.data (), "OK") != 0)
13007 error (_("Error on target while downloading trace state variable."));
13008 }
13009
13010 void
13011 remote_target::enable_tracepoint (struct bp_location *location)
13012 {
13013 struct remote_state *rs = get_remote_state ();
13014 char addr_buf[40];
13015
13016 sprintf_vma (addr_buf, location->address);
13017 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTEnable:%x:%s",
13018 location->owner->number, addr_buf);
13019 putpkt (rs->buf);
13020 remote_get_noisy_reply ();
13021 if (rs->buf[0] == '\0')
13022 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
13023 if (strcmp (rs->buf.data (), "OK") != 0)
13024 error (_("Error on target while enabling tracepoint."));
13025 }
13026
13027 void
13028 remote_target::disable_tracepoint (struct bp_location *location)
13029 {
13030 struct remote_state *rs = get_remote_state ();
13031 char addr_buf[40];
13032
13033 sprintf_vma (addr_buf, location->address);
13034 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDisable:%x:%s",
13035 location->owner->number, addr_buf);
13036 putpkt (rs->buf);
13037 remote_get_noisy_reply ();
13038 if (rs->buf[0] == '\0')
13039 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
13040 if (strcmp (rs->buf.data (), "OK") != 0)
13041 error (_("Error on target while disabling tracepoint."));
13042 }
13043
13044 void
13045 remote_target::trace_set_readonly_regions ()
13046 {
13047 asection *s;
13048 bfd_size_type size;
13049 bfd_vma vma;
13050 int anysecs = 0;
13051 int offset = 0;
13052
13053 if (!exec_bfd)
13054 return; /* No information to give. */
13055
13056 struct remote_state *rs = get_remote_state ();
13057
13058 strcpy (rs->buf.data (), "QTro");
13059 offset = strlen (rs->buf.data ());
13060 for (s = exec_bfd->sections; s; s = s->next)
13061 {
13062 char tmp1[40], tmp2[40];
13063 int sec_length;
13064
13065 if ((s->flags & SEC_LOAD) == 0 ||
13066 /* (s->flags & SEC_CODE) == 0 || */
13067 (s->flags & SEC_READONLY) == 0)
13068 continue;
13069
13070 anysecs = 1;
13071 vma = bfd_section_vma (s);
13072 size = bfd_section_size (s);
13073 sprintf_vma (tmp1, vma);
13074 sprintf_vma (tmp2, vma + size);
13075 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
13076 if (offset + sec_length + 1 > rs->buf.size ())
13077 {
13078 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
13079 warning (_("\
13080 Too many sections for read-only sections definition packet."));
13081 break;
13082 }
13083 xsnprintf (rs->buf.data () + offset, rs->buf.size () - offset, ":%s,%s",
13084 tmp1, tmp2);
13085 offset += sec_length;
13086 }
13087 if (anysecs)
13088 {
13089 putpkt (rs->buf);
13090 getpkt (&rs->buf, 0);
13091 }
13092 }
13093
13094 void
13095 remote_target::trace_start ()
13096 {
13097 struct remote_state *rs = get_remote_state ();
13098
13099 putpkt ("QTStart");
13100 remote_get_noisy_reply ();
13101 if (rs->buf[0] == '\0')
13102 error (_("Target does not support this command."));
13103 if (strcmp (rs->buf.data (), "OK") != 0)
13104 error (_("Bogus reply from target: %s"), rs->buf.data ());
13105 }
13106
13107 int
13108 remote_target::get_trace_status (struct trace_status *ts)
13109 {
13110 /* Initialize it just to avoid a GCC false warning. */
13111 char *p = NULL;
13112 enum packet_result result;
13113 struct remote_state *rs = get_remote_state ();
13114
13115 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
13116 return -1;
13117
13118 /* FIXME we need to get register block size some other way. */
13119 trace_regblock_size
13120 = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
13121
13122 putpkt ("qTStatus");
13123
13124 try
13125 {
13126 p = remote_get_noisy_reply ();
13127 }
13128 catch (const gdb_exception_error &ex)
13129 {
13130 if (ex.error != TARGET_CLOSE_ERROR)
13131 {
13132 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
13133 return -1;
13134 }
13135 throw;
13136 }
13137
13138 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
13139
13140 /* If the remote target doesn't do tracing, flag it. */
13141 if (result == PACKET_UNKNOWN)
13142 return -1;
13143
13144 /* We're working with a live target. */
13145 ts->filename = NULL;
13146
13147 if (*p++ != 'T')
13148 error (_("Bogus trace status reply from target: %s"), rs->buf.data ());
13149
13150 /* Function 'parse_trace_status' sets default value of each field of
13151 'ts' at first, so we don't have to do it here. */
13152 parse_trace_status (p, ts);
13153
13154 return ts->running;
13155 }
13156
13157 void
13158 remote_target::get_tracepoint_status (struct breakpoint *bp,
13159 struct uploaded_tp *utp)
13160 {
13161 struct remote_state *rs = get_remote_state ();
13162 char *reply;
13163 struct bp_location *loc;
13164 struct tracepoint *tp = (struct tracepoint *) bp;
13165 size_t size = get_remote_packet_size ();
13166
13167 if (tp)
13168 {
13169 tp->hit_count = 0;
13170 tp->traceframe_usage = 0;
13171 for (loc = tp->loc; loc; loc = loc->next)
13172 {
13173 /* If the tracepoint was never downloaded, don't go asking for
13174 any status. */
13175 if (tp->number_on_target == 0)
13176 continue;
13177 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", tp->number_on_target,
13178 phex_nz (loc->address, 0));
13179 putpkt (rs->buf);
13180 reply = remote_get_noisy_reply ();
13181 if (reply && *reply)
13182 {
13183 if (*reply == 'V')
13184 parse_tracepoint_status (reply + 1, bp, utp);
13185 }
13186 }
13187 }
13188 else if (utp)
13189 {
13190 utp->hit_count = 0;
13191 utp->traceframe_usage = 0;
13192 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", utp->number,
13193 phex_nz (utp->addr, 0));
13194 putpkt (rs->buf);
13195 reply = remote_get_noisy_reply ();
13196 if (reply && *reply)
13197 {
13198 if (*reply == 'V')
13199 parse_tracepoint_status (reply + 1, bp, utp);
13200 }
13201 }
13202 }
13203
13204 void
13205 remote_target::trace_stop ()
13206 {
13207 struct remote_state *rs = get_remote_state ();
13208
13209 putpkt ("QTStop");
13210 remote_get_noisy_reply ();
13211 if (rs->buf[0] == '\0')
13212 error (_("Target does not support this command."));
13213 if (strcmp (rs->buf.data (), "OK") != 0)
13214 error (_("Bogus reply from target: %s"), rs->buf.data ());
13215 }
13216
13217 int
13218 remote_target::trace_find (enum trace_find_type type, int num,
