Rename gdb exception types
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 #include "process-stratum-target.h"
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "common/filestuff.h"
46 #include "common/rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "common/gdb_sys_time.h"
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "common/agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "common/scoped_restore.h"
76 #include "common/environ.h"
77 #include "common/byte-vector.h"
78 #include <unordered_map>
79
80 /* The remote target. */
81
82 static const char remote_doc[] = N_("\
83 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
84 Specify the serial device it is connected to\n\
85 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
86
87 #define OPAQUETHREADBYTES 8
88
89 /* a 64 bit opaque identifier */
90 typedef unsigned char threadref[OPAQUETHREADBYTES];
91
92 struct gdb_ext_thread_info;
93 struct threads_listing_context;
94 typedef int (*rmt_thread_action) (threadref *ref, void *context);
95 struct protocol_feature;
96 struct packet_reg;
97
98 struct stop_reply;
99 typedef std::unique_ptr<stop_reply> stop_reply_up;
100
101 /* Generic configuration support for packets the stub optionally
102 supports. Allows the user to specify the use of the packet as well
103 as allowing GDB to auto-detect support in the remote stub. */
104
105 enum packet_support
106 {
107 PACKET_SUPPORT_UNKNOWN = 0,
108 PACKET_ENABLE,
109 PACKET_DISABLE
110 };
111
112 /* Analyze a packet's return value and update the packet config
113 accordingly. */
114
115 enum packet_result
116 {
117 PACKET_ERROR,
118 PACKET_OK,
119 PACKET_UNKNOWN
120 };
121
122 struct threads_listing_context;
123
124 /* Stub vCont actions support.
125
126 Each field is a boolean flag indicating whether the stub reports
127 support for the corresponding action. */
128
129 struct vCont_action_support
130 {
131 /* vCont;t */
132 bool t = false;
133
134 /* vCont;r */
135 bool r = false;
136
137 /* vCont;s */
138 bool s = false;
139
140 /* vCont;S */
141 bool S = false;
142 };
143
144 /* About this many threadisds fit in a packet. */
145
146 #define MAXTHREADLISTRESULTS 32
147
148 /* Data for the vFile:pread readahead cache. */
149
150 struct readahead_cache
151 {
152 /* Invalidate the readahead cache. */
153 void invalidate ();
154
155 /* Invalidate the readahead cache if it is holding data for FD. */
156 void invalidate_fd (int fd);
157
158 /* Serve pread from the readahead cache. Returns number of bytes
159 read, or 0 if the request can't be served from the cache. */
160 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
161
162 /* The file descriptor for the file that is being cached. -1 if the
163 cache is invalid. */
164 int fd = -1;
165
166 /* The offset into the file that the cache buffer corresponds
167 to. */
168 ULONGEST offset = 0;
169
170 /* The buffer holding the cache contents. */
171 gdb_byte *buf = nullptr;
172 /* The buffer's size. We try to read as much as fits into a packet
173 at a time. */
174 size_t bufsize = 0;
175
176 /* Cache hit and miss counters. */
177 ULONGEST hit_count = 0;
178 ULONGEST miss_count = 0;
179 };
180
181 /* Description of the remote protocol for a given architecture. */
182
183 struct packet_reg
184 {
185 long offset; /* Offset into G packet. */
186 long regnum; /* GDB's internal register number. */
187 LONGEST pnum; /* Remote protocol register number. */
188 int in_g_packet; /* Always part of G packet. */
189 /* long size in bytes; == register_size (target_gdbarch (), regnum);
190 at present. */
191 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
192 at present. */
193 };
194
195 struct remote_arch_state
196 {
197 explicit remote_arch_state (struct gdbarch *gdbarch);
198
199 /* Description of the remote protocol registers. */
200 long sizeof_g_packet;
201
202 /* Description of the remote protocol registers indexed by REGNUM
203 (making an array gdbarch_num_regs in size). */
204 std::unique_ptr<packet_reg[]> regs;
205
206 /* This is the size (in chars) of the first response to the ``g''
207 packet. It is used as a heuristic when determining the maximum
208 size of memory-read and memory-write packets. A target will
209 typically only reserve a buffer large enough to hold the ``g''
210 packet. The size does not include packet overhead (headers and
211 trailers). */
212 long actual_register_packet_size;
213
214 /* This is the maximum size (in chars) of a non read/write packet.
215 It is also used as a cap on the size of read/write packets. */
216 long remote_packet_size;
217 };
218
219 /* Description of the remote protocol state for the currently
220 connected target. This is per-target state, and independent of the
221 selected architecture. */
222
223 class remote_state
224 {
225 public:
226
227 remote_state ();
228 ~remote_state ();
229
230 /* Get the remote arch state for GDBARCH. */
231 struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
232
233 public: /* data */
234
235 /* A buffer to use for incoming packets, and its current size. The
236 buffer is grown dynamically for larger incoming packets.
237 Outgoing packets may also be constructed in this buffer.
238 The size of the buffer is always at least REMOTE_PACKET_SIZE;
239 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
240 packets. */
241 gdb::char_vector buf;
242
243 /* True if we're going through initial connection setup (finding out
244 about the remote side's threads, relocating symbols, etc.). */
245 bool starting_up = false;
246
247 /* If we negotiated packet size explicitly (and thus can bypass
248 heuristics for the largest packet size that will not overflow
249 a buffer in the stub), this will be set to that packet size.
250 Otherwise zero, meaning to use the guessed size. */
251 long explicit_packet_size = 0;
252
253 /* remote_wait is normally called when the target is running and
254 waits for a stop reply packet. But sometimes we need to call it
255 when the target is already stopped. We can send a "?" packet
256 and have remote_wait read the response. Or, if we already have
257 the response, we can stash it in BUF and tell remote_wait to
258 skip calling getpkt. This flag is set when BUF contains a
259 stop reply packet and the target is not waiting. */
260 int cached_wait_status = 0;
261
262 /* True, if in no ack mode. That is, neither GDB nor the stub will
263 expect acks from each other. The connection is assumed to be
264 reliable. */
265 bool noack_mode = false;
266
267 /* True if we're connected in extended remote mode. */
268 bool extended = false;
269
270 /* True if we resumed the target and we're waiting for the target to
271 stop. In the mean time, we can't start another command/query.
272 The remote server wouldn't be ready to process it, so we'd
273 timeout waiting for a reply that would never come and eventually
274 we'd close the connection. This can happen in asynchronous mode
275 because we allow GDB commands while the target is running. */
276 bool waiting_for_stop_reply = false;
277
278 /* The status of the stub support for the various vCont actions. */
279 vCont_action_support supports_vCont;
280
281 /* True if the user has pressed Ctrl-C, but the target hasn't
282 responded to that. */
283 bool ctrlc_pending_p = false;
284
285 /* True if we saw a Ctrl-C while reading or writing from/to the
286 remote descriptor. At that point it is not safe to send a remote
287 interrupt packet, so we instead remember we saw the Ctrl-C and
288 process it once we're done with sending/receiving the current
289 packet, which should be shortly. If however that takes too long,
290 and the user presses Ctrl-C again, we offer to disconnect. */
291 bool got_ctrlc_during_io = false;
292
293 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
294 remote_open knows that we don't have a file open when the program
295 starts. */
296 struct serial *remote_desc = nullptr;
297
298 /* These are the threads which we last sent to the remote system. The
299 TID member will be -1 for all or -2 for not sent yet. */
300 ptid_t general_thread = null_ptid;
301 ptid_t continue_thread = null_ptid;
302
303 /* This is the traceframe which we last selected on the remote system.
304 It will be -1 if no traceframe is selected. */
305 int remote_traceframe_number = -1;
306
307 char *last_pass_packet = nullptr;
308
309 /* The last QProgramSignals packet sent to the target. We bypass
310 sending a new program signals list down to the target if the new
311 packet is exactly the same as the last we sent. IOW, we only let
312 the target know about program signals list changes. */
313 char *last_program_signals_packet = nullptr;
314
315 gdb_signal last_sent_signal = GDB_SIGNAL_0;
316
317 bool last_sent_step = false;
318
319 /* The execution direction of the last resume we got. */
320 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
321
322 char *finished_object = nullptr;
323 char *finished_annex = nullptr;
324 ULONGEST finished_offset = 0;
325
326 /* Should we try the 'ThreadInfo' query packet?
327
328 This variable (NOT available to the user: auto-detect only!)
329 determines whether GDB will use the new, simpler "ThreadInfo"
330 query or the older, more complex syntax for thread queries.
331 This is an auto-detect variable (set to true at each connect,
332 and set to false when the target fails to recognize it). */
333 bool use_threadinfo_query = false;
334 bool use_threadextra_query = false;
335
336 threadref echo_nextthread {};
337 threadref nextthread {};
338 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
339
340 /* The state of remote notification. */
341 struct remote_notif_state *notif_state = nullptr;
342
343 /* The branch trace configuration. */
344 struct btrace_config btrace_config {};
345
346 /* The argument to the last "vFile:setfs:" packet we sent, used
347 to avoid sending repeated unnecessary "vFile:setfs:" packets.
348 Initialized to -1 to indicate that no "vFile:setfs:" packet
349 has yet been sent. */
350 int fs_pid = -1;
351
352 /* A readahead cache for vFile:pread. Often, reading a binary
353 involves a sequence of small reads. E.g., when parsing an ELF
354 file. A readahead cache helps mostly the case of remote
355 debugging on a connection with higher latency, due to the
356 request/reply nature of the RSP. We only cache data for a single
357 file descriptor at a time. */
358 struct readahead_cache readahead_cache;
359
360 /* The list of already fetched and acknowledged stop events. This
361 queue is used for notification Stop, and other notifications
362 don't need queue for their events, because the notification
363 events of Stop can't be consumed immediately, so that events
364 should be queued first, and be consumed by remote_wait_{ns,as}
365 one per time. Other notifications can consume their events
366 immediately, so queue is not needed for them. */
367 std::vector<stop_reply_up> stop_reply_queue;
368
369 /* Asynchronous signal handle registered as event loop source for
370 when we have pending events ready to be passed to the core. */
371 struct async_event_handler *remote_async_inferior_event_token = nullptr;
372
373 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
374 ``forever'' still use the normal timeout mechanism. This is
375 currently used by the ASYNC code to guarentee that target reads
376 during the initial connect always time-out. Once getpkt has been
377 modified to return a timeout indication and, in turn
378 remote_wait()/wait_for_inferior() have gained a timeout parameter
379 this can go away. */
380 int wait_forever_enabled_p = 1;
381
382 private:
383 /* Mapping of remote protocol data for each gdbarch. Usually there
384 is only one entry here, though we may see more with stubs that
385 support multi-process. */
386 std::unordered_map<struct gdbarch *, remote_arch_state>
387 m_arch_states;
388 };
389
390 static const target_info remote_target_info = {
391 "remote",
392 N_("Remote serial target in gdb-specific protocol"),
393 remote_doc
394 };
395
396 class remote_target : public process_stratum_target
397 {
398 public:
399 remote_target () = default;
400 ~remote_target () override;
401
402 const target_info &info () const override
403 { return remote_target_info; }
404
405 thread_control_capabilities get_thread_control_capabilities () override
406 { return tc_schedlock; }
407
408 /* Open a remote connection. */
409 static void open (const char *, int);
410
411 void close () override;
412
413 void detach (inferior *, int) override;
414 void disconnect (const char *, int) override;
415
416 void commit_resume () override;
417 void resume (ptid_t, int, enum gdb_signal) override;
418 ptid_t wait (ptid_t, struct target_waitstatus *, int) override;
419
420 void fetch_registers (struct regcache *, int) override;
421 void store_registers (struct regcache *, int) override;
422 void prepare_to_store (struct regcache *) override;
423
424 void files_info () override;
425
426 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
427
428 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
429 enum remove_bp_reason) override;
430
431
432 bool stopped_by_sw_breakpoint () override;
433 bool supports_stopped_by_sw_breakpoint () override;
434
435 bool stopped_by_hw_breakpoint () override;
436
437 bool supports_stopped_by_hw_breakpoint () override;
438
439 bool stopped_by_watchpoint () override;
440
441 bool stopped_data_address (CORE_ADDR *) override;
442
443 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
444
445 int can_use_hw_breakpoint (enum bptype, int, int) override;
446
447 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
448
449 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
450
451 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
452
453 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
454 struct expression *) override;
455
456 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
457 struct expression *) override;
458
459 void kill () override;
460
461 void load (const char *, int) override;
462
463 void mourn_inferior () override;
464
465 void pass_signals (gdb::array_view<const unsigned char>) override;
466
467 int set_syscall_catchpoint (int, bool, int,
468 gdb::array_view<const int>) override;
469
470 void program_signals (gdb::array_view<const unsigned char>) override;
471
472 bool thread_alive (ptid_t ptid) override;
473
474 const char *thread_name (struct thread_info *) override;
475
476 void update_thread_list () override;
477
478 std::string pid_to_str (ptid_t) override;
479
480 const char *extra_thread_info (struct thread_info *) override;
481
482 ptid_t get_ada_task_ptid (long lwp, long thread) override;
483
484 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
485 int handle_len,
486 inferior *inf) override;
487
488 void stop (ptid_t) override;
489
490 void interrupt () override;
491
492 void pass_ctrlc () override;
493
494 enum target_xfer_status xfer_partial (enum target_object object,
495 const char *annex,
496 gdb_byte *readbuf,
497 const gdb_byte *writebuf,
498 ULONGEST offset, ULONGEST len,
499 ULONGEST *xfered_len) override;
500
501 ULONGEST get_memory_xfer_limit () override;
502
503 void rcmd (const char *command, struct ui_file *output) override;
504
505 char *pid_to_exec_file (int pid) override;
506
507 void log_command (const char *cmd) override
508 {
509 serial_log_command (this, cmd);
510 }
511
512 CORE_ADDR get_thread_local_address (ptid_t ptid,
513 CORE_ADDR load_module_addr,
514 CORE_ADDR offset) override;
515
516 bool can_execute_reverse () override;
517
518 std::vector<mem_region> memory_map () override;
519
520 void flash_erase (ULONGEST address, LONGEST length) override;
521
522 void flash_done () override;
523
524 const struct target_desc *read_description () override;
525
526 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
527 const gdb_byte *pattern, ULONGEST pattern_len,
528 CORE_ADDR *found_addrp) override;
529
530 bool can_async_p () override;
531
532 bool is_async_p () override;
533
534 void async (int) override;
535
536 void thread_events (int) override;
537
538 int can_do_single_step () override;
539
540 void terminal_inferior () override;
541
542 void terminal_ours () override;
543
544 bool supports_non_stop () override;
545
546 bool supports_multi_process () override;
547
548 bool supports_disable_randomization () override;
549
550 bool filesystem_is_local () override;
551
552
553 int fileio_open (struct inferior *inf, const char *filename,
554 int flags, int mode, int warn_if_slow,
555 int *target_errno) override;
556
557 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
558 ULONGEST offset, int *target_errno) override;
559
560 int fileio_pread (int fd, gdb_byte *read_buf, int len,
561 ULONGEST offset, int *target_errno) override;
562
563 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
564
565 int fileio_close (int fd, int *target_errno) override;
566
567 int fileio_unlink (struct inferior *inf,
568 const char *filename,
569 int *target_errno) override;
570
571 gdb::optional<std::string>
572 fileio_readlink (struct inferior *inf,
573 const char *filename,
574 int *target_errno) override;
575
576 bool supports_enable_disable_tracepoint () override;
577
578 bool supports_string_tracing () override;
579
580 bool supports_evaluation_of_breakpoint_conditions () override;
581
582 bool can_run_breakpoint_commands () override;
583
584 void trace_init () override;
585
586 void download_tracepoint (struct bp_location *location) override;
587
588 bool can_download_tracepoint () override;
589
590 void download_trace_state_variable (const trace_state_variable &tsv) override;
591
592 void enable_tracepoint (struct bp_location *location) override;
593
594 void disable_tracepoint (struct bp_location *location) override;
595
596 void trace_set_readonly_regions () override;
597
598 void trace_start () override;
599
600 int get_trace_status (struct trace_status *ts) override;
601
602 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
603 override;
604
605 void trace_stop () override;
606
607 int trace_find (enum trace_find_type type, int num,
608 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
609
610 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
611
612 int save_trace_data (const char *filename) override;
613
614 int upload_tracepoints (struct uploaded_tp **utpp) override;
615
616 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
617
618 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
619
620 int get_min_fast_tracepoint_insn_len () override;
621
622 void set_disconnected_tracing (int val) override;
623
624 void set_circular_trace_buffer (int val) override;
625
626 void set_trace_buffer_size (LONGEST val) override;
627
628 bool set_trace_notes (const char *user, const char *notes,
629 const char *stopnotes) override;
630
631 int core_of_thread (ptid_t ptid) override;
632
633 int verify_memory (const gdb_byte *data,
634 CORE_ADDR memaddr, ULONGEST size) override;
635
636
637 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
638
639 void set_permissions () override;
640
641 bool static_tracepoint_marker_at (CORE_ADDR,
642 struct static_tracepoint_marker *marker)
643 override;
644
645 std::vector<static_tracepoint_marker>
646 static_tracepoint_markers_by_strid (const char *id) override;
647
648 traceframe_info_up traceframe_info () override;
649
650 bool use_agent (bool use) override;
651 bool can_use_agent () override;
652
653 struct btrace_target_info *enable_btrace (ptid_t ptid,
654 const struct btrace_config *conf) override;
655
656 void disable_btrace (struct btrace_target_info *tinfo) override;
657
658 void teardown_btrace (struct btrace_target_info *tinfo) override;
659
660 enum btrace_error read_btrace (struct btrace_data *data,
661 struct btrace_target_info *btinfo,
662 enum btrace_read_type type) override;
663
664 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
665 bool augmented_libraries_svr4_read () override;
666 int follow_fork (int, int) override;
667 void follow_exec (struct inferior *, char *) override;
668 int insert_fork_catchpoint (int) override;
669 int remove_fork_catchpoint (int) override;
670 int insert_vfork_catchpoint (int) override;
671 int remove_vfork_catchpoint (int) override;
672 int insert_exec_catchpoint (int) override;
673 int remove_exec_catchpoint (int) override;
674 enum exec_direction_kind execution_direction () override;
675
676 public: /* Remote specific methods. */
677
678 void remote_download_command_source (int num, ULONGEST addr,
679 struct command_line *cmds);
680
681 void remote_file_put (const char *local_file, const char *remote_file,
682 int from_tty);
683 void remote_file_get (const char *remote_file, const char *local_file,
684 int from_tty);
685 void remote_file_delete (const char *remote_file, int from_tty);
686
687 int remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
688 ULONGEST offset, int *remote_errno);
689 int remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
690 ULONGEST offset, int *remote_errno);
691 int remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
692 ULONGEST offset, int *remote_errno);
693
694 int remote_hostio_send_command (int command_bytes, int which_packet,
695 int *remote_errno, char **attachment,
696 int *attachment_len);
697 int remote_hostio_set_filesystem (struct inferior *inf,
698 int *remote_errno);
699 /* We should get rid of this and use fileio_open directly. */
700 int remote_hostio_open (struct inferior *inf, const char *filename,
701 int flags, int mode, int warn_if_slow,
702 int *remote_errno);
703 int remote_hostio_close (int fd, int *remote_errno);
704
705 int remote_hostio_unlink (inferior *inf, const char *filename,
706 int *remote_errno);
707
708 struct remote_state *get_remote_state ();
709
710 long get_remote_packet_size (void);
711 long get_memory_packet_size (struct memory_packet_config *config);
712
713 long get_memory_write_packet_size ();
714 long get_memory_read_packet_size ();
715
716 char *append_pending_thread_resumptions (char *p, char *endp,
717 ptid_t ptid);
718 static void open_1 (const char *name, int from_tty, int extended_p);
719 void start_remote (int from_tty, int extended_p);
720 void remote_detach_1 (struct inferior *inf, int from_tty);
721
722 char *append_resumption (char *p, char *endp,
723 ptid_t ptid, int step, gdb_signal siggnal);
724 int remote_resume_with_vcont (ptid_t ptid, int step,
725 gdb_signal siggnal);
726
727 void add_current_inferior_and_thread (char *wait_status);
728
729 ptid_t wait_ns (ptid_t ptid, struct target_waitstatus *status,
730 int options);
731 ptid_t wait_as (ptid_t ptid, target_waitstatus *status,
732 int options);
733
734 ptid_t process_stop_reply (struct stop_reply *stop_reply,
735 target_waitstatus *status);
736
737 void remote_notice_new_inferior (ptid_t currthread, int executing);
738
739 void process_initial_stop_replies (int from_tty);
740
741 thread_info *remote_add_thread (ptid_t ptid, bool running, bool executing);
742
743 void btrace_sync_conf (const btrace_config *conf);
744
745 void remote_btrace_maybe_reopen ();
746
747 void remove_new_fork_children (threads_listing_context *context);
748 void kill_new_fork_children (int pid);
749 void discard_pending_stop_replies (struct inferior *inf);
750 int stop_reply_queue_length ();
751
752 void check_pending_events_prevent_wildcard_vcont
753 (int *may_global_wildcard_vcont);
754
755 void discard_pending_stop_replies_in_queue ();
756 struct stop_reply *remote_notif_remove_queued_reply (ptid_t ptid);
757 struct stop_reply *queued_stop_reply (ptid_t ptid);
758 int peek_stop_reply (ptid_t ptid);
759 void remote_parse_stop_reply (const char *buf, stop_reply *event);
760
761 void remote_stop_ns (ptid_t ptid);
762 void remote_interrupt_as ();
763 void remote_interrupt_ns ();
764
765 char *remote_get_noisy_reply ();
766 int remote_query_attached (int pid);
767 inferior *remote_add_inferior (int fake_pid_p, int pid, int attached,
768 int try_open_exec);
769
770 ptid_t remote_current_thread (ptid_t oldpid);
771 ptid_t get_current_thread (char *wait_status);
772
773 void set_thread (ptid_t ptid, int gen);
774 void set_general_thread (ptid_t ptid);
775 void set_continue_thread (ptid_t ptid);
776 void set_general_process ();
777
778 char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
779
780 int remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
781 gdb_ext_thread_info *info);
782 int remote_get_threadinfo (threadref *threadid, int fieldset,
783 gdb_ext_thread_info *info);
784
785 int parse_threadlist_response (char *pkt, int result_limit,
786 threadref *original_echo,
787 threadref *resultlist,
788 int *doneflag);
789 int remote_get_threadlist (int startflag, threadref *nextthread,
790 int result_limit, int *done, int *result_count,
791 threadref *threadlist);
792
793 int remote_threadlist_iterator (rmt_thread_action stepfunction,
794 void *context, int looplimit);
795
796 int remote_get_threads_with_ql (threads_listing_context *context);
797 int remote_get_threads_with_qxfer (threads_listing_context *context);
798 int remote_get_threads_with_qthreadinfo (threads_listing_context *context);
799
800 void extended_remote_restart ();
801
802 void get_offsets ();
803
804 void remote_check_symbols ();
805
806 void remote_supported_packet (const struct protocol_feature *feature,
807 enum packet_support support,
808 const char *argument);
809
810 void remote_query_supported ();
811
812 void remote_packet_size (const protocol_feature *feature,
813 packet_support support, const char *value);
814
815 void remote_serial_quit_handler ();
816
817 void remote_detach_pid (int pid);
818
819 void remote_vcont_probe ();
820
821 void remote_resume_with_hc (ptid_t ptid, int step,
822 gdb_signal siggnal);
823
824 void send_interrupt_sequence ();
825 void interrupt_query ();
826
827 void remote_notif_get_pending_events (notif_client *nc);
828
829 int fetch_register_using_p (struct regcache *regcache,
830 packet_reg *reg);
831 int send_g_packet ();
832 void process_g_packet (struct regcache *regcache);
833 void fetch_registers_using_g (struct regcache *regcache);
834 int store_register_using_P (const struct regcache *regcache,
835 packet_reg *reg);
836 void store_registers_using_G (const struct regcache *regcache);
837
838 void set_remote_traceframe ();
839
840 void check_binary_download (CORE_ADDR addr);
841
842 target_xfer_status remote_write_bytes_aux (const char *header,
843 CORE_ADDR memaddr,
844 const gdb_byte *myaddr,
845 ULONGEST len_units,
846 int unit_size,
847 ULONGEST *xfered_len_units,
848 char packet_format,
849 int use_length);
850
851 target_xfer_status remote_write_bytes (CORE_ADDR memaddr,
852 const gdb_byte *myaddr, ULONGEST len,
853 int unit_size, ULONGEST *xfered_len);
854
855 target_xfer_status remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
856 ULONGEST len_units,
857 int unit_size, ULONGEST *xfered_len_units);
858
859 target_xfer_status remote_xfer_live_readonly_partial (gdb_byte *readbuf,
860 ULONGEST memaddr,
861 ULONGEST len,
862 int unit_size,
863 ULONGEST *xfered_len);
864
865 target_xfer_status remote_read_bytes (CORE_ADDR memaddr,
866 gdb_byte *myaddr, ULONGEST len,
867 int unit_size,
868 ULONGEST *xfered_len);
869
870 packet_result remote_send_printf (const char *format, ...)
871 ATTRIBUTE_PRINTF (2, 3);
872
873 target_xfer_status remote_flash_write (ULONGEST address,
874 ULONGEST length, ULONGEST *xfered_len,
875 const gdb_byte *data);
876
877 int readchar (int timeout);
878
879 void remote_serial_write (const char *str, int len);
880
881 int putpkt (const char *buf);
882 int putpkt_binary (const char *buf, int cnt);
883
884 int putpkt (const gdb::char_vector &buf)
885 {
886 return putpkt (buf.data ());
887 }
888
889 void skip_frame ();
890 long read_frame (gdb::char_vector *buf_p);
891 void getpkt (gdb::char_vector *buf, int forever);
892 int getpkt_or_notif_sane_1 (gdb::char_vector *buf, int forever,
893 int expecting_notif, int *is_notif);
894 int getpkt_sane (gdb::char_vector *buf, int forever);
895 int getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
896 int *is_notif);
897 int remote_vkill (int pid);
898 void remote_kill_k ();
899
900 void extended_remote_disable_randomization (int val);
901 int extended_remote_run (const std::string &args);
902
903 void send_environment_packet (const char *action,
904 const char *packet,
905 const char *value);
906
907 void extended_remote_environment_support ();
908 void extended_remote_set_inferior_cwd ();
909
910 target_xfer_status remote_write_qxfer (const char *object_name,
911 const char *annex,
912 const gdb_byte *writebuf,
913 ULONGEST offset, LONGEST len,
914 ULONGEST *xfered_len,
915 struct packet_config *packet);
916
917 target_xfer_status remote_read_qxfer (const char *object_name,
918 const char *annex,
919 gdb_byte *readbuf, ULONGEST offset,
920 LONGEST len,
921 ULONGEST *xfered_len,
922 struct packet_config *packet);
923
924 void push_stop_reply (struct stop_reply *new_event);
925
926 bool vcont_r_supported ();
927
928 void packet_command (const char *args, int from_tty);
929
930 private: /* data fields */
931
932 /* The remote state. Don't reference this directly. Use the
933 get_remote_state method instead. */
934 remote_state m_remote_state;
935 };
936
937 static const target_info extended_remote_target_info = {
938 "extended-remote",
939 N_("Extended remote serial target in gdb-specific protocol"),
940 remote_doc
941 };
942
943 /* Set up the extended remote target by extending the standard remote
944 target and adding to it. */
945
946 class extended_remote_target final : public remote_target
947 {
948 public:
949 const target_info &info () const override
950 { return extended_remote_target_info; }
951
952 /* Open an extended-remote connection. */
953 static void open (const char *, int);
954
955 bool can_create_inferior () override { return true; }
956 void create_inferior (const char *, const std::string &,
957 char **, int) override;
958
959 void detach (inferior *, int) override;
960
961 bool can_attach () override { return true; }
962 void attach (const char *, int) override;
963
964 void post_attach (int) override;
965 bool supports_disable_randomization () override;
966 };
967
968 /* Per-program-space data key. */
969 static const struct program_space_data *remote_pspace_data;
970
971 /* The variable registered as the control variable used by the
972 remote exec-file commands. While the remote exec-file setting is
973 per-program-space, the set/show machinery uses this as the
974 location of the remote exec-file value. */
975 static char *remote_exec_file_var;
976
977 /* The size to align memory write packets, when practical. The protocol
978 does not guarantee any alignment, and gdb will generate short
979 writes and unaligned writes, but even as a best-effort attempt this
980 can improve bulk transfers. For instance, if a write is misaligned
981 relative to the target's data bus, the stub may need to make an extra
982 round trip fetching data from the target. This doesn't make a
983 huge difference, but it's easy to do, so we try to be helpful.
984
985 The alignment chosen is arbitrary; usually data bus width is
986 important here, not the possibly larger cache line size. */
987 enum { REMOTE_ALIGN_WRITES = 16 };
988
989 /* Prototypes for local functions. */
990
991 static int hexnumlen (ULONGEST num);
992
993 static int stubhex (int ch);
994
995 static int hexnumstr (char *, ULONGEST);
996
997 static int hexnumnstr (char *, ULONGEST, int);
998
999 static CORE_ADDR remote_address_masked (CORE_ADDR);
1000
1001 static void print_packet (const char *);
1002
1003 static int stub_unpack_int (char *buff, int fieldlength);
1004
1005 struct packet_config;
1006
1007 static void show_packet_config_cmd (struct packet_config *config);
1008
1009 static void show_remote_protocol_packet_cmd (struct ui_file *file,
1010 int from_tty,
1011 struct cmd_list_element *c,
1012 const char *value);
1013
1014 static ptid_t read_ptid (const char *buf, const char **obuf);
1015
1016 static void remote_async_inferior_event_handler (gdb_client_data);
1017
1018 static bool remote_read_description_p (struct target_ops *target);
1019
1020 static void remote_console_output (const char *msg);
1021
1022 static void remote_btrace_reset (remote_state *rs);
1023
1024 static void remote_unpush_and_throw (void);
1025
1026 /* For "remote". */
1027
1028 static struct cmd_list_element *remote_cmdlist;
1029
1030 /* For "set remote" and "show remote". */
1031
1032 static struct cmd_list_element *remote_set_cmdlist;
1033 static struct cmd_list_element *remote_show_cmdlist;
1034
1035 /* Controls whether GDB is willing to use range stepping. */
1036
1037 static int use_range_stepping = 1;
1038
1039 /* The max number of chars in debug output. The rest of chars are
1040 omitted. */
1041
1042 #define REMOTE_DEBUG_MAX_CHAR 512
1043
1044 /* Private data that we'll store in (struct thread_info)->priv. */
1045 struct remote_thread_info : public private_thread_info
1046 {
1047 std::string extra;
1048 std::string name;
1049 int core = -1;
1050
1051 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
1052 sequence of bytes. */
1053 gdb::byte_vector thread_handle;
1054
1055 /* Whether the target stopped for a breakpoint/watchpoint. */
1056 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
1057
1058 /* This is set to the data address of the access causing the target
1059 to stop for a watchpoint. */
1060 CORE_ADDR watch_data_address = 0;
1061
1062 /* Fields used by the vCont action coalescing implemented in
1063 remote_resume / remote_commit_resume. remote_resume stores each
1064 thread's last resume request in these fields, so that a later
1065 remote_commit_resume knows which is the proper action for this
1066 thread to include in the vCont packet. */
1067
1068 /* True if the last target_resume call for this thread was a step
1069 request, false if a continue request. */
1070 int last_resume_step = 0;
1071
1072 /* The signal specified in the last target_resume call for this
1073 thread. */
1074 gdb_signal last_resume_sig = GDB_SIGNAL_0;
1075
1076 /* Whether this thread was already vCont-resumed on the remote
1077 side. */
1078 int vcont_resumed = 0;
1079 };
1080
1081 remote_state::remote_state ()
1082 : buf (400)
1083 {
1084 }
1085
1086 remote_state::~remote_state ()
1087 {
1088 xfree (this->last_pass_packet);
1089 xfree (this->last_program_signals_packet);
1090 xfree (this->finished_object);
1091 xfree (this->finished_annex);
1092 }
1093
1094 /* Utility: generate error from an incoming stub packet. */
1095 static void
1096 trace_error (char *buf)
1097 {
1098 if (*buf++ != 'E')
1099 return; /* not an error msg */
1100 switch (*buf)
1101 {
1102 case '1': /* malformed packet error */
1103 if (*++buf == '0') /* general case: */
1104 error (_("remote.c: error in outgoing packet."));
1105 else
1106 error (_("remote.c: error in outgoing packet at field #%ld."),
1107 strtol (buf, NULL, 16));
1108 default:
1109 error (_("Target returns error code '%s'."), buf);
1110 }
1111 }
1112
1113 /* Utility: wait for reply from stub, while accepting "O" packets. */
1114
1115 char *
1116 remote_target::remote_get_noisy_reply ()
1117 {
1118 struct remote_state *rs = get_remote_state ();
1119
1120 do /* Loop on reply from remote stub. */
1121 {
1122 char *buf;
1123
1124 QUIT; /* Allow user to bail out with ^C. */
1125 getpkt (&rs->buf, 0);
1126 buf = rs->buf.data ();
1127 if (buf[0] == 'E')
1128 trace_error (buf);
1129 else if (startswith (buf, "qRelocInsn:"))
1130 {
1131 ULONGEST ul;
1132 CORE_ADDR from, to, org_to;
1133 const char *p, *pp;
1134 int adjusted_size = 0;
1135 int relocated = 0;
1136
1137 p = buf + strlen ("qRelocInsn:");
1138 pp = unpack_varlen_hex (p, &ul);
1139 if (*pp != ';')
1140 error (_("invalid qRelocInsn packet: %s"), buf);
1141 from = ul;
1142
1143 p = pp + 1;
1144 unpack_varlen_hex (p, &ul);
1145 to = ul;
1146
1147 org_to = to;
1148
1149 try
1150 {
1151 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
1152 relocated = 1;
1153 }
1154 catch (const gdb_exception &ex)
1155 {
1156 if (ex.error == MEMORY_ERROR)
1157 {
1158 /* Propagate memory errors silently back to the
1159 target. The stub may have limited the range of
1160 addresses we can write to, for example. */
1161 }
1162 else
1163 {
1164 /* Something unexpectedly bad happened. Be verbose
1165 so we can tell what, and propagate the error back
1166 to the stub, so it doesn't get stuck waiting for
1167 a response. */
1168 exception_fprintf (gdb_stderr, ex,
1169 _("warning: relocating instruction: "));
1170 }
1171 putpkt ("E01");
1172 }
1173
1174 if (relocated)
1175 {
1176 adjusted_size = to - org_to;
1177
1178 xsnprintf (buf, rs->buf.size (), "qRelocInsn:%x", adjusted_size);
1179 putpkt (buf);
1180 }
1181 }
1182 else if (buf[0] == 'O' && buf[1] != 'K')
1183 remote_console_output (buf + 1); /* 'O' message from stub */
1184 else
1185 return buf; /* Here's the actual reply. */
1186 }
1187 while (1);
1188 }
1189
1190 struct remote_arch_state *
1191 remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
1192 {
1193 remote_arch_state *rsa;
1194
1195 auto it = this->m_arch_states.find (gdbarch);
1196 if (it == this->m_arch_states.end ())
1197 {
1198 auto p = this->m_arch_states.emplace (std::piecewise_construct,
1199 std::forward_as_tuple (gdbarch),
1200 std::forward_as_tuple (gdbarch));
1201 rsa = &p.first->second;
1202
1203 /* Make sure that the packet buffer is plenty big enough for
1204 this architecture. */
1205 if (this->buf.size () < rsa->remote_packet_size)
1206 this->buf.resize (2 * rsa->remote_packet_size);
1207 }
1208 else
1209 rsa = &it->second;
1210
1211 return rsa;
1212 }
1213
1214 /* Fetch the global remote target state. */
1215
1216 remote_state *
1217 remote_target::get_remote_state ()
1218 {
1219 /* Make sure that the remote architecture state has been
1220 initialized, because doing so might reallocate rs->buf. Any
1221 function which calls getpkt also needs to be mindful of changes
1222 to rs->buf, but this call limits the number of places which run
1223 into trouble. */
1224 m_remote_state.get_remote_arch_state (target_gdbarch ());
1225
1226 return &m_remote_state;
1227 }
1228
1229 /* Cleanup routine for the remote module's pspace data. */
1230
1231 static void
1232 remote_pspace_data_cleanup (struct program_space *pspace, void *arg)
1233 {
1234 char *remote_exec_file = (char *) arg;
1235
1236 xfree (remote_exec_file);
1237 }
1238
1239 /* Fetch the remote exec-file from the current program space. */
1240
1241 static const char *
1242 get_remote_exec_file (void)
1243 {
1244 char *remote_exec_file;
1245
1246 remote_exec_file
1247 = (char *) program_space_data (current_program_space,
1248 remote_pspace_data);
1249 if (remote_exec_file == NULL)
1250 return "";
1251
1252 return remote_exec_file;
1253 }
1254
1255 /* Set the remote exec file for PSPACE. */
1256
1257 static void
1258 set_pspace_remote_exec_file (struct program_space *pspace,
1259 char *remote_exec_file)
1260 {
1261 char *old_file = (char *) program_space_data (pspace, remote_pspace_data);
1262
1263 xfree (old_file);
1264 set_program_space_data (pspace, remote_pspace_data,
1265 xstrdup (remote_exec_file));
1266 }
1267
1268 /* The "set/show remote exec-file" set command hook. */
1269
1270 static void
1271 set_remote_exec_file (const char *ignored, int from_tty,
1272 struct cmd_list_element *c)
1273 {
1274 gdb_assert (remote_exec_file_var != NULL);
1275 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
1276 }
1277
1278 /* The "set/show remote exec-file" show command hook. */
1279
1280 static void
1281 show_remote_exec_file (struct ui_file *file, int from_tty,
1282 struct cmd_list_element *cmd, const char *value)
1283 {
1284 fprintf_filtered (file, "%s\n", remote_exec_file_var);
1285 }
1286
1287 static int
1288 compare_pnums (const void *lhs_, const void *rhs_)
1289 {
1290 const struct packet_reg * const *lhs
1291 = (const struct packet_reg * const *) lhs_;
1292 const struct packet_reg * const *rhs
1293 = (const struct packet_reg * const *) rhs_;
1294
1295 if ((*lhs)->pnum < (*rhs)->pnum)
1296 return -1;
1297 else if ((*lhs)->pnum == (*rhs)->pnum)
1298 return 0;
1299 else
1300 return 1;
1301 }
1302
1303 static int
1304 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1305 {
1306 int regnum, num_remote_regs, offset;
1307 struct packet_reg **remote_regs;
1308
1309 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1310 {
1311 struct packet_reg *r = &regs[regnum];
1312
1313 if (register_size (gdbarch, regnum) == 0)
1314 /* Do not try to fetch zero-sized (placeholder) registers. */
1315 r->pnum = -1;
1316 else
1317 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1318
1319 r->regnum = regnum;
1320 }
1321
1322 /* Define the g/G packet format as the contents of each register
1323 with a remote protocol number, in order of ascending protocol
1324 number. */
1325
1326 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1327 for (num_remote_regs = 0, regnum = 0;
1328 regnum < gdbarch_num_regs (gdbarch);
1329 regnum++)
1330 if (regs[regnum].pnum != -1)
1331 remote_regs[num_remote_regs++] = &regs[regnum];
1332
1333 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
1334 compare_pnums);
1335
1336 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1337 {
1338 remote_regs[regnum]->in_g_packet = 1;
1339 remote_regs[regnum]->offset = offset;
1340 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1341 }
1342
1343 return offset;
1344 }
1345
1346 /* Given the architecture described by GDBARCH, return the remote
1347 protocol register's number and the register's offset in the g/G
1348 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1349 If the target does not have a mapping for REGNUM, return false,
1350 otherwise, return true. */
1351
1352 int
1353 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1354 int *pnum, int *poffset)
1355 {
1356 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1357
1358 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1359
1360 map_regcache_remote_table (gdbarch, regs.data ());
1361
1362 *pnum = regs[regnum].pnum;
1363 *poffset = regs[regnum].offset;
1364
1365 return *pnum != -1;
1366 }
1367
1368 remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1369 {
1370 /* Use the architecture to build a regnum<->pnum table, which will be
1371 1:1 unless a feature set specifies otherwise. */
1372 this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1373
1374 /* Record the maximum possible size of the g packet - it may turn out
1375 to be smaller. */
1376 this->sizeof_g_packet
1377 = map_regcache_remote_table (gdbarch, this->regs.get ());
1378
1379 /* Default maximum number of characters in a packet body. Many
1380 remote stubs have a hardwired buffer size of 400 bytes
1381 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1382 as the maximum packet-size to ensure that the packet and an extra
1383 NUL character can always fit in the buffer. This stops GDB
1384 trashing stubs that try to squeeze an extra NUL into what is
1385 already a full buffer (As of 1999-12-04 that was most stubs). */
1386 this->remote_packet_size = 400 - 1;
1387
1388 /* This one is filled in when a ``g'' packet is received. */
1389 this->actual_register_packet_size = 0;
1390
1391 /* Should rsa->sizeof_g_packet needs more space than the
1392 default, adjust the size accordingly. Remember that each byte is
1393 encoded as two characters. 32 is the overhead for the packet
1394 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1395 (``$NN:G...#NN'') is a better guess, the below has been padded a
1396 little. */
1397 if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1398 this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1399 }
1400
1401 /* Get a pointer to the current remote target. If not connected to a
1402 remote target, return NULL. */
1403
1404 static remote_target *
1405 get_current_remote_target ()
1406 {
1407 target_ops *proc_target = find_target_at (process_stratum);
1408 return dynamic_cast<remote_target *> (proc_target);
1409 }
1410
1411 /* Return the current allowed size of a remote packet. This is
1412 inferred from the current architecture, and should be used to
1413 limit the length of outgoing packets. */
1414 long
1415 remote_target::get_remote_packet_size ()
1416 {
1417 struct remote_state *rs = get_remote_state ();
1418 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1419
1420 if (rs->explicit_packet_size)
1421 return rs->explicit_packet_size;
1422
1423 return rsa->remote_packet_size;
1424 }
1425
1426 static struct packet_reg *
1427 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1428 long regnum)
1429 {
1430 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1431 return NULL;
1432 else
1433 {
1434 struct packet_reg *r = &rsa->regs[regnum];
1435
1436 gdb_assert (r->regnum == regnum);
1437 return r;
1438 }
1439 }
1440
1441 static struct packet_reg *
1442 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1443 LONGEST pnum)
1444 {
1445 int i;
1446
1447 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1448 {
1449 struct packet_reg *r = &rsa->regs[i];
1450
1451 if (r->pnum == pnum)
1452 return r;
1453 }
1454 return NULL;
1455 }
1456
1457 /* Allow the user to specify what sequence to send to the remote
1458 when he requests a program interruption: Although ^C is usually
1459 what remote systems expect (this is the default, here), it is
1460 sometimes preferable to send a break. On other systems such
1461 as the Linux kernel, a break followed by g, which is Magic SysRq g
1462 is required in order to interrupt the execution. */
1463 const char interrupt_sequence_control_c[] = "Ctrl-C";
1464 const char interrupt_sequence_break[] = "BREAK";
1465 const char interrupt_sequence_break_g[] = "BREAK-g";
1466 static const char *const interrupt_sequence_modes[] =
1467 {
1468 interrupt_sequence_control_c,
1469 interrupt_sequence_break,
1470 interrupt_sequence_break_g,
1471 NULL
1472 };
1473 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1474
1475 static void
1476 show_interrupt_sequence (struct ui_file *file, int from_tty,
1477 struct cmd_list_element *c,
1478 const char *value)
1479 {
1480 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1481 fprintf_filtered (file,
1482 _("Send the ASCII ETX character (Ctrl-c) "
1483 "to the remote target to interrupt the "
1484 "execution of the program.\n"));
1485 else if (interrupt_sequence_mode == interrupt_sequence_break)
1486 fprintf_filtered (file,
1487 _("send a break signal to the remote target "
1488 "to interrupt the execution of the program.\n"));
1489 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1490 fprintf_filtered (file,
1491 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1492 "the remote target to interrupt the execution "
1493 "of Linux kernel.\n"));
1494 else
1495 internal_error (__FILE__, __LINE__,
1496 _("Invalid value for interrupt_sequence_mode: %s."),
1497 interrupt_sequence_mode);
1498 }
1499
1500 /* This boolean variable specifies whether interrupt_sequence is sent
1501 to the remote target when gdb connects to it.