13219 CORE_ADDR addr1, CORE_ADDR addr2,
13220 int *tpp)
13221 {
13222 struct remote_state *rs = get_remote_state ();
13223 char *endbuf = rs->buf.data () + get_remote_packet_size ();
13224 char *p, *reply;
13225 int target_frameno = -1, target_tracept = -1;
13226
13227 /* Lookups other than by absolute frame number depend on the current
13228 trace selected, so make sure it is correct on the remote end
13229 first. */
13230 if (type != tfind_number)
13231 set_remote_traceframe ();
13232
13233 p = rs->buf.data ();
13234 strcpy (p, "QTFrame:");
13235 p = strchr (p, '\0');
13236 switch (type)
13237 {
13238 case tfind_number:
13239 xsnprintf (p, endbuf - p, "%x", num);
13240 break;
13241 case tfind_pc:
13242 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13243 break;
13244 case tfind_tp:
13245 xsnprintf (p, endbuf - p, "tdp:%x", num);
13246 break;
13247 case tfind_range:
13248 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13249 phex_nz (addr2, 0));
13250 break;
13251 case tfind_outside:
13252 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13253 phex_nz (addr2, 0));
13254 break;
13255 default:
13256 error (_("Unknown trace find type %d"), type);
13257 }
13258
13259 putpkt (rs->buf);
13260 reply = remote_get_noisy_reply ();
13261 if (*reply == '\0')
13262 error (_("Target does not support this command."));
13263
13264 while (reply && *reply)
13265 switch (*reply)
13266 {
13267 case 'F':
13268 p = ++reply;
13269 target_frameno = (int) strtol (p, &reply, 16);
13270 if (reply == p)
13271 error (_("Unable to parse trace frame number"));
13272 /* Don't update our remote traceframe number cache on failure
13273 to select a remote traceframe. */
13274 if (target_frameno == -1)
13275 return -1;
13276 break;
13277 case 'T':
13278 p = ++reply;
13279 target_tracept = (int) strtol (p, &reply, 16);
13280 if (reply == p)
13281 error (_("Unable to parse tracepoint number"));
13282 break;
13283 case 'O': /* "OK"? */
13284 if (reply[1] == 'K' && reply[2] == '\0')
13285 reply += 2;
13286 else
13287 error (_("Bogus reply from target: %s"), reply);
13288 break;
13289 default:
13290 error (_("Bogus reply from target: %s"), reply);
13291 }
13292 if (tpp)
13293 *tpp = target_tracept;
13294
13295 rs->remote_traceframe_number = target_frameno;
13296 return target_frameno;
13297 }
13298
13299 bool
13300 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13301 {
13302 struct remote_state *rs = get_remote_state ();
13303 char *reply;
13304 ULONGEST uval;
13305
13306 set_remote_traceframe ();
13307
13308 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTV:%x", tsvnum);
13309 putpkt (rs->buf);
13310 reply = remote_get_noisy_reply ();
13311 if (reply && *reply)
13312 {
13313 if (*reply == 'V')
13314 {
13315 unpack_varlen_hex (reply + 1, &uval);
13316 *val = (LONGEST) uval;
13317 return true;
13318 }
13319 }
13320 return false;
13321 }
13322
13323 int
13324 remote_target::save_trace_data (const char *filename)
13325 {
13326 struct remote_state *rs = get_remote_state ();
13327 char *p, *reply;
13328
13329 p = rs->buf.data ();
13330 strcpy (p, "QTSave:");
13331 p += strlen (p);
13332 if ((p - rs->buf.data ()) + strlen (filename) * 2
13333 >= get_remote_packet_size ())
13334 error (_("Remote file name too long for trace save packet"));
13335 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13336 *p++ = '\0';
13337 putpkt (rs->buf);
13338 reply = remote_get_noisy_reply ();
13339 if (*reply == '\0')
13340 error (_("Target does not support this command."));
13341 if (strcmp (reply, "OK") != 0)
13342 error (_("Bogus reply from target: %s"), reply);
13343 return 0;
13344 }
13345
13346 /* This is basically a memory transfer, but needs to be its own packet
13347 because we don't know how the target actually organizes its trace
13348 memory, plus we want to be able to ask for as much as possible, but
13349 not be unhappy if we don't get as much as we ask for. */
13350
13351 LONGEST
13352 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13353 {
13354 struct remote_state *rs = get_remote_state ();
13355 char *reply;
13356 char *p;
13357 int rslt;
13358
13359 p = rs->buf.data ();
13360 strcpy (p, "qTBuffer:");
13361 p += strlen (p);
13362 p += hexnumstr (p, offset);
13363 *p++ = ',';
13364 p += hexnumstr (p, len);
13365 *p++ = '\0';
13366
13367 putpkt (rs->buf);
13368 reply = remote_get_noisy_reply ();
13369 if (reply && *reply)
13370 {
13371 /* 'l' by itself means we're at the end of the buffer and
13372 there is nothing more to get. */
13373 if (*reply == 'l')
13374 return 0;
13375
13376 /* Convert the reply into binary. Limit the number of bytes to
13377 convert according to our passed-in buffer size, rather than
13378 what was returned in the packet; if the target is
13379 unexpectedly generous and gives us a bigger reply than we
13380 asked for, we don't want to crash. */
13381 rslt = hex2bin (reply, buf, len);
13382 return rslt;
13383 }
13384
13385 /* Something went wrong, flag as an error. */
13386 return -1;
13387 }
13388
13389 void
13390 remote_target::set_disconnected_tracing (int val)
13391 {
13392 struct remote_state *rs = get_remote_state ();
13393
13394 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13395 {
13396 char *reply;
13397
13398 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13399 "QTDisconnected:%x", val);
13400 putpkt (rs->buf);
13401 reply = remote_get_noisy_reply ();
13402 if (*reply == '\0')
13403 error (_("Target does not support this command."));
13404 if (strcmp (reply, "OK") != 0)
13405 error (_("Bogus reply from target: %s"), reply);
13406 }
13407 else if (val)
13408 warning (_("Target does not support disconnected tracing."));
13409 }
13410
13411 int
13412 remote_target::core_of_thread (ptid_t ptid)
13413 {
13414 struct thread_info *info = find_thread_ptid (ptid);
13415
13416 if (info != NULL && info->priv != NULL)
13417 return get_remote_thread_info (info)->core;
13418
13419 return -1;
13420 }
13421
13422 void
13423 remote_target::set_circular_trace_buffer (int val)
13424 {
13425 struct remote_state *rs = get_remote_state ();
13426 char *reply;
13427
13428 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13429 "QTBuffer:circular:%x", val);
13430 putpkt (rs->buf);
13431 reply = remote_get_noisy_reply ();
13432 if (*reply == '\0')
13433 error (_("Target does not support this command."));
13434 if (strcmp (reply, "OK") != 0)
13435 error (_("Bogus reply from target: %s"), reply);
13436 }
13437
13438 traceframe_info_up
13439 remote_target::traceframe_info ()
13440 {
13441 gdb::optional<gdb::char_vector> text
13442 = target_read_stralloc (current_top_target (), TARGET_OBJECT_TRACEFRAME_INFO,
13443 NULL);
13444 if (text)
13445 return parse_traceframe_info (text->data ());
13446
13447 return NULL;
13448 }
13449
13450 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13451 instruction on which a fast tracepoint may be placed. Returns -1
13452 if the packet is not supported, and 0 if the minimum instruction
13453 length is unknown. */
13454
13455 int
13456 remote_target::get_min_fast_tracepoint_insn_len ()
13457 {
13458 struct remote_state *rs = get_remote_state ();
13459 char *reply;
13460
13461 /* If we're not debugging a process yet, the IPA can't be
13462 loaded. */
13463 if (!target_has_execution)
13464 return 0;
13465
13466 /* Make sure the remote is pointing at the right process. */
13467 set_general_process ();
13468
13469 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTMinFTPILen");
13470 putpkt (rs->buf);
13471 reply = remote_get_noisy_reply ();
13472 if (*reply == '\0')
13473 return -1;
13474 else
13475 {
13476 ULONGEST min_insn_len;
13477
13478 unpack_varlen_hex (reply, &min_insn_len);
13479
13480 return (int) min_insn_len;
13481 }
13482 }
13483
13484 void
13485 remote_target::set_trace_buffer_size (LONGEST val)
13486 {
13487 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13488 {
13489 struct remote_state *rs = get_remote_state ();
13490 char *buf = rs->buf.data ();
13491 char *endbuf = buf + get_remote_packet_size ();
13492 enum packet_result result;
13493
13494 gdb_assert (val >= 0 || val == -1);
13495 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13496 /* Send -1 as literal "-1" to avoid host size dependency. */
13497 if (val < 0)
13498 {
13499 *buf++ = '-';
13500 buf += hexnumstr (buf, (ULONGEST) -val);
13501 }
13502 else
13503 buf += hexnumstr (buf, (ULONGEST) val);
13504
13505 putpkt (rs->buf);
13506 remote_get_noisy_reply ();
13507 result = packet_ok (rs->buf,
13508 &remote_protocol_packets[PACKET_QTBuffer_size]);
13509
13510 if (result != PACKET_OK)
13511 warning (_("Bogus reply from target: %s"), rs->buf.data ());
13512 }
13513 }
13514
13515 bool
13516 remote_target::set_trace_notes (const char *user, const char *notes,
13517 const char *stop_notes)
13518 {
13519 struct remote_state *rs = get_remote_state ();
13520 char *reply;
13521 char *buf = rs->buf.data ();
13522 char *endbuf = buf + get_remote_packet_size ();
13523 int nbytes;
13524
13525 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13526 if (user)
13527 {
13528 buf += xsnprintf (buf, endbuf - buf, "user:");
13529 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13530 buf += 2 * nbytes;
13531 *buf++ = ';';
13532 }
13533 if (notes)
13534 {
13535 buf += xsnprintf (buf, endbuf - buf, "notes:");
13536 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13537 buf += 2 * nbytes;
13538 *buf++ = ';';
13539 }
13540 if (stop_notes)
13541 {
13542 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13543 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13544 buf += 2 * nbytes;
13545 *buf++ = ';';
13546 }
13547 /* Ensure the buffer is terminated. */
13548 *buf = '\0';
13549
13550 putpkt (rs->buf);
13551 reply = remote_get_noisy_reply ();
13552 if (*reply == '\0')
13553 return false;
13554
13555 if (strcmp (reply, "OK") != 0)
13556 error (_("Bogus reply from target: %s"), reply);
13557
13558 return true;
13559 }
13560
13561 bool
13562 remote_target::use_agent (bool use)
13563 {
13564 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13565 {
13566 struct remote_state *rs = get_remote_state ();
13567
13568 /* If the stub supports QAgent. */
13569 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAgent:%d", use);
13570 putpkt (rs->buf);
13571 getpkt (&rs->buf, 0);
13572
13573 if (strcmp (rs->buf.data (), "OK") == 0)
13574 {
13575 ::use_agent = use;
13576 return true;
13577 }
13578 }
13579
13580 return false;
13581 }
13582
13583 bool
13584 remote_target::can_use_agent ()
13585 {
13586 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13587 }
13588
13589 struct btrace_target_info
13590 {
13591 /* The ptid of the traced thread. */
13592 ptid_t ptid;
13593
13594 /* The obtained branch trace configuration. */
13595 struct btrace_config conf;
13596 };
13597
13598 /* Reset our idea of our target's btrace configuration. */
13599
13600 static void
13601 remote_btrace_reset (remote_state *rs)
13602 {
13603 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13604 }
13605
13606 /* Synchronize the configuration with the target. */
13607
13608 void
13609 remote_target::btrace_sync_conf (const btrace_config *conf)
13610 {
13611 struct packet_config *packet;
13612 struct remote_state *rs;
13613 char *buf, *pos, *endbuf;
13614
13615 rs = get_remote_state ();
13616 buf = rs->buf.data ();
13617 endbuf = buf + get_remote_packet_size ();
13618
13619 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13620 if (packet_config_support (packet) == PACKET_ENABLE
13621 && conf->bts.size != rs->btrace_config.bts.size)
13622 {
13623 pos = buf;
13624 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13625 conf->bts.size);
13626
13627 putpkt (buf);
13628 getpkt (&rs->buf, 0);
13629
13630 if (packet_ok (buf, packet) == PACKET_ERROR)
13631 {
13632 if (buf[0] == 'E' && buf[1] == '.')
13633 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13634 else
13635 error (_("Failed to configure the BTS buffer size."));
13636 }
13637
13638 rs->btrace_config.bts.size = conf->bts.size;
13639 }
13640
13641 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13642 if (packet_config_support (packet) == PACKET_ENABLE
13643 && conf->pt.size != rs->btrace_config.pt.size)
13644 {
13645 pos = buf;
13646 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13647 conf->pt.size);
13648
13649 putpkt (buf);
13650 getpkt (&rs->buf, 0);
13651
13652 if (packet_ok (buf, packet) == PACKET_ERROR)
13653 {
13654 if (buf[0] == 'E' && buf[1] == '.')