1502 This is mostly needed when you debug the Linux kernel: The Linux kernel
1503 expects BREAK g which is Magic SysRq g for connecting gdb. */
1504 static int interrupt_on_connect = 0;
1505
1506 /* This variable is used to implement the "set/show remotebreak" commands.
1507 Since these commands are now deprecated in favor of "set/show remote
1508 interrupt-sequence", it no longer has any effect on the code. */
1509 static int remote_break;
1510
1511 static void
1512 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1513 {
1514 if (remote_break)
1515 interrupt_sequence_mode = interrupt_sequence_break;
1516 else
1517 interrupt_sequence_mode = interrupt_sequence_control_c;
1518 }
1519
1520 static void
1521 show_remotebreak (struct ui_file *file, int from_tty,
1522 struct cmd_list_element *c,
1523 const char *value)
1524 {
1525 }
1526
1527 /* This variable sets the number of bits in an address that are to be
1528 sent in a memory ("M" or "m") packet. Normally, after stripping
1529 leading zeros, the entire address would be sent. This variable
1530 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1531 initial implementation of remote.c restricted the address sent in
1532 memory packets to ``host::sizeof long'' bytes - (typically 32
1533 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1534 address was never sent. Since fixing this bug may cause a break in
1535 some remote targets this variable is principly provided to
1536 facilitate backward compatibility. */
1537
1538 static unsigned int remote_address_size;
1539
1540 \f
1541 /* User configurable variables for the number of characters in a
1542 memory read/write packet. MIN (rsa->remote_packet_size,
1543 rsa->sizeof_g_packet) is the default. Some targets need smaller
1544 values (fifo overruns, et.al.) and some users need larger values
1545 (speed up transfers). The variables ``preferred_*'' (the user
1546 request), ``current_*'' (what was actually set) and ``forced_*''
1547 (Positive - a soft limit, negative - a hard limit). */
1548
1549 struct memory_packet_config
1550 {
1551 const char *name;
1552 long size;
1553 int fixed_p;
1554 };
1555
1556 /* The default max memory-write-packet-size, when the setting is
1557 "fixed". The 16k is historical. (It came from older GDB's using
1558 alloca for buffers and the knowledge (folklore?) that some hosts
1559 don't cope very well with large alloca calls.) */
1560 #define DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED 16384
1561
1562 /* The minimum remote packet size for memory transfers. Ensures we
1563 can write at least one byte. */
1564 #define MIN_MEMORY_PACKET_SIZE 20
1565
1566 /* Get the memory packet size, assuming it is fixed. */
1567
1568 static long
1569 get_fixed_memory_packet_size (struct memory_packet_config *config)
1570 {
1571 gdb_assert (config->fixed_p);
1572
1573 if (config->size <= 0)
1574 return DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED;
1575 else
1576 return config->size;
1577 }
1578
1579 /* Compute the current size of a read/write packet. Since this makes
1580 use of ``actual_register_packet_size'' the computation is dynamic. */
1581
1582 long
1583 remote_target::get_memory_packet_size (struct memory_packet_config *config)
1584 {
1585 struct remote_state *rs = get_remote_state ();
1586 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1587
1588 long what_they_get;
1589 if (config->fixed_p)
1590 what_they_get = get_fixed_memory_packet_size (config);
1591 else
1592 {
1593 what_they_get = get_remote_packet_size ();
1594 /* Limit the packet to the size specified by the user. */
1595 if (config->size > 0
1596 && what_they_get > config->size)
1597 what_they_get = config->size;
1598
1599 /* Limit it to the size of the targets ``g'' response unless we have
1600 permission from the stub to use a larger packet size. */
1601 if (rs->explicit_packet_size == 0
1602 && rsa->actual_register_packet_size > 0
1603 && what_they_get > rsa->actual_register_packet_size)
1604 what_they_get = rsa->actual_register_packet_size;
1605 }
1606 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1607 what_they_get = MIN_MEMORY_PACKET_SIZE;
1608
1609 /* Make sure there is room in the global buffer for this packet
1610 (including its trailing NUL byte). */
1611 if (rs->buf.size () < what_they_get + 1)
1612 rs->buf.resize (2 * what_they_get);
1613
1614 return what_they_get;
1615 }
1616
1617 /* Update the size of a read/write packet. If they user wants
1618 something really big then do a sanity check. */
1619
1620 static void
1621 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1622 {
1623 int fixed_p = config->fixed_p;
1624 long size = config->size;
1625
1626 if (args == NULL)
1627 error (_("Argument required (integer, `fixed' or `limited')."));
1628 else if (strcmp (args, "hard") == 0
1629 || strcmp (args, "fixed") == 0)
1630 fixed_p = 1;
1631 else if (strcmp (args, "soft") == 0
1632 || strcmp (args, "limit") == 0)
1633 fixed_p = 0;
1634 else
1635 {
1636 char *end;
1637
1638 size = strtoul (args, &end, 0);
1639 if (args == end)
1640 error (_("Invalid %s (bad syntax)."), config->name);
1641
1642 /* Instead of explicitly capping the size of a packet to or
1643 disallowing it, the user is allowed to set the size to
1644 something arbitrarily large. */
1645 }
1646
1647 /* Extra checks? */
1648 if (fixed_p && !config->fixed_p)
1649 {
1650 /* So that the query shows the correct value. */
1651 long query_size = (size <= 0
1652 ? DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED
1653 : size);
1654
1655 if (! query (_("The target may not be able to correctly handle a %s\n"
1656 "of %ld bytes. Change the packet size? "),
1657 config->name, query_size))
1658 error (_("Packet size not changed."));
1659 }
1660 /* Update the config. */
1661 config->fixed_p = fixed_p;
1662 config->size = size;
1663 }
1664
1665 static void
1666 show_memory_packet_size (struct memory_packet_config *config)
1667 {
1668 if (config->size == 0)
1669 printf_filtered (_("The %s is 0 (default). "), config->name);
1670 else
1671 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1672 if (config->fixed_p)
1673 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1674 get_fixed_memory_packet_size (config));
1675 else
1676 {
1677 remote_target *remote = get_current_remote_target ();
1678
1679 if (remote != NULL)
1680 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1681 remote->get_memory_packet_size (config));
1682 else
1683 puts_filtered ("The actual limit will be further reduced "
1684 "dependent on the target.\n");
1685 }
1686 }
1687
1688 static struct memory_packet_config memory_write_packet_config =
1689 {
1690 "memory-write-packet-size",
1691 };
1692
1693 static void
1694 set_memory_write_packet_size (const char *args, int from_tty)
1695 {
1696 set_memory_packet_size (args, &memory_write_packet_config);
1697 }
1698
1699 static void
1700 show_memory_write_packet_size (const char *args, int from_tty)
1701 {
1702 show_memory_packet_size (&memory_write_packet_config);
1703 }
1704
1705 /* Show the number of hardware watchpoints that can be used. */
1706
1707 static void
1708 show_hardware_watchpoint_limit (struct ui_file *file, int from_tty,
1709 struct cmd_list_element *c,
1710 const char *value)
1711 {
1712 fprintf_filtered (file, _("The maximum number of target hardware "
1713 "watchpoints is %s.\n"), value);
1714 }
1715
1716 /* Show the length limit (in bytes) for hardware watchpoints. */
1717
1718 static void
1719 show_hardware_watchpoint_length_limit (struct ui_file *file, int from_tty,
1720 struct cmd_list_element *c,
1721 const char *value)
1722 {
1723 fprintf_filtered (file, _("The maximum length (in bytes) of a target "
1724 "hardware watchpoint is %s.\n"), value);
1725 }
1726
1727 /* Show the number of hardware breakpoints that can be used. */
1728
1729 static void
1730 show_hardware_breakpoint_limit (struct ui_file *file, int from_tty,
1731 struct cmd_list_element *c,
1732 const char *value)
1733 {
1734 fprintf_filtered (file, _("The maximum number of target hardware "
1735 "breakpoints is %s.\n"), value);
1736 }
1737
1738 long
1739 remote_target::get_memory_write_packet_size ()
1740 {
1741 return get_memory_packet_size (&memory_write_packet_config);
1742 }
1743
1744 static struct memory_packet_config memory_read_packet_config =
1745 {
1746 "memory-read-packet-size",
1747 };
1748
1749 static void
1750 set_memory_read_packet_size (const char *args, int from_tty)
1751 {
1752 set_memory_packet_size (args, &memory_read_packet_config);
1753 }
1754
1755 static void
1756 show_memory_read_packet_size (const char *args, int from_tty)
1757 {
1758 show_memory_packet_size (&memory_read_packet_config);
1759 }
1760
1761 long
1762 remote_target::get_memory_read_packet_size ()
1763 {
1764 long size = get_memory_packet_size (&memory_read_packet_config);
1765
1766 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1767 extra buffer size argument before the memory read size can be
1768 increased beyond this. */
1769 if (size > get_remote_packet_size ())
1770 size = get_remote_packet_size ();
1771 return size;
1772 }
1773
1774 \f
1775
1776 struct packet_config
1777 {
1778 const char *name;
1779 const char *title;
1780
1781 /* If auto, GDB auto-detects support for this packet or feature,
1782 either through qSupported, or by trying the packet and looking
1783 at the response. If true, GDB assumes the target supports this
1784 packet. If false, the packet is disabled. Configs that don't
1785 have an associated command always have this set to auto. */
1786 enum auto_boolean detect;
1787
1788 /* Does the target support this packet? */
1789 enum packet_support support;
1790 };
1791
1792 static enum packet_support packet_config_support (struct packet_config *config);
1793 static enum packet_support packet_support (int packet);
1794
1795 static void
1796 show_packet_config_cmd (struct packet_config *config)
1797 {
1798 const char *support = "internal-error";
1799
1800 switch (packet_config_support (config))
1801 {
1802 case PACKET_ENABLE:
1803 support = "enabled";
1804 break;
1805 case PACKET_DISABLE:
1806 support = "disabled";
1807 break;
1808 case PACKET_SUPPORT_UNKNOWN:
1809 support = "unknown";
1810 break;
1811 }
1812 switch (config->detect)
1813 {
1814 case AUTO_BOOLEAN_AUTO:
1815 printf_filtered (_("Support for the `%s' packet "
1816 "is auto-detected, currently %s.\n"),
1817 config->name, support);
1818 break;
1819 case AUTO_BOOLEAN_TRUE:
1820 case AUTO_BOOLEAN_FALSE:
1821 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1822 config->name, support);
1823 break;
1824 }
1825 }
1826
1827 static void
1828 add_packet_config_cmd (struct packet_config *config, const char *name,
1829 const char *title, int legacy)
1830 {
1831 char *set_doc;
1832 char *show_doc;
1833 char *cmd_name;
1834
1835 config->name = name;
1836 config->title = title;
1837 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1838 name, title);
1839 show_doc = xstrprintf ("Show current use of remote "
1840 "protocol `%s' (%s) packet",
1841 name, title);
1842 /* set/show TITLE-packet {auto,on,off} */
1843 cmd_name = xstrprintf ("%s-packet", title);
1844 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1845 &config->detect, set_doc,
1846 show_doc, NULL, /* help_doc */
1847 NULL,
1848 show_remote_protocol_packet_cmd,
1849 &remote_set_cmdlist, &remote_show_cmdlist);
1850 /* The command code copies the documentation strings. */
1851 xfree (set_doc);
1852 xfree (show_doc);
1853 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1854 if (legacy)
1855 {
1856 char *legacy_name;
1857
1858 legacy_name = xstrprintf ("%s-packet", name);
1859 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1860 &remote_set_cmdlist);
1861 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1862 &remote_show_cmdlist);
1863 }
1864 }
1865
1866 static enum packet_result
1867 packet_check_result (const char *buf)
1868 {
1869 if (buf[0] != '\0')
1870 {
1871 /* The stub recognized the packet request. Check that the
1872 operation succeeded. */
1873 if (buf[0] == 'E'
1874 && isxdigit (buf[1]) && isxdigit (buf[2])
1875 && buf[3] == '\0')
1876 /* "Enn" - definitly an error. */
1877 return PACKET_ERROR;
1878
1879 /* Always treat "E." as an error. This will be used for
1880 more verbose error messages, such as E.memtypes. */
1881 if (buf[0] == 'E' && buf[1] == '.')
1882 return PACKET_ERROR;
1883
1884 /* The packet may or may not be OK. Just assume it is. */
1885 return PACKET_OK;
1886 }
1887 else
1888 /* The stub does not support the packet. */
1889 return PACKET_UNKNOWN;
1890 }
1891
1892 static enum packet_result
1893 packet_check_result (const gdb::char_vector &buf)
1894 {
1895 return packet_check_result (buf.data ());
1896 }
1897
1898 static enum packet_result
1899 packet_ok (const char *buf, struct packet_config *config)
1900 {
1901 enum packet_result result;
1902
1903 if (config->detect != AUTO_BOOLEAN_TRUE
1904 && config->support == PACKET_DISABLE)
1905 internal_error (__FILE__, __LINE__,
1906 _("packet_ok: attempt to use a disabled packet"));
1907
1908 result = packet_check_result (buf);
1909 switch (result)
1910 {
1911 case PACKET_OK:
1912 case PACKET_ERROR:
1913 /* The stub recognized the packet request. */
1914 if (config->support == PACKET_SUPPORT_UNKNOWN)
1915 {
1916 if (remote_debug)
1917 fprintf_unfiltered (gdb_stdlog,
1918 "Packet %s (%s) is supported\n",
1919 config->name, config->title);
1920 config->support = PACKET_ENABLE;
1921 }
1922 break;
1923 case PACKET_UNKNOWN:
1924 /* The stub does not support the packet. */
1925 if (config->detect == AUTO_BOOLEAN_AUTO
1926 && config->support == PACKET_ENABLE)
1927 {
1928 /* If the stub previously indicated that the packet was
1929 supported then there is a protocol error. */
1930 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1931 config->name, config->title);
1932 }
1933 else if (config->detect == AUTO_BOOLEAN_TRUE)
1934 {
1935 /* The user set it wrong. */
1936 error (_("Enabled packet %s (%s) not recognized by stub"),
1937 config->name, config->title);
1938 }
1939
1940 if (remote_debug)
1941 fprintf_unfiltered (gdb_stdlog,
1942 "Packet %s (%s) is NOT supported\n",
1943 config->name, config->title);
1944 config->support = PACKET_DISABLE;
1945 break;
1946 }
1947
1948 return result;
1949 }
1950
1951 static enum packet_result
1952 packet_ok (const gdb::char_vector &buf, struct packet_config *config)
1953 {
1954 return packet_ok (buf.data (), config);
1955 }
1956
1957 enum {
1958 PACKET_vCont = 0,
1959 PACKET_X,
1960 PACKET_qSymbol,
1961 PACKET_P,
1962 PACKET_p,
1963 PACKET_Z0,
1964 PACKET_Z1,
1965 PACKET_Z2,
1966 PACKET_Z3,
1967 PACKET_Z4,
1968 PACKET_vFile_setfs,
1969 PACKET_vFile_open,
1970 PACKET_vFile_pread,
1971 PACKET_vFile_pwrite,
1972 PACKET_vFile_close,
1973 PACKET_vFile_unlink,
1974 PACKET_vFile_readlink,
1975 PACKET_vFile_fstat,
1976 PACKET_qXfer_auxv,
1977 PACKET_qXfer_features,
1978 PACKET_qXfer_exec_file,
1979 PACKET_qXfer_libraries,
1980 PACKET_qXfer_libraries_svr4,
1981 PACKET_qXfer_memory_map,
1982 PACKET_qXfer_spu_read,
1983 PACKET_qXfer_spu_write,
1984 PACKET_qXfer_osdata,
1985 PACKET_qXfer_threads,
1986 PACKET_qXfer_statictrace_read,
1987 PACKET_qXfer_traceframe_info,
1988 PACKET_qXfer_uib,
1989 PACKET_qGetTIBAddr,
1990 PACKET_qGetTLSAddr,
1991 PACKET_qSupported,
1992 PACKET_qTStatus,
1993 PACKET_QPassSignals,
1994 PACKET_QCatchSyscalls,
1995 PACKET_QProgramSignals,
1996 PACKET_QSetWorkingDir,
1997 PACKET_QStartupWithShell,
1998 PACKET_QEnvironmentHexEncoded,
1999 PACKET_QEnvironmentReset,
2000 PACKET_QEnvironmentUnset,
2001 PACKET_qCRC,
2002 PACKET_qSearch_memory,
2003 PACKET_vAttach,
2004 PACKET_vRun,
2005 PACKET_QStartNoAckMode,
2006 PACKET_vKill,
2007 PACKET_qXfer_siginfo_read,
2008 PACKET_qXfer_siginfo_write,
2009 PACKET_qAttached,
2010
2011 /* Support for conditional tracepoints. */
2012 PACKET_ConditionalTracepoints,
2013
2014 /* Support for target-side breakpoint conditions. */
2015 PACKET_ConditionalBreakpoints,
2016
2017 /* Support for target-side breakpoint commands. */
2018 PACKET_BreakpointCommands,
2019
2020 /* Support for fast tracepoints. */
2021 PACKET_FastTracepoints,
2022
2023 /* Support for static tracepoints. */
2024 PACKET_StaticTracepoints,
2025
2026 /* Support for installing tracepoints while a trace experiment is
2027 running. */
2028 PACKET_InstallInTrace,
2029
2030 PACKET_bc,
2031 PACKET_bs,
2032 PACKET_TracepointSource,
2033 PACKET_QAllow,
2034 PACKET_qXfer_fdpic,
2035 PACKET_QDisableRandomization,
2036 PACKET_QAgent,
2037 PACKET_QTBuffer_size,
2038 PACKET_Qbtrace_off,
2039 PACKET_Qbtrace_bts,
2040 PACKET_Qbtrace_pt,
2041 PACKET_qXfer_btrace,
2042
2043 /* Support for the QNonStop packet. */
2044 PACKET_QNonStop,
2045
2046 /* Support for the QThreadEvents packet. */
2047 PACKET_QThreadEvents,
2048
2049 /* Support for multi-process extensions. */
2050 PACKET_multiprocess_feature,
2051
2052 /* Support for enabling and disabling tracepoints while a trace
2053 experiment is running. */
2054 PACKET_EnableDisableTracepoints_feature,
2055
2056 /* Support for collecting strings using the tracenz bytecode. */
2057 PACKET_tracenz_feature,
2058
2059 /* Support for continuing to run a trace experiment while GDB is
2060 disconnected. */
2061 PACKET_DisconnectedTracing_feature,
2062
2063 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
2064 PACKET_augmented_libraries_svr4_read_feature,
2065
2066 /* Support for the qXfer:btrace-conf:read packet. */
2067 PACKET_qXfer_btrace_conf,
2068
2069 /* Support for the Qbtrace-conf:bts:size packet. */
2070 PACKET_Qbtrace_conf_bts_size,
2071
2072 /* Support for swbreak+ feature. */
2073 PACKET_swbreak_feature,
2074
2075 /* Support for hwbreak+ feature. */
2076 PACKET_hwbreak_feature,
2077
2078 /* Support for fork events. */
2079 PACKET_fork_event_feature,
2080
2081 /* Support for vfork events. */
2082 PACKET_vfork_event_feature,
2083
2084 /* Support for the Qbtrace-conf:pt:size packet. */
2085 PACKET_Qbtrace_conf_pt_size,
2086
2087 /* Support for exec events. */
2088 PACKET_exec_event_feature,
2089
2090 /* Support for query supported vCont actions. */
2091 PACKET_vContSupported,
2092
2093 /* Support remote CTRL-C. */
2094 PACKET_vCtrlC,
2095
2096 /* Support TARGET_WAITKIND_NO_RESUMED. */
2097 PACKET_no_resumed,
2098
2099 PACKET_MAX
2100 };
2101
2102 static struct packet_config remote_protocol_packets[PACKET_MAX];
2103
2104 /* Returns the packet's corresponding "set remote foo-packet" command
2105 state. See struct packet_config for more details. */
2106
2107 static enum auto_boolean
2108 packet_set_cmd_state (int packet)
2109 {
2110 return remote_protocol_packets[packet].detect;
2111 }
2112
2113 /* Returns whether a given packet or feature is supported. This takes
2114 into account the state of the corresponding "set remote foo-packet"
2115 command, which may be used to bypass auto-detection. */
2116
2117 static enum packet_support
2118 packet_config_support (struct packet_config *config)
2119 {
2120 switch (config->detect)
2121 {
2122 case AUTO_BOOLEAN_TRUE:
2123 return PACKET_ENABLE;
2124 case AUTO_BOOLEAN_FALSE:
2125 return PACKET_DISABLE;
2126 case AUTO_BOOLEAN_AUTO:
2127 return config->support;
2128 default:
2129 gdb_assert_not_reached (_("bad switch"));
2130 }
2131 }
2132
2133 /* Same as packet_config_support, but takes the packet's enum value as
2134 argument. */
2135
2136 static enum packet_support
2137 packet_support (int packet)
2138 {
2139 struct packet_config *config = &remote_protocol_packets[packet];
2140
2141 return packet_config_support (config);
2142 }
2143
2144 static void
2145 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
2146 struct cmd_list_element *c,
2147 const char *value)
2148 {
2149 struct packet_config *packet;
2150
2151 for (packet = remote_protocol_packets;
2152 packet < &remote_protocol_packets[PACKET_MAX];
2153 packet++)
2154 {
2155 if (&packet->detect == c->var)
2156 {
2157 show_packet_config_cmd (packet);
2158 return;
2159 }
2160 }
2161 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
2162 c->name);
2163 }
2164
2165 /* Should we try one of the 'Z' requests? */
2166
2167 enum Z_packet_type
2168 {
2169 Z_PACKET_SOFTWARE_BP,
2170 Z_PACKET_HARDWARE_BP,
2171 Z_PACKET_WRITE_WP,
2172 Z_PACKET_READ_WP,
2173 Z_PACKET_ACCESS_WP,
2174 NR_Z_PACKET_TYPES
2175 };
2176
2177 /* For compatibility with older distributions. Provide a ``set remote
2178 Z-packet ...'' command that updates all the Z packet types. */
2179
2180 static enum auto_boolean remote_Z_packet_detect;
2181
2182 static void
2183 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
2184 struct cmd_list_element *c)
2185 {
2186 int i;
2187
2188 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2189 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
2190 }
2191
2192 static void
2193 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
2194 struct cmd_list_element *c,
2195 const char *value)
2196 {
2197 int i;
2198
2199 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2200 {
2201 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
2202 }
2203 }
2204
2205 /* Returns true if the multi-process extensions are in effect. */
2206
2207 static int
2208 remote_multi_process_p (struct remote_state *rs)
2209 {
2210 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
2211 }
2212
2213 /* Returns true if fork events are supported. */
2214
2215 static int
2216 remote_fork_event_p (struct remote_state *rs)
2217 {
2218 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
2219 }
2220
2221 /* Returns true if vfork events are supported. */
2222
2223 static int
2224 remote_vfork_event_p (struct remote_state *rs)
2225 {
2226 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
2227 }
2228
2229 /* Returns true if exec events are supported. */
2230
2231 static int
2232 remote_exec_event_p (struct remote_state *rs)
2233 {
2234 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
2235 }
2236
2237 /* Insert fork catchpoint target routine. If fork events are enabled
2238 then return success, nothing more to do. */
2239
2240 int
2241 remote_target::insert_fork_catchpoint (int pid)
2242 {
2243 struct remote_state *rs = get_remote_state ();
2244
2245 return !remote_fork_event_p (rs);
2246 }
2247
2248 /* Remove fork catchpoint target routine. Nothing to do, just
2249 return success. */
2250
2251 int
2252 remote_target::remove_fork_catchpoint (int pid)
2253 {
2254 return 0;
2255 }
2256
2257 /* Insert vfork catchpoint target routine. If vfork events are enabled
2258 then return success, nothing more to do. */
2259
2260 int
2261 remote_target::insert_vfork_catchpoint (int pid)
2262 {
2263 struct remote_state *rs = get_remote_state ();
2264
2265 return !remote_vfork_event_p (rs);
2266 }
2267
2268 /* Remove vfork catchpoint target routine. Nothing to do, just
2269 return success. */
2270
2271 int
2272 remote_target::remove_vfork_catchpoint (int pid)
2273 {
2274 return 0;
2275 }
2276
2277 /* Insert exec catchpoint target routine. If exec events are
2278 enabled, just return success. */
2279
2280 int
2281 remote_target::insert_exec_catchpoint (int pid)
2282 {
2283 struct remote_state *rs = get_remote_state ();
2284
2285 return !remote_exec_event_p (rs);
2286 }
2287
2288 /* Remove exec catchpoint target routine. Nothing to do, just
2289 return success. */
2290
2291 int
2292 remote_target::remove_exec_catchpoint (int pid)
2293 {
2294 return 0;
2295 }
2296
2297 \f
2298
2299 /* Take advantage of the fact that the TID field is not used, to tag
2300 special ptids with it set to != 0. */
2301 static const ptid_t magic_null_ptid (42000, -1, 1);
2302 static const ptid_t not_sent_ptid (42000, -2, 1);
2303 static const ptid_t any_thread_ptid (42000, 0, 1);
2304
2305 /* Find out if the stub attached to PID (and hence GDB should offer to
2306 detach instead of killing it when bailing out). */
2307
2308 int
2309 remote_target::remote_query_attached (int pid)
2310 {
2311 struct remote_state *rs = get_remote_state ();
2312 size_t size = get_remote_packet_size ();
2313
2314 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2315 return 0;
2316
2317 if (remote_multi_process_p (rs))
2318 xsnprintf (rs->buf.data (), size, "qAttached:%x", pid);
2319 else
2320 xsnprintf (rs->buf.data (), size, "qAttached");
2321
2322 putpkt (rs->buf);
2323 getpkt (&rs->buf, 0);
2324
2325 switch (packet_ok (rs->buf,
2326 &remote_protocol_packets[PACKET_qAttached]))
2327 {
2328 case PACKET_OK:
2329 if (strcmp (rs->buf.data (), "1") == 0)
2330 return 1;
2331 break;
2332 case PACKET_ERROR:
2333 warning (_("Remote failure reply: %s"), rs->buf.data ());
2334 break;
2335 case PACKET_UNKNOWN:
2336 break;
2337 }
2338
2339 return 0;
2340 }
2341
2342 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2343 has been invented by GDB, instead of reported by the target. Since
2344 we can be connected to a remote system before before knowing about
2345 any inferior, mark the target with execution when we find the first
2346 inferior. If ATTACHED is 1, then we had just attached to this
2347 inferior. If it is 0, then we just created this inferior. If it
2348 is -1, then try querying the remote stub to find out if it had
2349 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2350 attempt to open this inferior's executable as the main executable
2351 if no main executable is open already. */
2352
2353 inferior *
2354 remote_target::remote_add_inferior (int fake_pid_p, int pid, int attached,
2355 int try_open_exec)
2356 {
2357 struct inferior *inf;
2358
2359 /* Check whether this process we're learning about is to be
2360 considered attached, or if is to be considered to have been
2361 spawned by the stub. */
2362 if (attached == -1)
2363 attached = remote_query_attached (pid);
2364
2365 if (gdbarch_has_global_solist (target_gdbarch ()))
2366 {
2367 /* If the target shares code across all inferiors, then every
2368 attach adds a new inferior. */
2369 inf = add_inferior (pid);
2370
2371 /* ... and every inferior is bound to the same program space.
2372 However, each inferior may still have its own address
2373 space. */
2374 inf->aspace = maybe_new_address_space ();
2375 inf->pspace = current_program_space;
2376 }
2377 else
2378 {
2379 /* In the traditional debugging scenario, there's a 1-1 match
2380 between program/address spaces. We simply bind the inferior
2381 to the program space's address space. */
2382 inf = current_inferior ();
2383 inferior_appeared (inf, pid);
2384 }
2385
2386 inf->attach_flag = attached;
2387 inf->fake_pid_p = fake_pid_p;
2388
2389 /* If no main executable is currently open then attempt to
2390 open the file that was executed to create this inferior. */
2391 if (try_open_exec && get_exec_file (0) == NULL)
2392 exec_file_locate_attach (pid, 0, 1);
2393
2394 return inf;
2395 }
2396
2397 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2398 static remote_thread_info *get_remote_thread_info (ptid_t ptid);
2399
2400 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2401 according to RUNNING. */
2402
2403 thread_info *
2404 remote_target::remote_add_thread (ptid_t ptid, bool running, bool executing)
2405 {
2406 struct remote_state *rs = get_remote_state ();
2407 struct thread_info *thread;
2408
2409 /* GDB historically didn't pull threads in the initial connection
2410 setup. If the remote target doesn't even have a concept of
2411 threads (e.g., a bare-metal target), even if internally we
2412 consider that a single-threaded target, mentioning a new thread
2413 might be confusing to the user. Be silent then, preserving the
2414 age old behavior. */
2415 if (rs->starting_up)
2416 thread = add_thread_silent (ptid);
2417 else
2418 thread = add_thread (ptid);
2419
2420 get_remote_thread_info (thread)->vcont_resumed = executing;
2421 set_executing (ptid, executing);
2422 set_running (ptid, running);
2423
2424 return thread;
2425 }
2426
2427 /* Come here when we learn about a thread id from the remote target.
2428 It may be the first time we hear about such thread, so take the
2429 opportunity to add it to GDB's thread list. In case this is the
2430 first time we're noticing its corresponding inferior, add it to
2431 GDB's inferior list as well. EXECUTING indicates whether the
2432 thread is (internally) executing or stopped. */
2433
2434 void
2435 remote_target::remote_notice_new_inferior (ptid_t currthread, int executing)
2436 {
2437 /* In non-stop mode, we assume new found threads are (externally)
2438 running until proven otherwise with a stop reply. In all-stop,
2439 we can only get here if all threads are stopped. */
2440 int running = target_is_non_stop_p () ? 1 : 0;
2441
2442 /* If this is a new thread, add it to GDB's thread list.
2443 If we leave it up to WFI to do this, bad things will happen. */
2444
2445 thread_info *tp = find_thread_ptid (currthread);
2446 if (tp != NULL && tp->state == THREAD_EXITED)
2447 {
2448 /* We're seeing an event on a thread id we knew had exited.
2449 This has to be a new thread reusing the old id. Add it. */
2450 remote_add_thread (currthread, running, executing);
2451 return;
2452 }
2453
2454 if (!in_thread_list (currthread))
2455 {
2456 struct inferior *inf = NULL;
2457 int pid = currthread.pid ();
2458
2459 if (inferior_ptid.is_pid ()
2460 && pid == inferior_ptid.pid ())
2461 {
2462 /* inferior_ptid has no thread member yet. This can happen
2463 with the vAttach -> remote_wait,"TAAthread:" path if the
2464 stub doesn't support qC. This is the first stop reported
2465 after an attach, so this is the main thread. Update the
2466 ptid in the thread list. */
2467 if (in_thread_list (ptid_t (pid)))
2468 thread_change_ptid (inferior_ptid, currthread);
2469 else
2470 {
2471 remote_add_thread (currthread, running, executing);
2472 inferior_ptid = currthread;
2473 }
2474 return;
2475 }
2476
2477 if (magic_null_ptid == inferior_ptid)
2478 {
2479 /* inferior_ptid is not set yet. This can happen with the
2480 vRun -> remote_wait,"TAAthread:" path if the stub
2481 doesn't support qC. This is the first stop reported
2482 after an attach, so this is the main thread. Update the
2483 ptid in the thread list. */
2484 thread_change_ptid (inferior_ptid, currthread);
2485 return;
2486 }
2487
2488 /* When connecting to a target remote, or to a target
2489 extended-remote which already was debugging an inferior, we
2490 may not know about it yet. Add it before adding its child
2491 thread, so notifications are emitted in a sensible order. */
2492 if (find_inferior_pid (currthread.pid ()) == NULL)
2493 {
2494 struct remote_state *rs = get_remote_state ();
2495 int fake_pid_p = !remote_multi_process_p (rs);
2496
2497 inf = remote_add_inferior (fake_pid_p,
2498 currthread.pid (), -1, 1);
2499 }
2500
2501 /* This is really a new thread. Add it. */
2502 thread_info *new_thr
2503 = remote_add_thread (currthread, running, executing);
2504
2505 /* If we found a new inferior, let the common code do whatever
2506 it needs to with it (e.g., read shared libraries, insert
2507 breakpoints), unless we're just setting up an all-stop
2508 connection. */
2509 if (inf != NULL)
2510 {
2511 struct remote_state *rs = get_remote_state ();
2512
2513 if (!rs->starting_up)
2514 notice_new_inferior (new_thr, executing, 0);
2515 }
2516 }
2517 }
2518
2519 /* Return THREAD's private thread data, creating it if necessary. */
2520
2521 static remote_thread_info *
2522 get_remote_thread_info (thread_info *thread)
2523 {
2524 gdb_assert (thread != NULL);
2525
2526 if (thread->priv == NULL)
2527 thread->priv.reset (new remote_thread_info);
2528
2529 return static_cast<remote_thread_info *> (thread->priv.get ());
2530 }
2531
2532 static remote_thread_info *
2533 get_remote_thread_info (ptid_t ptid)
2534 {
2535 thread_info *thr = find_thread_ptid (ptid);
2536 return get_remote_thread_info (thr);
2537 }
2538
2539 /* Call this function as a result of
2540 1) A halt indication (T packet) containing a thread id
2541 2) A direct query of currthread
2542 3) Successful execution of set thread */
2543
2544 static void
2545 record_currthread (struct remote_state *rs, ptid_t currthread)
2546 {
2547 rs->general_thread = currthread;
2548 }
2549
2550 /* If 'QPassSignals' is supported, tell the remote stub what signals
2551 it can simply pass through to the inferior without reporting. */
2552
2553 void
2554 remote_target::pass_signals (gdb::array_view<const unsigned char> pass_signals)
2555 {
2556 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2557 {
2558 char *pass_packet, *p;
2559 int count = 0;
2560 struct remote_state *rs = get_remote_state ();
2561
2562 gdb_assert (pass_signals.size () < 256);
2563 for (size_t i = 0; i < pass_signals.size (); i++)
2564 {
2565 if (pass_signals[i])
2566 count++;
2567 }
2568 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2569 strcpy (pass_packet, "QPassSignals:");
2570 p = pass_packet + strlen (pass_packet);
2571 for (size_t i = 0; i < pass_signals.size (); i++)
2572 {
2573 if (pass_signals[i])
2574 {
2575 if (i >= 16)
2576 *p++ = tohex (i >> 4);
2577 *p++ = tohex (i & 15);
2578 if (count)
2579 *p++ = ';';
2580 else
2581 break;
2582 count--;
2583 }
2584 }
2585 *p = 0;
2586 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2587 {
2588 putpkt (pass_packet);
2589 getpkt (&rs->buf, 0);
2590 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2591 if (rs->last_pass_packet)
2592 xfree (rs->last_pass_packet);
2593 rs->last_pass_packet = pass_packet;
2594 }
2595 else
2596 xfree (pass_packet);
2597 }
2598 }
2599
2600 /* If 'QCatchSyscalls' is supported, tell the remote stub
2601 to report syscalls to GDB. */
2602
2603 int
2604 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2605 gdb::array_view<const int> syscall_counts)
2606 {
2607 const char *catch_packet;
2608 enum packet_result result;
2609 int n_sysno = 0;
2610
2611 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2612 {
2613 /* Not supported. */
2614 return 1;
2615 }
2616
2617 if (needed && any_count == 0)
2618 {
2619 /* Count how many syscalls are to be caught. */
2620 for (size_t i = 0; i < syscall_counts.size (); i++)
2621 {
2622 if (syscall_counts[i] != 0)
2623 n_sysno++;
2624 }
2625 }
2626
2627 if (remote_debug)
2628 {
2629 fprintf_unfiltered (gdb_stdlog,
2630 "remote_set_syscall_catchpoint "
2631 "pid %d needed %d any_count %d n_sysno %d\n",
2632 pid, needed, any_count, n_sysno);
2633 }
2634
2635 std::string built_packet;
2636 if (needed)
2637 {
2638 /* Prepare a packet with the sysno list, assuming max 8+1
2639 characters for a sysno. If the resulting packet size is too
2640 big, fallback on the non-selective packet. */
2641 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2642 built_packet.reserve (maxpktsz);
2643 built_packet = "QCatchSyscalls:1";
2644 if (any_count == 0)
2645 {
2646 /* Add in each syscall to be caught. */
2647 for (size_t i = 0; i < syscall_counts.size (); i++)
2648 {
2649 if (syscall_counts[i] != 0)
2650 string_appendf (built_packet, ";%zx", i);
2651 }
2652 }
2653 if (built_packet.size () > get_remote_packet_size ())
2654 {
2655 /* catch_packet too big. Fallback to less efficient
2656 non selective mode, with GDB doing the filtering. */
2657 catch_packet = "QCatchSyscalls:1";
2658 }
2659 else
2660 catch_packet = built_packet.c_str ();
2661 }
2662 else
2663 catch_packet = "QCatchSyscalls:0";
2664
2665 struct remote_state *rs = get_remote_state ();
2666
2667 putpkt (catch_packet);
2668 getpkt (&rs->buf, 0);
2669 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2670 if (result == PACKET_OK)
2671 return 0;
2672 else
2673 return -1;
2674 }
2675
2676 /* If 'QProgramSignals' is supported, tell the remote stub what
2677 signals it should pass through to the inferior when detaching. */
2678
2679 void
2680 remote_target::program_signals (gdb::array_view<const unsigned char> signals)
2681 {
2682 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2683 {
2684 char *packet, *p;
2685 int count = 0;
2686 struct remote_state *rs = get_remote_state ();
2687
2688 gdb_assert (signals.size () < 256);
2689 for (size_t i = 0; i < signals.size (); i++)
2690 {
2691 if (signals[i])
2692 count++;
2693 }
2694 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2695 strcpy (packet, "QProgramSignals:");
2696 p = packet + strlen (packet);
2697 for (size_t i = 0; i < signals.size (); i++)
2698 {
2699 if (signal_pass_state (i))
2700 {
2701 if (i >= 16)
2702 *p++ = tohex (i >> 4);
2703 *p++ = tohex (i & 15);
2704 if (count)
2705 *p++ = ';';
2706 else
2707 break;
2708 count--;
2709 }
2710 }
2711 *p = 0;
2712 if (!rs->last_program_signals_packet
2713 || strcmp (rs->last_program_signals_packet, packet) != 0)
2714 {
2715 putpkt (packet);
2716 getpkt (&rs->buf, 0);
2717 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2718 xfree (rs->last_program_signals_packet);
2719 rs->last_program_signals_packet = packet;
2720 }
2721 else
2722 xfree (packet);
2723 }
2724 }
2725
2726 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2727 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2728 thread. If GEN is set, set the general thread, if not, then set
2729 the step/continue thread. */
2730 void
2731 remote_target::set_thread (ptid_t ptid, int gen)
2732 {
2733 struct remote_state *rs = get_remote_state ();
2734 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2735 char *buf = rs->buf.data ();
2736 char *endbuf = buf + get_remote_packet_size ();
2737
2738 if (state == ptid)
2739 return;
2740
2741 *buf++ = 'H';
2742 *buf++ = gen ? 'g' : 'c';
2743 if (ptid == magic_null_ptid)
2744 xsnprintf (buf, endbuf - buf, "0");
2745 else if (ptid == any_thread_ptid)
2746 xsnprintf (buf, endbuf - buf, "0");
2747 else if (ptid == minus_one_ptid)
2748 xsnprintf (buf, endbuf - buf, "-1");
2749 else
2750 write_ptid (buf, endbuf, ptid);
2751 putpkt (rs->buf);
2752 getpkt (&rs->buf, 0);
2753 if (gen)
2754 rs->general_thread = ptid;
2755 else
2756 rs->continue_thread = ptid;
2757 }
2758
2759 void
2760 remote_target::set_general_thread (ptid_t ptid)
2761 {
2762 set_thread (ptid, 1);
2763 }
2764
2765 void
2766 remote_target::set_continue_thread (ptid_t ptid)
2767 {
2768 set_thread (ptid, 0);
2769 }
2770
2771 /* Change the remote current process. Which thread within the process
2772 ends up selected isn't important, as long as it is the same process
2773 as what INFERIOR_PTID points to.