13655 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13656 else
13657 error (_("Failed to configure the trace buffer size."));
13658 }
13659
13660 rs->btrace_config.pt.size = conf->pt.size;
13661 }
13662 }
13663
13664 /* Read the current thread's btrace configuration from the target and
13665 store it into CONF. */
13666
13667 static void
13668 btrace_read_config (struct btrace_config *conf)
13669 {
13670 gdb::optional<gdb::char_vector> xml
13671 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE_CONF, "");
13672 if (xml)
13673 parse_xml_btrace_conf (conf, xml->data ());
13674 }
13675
13676 /* Maybe reopen target btrace. */
13677
13678 void
13679 remote_target::remote_btrace_maybe_reopen ()
13680 {
13681 struct remote_state *rs = get_remote_state ();
13682 int btrace_target_pushed = 0;
13683 #if !defined (HAVE_LIBIPT)
13684 int warned = 0;
13685 #endif
13686
13687 /* Don't bother walking the entirety of the remote thread list when
13688 we know the feature isn't supported by the remote. */
13689 if (packet_support (PACKET_qXfer_btrace_conf) != PACKET_ENABLE)
13690 return;
13691
13692 scoped_restore_current_thread restore_thread;
13693
13694 for (thread_info *tp : all_non_exited_threads ())
13695 {
13696 set_general_thread (tp->ptid);
13697
13698 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13699 btrace_read_config (&rs->btrace_config);
13700
13701 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13702 continue;
13703
13704 #if !defined (HAVE_LIBIPT)
13705 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13706 {
13707 if (!warned)
13708 {
13709 warned = 1;
13710 warning (_("Target is recording using Intel Processor Trace "
13711 "but support was disabled at compile time."));
13712 }
13713
13714 continue;
13715 }
13716 #endif /* !defined (HAVE_LIBIPT) */
13717
13718 /* Push target, once, but before anything else happens. This way our
13719 changes to the threads will be cleaned up by unpushing the target
13720 in case btrace_read_config () throws. */
13721 if (!btrace_target_pushed)
13722 {
13723 btrace_target_pushed = 1;
13724 record_btrace_push_target ();
13725 printf_filtered (_("Target is recording using %s.\n"),
13726 btrace_format_string (rs->btrace_config.format));
13727 }
13728
13729 tp->btrace.target = XCNEW (struct btrace_target_info);
13730 tp->btrace.target->ptid = tp->ptid;
13731 tp->btrace.target->conf = rs->btrace_config;
13732 }
13733 }
13734
13735 /* Enable branch tracing. */
13736
13737 struct btrace_target_info *
13738 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
13739 {
13740 struct btrace_target_info *tinfo = NULL;
13741 struct packet_config *packet = NULL;
13742 struct remote_state *rs = get_remote_state ();
13743 char *buf = rs->buf.data ();
13744 char *endbuf = buf + get_remote_packet_size ();
13745
13746 switch (conf->format)
13747 {
13748 case BTRACE_FORMAT_BTS:
13749 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13750 break;
13751
13752 case BTRACE_FORMAT_PT:
13753 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13754 break;
13755 }
13756
13757 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13758 error (_("Target does not support branch tracing."));
13759
13760 btrace_sync_conf (conf);
13761
13762 set_general_thread (ptid);
13763
13764 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13765 putpkt (rs->buf);
13766 getpkt (&rs->buf, 0);
13767
13768 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13769 {
13770 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13771 error (_("Could not enable branch tracing for %s: %s"),
13772 target_pid_to_str (ptid).c_str (), &rs->buf[2]);
13773 else
13774 error (_("Could not enable branch tracing for %s."),
13775 target_pid_to_str (ptid).c_str ());
13776 }
13777
13778 tinfo = XCNEW (struct btrace_target_info);
13779 tinfo->ptid = ptid;
13780
13781 /* If we fail to read the configuration, we lose some information, but the
13782 tracing itself is not impacted. */
13783 try
13784 {
13785 btrace_read_config (&tinfo->conf);
13786 }
13787 catch (const gdb_exception_error &err)
13788 {
13789 if (err.message != NULL)
13790 warning ("%s", err.what ());
13791 }
13792
13793 return tinfo;
13794 }
13795
13796 /* Disable branch tracing. */
13797
13798 void
13799 remote_target::disable_btrace (struct btrace_target_info *tinfo)
13800 {
13801 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13802 struct remote_state *rs = get_remote_state ();
13803 char *buf = rs->buf.data ();
13804 char *endbuf = buf + get_remote_packet_size ();
13805
13806 if (packet_config_support (packet) != PACKET_ENABLE)
13807 error (_("Target does not support branch tracing."));
13808
13809 set_general_thread (tinfo->ptid);
13810
13811 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13812 putpkt (rs->buf);
13813 getpkt (&rs->buf, 0);
13814
13815 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13816 {
13817 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13818 error (_("Could not disable branch tracing for %s: %s"),
13819 target_pid_to_str (tinfo->ptid).c_str (), &rs->buf[2]);
13820 else
13821 error (_("Could not disable branch tracing for %s."),
13822 target_pid_to_str (tinfo->ptid).c_str ());
13823 }
13824
13825 xfree (tinfo);
13826 }
13827
13828 /* Teardown branch tracing. */
13829
13830 void
13831 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
13832 {
13833 /* We must not talk to the target during teardown. */
13834 xfree (tinfo);
13835 }
13836
13837 /* Read the branch trace. */
13838
13839 enum btrace_error
13840 remote_target::read_btrace (struct btrace_data *btrace,
13841 struct btrace_target_info *tinfo,
13842 enum btrace_read_type type)
13843 {
13844 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13845 const char *annex;
13846
13847 if (packet_config_support (packet) != PACKET_ENABLE)
13848 error (_("Target does not support branch tracing."));
13849
13850 #if !defined(HAVE_LIBEXPAT)
13851 error (_("Cannot process branch tracing result. XML parsing not supported."));
13852 #endif
13853
13854 switch (type)
13855 {
13856 case BTRACE_READ_ALL:
13857 annex = "all";
13858 break;
13859 case BTRACE_READ_NEW:
13860 annex = "new";
13861 break;
13862 case BTRACE_READ_DELTA:
13863 annex = "delta";
13864 break;
13865 default:
13866 internal_error (__FILE__, __LINE__,
13867 _("Bad branch tracing read type: %u."),
13868 (unsigned int) type);
13869 }
13870
13871 gdb::optional<gdb::char_vector> xml
13872 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE, annex);
13873 if (!xml)
13874 return BTRACE_ERR_UNKNOWN;
13875
13876 parse_xml_btrace (btrace, xml->data ());
13877
13878 return BTRACE_ERR_NONE;
13879 }
13880
13881 const struct btrace_config *
13882 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
13883 {
13884 return &tinfo->conf;
13885 }
13886
13887 bool
13888 remote_target::augmented_libraries_svr4_read ()
13889 {
13890 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
13891 == PACKET_ENABLE);
13892 }
13893
13894 /* Implementation of to_load. */
13895
13896 void
13897 remote_target::load (const char *name, int from_tty)
13898 {
13899 generic_load (name, from_tty);
13900 }
13901
13902 /* Accepts an integer PID; returns a string representing a file that
13903 can be opened on the remote side to get the symbols for the child
13904 process. Returns NULL if the operation is not supported. */
13905
13906 char *
13907 remote_target::pid_to_exec_file (int pid)
13908 {
13909 static gdb::optional<gdb::char_vector> filename;
13910 struct inferior *inf;
13911 char *annex = NULL;
13912
13913 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
13914 return NULL;
13915
13916 inf = find_inferior_pid (pid);
13917 if (inf == NULL)
13918 internal_error (__FILE__, __LINE__,
13919 _("not currently attached to process %d"), pid);
13920
13921 if (!inf->fake_pid_p)
13922 {
13923 const int annex_size = 9;
13924
13925 annex = (char *) alloca (annex_size);
13926 xsnprintf (annex, annex_size, "%x", pid);
13927 }
13928
13929 filename = target_read_stralloc (current_top_target (),
13930 TARGET_OBJECT_EXEC_FILE, annex);
13931
13932 return filename ? filename->data () : nullptr;
13933 }
13934
13935 /* Implement the to_can_do_single_step target_ops method. */
13936
13937 int
13938 remote_target::can_do_single_step ()
13939 {
13940 /* We can only tell whether target supports single step or not by
13941 supported s and S vCont actions if the stub supports vContSupported
13942 feature. If the stub doesn't support vContSupported feature,
13943 we have conservatively to think target doesn't supports single
13944 step. */
13945 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
13946 {
13947 struct remote_state *rs = get_remote_state ();
13948
13949 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13950 remote_vcont_probe ();
13951
13952 return rs->supports_vCont.s && rs->supports_vCont.S;
13953 }
13954 else
13955 return 0;
13956 }
13957
13958 /* Implementation of the to_execution_direction method for the remote
13959 target. */
13960
13961 enum exec_direction_kind
13962 remote_target::execution_direction ()
13963 {
13964 struct remote_state *rs = get_remote_state ();
13965
13966 return rs->last_resume_exec_dir;
13967 }
13968
13969 /* Return pointer to the thread_info struct which corresponds to
13970 THREAD_HANDLE (having length HANDLE_LEN). */
13971
13972 thread_info *
13973 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
13974 int handle_len,
13975 inferior *inf)
13976 {
13977 for (thread_info *tp : all_non_exited_threads ())
13978 {
13979 remote_thread_info *priv = get_remote_thread_info (tp);
13980
13981 if (tp->inf == inf && priv != NULL)
13982 {
13983 if (handle_len != priv->thread_handle.size ())
13984 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
13985 handle_len, priv->thread_handle.size ());
13986 if (memcmp (thread_handle, priv->thread_handle.data (),
13987 handle_len) == 0)
13988 return tp;
13989 }
13990 }
13991
13992 return NULL;
13993 }
13994
13995 gdb::byte_vector
13996 remote_target::thread_info_to_thread_handle (struct thread_info *tp)
13997 {
13998 remote_thread_info *priv = get_remote_thread_info (tp);
13999 return priv->thread_handle;
14000 }
14001
14002 bool
14003 remote_target::can_async_p ()
14004 {
14005 struct remote_state *rs = get_remote_state ();
14006
14007 /* We don't go async if the user has explicitly prevented it with the
14008 "maint set target-async" command. */
14009 if (!target_async_permitted)
14010 return false;
14011
14012 /* We're async whenever the serial device is. */
14013 return serial_can_async_p (rs->remote_desc);
14014 }
14015
14016 bool
14017 remote_target::is_async_p ()
14018 {
14019 struct remote_state *rs = get_remote_state ();
14020
14021 if (!target_async_permitted)
14022 /* We only enable async when the user specifically asks for it. */
14023 return false;
14024
14025 /* We're async whenever the serial device is. */
14026 return serial_is_async_p (rs->remote_desc);
14027 }
14028
14029 /* Pass the SERIAL event on and up to the client. One day this code
14030 will be able to delay notifying the client of an event until the
14031 point where an entire packet has been received. */
14032
14033 static serial_event_ftype remote_async_serial_handler;
14034
14035 static void
14036 remote_async_serial_handler (struct serial *scb, void *context)
14037 {
14038 /* Don't propogate error information up to the client. Instead let
14039 the client find out about the error by querying the target. */
14040 inferior_event_handler (INF_REG_EVENT, NULL);
14041 }
14042
14043 static void
14044 remote_async_inferior_event_handler (gdb_client_data data)
14045 {
14046 inferior_event_handler (INF_REG_EVENT, data);
14047 }
14048
14049 void
14050 remote_target::async (int enable)
14051 {
14052 struct remote_state *rs = get_remote_state ();
14053
14054 if (enable)
14055 {
14056 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
14057
14058 /* If there are pending events in the stop reply queue tell the
14059 event loop to process them. */
14060 if (!rs->stop_reply_queue.empty ())
14061 mark_async_event_handler (rs->remote_async_inferior_event_token);
14062 /* For simplicity, below we clear the pending events token
14063 without remembering whether it is marked, so here we always
14064 mark it. If there's actually no pending notification to
14065 process, this ends up being a no-op (other than a spurious
14066 event-loop wakeup). */
14067 if (target_is_non_stop_p ())
14068 mark_async_event_handler (rs->notif_state->get_pending_events_token);
14069 }
14070 else
14071 {
14072 serial_async (rs->remote_desc, NULL, NULL);
14073 /* If the core is disabling async, it doesn't want to be
14074 disturbed with target events. Clear all async event sources
14075 too. */
14076 clear_async_event_handler (rs->remote_async_inferior_event_token);
14077 if (target_is_non_stop_p ())
14078 clear_async_event_handler (rs->notif_state->get_pending_events_token);
14079 }
14080 }
14081
14082 /* Implementation of the to_thread_events method. */
14083
14084 void
14085 remote_target::thread_events (int enable)
14086 {
14087 struct remote_state *rs = get_remote_state ();
14088 size_t size = get_remote_packet_size ();
14089
14090 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
14091 return;
14092
14093 xsnprintf (rs->buf.data (), size, "QThreadEvents:%x", enable ? 1 : 0);
14094 putpkt (rs->buf);
14095 getpkt (&rs->buf, 0);
14096
14097 switch (packet_ok (rs->buf,
14098 &remote_protocol_packets[PACKET_QThreadEvents]))
14099 {
14100 case PACKET_OK:
14101 if (strcmp (rs->buf.data (), "OK") != 0)
14102 error (_("Remote refused setting thread events: %s"), rs->buf.data ());
14103 break;
14104 case PACKET_ERROR:
14105 warning (_("Remote failure reply: %s"), rs->buf.data ());
14106 break;
14107 case PACKET_UNKNOWN:
14108 break;
14109 }
14110 }
14111
14112 static void
14113 set_remote_cmd (const char *args, int from_tty)
14114 {
14115 help_list (remote_set_cmdlist, "set remote ", all_commands, gdb_stdout);
14116 }
14117
14118 static void
14119 show_remote_cmd (const char *args, int from_tty)
14120 {
14121 /* We can't just use cmd_show_list here, because we want to skip
14122 the redundant "show remote Z-packet" and the legacy aliases. */
14123 struct cmd_list_element *list = remote_show_cmdlist;
14124 struct ui_out *uiout = current_uiout;
14125
14126 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
14127 for (; list != NULL; list = list->next)
14128 if (strcmp (list->name, "Z-packet") == 0)
14129 continue;
14130 else if (list->type == not_set_cmd)
14131 /* Alias commands are exactly like the original, except they
14132 don't have the normal type. */
14133 continue;
14134 else
14135 {
14136 ui_out_emit_tuple option_emitter (uiout, "option");
14137
14138 uiout->field_string ("name", list->name);
14139 uiout->text (": ");
14140 if (list->type == show_cmd)
14141 do_show_command (NULL, from_tty, list);
14142 else
14143 cmd_func (list, NULL, from_tty);
14144 }
14145 }
14146
14147
14148 /* Function to be called whenever a new objfile (shlib) is detected. */
14149 static void
14150 remote_new_objfile (struct objfile *objfile)
14151 {
14152 remote_target *remote = get_current_remote_target ();
14153