2774
2775 This comes from that fact that there is no explicit notion of
2776 "selected process" in the protocol. The selected process for
2777 general operations is the process the selected general thread
2778 belongs to. */
2779
2780 void
2781 remote_target::set_general_process ()
2782 {
2783 struct remote_state *rs = get_remote_state ();
2784
2785 /* If the remote can't handle multiple processes, don't bother. */
2786 if (!remote_multi_process_p (rs))
2787 return;
2788
2789 /* We only need to change the remote current thread if it's pointing
2790 at some other process. */
2791 if (rs->general_thread.pid () != inferior_ptid.pid ())
2792 set_general_thread (inferior_ptid);
2793 }
2794
2795 \f
2796 /* Return nonzero if this is the main thread that we made up ourselves
2797 to model non-threaded targets as single-threaded. */
2798
2799 static int
2800 remote_thread_always_alive (ptid_t ptid)
2801 {
2802 if (ptid == magic_null_ptid)
2803 /* The main thread is always alive. */
2804 return 1;
2805
2806 if (ptid.pid () != 0 && ptid.lwp () == 0)
2807 /* The main thread is always alive. This can happen after a
2808 vAttach, if the remote side doesn't support
2809 multi-threading. */
2810 return 1;
2811
2812 return 0;
2813 }
2814
2815 /* Return nonzero if the thread PTID is still alive on the remote
2816 system. */
2817
2818 bool
2819 remote_target::thread_alive (ptid_t ptid)
2820 {
2821 struct remote_state *rs = get_remote_state ();
2822 char *p, *endp;
2823
2824 /* Check if this is a thread that we made up ourselves to model
2825 non-threaded targets as single-threaded. */
2826 if (remote_thread_always_alive (ptid))
2827 return 1;
2828
2829 p = rs->buf.data ();
2830 endp = p + get_remote_packet_size ();
2831
2832 *p++ = 'T';
2833 write_ptid (p, endp, ptid);
2834
2835 putpkt (rs->buf);
2836 getpkt (&rs->buf, 0);
2837 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2838 }
2839
2840 /* Return a pointer to a thread name if we know it and NULL otherwise.
2841 The thread_info object owns the memory for the name. */
2842
2843 const char *
2844 remote_target::thread_name (struct thread_info *info)
2845 {
2846 if (info->priv != NULL)
2847 {
2848 const std::string &name = get_remote_thread_info (info)->name;
2849 return !name.empty () ? name.c_str () : NULL;
2850 }
2851
2852 return NULL;
2853 }
2854
2855 /* About these extended threadlist and threadinfo packets. They are
2856 variable length packets but, the fields within them are often fixed
2857 length. They are redundent enough to send over UDP as is the
2858 remote protocol in general. There is a matching unit test module
2859 in libstub. */
2860
2861 /* WARNING: This threadref data structure comes from the remote O.S.,
2862 libstub protocol encoding, and remote.c. It is not particularly
2863 changable. */
2864
2865 /* Right now, the internal structure is int. We want it to be bigger.
2866 Plan to fix this. */
2867
2868 typedef int gdb_threadref; /* Internal GDB thread reference. */
2869
2870 /* gdb_ext_thread_info is an internal GDB data structure which is
2871 equivalent to the reply of the remote threadinfo packet. */
2872
2873 struct gdb_ext_thread_info
2874 {
2875 threadref threadid; /* External form of thread reference. */
2876 int active; /* Has state interesting to GDB?
2877 regs, stack. */
2878 char display[256]; /* Brief state display, name,
2879 blocked/suspended. */
2880 char shortname[32]; /* To be used to name threads. */
2881 char more_display[256]; /* Long info, statistics, queue depth,
2882 whatever. */
2883 };
2884
2885 /* The volume of remote transfers can be limited by submitting
2886 a mask containing bits specifying the desired information.
2887 Use a union of these values as the 'selection' parameter to
2888 get_thread_info. FIXME: Make these TAG names more thread specific. */
2889
2890 #define TAG_THREADID 1
2891 #define TAG_EXISTS 2
2892 #define TAG_DISPLAY 4
2893 #define TAG_THREADNAME 8
2894 #define TAG_MOREDISPLAY 16
2895
2896 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2897
2898 static char *unpack_nibble (char *buf, int *val);
2899
2900 static char *unpack_byte (char *buf, int *value);
2901
2902 static char *pack_int (char *buf, int value);
2903
2904 static char *unpack_int (char *buf, int *value);
2905
2906 static char *unpack_string (char *src, char *dest, int length);
2907
2908 static char *pack_threadid (char *pkt, threadref *id);
2909
2910 static char *unpack_threadid (char *inbuf, threadref *id);
2911
2912 void int_to_threadref (threadref *id, int value);
2913
2914 static int threadref_to_int (threadref *ref);
2915
2916 static void copy_threadref (threadref *dest, threadref *src);
2917
2918 static int threadmatch (threadref *dest, threadref *src);
2919
2920 static char *pack_threadinfo_request (char *pkt, int mode,
2921 threadref *id);
2922
2923 static char *pack_threadlist_request (char *pkt, int startflag,
2924 int threadcount,
2925 threadref *nextthread);
2926
2927 static int remote_newthread_step (threadref *ref, void *context);
2928
2929
2930 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2931 buffer we're allowed to write to. Returns
2932 BUF+CHARACTERS_WRITTEN. */
2933
2934 char *
2935 remote_target::write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2936 {
2937 int pid, tid;
2938 struct remote_state *rs = get_remote_state ();
2939
2940 if (remote_multi_process_p (rs))
2941 {
2942 pid = ptid.pid ();
2943 if (pid < 0)
2944 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2945 else
2946 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2947 }
2948 tid = ptid.lwp ();
2949 if (tid < 0)
2950 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2951 else
2952 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2953
2954 return buf;
2955 }
2956
2957 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
2958 last parsed char. Returns null_ptid if no thread id is found, and
2959 throws an error if the thread id has an invalid format. */
2960
2961 static ptid_t
2962 read_ptid (const char *buf, const char **obuf)
2963 {
2964 const char *p = buf;
2965 const char *pp;
2966 ULONGEST pid = 0, tid = 0;
2967
2968 if (*p == 'p')
2969 {
2970 /* Multi-process ptid. */
2971 pp = unpack_varlen_hex (p + 1, &pid);
2972 if (*pp != '.')
2973 error (_("invalid remote ptid: %s"), p);
2974
2975 p = pp;
2976 pp = unpack_varlen_hex (p + 1, &tid);
2977 if (obuf)
2978 *obuf = pp;
2979 return ptid_t (pid, tid, 0);
2980 }
2981
2982 /* No multi-process. Just a tid. */
2983 pp = unpack_varlen_hex (p, &tid);
2984
2985 /* Return null_ptid when no thread id is found. */
2986 if (p == pp)
2987 {
2988 if (obuf)
2989 *obuf = pp;
2990 return null_ptid;
2991 }
2992
2993 /* Since the stub is not sending a process id, then default to
2994 what's in inferior_ptid, unless it's null at this point. If so,
2995 then since there's no way to know the pid of the reported
2996 threads, use the magic number. */
2997 if (inferior_ptid == null_ptid)
2998 pid = magic_null_ptid.pid ();
2999 else
3000 pid = inferior_ptid.pid ();
3001
3002 if (obuf)
3003 *obuf = pp;
3004 return ptid_t (pid, tid, 0);
3005 }
3006
3007 static int
3008 stubhex (int ch)
3009 {
3010 if (ch >= 'a' && ch <= 'f')
3011 return ch - 'a' + 10;
3012 if (ch >= '0' && ch <= '9')
3013 return ch - '0';
3014 if (ch >= 'A' && ch <= 'F')
3015 return ch - 'A' + 10;
3016 return -1;
3017 }
3018
3019 static int
3020 stub_unpack_int (char *buff, int fieldlength)
3021 {
3022 int nibble;
3023 int retval = 0;
3024
3025 while (fieldlength)
3026 {
3027 nibble = stubhex (*buff++);
3028 retval |= nibble;
3029 fieldlength--;
3030 if (fieldlength)
3031 retval = retval << 4;
3032 }
3033 return retval;
3034 }
3035
3036 static char *
3037 unpack_nibble (char *buf, int *val)
3038 {
3039 *val = fromhex (*buf++);
3040 return buf;
3041 }
3042
3043 static char *
3044 unpack_byte (char *buf, int *value)
3045 {
3046 *value = stub_unpack_int (buf, 2);
3047 return buf + 2;
3048 }
3049
3050 static char *
3051 pack_int (char *buf, int value)
3052 {
3053 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
3054 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
3055 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
3056 buf = pack_hex_byte (buf, (value & 0xff));
3057 return buf;
3058 }
3059
3060 static char *
3061 unpack_int (char *buf, int *value)
3062 {
3063 *value = stub_unpack_int (buf, 8);
3064 return buf + 8;
3065 }
3066
3067 #if 0 /* Currently unused, uncomment when needed. */
3068 static char *pack_string (char *pkt, char *string);
3069
3070 static char *
3071 pack_string (char *pkt, char *string)
3072 {
3073 char ch;
3074 int len;
3075
3076 len = strlen (string);
3077 if (len > 200)
3078 len = 200; /* Bigger than most GDB packets, junk??? */
3079 pkt = pack_hex_byte (pkt, len);
3080 while (len-- > 0)
3081 {
3082 ch = *string++;
3083 if ((ch == '\0') || (ch == '#'))
3084 ch = '*'; /* Protect encapsulation. */
3085 *pkt++ = ch;
3086 }
3087 return pkt;
3088 }
3089 #endif /* 0 (unused) */
3090
3091 static char *
3092 unpack_string (char *src, char *dest, int length)
3093 {
3094 while (length--)
3095 *dest++ = *src++;
3096 *dest = '\0';
3097 return src;
3098 }
3099
3100 static char *
3101 pack_threadid (char *pkt, threadref *id)
3102 {
3103 char *limit;
3104 unsigned char *altid;
3105
3106 altid = (unsigned char *) id;
3107 limit = pkt + BUF_THREAD_ID_SIZE;
3108 while (pkt < limit)
3109 pkt = pack_hex_byte (pkt, *altid++);
3110 return pkt;
3111 }
3112
3113
3114 static char *
3115 unpack_threadid (char *inbuf, threadref *id)
3116 {
3117 char *altref;
3118 char *limit = inbuf + BUF_THREAD_ID_SIZE;
3119 int x, y;
3120
3121 altref = (char *) id;
3122
3123 while (inbuf < limit)
3124 {
3125 x = stubhex (*inbuf++);
3126 y = stubhex (*inbuf++);
3127 *altref++ = (x << 4) | y;
3128 }
3129 return inbuf;
3130 }
3131
3132 /* Externally, threadrefs are 64 bits but internally, they are still
3133 ints. This is due to a mismatch of specifications. We would like
3134 to use 64bit thread references internally. This is an adapter
3135 function. */
3136
3137 void
3138 int_to_threadref (threadref *id, int value)
3139 {
3140 unsigned char *scan;
3141
3142 scan = (unsigned char *) id;
3143 {
3144 int i = 4;
3145 while (i--)
3146 *scan++ = 0;
3147 }
3148 *scan++ = (value >> 24) & 0xff;
3149 *scan++ = (value >> 16) & 0xff;
3150 *scan++ = (value >> 8) & 0xff;
3151 *scan++ = (value & 0xff);
3152 }
3153
3154 static int
3155 threadref_to_int (threadref *ref)
3156 {
3157 int i, value = 0;
3158 unsigned char *scan;
3159
3160 scan = *ref;
3161 scan += 4;
3162 i = 4;
3163 while (i-- > 0)
3164 value = (value << 8) | ((*scan++) & 0xff);
3165 return value;
3166 }
3167
3168 static void
3169 copy_threadref (threadref *dest, threadref *src)
3170 {
3171 int i;
3172 unsigned char *csrc, *cdest;
3173
3174 csrc = (unsigned char *) src;
3175 cdest = (unsigned char *) dest;
3176 i = 8;
3177 while (i--)
3178 *cdest++ = *csrc++;
3179 }
3180
3181 static int
3182 threadmatch (threadref *dest, threadref *src)
3183 {
3184 /* Things are broken right now, so just assume we got a match. */
3185 #if 0
3186 unsigned char *srcp, *destp;
3187 int i, result;
3188 srcp = (char *) src;
3189 destp = (char *) dest;
3190
3191 result = 1;
3192 while (i-- > 0)
3193 result &= (*srcp++ == *destp++) ? 1 : 0;
3194 return result;
3195 #endif
3196 return 1;
3197 }
3198
3199 /*
3200 threadid:1, # always request threadid
3201 context_exists:2,
3202 display:4,
3203 unique_name:8,
3204 more_display:16
3205 */
3206
3207 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
3208
3209 static char *
3210 pack_threadinfo_request (char *pkt, int mode, threadref *id)
3211 {
3212 *pkt++ = 'q'; /* Info Query */
3213 *pkt++ = 'P'; /* process or thread info */
3214 pkt = pack_int (pkt, mode); /* mode */
3215 pkt = pack_threadid (pkt, id); /* threadid */
3216 *pkt = '\0'; /* terminate */
3217 return pkt;
3218 }
3219
3220 /* These values tag the fields in a thread info response packet. */
3221 /* Tagging the fields allows us to request specific fields and to
3222 add more fields as time goes by. */
3223
3224 #define TAG_THREADID 1 /* Echo the thread identifier. */
3225 #define TAG_EXISTS 2 /* Is this process defined enough to
3226 fetch registers and its stack? */
3227 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
3228 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
3229 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
3230 the process. */
3231
3232 int
3233 remote_target::remote_unpack_thread_info_response (char *pkt,
3234 threadref *expectedref,
3235 gdb_ext_thread_info *info)
3236 {
3237 struct remote_state *rs = get_remote_state ();
3238 int mask, length;
3239 int tag;
3240 threadref ref;
3241 char *limit = pkt + rs->buf.size (); /* Plausible parsing limit. */
3242 int retval = 1;
3243
3244 /* info->threadid = 0; FIXME: implement zero_threadref. */
3245 info->active = 0;
3246 info->display[0] = '\0';
3247 info->shortname[0] = '\0';
3248 info->more_display[0] = '\0';
3249
3250 /* Assume the characters indicating the packet type have been
3251 stripped. */
3252 pkt = unpack_int (pkt, &mask); /* arg mask */
3253 pkt = unpack_threadid (pkt, &ref);
3254
3255 if (mask == 0)
3256 warning (_("Incomplete response to threadinfo request."));
3257 if (!threadmatch (&ref, expectedref))
3258 { /* This is an answer to a different request. */
3259 warning (_("ERROR RMT Thread info mismatch."));
3260 return 0;
3261 }
3262 copy_threadref (&info->threadid, &ref);
3263
3264 /* Loop on tagged fields , try to bail if somthing goes wrong. */
3265
3266 /* Packets are terminated with nulls. */
3267 while ((pkt < limit) && mask && *pkt)
3268 {
3269 pkt = unpack_int (pkt, &tag); /* tag */
3270 pkt = unpack_byte (pkt, &length); /* length */
3271 if (!(tag & mask)) /* Tags out of synch with mask. */
3272 {
3273 warning (_("ERROR RMT: threadinfo tag mismatch."));
3274 retval = 0;
3275 break;
3276 }
3277 if (tag == TAG_THREADID)
3278 {
3279 if (length != 16)
3280 {
3281 warning (_("ERROR RMT: length of threadid is not 16."));
3282 retval = 0;
3283 break;
3284 }
3285 pkt = unpack_threadid (pkt, &ref);
3286 mask = mask & ~TAG_THREADID;
3287 continue;
3288 }
3289 if (tag == TAG_EXISTS)
3290 {
3291 info->active = stub_unpack_int (pkt, length);
3292 pkt += length;
3293 mask = mask & ~(TAG_EXISTS);
3294 if (length > 8)
3295 {
3296 warning (_("ERROR RMT: 'exists' length too long."));
3297 retval = 0;
3298 break;
3299 }
3300 continue;
3301 }
3302 if (tag == TAG_THREADNAME)
3303 {
3304 pkt = unpack_string (pkt, &info->shortname[0], length);
3305 mask = mask & ~TAG_THREADNAME;
3306 continue;
3307 }
3308 if (tag == TAG_DISPLAY)
3309 {
3310 pkt = unpack_string (pkt, &info->display[0], length);
3311 mask = mask & ~TAG_DISPLAY;
3312 continue;
3313 }
3314 if (tag == TAG_MOREDISPLAY)
3315 {
3316 pkt = unpack_string (pkt, &info->more_display[0], length);
3317 mask = mask & ~TAG_MOREDISPLAY;
3318 continue;
3319 }
3320 warning (_("ERROR RMT: unknown thread info tag."));
3321 break; /* Not a tag we know about. */
3322 }
3323 return retval;
3324 }
3325
3326 int
3327 remote_target::remote_get_threadinfo (threadref *threadid,
3328 int fieldset,
3329 gdb_ext_thread_info *info)
3330 {
3331 struct remote_state *rs = get_remote_state ();
3332 int result;
3333
3334 pack_threadinfo_request (rs->buf.data (), fieldset, threadid);
3335 putpkt (rs->buf);
3336 getpkt (&rs->buf, 0);
3337
3338 if (rs->buf[0] == '\0')
3339 return 0;
3340
3341 result = remote_unpack_thread_info_response (&rs->buf[2],
3342 threadid, info);
3343 return result;
3344 }
3345
3346 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3347
3348 static char *
3349 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3350 threadref *nextthread)
3351 {
3352 *pkt++ = 'q'; /* info query packet */
3353 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3354 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3355 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3356 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3357 *pkt = '\0';
3358 return pkt;
3359 }
3360
3361 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3362
3363 int
3364 remote_target::parse_threadlist_response (char *pkt, int result_limit,
3365 threadref *original_echo,
3366 threadref *resultlist,
3367 int *doneflag)
3368 {
3369 struct remote_state *rs = get_remote_state ();
3370 char *limit;
3371 int count, resultcount, done;
3372
3373 resultcount = 0;
3374 /* Assume the 'q' and 'M chars have been stripped. */
3375 limit = pkt + (rs->buf.size () - BUF_THREAD_ID_SIZE);
3376 /* done parse past here */
3377 pkt = unpack_byte (pkt, &count); /* count field */
3378 pkt = unpack_nibble (pkt, &done);
3379 /* The first threadid is the argument threadid. */
3380 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3381 while ((count-- > 0) && (pkt < limit))
3382 {
3383 pkt = unpack_threadid (pkt, resultlist++);
3384 if (resultcount++ >= result_limit)
3385 break;
3386 }
3387 if (doneflag)
3388 *doneflag = done;
3389 return resultcount;
3390 }
3391
3392 /* Fetch the next batch of threads from the remote. Returns -1 if the
3393 qL packet is not supported, 0 on error and 1 on success. */
3394
3395 int
3396 remote_target::remote_get_threadlist (int startflag, threadref *nextthread,
3397 int result_limit, int *done, int *result_count,
3398 threadref *threadlist)
3399 {
3400 struct remote_state *rs = get_remote_state ();
3401 int result = 1;
3402
3403 /* Trancate result limit to be smaller than the packet size. */
3404 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3405 >= get_remote_packet_size ())
3406 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3407
3408 pack_threadlist_request (rs->buf.data (), startflag, result_limit,
3409 nextthread);
3410 putpkt (rs->buf);
3411 getpkt (&rs->buf, 0);
3412 if (rs->buf[0] == '\0')
3413 {
3414 /* Packet not supported. */
3415 return -1;
3416 }
3417
3418 *result_count =
3419 parse_threadlist_response (&rs->buf[2], result_limit,
3420 &rs->echo_nextthread, threadlist, done);
3421
3422 if (!threadmatch (&rs->echo_nextthread, nextthread))
3423 {
3424 /* FIXME: This is a good reason to drop the packet. */
3425 /* Possably, there is a duplicate response. */
3426 /* Possabilities :
3427 retransmit immediatly - race conditions
3428 retransmit after timeout - yes
3429 exit
3430 wait for packet, then exit
3431 */
3432 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3433 return 0; /* I choose simply exiting. */
3434 }
3435 if (*result_count <= 0)
3436 {
3437 if (*done != 1)
3438 {
3439 warning (_("RMT ERROR : failed to get remote thread list."));
3440 result = 0;
3441 }
3442 return result; /* break; */
3443 }
3444 if (*result_count > result_limit)
3445 {
3446 *result_count = 0;
3447 warning (_("RMT ERROR: threadlist response longer than requested."));
3448 return 0;
3449 }
3450 return result;
3451 }
3452
3453 /* Fetch the list of remote threads, with the qL packet, and call
3454 STEPFUNCTION for each thread found. Stops iterating and returns 1
3455 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3456 STEPFUNCTION returns false. If the packet is not supported,
3457 returns -1. */
3458
3459 int
3460 remote_target::remote_threadlist_iterator (rmt_thread_action stepfunction,
3461 void *context, int looplimit)
3462 {
3463 struct remote_state *rs = get_remote_state ();
3464 int done, i, result_count;
3465 int startflag = 1;
3466 int result = 1;
3467 int loopcount = 0;
3468
3469 done = 0;
3470 while (!done)
3471 {
3472 if (loopcount++ > looplimit)
3473 {
3474 result = 0;
3475 warning (_("Remote fetch threadlist -infinite loop-."));
3476 break;
3477 }
3478 result = remote_get_threadlist (startflag, &rs->nextthread,
3479 MAXTHREADLISTRESULTS,
3480 &done, &result_count,
3481 rs->resultthreadlist);
3482 if (result <= 0)
3483 break;
3484 /* Clear for later iterations. */
3485 startflag = 0;
3486 /* Setup to resume next batch of thread references, set nextthread. */
3487 if (result_count >= 1)
3488 copy_threadref (&rs->nextthread,
3489 &rs->resultthreadlist[result_count - 1]);
3490 i = 0;
3491 while (result_count--)
3492 {
3493 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3494 {
3495 result = 0;
3496 break;
3497 }
3498 }
3499 }
3500 return result;
3501 }
3502
3503 /* A thread found on the remote target. */
3504
3505 struct thread_item
3506 {
3507 explicit thread_item (ptid_t ptid_)
3508 : ptid (ptid_)
3509 {}
3510
3511 thread_item (thread_item &&other) = default;
3512 thread_item &operator= (thread_item &&other) = default;
3513
3514 DISABLE_COPY_AND_ASSIGN (thread_item);
3515
3516 /* The thread's PTID. */
3517 ptid_t ptid;
3518
3519 /* The thread's extra info. */
3520 std::string extra;
3521
3522 /* The thread's name. */
3523 std::string name;
3524
3525 /* The core the thread was running on. -1 if not known. */
3526 int core = -1;
3527
3528 /* The thread handle associated with the thread. */
3529 gdb::byte_vector thread_handle;
3530 };
3531
3532 /* Context passed around to the various methods listing remote
3533 threads. As new threads are found, they're added to the ITEMS
3534 vector. */
3535
3536 struct threads_listing_context
3537 {
3538 /* Return true if this object contains an entry for a thread with ptid
3539 PTID. */
3540
3541 bool contains_thread (ptid_t ptid) const
3542 {
3543 auto match_ptid = [&] (const thread_item &item)
3544 {
3545 return item.ptid == ptid;
3546 };
3547
3548 auto it = std::find_if (this->items.begin (),
3549 this->items.end (),
3550 match_ptid);
3551
3552 return it != this->items.end ();
3553 }
3554
3555 /* Remove the thread with ptid PTID. */
3556
3557 void remove_thread (ptid_t ptid)
3558 {
3559 auto match_ptid = [&] (const thread_item &item)
3560 {
3561 return item.ptid == ptid;
3562 };
3563
3564 auto it = std::remove_if (this->items.begin (),
3565 this->items.end (),
3566 match_ptid);
3567
3568 if (it != this->items.end ())
3569 this->items.erase (it);
3570 }
3571
3572 /* The threads found on the remote target. */
3573 std::vector<thread_item> items;
3574 };
3575
3576 static int
3577 remote_newthread_step (threadref *ref, void *data)
3578 {
3579 struct threads_listing_context *context
3580 = (struct threads_listing_context *) data;
3581 int pid = inferior_ptid.pid ();
3582 int lwp = threadref_to_int (ref);
3583 ptid_t ptid (pid, lwp);
3584
3585 context->items.emplace_back (ptid);
3586
3587 return 1; /* continue iterator */
3588 }
3589
3590 #define CRAZY_MAX_THREADS 1000
3591
3592 ptid_t
3593 remote_target::remote_current_thread (ptid_t oldpid)
3594 {
3595 struct remote_state *rs = get_remote_state ();
3596
3597 putpkt ("qC");
3598 getpkt (&rs->buf, 0);
3599 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3600 {
3601 const char *obuf;
3602 ptid_t result;
3603
3604 result = read_ptid (&rs->buf[2], &obuf);
3605 if (*obuf != '\0' && remote_debug)
3606 fprintf_unfiltered (gdb_stdlog,
3607 "warning: garbage in qC reply\n");
3608
3609 return result;
3610 }
3611 else
3612 return oldpid;
3613 }
3614
3615 /* List remote threads using the deprecated qL packet. */
3616
3617 int
3618 remote_target::remote_get_threads_with_ql (threads_listing_context *context)
3619 {
3620 if (remote_threadlist_iterator (remote_newthread_step, context,
3621 CRAZY_MAX_THREADS) >= 0)
3622 return 1;
3623
3624 return 0;
3625 }
3626
3627 #if defined(HAVE_LIBEXPAT)
3628
3629 static void
3630 start_thread (struct gdb_xml_parser *parser,
3631 const struct gdb_xml_element *element,
3632 void *user_data,
3633 std::vector<gdb_xml_value> &attributes)
3634 {
3635 struct threads_listing_context *data
3636 = (struct threads_listing_context *) user_data;
3637 struct gdb_xml_value *attr;
3638
3639 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3640 ptid_t ptid = read_ptid (id, NULL);
3641
3642 data->items.emplace_back (ptid);
3643 thread_item &item = data->items.back ();
3644
3645 attr = xml_find_attribute (attributes, "core");
3646 if (attr != NULL)
3647 item.core = *(ULONGEST *) attr->value.get ();
3648
3649 attr = xml_find_attribute (attributes, "name");
3650 if (attr != NULL)
3651 item.name = (const char *) attr->value.get ();
3652
3653 attr = xml_find_attribute (attributes, "handle");
3654 if (attr != NULL)
3655 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3656 }
3657
3658 static void
3659 end_thread (struct gdb_xml_parser *parser,
3660 const struct gdb_xml_element *element,
3661 void *user_data, const char *body_text)
3662 {
3663 struct threads_listing_context *data
3664 = (struct threads_listing_context *) user_data;
3665
3666 if (body_text != NULL && *body_text != '\0')
3667 data->items.back ().extra = body_text;
3668 }
3669
3670 const struct gdb_xml_attribute thread_attributes[] = {
3671 { "id", GDB_XML_AF_NONE, NULL, NULL },
3672 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3673 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3674 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3675 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3676 };
3677
3678 const struct gdb_xml_element thread_children[] = {
3679 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3680 };
3681
3682 const struct gdb_xml_element threads_children[] = {
3683 { "thread", thread_attributes, thread_children,
3684 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3685 start_thread, end_thread },
3686 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3687 };
3688
3689 const struct gdb_xml_element threads_elements[] = {
3690 { "threads", NULL, threads_children,
3691 GDB_XML_EF_NONE, NULL, NULL },
3692 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3693 };
3694
3695 #endif
3696
3697 /* List remote threads using qXfer:threads:read. */
3698
3699 int
3700 remote_target::remote_get_threads_with_qxfer (threads_listing_context *context)
3701 {
3702 #if defined(HAVE_LIBEXPAT)
3703 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3704 {
3705 gdb::optional<gdb::char_vector> xml
3706 = target_read_stralloc (this, TARGET_OBJECT_THREADS, NULL);
3707
3708 if (xml && (*xml)[0] != '\0')
3709 {
3710 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3711 threads_elements, xml->data (), context);
3712 }
3713
3714 return 1;
3715 }
3716 #endif
3717
3718 return 0;
3719 }
3720
3721 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3722
3723 int
3724 remote_target::remote_get_threads_with_qthreadinfo (threads_listing_context *context)
3725 {
3726 struct remote_state *rs = get_remote_state ();
3727
3728 if (rs->use_threadinfo_query)
3729 {
3730 const char *bufp;
3731
3732 putpkt ("qfThreadInfo");
3733 getpkt (&rs->buf, 0);
3734 bufp = rs->buf.data ();
3735 if (bufp[0] != '\0') /* q packet recognized */
3736 {
3737 while (*bufp++ == 'm') /* reply contains one or more TID */
3738 {
3739 do
3740 {
3741 ptid_t ptid = read_ptid (bufp, &bufp);
3742 context->items.emplace_back (ptid);
3743 }
3744 while (*bufp++ == ','); /* comma-separated list */
3745 putpkt ("qsThreadInfo");
3746 getpkt (&rs->buf, 0);
3747 bufp = rs->buf.data ();
3748 }
3749 return 1;
3750 }
3751 else
3752 {
3753 /* Packet not recognized. */
3754 rs->use_threadinfo_query = 0;
3755 }
3756 }
3757
3758 return 0;
3759 }
3760
3761 /* Implement the to_update_thread_list function for the remote
3762 targets. */
3763
3764 void
3765 remote_target::update_thread_list ()
3766 {
3767 struct threads_listing_context context;
3768 int got_list = 0;
3769
3770 /* We have a few different mechanisms to fetch the thread list. Try
3771 them all, starting with the most preferred one first, falling
3772 back to older methods. */
3773 if (remote_get_threads_with_qxfer (&context)
3774 || remote_get_threads_with_qthreadinfo (&context)
3775 || remote_get_threads_with_ql (&context))
3776 {
3777 got_list = 1;
3778
3779 if (context.items.empty ()
3780 && remote_thread_always_alive (inferior_ptid))
3781 {
3782 /* Some targets don't really support threads, but still
3783 reply an (empty) thread list in response to the thread
3784 listing packets, instead of replying "packet not
3785 supported". Exit early so we don't delete the main
3786 thread. */
3787 return;
3788 }
3789
3790 /* CONTEXT now holds the current thread list on the remote
3791 target end. Delete GDB-side threads no longer found on the
3792 target. */
3793 for (thread_info *tp : all_threads_safe ())
3794 {
3795 if (!context.contains_thread (tp->ptid))
3796 {
3797 /* Not found. */
3798 delete_thread (tp);
3799 }
3800 }
3801
3802 /* Remove any unreported fork child threads from CONTEXT so
3803 that we don't interfere with follow fork, which is where
3804 creation of such threads is handled. */
3805 remove_new_fork_children (&context);
3806
3807 /* And now add threads we don't know about yet to our list. */
3808 for (thread_item &item : context.items)
3809 {
3810 if (item.ptid != null_ptid)
3811 {
3812 /* In non-stop mode, we assume new found threads are
3813 executing until proven otherwise with a stop reply.
3814 In all-stop, we can only get here if all threads are
3815 stopped. */
3816 int executing = target_is_non_stop_p () ? 1 : 0;
3817
3818 remote_notice_new_inferior (item.ptid, executing);
3819
3820 thread_info *tp = find_thread_ptid (item.ptid);
3821 remote_thread_info *info = get_remote_thread_info (tp);
3822 info->core = item.core;
3823 info->extra = std::move (item.extra);
3824 info->name = std::move (item.name);
3825 info->thread_handle = std::move (item.thread_handle);
3826 }
3827 }
3828 }
3829
3830 if (!got_list)
3831 {
3832 /* If no thread listing method is supported, then query whether
3833 each known thread is alive, one by one, with the T packet.
3834 If the target doesn't support threads at all, then this is a
3835 no-op. See remote_thread_alive. */
3836 prune_threads ();
3837 }
3838 }
3839
3840 /*
3841 * Collect a descriptive string about the given thread.
3842 * The target may say anything it wants to about the thread
3843 * (typically info about its blocked / runnable state, name, etc.).
3844 * This string will appear in the info threads display.
3845 *
3846 * Optional: targets are not required to implement this function.
3847 */
3848
3849 const char *
3850 remote_target::extra_thread_info (thread_info *tp)
3851 {
3852 struct remote_state *rs = get_remote_state ();
3853 int set;
3854 threadref id;
3855 struct gdb_ext_thread_info threadinfo;
3856
3857 if (rs->remote_desc == 0) /* paranoia */
3858 internal_error (__FILE__, __LINE__,
3859 _("remote_threads_extra_info"));
3860
3861 if (tp->ptid == magic_null_ptid
3862 || (tp->ptid.pid () != 0 && tp->ptid.lwp () == 0))
3863 /* This is the main thread which was added by GDB. The remote
3864 server doesn't know about it. */
3865 return NULL;
3866
3867 std::string &extra = get_remote_thread_info (tp)->extra;
3868
3869 /* If already have cached info, use it. */
3870 if (!extra.empty ())
3871 return extra.c_str ();
3872
3873 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3874 {
3875 /* If we're using qXfer:threads:read, then the extra info is
3876 included in the XML. So if we didn't have anything cached,
3877 it's because there's really no extra info. */
3878 return NULL;
3879 }
3880
3881 if (rs->use_threadextra_query)
3882 {
3883 char *b = rs->buf.data ();
3884 char *endb = b + get_remote_packet_size ();
3885
3886 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3887 b += strlen (b);
3888 write_ptid (b, endb, tp->ptid);
3889
3890 putpkt (rs->buf);
3891 getpkt (&rs->buf, 0);
3892 if (rs->buf[0] != 0)
3893 {
3894 extra.resize (strlen (rs->buf.data ()) / 2);
3895 hex2bin (rs->buf.data (), (gdb_byte *) &extra[0], extra.size ());
3896 return extra.c_str ();
3897 }
3898 }
3899
3900 /* If the above query fails, fall back to the old method. */
3901 rs->use_threadextra_query = 0;
3902 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3903 | TAG_MOREDISPLAY | TAG_DISPLAY;
3904 int_to_threadref (&id, tp->ptid.lwp ());
3905 if (remote_get_threadinfo (&id, set, &threadinfo))
3906 if (threadinfo.active)
3907 {
3908 if (*threadinfo.shortname)
3909 string_appendf (extra, " Name: %s", threadinfo.shortname);
3910 if (*threadinfo.display)
3911 {
3912 if (!extra.empty ())
3913 extra += ',';
3914 string_appendf (extra, " State: %s", threadinfo.display);
3915 }
3916 if (*threadinfo.more_display)
3917 {
3918 if (!extra.empty ())
3919 extra += ',';
3920 string_appendf (extra, " Priority: %s", threadinfo.more_display);
3921 }
3922 return extra.c_str ();
3923 }
3924 return NULL;
3925 }
3926 \f
3927
3928 bool
3929 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
3930 struct static_tracepoint_marker *marker)
3931 {
3932 struct remote_state *rs = get_remote_state ();
3933 char *p = rs->buf.data ();
3934
3935 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3936 p += strlen (p);
3937 p += hexnumstr (p, addr);
3938 putpkt (rs->buf);
3939 getpkt (&rs->buf, 0);
3940 p = rs->buf.data ();
3941
3942 if (*p == 'E')
3943 error (_("Remote failure reply: %s"), p);
3944
3945 if (*p++ == 'm')
3946 {
3947 parse_static_tracepoint_marker_definition (p, NULL, marker);
3948 return true;
3949 }
3950
3951 return false;
3952 }
3953
3954 std::vector<static_tracepoint_marker>
3955 remote_target::static_tracepoint_markers_by_strid (const char *strid)
3956 {
3957 struct remote_state *rs = get_remote_state ();
3958 std::vector<static_tracepoint_marker> markers;
3959 const char *p;
3960 static_tracepoint_marker marker;
3961
3962 /* Ask for a first packet of static tracepoint marker
3963 definition. */
3964 putpkt ("qTfSTM");
3965 getpkt (&rs->buf, 0);
3966 p = rs->buf.data ();
3967 if (*p == 'E')
3968 error (_("Remote failure reply: %s"), p);
3969
3970 while (*p++ == 'm')
3971 {
3972 do
3973 {
3974 parse_static_tracepoint_marker_definition (p, &p, &marker);
3975
3976 if (strid == NULL || marker.str_id == strid)
3977 markers.push_back (std::move (marker));
3978 }
3979 while (*p++ == ','); /* comma-separated list */
3980 /* Ask for another packet of static tracepoint definition. */
3981 putpkt ("qTsSTM");
3982 getpkt (&rs->buf, 0);
3983 p = rs->buf.data ();
3984 }
3985
3986 return markers;
3987 }
3988
3989 \f
3990 /* Implement the to_get_ada_task_ptid function for the remote targets. */
3991
3992 ptid_t
3993 remote_target::get_ada_task_ptid (long lwp, long thread)
3994 {
3995 return ptid_t (inferior_ptid.pid (), lwp, 0);
3996 }
3997 \f
3998
3999 /* Restart the remote side; this is an extended protocol operation. */
4000
4001 void
4002 remote_target::extended_remote_restart ()
4003 {
4004 struct remote_state *rs = get_remote_state ();
4005
4006 /* Send the restart command; for reasons I don't understand the
4007 remote side really expects a number after the "R". */
4008 xsnprintf (rs->buf.data (), get_remote_packet_size (), "R%x", 0);
4009 putpkt (rs->buf);
4010
4011 remote_fileio_reset ();
4012 }
4013 \f
4014 /* Clean up connection to a remote debugger. */
4015
4016 void
4017 remote_target::close ()
4018 {
4019 /* Make sure we leave stdin registered in the event loop. */
4020 terminal_ours ();
4021
4022 /* We don't have a connection to the remote stub anymore. Get rid
4023 of all the inferiors and their threads we were controlling.