14154 if (remote != NULL) /* Have a remote connection. */
14155 remote->remote_check_symbols ();
14156 }
14157
14158 /* Pull all the tracepoints defined on the target and create local
14159 data structures representing them. We don't want to create real
14160 tracepoints yet, we don't want to mess up the user's existing
14161 collection. */
14162
14163 int
14164 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
14165 {
14166 struct remote_state *rs = get_remote_state ();
14167 char *p;
14168
14169 /* Ask for a first packet of tracepoint definition. */
14170 putpkt ("qTfP");
14171 getpkt (&rs->buf, 0);
14172 p = rs->buf.data ();
14173 while (*p && *p != 'l')
14174 {
14175 parse_tracepoint_definition (p, utpp);
14176 /* Ask for another packet of tracepoint definition. */
14177 putpkt ("qTsP");
14178 getpkt (&rs->buf, 0);
14179 p = rs->buf.data ();
14180 }
14181 return 0;
14182 }
14183
14184 int
14185 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
14186 {
14187 struct remote_state *rs = get_remote_state ();
14188 char *p;
14189
14190 /* Ask for a first packet of variable definition. */
14191 putpkt ("qTfV");
14192 getpkt (&rs->buf, 0);
14193 p = rs->buf.data ();
14194 while (*p && *p != 'l')
14195 {
14196 parse_tsv_definition (p, utsvp);
14197 /* Ask for another packet of variable definition. */
14198 putpkt ("qTsV");
14199 getpkt (&rs->buf, 0);
14200 p = rs->buf.data ();
14201 }
14202 return 0;
14203 }
14204
14205 /* The "set/show range-stepping" show hook. */
14206
14207 static void
14208 show_range_stepping (struct ui_file *file, int from_tty,
14209 struct cmd_list_element *c,
14210 const char *value)
14211 {
14212 fprintf_filtered (file,
14213 _("Debugger's willingness to use range stepping "
14214 "is %s.\n"), value);
14215 }
14216
14217 /* Return true if the vCont;r action is supported by the remote
14218 stub. */
14219
14220 bool
14221 remote_target::vcont_r_supported ()
14222 {
14223 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14224 remote_vcont_probe ();
14225
14226 return (packet_support (PACKET_vCont) == PACKET_ENABLE
14227 && get_remote_state ()->supports_vCont.r);
14228 }
14229
14230 /* The "set/show range-stepping" set hook. */
14231
14232 static void
14233 set_range_stepping (const char *ignore_args, int from_tty,
14234 struct cmd_list_element *c)
14235 {
14236 /* When enabling, check whether range stepping is actually supported
14237 by the target, and warn if not. */
14238 if (use_range_stepping)
14239 {
14240 remote_target *remote = get_current_remote_target ();
14241 if (remote == NULL
14242 || !remote->vcont_r_supported ())
14243 warning (_("Range stepping is not supported by the current target"));
14244 }
14245 }
14246
14247 void
14248 _initialize_remote (void)
14249 {
14250 struct cmd_list_element *cmd;
14251 const char *cmd_name;
14252
14253 /* architecture specific data */
14254 remote_g_packet_data_handle =
14255 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14256
14257 add_target (remote_target_info, remote_target::open);
14258 add_target (extended_remote_target_info, extended_remote_target::open);
14259
14260 /* Hook into new objfile notification. */
14261 gdb::observers::new_objfile.attach (remote_new_objfile);
14262
14263 #if 0
14264 init_remote_threadtests ();
14265 #endif
14266
14267 /* set/show remote ... */
14268
14269 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
14270 Remote protocol specific variables.\n\
14271 Configure various remote-protocol specific variables such as\n\
14272 the packets being used."),
14273 &remote_set_cmdlist, "set remote ",
14274 0 /* allow-unknown */, &setlist);
14275 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14276 Remote protocol specific variables.\n\
14277 Configure various remote-protocol specific variables such as\n\
14278 the packets being used."),
14279 &remote_show_cmdlist, "show remote ",
14280 0 /* allow-unknown */, &showlist);
14281
14282 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14283 Compare section data on target to the exec file.\n\
14284 Argument is a single section name (default: all loaded sections).\n\
14285 To compare only read-only loaded sections, specify the -r option."),
14286 &cmdlist);
14287
14288 add_cmd ("packet", class_maintenance, packet_command, _("\
14289 Send an arbitrary packet to a remote target.\n\
14290 maintenance packet TEXT\n\
14291 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14292 this command sends the string TEXT to the inferior, and displays the\n\
14293 response packet. GDB supplies the initial `$' character, and the\n\
14294 terminating `#' character and checksum."),
14295 &maintenancelist);
14296
14297 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14298 Set whether to send break if interrupted."), _("\
14299 Show whether to send break if interrupted."), _("\
14300 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14301 set_remotebreak, show_remotebreak,
14302 &setlist, &showlist);
14303 cmd_name = "remotebreak";
14304 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
14305 deprecate_cmd (cmd, "set remote interrupt-sequence");
14306 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14307 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
14308 deprecate_cmd (cmd, "show remote interrupt-sequence");
14309
14310 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14311 interrupt_sequence_modes, &interrupt_sequence_mode,
14312 _("\
14313 Set interrupt sequence to remote target."), _("\
14314 Show interrupt sequence to remote target."), _("\
14315 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14316 NULL, show_interrupt_sequence,
14317 &remote_set_cmdlist,
14318 &remote_show_cmdlist);
14319
14320 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14321 &interrupt_on_connect, _("\
14322 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14323 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14324 If set, interrupt sequence is sent to remote target."),
14325 NULL, NULL,
14326 &remote_set_cmdlist, &remote_show_cmdlist);
14327
14328 /* Install commands for configuring memory read/write packets. */
14329
14330 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14331 Set the maximum number of bytes per memory write packet (deprecated)."),
14332 &setlist);
14333 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14334 Show the maximum number of bytes per memory write packet (deprecated)."),
14335 &showlist);
14336 add_cmd ("memory-write-packet-size", no_class,
14337 set_memory_write_packet_size, _("\
14338 Set the maximum number of bytes per memory-write packet.\n\
14339 Specify the number of bytes in a packet or 0 (zero) for the\n\
14340 default packet size. The actual limit is further reduced\n\
14341 dependent on the target. Specify ``fixed'' to disable the\n\
14342 further restriction and ``limit'' to enable that restriction."),
14343 &remote_set_cmdlist);
14344 add_cmd ("memory-read-packet-size", no_class,
14345 set_memory_read_packet_size, _("\
14346 Set the maximum number of bytes per memory-read packet.\n\
14347 Specify the number of bytes in a packet or 0 (zero) for the\n\
14348 default packet size. The actual limit is further reduced\n\
14349 dependent on the target. Specify ``fixed'' to disable the\n\
14350 further restriction and ``limit'' to enable that restriction."),
14351 &remote_set_cmdlist);
14352 add_cmd ("memory-write-packet-size", no_class,
14353 show_memory_write_packet_size,
14354 _("Show the maximum number of bytes per memory-write packet."),
14355 &remote_show_cmdlist);
14356 add_cmd ("memory-read-packet-size", no_class,
14357 show_memory_read_packet_size,