4024 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
4025 will be unable to find the thread corresponding to (pid, 0, 0). */
4026 inferior_ptid = null_ptid;
4027 discard_all_inferiors ();
4028
4029 trace_reset_local_state ();
4030
4031 delete this;
4032 }
4033
4034 remote_target::~remote_target ()
4035 {
4036 struct remote_state *rs = get_remote_state ();
4037
4038 /* Check for NULL because we may get here with a partially
4039 constructed target/connection. */
4040 if (rs->remote_desc == nullptr)
4041 return;
4042
4043 serial_close (rs->remote_desc);
4044
4045 /* We are destroying the remote target, so we should discard
4046 everything of this target. */
4047 discard_pending_stop_replies_in_queue ();
4048
4049 if (rs->remote_async_inferior_event_token)
4050 delete_async_event_handler (&rs->remote_async_inferior_event_token);
4051
4052 remote_notif_state_xfree (rs->notif_state);
4053 }
4054
4055 /* Query the remote side for the text, data and bss offsets. */
4056
4057 void
4058 remote_target::get_offsets ()
4059 {
4060 struct remote_state *rs = get_remote_state ();
4061 char *buf;
4062 char *ptr;
4063 int lose, num_segments = 0, do_sections, do_segments;
4064 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
4065 struct section_offsets *offs;
4066 struct symfile_segment_data *data;
4067
4068 if (symfile_objfile == NULL)
4069 return;
4070
4071 putpkt ("qOffsets");
4072 getpkt (&rs->buf, 0);
4073 buf = rs->buf.data ();
4074
4075 if (buf[0] == '\000')
4076 return; /* Return silently. Stub doesn't support
4077 this command. */
4078 if (buf[0] == 'E')
4079 {
4080 warning (_("Remote failure reply: %s"), buf);
4081 return;
4082 }
4083
4084 /* Pick up each field in turn. This used to be done with scanf, but
4085 scanf will make trouble if CORE_ADDR size doesn't match
4086 conversion directives correctly. The following code will work
4087 with any size of CORE_ADDR. */
4088 text_addr = data_addr = bss_addr = 0;
4089 ptr = buf;
4090 lose = 0;
4091
4092 if (startswith (ptr, "Text="))
4093 {
4094 ptr += 5;
4095 /* Don't use strtol, could lose on big values. */
4096 while (*ptr && *ptr != ';')
4097 text_addr = (text_addr << 4) + fromhex (*ptr++);
4098
4099 if (startswith (ptr, ";Data="))
4100 {
4101 ptr += 6;
4102 while (*ptr && *ptr != ';')
4103 data_addr = (data_addr << 4) + fromhex (*ptr++);
4104 }
4105 else
4106 lose = 1;
4107
4108 if (!lose && startswith (ptr, ";Bss="))
4109 {
4110 ptr += 5;
4111 while (*ptr && *ptr != ';')
4112 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
4113
4114 if (bss_addr != data_addr)
4115 warning (_("Target reported unsupported offsets: %s"), buf);
4116 }
4117 else
4118 lose = 1;
4119 }
4120 else if (startswith (ptr, "TextSeg="))
4121 {
4122 ptr += 8;
4123 /* Don't use strtol, could lose on big values. */
4124 while (*ptr && *ptr != ';')
4125 text_addr = (text_addr << 4) + fromhex (*ptr++);
4126 num_segments = 1;
4127
4128 if (startswith (ptr, ";DataSeg="))
4129 {
4130 ptr += 9;
4131 while (*ptr && *ptr != ';')
4132 data_addr = (data_addr << 4) + fromhex (*ptr++);
4133 num_segments++;
4134 }
4135 }
4136 else
4137 lose = 1;
4138
4139 if (lose)
4140 error (_("Malformed response to offset query, %s"), buf);
4141 else if (*ptr != '\0')
4142 warning (_("Target reported unsupported offsets: %s"), buf);
4143
4144 offs = ((struct section_offsets *)
4145 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
4146 memcpy (offs, symfile_objfile->section_offsets,
4147 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
4148
4149 data = get_symfile_segment_data (symfile_objfile->obfd);
4150 do_segments = (data != NULL);
4151 do_sections = num_segments == 0;
4152
4153 if (num_segments > 0)
4154 {
4155 segments[0] = text_addr;
4156 segments[1] = data_addr;
4157 }
4158 /* If we have two segments, we can still try to relocate everything
4159 by assuming that the .text and .data offsets apply to the whole
4160 text and data segments. Convert the offsets given in the packet
4161 to base addresses for symfile_map_offsets_to_segments. */
4162 else if (data && data->num_segments == 2)
4163 {
4164 segments[0] = data->segment_bases[0] + text_addr;
4165 segments[1] = data->segment_bases[1] + data_addr;
4166 num_segments = 2;
4167 }
4168 /* If the object file has only one segment, assume that it is text
4169 rather than data; main programs with no writable data are rare,
4170 but programs with no code are useless. Of course the code might
4171 have ended up in the data segment... to detect that we would need
4172 the permissions here. */
4173 else if (data && data->num_segments == 1)
4174 {
4175 segments[0] = data->segment_bases[0] + text_addr;
4176 num_segments = 1;
4177 }
4178 /* There's no way to relocate by segment. */
4179 else
4180 do_segments = 0;
4181
4182 if (do_segments)
4183 {
4184 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
4185 offs, num_segments, segments);
4186
4187 if (ret == 0 && !do_sections)
4188 error (_("Can not handle qOffsets TextSeg "
4189 "response with this symbol file"));
4190
4191 if (ret > 0)
4192 do_sections = 0;
4193 }
4194
4195 if (data)
4196 free_symfile_segment_data (data);
4197
4198 if (do_sections)
4199 {
4200 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
4201
4202 /* This is a temporary kludge to force data and bss to use the
4203 same offsets because that's what nlmconv does now. The real
4204 solution requires changes to the stub and remote.c that I
4205 don't have time to do right now. */
4206
4207 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
4208 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
4209 }
4210
4211 objfile_relocate (symfile_objfile, offs);
4212 }
4213
4214 /* Send interrupt_sequence to remote target. */
4215
4216 void
4217 remote_target::send_interrupt_sequence ()
4218 {
4219 struct remote_state *rs = get_remote_state ();
4220
4221 if (interrupt_sequence_mode == interrupt_sequence_control_c)
4222 remote_serial_write ("\x03", 1);
4223 else if (interrupt_sequence_mode == interrupt_sequence_break)
4224 serial_send_break (rs->remote_desc);
4225 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
4226 {
4227 serial_send_break (rs->remote_desc);
4228 remote_serial_write ("g", 1);
4229 }
4230 else
4231 internal_error (__FILE__, __LINE__,
4232 _("Invalid value for interrupt_sequence_mode: %s."),
4233 interrupt_sequence_mode);
4234 }
4235
4236
4237 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
4238 and extract the PTID. Returns NULL_PTID if not found. */
4239
4240 static ptid_t
4241 stop_reply_extract_thread (char *stop_reply)
4242 {
4243 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4244 {
4245 const char *p;
4246
4247 /* Txx r:val ; r:val (...) */
4248 p = &stop_reply[3];
4249
4250 /* Look for "register" named "thread". */
4251 while (*p != '\0')
4252 {
4253 const char *p1;
4254
4255 p1 = strchr (p, ':');
4256 if (p1 == NULL)
4257 return null_ptid;
4258
4259 if (strncmp (p, "thread", p1 - p) == 0)
4260 return read_ptid (++p1, &p);
4261
4262 p1 = strchr (p, ';');
4263 if (p1 == NULL)
4264 return null_ptid;
4265 p1++;
4266
4267 p = p1;
4268 }
4269 }
4270
4271 return null_ptid;
4272 }
4273
4274 /* Determine the remote side's current thread. If we have a stop
4275 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4276 "thread" register we can extract the current thread from. If not,
4277 ask the remote which is the current thread with qC. The former
4278 method avoids a roundtrip. */
4279
4280 ptid_t
4281 remote_target::get_current_thread (char *wait_status)
4282 {
4283 ptid_t ptid = null_ptid;
4284
4285 /* Note we don't use remote_parse_stop_reply as that makes use of
4286 the target architecture, which we haven't yet fully determined at
4287 this point. */
4288 if (wait_status != NULL)
4289 ptid = stop_reply_extract_thread (wait_status);
4290 if (ptid == null_ptid)
4291 ptid = remote_current_thread (inferior_ptid);
4292
4293 return ptid;
4294 }
4295
4296 /* Query the remote target for which is the current thread/process,
4297 add it to our tables, and update INFERIOR_PTID. The caller is
4298 responsible for setting the state such that the remote end is ready
4299 to return the current thread.
4300
4301 This function is called after handling the '?' or 'vRun' packets,
4302 whose response is a stop reply from which we can also try
4303 extracting the thread. If the target doesn't support the explicit
4304 qC query, we infer the current thread from that stop reply, passed
4305 in in WAIT_STATUS, which may be NULL. */
4306
4307 void
4308 remote_target::add_current_inferior_and_thread (char *wait_status)
4309 {
4310 struct remote_state *rs = get_remote_state ();
4311 int fake_pid_p = 0;
4312
4313 inferior_ptid = null_ptid;
4314
4315 /* Now, if we have thread information, update inferior_ptid. */
4316 ptid_t curr_ptid = get_current_thread (wait_status);
4317
4318 if (curr_ptid != null_ptid)
4319 {
4320 if (!remote_multi_process_p (rs))
4321 fake_pid_p = 1;
4322 }
4323 else
4324 {
4325 /* Without this, some commands which require an active target
4326 (such as kill) won't work. This variable serves (at least)
4327 double duty as both the pid of the target process (if it has
4328 such), and as a flag indicating that a target is active. */
4329 curr_ptid = magic_null_ptid;
4330 fake_pid_p = 1;
4331 }
4332
4333 remote_add_inferior (fake_pid_p, curr_ptid.pid (), -1, 1);
4334
4335 /* Add the main thread and switch to it. Don't try reading
4336 registers yet, since we haven't fetched the target description
4337 yet. */
4338 thread_info *tp = add_thread_silent (curr_ptid);
4339 switch_to_thread_no_regs (tp);
4340 }
4341
4342 /* Print info about a thread that was found already stopped on
4343 connection. */
4344
4345 static void
4346 print_one_stopped_thread (struct thread_info *thread)
4347 {
4348 struct target_waitstatus *ws = &thread->suspend.waitstatus;
4349
4350 switch_to_thread (thread);
4351 thread->suspend.stop_pc = get_frame_pc (get_current_frame ());
4352 set_current_sal_from_frame (get_current_frame ());
4353
4354 thread->suspend.waitstatus_pending_p = 0;
4355
4356 if (ws->kind == TARGET_WAITKIND_STOPPED)
4357 {
4358 enum gdb_signal sig = ws->value.sig;
4359
4360 if (signal_print_state (sig))
4361 gdb::observers::signal_received.notify (sig);
4362 }
4363 gdb::observers::normal_stop.notify (NULL, 1);
4364 }
4365
4366 /* Process all initial stop replies the remote side sent in response
4367 to the ? packet. These indicate threads that were already stopped
4368 on initial connection. We mark these threads as stopped and print
4369 their current frame before giving the user the prompt. */
4370
4371 void
4372 remote_target::process_initial_stop_replies (int from_tty)
4373 {
4374 int pending_stop_replies = stop_reply_queue_length ();
4375 struct thread_info *selected = NULL;
4376 struct thread_info *lowest_stopped = NULL;
4377 struct thread_info *first = NULL;
4378
4379 /* Consume the initial pending events. */
4380 while (pending_stop_replies-- > 0)
4381 {
4382 ptid_t waiton_ptid = minus_one_ptid;
4383 ptid_t event_ptid;
4384 struct target_waitstatus ws;
4385 int ignore_event = 0;
4386
4387 memset (&ws, 0, sizeof (ws));
4388 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4389 if (remote_debug)
4390 print_target_wait_results (waiton_ptid, event_ptid, &ws);
4391
4392 switch (ws.kind)
4393 {
4394 case TARGET_WAITKIND_IGNORE:
4395 case TARGET_WAITKIND_NO_RESUMED:
4396 case TARGET_WAITKIND_SIGNALLED:
4397 case TARGET_WAITKIND_EXITED:
4398 /* We shouldn't see these, but if we do, just ignore. */
4399 if (remote_debug)
4400 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
4401 ignore_event = 1;
4402 break;
4403
4404 case TARGET_WAITKIND_EXECD:
4405 xfree (ws.value.execd_pathname);
4406 break;
4407 default:
4408 break;
4409 }
4410
4411 if (ignore_event)
4412 continue;
4413
4414 struct thread_info *evthread = find_thread_ptid (event_ptid);
4415
4416 if (ws.kind == TARGET_WAITKIND_STOPPED)
4417 {
4418 enum gdb_signal sig = ws.value.sig;
4419
4420 /* Stubs traditionally report SIGTRAP as initial signal,
4421 instead of signal 0. Suppress it. */
4422 if (sig == GDB_SIGNAL_TRAP)
4423 sig = GDB_SIGNAL_0;
4424 evthread->suspend.stop_signal = sig;
4425 ws.value.sig = sig;
4426 }
4427
4428 evthread->suspend.waitstatus = ws;
4429
4430 if (ws.kind != TARGET_WAITKIND_STOPPED
4431 || ws.value.sig != GDB_SIGNAL_0)
4432 evthread->suspend.waitstatus_pending_p = 1;
4433
4434 set_executing (event_ptid, 0);
4435 set_running (event_ptid, 0);
4436 get_remote_thread_info (evthread)->vcont_resumed = 0;
4437 }
4438
4439 /* "Notice" the new inferiors before anything related to
4440 registers/memory. */
4441 for (inferior *inf : all_non_exited_inferiors ())
4442 {
4443 inf->needs_setup = 1;
4444
4445 if (non_stop)
4446 {
4447 thread_info *thread = any_live_thread_of_inferior (inf);
4448 notice_new_inferior (thread, thread->state == THREAD_RUNNING,
4449 from_tty);
4450 }
4451 }
4452
4453 /* If all-stop on top of non-stop, pause all threads. Note this
4454 records the threads' stop pc, so must be done after "noticing"
4455 the inferiors. */
4456 if (!non_stop)
4457 {
4458 stop_all_threads ();
4459
4460 /* If all threads of an inferior were already stopped, we
4461 haven't setup the inferior yet. */
4462 for (inferior *inf : all_non_exited_inferiors ())
4463 {
4464 if (inf->needs_setup)
4465 {
4466 thread_info *thread = any_live_thread_of_inferior (inf);
4467 switch_to_thread_no_regs (thread);
4468 setup_inferior (0);
4469 }
4470 }
4471 }
4472
4473 /* Now go over all threads that are stopped, and print their current
4474 frame. If all-stop, then if there's a signalled thread, pick
4475 that as current. */
4476 for (thread_info *thread : all_non_exited_threads ())
4477 {
4478 if (first == NULL)
4479 first = thread;
4480
4481 if (!non_stop)
4482 thread->set_running (false);
4483 else if (thread->state != THREAD_STOPPED)
4484 continue;
4485
4486 if (selected == NULL
4487 && thread->suspend.waitstatus_pending_p)
4488 selected = thread;
4489
4490 if (lowest_stopped == NULL
4491 || thread->inf->num < lowest_stopped->inf->num
4492 || thread->per_inf_num < lowest_stopped->per_inf_num)
4493 lowest_stopped = thread;
4494
4495 if (non_stop)
4496 print_one_stopped_thread (thread);
4497 }
4498
4499 /* In all-stop, we only print the status of one thread, and leave
4500 others with their status pending. */
4501 if (!non_stop)
4502 {
4503 thread_info *thread = selected;
4504 if (thread == NULL)
4505 thread = lowest_stopped;
4506 if (thread == NULL)
4507 thread = first;
4508
4509 print_one_stopped_thread (thread);
4510 }
4511
4512 /* For "info program". */
4513 thread_info *thread = inferior_thread ();
4514 if (thread->state == THREAD_STOPPED)
4515 set_last_target_status (inferior_ptid, thread->suspend.waitstatus);
4516 }
4517
4518 /* Start the remote connection and sync state. */
4519
4520 void
4521 remote_target::start_remote (int from_tty, int extended_p)
4522 {
4523 struct remote_state *rs = get_remote_state ();
4524 struct packet_config *noack_config;
4525 char *wait_status = NULL;
4526
4527 /* Signal other parts that we're going through the initial setup,
4528 and so things may not be stable yet. E.g., we don't try to
4529 install tracepoints until we've relocated symbols. Also, a
4530 Ctrl-C before we're connected and synced up can't interrupt the
4531 target. Instead, it offers to drop the (potentially wedged)
4532 connection. */
4533 rs->starting_up = 1;
4534
4535 QUIT;
4536
4537 if (interrupt_on_connect)
4538 send_interrupt_sequence ();
4539
4540 /* Ack any packet which the remote side has already sent. */
4541 remote_serial_write ("+", 1);
4542
4543 /* The first packet we send to the target is the optional "supported
4544 packets" request. If the target can answer this, it will tell us
4545 which later probes to skip. */
4546 remote_query_supported ();
4547
4548 /* If the stub wants to get a QAllow, compose one and send it. */
4549 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4550 set_permissions ();
4551
4552 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4553 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4554 as a reply to known packet. For packet "vFile:setfs:" it is an
4555 invalid reply and GDB would return error in
4556 remote_hostio_set_filesystem, making remote files access impossible.
4557 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4558 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4559 {
4560 const char v_mustreplyempty[] = "vMustReplyEmpty";
4561
4562 putpkt (v_mustreplyempty);
4563 getpkt (&rs->buf, 0);
4564 if (strcmp (rs->buf.data (), "OK") == 0)
4565 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4566 else if (strcmp (rs->buf.data (), "") != 0)
4567 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4568 rs->buf.data ());
4569 }
4570
4571 /* Next, we possibly activate noack mode.
4572
4573 If the QStartNoAckMode packet configuration is set to AUTO,
4574 enable noack mode if the stub reported a wish for it with
4575 qSupported.
4576
4577 If set to TRUE, then enable noack mode even if the stub didn't
4578 report it in qSupported. If the stub doesn't reply OK, the
4579 session ends with an error.
4580
4581 If FALSE, then don't activate noack mode, regardless of what the
4582 stub claimed should be the default with qSupported. */
4583
4584 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4585 if (packet_config_support (noack_config) != PACKET_DISABLE)
4586 {
4587 putpkt ("QStartNoAckMode");
4588 getpkt (&rs->buf, 0);
4589 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4590 rs->noack_mode = 1;
4591 }
4592
4593 if (extended_p)
4594 {
4595 /* Tell the remote that we are using the extended protocol. */
4596 putpkt ("!");
4597 getpkt (&rs->buf, 0);
4598 }
4599
4600 /* Let the target know which signals it is allowed to pass down to
4601 the program. */
4602 update_signals_program_target ();
4603
4604 /* Next, if the target can specify a description, read it. We do
4605 this before anything involving memory or registers. */
4606 target_find_description ();
4607
4608 /* Next, now that we know something about the target, update the
4609 address spaces in the program spaces. */
4610 update_address_spaces ();
4611
4612 /* On OSs where the list of libraries is global to all
4613 processes, we fetch them early. */
4614 if (gdbarch_has_global_solist (target_gdbarch ()))
4615 solib_add (NULL, from_tty, auto_solib_add);
4616
4617 if (target_is_non_stop_p ())
4618 {
4619 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4620 error (_("Non-stop mode requested, but remote "
4621 "does not support non-stop"));
4622
4623 putpkt ("QNonStop:1");
4624 getpkt (&rs->buf, 0);
4625
4626 if (strcmp (rs->buf.data (), "OK") != 0)
4627 error (_("Remote refused setting non-stop mode with: %s"),
4628 rs->buf.data ());
4629
4630 /* Find about threads and processes the stub is already
4631 controlling. We default to adding them in the running state.
4632 The '?' query below will then tell us about which threads are
4633 stopped. */
4634 this->update_thread_list ();
4635 }
4636 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4637 {
4638 /* Don't assume that the stub can operate in all-stop mode.
4639 Request it explicitly. */
4640 putpkt ("QNonStop:0");
4641 getpkt (&rs->buf, 0);
4642
4643 if (strcmp (rs->buf.data (), "OK") != 0)
4644 error (_("Remote refused setting all-stop mode with: %s"),
4645 rs->buf.data ());
4646 }
4647
4648 /* Upload TSVs regardless of whether the target is running or not. The
4649 remote stub, such as GDBserver, may have some predefined or builtin
4650 TSVs, even if the target is not running. */
4651 if (get_trace_status (current_trace_status ()) != -1)
4652 {
4653 struct uploaded_tsv *uploaded_tsvs = NULL;
4654
4655 upload_trace_state_variables (&uploaded_tsvs);
4656 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4657 }
4658
4659 /* Check whether the target is running now. */
4660 putpkt ("?");
4661 getpkt (&rs->buf, 0);
4662
4663 if (!target_is_non_stop_p ())
4664 {
4665 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4666 {
4667 if (!extended_p)
4668 error (_("The target is not running (try extended-remote?)"));
4669
4670 /* We're connected, but not running. Drop out before we
4671 call start_remote. */
4672 rs->starting_up = 0;
4673 return;
4674 }
4675 else
4676 {
4677 /* Save the reply for later. */
4678 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
4679 strcpy (wait_status, rs->buf.data ());
4680 }
4681
4682 /* Fetch thread list. */
4683 target_update_thread_list ();
4684
4685 /* Let the stub know that we want it to return the thread. */
4686 set_continue_thread (minus_one_ptid);
4687
4688 if (thread_count () == 0)
4689 {
4690 /* Target has no concept of threads at all. GDB treats
4691 non-threaded target as single-threaded; add a main
4692 thread. */
4693 add_current_inferior_and_thread (wait_status);
4694 }
4695 else
4696 {
4697 /* We have thread information; select the thread the target
4698 says should be current. If we're reconnecting to a
4699 multi-threaded program, this will ideally be the thread
4700 that last reported an event before GDB disconnected. */
4701 inferior_ptid = get_current_thread (wait_status);
4702 if (inferior_ptid == null_ptid)
4703 {
4704 /* Odd... The target was able to list threads, but not
4705 tell us which thread was current (no "thread"
4706 register in T stop reply?). Just pick the first
4707 thread in the thread list then. */
4708
4709 if (remote_debug)
4710 fprintf_unfiltered (gdb_stdlog,
4711 "warning: couldn't determine remote "
4712 "current thread; picking first in list.\n");
4713
4714 inferior_ptid = inferior_list->thread_list->ptid;
4715 }
4716 }
4717
4718 /* init_wait_for_inferior should be called before get_offsets in order
4719 to manage `inserted' flag in bp loc in a correct state.
4720 breakpoint_init_inferior, called from init_wait_for_inferior, set
4721 `inserted' flag to 0, while before breakpoint_re_set, called from
4722 start_remote, set `inserted' flag to 1. In the initialization of
4723 inferior, breakpoint_init_inferior should be called first, and then
4724 breakpoint_re_set can be called. If this order is broken, state of
4725 `inserted' flag is wrong, and cause some problems on breakpoint
4726 manipulation. */
4727 init_wait_for_inferior ();
4728
4729 get_offsets (); /* Get text, data & bss offsets. */
4730
4731 /* If we could not find a description using qXfer, and we know
4732 how to do it some other way, try again. This is not
4733 supported for non-stop; it could be, but it is tricky if
4734 there are no stopped threads when we connect. */
4735 if (remote_read_description_p (this)
4736 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4737 {
4738 target_clear_description ();
4739 target_find_description ();
4740 }
4741
4742 /* Use the previously fetched status. */
4743 gdb_assert (wait_status != NULL);
4744 strcpy (rs->buf.data (), wait_status);
4745 rs->cached_wait_status = 1;
4746
4747 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4748 }
4749 else
4750 {
4751 /* Clear WFI global state. Do this before finding about new
4752 threads and inferiors, and setting the current inferior.
4753 Otherwise we would clear the proceed status of the current
4754 inferior when we want its stop_soon state to be preserved
4755 (see notice_new_inferior). */
4756 init_wait_for_inferior ();
4757
4758 /* In non-stop, we will either get an "OK", meaning that there
4759 are no stopped threads at this time; or, a regular stop
4760 reply. In the latter case, there may be more than one thread
4761 stopped --- we pull them all out using the vStopped
4762 mechanism. */
4763 if (strcmp (rs->buf.data (), "OK") != 0)
4764 {
4765 struct notif_client *notif = &notif_client_stop;
4766
4767 /* remote_notif_get_pending_replies acks this one, and gets
4768 the rest out. */
4769 rs->notif_state->pending_event[notif_client_stop.id]
4770 = remote_notif_parse (this, notif, rs->buf.data ());
4771 remote_notif_get_pending_events (notif);
4772 }
4773
4774 if (thread_count () == 0)
4775 {
4776 if (!extended_p)
4777 error (_("The target is not running (try extended-remote?)"));
4778
4779 /* We're connected, but not running. Drop out before we
4780 call start_remote. */
4781 rs->starting_up = 0;
4782 return;
4783 }
4784
4785 /* In non-stop mode, any cached wait status will be stored in
4786 the stop reply queue. */
4787 gdb_assert (wait_status == NULL);
4788
4789 /* Report all signals during attach/startup. */
4790 pass_signals ({});
4791
4792 /* If there are already stopped threads, mark them stopped and
4793 report their stops before giving the prompt to the user. */
4794 process_initial_stop_replies (from_tty);
4795
4796 if (target_can_async_p ())
4797 target_async (1);
4798 }
4799
4800 /* If we connected to a live target, do some additional setup. */
4801 if (target_has_execution)
4802 {
4803 if (symfile_objfile) /* No use without a symbol-file. */
4804 remote_check_symbols ();
4805 }
4806
4807 /* Possibly the target has been engaged in a trace run started
4808 previously; find out where things are at. */
4809 if (get_trace_status (current_trace_status ()) != -1)
4810 {
4811 struct uploaded_tp *uploaded_tps = NULL;
4812
4813 if (current_trace_status ()->running)
4814 printf_filtered (_("Trace is already running on the target.\n"));
4815
4816 upload_tracepoints (&uploaded_tps);
4817
4818 merge_uploaded_tracepoints (&uploaded_tps);
4819 }
4820
4821 /* Possibly the target has been engaged in a btrace record started
4822 previously; find out where things are at. */
4823 remote_btrace_maybe_reopen ();
4824
4825 /* The thread and inferior lists are now synchronized with the
4826 target, our symbols have been relocated, and we're merged the
4827 target's tracepoints with ours. We're done with basic start
4828 up. */
4829 rs->starting_up = 0;
4830
4831 /* Maybe breakpoints are global and need to be inserted now. */
4832 if (breakpoints_should_be_inserted_now ())
4833 insert_breakpoints ();
4834 }
4835
4836 /* Open a connection to a remote debugger.
4837 NAME is the filename used for communication. */
4838
4839 void
4840 remote_target::open (const char *name, int from_tty)
4841 {
4842 open_1 (name, from_tty, 0);
4843 }
4844
4845 /* Open a connection to a remote debugger using the extended
4846 remote gdb protocol. NAME is the filename used for communication. */
4847
4848 void
4849 extended_remote_target::open (const char *name, int from_tty)
4850 {
4851 open_1 (name, from_tty, 1 /*extended_p */);
4852 }
4853
4854 /* Reset all packets back to "unknown support". Called when opening a
4855 new connection to a remote target. */
4856
4857 static void
4858 reset_all_packet_configs_support (void)
4859 {
4860 int i;
4861
4862 for (i = 0; i < PACKET_MAX; i++)
4863 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4864 }
4865
4866 /* Initialize all packet configs. */
4867
4868 static void
4869 init_all_packet_configs (void)
4870 {
4871 int i;
4872
4873 for (i = 0; i < PACKET_MAX; i++)
4874 {
4875 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4876 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4877 }
4878 }
4879
4880 /* Symbol look-up. */
4881
4882 void
4883 remote_target::remote_check_symbols ()
4884 {
4885 char *tmp;
4886 int end;
4887
4888 /* The remote side has no concept of inferiors that aren't running
4889 yet, it only knows about running processes. If we're connected
4890 but our current inferior is not running, we should not invite the
4891 remote target to request symbol lookups related to its
4892 (unrelated) current process. */
4893 if (!target_has_execution)
4894 return;
4895
4896 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4897 return;
4898
4899 /* Make sure the remote is pointing at the right process. Note
4900 there's no way to select "no process". */
4901 set_general_process ();
4902
4903 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4904 because we need both at the same time. */
4905 gdb::char_vector msg (get_remote_packet_size ());
4906 gdb::char_vector reply (get_remote_packet_size ());
4907
4908 /* Invite target to request symbol lookups. */
4909
4910 putpkt ("qSymbol::");
4911 getpkt (&reply, 0);
4912 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4913
4914 while (startswith (reply.data (), "qSymbol:"))
4915 {
4916 struct bound_minimal_symbol sym;
4917
4918 tmp = &reply[8];
4919 end = hex2bin (tmp, reinterpret_cast <gdb_byte *> (msg.data ()),
4920 strlen (tmp) / 2);
4921 msg[end] = '\0';
4922 sym = lookup_minimal_symbol (msg.data (), NULL, NULL);
4923 if (sym.minsym == NULL)
4924 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol::%s",
4925 &reply[8]);
4926 else
4927 {
4928 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4929 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4930
4931 /* If this is a function address, return the start of code
4932 instead of any data function descriptor. */
4933 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4934 sym_addr,
4935 current_top_target ());
4936
4937 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol:%s:%s",
4938 phex_nz (sym_addr, addr_size), &reply[8]);
4939 }
4940
4941 putpkt (msg.data ());
4942 getpkt (&reply, 0);
4943 }
4944 }
4945
4946 static struct serial *
4947 remote_serial_open (const char *name)
4948 {
4949 static int udp_warning = 0;
4950
4951 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
4952 of in ser-tcp.c, because it is the remote protocol assuming that the
4953 serial connection is reliable and not the serial connection promising
4954 to be. */
4955 if (!udp_warning && startswith (name, "udp:"))
4956 {
4957 warning (_("The remote protocol may be unreliable over UDP.\n"
4958 "Some events may be lost, rendering further debugging "
4959 "impossible."));
4960 udp_warning = 1;
4961 }
4962
4963 return serial_open (name);
4964 }
4965
4966 /* Inform the target of our permission settings. The permission flags
4967 work without this, but if the target knows the settings, it can do
4968 a couple things. First, it can add its own check, to catch cases
4969 that somehow manage to get by the permissions checks in target
4970 methods. Second, if the target is wired to disallow particular
4971 settings (for instance, a system in the field that is not set up to
4972 be able to stop at a breakpoint), it can object to any unavailable
4973 permissions. */
4974
4975 void
4976 remote_target::set_permissions ()
4977 {
4978 struct remote_state *rs = get_remote_state ();
4979
4980 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAllow:"
4981 "WriteReg:%x;WriteMem:%x;"
4982 "InsertBreak:%x;InsertTrace:%x;"
4983 "InsertFastTrace:%x;Stop:%x",
4984 may_write_registers, may_write_memory,
4985 may_insert_breakpoints, may_insert_tracepoints,
4986 may_insert_fast_tracepoints, may_stop);
4987 putpkt (rs->buf);
4988 getpkt (&rs->buf, 0);
4989
4990 /* If the target didn't like the packet, warn the user. Do not try
4991 to undo the user's settings, that would just be maddening. */
4992 if (strcmp (rs->buf.data (), "OK") != 0)
4993 warning (_("Remote refused setting permissions with: %s"),
4994 rs->buf.data ());
4995 }
4996
4997 /* This type describes each known response to the qSupported
4998 packet. */
4999 struct protocol_feature
5000 {
5001 /* The name of this protocol feature. */
5002 const char *name;
5003
5004 /* The default for this protocol feature. */
5005 enum packet_support default_support;
5006
5007 /* The function to call when this feature is reported, or after
5008 qSupported processing if the feature is not supported.
5009 The first argument points to this structure. The second
5010 argument indicates whether the packet requested support be
5011 enabled, disabled, or probed (or the default, if this function
5012 is being called at the end of processing and this feature was
5013 not reported). The third argument may be NULL; if not NULL, it
5014 is a NUL-terminated string taken from the packet following
5015 this feature's name and an equals sign. */
5016 void (*func) (remote_target *remote, const struct protocol_feature *,
5017 enum packet_support, const char *);
5018
5019 /* The corresponding packet for this feature. Only used if
5020 FUNC is remote_supported_packet. */
5021 int packet;
5022 };
5023
5024 static void
5025 remote_supported_packet (remote_target *remote,
5026 const struct protocol_feature *feature,
5027 enum packet_support support,
5028 const char *argument)
5029 {
5030 if (argument)
5031 {
5032 warning (_("Remote qSupported response supplied an unexpected value for"
5033 " \"%s\"."), feature->name);
5034 return;
5035 }
5036
5037 remote_protocol_packets[feature->packet].support = support;
5038 }
5039
5040 void
5041 remote_target::remote_packet_size (const protocol_feature *feature,
5042 enum packet_support support, const char *value)
5043 {
5044 struct remote_state *rs = get_remote_state ();
5045
5046 int packet_size;
5047 char *value_end;
5048
5049 if (support != PACKET_ENABLE)
5050 return;
5051
5052 if (value == NULL || *value == '\0')
5053 {
5054 warning (_("Remote target reported \"%s\" without a size."),
5055 feature->name);
5056 return;
5057 }
5058
5059 errno = 0;
5060 packet_size = strtol (value, &value_end, 16);
5061 if (errno != 0 || *value_end != '\0' || packet_size < 0)
5062 {
5063 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
5064 feature->name, value);
5065 return;
5066 }
5067
5068 /* Record the new maximum packet size. */
5069 rs->explicit_packet_size = packet_size;
5070 }
5071
5072 void
5073 remote_packet_size (remote_target *remote, const protocol_feature *feature,
5074 enum packet_support support, const char *value)
5075 {
5076 remote->remote_packet_size (feature, support, value);
5077 }
5078
5079 static const struct protocol_feature remote_protocol_features[] = {
5080 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
5081 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
5082 PACKET_qXfer_auxv },
5083 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
5084 PACKET_qXfer_exec_file },
5085 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
5086 PACKET_qXfer_features },
5087 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
5088 PACKET_qXfer_libraries },
5089 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
5090 PACKET_qXfer_libraries_svr4 },
5091 { "augmented-libraries-svr4-read", PACKET_DISABLE,
5092 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
5093 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
5094 PACKET_qXfer_memory_map },
5095 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
5096 PACKET_qXfer_spu_read },
5097 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
5098 PACKET_qXfer_spu_write },
5099 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
5100 PACKET_qXfer_osdata },
5101 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
5102 PACKET_qXfer_threads },
5103 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
5104 PACKET_qXfer_traceframe_info },
5105 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
5106 PACKET_QPassSignals },
5107 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
5108 PACKET_QCatchSyscalls },
5109 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
5110 PACKET_QProgramSignals },
5111 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
5112 PACKET_QSetWorkingDir },
5113 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
5114 PACKET_QStartupWithShell },
5115 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
5116 PACKET_QEnvironmentHexEncoded },
5117 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
5118 PACKET_QEnvironmentReset },
5119 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
5120 PACKET_QEnvironmentUnset },
5121 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
5122 PACKET_QStartNoAckMode },
5123 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
5124 PACKET_multiprocess_feature },
5125 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
5126 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
5127 PACKET_qXfer_siginfo_read },
5128 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
5129 PACKET_qXfer_siginfo_write },
5130 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
5131 PACKET_ConditionalTracepoints },
5132 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
5133 PACKET_ConditionalBreakpoints },
5134 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
5135 PACKET_BreakpointCommands },
5136 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
5137 PACKET_FastTracepoints },
5138 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
5139 PACKET_StaticTracepoints },
5140 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
5141 PACKET_InstallInTrace},
5142 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
5143 PACKET_DisconnectedTracing_feature },
5144 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
5145 PACKET_bc },
5146 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
5147 PACKET_bs },
5148 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
5149 PACKET_TracepointSource },
5150 { "QAllow", PACKET_DISABLE, remote_supported_packet,
5151 PACKET_QAllow },
5152 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
5153 PACKET_EnableDisableTracepoints_feature },
5154 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
5155 PACKET_qXfer_fdpic },
5156 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
5157 PACKET_qXfer_uib },
5158 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
5159 PACKET_QDisableRandomization },
5160 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
5161 { "QTBuffer:size", PACKET_DISABLE,
5162 remote_supported_packet, PACKET_QTBuffer_size},
5163 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
5164 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
5165 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
5166 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
5167 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
5168 PACKET_qXfer_btrace },
5169 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
5170 PACKET_qXfer_btrace_conf },
5171 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
5172 PACKET_Qbtrace_conf_bts_size },
5173 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
5174 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
5175 { "fork-events", PACKET_DISABLE, remote_supported_packet,
5176 PACKET_fork_event_feature },
5177 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
5178 PACKET_vfork_event_feature },
5179 { "exec-events", PACKET_DISABLE, remote_supported_packet,
5180 PACKET_exec_event_feature },
5181 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
5182 PACKET_Qbtrace_conf_pt_size },
5183 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
5184 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
5185 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
5186 };
5187
5188 static char *remote_support_xml;
5189
5190 /* Register string appended to "xmlRegisters=" in qSupported query. */
5191
5192 void
5193 register_remote_support_xml (const char *xml)
5194 {
5195 #if defined(HAVE_LIBEXPAT)
5196 if (remote_support_xml == NULL)
5197 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
5198 else
5199 {
5200 char *copy = xstrdup (remote_support_xml + 13);
5201 char *p = strtok (copy, ",");
5202
5203 do
5204 {
5205 if (strcmp (p, xml) == 0)
5206 {
5207 /* already there */
5208 xfree (copy);
5209 return;
5210 }
5211 }
5212 while ((p = strtok (NULL, ",")) != NULL);
5213 xfree (copy);
5214
5215 remote_support_xml = reconcat (remote_support_xml,
5216 remote_support_xml, ",", xml,
5217 (char *) NULL);
5218 }
5219 #endif
5220 }
5221
5222 static void
5223 remote_query_supported_append (std::string *msg, const char *append)
5224 {
5225 if (!msg->empty ())
5226 msg->append (";");
5227 msg->append (append);
5228 }
5229
5230 void
5231 remote_target::remote_query_supported ()
5232 {
5233 struct remote_state *rs = get_remote_state ();
5234 char *next;
5235 int i;
5236 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5237
5238 /* The packet support flags are handled differently for this packet
5239 than for most others. We treat an error, a disabled packet, and
5240 an empty response identically: any features which must be reported
5241 to be used will be automatically disabled. An empty buffer
5242 accomplishes this, since that is also the representation for a list
5243 containing no features. */
5244
5245 rs->buf[0] = 0;
5246 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5247 {
5248 std::string q;
5249
5250 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5251 remote_query_supported_append (&q, "multiprocess+");
5252
5253 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5254 remote_query_supported_append (&q, "swbreak+");
5255 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5256 remote_query_supported_append (&q, "hwbreak+");
5257
5258 remote_query_supported_append (&q, "qRelocInsn+");
5259
5260 if (packet_set_cmd_state (PACKET_fork_event_feature)
5261 != AUTO_BOOLEAN_FALSE)
5262 remote_query_supported_append (&q, "fork-events+");
5263 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5264 != AUTO_BOOLEAN_FALSE)
5265 remote_query_supported_append (&q, "vfork-events+");
5266 if (packet_set_cmd_state (PACKET_exec_event_feature)
5267 != AUTO_BOOLEAN_FALSE)
5268 remote_query_supported_append (&q, "exec-events+");
5269
5270 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5271 remote_query_supported_append (&q, "vContSupported+");
5272
5273 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5274 remote_query_supported_append (&q, "QThreadEvents+");
5275
5276 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5277 remote_query_supported_append (&q, "no-resumed+");
5278
5279 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5280 the qSupported:xmlRegisters=i386 handling. */
5281 if (remote_support_xml != NULL
5282 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5283 remote_query_supported_append (&q, remote_support_xml);
5284
5285 q = "qSupported:" + q;
5286 putpkt (q.c_str ());
5287
5288 getpkt (&rs->buf, 0);
5289
5290 /* If an error occured, warn, but do not return - just reset the
5291 buffer to empty and go on to disable features. */
5292 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5293 == PACKET_ERROR)
5294 {
5295 warning (_("Remote failure reply: %s"), rs->buf.data ());
5296 rs->buf[0] = 0;
5297 }
5298 }
5299
5300 memset (seen, 0, sizeof (seen));
5301
5302 next = rs->buf.data ();
5303 while (*next)
5304 {
5305 enum packet_support is_supported;
5306 char *p, *end, *name_end, *value;
5307
5308 /* First separate out this item from the rest of the packet. If
5309 there's another item after this, we overwrite the separator
5310 (terminated strings are much easier to work with). */
5311 p = next;
5312 end = strchr (p, ';');
5313 if (end == NULL)
5314 {
5315 end = p + strlen (p);
5316 next = end;
5317 }
5318 else
5319 {
5320 *end = '\0';
5321 next = end + 1;
5322
5323 if (end == p)
5324 {
5325 warning (_("empty item in \"qSupported\" response"));
5326 continue;
5327 }
5328 }
5329
5330 name_end = strchr (p, '=');
5331 if (name_end)
5332 {
5333 /* This is a name=value entry. */
5334 is_supported = PACKET_ENABLE;
5335 value = name_end + 1;
5336 *name_end = '\0';
5337 }
5338 else
5339 {
5340 value = NULL;
5341 switch (end[-1])
5342 {
5343 case '+':
5344 is_supported = PACKET_ENABLE;
5345 break;
5346
5347 case '-':
5348 is_supported = PACKET_DISABLE;
5349 break;
5350
5351 case '?':
5352 is_supported = PACKET_SUPPORT_UNKNOWN;
5353 break;
5354
5355 default:
5356 warning (_("unrecognized item \"%s\" "
5357 "in \"qSupported\" response"), p);
5358 continue;
5359 }
5360 end[-1] = '\0';
5361 }
5362
5363 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5364 if (strcmp (remote_protocol_features[i].name, p) == 0)
5365 {
5366 const struct protocol_feature *feature;
5367
5368 seen[i] = 1;
5369 feature = &remote_protocol_features[i];
5370 feature->func (this, feature, is_supported, value);
5371 break;
5372 }
5373 }
5374
5375 /* If we increased the packet size, make sure to increase the global
5376 buffer size also. We delay this until after parsing the entire
5377 qSupported packet, because this is the same buffer we were
5378 parsing. */
5379 if (rs->buf.size () < rs->explicit_packet_size)
5380 rs->buf.resize (rs->explicit_packet_size);
5381
5382 /* Handle the defaults for unmentioned features. */
5383 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5384 if (!seen[i])
5385 {
5386 const struct protocol_feature *feature;
5387
5388 feature = &remote_protocol_features[i];
5389 feature->func (this, feature, feature->default_support, NULL);
5390 }
5391 }
5392
5393 /* Serial QUIT handler for the remote serial descriptor.
5394
5395 Defers handling a Ctrl-C until we're done with the current
5396 command/response packet sequence, unless:
5397
5398 - We're setting up the connection. Don't send a remote interrupt
5399 request, as we're not fully synced yet. Quit immediately
5400 instead.
5401
5402 - The target has been resumed in the foreground
5403 (target_terminal::is_ours is false) with a synchronous resume
5404 packet, and we're blocked waiting for the stop reply, thus a
5405 Ctrl-C should be immediately sent to the target.
5406
5407 - We get a second Ctrl-C while still within the same serial read or
5408 write. In that case the serial is seemingly wedged --- offer to
5409 quit/disconnect.
5410
5411 - We see a second Ctrl-C without target response, after having
5412 previously interrupted the target. In that case the target/stub
5413 is probably wedged --- offer to quit/disconnect.
5414 */
5415
5416 void
5417 remote_target::remote_serial_quit_handler ()
5418 {
5419 struct remote_state *rs = get_remote_state ();
5420
5421 if (check_quit_flag ())
5422 {
5423 /* If we're starting up, we're not fully synced yet. Quit
5424 immediately. */
5425 if (rs->starting_up)
5426 quit ();
5427 else if (rs->got_ctrlc_during_io)
5428 {
5429 if (query (_("The target is not responding to GDB commands.\n"
5430 "Stop debugging it? ")))
5431 remote_unpush_and_throw ();
5432 }
5433 /* If ^C has already been sent once, offer to disconnect. */
5434 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5435 interrupt_query ();
5436 /* All-stop protocol, and blocked waiting for stop reply. Send
5437 an interrupt request. */
5438 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5439 target_interrupt ();
5440 else
5441 rs->got_ctrlc_during_io = 1;
5442 }
5443 }
5444
5445 /* The remote_target that is current while the quit handler is
5446 overridden with remote_serial_quit_handler. */
5447 static remote_target *curr_quit_handler_target;
5448
5449 static void
5450 remote_serial_quit_handler ()
5451 {
5452 curr_quit_handler_target->remote_serial_quit_handler ();
5453 }
5454
5455 /* Remove any of the remote.c targets from target stack. Upper targets depend
5456 on it so remove them first. */
5457
5458 static void
5459 remote_unpush_target (void)
5460 {
5461 pop_all_targets_at_and_above (process_stratum);
5462 }
5463
5464 static void
5465 remote_unpush_and_throw (void)
5466 {
5467 remote_unpush_target ();
5468 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5469 }
5470
5471 void
5472 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5473 {
5474 remote_target *curr_remote = get_current_remote_target ();
5475
5476 if (name == 0)
5477 error (_("To open a remote debug connection, you need to specify what\n"
5478 "serial device is attached to the remote system\n"
5479 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5480
5481 /* If we're connected to a running target, target_preopen will kill it.
5482 Ask this question first, before target_preopen has a chance to kill
5483 anything. */
5484 if (curr_remote != NULL && !have_inferiors ())
5485 {
5486 if (from_tty
5487 && !query (_("Already connected to a remote target. Disconnect? ")))
5488 error (_("Still connected."));
5489 }
5490
5491 /* Here the possibly existing remote target gets unpushed. */
5492 target_preopen (from_tty);
5493
5494 remote_fileio_reset ();
5495 reopen_exec_file ();
5496 reread_symbols ();
5497
5498 remote_target *remote
5499 = (extended_p ? new extended_remote_target () : new remote_target ());
5500 target_ops_up target_holder (remote);
5501
5502 remote_state *rs = remote->get_remote_state ();
5503
5504 /* See FIXME above. */
5505 if (!target_async_permitted)
5506 rs->wait_forever_enabled_p = 1;
5507
5508 rs->remote_desc = remote_serial_open (name);
5509 if (!rs->remote_desc)
5510 perror_with_name (name);
5511
5512 if (baud_rate != -1)
5513 {
5514 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5515 {
5516 /* The requested speed could not be set. Error out to
5517 top level after closing remote_desc. Take care to
5518 set remote_desc to NULL to avoid closing remote_desc
5519 more than once. */
5520 serial_close (rs->remote_desc);
5521 rs->remote_desc = NULL;
5522 perror_with_name (name);
5523 }
5524 }
5525
5526 serial_setparity (rs->remote_desc, serial_parity);
5527 serial_raw (rs->remote_desc);
5528
5529 /* If there is something sitting in the buffer we might take it as a
5530 response to a command, which would be bad. */
5531 serial_flush_input (rs->remote_desc);
5532
5533 if (from_tty)
5534 {
5535 puts_filtered ("Remote debugging using ");
5536 puts_filtered (name);
5537 puts_filtered ("\n");
5538 }
5539
5540 /* Switch to using the remote target now. */
5541 push_target (std::move (target_holder));
5542
5543 /* Register extra event sources in the event loop. */
5544 rs->remote_async_inferior_event_token
5545 = create_async_event_handler (remote_async_inferior_event_handler,
5546 remote);
5547 rs->notif_state = remote_notif_state_allocate (remote);
5548
5549 /* Reset the target state; these things will be queried either by
5550 remote_query_supported or as they are needed. */
5551 reset_all_packet_configs_support ();
5552 rs->cached_wait_status = 0;
5553 rs->explicit_packet_size = 0;
5554 rs->noack_mode = 0;
5555 rs->extended = extended_p;
5556 rs->waiting_for_stop_reply = 0;
5557 rs->ctrlc_pending_p = 0;
5558 rs->got_ctrlc_during_io = 0;
5559
5560 rs->general_thread = not_sent_ptid;
5561 rs->continue_thread = not_sent_ptid;
5562 rs->remote_traceframe_number = -1;
5563
5564 rs->last_resume_exec_dir = EXEC_FORWARD;
5565
5566 /* Probe for ability to use "ThreadInfo" query, as required. */
5567 rs->use_threadinfo_query = 1;
5568 rs->use_threadextra_query = 1;
5569
5570 rs->readahead_cache.invalidate ();
5571
5572 if (target_async_permitted)
5573 {
5574 /* FIXME: cagney/1999-09-23: During the initial connection it is
5575 assumed that the target is already ready and able to respond to
5576 requests. Unfortunately remote_start_remote() eventually calls
5577 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5578 around this. Eventually a mechanism that allows
5579 wait_for_inferior() to expect/get timeouts will be
5580 implemented. */
5581 rs->wait_forever_enabled_p = 0;
5582 }
5583
5584 /* First delete any symbols previously loaded from shared libraries. */
5585 no_shared_libraries (NULL, 0);
5586
5587 /* Start the remote connection. If error() or QUIT, discard this
5588 target (we'd otherwise be in an inconsistent state) and then
5589 propogate the error on up the exception chain. This ensures that
5590 the caller doesn't stumble along blindly assuming that the
5591 function succeeded. The CLI doesn't have this problem but other
5592 UI's, such as MI do.
5593
5594 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5595 this function should return an error indication letting the
5596 caller restore the previous state. Unfortunately the command
5597 ``target remote'' is directly wired to this function making that
5598 impossible. On a positive note, the CLI side of this problem has
5599 been fixed - the function set_cmd_context() makes it possible for
5600 all the ``target ....'' commands to share a common callback
5601 function. See cli-dump.c. */
5602 {
5603
5604 try
5605 {
5606 remote->start_remote (from_tty, extended_p);
5607 }
5608 catch (const gdb_exception &ex)
5609 {
5610 /* Pop the partially set up target - unless something else did
5611 already before throwing the exception. */
5612 if (ex.error != TARGET_CLOSE_ERROR)
5613 remote_unpush_target ();
5614 throw_exception (ex);
5615 }
5616 }
5617
5618 remote_btrace_reset (rs);
5619
5620 if (target_async_permitted)
5621 rs->wait_forever_enabled_p = 1;
5622 }
5623
5624 /* Detach the specified process. */
5625
5626 void
5627 remote_target::remote_detach_pid (int pid)
5628 {
5629 struct remote_state *rs = get_remote_state ();
5630
5631 /* This should not be necessary, but the handling for D;PID in
5632 GDBserver versions prior to 8.2 incorrectly assumes that the
5633 selected process points to the same process we're detaching,
5634 leading to misbehavior (and possibly GDBserver crashing) when it
5635 does not. Since it's easy and cheap, work around it by forcing
5636 GDBserver to select GDB's current process. */
5637 set_general_process ();
5638
5639 if (remote_multi_process_p (rs))
5640 xsnprintf (rs->buf.data (), get_remote_packet_size (), "D;%x", pid);
5641 else
5642 strcpy (rs->buf.data (), "D");
5643
5644 putpkt (rs->buf);
5645 getpkt (&rs->buf, 0);
5646
5647 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5648 ;
5649 else if (rs->buf[0] == '\0')
5650 error (_("Remote doesn't know how to detach"));
5651 else
5652 error (_("Can't detach process."));
5653 }
5654
5655 /* This detaches a program to which we previously attached, using
5656 inferior_ptid to identify the process. After this is done, GDB
5657 can be used to debug some other program. We better not have left
5658 any breakpoints in the target program or it'll die when it hits
5659 one. */
5660
5661 void
5662 remote_target::remote_detach_1 (inferior *inf, int from_tty)
5663 {
5664 int pid = inferior_ptid.pid ();
5665 struct remote_state *rs = get_remote_state ();
5666 int is_fork_parent;
5667
5668 if (!target_has_execution)
5669 error (_("No process to detach from."));
5670
5671 target_announce_detach (from_tty);
5672
5673 /* Tell the remote target to detach. */
5674 remote_detach_pid (pid);
5675
5676 /* Exit only if this is the only active inferior. */
5677 if (from_tty && !rs->extended && number_of_live_inferiors () == 1)
5678 puts_filtered (_("Ending remote debugging.\n"));
5679
5680 struct thread_info *tp = find_thread_ptid (inferior_ptid);
5681
5682 /* Check to see if we are detaching a fork parent. Note that if we
5683 are detaching a fork child, tp == NULL. */
5684 is_fork_parent = (tp != NULL
5685 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5686
5687 /* If doing detach-on-fork, we don't mourn, because that will delete
5688 breakpoints that should be available for the followed inferior. */
5689 if (!is_fork_parent)
5690 {
5691 /* Save the pid as a string before mourning, since that will
5692 unpush the remote target, and we need the string after. */
5693 std::string infpid = target_pid_to_str (ptid_t (pid));
5694
5695 target_mourn_inferior (inferior_ptid);
5696 if (print_inferior_events)
5697 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5698 inf->num, infpid.c_str ());
5699 }
5700 else
5701 {
5702 inferior_ptid = null_ptid;
5703 detach_inferior (current_inferior ());
5704 }
5705 }
5706
5707 void
5708 remote_target::detach (inferior *inf, int from_tty)
5709 {
5710 remote_detach_1 (inf, from_tty);
5711 }
5712
5713 void
5714 extended_remote_target::detach (inferior *inf, int from_tty)
5715 {
5716 remote_detach_1 (inf, from_tty);
5717 }
5718
5719 /* Target follow-fork function for remote targets. On entry, and
5720 at return, the current inferior is the fork parent.
5721
5722 Note that although this is currently only used for extended-remote,
5723 it is named remote_follow_fork in anticipation of using it for the
5724 remote target as well. */
5725
5726 int
5727 remote_target::follow_fork (int follow_child, int detach_fork)
5728 {
5729 struct remote_state *rs = get_remote_state ();
5730 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5731
5732 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5733 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5734 {
5735 /* When following the parent and detaching the child, we detach
5736 the child here. For the case of following the child and
5737 detaching the parent, the detach is done in the target-
5738 independent follow fork code in infrun.c. We can't use
5739 target_detach when detaching an unfollowed child because
5740 the client side doesn't know anything about the child. */
5741 if (detach_fork && !follow_child)
5742 {
5743 /* Detach the fork child. */
5744 ptid_t child_ptid;
5745 pid_t child_pid;
5746
5747 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5748 child_pid = child_ptid.pid ();
5749
5750 remote_detach_pid (child_pid);
5751 }
5752 }
5753 return 0;
5754 }
5755
5756 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5757 in the program space of the new inferior. On entry and at return the
5758 current inferior is the exec'ing inferior. INF is the new exec'd
5759 inferior, which may be the same as the exec'ing inferior unless
5760 follow-exec-mode is "new". */
5761
5762 void
5763 remote_target::follow_exec (struct inferior *inf, char *execd_pathname)
5764 {
5765 /* We know that this is a target file name, so if it has the "target:"
5766 prefix we strip it off before saving it in the program space. */
5767 if (is_target_filename (execd_pathname))
5768 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5769
5770 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5771 }
5772
5773 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5774
5775 void
5776 remote_target::disconnect (const char *args, int from_tty)
5777 {
5778 if (args)
5779 error (_("Argument given to \"disconnect\" when remotely debugging."));
5780
5781 /* Make sure we unpush even the extended remote targets. Calling
5782 target_mourn_inferior won't unpush, and remote_mourn won't
5783 unpush if there is more than one inferior left. */
5784 unpush_target (this);
5785 generic_mourn_inferior ();
5786
5787 if (from_tty)
5788 puts_filtered ("Ending remote debugging.\n");
5789 }
5790
5791 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5792 be chatty about it. */
5793
5794 void
5795 extended_remote_target::attach (const char *args, int from_tty)
5796 {
5797 struct remote_state *rs = get_remote_state ();
5798 int pid;
5799 char *wait_status = NULL;
5800
5801 pid = parse_pid_to_attach (args);
5802
5803 /* Remote PID can be freely equal to getpid, do not check it here the same
5804 way as in other targets. */
5805
5806 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5807 error (_("This target does not support attaching to a process"));
5808
5809 if (from_tty)
5810 {
5811 char *exec_file = get_exec_file (0);
5812
5813 if (exec_file)
5814 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5815 target_pid_to_str (ptid_t (pid)).c_str ());
5816 else
5817 printf_unfiltered (_("Attaching to %s\n"),
5818 target_pid_to_str (ptid_t (pid)).c_str ());
5819 }
5820
5821 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vAttach;%x", pid);
5822 putpkt (rs->buf);
5823 getpkt (&rs->buf, 0);
5824
5825 switch (packet_ok (rs->buf,
5826 &remote_protocol_packets[PACKET_vAttach]))
5827 {
5828 case PACKET_OK:
5829 if (!target_is_non_stop_p ())
5830 {
5831 /* Save the reply for later. */
5832 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
5833 strcpy (wait_status, rs->buf.data ());
5834 }
5835 else if (strcmp (rs->buf.data (), "OK") != 0)
5836 error (_("Attaching to %s failed with: %s"),
5837 target_pid_to_str (ptid_t (pid)).c_str (),
5838 rs->buf.data ());
5839 break;
5840 case PACKET_UNKNOWN:
5841 error (_("This target does not support attaching to a process"));
5842 default:
5843 error (_("Attaching to %s failed"),
5844 target_pid_to_str (ptid_t (pid)).c_str ());
5845 }
5846
5847 set_current_inferior (remote_add_inferior (0, pid, 1, 0));
5848
5849 inferior_ptid = ptid_t (pid);
5850
5851 if (target_is_non_stop_p ())
5852 {
5853 struct thread_info *thread;
5854
5855 /* Get list of threads. */
5856 update_thread_list ();
5857
5858 thread = first_thread_of_inferior (current_inferior ());
5859 if (thread)
5860 inferior_ptid = thread->ptid;
5861 else
5862 inferior_ptid = ptid_t (pid);
5863
5864 /* Invalidate our notion of the remote current thread. */
5865 record_currthread (rs, minus_one_ptid);
5866 }
5867 else
5868 {
5869 /* Now, if we have thread information, update inferior_ptid. */
5870 inferior_ptid = remote_current_thread (inferior_ptid);
5871
5872 /* Add the main thread to the thread list. */
5873 thread_info *thr = add_thread_silent (inferior_ptid);
5874 /* Don't consider the thread stopped until we've processed the
5875 saved stop reply. */
5876 set_executing (thr->ptid, true);
5877 }
5878
5879 /* Next, if the target can specify a description, read it. We do
5880 this before anything involving memory or registers. */
5881 target_find_description ();
5882
5883 if (!target_is_non_stop_p ())
5884 {
5885 /* Use the previously fetched status. */
5886 gdb_assert (wait_status != NULL);
5887
5888 if (target_can_async_p ())
5889 {
5890 struct notif_event *reply
5891 = remote_notif_parse (this, &notif_client_stop, wait_status);
5892
5893 push_stop_reply ((struct stop_reply *) reply);
5894
5895 target_async (1);
5896 }
5897 else
5898 {
5899 gdb_assert (wait_status != NULL);
5900 strcpy (rs->buf.data (), wait_status);
5901 rs->cached_wait_status = 1;
5902 }
5903 }
5904 else
5905 gdb_assert (wait_status == NULL);
5906 }
5907
5908 /* Implementation of the to_post_attach method. */
5909
5910 void
5911 extended_remote_target::post_attach (int pid)
5912 {
5913 /* Get text, data & bss offsets. */
5914 get_offsets ();
5915
5916 /* In certain cases GDB might not have had the chance to start
5917 symbol lookup up until now. This could happen if the debugged
5918 binary is not using shared libraries, the vsyscall page is not
5919 present (on Linux) and the binary itself hadn't changed since the
5920 debugging process was started. */
5921 if (symfile_objfile != NULL)
5922 remote_check_symbols();
5923 }
5924
5925 \f
5926 /* Check for the availability of vCont. This function should also check
5927 the response. */
5928
5929 void
5930 remote_target::remote_vcont_probe ()
5931 {
5932 remote_state *rs = get_remote_state ();
5933 char *buf;
5934
5935 strcpy (rs->buf.data (), "vCont?");
5936 putpkt (rs->buf);
5937 getpkt (&rs->buf, 0);
5938 buf = rs->buf.data ();
5939
5940 /* Make sure that the features we assume are supported. */
5941 if (startswith (buf, "vCont"))
5942 {
5943 char *p = &buf[5];
5944 int support_c, support_C;
5945
5946 rs->supports_vCont.s = 0;
5947 rs->supports_vCont.S = 0;
5948 support_c = 0;
5949 support_C = 0;
5950 rs->supports_vCont.t = 0;
5951 rs->supports_vCont.r = 0;
5952 while (p && *p == ';')
5953 {
5954 p++;
5955 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
5956 rs->supports_vCont.s = 1;
5957 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
5958 rs->supports_vCont.S = 1;
5959 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
5960 support_c = 1;
5961 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
5962 support_C = 1;
5963 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
5964 rs->supports_vCont.t = 1;
5965 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
5966 rs->supports_vCont.r = 1;
5967
5968 p = strchr (p, ';');
5969 }
5970
5971 /* If c, and C are not all supported, we can't use vCont. Clearing
5972 BUF will make packet_ok disable the packet. */
5973 if (!support_c || !support_C)
5974 buf[0] = 0;
5975 }
5976
5977 packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCont]);
5978 }
5979
5980 /* Helper function for building "vCont" resumptions. Write a
5981 resumption to P. ENDP points to one-passed-the-end of the buffer
5982 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
5983 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
5984 resumed thread should be single-stepped and/or signalled. If PTID
5985 equals minus_one_ptid, then all threads are resumed; if PTID
5986 represents a process, then all threads of the process are resumed;
5987 the thread to be stepped and/or signalled is given in the global
5988 INFERIOR_PTID. */
5989
5990 char *
5991 remote_target::append_resumption (char *p, char *endp,
5992 ptid_t ptid, int step, gdb_signal siggnal)
5993 {
5994 struct remote_state *rs = get_remote_state ();
5995
5996 if (step && siggnal != GDB_SIGNAL_0)
5997 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
5998 else if (step
5999 /* GDB is willing to range step. */
6000 && use_range_stepping
6001 /* Target supports range stepping. */
6002 && rs->supports_vCont.r
6003 /* We don't currently support range stepping multiple
6004 threads with a wildcard (though the protocol allows it,
6005 so stubs shouldn't make an active effort to forbid
6006 it). */
6007 && !(remote_multi_process_p (rs) && ptid.is_pid ()))
6008 {
6009 struct thread_info *tp;
6010
6011 if (ptid == minus_one_ptid)
6012 {
6013 /* If we don't know about the target thread's tid, then
6014 we're resuming magic_null_ptid (see caller). */
6015 tp = find_thread_ptid (magic_null_ptid);
6016 }
6017 else
6018 tp = find_thread_ptid (ptid);
6019 gdb_assert (tp != NULL);
6020
6021 if (tp->control.may_range_step)
6022 {
6023 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6024
6025 p += xsnprintf (p, endp - p, ";r%s,%s",
6026 phex_nz (tp->control.step_range_start,
6027 addr_size),
6028 phex_nz (tp->control.step_range_end,
6029 addr_size));
6030 }
6031 else
6032 p += xsnprintf (p, endp - p, ";s");
6033 }
6034 else if (step)
6035 p += xsnprintf (p, endp - p, ";s");
6036 else if (siggnal != GDB_SIGNAL_0)
6037 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
6038 else
6039 p += xsnprintf (p, endp - p, ";c");
6040
6041 if (remote_multi_process_p (rs) && ptid.is_pid ())
6042 {
6043 ptid_t nptid;
6044
6045 /* All (-1) threads of process. */
6046 nptid = ptid_t (ptid.pid (), -1, 0);
6047
6048 p += xsnprintf (p, endp - p, ":");
6049 p = write_ptid (p, endp, nptid);
6050 }
6051 else if (ptid != minus_one_ptid)
6052 {
6053 p += xsnprintf (p, endp - p, ":");
6054 p = write_ptid (p, endp, ptid);
6055 }
6056
6057 return p;
6058 }
6059
6060 /* Clear the thread's private info on resume. */
6061
6062 static void
6063 resume_clear_thread_private_info (struct thread_info *thread)
6064 {
6065 if (thread->priv != NULL)
6066 {
6067 remote_thread_info *priv = get_remote_thread_info (thread);
6068
6069 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6070 priv->watch_data_address = 0;
6071 }
6072 }
6073
6074 /* Append a vCont continue-with-signal action for threads that have a
6075 non-zero stop signal. */
6076
6077 char *
6078 remote_target::append_pending_thread_resumptions (char *p, char *endp,
6079 ptid_t ptid)
6080 {
6081 for (thread_info *thread : all_non_exited_threads (ptid))
6082 if (inferior_ptid != thread->ptid
6083 && thread->suspend.stop_signal != GDB_SIGNAL_0)
6084 {
6085 p = append_resumption (p, endp, thread->ptid,
6086 0, thread->suspend.stop_signal);
6087 thread->suspend.stop_signal = GDB_SIGNAL_0;
6088 resume_clear_thread_private_info (thread);
6089 }
6090
6091 return p;
6092 }
6093
6094 /* Set the target running, using the packets that use Hc
6095 (c/s/C/S). */
6096
6097 void
6098 remote_target::remote_resume_with_hc (ptid_t ptid, int step,
6099 gdb_signal siggnal)
6100 {
6101 struct remote_state *rs = get_remote_state ();
6102 char *buf;
6103
6104 rs->last_sent_signal = siggnal;
6105 rs->last_sent_step = step;
6106
6107 /* The c/s/C/S resume packets use Hc, so set the continue
6108 thread. */
6109 if (ptid == minus_one_ptid)
6110 set_continue_thread (any_thread_ptid);
6111 else
6112 set_continue_thread (ptid);
6113
6114 for (thread_info *thread : all_non_exited_threads ())
6115 resume_clear_thread_private_info (thread);
6116
6117 buf = rs->buf.data ();
6118 if (::execution_direction == EXEC_REVERSE)
6119 {
6120 /* We don't pass signals to the target in reverse exec mode. */
6121 if (info_verbose && siggnal != GDB_SIGNAL_0)
6122 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
6123 siggnal);
6124
6125 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
6126 error (_("Remote reverse-step not supported."));
6127 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
6128 error (_("Remote reverse-continue not supported."));
6129
6130 strcpy (buf, step ? "bs" : "bc");
6131 }
6132 else if (siggnal != GDB_SIGNAL_0)
6133 {
6134 buf[0] = step ? 'S' : 'C';
6135 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
6136 buf[2] = tohex (((int) siggnal) & 0xf);
6137 buf[3] = '\0';
6138 }
6139 else
6140 strcpy (buf, step ? "s" : "c");
6141
6142 putpkt (buf);
6143 }
6144
6145 /* Resume the remote inferior by using a "vCont" packet. The thread
6146 to be resumed is PTID; STEP and SIGGNAL indicate whether the
6147 resumed thread should be single-stepped and/or signalled. If PTID
6148 equals minus_one_ptid, then all threads are resumed; the thread to
6149 be stepped and/or signalled is given in the global INFERIOR_PTID.
6150 This function returns non-zero iff it resumes the inferior.
6151
6152 This function issues a strict subset of all possible vCont commands
6153 at the moment. */
6154
6155 int
6156 remote_target::remote_resume_with_vcont (ptid_t ptid, int step,
6157 enum gdb_signal siggnal)
6158 {
6159 struct remote_state *rs = get_remote_state ();
6160 char *p;
6161 char *endp;
6162
6163 /* No reverse execution actions defined for vCont. */
6164 if (::execution_direction == EXEC_REVERSE)
6165 return 0;
6166
6167 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6168 remote_vcont_probe ();
6169
6170 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
6171 return 0;
6172
6173 p = rs->buf.data ();
6174 endp = p + get_remote_packet_size ();
6175
6176 /* If we could generate a wider range of packets, we'd have to worry
6177 about overflowing BUF. Should there be a generic
6178 "multi-part-packet" packet? */
6179
6180 p += xsnprintf (p, endp - p, "vCont");
6181
6182 if (ptid == magic_null_ptid)
6183 {
6184 /* MAGIC_NULL_PTID means that we don't have any active threads,
6185 so we don't have any TID numbers the inferior will
6186 understand. Make sure to only send forms that do not specify
6187 a TID. */
6188 append_resumption (p, endp, minus_one_ptid, step, siggnal);
6189 }
6190 else if (ptid == minus_one_ptid || ptid.is_pid ())
6191 {
6192 /* Resume all threads (of all processes, or of a single
6193 process), with preference for INFERIOR_PTID. This assumes
6194 inferior_ptid belongs to the set of all threads we are about
6195 to resume. */
6196 if (step || siggnal != GDB_SIGNAL_0)
6197 {
6198 /* Step inferior_ptid, with or without signal. */
6199 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
6200 }
6201
6202 /* Also pass down any pending signaled resumption for other
6203 threads not the current. */
6204 p = append_pending_thread_resumptions (p, endp, ptid);
6205
6206 /* And continue others without a signal. */
6207 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
6208 }
6209 else
6210 {
6211 /* Scheduler locking; resume only PTID. */
6212 append_resumption (p, endp, ptid, step, siggnal);
6213 }
6214
6215 gdb_assert (strlen (rs->buf.data ()) < get_remote_packet_size ());
6216 putpkt (rs->buf);
6217
6218 if (target_is_non_stop_p ())
6219 {
6220 /* In non-stop, the stub replies to vCont with "OK". The stop
6221 reply will be reported asynchronously by means of a `%Stop'
6222 notification. */
6223 getpkt (&rs->buf, 0);
6224 if (strcmp (rs->buf.data (), "OK") != 0)
6225 error (_("Unexpected vCont reply in non-stop mode: %s"),
6226 rs->buf.data ());
6227 }
6228
6229 return 1;
6230 }
6231
6232 /* Tell the remote machine to resume. */
6233
6234 void
6235 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
6236 {
6237 struct remote_state *rs = get_remote_state ();
6238
6239 /* When connected in non-stop mode, the core resumes threads
6240 individually. Resuming remote threads directly in target_resume
6241 would thus result in sending one packet per thread. Instead, to
6242 minimize roundtrip latency, here we just store the resume
6243 request; the actual remote resumption will be done in
6244 target_commit_resume / remote_commit_resume, where we'll be able
6245 to do vCont action coalescing. */
6246 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6247 {
6248 remote_thread_info *remote_thr;
6249
6250 if (minus_one_ptid == ptid || ptid.is_pid ())
6251 remote_thr = get_remote_thread_info (inferior_ptid);
6252 else
6253 remote_thr = get_remote_thread_info (ptid);
6254
6255 remote_thr->last_resume_step = step;
6256 remote_thr->last_resume_sig = siggnal;
6257 return;
6258 }
6259
6260 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6261 (explained in remote-notif.c:handle_notification) so
6262 remote_notif_process is not called. We need find a place where
6263 it is safe to start a 'vNotif' sequence. It is good to do it
6264 before resuming inferior, because inferior was stopped and no RSP
6265 traffic at that moment. */
6266 if (!target_is_non_stop_p ())
6267 remote_notif_process (rs->notif_state, &notif_client_stop);
6268
6269 rs->last_resume_exec_dir = ::execution_direction;
6270
6271 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6272 if (!remote_resume_with_vcont (ptid, step, siggnal))
6273 remote_resume_with_hc (ptid, step, siggnal);
6274
6275 /* We are about to start executing the inferior, let's register it
6276 with the event loop. NOTE: this is the one place where all the
6277 execution commands end up. We could alternatively do this in each
6278 of the execution commands in infcmd.c. */
6279 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6280 into infcmd.c in order to allow inferior function calls to work
6281 NOT asynchronously. */
6282 if (target_can_async_p ())
6283 target_async (1);
6284
6285 /* We've just told the target to resume. The remote server will
6286 wait for the inferior to stop, and then send a stop reply. In
6287 the mean time, we can't start another command/query ourselves
6288 because the stub wouldn't be ready to process it. This applies
6289 only to the base all-stop protocol, however. In non-stop (which
6290 only supports vCont), the stub replies with an "OK", and is
6291 immediate able to process further serial input. */
6292 if (!target_is_non_stop_p ())
6293 rs->waiting_for_stop_reply = 1;
6294 }
6295
6296 static int is_pending_fork_parent_thread (struct thread_info *thread);
6297
6298 /* Private per-inferior info for target remote processes. */
6299
6300 struct remote_inferior : public private_inferior
6301 {
6302 /* Whether we can send a wildcard vCont for this process. */
6303 bool may_wildcard_vcont = true;
6304 };
6305
6306 /* Get the remote private inferior data associated to INF. */
6307
6308 static remote_inferior *
6309 get_remote_inferior (inferior *inf)
6310 {
6311 if (inf->priv == NULL)
6312 inf->priv.reset (new remote_inferior);
6313
6314 return static_cast<remote_inferior *> (inf->priv.get ());
6315 }
6316
6317 /* Class used to track the construction of a vCont packet in the
6318 outgoing packet buffer. This is used to send multiple vCont
6319 packets if we have more actions than would fit a single packet. */
6320
6321 class vcont_builder
6322 {
6323 public:
6324 explicit vcont_builder (remote_target *remote)
6325 : m_remote (remote)
6326 {
6327 restart ();
6328 }
6329
6330 void flush ();
6331 void push_action (ptid_t ptid, bool step, gdb_signal siggnal);
6332
6333 private:
6334 void restart ();
6335
6336 /* The remote target. */
6337 remote_target *m_remote;
6338
6339 /* Pointer to the first action. P points here if no action has been
6340 appended yet. */
6341 char *m_first_action;
6342
6343 /* Where the next action will be appended. */
6344 char *m_p;
6345
6346 /* The end of the buffer. Must never write past this. */
6347 char *m_endp;
6348 };
6349
6350 /* Prepare the outgoing buffer for a new vCont packet. */
6351
6352 void
6353 vcont_builder::restart ()
6354 {
6355 struct remote_state *rs = m_remote->get_remote_state ();
6356
6357 m_p = rs->buf.data ();
6358 m_endp = m_p + m_remote->get_remote_packet_size ();
6359 m_p += xsnprintf (m_p, m_endp - m_p, "vCont");
6360 m_first_action = m_p;
6361 }
6362
6363 /* If the vCont packet being built has any action, send it to the
6364 remote end. */
6365
6366 void
6367 vcont_builder::flush ()
6368 {
6369 struct remote_state *rs;
6370
6371 if (m_p == m_first_action)
6372 return;
6373
6374 rs = m_remote->get_remote_state ();
6375 m_remote->putpkt (rs->buf);
6376 m_remote->getpkt (&rs->buf, 0);
6377 if (strcmp (rs->buf.data (), "OK") != 0)
6378 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf.data ());
6379 }
6380
6381 /* The largest action is range-stepping, with its two addresses. This
6382 is more than sufficient. If a new, bigger action is created, it'll
6383 quickly trigger a failed assertion in append_resumption (and we'll
6384 just bump this). */
6385 #define MAX_ACTION_SIZE 200
6386
6387 /* Append a new vCont action in the outgoing packet being built. If
6388 the action doesn't fit the packet along with previous actions, push
6389 what we've got so far to the remote end and start over a new vCont
6390 packet (with the new action). */
6391
6392 void
6393 vcont_builder::push_action (ptid_t ptid, bool step, gdb_signal siggnal)
6394 {
6395 char buf[MAX_ACTION_SIZE + 1];
6396
6397 char *endp = m_remote->append_resumption (buf, buf + sizeof (buf),
6398 ptid, step, siggnal);
6399
6400 /* Check whether this new action would fit in the vCont packet along
6401 with previous actions. If not, send what we've got so far and
6402 start a new vCont packet. */
6403 size_t rsize = endp - buf;
6404 if (rsize > m_endp - m_p)
6405 {
6406 flush ();
6407 restart ();
6408
6409 /* Should now fit. */
6410 gdb_assert (rsize <= m_endp - m_p);
6411 }
6412
6413 memcpy (m_p, buf, rsize);
6414 m_p += rsize;
6415 *m_p = '\0';
6416 }
6417
6418 /* to_commit_resume implementation. */
6419
6420 void
6421 remote_target::commit_resume ()
6422 {
6423 int any_process_wildcard;
6424 int may_global_wildcard_vcont;
6425
6426 /* If connected in all-stop mode, we'd send the remote resume
6427 request directly from remote_resume. Likewise if
6428 reverse-debugging, as there are no defined vCont actions for
6429 reverse execution. */
6430 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6431 return;
6432
6433 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6434 instead of resuming all threads of each process individually.
6435 However, if any thread of a process must remain halted, we can't
6436 send wildcard resumes and must send one action per thread.
6437
6438 Care must be taken to not resume threads/processes the server
6439 side already told us are stopped, but the core doesn't know about
6440 yet, because the events are still in the vStopped notification
6441 queue. For example:
6442
6443 #1 => vCont s:p1.1;c
6444 #2 <= OK
6445 #3 <= %Stopped T05 p1.1
6446 #4 => vStopped
6447 #5 <= T05 p1.2
6448 #6 => vStopped
6449 #7 <= OK
6450 #8 (infrun handles the stop for p1.1 and continues stepping)
6451 #9 => vCont s:p1.1;c
6452
6453 The last vCont above would resume thread p1.2 by mistake, because
6454 the server has no idea that the event for p1.2 had not been
6455 handled yet.
6456
6457 The server side must similarly ignore resume actions for the
6458 thread that has a pending %Stopped notification (and any other
6459 threads with events pending), until GDB acks the notification
6460 with vStopped. Otherwise, e.g., the following case is
6461 mishandled:
6462
6463 #1 => g (or any other packet)
6464 #2 <= [registers]
6465 #3 <= %Stopped T05 p1.2
6466 #4 => vCont s:p1.1;c
6467 #5 <= OK
6468
6469 Above, the server must not resume thread p1.2. GDB can't know
6470 that p1.2 stopped until it acks the %Stopped notification, and
6471 since from GDB's perspective all threads should be running, it
6472 sends a "c" action.