14358 _("Show the maximum number of bytes per memory-read packet."),
14359 &remote_show_cmdlist);
14360
14361 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-limit", no_class,
14362 &remote_hw_watchpoint_limit, _("\
14363 Set the maximum number of target hardware watchpoints."), _("\
14364 Show the maximum number of target hardware watchpoints."), _("\
14365 Specify \"unlimited\" for unlimited hardware watchpoints."),
14366 NULL, show_hardware_watchpoint_limit,
14367 &remote_set_cmdlist,
14368 &remote_show_cmdlist);
14369 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-length-limit",
14370 no_class,
14371 &remote_hw_watchpoint_length_limit, _("\
14372 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14373 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14374 Specify \"unlimited\" to allow watchpoints of unlimited size."),
14375 NULL, show_hardware_watchpoint_length_limit,
14376 &remote_set_cmdlist, &remote_show_cmdlist);
14377 add_setshow_zuinteger_unlimited_cmd ("hardware-breakpoint-limit", no_class,
14378 &remote_hw_breakpoint_limit, _("\
14379 Set the maximum number of target hardware breakpoints."), _("\
14380 Show the maximum number of target hardware breakpoints."), _("\
14381 Specify \"unlimited\" for unlimited hardware breakpoints."),
14382 NULL, show_hardware_breakpoint_limit,
14383 &remote_set_cmdlist, &remote_show_cmdlist);
14384
14385 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14386 &remote_address_size, _("\
14387 Set the maximum size of the address (in bits) in a memory packet."), _("\
14388 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14389 NULL,
14390 NULL, /* FIXME: i18n: */
14391 &setlist, &showlist);
14392
14393 init_all_packet_configs ();
14394
14395 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14396 "X", "binary-download", 1);
14397
14398 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14399 "vCont", "verbose-resume", 0);
14400
14401 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14402 "QPassSignals", "pass-signals", 0);
14403
14404 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14405 "QCatchSyscalls", "catch-syscalls", 0);
14406
14407 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14408 "QProgramSignals", "program-signals", 0);
14409
14410 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14411 "QSetWorkingDir", "set-working-dir", 0);
14412
14413 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14414 "QStartupWithShell", "startup-with-shell", 0);
14415
14416 add_packet_config_cmd (&remote_protocol_packets
14417 [PACKET_QEnvironmentHexEncoded],
14418 "QEnvironmentHexEncoded", "environment-hex-encoded",
14419 0);
14420
14421 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14422 "QEnvironmentReset", "environment-reset",
14423 0);
14424
14425 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14426 "QEnvironmentUnset", "environment-unset",
14427 0);
14428
14429 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14430 "qSymbol", "symbol-lookup", 0);
14431
14432 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14433 "P", "set-register", 1);
14434
14435 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14436 "p", "fetch-register", 1);
14437
14438 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14439 "Z0", "software-breakpoint", 0);
14440
14441 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14442 "Z1", "hardware-breakpoint", 0);
14443
14444 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14445 "Z2", "write-watchpoint", 0);
14446
14447 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14448 "Z3", "read-watchpoint", 0);
14449
14450 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14451 "Z4", "access-watchpoint", 0);
14452
14453 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14454 "qXfer:auxv:read", "read-aux-vector", 0);
14455
14456 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14457 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14458
14459 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14460 "qXfer:features:read", "target-features", 0);
14461
14462 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14463 "qXfer:libraries:read", "library-info", 0);
14464
14465 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14466 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14467
14468 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14469 "qXfer:memory-map:read", "memory-map", 0);
14470
14471 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14472 "qXfer:osdata:read", "osdata", 0);
14473
14474 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14475 "qXfer:threads:read", "threads", 0);
14476
14477 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14478 "qXfer:siginfo:read", "read-siginfo-object", 0);
14479
14480 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14481 "qXfer:siginfo:write", "write-siginfo-object", 0);
14482
14483 add_packet_config_cmd
14484 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14485 "qXfer:traceframe-info:read", "traceframe-info", 0);
14486
14487 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14488 "qXfer:uib:read", "unwind-info-block", 0);
14489
14490 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14491 "qGetTLSAddr", "get-thread-local-storage-address",
14492 0);
14493
14494 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14495 "qGetTIBAddr", "get-thread-information-block-address",
14496 0);
14497
14498 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14499 "bc", "reverse-continue", 0);
14500
14501 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14502 "bs", "reverse-step", 0);
14503
14504 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14505 "qSupported", "supported-packets", 0);
14506
14507 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14508 "qSearch:memory", "search-memory", 0);
14509
14510 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14511 "qTStatus", "trace-status", 0);
14512
14513 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14514 "vFile:setfs", "hostio-setfs", 0);
14515
14516 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14517 "vFile:open", "hostio-open", 0);
14518
14519 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14520 "vFile:pread", "hostio-pread", 0);
14521
14522 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14523 "vFile:pwrite", "hostio-pwrite", 0);
14524
14525 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14526 "vFile:close", "hostio-close", 0);
14527
14528 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14529 "vFile:unlink", "hostio-unlink", 0);
14530
14531 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14532 "vFile:readlink", "hostio-readlink", 0);
14533
14534 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14535 "vFile:fstat", "hostio-fstat", 0);
14536
14537 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14538 "vAttach", "attach", 0);
14539
14540 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14541 "vRun", "run", 0);
14542
14543 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14544 "QStartNoAckMode", "noack", 0);
14545
14546 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14547 "vKill", "kill", 0);
14548
14549 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14550 "qAttached", "query-attached", 0);
14551
14552 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14553 "ConditionalTracepoints",
14554 "conditional-tracepoints", 0);
14555
14556 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14557 "ConditionalBreakpoints",
14558 "conditional-breakpoints", 0);
14559
14560 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14561 "BreakpointCommands",