6473
6474 Finally, special care must also be given to handling fork/vfork
6475 events. A (v)fork event actually tells us that two processes
6476 stopped -- the parent and the child. Until we follow the fork,
6477 we must not resume the child. Therefore, if we have a pending
6478 fork follow, we must not send a global wildcard resume action
6479 (vCont;c). We can still send process-wide wildcards though. */
6480
6481 /* Start by assuming a global wildcard (vCont;c) is possible. */
6482 may_global_wildcard_vcont = 1;
6483
6484 /* And assume every process is individually wildcard-able too. */
6485 for (inferior *inf : all_non_exited_inferiors ())
6486 {
6487 remote_inferior *priv = get_remote_inferior (inf);
6488
6489 priv->may_wildcard_vcont = true;
6490 }
6491
6492 /* Check for any pending events (not reported or processed yet) and
6493 disable process and global wildcard resumes appropriately. */
6494 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6495
6496 for (thread_info *tp : all_non_exited_threads ())
6497 {
6498 /* If a thread of a process is not meant to be resumed, then we
6499 can't wildcard that process. */
6500 if (!tp->executing)
6501 {
6502 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6503
6504 /* And if we can't wildcard a process, we can't wildcard
6505 everything either. */
6506 may_global_wildcard_vcont = 0;
6507 continue;
6508 }
6509
6510 /* If a thread is the parent of an unfollowed fork, then we
6511 can't do a global wildcard, as that would resume the fork
6512 child. */
6513 if (is_pending_fork_parent_thread (tp))
6514 may_global_wildcard_vcont = 0;
6515 }
6516
6517 /* Now let's build the vCont packet(s). Actions must be appended
6518 from narrower to wider scopes (thread -> process -> global). If
6519 we end up with too many actions for a single packet vcont_builder
6520 flushes the current vCont packet to the remote side and starts a
6521 new one. */
6522 struct vcont_builder vcont_builder (this);
6523
6524 /* Threads first. */
6525 for (thread_info *tp : all_non_exited_threads ())
6526 {
6527 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6528
6529 if (!tp->executing || remote_thr->vcont_resumed)
6530 continue;
6531
6532 gdb_assert (!thread_is_in_step_over_chain (tp));
6533
6534 if (!remote_thr->last_resume_step
6535 && remote_thr->last_resume_sig == GDB_SIGNAL_0
6536 && get_remote_inferior (tp->inf)->may_wildcard_vcont)
6537 {
6538 /* We'll send a wildcard resume instead. */
6539 remote_thr->vcont_resumed = 1;
6540 continue;
6541 }
6542
6543 vcont_builder.push_action (tp->ptid,
6544 remote_thr->last_resume_step,
6545 remote_thr->last_resume_sig);
6546 remote_thr->vcont_resumed = 1;
6547 }
6548
6549 /* Now check whether we can send any process-wide wildcard. This is
6550 to avoid sending a global wildcard in the case nothing is
6551 supposed to be resumed. */
6552 any_process_wildcard = 0;
6553
6554 for (inferior *inf : all_non_exited_inferiors ())
6555 {
6556 if (get_remote_inferior (inf)->may_wildcard_vcont)
6557 {
6558 any_process_wildcard = 1;
6559 break;
6560 }
6561 }
6562
6563 if (any_process_wildcard)
6564 {
6565 /* If all processes are wildcard-able, then send a single "c"
6566 action, otherwise, send an "all (-1) threads of process"
6567 continue action for each running process, if any. */
6568 if (may_global_wildcard_vcont)
6569 {
6570 vcont_builder.push_action (minus_one_ptid,
6571 false, GDB_SIGNAL_0);
6572 }
6573 else
6574 {
6575 for (inferior *inf : all_non_exited_inferiors ())
6576 {
6577 if (get_remote_inferior (inf)->may_wildcard_vcont)
6578 {
6579 vcont_builder.push_action (ptid_t (inf->pid),
6580 false, GDB_SIGNAL_0);
6581 }
6582 }
6583 }
6584 }
6585
6586 vcont_builder.flush ();
6587 }
6588
6589 \f
6590
6591 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6592 thread, all threads of a remote process, or all threads of all
6593 processes. */
6594
6595 void
6596 remote_target::remote_stop_ns (ptid_t ptid)
6597 {
6598 struct remote_state *rs = get_remote_state ();
6599 char *p = rs->buf.data ();
6600 char *endp = p + get_remote_packet_size ();
6601
6602 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6603 remote_vcont_probe ();
6604
6605 if (!rs->supports_vCont.t)
6606 error (_("Remote server does not support stopping threads"));
6607
6608 if (ptid == minus_one_ptid
6609 || (!remote_multi_process_p (rs) && ptid.is_pid ()))
6610 p += xsnprintf (p, endp - p, "vCont;t");
6611 else
6612 {
6613 ptid_t nptid;
6614
6615 p += xsnprintf (p, endp - p, "vCont;t:");
6616
6617 if (ptid.is_pid ())
6618 /* All (-1) threads of process. */
6619 nptid = ptid_t (ptid.pid (), -1, 0);
6620 else
6621 {
6622 /* Small optimization: if we already have a stop reply for
6623 this thread, no use in telling the stub we want this
6624 stopped. */
6625 if (peek_stop_reply (ptid))
6626 return;
6627
6628 nptid = ptid;
6629 }
6630
6631 write_ptid (p, endp, nptid);
6632 }
6633
6634 /* In non-stop, we get an immediate OK reply. The stop reply will
6635 come in asynchronously by notification. */
6636 putpkt (rs->buf);
6637 getpkt (&rs->buf, 0);
6638 if (strcmp (rs->buf.data (), "OK") != 0)
6639 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid).c_str (),
6640 rs->buf.data ());
6641 }
6642
6643 /* All-stop version of target_interrupt. Sends a break or a ^C to
6644 interrupt the remote target. It is undefined which thread of which
6645 process reports the interrupt. */
6646
6647 void
6648 remote_target::remote_interrupt_as ()
6649 {
6650 struct remote_state *rs = get_remote_state ();
6651
6652 rs->ctrlc_pending_p = 1;
6653
6654 /* If the inferior is stopped already, but the core didn't know
6655 about it yet, just ignore the request. The cached wait status
6656 will be collected in remote_wait. */
6657 if (rs->cached_wait_status)
6658 return;
6659
6660 /* Send interrupt_sequence to remote target. */
6661 send_interrupt_sequence ();
6662 }
6663
6664 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6665 the remote target. It is undefined which thread of which process
6666 reports the interrupt. Throws an error if the packet is not
6667 supported by the server. */
6668
6669 void
6670 remote_target::remote_interrupt_ns ()
6671 {
6672 struct remote_state *rs = get_remote_state ();
6673 char *p = rs->buf.data ();
6674 char *endp = p + get_remote_packet_size ();
6675
6676 xsnprintf (p, endp - p, "vCtrlC");
6677
6678 /* In non-stop, we get an immediate OK reply. The stop reply will
6679 come in asynchronously by notification. */
6680 putpkt (rs->buf);
6681 getpkt (&rs->buf, 0);
6682
6683 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6684 {
6685 case PACKET_OK:
6686 break;
6687 case PACKET_UNKNOWN:
6688 error (_("No support for interrupting the remote target."));
6689 case PACKET_ERROR:
6690 error (_("Interrupting target failed: %s"), rs->buf.data ());
6691 }
6692 }
6693
6694 /* Implement the to_stop function for the remote targets. */
6695
6696 void
6697 remote_target::stop (ptid_t ptid)
6698 {
6699 if (remote_debug)
6700 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6701
6702 if (target_is_non_stop_p ())
6703 remote_stop_ns (ptid);
6704 else
6705 {
6706 /* We don't currently have a way to transparently pause the
6707 remote target in all-stop mode. Interrupt it instead. */
6708 remote_interrupt_as ();
6709 }
6710 }
6711
6712 /* Implement the to_interrupt function for the remote targets. */
6713
6714 void
6715 remote_target::interrupt ()
6716 {
6717 if (remote_debug)
6718 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6719
6720 if (target_is_non_stop_p ())
6721 remote_interrupt_ns ();
6722 else
6723 remote_interrupt_as ();
6724 }
6725
6726 /* Implement the to_pass_ctrlc function for the remote targets. */
6727
6728 void
6729 remote_target::pass_ctrlc ()
6730 {
6731 struct remote_state *rs = get_remote_state ();
6732
6733 if (remote_debug)
6734 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6735
6736 /* If we're starting up, we're not fully synced yet. Quit
6737 immediately. */
6738 if (rs->starting_up)
6739 quit ();
6740 /* If ^C has already been sent once, offer to disconnect. */
6741 else if (rs->ctrlc_pending_p)
6742 interrupt_query ();
6743 else
6744 target_interrupt ();
6745 }
6746
6747 /* Ask the user what to do when an interrupt is received. */
6748
6749 void
6750 remote_target::interrupt_query ()
6751 {
6752 struct remote_state *rs = get_remote_state ();
6753
6754 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6755 {
6756 if (query (_("The target is not responding to interrupt requests.\n"
6757 "Stop debugging it? ")))
6758 {
6759 remote_unpush_target ();
6760 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6761 }
6762 }
6763 else
6764 {
6765 if (query (_("Interrupted while waiting for the program.\n"
6766 "Give up waiting? ")))
6767 quit ();
6768 }
6769 }
6770
6771 /* Enable/disable target terminal ownership. Most targets can use
6772 terminal groups to control terminal ownership. Remote targets are
6773 different in that explicit transfer of ownership to/from GDB/target
6774 is required. */
6775
6776 void
6777 remote_target::terminal_inferior ()
6778 {
6779 /* NOTE: At this point we could also register our selves as the
6780 recipient of all input. Any characters typed could then be
6781 passed on down to the target. */
6782 }
6783
6784 void
6785 remote_target::terminal_ours ()
6786 {
6787 }
6788
6789 static void
6790 remote_console_output (const char *msg)
6791 {
6792 const char *p;
6793
6794 for (p = msg; p[0] && p[1]; p += 2)
6795 {
6796 char tb[2];
6797 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6798
6799 tb[0] = c;
6800 tb[1] = 0;
6801 fputs_unfiltered (tb, gdb_stdtarg);
6802 }
6803 gdb_flush (gdb_stdtarg);
6804 }
6805
6806 struct stop_reply : public notif_event
6807 {
6808 ~stop_reply ();
6809
6810 /* The identifier of the thread about this event */
6811 ptid_t ptid;
6812
6813 /* The remote state this event is associated with. When the remote
6814 connection, represented by a remote_state object, is closed,
6815 all the associated stop_reply events should be released. */
6816 struct remote_state *rs;
6817
6818 struct target_waitstatus ws;
6819
6820 /* The architecture associated with the expedited registers. */
6821 gdbarch *arch;
6822
6823 /* Expedited registers. This makes remote debugging a bit more
6824 efficient for those targets that provide critical registers as
6825 part of their normal status mechanism (as another roundtrip to
6826 fetch them is avoided). */
6827 std::vector<cached_reg_t> regcache;
6828
6829 enum target_stop_reason stop_reason;
6830
6831 CORE_ADDR watch_data_address;
6832
6833 int core;
6834 };
6835
6836 /* Return the length of the stop reply queue. */
6837
6838 int
6839 remote_target::stop_reply_queue_length ()
6840 {
6841 remote_state *rs = get_remote_state ();
6842 return rs->stop_reply_queue.size ();
6843 }
6844
6845 void
6846 remote_notif_stop_parse (remote_target *remote,
6847 struct notif_client *self, const char *buf,
6848 struct notif_event *event)
6849 {
6850 remote->remote_parse_stop_reply (buf, (struct stop_reply *) event);
6851 }
6852
6853 static void
6854 remote_notif_stop_ack (remote_target *remote,
6855 struct notif_client *self, const char *buf,
6856 struct notif_event *event)
6857 {
6858 struct stop_reply *stop_reply = (struct stop_reply *) event;
6859
6860 /* acknowledge */
6861 putpkt (remote, self->ack_command);
6862
6863 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6864 {
6865 /* We got an unknown stop reply. */
6866 error (_("Unknown stop reply"));
6867 }
6868
6869 remote->push_stop_reply (stop_reply);
6870 }
6871
6872 static int
6873 remote_notif_stop_can_get_pending_events (remote_target *remote,
6874 struct notif_client *self)
6875 {
6876 /* We can't get pending events in remote_notif_process for
6877 notification stop, and we have to do this in remote_wait_ns
6878 instead. If we fetch all queued events from stub, remote stub
6879 may exit and we have no chance to process them back in
6880 remote_wait_ns. */
6881 remote_state *rs = remote->get_remote_state ();
6882 mark_async_event_handler (rs->remote_async_inferior_event_token);
6883 return 0;
6884 }
6885
6886 stop_reply::~stop_reply ()
6887 {
6888 for (cached_reg_t &reg : regcache)
6889 xfree (reg.data);
6890 }
6891
6892 static notif_event_up
6893 remote_notif_stop_alloc_reply ()
6894 {
6895 return notif_event_up (new struct stop_reply ());
6896 }
6897
6898 /* A client of notification Stop. */
6899
6900 struct notif_client notif_client_stop =
6901 {
6902 "Stop",
6903 "vStopped",
6904 remote_notif_stop_parse,
6905 remote_notif_stop_ack,
6906 remote_notif_stop_can_get_pending_events,
6907 remote_notif_stop_alloc_reply,
6908 REMOTE_NOTIF_STOP,
6909 };
6910
6911 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
6912 the pid of the process that owns the threads we want to check, or
6913 -1 if we want to check all threads. */
6914
6915 static int
6916 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6917 ptid_t thread_ptid)
6918 {
6919 if (ws->kind == TARGET_WAITKIND_FORKED
6920 || ws->kind == TARGET_WAITKIND_VFORKED)
6921 {
6922 if (event_pid == -1 || event_pid == thread_ptid.pid ())
6923 return 1;
6924 }
6925
6926 return 0;
6927 }
6928
6929 /* Return the thread's pending status used to determine whether the
6930 thread is a fork parent stopped at a fork event. */
6931
6932 static struct target_waitstatus *
6933 thread_pending_fork_status (struct thread_info *thread)
6934 {
6935 if (thread->suspend.waitstatus_pending_p)
6936 return &thread->suspend.waitstatus;
6937 else
6938 return &thread->pending_follow;
6939 }
6940
6941 /* Determine if THREAD is a pending fork parent thread. */
6942
6943 static int
6944 is_pending_fork_parent_thread (struct thread_info *thread)
6945 {
6946 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6947 int pid = -1;
6948
6949 return is_pending_fork_parent (ws, pid, thread->ptid);
6950 }
6951
6952 /* If CONTEXT contains any fork child threads that have not been
6953 reported yet, remove them from the CONTEXT list. If such a
6954 thread exists it is because we are stopped at a fork catchpoint
6955 and have not yet called follow_fork, which will set up the
6956 host-side data structures for the new process. */
6957
6958 void
6959 remote_target::remove_new_fork_children (threads_listing_context *context)
6960 {
6961 int pid = -1;
6962 struct notif_client *notif = &notif_client_stop;
6963
6964 /* For any threads stopped at a fork event, remove the corresponding
6965 fork child threads from the CONTEXT list. */
6966 for (thread_info *thread : all_non_exited_threads ())
6967 {
6968 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6969
6970 if (is_pending_fork_parent (ws, pid, thread->ptid))
6971 context->remove_thread (ws->value.related_pid);
6972 }
6973
6974 /* Check for any pending fork events (not reported or processed yet)
6975 in process PID and remove those fork child threads from the
6976 CONTEXT list as well. */
6977 remote_notif_get_pending_events (notif);
6978 for (auto &event : get_remote_state ()->stop_reply_queue)
6979 if (event->ws.kind == TARGET_WAITKIND_FORKED
6980 || event->ws.kind == TARGET_WAITKIND_VFORKED
6981 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
6982 context->remove_thread (event->ws.value.related_pid);
6983 }
6984
6985 /* Check whether any event pending in the vStopped queue would prevent
6986 a global or process wildcard vCont action. Clear
6987 *may_global_wildcard if we can't do a global wildcard (vCont;c),
6988 and clear the event inferior's may_wildcard_vcont flag if we can't
6989 do a process-wide wildcard resume (vCont;c:pPID.-1). */
6990
6991 void
6992 remote_target::check_pending_events_prevent_wildcard_vcont
6993 (int *may_global_wildcard)
6994 {
6995 struct notif_client *notif = &notif_client_stop;
6996
6997 remote_notif_get_pending_events (notif);
6998 for (auto &event : get_remote_state ()->stop_reply_queue)
6999 {
7000 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
7001 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
7002 continue;
7003
7004 if (event->ws.kind == TARGET_WAITKIND_FORKED
7005 || event->ws.kind == TARGET_WAITKIND_VFORKED)
7006 *may_global_wildcard = 0;
7007
7008 struct inferior *inf = find_inferior_ptid (event->ptid);
7009
7010 /* This may be the first time we heard about this process.
7011 Regardless, we must not do a global wildcard resume, otherwise
7012 we'd resume this process too. */
7013 *may_global_wildcard = 0;
7014 if (inf != NULL)
7015 get_remote_inferior (inf)->may_wildcard_vcont = false;
7016 }
7017 }
7018
7019 /* Discard all pending stop replies of inferior INF. */
7020
7021 void
7022 remote_target::discard_pending_stop_replies (struct inferior *inf)
7023 {
7024 struct stop_reply *reply;
7025 struct remote_state *rs = get_remote_state ();
7026 struct remote_notif_state *rns = rs->notif_state;
7027
7028 /* This function can be notified when an inferior exists. When the
7029 target is not remote, the notification state is NULL. */
7030 if (rs->remote_desc == NULL)
7031 return;
7032
7033 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
7034
7035 /* Discard the in-flight notification. */
7036 if (reply != NULL && reply->ptid.pid () == inf->pid)
7037 {
7038 delete reply;
7039 rns->pending_event[notif_client_stop.id] = NULL;
7040 }
7041
7042 /* Discard the stop replies we have already pulled with
7043 vStopped. */
7044 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7045 rs->stop_reply_queue.end (),
7046 [=] (const stop_reply_up &event)
7047 {
7048 return event->ptid.pid () == inf->pid;
7049 });
7050 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7051 }
7052
7053 /* Discard the stop replies for RS in stop_reply_queue. */
7054
7055 void
7056 remote_target::discard_pending_stop_replies_in_queue ()
7057 {
7058 remote_state *rs = get_remote_state ();
7059
7060 /* Discard the stop replies we have already pulled with
7061 vStopped. */
7062 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7063 rs->stop_reply_queue.end (),
7064 [=] (const stop_reply_up &event)
7065 {
7066 return event->rs == rs;
7067 });
7068 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7069 }
7070
7071 /* Remove the first reply in 'stop_reply_queue' which matches
7072 PTID. */
7073
7074 struct stop_reply *
7075 remote_target::remote_notif_remove_queued_reply (ptid_t ptid)
7076 {
7077 remote_state *rs = get_remote_state ();
7078
7079 auto iter = std::find_if (rs->stop_reply_queue.begin (),
7080 rs->stop_reply_queue.end (),
7081 [=] (const stop_reply_up &event)
7082 {
7083 return event->ptid.matches (ptid);
7084 });
7085 struct stop_reply *result;
7086 if (iter == rs->stop_reply_queue.end ())
7087 result = nullptr;
7088 else
7089 {
7090 result = iter->release ();
7091 rs->stop_reply_queue.erase (iter);
7092 }
7093
7094 if (notif_debug)
7095 fprintf_unfiltered (gdb_stdlog,
7096 "notif: discard queued event: 'Stop' in %s\n",
7097 target_pid_to_str (ptid).c_str ());
7098
7099 return result;
7100 }
7101
7102 /* Look for a queued stop reply belonging to PTID. If one is found,
7103 remove it from the queue, and return it. Returns NULL if none is
7104 found. If there are still queued events left to process, tell the
7105 event loop to get back to target_wait soon. */
7106
7107 struct stop_reply *
7108 remote_target::queued_stop_reply (ptid_t ptid)
7109 {
7110 remote_state *rs = get_remote_state ();
7111 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
7112
7113 if (!rs->stop_reply_queue.empty ())
7114 {
7115 /* There's still at least an event left. */
7116 mark_async_event_handler (rs->remote_async_inferior_event_token);
7117 }
7118
7119 return r;
7120 }
7121
7122 /* Push a fully parsed stop reply in the stop reply queue. Since we
7123 know that we now have at least one queued event left to pass to the
7124 core side, tell the event loop to get back to target_wait soon. */
7125
7126 void
7127 remote_target::push_stop_reply (struct stop_reply *new_event)
7128 {
7129 remote_state *rs = get_remote_state ();
7130 rs->stop_reply_queue.push_back (stop_reply_up (new_event));
7131
7132 if (notif_debug)
7133 fprintf_unfiltered (gdb_stdlog,
7134 "notif: push 'Stop' %s to queue %d\n",
7135 target_pid_to_str (new_event->ptid).c_str (),
7136 int (rs->stop_reply_queue.size ()));
7137
7138 mark_async_event_handler (rs->remote_async_inferior_event_token);
7139 }
7140
7141 /* Returns true if we have a stop reply for PTID. */
7142
7143 int
7144 remote_target::peek_stop_reply (ptid_t ptid)
7145 {
7146 remote_state *rs = get_remote_state ();
7147 for (auto &event : rs->stop_reply_queue)
7148 if (ptid == event->ptid
7149 && event->ws.kind == TARGET_WAITKIND_STOPPED)
7150 return 1;
7151 return 0;
7152 }
7153
7154 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7155 starting with P and ending with PEND matches PREFIX. */
7156
7157 static int
7158 strprefix (const char *p, const char *pend, const char *prefix)
7159 {
7160 for ( ; p < pend; p++, prefix++)
7161 if (*p != *prefix)
7162 return 0;
7163 return *prefix == '\0';
7164 }
7165
7166 /* Parse the stop reply in BUF. Either the function succeeds, and the
7167 result is stored in EVENT, or throws an error. */
7168
7169 void
7170 remote_target::remote_parse_stop_reply (const char *buf, stop_reply *event)
7171 {
7172 remote_arch_state *rsa = NULL;
7173 ULONGEST addr;
7174 const char *p;
7175 int skipregs = 0;
7176
7177 event->ptid = null_ptid;
7178 event->rs = get_remote_state ();
7179 event->ws.kind = TARGET_WAITKIND_IGNORE;
7180 event->ws.value.integer = 0;
7181 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7182 event->regcache.clear ();
7183 event->core = -1;
7184
7185 switch (buf[0])
7186 {
7187 case 'T': /* Status with PC, SP, FP, ... */
7188 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7189 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7190 ss = signal number
7191 n... = register number
7192 r... = register contents
7193 */
7194
7195 p = &buf[3]; /* after Txx */
7196 while (*p)
7197 {
7198 const char *p1;
7199 int fieldsize;
7200
7201 p1 = strchr (p, ':');
7202 if (p1 == NULL)
7203 error (_("Malformed packet(a) (missing colon): %s\n\
7204 Packet: '%s'\n"),
7205 p, buf);
7206 if (p == p1)
7207 error (_("Malformed packet(a) (missing register number): %s\n\
7208 Packet: '%s'\n"),
7209 p, buf);
7210
7211 /* Some "registers" are actually extended stop information.
7212 Note if you're adding a new entry here: GDB 7.9 and
7213 earlier assume that all register "numbers" that start
7214 with an hex digit are real register numbers. Make sure
7215 the server only sends such a packet if it knows the
7216 client understands it. */
7217
7218 if (strprefix (p, p1, "thread"))
7219 event->ptid = read_ptid (++p1, &p);
7220 else if (strprefix (p, p1, "syscall_entry"))
7221 {
7222 ULONGEST sysno;
7223
7224 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
7225 p = unpack_varlen_hex (++p1, &sysno);
7226 event->ws.value.syscall_number = (int) sysno;
7227 }
7228 else if (strprefix (p, p1, "syscall_return"))
7229 {
7230 ULONGEST sysno;
7231
7232 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
7233 p = unpack_varlen_hex (++p1, &sysno);
7234 event->ws.value.syscall_number = (int) sysno;
7235 }
7236 else if (strprefix (p, p1, "watch")
7237 || strprefix (p, p1, "rwatch")
7238 || strprefix (p, p1, "awatch"))
7239 {
7240 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7241 p = unpack_varlen_hex (++p1, &addr);
7242 event->watch_data_address = (CORE_ADDR) addr;
7243 }
7244 else if (strprefix (p, p1, "swbreak"))
7245 {
7246 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7247
7248 /* Make sure the stub doesn't forget to indicate support
7249 with qSupported. */
7250 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7251 error (_("Unexpected swbreak stop reason"));
7252
7253 /* The value part is documented as "must be empty",
7254 though we ignore it, in case we ever decide to make
7255 use of it in a backward compatible way. */
7256 p = strchrnul (p1 + 1, ';');
7257 }
7258 else if (strprefix (p, p1, "hwbreak"))
7259 {
7260 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7261
7262 /* Make sure the stub doesn't forget to indicate support
7263 with qSupported. */
7264 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7265 error (_("Unexpected hwbreak stop reason"));
7266
7267 /* See above. */
7268 p = strchrnul (p1 + 1, ';');
7269 }
7270 else if (strprefix (p, p1, "library"))
7271 {
7272 event->ws.kind = TARGET_WAITKIND_LOADED;
7273 p = strchrnul (p1 + 1, ';');
7274 }
7275 else if (strprefix (p, p1, "replaylog"))
7276 {
7277 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
7278 /* p1 will indicate "begin" or "end", but it makes
7279 no difference for now, so ignore it. */
7280 p = strchrnul (p1 + 1, ';');
7281 }
7282 else if (strprefix (p, p1, "core"))
7283 {
7284 ULONGEST c;
7285
7286 p = unpack_varlen_hex (++p1, &c);
7287 event->core = c;
7288 }
7289 else if (strprefix (p, p1, "fork"))
7290 {
7291 event->ws.value.related_pid = read_ptid (++p1, &p);
7292 event->ws.kind = TARGET_WAITKIND_FORKED;
7293 }
7294 else if (strprefix (p, p1, "vfork"))
7295 {
7296 event->ws.value.related_pid = read_ptid (++p1, &p);
7297 event->ws.kind = TARGET_WAITKIND_VFORKED;
7298 }
7299 else if (strprefix (p, p1, "vforkdone"))
7300 {
7301 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
7302 p = strchrnul (p1 + 1, ';');
7303 }
7304 else if (strprefix (p, p1, "exec"))
7305 {
7306 ULONGEST ignored;
7307 int pathlen;
7308
7309 /* Determine the length of the execd pathname. */
7310 p = unpack_varlen_hex (++p1, &ignored);
7311 pathlen = (p - p1) / 2;
7312
7313 /* Save the pathname for event reporting and for
7314 the next run command. */
7315 gdb::unique_xmalloc_ptr<char[]> pathname
7316 ((char *) xmalloc (pathlen + 1));
7317 hex2bin (p1, (gdb_byte *) pathname.get (), pathlen);
7318 pathname[pathlen] = '\0';
7319
7320 /* This is freed during event handling. */
7321 event->ws.value.execd_pathname = pathname.release ();
7322 event->ws.kind = TARGET_WAITKIND_EXECD;
7323
7324 /* Skip the registers included in this packet, since
7325 they may be for an architecture different from the
7326 one used by the original program. */
7327 skipregs = 1;
7328 }
7329 else if (strprefix (p, p1, "create"))
7330 {
7331 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
7332 p = strchrnul (p1 + 1, ';');
7333 }
7334 else
7335 {
7336 ULONGEST pnum;
7337 const char *p_temp;
7338
7339 if (skipregs)
7340 {
7341 p = strchrnul (p1 + 1, ';');
7342 p++;
7343 continue;
7344 }
7345
7346 /* Maybe a real ``P'' register number. */
7347 p_temp = unpack_varlen_hex (p, &pnum);
7348 /* If the first invalid character is the colon, we got a
7349 register number. Otherwise, it's an unknown stop
7350 reason. */
7351 if (p_temp == p1)
7352 {
7353 /* If we haven't parsed the event's thread yet, find
7354 it now, in order to find the architecture of the
7355 reported expedited registers. */
7356 if (event->ptid == null_ptid)
7357 {
7358 const char *thr = strstr (p1 + 1, ";thread:");
7359 if (thr != NULL)
7360 event->ptid = read_ptid (thr + strlen (";thread:"),
7361 NULL);
7362 else
7363 {
7364 /* Either the current thread hasn't changed,
7365 or the inferior is not multi-threaded.
7366 The event must be for the thread we last
7367 set as (or learned as being) current. */
7368 event->ptid = event->rs->general_thread;
7369 }
7370 }
7371
7372 if (rsa == NULL)
7373 {
7374 inferior *inf = (event->ptid == null_ptid
7375 ? NULL
7376 : find_inferior_ptid (event->ptid));
7377 /* If this is the first time we learn anything
7378 about this process, skip the registers
7379 included in this packet, since we don't yet
7380 know which architecture to use to parse them.
7381 We'll determine the architecture later when
7382 we process the stop reply and retrieve the
7383 target description, via
7384 remote_notice_new_inferior ->
7385 post_create_inferior. */
7386 if (inf == NULL)
7387 {
7388 p = strchrnul (p1 + 1, ';');
7389 p++;
7390 continue;
7391 }
7392
7393 event->arch = inf->gdbarch;
7394 rsa = event->rs->get_remote_arch_state (event->arch);
7395 }
7396
7397 packet_reg *reg
7398 = packet_reg_from_pnum (event->arch, rsa, pnum);
7399 cached_reg_t cached_reg;
7400
7401 if (reg == NULL)
7402 error (_("Remote sent bad register number %s: %s\n\
7403 Packet: '%s'\n"),
7404 hex_string (pnum), p, buf);
7405
7406 cached_reg.num = reg->regnum;
7407 cached_reg.data = (gdb_byte *)
7408 xmalloc (register_size (event->arch, reg->regnum));
7409
7410 p = p1 + 1;
7411 fieldsize = hex2bin (p, cached_reg.data,
7412 register_size (event->arch, reg->regnum));
7413 p += 2 * fieldsize;
7414 if (fieldsize < register_size (event->arch, reg->regnum))
7415 warning (_("Remote reply is too short: %s"), buf);
7416
7417 event->regcache.push_back (cached_reg);
7418 }
7419 else
7420 {
7421 /* Not a number. Silently skip unknown optional
7422 info. */
7423 p = strchrnul (p1 + 1, ';');
7424 }
7425 }
7426
7427 if (*p != ';')
7428 error (_("Remote register badly formatted: %s\nhere: %s"),
7429 buf, p);
7430 ++p;
7431 }
7432
7433 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7434 break;
7435
7436 /* fall through */
7437 case 'S': /* Old style status, just signal only. */
7438 {
7439 int sig;
7440
7441 event->ws.kind = TARGET_WAITKIND_STOPPED;
7442 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7443 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7444 event->ws.value.sig = (enum gdb_signal) sig;
7445 else
7446 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7447 }
7448 break;
7449 case 'w': /* Thread exited. */
7450 {
7451 ULONGEST value;
7452
7453 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7454 p = unpack_varlen_hex (&buf[1], &value);
7455 event->ws.value.integer = value;
7456 if (*p != ';')
7457 error (_("stop reply packet badly formatted: %s"), buf);
7458 event->ptid = read_ptid (++p, NULL);
7459 break;
7460 }
7461 case 'W': /* Target exited. */
7462 case 'X':
7463 {
7464 int pid;
7465 ULONGEST value;
7466
7467 /* GDB used to accept only 2 hex chars here. Stubs should
7468 only send more if they detect GDB supports multi-process
7469 support. */
7470 p = unpack_varlen_hex (&buf[1], &value);
7471
7472 if (buf[0] == 'W')
7473 {
7474 /* The remote process exited. */
7475 event->ws.kind = TARGET_WAITKIND_EXITED;
7476 event->ws.value.integer = value;
7477 }
7478 else
7479 {
7480 /* The remote process exited with a signal. */
7481 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7482 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7483 event->ws.value.sig = (enum gdb_signal) value;
7484 else
7485 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7486 }
7487
7488 /* If no process is specified, assume inferior_ptid. */
7489 pid = inferior_ptid.pid ();
7490 if (*p == '\0')
7491 ;
7492 else if (*p == ';')
7493 {
7494 p++;
7495
7496 if (*p == '\0')
7497 ;
7498 else if (startswith (p, "process:"))
7499 {
7500 ULONGEST upid;
7501
7502 p += sizeof ("process:") - 1;
7503 unpack_varlen_hex (p, &upid);
7504 pid = upid;
7505 }
7506 else
7507 error (_("unknown stop reply packet: %s"), buf);
7508 }
7509 else
7510 error (_("unknown stop reply packet: %s"), buf);
7511 event->ptid = ptid_t (pid);
7512 }
7513 break;
7514 case 'N':
7515 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7516 event->ptid = minus_one_ptid;
7517 break;
7518 }
7519
7520 if (target_is_non_stop_p () && event->ptid == null_ptid)
7521 error (_("No process or thread specified in stop reply: %s"), buf);
7522 }
7523
7524 /* When the stub wants to tell GDB about a new notification reply, it
7525 sends a notification (%Stop, for example). Those can come it at
7526 any time, hence, we have to make sure that any pending
7527 putpkt/getpkt sequence we're making is finished, before querying
7528 the stub for more events with the corresponding ack command
7529 (vStopped, for example). E.g., if we started a vStopped sequence
7530 immediately upon receiving the notification, something like this
7531 could happen:
7532
7533 1.1) --> Hg 1
7534 1.2) <-- OK
7535 1.3) --> g
7536 1.4) <-- %Stop
7537 1.5) --> vStopped
7538 1.6) <-- (registers reply to step #1.3)
7539
7540 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7541 query.
7542
7543 To solve this, whenever we parse a %Stop notification successfully,
7544 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7545 doing whatever we were doing:
7546
7547 2.1) --> Hg 1
7548 2.2) <-- OK
7549 2.3) --> g
7550 2.4) <-- %Stop
7551 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7552 2.5) <-- (registers reply to step #2.3)
7553
7554 Eventualy after step #2.5, we return to the event loop, which
7555 notices there's an event on the
7556 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7557 associated callback --- the function below. At this point, we're
7558 always safe to start a vStopped sequence. :
7559
7560 2.6) --> vStopped
7561 2.7) <-- T05 thread:2
7562 2.8) --> vStopped
7563 2.9) --> OK
7564 */
7565
7566 void
7567 remote_target::remote_notif_get_pending_events (notif_client *nc)
7568 {
7569 struct remote_state *rs = get_remote_state ();
7570
7571 if (rs->notif_state->pending_event[nc->id] != NULL)
7572 {
7573 if (notif_debug)
7574 fprintf_unfiltered (gdb_stdlog,
7575 "notif: process: '%s' ack pending event\n",
7576 nc->name);
7577
7578 /* acknowledge */
7579 nc->ack (this, nc, rs->buf.data (),
7580 rs->notif_state->pending_event[nc->id]);
7581 rs->notif_state->pending_event[nc->id] = NULL;
7582
7583 while (1)
7584 {
7585 getpkt (&rs->buf, 0);
7586 if (strcmp (rs->buf.data (), "OK") == 0)
7587 break;
7588 else
7589 remote_notif_ack (this, nc, rs->buf.data ());
7590 }
7591 }
7592 else
7593 {
7594 if (notif_debug)
7595 fprintf_unfiltered (gdb_stdlog,
7596 "notif: process: '%s' no pending reply\n",
7597 nc->name);
7598 }
7599 }
7600
7601 /* Wrapper around remote_target::remote_notif_get_pending_events to
7602 avoid having to export the whole remote_target class. */
7603
7604 void
7605 remote_notif_get_pending_events (remote_target *remote, notif_client *nc)
7606 {
7607 remote->remote_notif_get_pending_events (nc);
7608 }
7609
7610 /* Called when it is decided that STOP_REPLY holds the info of the
7611 event that is to be returned to the core. This function always
7612 destroys STOP_REPLY. */
7613
7614 ptid_t
7615 remote_target::process_stop_reply (struct stop_reply *stop_reply,
7616 struct target_waitstatus *status)
7617 {
7618 ptid_t ptid;
7619
7620 *status = stop_reply->ws;
7621 ptid = stop_reply->ptid;
7622
7623 /* If no thread/process was reported by the stub, assume the current
7624 inferior. */
7625 if (ptid == null_ptid)
7626 ptid = inferior_ptid;
7627
7628 if (status->kind != TARGET_WAITKIND_EXITED
7629 && status->kind != TARGET_WAITKIND_SIGNALLED
7630 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7631 {
7632 /* Expedited registers. */
7633 if (!stop_reply->regcache.empty ())
7634 {
7635 struct regcache *regcache
7636 = get_thread_arch_regcache (ptid, stop_reply->arch);
7637
7638 for (cached_reg_t &reg : stop_reply->regcache)
7639 {
7640 regcache->raw_supply (reg.num, reg.data);
7641 xfree (reg.data);
7642 }
7643
7644 stop_reply->regcache.clear ();
7645 }
7646
7647 remote_notice_new_inferior (ptid, 0);
7648 remote_thread_info *remote_thr = get_remote_thread_info (ptid);
7649 remote_thr->core = stop_reply->core;
7650 remote_thr->stop_reason = stop_reply->stop_reason;
7651 remote_thr->watch_data_address = stop_reply->watch_data_address;
7652 remote_thr->vcont_resumed = 0;
7653 }
7654
7655 delete stop_reply;
7656 return ptid;
7657 }
7658
7659 /* The non-stop mode version of target_wait. */
7660
7661 ptid_t
7662 remote_target::wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
7663 {
7664 struct remote_state *rs = get_remote_state ();
7665 struct stop_reply *stop_reply;
7666 int ret;
7667 int is_notif = 0;
7668
7669 /* If in non-stop mode, get out of getpkt even if a
7670 notification is received. */
7671
7672 ret = getpkt_or_notif_sane (&rs->buf, 0 /* forever */, &is_notif);
7673 while (1)
7674 {
7675 if (ret != -1 && !is_notif)
7676 switch (rs->buf[0])
7677 {
7678 case 'E': /* Error of some sort. */
7679 /* We're out of sync with the target now. Did it continue
7680 or not? We can't tell which thread it was in non-stop,
7681 so just ignore this. */
7682 warning (_("Remote failure reply: %s"), rs->buf.data ());
7683 break;
7684 case 'O': /* Console output. */
7685 remote_console_output (&rs->buf[1]);
7686 break;
7687 default:
7688 warning (_("Invalid remote reply: %s"), rs->buf.data ());
7689 break;
7690 }
7691
7692 /* Acknowledge a pending stop reply that may have arrived in the
7693 mean time. */
7694 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7695 remote_notif_get_pending_events (&notif_client_stop);
7696
7697 /* If indeed we noticed a stop reply, we're done. */
7698 stop_reply = queued_stop_reply (ptid);
7699 if (stop_reply != NULL)
7700 return process_stop_reply (stop_reply, status);
7701
7702 /* Still no event. If we're just polling for an event, then
7703 return to the event loop. */
7704 if (options & TARGET_WNOHANG)
7705 {
7706 status->kind = TARGET_WAITKIND_IGNORE;
7707 return minus_one_ptid;
7708 }
7709
7710 /* Otherwise do a blocking wait. */
7711 ret = getpkt_or_notif_sane (&rs->buf, 1 /* forever */, &is_notif);
7712 }
7713 }
7714
7715 /* Wait until the remote machine stops, then return, storing status in
7716 STATUS just as `wait' would. */
7717
7718 ptid_t
7719 remote_target::wait_as (ptid_t ptid, target_waitstatus *status, int options)
7720 {
7721 struct remote_state *rs = get_remote_state ();
7722 ptid_t event_ptid = null_ptid;
7723 char *buf;
7724 struct stop_reply *stop_reply;
7725
7726 again:
7727
7728 status->kind = TARGET_WAITKIND_IGNORE;
7729 status->value.integer = 0;
7730
7731 stop_reply = queued_stop_reply (ptid);
7732 if (stop_reply != NULL)
7733 return process_stop_reply (stop_reply, status);
7734
7735 if (rs->cached_wait_status)
7736 /* Use the cached wait status, but only once. */
7737 rs->cached_wait_status = 0;
7738 else
7739 {
7740 int ret;
7741 int is_notif;
7742 int forever = ((options & TARGET_WNOHANG) == 0
7743 && rs->wait_forever_enabled_p);
7744
7745 if (!rs->waiting_for_stop_reply)
7746 {
7747 status->kind = TARGET_WAITKIND_NO_RESUMED;
7748 return minus_one_ptid;
7749 }
7750
7751 /* FIXME: cagney/1999-09-27: If we're in async mode we should
7752 _never_ wait for ever -> test on target_is_async_p().
7753 However, before we do that we need to ensure that the caller
7754 knows how to take the target into/out of async mode. */
7755 ret = getpkt_or_notif_sane (&rs->buf, forever, &is_notif);
7756
7757 /* GDB gets a notification. Return to core as this event is
7758 not interesting. */
7759 if (ret != -1 && is_notif)
7760 return minus_one_ptid;
7761
7762 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7763 return minus_one_ptid;
7764 }
7765
7766 buf = rs->buf.data ();
7767
7768 /* Assume that the target has acknowledged Ctrl-C unless we receive
7769 an 'F' or 'O' packet. */
7770 if (buf[0] != 'F' && buf[0] != 'O')
7771 rs->ctrlc_pending_p = 0;
7772
7773 switch (buf[0])
7774 {
7775 case 'E': /* Error of some sort. */
7776 /* We're out of sync with the target now. Did it continue or
7777 not? Not is more likely, so report a stop. */
7778 rs->waiting_for_stop_reply = 0;
7779
7780 warning (_("Remote failure reply: %s"), buf);
7781 status->kind = TARGET_WAITKIND_STOPPED;
7782 status->value.sig = GDB_SIGNAL_0;
7783 break;
7784 case 'F': /* File-I/O request. */
7785 /* GDB may access the inferior memory while handling the File-I/O
7786 request, but we don't want GDB accessing memory while waiting
7787 for a stop reply. See the comments in putpkt_binary. Set
7788 waiting_for_stop_reply to 0 temporarily. */
7789 rs->waiting_for_stop_reply = 0;
7790 remote_fileio_request (this, buf, rs->ctrlc_pending_p);
7791 rs->ctrlc_pending_p = 0;
7792 /* GDB handled the File-I/O request, and the target is running
7793 again. Keep waiting for events. */
7794 rs->waiting_for_stop_reply = 1;
7795 break;
7796 case 'N': case 'T': case 'S': case 'X': case 'W':
7797 {
7798 /* There is a stop reply to handle. */
7799 rs->waiting_for_stop_reply = 0;
7800
7801 stop_reply
7802 = (struct stop_reply *) remote_notif_parse (this,
7803 &notif_client_stop,
7804 rs->buf.data ());
7805
7806 event_ptid = process_stop_reply (stop_reply, status);
7807 break;
7808 }
7809 case 'O': /* Console output. */
7810 remote_console_output (buf + 1);
7811 break;
7812 case '\0':
7813 if (rs->last_sent_signal != GDB_SIGNAL_0)
7814 {
7815 /* Zero length reply means that we tried 'S' or 'C' and the
7816 remote system doesn't support it. */
7817 target_terminal::ours_for_output ();
7818 printf_filtered
7819 ("Can't send signals to this remote system. %s not sent.\n",
7820 gdb_signal_to_name (rs->last_sent_signal));
7821 rs->last_sent_signal = GDB_SIGNAL_0;
7822 target_terminal::inferior ();
7823
7824 strcpy (buf, rs->last_sent_step ? "s" : "c");
7825 putpkt (buf);
7826 break;
7827 }
7828 /* fallthrough */
7829 default:
7830 warning (_("Invalid remote reply: %s"), buf);
7831 break;
7832 }
7833
7834 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7835 return minus_one_ptid;
7836 else if (status->kind == TARGET_WAITKIND_IGNORE)
7837 {
7838 /* Nothing interesting happened. If we're doing a non-blocking
7839 poll, we're done. Otherwise, go back to waiting. */
7840 if (options & TARGET_WNOHANG)
7841 return minus_one_ptid;
7842 else
7843 goto again;
7844 }
7845 else if (status->kind != TARGET_WAITKIND_EXITED
7846 && status->kind != TARGET_WAITKIND_SIGNALLED)
7847 {
7848 if (event_ptid != null_ptid)
7849 record_currthread (rs, event_ptid);
7850 else
7851 event_ptid = inferior_ptid;
7852 }
7853 else
7854 /* A process exit. Invalidate our notion of current thread. */
7855 record_currthread (rs, minus_one_ptid);
7856
7857 return event_ptid;
7858 }
7859
7860 /* Wait until the remote machine stops, then return, storing status in
7861 STATUS just as `wait' would. */
7862
7863 ptid_t
7864 remote_target::wait (ptid_t ptid, struct target_waitstatus *status, int options)
7865 {
7866 ptid_t event_ptid;
7867
7868 if (target_is_non_stop_p ())
7869 event_ptid = wait_ns (ptid, status, options);
7870 else
7871 event_ptid = wait_as (ptid, status, options);
7872
7873 if (target_is_async_p ())
7874 {
7875 remote_state *rs = get_remote_state ();
7876
7877 /* If there are are events left in the queue tell the event loop
7878 to return here. */
7879 if (!rs->stop_reply_queue.empty ())
7880 mark_async_event_handler (rs->remote_async_inferior_event_token);
7881 }
7882
7883 return event_ptid;
7884 }
7885
7886 /* Fetch a single register using a 'p' packet. */
7887
7888 int
7889 remote_target::fetch_register_using_p (struct regcache *regcache,
7890 packet_reg *reg)
7891 {
7892 struct gdbarch *gdbarch = regcache->arch ();
7893 struct remote_state *rs = get_remote_state ();
7894 char *buf, *p;
7895 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7896 int i;
7897
7898 if (packet_support (PACKET_p) == PACKET_DISABLE)
7899 return 0;
7900
7901 if (reg->pnum == -1)
7902 return 0;
7903
7904 p = rs->buf.data ();
7905 *p++ = 'p';
7906 p += hexnumstr (p, reg->pnum);
7907 *p++ = '\0';
7908 putpkt (rs->buf);
7909 getpkt (&rs->buf, 0);
7910
7911 buf = rs->buf.data ();
7912
7913 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_p]))
7914 {
7915 case PACKET_OK:
7916 break;
7917 case PACKET_UNKNOWN:
7918 return 0;
7919 case PACKET_ERROR:
7920 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
7921 gdbarch_register_name (regcache->arch (),
7922 reg->regnum),
7923 buf);
7924 }
7925
7926 /* If this register is unfetchable, tell the regcache. */
7927 if (buf[0] == 'x')
7928 {
7929 regcache->raw_supply (reg->regnum, NULL);
7930 return 1;
7931 }
7932
7933 /* Otherwise, parse and supply the value. */
7934 p = buf;
7935 i = 0;
7936 while (p[0] != 0)
7937 {
7938 if (p[1] == 0)
7939 error (_("fetch_register_using_p: early buf termination"));
7940
7941 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
7942 p += 2;
7943 }
7944 regcache->raw_supply (reg->regnum, regp);
7945 return 1;
7946 }
7947
7948 /* Fetch the registers included in the target's 'g' packet. */
7949
7950 int
7951 remote_target::send_g_packet ()
7952 {
7953 struct remote_state *rs = get_remote_state ();
7954 int buf_len;
7955
7956 xsnprintf (rs->buf.data (), get_remote_packet_size (), "g");
7957 putpkt (rs->buf);
7958 getpkt (&rs->buf, 0);
7959 if (packet_check_result (rs->buf) == PACKET_ERROR)
7960 error (_("Could not read registers; remote failure reply '%s'"),
7961 rs->buf.data ());
7962
7963 /* We can get out of synch in various cases. If the first character
7964 in the buffer is not a hex character, assume that has happened
7965 and try to fetch another packet to read. */
7966 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
7967 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
7968 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
7969 && rs->buf[0] != 'x') /* New: unavailable register value. */
7970 {
7971 if (remote_debug)
7972 fprintf_unfiltered (gdb_stdlog,
7973 "Bad register packet; fetching a new packet\n");
7974 getpkt (&rs->buf, 0);
7975 }
7976
7977 buf_len = strlen (rs->buf.data ());
7978
7979 /* Sanity check the received packet. */
7980 if (buf_len % 2 != 0)
7981 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf.data ());
7982
7983 return buf_len / 2;
7984 }
7985
7986 void
7987 remote_target::process_g_packet (struct regcache *regcache)
7988 {
7989 struct gdbarch *gdbarch = regcache->arch ();
7990 struct remote_state *rs = get_remote_state ();
7991 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
7992 int i, buf_len;
7993 char *p;
7994 char *regs;
7995
7996 buf_len = strlen (rs->buf.data ());
7997
7998 /* Further sanity checks, with knowledge of the architecture. */
7999 if (buf_len > 2 * rsa->sizeof_g_packet)
8000 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
8001 "bytes): %s"),
8002 rsa->sizeof_g_packet, buf_len / 2,
8003 rs->buf.data ());
8004
8005 /* Save the size of the packet sent to us by the target. It is used
8006 as a heuristic when determining the max size of packets that the
8007 target can safely receive. */
8008 if (rsa->actual_register_packet_size == 0)
8009 rsa->actual_register_packet_size = buf_len;
8010
8011 /* If this is smaller than we guessed the 'g' packet would be,
8012 update our records. A 'g' reply that doesn't include a register's
8013 value implies either that the register is not available, or that
8014 the 'p' packet must be used. */
8015 if (buf_len < 2 * rsa->sizeof_g_packet)
8016 {
8017 long sizeof_g_packet = buf_len / 2;
8018
8019 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8020 {
8021 long offset = rsa->regs[i].offset;
8022 long reg_size = register_size (gdbarch, i);
8023
8024 if (rsa->regs[i].pnum == -1)
8025 continue;
8026
8027 if (offset >= sizeof_g_packet)
8028 rsa->regs[i].in_g_packet = 0;
8029 else if (offset + reg_size > sizeof_g_packet)
8030 error (_("Truncated register %d in remote 'g' packet"), i);
8031 else
8032 rsa->regs[i].in_g_packet = 1;
8033 }
8034
8035 /* Looks valid enough, we can assume this is the correct length
8036 for a 'g' packet. It's important not to adjust
8037 rsa->sizeof_g_packet if we have truncated registers otherwise
8038 this "if" won't be run the next time the method is called
8039 with a packet of the same size and one of the internal errors
8040 below will trigger instead. */
8041 rsa->sizeof_g_packet = sizeof_g_packet;
8042 }
8043
8044 regs = (char *) alloca (rsa->sizeof_g_packet);
8045
8046 /* Unimplemented registers read as all bits zero. */
8047 memset (regs, 0, rsa->sizeof_g_packet);
8048
8049 /* Reply describes registers byte by byte, each byte encoded as two
8050 hex characters. Suck them all up, then supply them to the
8051 register cacheing/storage mechanism. */
8052
8053 p = rs->buf.data ();
8054 for (i = 0; i < rsa->sizeof_g_packet; i++)
8055 {
8056 if (p[0] == 0 || p[1] == 0)
8057 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
8058 internal_error (__FILE__, __LINE__,
8059 _("unexpected end of 'g' packet reply"));
8060
8061 if (p[0] == 'x' && p[1] == 'x')
8062 regs[i] = 0; /* 'x' */
8063 else
8064 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
8065 p += 2;
8066 }
8067
8068 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8069 {
8070 struct packet_reg *r = &rsa->regs[i];
8071 long reg_size = register_size (gdbarch, i);
8072
8073 if (r->in_g_packet)
8074 {
8075 if ((r->offset + reg_size) * 2 > strlen (rs->buf.data ()))
8076 /* This shouldn't happen - we adjusted in_g_packet above. */
8077 internal_error (__FILE__, __LINE__,
8078 _("unexpected end of 'g' packet reply"));
8079 else if (rs->buf[r->offset * 2] == 'x')
8080 {
8081 gdb_assert (r->offset * 2 < strlen (rs->buf.data ()));
8082 /* The register isn't available, mark it as such (at
8083 the same time setting the value to zero). */
8084 regcache->raw_supply (r->regnum, NULL);
8085 }
8086 else
8087 regcache->raw_supply (r->regnum, regs + r->offset);
8088 }
8089 }
8090 }
8091
8092 void
8093 remote_target::fetch_registers_using_g (struct regcache *regcache)
8094 {
8095 send_g_packet ();
8096 process_g_packet (regcache);
8097 }
8098
8099 /* Make the remote selected traceframe match GDB's selected
8100 traceframe. */
8101
8102 void
8103 remote_target::set_remote_traceframe ()
8104 {
8105 int newnum;
8106 struct remote_state *rs = get_remote_state ();
8107
8108 if (rs->remote_traceframe_number == get_traceframe_number ())
8109 return;
8110
8111 /* Avoid recursion, remote_trace_find calls us again. */
8112 rs->remote_traceframe_number = get_traceframe_number ();
8113
8114 newnum = target_trace_find (tfind_number,
8115 get_traceframe_number (), 0, 0, NULL);
8116
8117 /* Should not happen. If it does, all bets are off. */
8118 if (newnum != get_traceframe_number ())
8119 warning (_("could not set remote traceframe"));
8120 }
8121
8122 void
8123 remote_target::fetch_registers (struct regcache *regcache, int regnum)
8124 {
8125 struct gdbarch *gdbarch = regcache->arch ();
8126 struct remote_state *rs = get_remote_state ();
8127 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8128 int i;
8129
8130 set_remote_traceframe ();
8131 set_general_thread (regcache->ptid ());
8132
8133 if (regnum >= 0)
8134 {
8135 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8136
8137 gdb_assert (reg != NULL);
8138
8139 /* If this register might be in the 'g' packet, try that first -
8140 we are likely to read more than one register. If this is the
8141 first 'g' packet, we might be overly optimistic about its
8142 contents, so fall back to 'p'. */
8143 if (reg->in_g_packet)
8144 {
8145 fetch_registers_using_g (regcache);
8146 if (reg->in_g_packet)
8147 return;
8148 }
8149
8150 if (fetch_register_using_p (regcache, reg))
8151 return;
8152
8153 /* This register is not available. */
8154 regcache->raw_supply (reg->regnum, NULL);
8155
8156 return;
8157 }
8158
8159 fetch_registers_using_g (regcache);
8160
8161 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8162 if (!rsa->regs[i].in_g_packet)
8163 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8164 {
8165 /* This register is not available. */
8166 regcache->raw_supply (i, NULL);
8167 }
8168 }
8169
8170 /* Prepare to store registers. Since we may send them all (using a
8171 'G' request), we have to read out the ones we don't want to change
8172 first. */
8173
8174 void
8175 remote_target::prepare_to_store (struct regcache *regcache)
8176 {
8177 struct remote_state *rs = get_remote_state ();
8178 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8179 int i;
8180
8181 /* Make sure the entire registers array is valid. */
8182 switch (packet_support (PACKET_P))
8183 {
8184 case PACKET_DISABLE:
8185 case PACKET_SUPPORT_UNKNOWN:
8186 /* Make sure all the necessary registers are cached. */
8187 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8188 if (rsa->regs[i].in_g_packet)
8189 regcache->raw_update (rsa->regs[i].regnum);
8190 break;
8191 case PACKET_ENABLE:
8192 break;
8193 }
8194 }
8195
8196 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8197 packet was not recognized. */
8198
8199 int
8200 remote_target::store_register_using_P (const struct regcache *regcache,
8201 packet_reg *reg)
8202 {
8203 struct gdbarch *gdbarch = regcache->arch ();
8204 struct remote_state *rs = get_remote_state ();
8205 /* Try storing a single register. */
8206 char *buf = rs->buf.data ();
8207 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8208 char *p;
8209
8210 if (packet_support (PACKET_P) == PACKET_DISABLE)
8211 return 0;
8212
8213 if (reg->pnum == -1)
8214 return 0;
8215
8216 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8217 p = buf + strlen (buf);
8218 regcache->raw_collect (reg->regnum, regp);
8219 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8220 putpkt (rs->buf);
8221 getpkt (&rs->buf, 0);
8222
8223 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8224 {
8225 case PACKET_OK:
8226 return 1;
8227 case PACKET_ERROR:
8228 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8229 gdbarch_register_name (gdbarch, reg->regnum), rs->buf.data ());
8230 case PACKET_UNKNOWN:
8231 return 0;
8232 default:
8233 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8234 }
8235 }
8236
8237 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8238 contents of the register cache buffer. FIXME: ignores errors. */
8239
8240 void
8241 remote_target::store_registers_using_G (const struct regcache *regcache)
8242 {
8243 struct remote_state *rs = get_remote_state ();
8244 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8245 gdb_byte *regs;
8246 char *p;
8247
8248 /* Extract all the registers in the regcache copying them into a
8249 local buffer. */
8250 {
8251 int i;
8252
8253 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8254 memset (regs, 0, rsa->sizeof_g_packet);
8255 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8256 {
8257 struct packet_reg *r = &rsa->regs[i];
8258
8259 if (r->in_g_packet)
8260 regcache->raw_collect (r->regnum, regs + r->offset);
8261 }
8262 }
8263
8264 /* Command describes registers byte by byte,
8265 each byte encoded as two hex characters. */
8266 p = rs->buf.data ();
8267 *p++ = 'G';
8268 bin2hex (regs, p, rsa->sizeof_g_packet);
8269 putpkt (rs->buf);
8270 getpkt (&rs->buf, 0);
8271 if (packet_check_result (rs->buf) == PACKET_ERROR)
8272 error (_("Could not write registers; remote failure reply '%s'"),
8273 rs->buf.data ());
8274 }
8275
8276 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8277 of the register cache buffer. FIXME: ignores errors. */
8278
8279 void
8280 remote_target::store_registers (struct regcache *regcache, int regnum)
8281 {
8282 struct gdbarch *gdbarch = regcache->arch ();
8283 struct remote_state *rs = get_remote_state ();
8284 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8285 int i;
8286
8287 set_remote_traceframe ();
8288 set_general_thread (regcache->ptid ());
8289
8290 if (regnum >= 0)
8291 {
8292 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8293
8294 gdb_assert (reg != NULL);
8295
8296 /* Always prefer to store registers using the 'P' packet if
8297 possible; we often change only a small number of registers.
8298 Sometimes we change a larger number; we'd need help from a
8299 higher layer to know to use 'G'. */
8300 if (store_register_using_P (regcache, reg))
8301 return;
8302
8303 /* For now, don't complain if we have no way to write the
8304 register. GDB loses track of unavailable registers too
8305 easily. Some day, this may be an error. We don't have
8306 any way to read the register, either... */
8307 if (!reg->in_g_packet)
8308 return;
8309
8310 store_registers_using_G (regcache);
8311 return;
8312 }
8313
8314 store_registers_using_G (regcache);
8315
8316 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8317 if (!rsa->regs[i].in_g_packet)
8318 if (!store_register_using_P (regcache, &rsa->regs[i]))
8319 /* See above for why we do not issue an error here. */
8320 continue;
8321 }
8322 \f
8323
8324 /* Return the number of hex digits in num. */
8325
8326 static int
8327 hexnumlen (ULONGEST num)
8328 {
8329 int i;
8330
8331 for (i = 0; num != 0; i++)
8332 num >>= 4;
8333
8334 return std::max (i, 1);
8335 }
8336
8337 /* Set BUF to the minimum number of hex digits representing NUM. */
8338
8339 static int
8340 hexnumstr (char *buf, ULONGEST num)
8341 {
8342 int len = hexnumlen (num);
8343
8344 return hexnumnstr (buf, num, len);
8345 }
8346
8347
8348 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8349
8350 static int
8351 hexnumnstr (char *buf, ULONGEST num, int width)
8352 {
8353 int i;
8354
8355 buf[width] = '\0';
8356
8357 for (i = width - 1; i >= 0; i--)
8358 {
8359 buf[i] = "0123456789abcdef"[(num & 0xf)];
8360 num >>= 4;
8361 }
8362
8363 return width;
8364 }
8365
8366 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8367
8368 static CORE_ADDR
8369 remote_address_masked (CORE_ADDR addr)
8370 {
8371 unsigned int address_size = remote_address_size;
8372
8373 /* If "remoteaddresssize" was not set, default to target address size. */
8374 if (!address_size)
8375 address_size = gdbarch_addr_bit (target_gdbarch ());
8376
8377 if (address_size > 0
8378 && address_size < (sizeof (ULONGEST) * 8))
8379 {
8380 /* Only create a mask when that mask can safely be constructed
8381 in a ULONGEST variable. */
8382 ULONGEST mask = 1;
8383
8384 mask = (mask << address_size) - 1;
8385 addr &= mask;
8386 }
8387 return addr;
8388 }
8389
8390 /* Determine whether the remote target supports binary downloading.
8391 This is accomplished by sending a no-op memory write of zero length
8392 to the target at the specified address. It does not suffice to send
8393 the whole packet, since many stubs strip the eighth bit and
8394 subsequently compute a wrong checksum, which causes real havoc with
8395 remote_write_bytes.
8396
8397 NOTE: This can still lose if the serial line is not eight-bit
8398 clean. In cases like this, the user should clear "remote
8399 X-packet". */
8400
8401 void
8402 remote_target::check_binary_download (CORE_ADDR addr)
8403 {
8404 struct remote_state *rs = get_remote_state ();
8405
8406 switch (packet_support (PACKET_X))
8407 {
8408 case PACKET_DISABLE:
8409 break;
8410 case PACKET_ENABLE:
8411 break;
8412 case PACKET_SUPPORT_UNKNOWN:
8413 {
8414 char *p;
8415
8416 p = rs->buf.data ();
8417 *p++ = 'X';
8418 p += hexnumstr (p, (ULONGEST) addr);
8419 *p++ = ',';
8420 p += hexnumstr (p, (ULONGEST) 0);
8421 *p++ = ':';
8422 *p = '\0';
8423
8424 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8425 getpkt (&rs->buf, 0);
8426
8427 if (rs->buf[0] == '\0')
8428 {
8429 if (remote_debug)
8430 fprintf_unfiltered (gdb_stdlog,
8431 "binary downloading NOT "
8432 "supported by target\n");
8433 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8434 }
8435 else
8436 {
8437 if (remote_debug)
8438 fprintf_unfiltered (gdb_stdlog,
8439 "binary downloading supported by target\n");
8440 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8441 }
8442 break;
8443 }
8444 }
8445 }
8446
8447 /* Helper function to resize the payload in order to try to get a good
8448 alignment. We try to write an amount of data such that the next write will
8449 start on an address aligned on REMOTE_ALIGN_WRITES. */
8450
8451 static int
8452 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8453 {
8454 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8455 }
8456
8457 /* Write memory data directly to the remote machine.
8458 This does not inform the data cache; the data cache uses this.
8459 HEADER is the starting part of the packet.
8460 MEMADDR is the address in the remote memory space.
8461 MYADDR is the address of the buffer in our space.
8462 LEN_UNITS is the number of addressable units to write.
8463 UNIT_SIZE is the length in bytes of an addressable unit.
8464 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8465 should send data as binary ('X'), or hex-encoded ('M').
8466
8467 The function creates packet of the form
8468 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8469
8470 where encoding of <DATA> is terminated by PACKET_FORMAT.
8471
8472 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8473 are omitted.
8474
8475 Return the transferred status, error or OK (an
8476 'enum target_xfer_status' value). Save the number of addressable units
8477 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8478
8479 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8480 exchange between gdb and the stub could look like (?? in place of the
8481 checksum):
8482
8483 -> $m1000,4#??
8484 <- aaaabbbbccccdddd
8485
8486 -> $M1000,3:eeeeffffeeee#??
8487 <- OK
8488
8489 -> $m1000,4#??
8490 <- eeeeffffeeeedddd */
8491
8492 target_xfer_status
8493 remote_target::remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8494 const gdb_byte *myaddr,
8495 ULONGEST len_units,
8496 int unit_size,
8497 ULONGEST *xfered_len_units,
8498 char packet_format, int use_length)
8499 {
8500 struct remote_state *rs = get_remote_state ();
8501 char *p;
8502 char *plen = NULL;
8503 int plenlen = 0;
8504 int todo_units;
8505 int units_written;
8506 int payload_capacity_bytes;
8507 int payload_length_bytes;
8508
8509 if (packet_format != 'X' && packet_format != 'M')
8510 internal_error (__FILE__, __LINE__,
8511 _("remote_write_bytes_aux: bad packet format"));
8512
8513 if (len_units == 0)
8514 return TARGET_XFER_EOF;
8515
8516 payload_capacity_bytes = get_memory_write_packet_size ();
8517
8518 /* The packet buffer will be large enough for the payload;
8519 get_memory_packet_size ensures this. */
8520 rs->buf[0] = '\0';
8521
8522 /* Compute the size of the actual payload by subtracting out the
8523 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8524
8525 payload_capacity_bytes -= strlen ("$,:#NN");
8526 if (!use_length)
8527 /* The comma won't be used. */
8528 payload_capacity_bytes += 1;
8529 payload_capacity_bytes -= strlen (header);
8530 payload_capacity_bytes -= hexnumlen (memaddr);
8531
8532 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8533
8534 strcat (rs->buf.data (), header);
8535 p = rs->buf.data () + strlen (header);
8536
8537 /* Compute a best guess of the number of bytes actually transfered. */
8538 if (packet_format == 'X')
8539 {
8540 /* Best guess at number of bytes that will fit. */
8541 todo_units = std::min (len_units,
8542 (ULONGEST) payload_capacity_bytes / unit_size);
8543 if (use_length)
8544 payload_capacity_bytes -= hexnumlen (todo_units);
8545 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8546 }
8547 else
8548 {
8549 /* Number of bytes that will fit. */
8550 todo_units
8551 = std::min (len_units,
8552 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8553 if (use_length)
8554 payload_capacity_bytes -= hexnumlen (todo_units);
8555 todo_units = std::min (todo_units,
8556 (payload_capacity_bytes / unit_size) / 2);
8557 }
8558
8559 if (todo_units <= 0)
8560 internal_error (__FILE__, __LINE__,
8561 _("minimum packet size too small to write data"));
8562
8563 /* If we already need another packet, then try to align the end
8564 of this packet to a useful boundary. */
8565 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8566 todo_units = align_for_efficient_write (todo_units, memaddr);
8567
8568 /* Append "<memaddr>". */
8569 memaddr = remote_address_masked (memaddr);
8570 p += hexnumstr (p, (ULONGEST) memaddr);
8571
8572 if (use_length)
8573 {
8574 /* Append ",". */
8575 *p++ = ',';
8576
8577 /* Append the length and retain its location and size. It may need to be
8578 adjusted once the packet body has been created. */
8579 plen = p;
8580 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8581 p += plenlen;
8582 }
8583
8584 /* Append ":". */
8585 *p++ = ':';
8586 *p = '\0';
8587
8588 /* Append the packet body. */
8589 if (packet_format == 'X')
8590 {
8591 /* Binary mode. Send target system values byte by byte, in
8592 increasing byte addresses. Only escape certain critical
8593 characters. */
8594 payload_length_bytes =
8595 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8596 &units_written, payload_capacity_bytes);
8597
8598 /* If not all TODO units fit, then we'll need another packet. Make
8599 a second try to keep the end of the packet aligned. Don't do
8600 this if the packet is tiny. */
8601 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8602 {
8603 int new_todo_units;
8604
8605 new_todo_units = align_for_efficient_write (units_written, memaddr);
8606
8607 if (new_todo_units != units_written)
8608 payload_length_bytes =
8609 remote_escape_output (myaddr, new_todo_units, unit_size,
8610 (gdb_byte *) p, &units_written,
8611 payload_capacity_bytes);
8612 }
8613
8614 p += payload_length_bytes;
8615 if (use_length && units_written < todo_units)
8616 {
8617 /* Escape chars have filled up the buffer prematurely,
8618 and we have actually sent fewer units than planned.
8619 Fix-up the length field of the packet. Use the same
8620 number of characters as before. */
8621 plen += hexnumnstr (plen, (ULONGEST) units_written,
8622 plenlen);
8623 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8624 }
8625 }
8626 else
8627 {
8628 /* Normal mode: Send target system values byte by byte, in
8629 increasing byte addresses. Each byte is encoded as a two hex
8630 value. */
8631 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8632 units_written = todo_units;
8633 }
8634
8635 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8636 getpkt (&rs->buf, 0);
8637
8638 if (rs->buf[0] == 'E')
8639 return TARGET_XFER_E_IO;
8640
8641 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8642 send fewer units than we'd planned. */
8643 *xfered_len_units = (ULONGEST) units_written;
8644 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8645 }
8646
8647 /* Write memory data directly to the remote machine.
8648 This does not inform the data cache; the data cache uses this.
8649 MEMADDR is the address in the remote memory space.
8650 MYADDR is the address of the buffer in our space.
8651 LEN is the number of bytes.
8652
8653 Return the transferred status, error or OK (an
8654 'enum target_xfer_status' value). Save the number of bytes
8655 transferred in *XFERED_LEN. Only transfer a single packet. */
8656
8657 target_xfer_status
8658 remote_target::remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr,
8659 ULONGEST len, int unit_size,
8660 ULONGEST *xfered_len)
8661 {
8662 const char *packet_format = NULL;
8663
8664 /* Check whether the target supports binary download. */
8665 check_binary_download (memaddr);
8666
8667 switch (packet_support (PACKET_X))
8668 {
8669 case PACKET_ENABLE:
8670 packet_format = "X";
8671 break;
8672 case PACKET_DISABLE:
8673 packet_format = "M";
8674 break;
8675 case PACKET_SUPPORT_UNKNOWN:
8676 internal_error (__FILE__, __LINE__,
8677 _("remote_write_bytes: bad internal state"));
8678 default:
8679 internal_error (__FILE__, __LINE__, _("bad switch"));
8680 }
8681
8682 return remote_write_bytes_aux (packet_format,
8683 memaddr, myaddr, len, unit_size, xfered_len,
8684 packet_format[0], 1);
8685 }
8686
8687 /* Read memory data directly from the remote machine.
8688 This does not use the data cache; the data cache uses this.
8689 MEMADDR is the address in the remote memory space.
8690 MYADDR is the address of the buffer in our space.
8691 LEN_UNITS is the number of addressable memory units to read..
8692 UNIT_SIZE is the length in bytes of an addressable unit.
8693
8694 Return the transferred status, error or OK (an
8695 'enum target_xfer_status' value). Save the number of bytes
8696 transferred in *XFERED_LEN_UNITS.
8697
8698 See the comment of remote_write_bytes_aux for an example of
8699 memory read/write exchange between gdb and the stub. */
8700
8701 target_xfer_status
8702 remote_target::remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
8703 ULONGEST len_units,
8704 int unit_size, ULONGEST *xfered_len_units)
8705 {
8706 struct remote_state *rs = get_remote_state ();
8707 int buf_size_bytes; /* Max size of packet output buffer. */
8708 char *p;
8709 int todo_units;
8710 int decoded_bytes;
8711
8712 buf_size_bytes = get_memory_read_packet_size ();
8713 /* The packet buffer will be large enough for the payload;
8714 get_memory_packet_size ensures this. */
8715
8716 /* Number of units that will fit. */
8717 todo_units = std::min (len_units,
8718 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8719
8720 /* Construct "m"<memaddr>","<len>". */
8721 memaddr = remote_address_masked (memaddr);
8722 p = rs->buf.data ();
8723 *p++ = 'm';
8724 p += hexnumstr (p, (ULONGEST) memaddr);
8725 *p++ = ',';
8726 p += hexnumstr (p, (ULONGEST) todo_units);
8727 *p = '\0';
8728 putpkt (rs->buf);
8729 getpkt (&rs->buf, 0);
8730 if (rs->buf[0] == 'E'
8731 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8732 && rs->buf[3] == '\0')
8733 return TARGET_XFER_E_IO;
8734 /* Reply describes memory byte by byte, each byte encoded as two hex
8735 characters. */
8736 p = rs->buf.data ();
8737 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8738 /* Return what we have. Let higher layers handle partial reads. */
8739 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8740 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8741 }
8742
8743 /* Using the set of read-only target sections of remote, read live
8744 read-only memory.
8745
8746 For interface/parameters/return description see target.h,
8747 to_xfer_partial. */
8748
8749 target_xfer_status
8750 remote_target::remote_xfer_live_readonly_partial (gdb_byte *readbuf,
8751 ULONGEST memaddr,
8752 ULONGEST len,
8753 int unit_size,
8754 ULONGEST *xfered_len)
8755 {
8756 struct target_section *secp;
8757 struct target_section_table *table;
8758
8759 secp = target_section_by_addr (this, memaddr);
8760 if (secp != NULL
8761 && (bfd_get_section_flags (secp->the_bfd_section->owner,
8762 secp->the_bfd_section)
8763 & SEC_READONLY))
8764 {
8765 struct target_section *p;
8766 ULONGEST memend = memaddr + len;
8767
8768 table = target_get_section_table (this);
8769
8770 for (p = table->sections; p < table->sections_end; p++)
8771 {
8772 if (memaddr >= p->addr)
8773 {
8774 if (memend <= p->endaddr)
8775 {
8776 /* Entire transfer is within this section. */
8777 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8778 xfered_len);
8779 }
8780 else if (memaddr >= p->endaddr)
8781 {
8782 /* This section ends before the transfer starts. */
8783 continue;
8784 }
8785 else
8786 {
8787 /* This section overlaps the transfer. Just do half. */
8788 len = p->endaddr - memaddr;
8789 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8790 xfered_len);
8791 }
8792 }
8793 }
8794 }
8795
8796 return TARGET_XFER_EOF;
8797 }
8798
8799 /* Similar to remote_read_bytes_1, but it reads from the remote stub
8800 first if the requested memory is unavailable in traceframe.
8801 Otherwise, fall back to remote_read_bytes_1. */
8802
8803 target_xfer_status
8804 remote_target::remote_read_bytes (CORE_ADDR memaddr,
8805 gdb_byte *myaddr, ULONGEST len, int unit_size,
8806 ULONGEST *xfered_len)
8807 {
8808 if (len == 0)
8809 return TARGET_XFER_EOF;
8810
8811 if (get_traceframe_number () != -1)
8812 {
8813 std::vector<mem_range> available;
8814
8815 /* If we fail to get the set of available memory, then the
8816 target does not support querying traceframe info, and so we
8817 attempt reading from the traceframe anyway (assuming the
8818 target implements the old QTro packet then). */
8819 if (traceframe_available_memory (&available, memaddr, len))
8820 {
8821 if (available.empty () || available[0].start != memaddr)
8822 {
8823 enum target_xfer_status res;
8824
8825 /* Don't read into the traceframe's available
8826 memory. */
8827 if (!available.empty ())
8828 {
8829 LONGEST oldlen = len;
8830
8831 len = available[0].start - memaddr;
8832 gdb_assert (len <= oldlen);
8833 }
8834
8835 /* This goes through the topmost target again. */
8836 res = remote_xfer_live_readonly_partial (myaddr, memaddr,
8837 len, unit_size, xfered_len);
8838 if (res == TARGET_XFER_OK)
8839 return TARGET_XFER_OK;
8840 else
8841 {
8842 /* No use trying further, we know some memory starting
8843 at MEMADDR isn't available. */
8844 *xfered_len = len;
8845 return (*xfered_len != 0) ?
8846 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
8847 }
8848 }
8849
8850 /* Don't try to read more than how much is available, in
8851 case the target implements the deprecated QTro packet to
8852 cater for older GDBs (the target's knowledge of read-only
8853 sections may be outdated by now). */
8854 len = available[0].length;
8855 }
8856 }
8857
8858 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8859 }
8860
8861 \f
8862
8863 /* Sends a packet with content determined by the printf format string
8864 FORMAT and the remaining arguments, then gets the reply. Returns
8865 whether the packet was a success, a failure, or unknown. */
8866
8867 packet_result
8868 remote_target::remote_send_printf (const char *format, ...)
8869 {
8870 struct remote_state *rs = get_remote_state ();
8871 int max_size = get_remote_packet_size ();
8872 va_list ap;
8873
8874 va_start (ap, format);
8875
8876 rs->buf[0] = '\0';
8877 int size = vsnprintf (rs->buf.data (), max_size, format, ap);
8878
8879 va_end (ap);
8880
8881 if (size >= max_size)
8882 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
8883
8884 if (putpkt (rs->buf) < 0)
8885 error (_("Communication problem with target."));
8886
8887 rs->buf[0] = '\0';
8888 getpkt (&rs->buf, 0);
8889
8890 return packet_check_result (rs->buf);
8891 }
8892
8893 /* Flash writing can take quite some time. We'll set
8894 effectively infinite timeout for flash operations.
8895 In future, we'll need to decide on a better approach. */
8896 static const int remote_flash_timeout = 1000;
8897
8898 void
8899 remote_target::flash_erase (ULONGEST address, LONGEST length)
8900 {
8901 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8902 enum packet_result ret;
8903 scoped_restore restore_timeout
8904 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8905
8906 ret = remote_send_printf ("vFlashErase:%s,%s",
8907 phex (address, addr_size),
8908 phex (length, 4));
8909 switch (ret)
8910 {
8911 case PACKET_UNKNOWN:
8912 error (_("Remote target does not support flash erase"));
8913 case PACKET_ERROR:
8914 error (_("Error erasing flash with vFlashErase packet"));
8915 default:
8916 break;
8917 }
8918 }
8919
8920 target_xfer_status
8921 remote_target::remote_flash_write (ULONGEST address,
8922 ULONGEST length, ULONGEST *xfered_len,
8923 const gdb_byte *data)
8924 {
8925 scoped_restore restore_timeout
8926 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8927 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
8928 xfered_len,'X', 0);
8929 }
8930
8931 void
8932 remote_target::flash_done ()
8933 {
8934 int ret;
8935
8936 scoped_restore restore_timeout
8937 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8938
8939 ret = remote_send_printf ("vFlashDone");
8940
8941 switch (ret)
8942 {
8943 case PACKET_UNKNOWN:
8944 error (_("Remote target does not support vFlashDone"));
8945 case PACKET_ERROR:
8946 error (_("Error finishing flash operation"));
8947 default:
8948 break;
8949 }
8950 }
8951
8952 void
8953 remote_target::files_info ()
8954 {
8955 puts_filtered ("Debugging a target over a serial line.\n");
8956 }
8957 \f
8958 /* Stuff for dealing with the packets which are part of this protocol.
8959 See comment at top of file for details. */
8960
8961 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
8962 error to higher layers. Called when a serial error is detected.
8963 The exception message is STRING, followed by a colon and a blank,
8964 the system error message for errno at function entry and final dot
8965 for output compatibility with throw_perror_with_name. */
8966
8967 static void
8968 unpush_and_perror (const char *string)
8969 {
8970 int saved_errno = errno;
8971
8972 remote_unpush_target ();
8973 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
8974 safe_strerror (saved_errno));
8975 }
8976
8977 /* Read a single character from the remote end. The current quit
8978 handler is overridden to avoid quitting in the middle of packet
8979 sequence, as that would break communication with the remote server.
8980 See remote_serial_quit_handler for more detail. */
8981
8982 int
8983 remote_target::readchar (int timeout)
8984 {
8985 int ch;
8986 struct remote_state *rs = get_remote_state ();
8987
8988 {
8989 scoped_restore restore_quit_target
8990 = make_scoped_restore (&curr_quit_handler_target, this);
8991 scoped_restore restore_quit
8992 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
8993
8994 rs->got_ctrlc_during_io = 0;
8995
8996 ch = serial_readchar (rs->remote_desc, timeout);
8997
8998 if (rs->got_ctrlc_during_io)
8999 set_quit_flag ();
9000 }
9001
9002 if (ch >= 0)
9003 return ch;
9004
9005 switch ((enum serial_rc) ch)
9006 {
9007 case SERIAL_EOF:
9008 remote_unpush_target ();
9009 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
9010 /* no return */
9011 case SERIAL_ERROR:
9012 unpush_and_perror (_("Remote communication error. "
9013 "Target disconnected."));
9014 /* no return */
9015 case SERIAL_TIMEOUT:
9016 break;
9017 }
9018 return ch;
9019 }
9020
9021 /* Wrapper for serial_write that closes the target and throws if
9022 writing fails. The current quit handler is overridden to avoid
9023 quitting in the middle of packet sequence, as that would break
9024 communication with the remote server. See
9025 remote_serial_quit_handler for more detail. */
9026
9027 void
9028 remote_target::remote_serial_write (const char *str, int len)
9029 {
9030 struct remote_state *rs = get_remote_state ();
9031
9032 scoped_restore restore_quit_target
9033 = make_scoped_restore (&curr_quit_handler_target, this);
9034 scoped_restore restore_quit
9035 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9036
9037 rs->got_ctrlc_during_io = 0;
9038
9039 if (serial_write (rs->remote_desc, str, len))
9040 {
9041 unpush_and_perror (_("Remote communication error. "
9042 "Target disconnected."));
9043 }
9044
9045 if (rs->got_ctrlc_during_io)
9046 set_quit_flag ();
9047 }
9048
9049 /* Return a string representing an escaped version of BUF, of len N.
9050 E.g. \n is converted to \\n, \t to \\t, etc. */
9051
9052 static std::string
9053 escape_buffer (const char *buf, int n)
9054 {
9055 string_file stb;
9056
9057 stb.putstrn (buf, n, '\\');
9058 return std::move (stb.string ());
9059 }
9060
9061 /* Display a null-terminated packet on stdout, for debugging, using C
9062 string notation. */
9063
9064 static void
9065 print_packet (const char *buf)
9066 {
9067 puts_filtered ("\"");
9068 fputstr_filtered (buf, '"', gdb_stdout);
9069 puts_filtered ("\"");
9070 }
9071
9072 int
9073 remote_target::putpkt (const char *buf)
9074 {
9075 return putpkt_binary (buf, strlen (buf));
9076 }
9077
9078 /* Wrapper around remote_target::putpkt to avoid exporting
9079 remote_target. */
9080
9081 int
9082 putpkt (remote_target *remote, const char *buf)
9083 {
9084 return remote->putpkt (buf);
9085 }
9086
9087 /* Send a packet to the remote machine, with error checking. The data
9088 of the packet is in BUF. The string in BUF can be at most
9089 get_remote_packet_size () - 5 to account for the $, # and checksum,
9090 and for a possible /0 if we are debugging (remote_debug) and want
9091 to print the sent packet as a string. */
9092
9093 int
9094 remote_target::putpkt_binary (const char *buf, int cnt)
9095 {
9096 struct remote_state *rs = get_remote_state ();
9097 int i;
9098 unsigned char csum = 0;
9099 gdb::def_vector<char> data (cnt + 6);
9100 char *buf2 = data.data ();
9101
9102 int ch;
9103 int tcount = 0;
9104 char *p;
9105
9106 /* Catch cases like trying to read memory or listing threads while
9107 we're waiting for a stop reply. The remote server wouldn't be
9108 ready to handle this request, so we'd hang and timeout. We don't
9109 have to worry about this in synchronous mode, because in that
9110 case it's not possible to issue a command while the target is
9111 running. This is not a problem in non-stop mode, because in that
9112 case, the stub is always ready to process serial input. */
9113 if (!target_is_non_stop_p ()
9114 && target_is_async_p ()
9115 && rs->waiting_for_stop_reply)
9116 {
9117 error (_("Cannot execute this command while the target is running.\n"
9118 "Use the \"interrupt\" command to stop the target\n"
9119 "and then try again."));
9120 }
9121
9122 /* We're sending out a new packet. Make sure we don't look at a
9123 stale cached response. */
9124 rs->cached_wait_status = 0;
9125
9126 /* Copy the packet into buffer BUF2, encapsulating it
9127 and giving it a checksum. */
9128
9129 p = buf2;
9130 *p++ = '$';
9131
9132 for (i = 0; i < cnt; i++)
9133 {
9134 csum += buf[i];
9135 *p++ = buf[i];
9136 }
9137 *p++ = '#';
9138 *p++ = tohex ((csum >> 4) & 0xf);
9139 *p++ = tohex (csum & 0xf);
9140
9141 /* Send it over and over until we get a positive ack. */
9142
9143 while (1)
9144 {
9145 int started_error_output = 0;
9146
9147 if (remote_debug)
9148 {
9149 *p = '\0';
9150
9151 int len = (int) (p - buf2);
9152
9153 std::string str
9154 = escape_buffer (buf2, std::min (len, REMOTE_DEBUG_MAX_CHAR));
9155
9156 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
9157
9158 if (len > REMOTE_DEBUG_MAX_CHAR)
9159 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9160 len - REMOTE_DEBUG_MAX_CHAR);
9161
9162 fprintf_unfiltered (gdb_stdlog, "...");
9163
9164 gdb_flush (gdb_stdlog);
9165 }
9166 remote_serial_write (buf2, p - buf2);
9167
9168 /* If this is a no acks version of the remote protocol, send the
9169 packet and move on. */
9170 if (rs->noack_mode)
9171 break;
9172
9173 /* Read until either a timeout occurs (-2) or '+' is read.
9174 Handle any notification that arrives in the mean time. */
9175 while (1)
9176 {
9177 ch = readchar (remote_timeout);
9178
9179 if (remote_debug)
9180 {
9181 switch (ch)
9182 {
9183 case '+':
9184 case '-':
9185 case SERIAL_TIMEOUT:
9186 case '$':
9187 case '%':
9188 if (started_error_output)
9189 {
9190 putchar_unfiltered ('\n');
9191 started_error_output = 0;
9192 }
9193 }
9194 }
9195
9196 switch (ch)
9197 {
9198 case '+':
9199 if (remote_debug)
9200 fprintf_unfiltered (gdb_stdlog, "Ack\n");
9201 return 1;
9202 case '-':
9203 if (remote_debug)
9204 fprintf_unfiltered (gdb_stdlog, "Nak\n");
9205 /* FALLTHROUGH */
9206 case SERIAL_TIMEOUT:
9207 tcount++;
9208 if (tcount > 3)
9209 return 0;
9210 break; /* Retransmit buffer. */
9211 case '$':
9212 {
9213 if (remote_debug)
9214 fprintf_unfiltered (gdb_stdlog,
9215 "Packet instead of Ack, ignoring it\n");
9216 /* It's probably an old response sent because an ACK
9217 was lost. Gobble up the packet and ack it so it
9218 doesn't get retransmitted when we resend this
9219 packet. */
9220 skip_frame ();
9221 remote_serial_write ("+", 1);
9222 continue; /* Now, go look for +. */
9223 }
9224
9225 case '%':
9226 {
9227 int val;
9228
9229 /* If we got a notification, handle it, and go back to looking
9230 for an ack. */
9231 /* We've found the start of a notification. Now
9232 collect the data. */
9233 val = read_frame (&rs->buf);
9234 if (val >= 0)
9235 {
9236 if (remote_debug)
9237 {
9238 std::string str = escape_buffer (rs->buf.data (), val);
9239
9240 fprintf_unfiltered (gdb_stdlog,
9241 " Notification received: %s\n",
9242 str.c_str ());
9243 }
9244 handle_notification (rs->notif_state, rs->buf.data ());
9245 /* We're in sync now, rewait for the ack. */
9246 tcount = 0;
9247 }
9248 else
9249 {
9250 if (remote_debug)
9251 {
9252 if (!started_error_output)
9253 {
9254 started_error_output = 1;
9255 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9256 }
9257 fputc_unfiltered (ch & 0177, gdb_stdlog);
9258 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf.data ());
9259 }
9260 }
9261 continue;
9262 }
9263 /* fall-through */
9264 default:
9265 if (remote_debug)
9266 {
9267 if (!started_error_output)
9268 {
9269 started_error_output = 1;
9270 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9271 }
9272 fputc_unfiltered (ch & 0177, gdb_stdlog);
9273 }
9274 continue;
9275 }
9276 break; /* Here to retransmit. */
9277 }
9278
9279 #if 0
9280 /* This is wrong. If doing a long backtrace, the user should be
9281 able to get out next time we call QUIT, without anything as
9282 violent as interrupt_query. If we want to provide a way out of
9283 here without getting to the next QUIT, it should be based on
9284 hitting ^C twice as in remote_wait. */
9285 if (quit_flag)
9286 {
9287 quit_flag = 0;
9288 interrupt_query ();
9289 }
9290 #endif
9291 }
9292
9293 return 0;
9294 }
9295
9296 /* Come here after finding the start of a frame when we expected an
9297 ack. Do our best to discard the rest of this packet. */
9298
9299 void
9300 remote_target::skip_frame ()
9301 {
9302 int c;
9303
9304 while (1)
9305 {
9306 c = readchar (remote_timeout);
9307 switch (c)
9308 {
9309 case SERIAL_TIMEOUT:
9310 /* Nothing we can do. */
9311 return;
9312 case '#':
9313 /* Discard the two bytes of checksum and stop. */
9314 c = readchar (remote_timeout);
9315 if (c >= 0)
9316 c = readchar (remote_timeout);
9317
9318 return;
9319 case '*': /* Run length encoding. */
9320 /* Discard the repeat count. */
9321 c = readchar (remote_timeout);
9322 if (c < 0)
9323 return;
9324 break;
9325 default:
9326 /* A regular character. */
9327 break;
9328 }
9329 }
9330 }
9331
9332 /* Come here after finding the start of the frame. Collect the rest
9333 into *BUF, verifying the checksum, length, and handling run-length
9334 compression. NUL terminate the buffer. If there is not enough room,
9335 expand *BUF.