14562 "breakpoint-commands", 0);
14563
14564 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14565 "FastTracepoints", "fast-tracepoints", 0);
14566
14567 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14568 "TracepointSource", "TracepointSource", 0);
14569
14570 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14571 "QAllow", "allow", 0);
14572
14573 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14574 "StaticTracepoints", "static-tracepoints", 0);
14575
14576 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14577 "InstallInTrace", "install-in-trace", 0);
14578
14579 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14580 "qXfer:statictrace:read", "read-sdata-object", 0);
14581
14582 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14583 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14584
14585 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14586 "QDisableRandomization", "disable-randomization", 0);
14587
14588 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14589 "QAgent", "agent", 0);
14590
14591 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14592 "QTBuffer:size", "trace-buffer-size", 0);
14593
14594 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14595 "Qbtrace:off", "disable-btrace", 0);
14596
14597 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14598 "Qbtrace:bts", "enable-btrace-bts", 0);
14599
14600 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14601 "Qbtrace:pt", "enable-btrace-pt", 0);
14602
14603 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14604 "qXfer:btrace", "read-btrace", 0);
14605
14606 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14607 "qXfer:btrace-conf", "read-btrace-conf", 0);
14608
14609 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14610 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14611
14612 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14613 "multiprocess-feature", "multiprocess-feature", 0);
14614
14615 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14616 "swbreak-feature", "swbreak-feature", 0);
14617
14618 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14619 "hwbreak-feature", "hwbreak-feature", 0);
14620
14621 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14622 "fork-event-feature", "fork-event-feature", 0);
14623
14624 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14625 "vfork-event-feature", "vfork-event-feature", 0);
14626
14627 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14628 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14629
14630 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14631 "vContSupported", "verbose-resume-supported", 0);
14632
14633 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14634 "exec-event-feature", "exec-event-feature", 0);
14635
14636 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14637 "vCtrlC", "ctrl-c", 0);
14638
14639 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14640 "QThreadEvents", "thread-events", 0);
14641
14642 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14643 "N stop reply", "no-resumed-stop-reply", 0);
14644
14645 /* Assert that we've registered "set remote foo-packet" commands
14646 for all packet configs. */
14647 {
14648 int i;
14649
14650 for (i = 0; i < PACKET_MAX; i++)
14651 {
14652 /* Ideally all configs would have a command associated. Some
14653 still don't though. */
14654 int excepted;
14655
14656 switch (i)
14657 {
14658 case PACKET_QNonStop:
14659 case PACKET_EnableDisableTracepoints_feature:
14660 case PACKET_tracenz_feature:
14661 case PACKET_DisconnectedTracing_feature:
14662 case PACKET_augmented_libraries_svr4_read_feature:
14663 case PACKET_qCRC:
14664 /* Additions to this list need to be well justified:
14665 pre-existing packets are OK; new packets are not. */
14666 excepted = 1;
14667 break;
14668 default:
14669 excepted = 0;
14670 break;
14671 }
14672
14673 /* This catches both forgetting to add a config command, and
14674 forgetting to remove a packet from the exception list. */
14675 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14676 }
14677 }
14678
14679 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14680 Z sub-packet has its own set and show commands, but users may
14681 have sets to this variable in their .gdbinit files (or in their
14682 documentation). */
14683 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14684 &remote_Z_packet_detect, _("\
14685 Set use of remote protocol `Z' packets."), _("\
14686 Show use of remote protocol `Z' packets."), _("\
14687 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14688 packets."),
14689 set_remote_protocol_Z_packet_cmd,
14690 show_remote_protocol_Z_packet_cmd,
14691 /* FIXME: i18n: Use of remote protocol
14692 `Z' packets is %s. */
14693 &remote_set_cmdlist, &remote_show_cmdlist);
14694
14695 add_prefix_cmd ("remote", class_files, remote_command, _("\
14696 Manipulate files on the remote system.\n\
14697 Transfer files to and from the remote target system."),
14698 &remote_cmdlist, "remote ",
14699 0 /* allow-unknown */, &cmdlist);
14700
14701 add_cmd ("put", class_files, remote_put_command,
14702 _("Copy a local file to the remote system."),
14703 &remote_cmdlist);
14704
14705 add_cmd ("get", class_files, remote_get_command,
14706 _("Copy a remote file to the local system."),
14707 &remote_cmdlist);
14708
14709 add_cmd ("delete", class_files, remote_delete_command,
14710 _("Delete a remote file."),
14711 &remote_cmdlist);
14712
14713 add_setshow_string_noescape_cmd ("exec-file", class_files,
14714 &remote_exec_file_var, _("\
14715 Set the remote pathname for \"run\"."), _("\
14716 Show the remote pathname for \"run\"."), NULL,
14717 set_remote_exec_file,
14718 show_remote_exec_file,
14719 &remote_set_cmdlist,
14720 &remote_show_cmdlist);
14721
14722 add_setshow_boolean_cmd ("range-stepping", class_run,
14723 &use_range_stepping, _("\
14724 Enable or disable range stepping."), _("\
14725 Show whether target-assisted range stepping is enabled."), _("\
14726 If on, and the target supports it, when stepping a source line, GDB\n\
14727 tells the target to step the corresponding range of addresses itself instead\n\
14728 of issuing multiple single-steps. This speeds up source level\n\
14729 stepping. If off, GDB always issues single-steps, even if range\n\
14730 stepping is supported by the target. The default is on."),
14731 set_range_stepping,
14732 show_range_stepping,
14733 &setlist,
14734 &showlist);
14735
14736 add_setshow_zinteger_cmd ("watchdog", class_maintenance, &watchdog, _("\
14737 Set watchdog timer."), _("\
14738 Show watchdog timer."), _("\
14739 When non-zero, this timeout is used instead of waiting forever for a target\n\
14740 to finish a low-level step or continue operation. If the specified amount\n\
14741 of time passes without a response from the target, an error occurs."),
14742 NULL,
14743 show_watchdog,
14744 &setlist, &showlist);
14745
14746 add_setshow_zuinteger_unlimited_cmd ("remote-packet-max-chars", no_class,
14747 &remote_packet_max_chars, _("\
14748 Set the maximum number of characters to display for each remote packet."), _("\
14749 Show the maximum number of characters to display for each remote packet."), _("\
14750 Specify \"unlimited\" to display all the characters."),
14751 NULL, show_remote_packet_max_chars,
14752 &setdebuglist, &showdebuglist);
14753
14754 /* Eventually initialize fileio. See fileio.c */
14755 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
14756 }
This page took 0.343588 seconds and 4 git commands to generate.