9336
9337 Returns -1 on error, number of characters in buffer (ignoring the
9338 trailing NULL) on success. (could be extended to return one of the
9339 SERIAL status indications). */
9340
9341 long
9342 remote_target::read_frame (gdb::char_vector *buf_p)
9343 {
9344 unsigned char csum;
9345 long bc;
9346 int c;
9347 char *buf = buf_p->data ();
9348 struct remote_state *rs = get_remote_state ();
9349
9350 csum = 0;
9351 bc = 0;
9352
9353 while (1)
9354 {
9355 c = readchar (remote_timeout);
9356 switch (c)
9357 {
9358 case SERIAL_TIMEOUT:
9359 if (remote_debug)
9360 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
9361 return -1;
9362 case '$':
9363 if (remote_debug)
9364 fputs_filtered ("Saw new packet start in middle of old one\n",
9365 gdb_stdlog);
9366 return -1; /* Start a new packet, count retries. */
9367 case '#':
9368 {
9369 unsigned char pktcsum;
9370 int check_0 = 0;
9371 int check_1 = 0;
9372
9373 buf[bc] = '\0';
9374
9375 check_0 = readchar (remote_timeout);
9376 if (check_0 >= 0)
9377 check_1 = readchar (remote_timeout);
9378
9379 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9380 {
9381 if (remote_debug)
9382 fputs_filtered ("Timeout in checksum, retrying\n",
9383 gdb_stdlog);
9384 return -1;
9385 }
9386 else if (check_0 < 0 || check_1 < 0)
9387 {
9388 if (remote_debug)
9389 fputs_filtered ("Communication error in checksum\n",
9390 gdb_stdlog);
9391 return -1;
9392 }
9393
9394 /* Don't recompute the checksum; with no ack packets we
9395 don't have any way to indicate a packet retransmission
9396 is necessary. */
9397 if (rs->noack_mode)
9398 return bc;
9399
9400 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9401 if (csum == pktcsum)
9402 return bc;
9403
9404 if (remote_debug)
9405 {
9406 std::string str = escape_buffer (buf, bc);
9407
9408 fprintf_unfiltered (gdb_stdlog,
9409 "Bad checksum, sentsum=0x%x, "
9410 "csum=0x%x, buf=%s\n",
9411 pktcsum, csum, str.c_str ());
9412 }
9413 /* Number of characters in buffer ignoring trailing
9414 NULL. */
9415 return -1;
9416 }
9417 case '*': /* Run length encoding. */
9418 {
9419 int repeat;
9420
9421 csum += c;
9422 c = readchar (remote_timeout);
9423 csum += c;
9424 repeat = c - ' ' + 3; /* Compute repeat count. */
9425
9426 /* The character before ``*'' is repeated. */
9427
9428 if (repeat > 0 && repeat <= 255 && bc > 0)
9429 {
9430 if (bc + repeat - 1 >= buf_p->size () - 1)
9431 {
9432 /* Make some more room in the buffer. */
9433 buf_p->resize (buf_p->size () + repeat);
9434 buf = buf_p->data ();
9435 }
9436
9437 memset (&buf[bc], buf[bc - 1], repeat);
9438 bc += repeat;
9439 continue;
9440 }
9441
9442 buf[bc] = '\0';
9443 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9444 return -1;
9445 }
9446 default:
9447 if (bc >= buf_p->size () - 1)
9448 {
9449 /* Make some more room in the buffer. */
9450 buf_p->resize (buf_p->size () * 2);
9451 buf = buf_p->data ();
9452 }
9453
9454 buf[bc++] = c;
9455 csum += c;
9456 continue;
9457 }
9458 }
9459 }
9460
9461 /* Read a packet from the remote machine, with error checking, and
9462 store it in *BUF. Resize *BUF if necessary to hold the result. If
9463 FOREVER, wait forever rather than timing out; this is used (in
9464 synchronous mode) to wait for a target that is is executing user
9465 code to stop. */
9466 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9467 don't have to change all the calls to getpkt to deal with the
9468 return value, because at the moment I don't know what the right
9469 thing to do it for those. */
9470
9471 void
9472 remote_target::getpkt (gdb::char_vector *buf, int forever)
9473 {
9474 getpkt_sane (buf, forever);
9475 }
9476
9477
9478 /* Read a packet from the remote machine, with error checking, and
9479 store it in *BUF. Resize *BUF if necessary to hold the result. If
9480 FOREVER, wait forever rather than timing out; this is used (in
9481 synchronous mode) to wait for a target that is is executing user
9482 code to stop. If FOREVER == 0, this function is allowed to time
9483 out gracefully and return an indication of this to the caller.
9484 Otherwise return the number of bytes read. If EXPECTING_NOTIF,
9485 consider receiving a notification enough reason to return to the
9486 caller. *IS_NOTIF is an output boolean that indicates whether *BUF
9487 holds a notification or not (a regular packet). */
9488
9489 int
9490 remote_target::getpkt_or_notif_sane_1 (gdb::char_vector *buf,
9491 int forever, int expecting_notif,
9492 int *is_notif)
9493 {
9494 struct remote_state *rs = get_remote_state ();
9495 int c;
9496 int tries;
9497 int timeout;
9498 int val = -1;
9499
9500 /* We're reading a new response. Make sure we don't look at a
9501 previously cached response. */
9502 rs->cached_wait_status = 0;
9503
9504 strcpy (buf->data (), "timeout");
9505
9506 if (forever)
9507 timeout = watchdog > 0 ? watchdog : -1;
9508 else if (expecting_notif)
9509 timeout = 0; /* There should already be a char in the buffer. If
9510 not, bail out. */
9511 else
9512 timeout = remote_timeout;
9513
9514 #define MAX_TRIES 3
9515
9516 /* Process any number of notifications, and then return when
9517 we get a packet. */
9518 for (;;)
9519 {
9520 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9521 times. */
9522 for (tries = 1; tries <= MAX_TRIES; tries++)
9523 {
9524 /* This can loop forever if the remote side sends us
9525 characters continuously, but if it pauses, we'll get
9526 SERIAL_TIMEOUT from readchar because of timeout. Then
9527 we'll count that as a retry.
9528
9529 Note that even when forever is set, we will only wait
9530 forever prior to the start of a packet. After that, we
9531 expect characters to arrive at a brisk pace. They should
9532 show up within remote_timeout intervals. */
9533 do
9534 c = readchar (timeout);
9535 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9536
9537 if (c == SERIAL_TIMEOUT)
9538 {
9539 if (expecting_notif)
9540 return -1; /* Don't complain, it's normal to not get
9541 anything in this case. */
9542
9543 if (forever) /* Watchdog went off? Kill the target. */
9544 {
9545 remote_unpush_target ();
9546 throw_error (TARGET_CLOSE_ERROR,
9547 _("Watchdog timeout has expired. "
9548 "Target detached."));
9549 }
9550 if (remote_debug)
9551 fputs_filtered ("Timed out.\n", gdb_stdlog);
9552 }
9553 else
9554 {
9555 /* We've found the start of a packet or notification.
9556 Now collect the data. */
9557 val = read_frame (buf);
9558 if (val >= 0)
9559 break;
9560 }
9561
9562 remote_serial_write ("-", 1);
9563 }
9564
9565 if (tries > MAX_TRIES)
9566 {
9567 /* We have tried hard enough, and just can't receive the
9568 packet/notification. Give up. */
9569 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9570
9571 /* Skip the ack char if we're in no-ack mode. */
9572 if (!rs->noack_mode)
9573 remote_serial_write ("+", 1);
9574 return -1;
9575 }
9576
9577 /* If we got an ordinary packet, return that to our caller. */
9578 if (c == '$')
9579 {
9580 if (remote_debug)
9581 {
9582 std::string str
9583 = escape_buffer (buf->data (),
9584 std::min (val, REMOTE_DEBUG_MAX_CHAR));
9585
9586 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9587 str.c_str ());
9588
9589 if (val > REMOTE_DEBUG_MAX_CHAR)
9590 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9591 val - REMOTE_DEBUG_MAX_CHAR);
9592
9593 fprintf_unfiltered (gdb_stdlog, "\n");
9594 }
9595
9596 /* Skip the ack char if we're in no-ack mode. */
9597 if (!rs->noack_mode)
9598 remote_serial_write ("+", 1);
9599 if (is_notif != NULL)
9600 *is_notif = 0;
9601 return val;
9602 }
9603
9604 /* If we got a notification, handle it, and go back to looking
9605 for a packet. */
9606 else
9607 {
9608 gdb_assert (c == '%');
9609
9610 if (remote_debug)
9611 {
9612 std::string str = escape_buffer (buf->data (), val);
9613
9614 fprintf_unfiltered (gdb_stdlog,
9615 " Notification received: %s\n",
9616 str.c_str ());
9617 }
9618 if (is_notif != NULL)
9619 *is_notif = 1;
9620
9621 handle_notification (rs->notif_state, buf->data ());
9622
9623 /* Notifications require no acknowledgement. */
9624
9625 if (expecting_notif)
9626 return val;
9627 }
9628 }
9629 }
9630
9631 int
9632 remote_target::getpkt_sane (gdb::char_vector *buf, int forever)
9633 {
9634 return getpkt_or_notif_sane_1 (buf, forever, 0, NULL);
9635 }
9636
9637 int
9638 remote_target::getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
9639 int *is_notif)
9640 {
9641 return getpkt_or_notif_sane_1 (buf, forever, 1, is_notif);
9642 }
9643
9644 /* Kill any new fork children of process PID that haven't been
9645 processed by follow_fork. */
9646
9647 void
9648 remote_target::kill_new_fork_children (int pid)
9649 {
9650 remote_state *rs = get_remote_state ();
9651 struct notif_client *notif = &notif_client_stop;
9652
9653 /* Kill the fork child threads of any threads in process PID
9654 that are stopped at a fork event. */
9655 for (thread_info *thread : all_non_exited_threads ())
9656 {
9657 struct target_waitstatus *ws = &thread->pending_follow;
9658
9659 if (is_pending_fork_parent (ws, pid, thread->ptid))
9660 {
9661 int child_pid = ws->value.related_pid.pid ();
9662 int res;
9663
9664 res = remote_vkill (child_pid);
9665 if (res != 0)
9666 error (_("Can't kill fork child process %d"), child_pid);
9667 }
9668 }
9669
9670 /* Check for any pending fork events (not reported or processed yet)
9671 in process PID and kill those fork child threads as well. */
9672 remote_notif_get_pending_events (notif);
9673 for (auto &event : rs->stop_reply_queue)
9674 if (is_pending_fork_parent (&event->ws, pid, event->ptid))
9675 {
9676 int child_pid = event->ws.value.related_pid.pid ();
9677 int res;
9678
9679 res = remote_vkill (child_pid);
9680 if (res != 0)
9681 error (_("Can't kill fork child process %d"), child_pid);
9682 }
9683 }
9684
9685 \f
9686 /* Target hook to kill the current inferior. */
9687
9688 void
9689 remote_target::kill ()
9690 {
9691 int res = -1;
9692 int pid = inferior_ptid.pid ();
9693 struct remote_state *rs = get_remote_state ();
9694
9695 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9696 {
9697 /* If we're stopped while forking and we haven't followed yet,
9698 kill the child task. We need to do this before killing the
9699 parent task because if this is a vfork then the parent will
9700 be sleeping. */
9701 kill_new_fork_children (pid);
9702
9703 res = remote_vkill (pid);
9704 if (res == 0)
9705 {
9706 target_mourn_inferior (inferior_ptid);
9707 return;
9708 }
9709 }
9710
9711 /* If we are in 'target remote' mode and we are killing the only
9712 inferior, then we will tell gdbserver to exit and unpush the
9713 target. */
9714 if (res == -1 && !remote_multi_process_p (rs)
9715 && number_of_live_inferiors () == 1)
9716 {
9717 remote_kill_k ();
9718
9719 /* We've killed the remote end, we get to mourn it. If we are
9720 not in extended mode, mourning the inferior also unpushes
9721 remote_ops from the target stack, which closes the remote
9722 connection. */
9723 target_mourn_inferior (inferior_ptid);
9724
9725 return;
9726 }
9727
9728 error (_("Can't kill process"));
9729 }
9730
9731 /* Send a kill request to the target using the 'vKill' packet. */
9732
9733 int
9734 remote_target::remote_vkill (int pid)
9735 {
9736 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9737 return -1;
9738
9739 remote_state *rs = get_remote_state ();
9740
9741 /* Tell the remote target to detach. */
9742 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vKill;%x", pid);
9743 putpkt (rs->buf);
9744 getpkt (&rs->buf, 0);
9745
9746 switch (packet_ok (rs->buf,
9747 &remote_protocol_packets[PACKET_vKill]))
9748 {
9749 case PACKET_OK:
9750 return 0;
9751 case PACKET_ERROR:
9752 return 1;
9753 case PACKET_UNKNOWN:
9754 return -1;
9755 default:
9756 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9757 }
9758 }
9759
9760 /* Send a kill request to the target using the 'k' packet. */
9761
9762 void
9763 remote_target::remote_kill_k ()
9764 {
9765 /* Catch errors so the user can quit from gdb even when we
9766 aren't on speaking terms with the remote system. */
9767 try
9768 {
9769 putpkt ("k");
9770 }
9771 catch (const gdb_exception_error &ex)
9772 {
9773 if (ex.error == TARGET_CLOSE_ERROR)
9774 {
9775 /* If we got an (EOF) error that caused the target
9776 to go away, then we're done, that's what we wanted.
9777 "k" is susceptible to cause a premature EOF, given
9778 that the remote server isn't actually required to
9779 reply to "k", and it can happen that it doesn't
9780 even get to reply ACK to the "k". */
9781 return;
9782 }
9783
9784 /* Otherwise, something went wrong. We didn't actually kill
9785 the target. Just propagate the exception, and let the
9786 user or higher layers decide what to do. */
9787 throw_exception (ex);
9788 }
9789 }
9790
9791 void
9792 remote_target::mourn_inferior ()
9793 {
9794 struct remote_state *rs = get_remote_state ();
9795
9796 /* We're no longer interested in notification events of an inferior
9797 that exited or was killed/detached. */
9798 discard_pending_stop_replies (current_inferior ());
9799
9800 /* In 'target remote' mode with one inferior, we close the connection. */
9801 if (!rs->extended && number_of_live_inferiors () <= 1)
9802 {
9803 unpush_target (this);
9804
9805 /* remote_close takes care of doing most of the clean up. */
9806 generic_mourn_inferior ();
9807 return;
9808 }
9809
9810 /* In case we got here due to an error, but we're going to stay
9811 connected. */
9812 rs->waiting_for_stop_reply = 0;
9813
9814 /* If the current general thread belonged to the process we just
9815 detached from or has exited, the remote side current general
9816 thread becomes undefined. Considering a case like this:
9817
9818 - We just got here due to a detach.
9819 - The process that we're detaching from happens to immediately
9820 report a global breakpoint being hit in non-stop mode, in the
9821 same thread we had selected before.
9822 - GDB attaches to this process again.
9823 - This event happens to be the next event we handle.
9824
9825 GDB would consider that the current general thread didn't need to
9826 be set on the stub side (with Hg), since for all it knew,
9827 GENERAL_THREAD hadn't changed.
9828
9829 Notice that although in all-stop mode, the remote server always
9830 sets the current thread to the thread reporting the stop event,
9831 that doesn't happen in non-stop mode; in non-stop, the stub *must
9832 not* change the current thread when reporting a breakpoint hit,
9833 due to the decoupling of event reporting and event handling.
9834
9835 To keep things simple, we always invalidate our notion of the
9836 current thread. */
9837 record_currthread (rs, minus_one_ptid);
9838
9839 /* Call common code to mark the inferior as not running. */
9840 generic_mourn_inferior ();
9841
9842 if (!have_inferiors ())
9843 {
9844 if (!remote_multi_process_p (rs))
9845 {
9846 /* Check whether the target is running now - some remote stubs
9847 automatically restart after kill. */
9848 putpkt ("?");
9849 getpkt (&rs->buf, 0);
9850
9851 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
9852 {
9853 /* Assume that the target has been restarted. Set
9854 inferior_ptid so that bits of core GDB realizes
9855 there's something here, e.g., so that the user can
9856 say "kill" again. */
9857 inferior_ptid = magic_null_ptid;
9858 }
9859 }
9860 }
9861 }
9862
9863 bool
9864 extended_remote_target::supports_disable_randomization ()
9865 {
9866 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
9867 }
9868
9869 void
9870 remote_target::extended_remote_disable_randomization (int val)
9871 {
9872 struct remote_state *rs = get_remote_state ();
9873 char *reply;
9874
9875 xsnprintf (rs->buf.data (), get_remote_packet_size (),
9876 "QDisableRandomization:%x", val);
9877 putpkt (rs->buf);
9878 reply = remote_get_noisy_reply ();
9879 if (*reply == '\0')
9880 error (_("Target does not support QDisableRandomization."));
9881 if (strcmp (reply, "OK") != 0)
9882 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
9883 }
9884
9885 int
9886 remote_target::extended_remote_run (const std::string &args)
9887 {
9888 struct remote_state *rs = get_remote_state ();
9889 int len;
9890 const char *remote_exec_file = get_remote_exec_file ();
9891
9892 /* If the user has disabled vRun support, or we have detected that
9893 support is not available, do not try it. */
9894 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
9895 return -1;
9896
9897 strcpy (rs->buf.data (), "vRun;");
9898 len = strlen (rs->buf.data ());
9899
9900 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
9901 error (_("Remote file name too long for run packet"));
9902 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf.data () + len,
9903 strlen (remote_exec_file));
9904
9905 if (!args.empty ())
9906 {
9907 int i;
9908
9909 gdb_argv argv (args.c_str ());
9910 for (i = 0; argv[i] != NULL; i++)
9911 {
9912 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
9913 error (_("Argument list too long for run packet"));
9914 rs->buf[len++] = ';';
9915 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf.data () + len,
9916 strlen (argv[i]));
9917 }
9918 }
9919
9920 rs->buf[len++] = '\0';
9921
9922 putpkt (rs->buf);
9923 getpkt (&rs->buf, 0);
9924
9925 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
9926 {
9927 case PACKET_OK:
9928 /* We have a wait response. All is well. */
9929 return 0;
9930 case PACKET_UNKNOWN:
9931 return -1;
9932 case PACKET_ERROR:
9933 if (remote_exec_file[0] == '\0')
9934 error (_("Running the default executable on the remote target failed; "
9935 "try \"set remote exec-file\"?"));
9936 else
9937 error (_("Running \"%s\" on the remote target failed"),
9938 remote_exec_file);
9939 default:
9940 gdb_assert_not_reached (_("bad switch"));
9941 }
9942 }
9943
9944 /* Helper function to send set/unset environment packets. ACTION is
9945 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
9946 or "QEnvironmentUnsetVariable". VALUE is the variable to be
9947 sent. */
9948
9949 void
9950 remote_target::send_environment_packet (const char *action,
9951 const char *packet,
9952 const char *value)
9953 {
9954 remote_state *rs = get_remote_state ();
9955
9956 /* Convert the environment variable to an hex string, which
9957 is the best format to be transmitted over the wire. */
9958 std::string encoded_value = bin2hex ((const gdb_byte *) value,
9959 strlen (value));
9960
9961 xsnprintf (rs->buf.data (), get_remote_packet_size (),
9962 "%s:%s", packet, encoded_value.c_str ());
9963
9964 putpkt (rs->buf);
9965 getpkt (&rs->buf, 0);
9966 if (strcmp (rs->buf.data (), "OK") != 0)
9967 warning (_("Unable to %s environment variable '%s' on remote."),
9968 action, value);
9969 }
9970
9971 /* Helper function to handle the QEnvironment* packets. */
9972
9973 void
9974 remote_target::extended_remote_environment_support ()
9975 {
9976 remote_state *rs = get_remote_state ();
9977
9978 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
9979 {
9980 putpkt ("QEnvironmentReset");
9981 getpkt (&rs->buf, 0);
9982 if (strcmp (rs->buf.data (), "OK") != 0)
9983 warning (_("Unable to reset environment on remote."));
9984 }
9985
9986 gdb_environ *e = &current_inferior ()->environment;
9987
9988 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
9989 for (const std::string &el : e->user_set_env ())
9990 send_environment_packet ("set", "QEnvironmentHexEncoded",
9991 el.c_str ());
9992
9993 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
9994 for (const std::string &el : e->user_unset_env ())
9995 send_environment_packet ("unset", "QEnvironmentUnset", el.c_str ());
9996 }
9997
9998 /* Helper function to set the current working directory for the
9999 inferior in the remote target. */
10000
10001 void
10002 remote_target::extended_remote_set_inferior_cwd ()
10003 {
10004 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
10005 {
10006 const char *inferior_cwd = get_inferior_cwd ();
10007 remote_state *rs = get_remote_state ();
10008
10009 if (inferior_cwd != NULL)
10010 {
10011 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
10012 strlen (inferior_cwd));
10013
10014 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10015 "QSetWorkingDir:%s", hexpath.c_str ());
10016 }
10017 else
10018 {
10019 /* An empty inferior_cwd means that the user wants us to
10020 reset the remote server's inferior's cwd. */
10021 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10022 "QSetWorkingDir:");
10023 }
10024
10025 putpkt (rs->buf);
10026 getpkt (&rs->buf, 0);
10027 if (packet_ok (rs->buf,
10028 &remote_protocol_packets[PACKET_QSetWorkingDir])
10029 != PACKET_OK)
10030 error (_("\
10031 Remote replied unexpectedly while setting the inferior's working\n\
10032 directory: %s"),
10033 rs->buf.data ());
10034
10035 }
10036 }
10037
10038 /* In the extended protocol we want to be able to do things like
10039 "run" and have them basically work as expected. So we need
10040 a special create_inferior function. We support changing the
10041 executable file and the command line arguments, but not the
10042 environment. */
10043
10044 void
10045 extended_remote_target::create_inferior (const char *exec_file,
10046 const std::string &args,
10047 char **env, int from_tty)
10048 {
10049 int run_worked;
10050 char *stop_reply;
10051 struct remote_state *rs = get_remote_state ();
10052 const char *remote_exec_file = get_remote_exec_file ();
10053
10054 /* If running asynchronously, register the target file descriptor
10055 with the event loop. */
10056 if (target_can_async_p ())
10057 target_async (1);
10058
10059 /* Disable address space randomization if requested (and supported). */
10060 if (supports_disable_randomization ())
10061 extended_remote_disable_randomization (disable_randomization);
10062
10063 /* If startup-with-shell is on, we inform gdbserver to start the
10064 remote inferior using a shell. */
10065 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
10066 {
10067 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10068 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
10069 putpkt (rs->buf);
10070 getpkt (&rs->buf, 0);
10071 if (strcmp (rs->buf.data (), "OK") != 0)
10072 error (_("\
10073 Remote replied unexpectedly while setting startup-with-shell: %s"),
10074 rs->buf.data ());
10075 }
10076
10077 extended_remote_environment_support ();
10078
10079 extended_remote_set_inferior_cwd ();
10080
10081 /* Now restart the remote server. */
10082 run_worked = extended_remote_run (args) != -1;
10083 if (!run_worked)
10084 {
10085 /* vRun was not supported. Fail if we need it to do what the
10086 user requested. */
10087 if (remote_exec_file[0])
10088 error (_("Remote target does not support \"set remote exec-file\""));
10089 if (!args.empty ())
10090 error (_("Remote target does not support \"set args\" or run ARGS"));
10091
10092 /* Fall back to "R". */
10093 extended_remote_restart ();
10094 }
10095
10096 /* vRun's success return is a stop reply. */
10097 stop_reply = run_worked ? rs->buf.data () : NULL;
10098 add_current_inferior_and_thread (stop_reply);
10099
10100 /* Get updated offsets, if the stub uses qOffsets. */
10101 get_offsets ();
10102 }
10103 \f
10104
10105 /* Given a location's target info BP_TGT and the packet buffer BUF, output
10106 the list of conditions (in agent expression bytecode format), if any, the
10107 target needs to evaluate. The output is placed into the packet buffer
10108 started from BUF and ended at BUF_END. */
10109
10110 static int
10111 remote_add_target_side_condition (struct gdbarch *gdbarch,
10112 struct bp_target_info *bp_tgt, char *buf,
10113 char *buf_end)
10114 {
10115 if (bp_tgt->conditions.empty ())
10116 return 0;
10117
10118 buf += strlen (buf);
10119 xsnprintf (buf, buf_end - buf, "%s", ";");
10120 buf++;
10121
10122 /* Send conditions to the target. */
10123 for (agent_expr *aexpr : bp_tgt->conditions)
10124 {
10125 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10126 buf += strlen (buf);
10127 for (int i = 0; i < aexpr->len; ++i)
10128 buf = pack_hex_byte (buf, aexpr->buf[i]);
10129 *buf = '\0';
10130 }
10131 return 0;
10132 }
10133
10134 static void
10135 remote_add_target_side_commands (struct gdbarch *gdbarch,
10136 struct bp_target_info *bp_tgt, char *buf)
10137 {
10138 if (bp_tgt->tcommands.empty ())
10139 return;
10140
10141 buf += strlen (buf);
10142
10143 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10144 buf += strlen (buf);
10145
10146 /* Concatenate all the agent expressions that are commands into the
10147 cmds parameter. */
10148 for (agent_expr *aexpr : bp_tgt->tcommands)
10149 {
10150 sprintf (buf, "X%x,", aexpr->len);
10151 buf += strlen (buf);
10152 for (int i = 0; i < aexpr->len; ++i)
10153 buf = pack_hex_byte (buf, aexpr->buf[i]);
10154 *buf = '\0';
10155 }
10156 }
10157
10158 /* Insert a breakpoint. On targets that have software breakpoint
10159 support, we ask the remote target to do the work; on targets
10160 which don't, we insert a traditional memory breakpoint. */
10161
10162 int
10163 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10164 struct bp_target_info *bp_tgt)
10165 {
10166 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10167 If it succeeds, then set the support to PACKET_ENABLE. If it
10168 fails, and the user has explicitly requested the Z support then
10169 report an error, otherwise, mark it disabled and go on. */
10170
10171 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10172 {
10173 CORE_ADDR addr = bp_tgt->reqstd_address;
10174 struct remote_state *rs;
10175 char *p, *endbuf;
10176
10177 /* Make sure the remote is pointing at the right process, if
10178 necessary. */
10179 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10180 set_general_process ();
10181
10182 rs = get_remote_state ();
10183 p = rs->buf.data ();
10184 endbuf = p + get_remote_packet_size ();
10185
10186 *(p++) = 'Z';
10187 *(p++) = '0';
10188 *(p++) = ',';
10189 addr = (ULONGEST) remote_address_masked (addr);
10190 p += hexnumstr (p, addr);
10191 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10192
10193 if (supports_evaluation_of_breakpoint_conditions ())
10194 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10195
10196 if (can_run_breakpoint_commands ())
10197 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10198
10199 putpkt (rs->buf);
10200 getpkt (&rs->buf, 0);
10201
10202 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10203 {
10204 case PACKET_ERROR:
10205 return -1;
10206 case PACKET_OK:
10207 return 0;
10208 case PACKET_UNKNOWN:
10209 break;
10210 }
10211 }
10212
10213 /* If this breakpoint has target-side commands but this stub doesn't
10214 support Z0 packets, throw error. */
10215 if (!bp_tgt->tcommands.empty ())
10216 throw_error (NOT_SUPPORTED_ERROR, _("\
10217 Target doesn't support breakpoints that have target side commands."));
10218
10219 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10220 }
10221
10222 int
10223 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10224 struct bp_target_info *bp_tgt,
10225 enum remove_bp_reason reason)
10226 {
10227 CORE_ADDR addr = bp_tgt->placed_address;
10228 struct remote_state *rs = get_remote_state ();
10229
10230 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10231 {
10232 char *p = rs->buf.data ();
10233 char *endbuf = p + get_remote_packet_size ();
10234
10235 /* Make sure the remote is pointing at the right process, if
10236 necessary. */
10237 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10238 set_general_process ();
10239
10240 *(p++) = 'z';
10241 *(p++) = '0';
10242 *(p++) = ',';
10243
10244 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10245 p += hexnumstr (p, addr);
10246 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10247
10248 putpkt (rs->buf);
10249 getpkt (&rs->buf, 0);
10250
10251 return (rs->buf[0] == 'E');
10252 }
10253
10254 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10255 }
10256
10257 static enum Z_packet_type
10258 watchpoint_to_Z_packet (int type)
10259 {
10260 switch (type)
10261 {
10262 case hw_write:
10263 return Z_PACKET_WRITE_WP;
10264 break;
10265 case hw_read:
10266 return Z_PACKET_READ_WP;
10267 break;
10268 case hw_access:
10269 return Z_PACKET_ACCESS_WP;
10270 break;
10271 default:
10272 internal_error (__FILE__, __LINE__,
10273 _("hw_bp_to_z: bad watchpoint type %d"), type);
10274 }
10275 }
10276
10277 int
10278 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10279 enum target_hw_bp_type type, struct expression *cond)
10280 {
10281 struct remote_state *rs = get_remote_state ();
10282 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10283 char *p;
10284 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10285
10286 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10287 return 1;
10288
10289 /* Make sure the remote is pointing at the right process, if
10290 necessary. */
10291 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10292 set_general_process ();
10293
10294 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "Z%x,", packet);
10295 p = strchr (rs->buf.data (), '\0');
10296 addr = remote_address_masked (addr);
10297 p += hexnumstr (p, (ULONGEST) addr);
10298 xsnprintf (p, endbuf - p, ",%x", len);
10299
10300 putpkt (rs->buf);
10301 getpkt (&rs->buf, 0);
10302
10303 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10304 {
10305 case PACKET_ERROR:
10306 return -1;
10307 case PACKET_UNKNOWN:
10308 return 1;
10309 case PACKET_OK:
10310 return 0;
10311 }
10312 internal_error (__FILE__, __LINE__,
10313 _("remote_insert_watchpoint: reached end of function"));
10314 }
10315
10316 bool
10317 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10318 CORE_ADDR start, int length)
10319 {
10320 CORE_ADDR diff = remote_address_masked (addr - start);
10321
10322 return diff < length;
10323 }
10324
10325
10326 int
10327 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10328 enum target_hw_bp_type type, struct expression *cond)
10329 {
10330 struct remote_state *rs = get_remote_state ();
10331 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10332 char *p;
10333 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10334
10335 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10336 return -1;
10337
10338 /* Make sure the remote is pointing at the right process, if
10339 necessary. */
10340 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10341 set_general_process ();
10342
10343 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "z%x,", packet);
10344 p = strchr (rs->buf.data (), '\0');
10345 addr = remote_address_masked (addr);
10346 p += hexnumstr (p, (ULONGEST) addr);
10347 xsnprintf (p, endbuf - p, ",%x", len);
10348 putpkt (rs->buf);
10349 getpkt (&rs->buf, 0);
10350
10351 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10352 {
10353 case PACKET_ERROR:
10354 case PACKET_UNKNOWN:
10355 return -1;
10356 case PACKET_OK:
10357 return 0;
10358 }
10359 internal_error (__FILE__, __LINE__,
10360 _("remote_remove_watchpoint: reached end of function"));
10361 }
10362
10363
10364 int remote_hw_watchpoint_limit = -1;
10365 int remote_hw_watchpoint_length_limit = -1;
10366 int remote_hw_breakpoint_limit = -1;
10367
10368 int
10369 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10370 {
10371 if (remote_hw_watchpoint_length_limit == 0)
10372 return 0;
10373 else if (remote_hw_watchpoint_length_limit < 0)
10374 return 1;
10375 else if (len <= remote_hw_watchpoint_length_limit)
10376 return 1;
10377 else
10378 return 0;
10379 }
10380
10381 int
10382 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10383 {
10384 if (type == bp_hardware_breakpoint)
10385 {
10386 if (remote_hw_breakpoint_limit == 0)
10387 return 0;
10388 else if (remote_hw_breakpoint_limit < 0)
10389 return 1;
10390 else if (cnt <= remote_hw_breakpoint_limit)
10391 return 1;
10392 }
10393 else
10394 {
10395 if (remote_hw_watchpoint_limit == 0)
10396 return 0;
10397 else if (remote_hw_watchpoint_limit < 0)
10398 return 1;
10399 else if (ot)
10400 return -1;
10401 else if (cnt <= remote_hw_watchpoint_limit)
10402 return 1;
10403 }
10404 return -1;
10405 }
10406
10407 /* The to_stopped_by_sw_breakpoint method of target remote. */
10408
10409 bool
10410 remote_target::stopped_by_sw_breakpoint ()
10411 {
10412 struct thread_info *thread = inferior_thread ();
10413
10414 return (thread->priv != NULL
10415 && (get_remote_thread_info (thread)->stop_reason
10416 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10417 }
10418
10419 /* The to_supports_stopped_by_sw_breakpoint method of target
10420 remote. */
10421
10422 bool
10423 remote_target::supports_stopped_by_sw_breakpoint ()
10424 {
10425 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10426 }
10427
10428 /* The to_stopped_by_hw_breakpoint method of target remote. */
10429
10430 bool
10431 remote_target::stopped_by_hw_breakpoint ()
10432 {
10433 struct thread_info *thread = inferior_thread ();
10434
10435 return (thread->priv != NULL
10436 && (get_remote_thread_info (thread)->stop_reason
10437 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10438 }
10439
10440 /* The to_supports_stopped_by_hw_breakpoint method of target
10441 remote. */
10442
10443 bool
10444 remote_target::supports_stopped_by_hw_breakpoint ()
10445 {
10446 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10447 }
10448
10449 bool
10450 remote_target::stopped_by_watchpoint ()
10451 {
10452 struct thread_info *thread = inferior_thread ();
10453
10454 return (thread->priv != NULL
10455 && (get_remote_thread_info (thread)->stop_reason
10456 == TARGET_STOPPED_BY_WATCHPOINT));
10457 }
10458
10459 bool
10460 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10461 {
10462 struct thread_info *thread = inferior_thread ();
10463
10464 if (thread->priv != NULL
10465 && (get_remote_thread_info (thread)->stop_reason
10466 == TARGET_STOPPED_BY_WATCHPOINT))
10467 {
10468 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10469 return true;
10470 }
10471
10472 return false;
10473 }
10474
10475
10476 int
10477 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10478 struct bp_target_info *bp_tgt)
10479 {
10480 CORE_ADDR addr = bp_tgt->reqstd_address;
10481 struct remote_state *rs;
10482 char *p, *endbuf;
10483 char *message;
10484
10485 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10486 return -1;
10487
10488 /* Make sure the remote is pointing at the right process, if
10489 necessary. */
10490 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10491 set_general_process ();
10492
10493 rs = get_remote_state ();
10494 p = rs->buf.data ();
10495 endbuf = p + get_remote_packet_size ();
10496
10497 *(p++) = 'Z';
10498 *(p++) = '1';
10499 *(p++) = ',';
10500
10501 addr = remote_address_masked (addr);
10502 p += hexnumstr (p, (ULONGEST) addr);
10503 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10504
10505 if (supports_evaluation_of_breakpoint_conditions ())
10506 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10507
10508 if (can_run_breakpoint_commands ())
10509 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10510
10511 putpkt (rs->buf);
10512 getpkt (&rs->buf, 0);
10513
10514 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10515 {
10516 case PACKET_ERROR:
10517 if (rs->buf[1] == '.')
10518 {
10519 message = strchr (&rs->buf[2], '.');
10520 if (message)
10521 error (_("Remote failure reply: %s"), message + 1);
10522 }
10523 return -1;
10524 case PACKET_UNKNOWN:
10525 return -1;
10526 case PACKET_OK:
10527 return 0;
10528 }
10529 internal_error (__FILE__, __LINE__,
10530 _("remote_insert_hw_breakpoint: reached end of function"));
10531 }
10532
10533
10534 int
10535 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10536 struct bp_target_info *bp_tgt)
10537 {
10538 CORE_ADDR addr;
10539 struct remote_state *rs = get_remote_state ();
10540 char *p = rs->buf.data ();
10541 char *endbuf = p + get_remote_packet_size ();
10542
10543 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10544 return -1;
10545
10546 /* Make sure the remote is pointing at the right process, if
10547 necessary. */
10548 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10549 set_general_process ();
10550
10551 *(p++) = 'z';
10552 *(p++) = '1';
10553 *(p++) = ',';
10554
10555 addr = remote_address_masked (bp_tgt->placed_address);
10556 p += hexnumstr (p, (ULONGEST) addr);
10557 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10558
10559 putpkt (rs->buf);
10560 getpkt (&rs->buf, 0);
10561
10562 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10563 {
10564 case PACKET_ERROR:
10565 case PACKET_UNKNOWN:
10566 return -1;
10567 case PACKET_OK:
10568 return 0;
10569 }
10570 internal_error (__FILE__, __LINE__,
10571 _("remote_remove_hw_breakpoint: reached end of function"));
10572 }
10573
10574 /* Verify memory using the "qCRC:" request. */
10575
10576 int
10577 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10578 {
10579 struct remote_state *rs = get_remote_state ();
10580 unsigned long host_crc, target_crc;
10581 char *tmp;
10582
10583 /* It doesn't make sense to use qCRC if the remote target is
10584 connected but not running. */
10585 if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10586 {
10587 enum packet_result result;
10588
10589 /* Make sure the remote is pointing at the right process. */
10590 set_general_process ();
10591
10592 /* FIXME: assumes lma can fit into long. */
10593 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qCRC:%lx,%lx",
10594 (long) lma, (long) size);
10595 putpkt (rs->buf);
10596
10597 /* Be clever; compute the host_crc before waiting for target
10598 reply. */
10599 host_crc = xcrc32 (data, size, 0xffffffff);
10600
10601 getpkt (&rs->buf, 0);
10602
10603 result = packet_ok (rs->buf,
10604 &remote_protocol_packets[PACKET_qCRC]);
10605 if (result == PACKET_ERROR)
10606 return -1;
10607 else if (result == PACKET_OK)
10608 {
10609 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10610 target_crc = target_crc * 16 + fromhex (*tmp);
10611
10612 return (host_crc == target_crc);
10613 }
10614 }
10615
10616 return simple_verify_memory (this, data, lma, size);
10617 }
10618
10619 /* compare-sections command
10620
10621 With no arguments, compares each loadable section in the exec bfd
10622 with the same memory range on the target, and reports mismatches.
10623 Useful for verifying the image on the target against the exec file. */
10624
10625 static void
10626 compare_sections_command (const char *args, int from_tty)
10627 {
10628 asection *s;
10629 const char *sectname;
10630 bfd_size_type size;
10631 bfd_vma lma;
10632 int matched = 0;
10633 int mismatched = 0;
10634 int res;
10635 int read_only = 0;
10636
10637 if (!exec_bfd)
10638 error (_("command cannot be used without an exec file"));
10639
10640 if (args != NULL && strcmp (args, "-r") == 0)
10641 {
10642 read_only = 1;
10643 args = NULL;
10644 }
10645
10646 for (s = exec_bfd->sections; s; s = s->next)
10647 {
10648 if (!(s->flags & SEC_LOAD))
10649 continue; /* Skip non-loadable section. */
10650
10651 if (read_only && (s->flags & SEC_READONLY) == 0)
10652 continue; /* Skip writeable sections */
10653
10654 size = bfd_get_section_size (s);
10655 if (size == 0)
10656 continue; /* Skip zero-length section. */
10657
10658 sectname = bfd_get_section_name (exec_bfd, s);
10659 if (args && strcmp (args, sectname) != 0)
10660 continue; /* Not the section selected by user. */
10661
10662 matched = 1; /* Do this section. */
10663 lma = s->lma;
10664
10665 gdb::byte_vector sectdata (size);
10666 bfd_get_section_contents (exec_bfd, s, sectdata.data (), 0, size);
10667
10668 res = target_verify_memory (sectdata.data (), lma, size);
10669
10670 if (res == -1)
10671 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10672 paddress (target_gdbarch (), lma),
10673 paddress (target_gdbarch (), lma + size));
10674
10675 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10676 paddress (target_gdbarch (), lma),
10677 paddress (target_gdbarch (), lma + size));
10678 if (res)
10679 printf_filtered ("matched.\n");
10680 else
10681 {
10682 printf_filtered ("MIS-MATCHED!\n");
10683 mismatched++;
10684 }
10685 }
10686 if (mismatched > 0)
10687 warning (_("One or more sections of the target image does not match\n\
10688 the loaded file\n"));
10689 if (args && !matched)
10690 printf_filtered (_("No loaded section named '%s'.\n"), args);
10691 }
10692
10693 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10694 into remote target. The number of bytes written to the remote
10695 target is returned, or -1 for error. */
10696
10697 target_xfer_status
10698 remote_target::remote_write_qxfer (const char *object_name,
10699 const char *annex, const gdb_byte *writebuf,
10700 ULONGEST offset, LONGEST len,
10701 ULONGEST *xfered_len,
10702 struct packet_config *packet)
10703 {
10704 int i, buf_len;
10705 ULONGEST n;
10706 struct remote_state *rs = get_remote_state ();
10707 int max_size = get_memory_write_packet_size ();
10708
10709 if (packet_config_support (packet) == PACKET_DISABLE)
10710 return TARGET_XFER_E_IO;
10711
10712 /* Insert header. */
10713 i = snprintf (rs->buf.data (), max_size,
10714 "qXfer:%s:write:%s:%s:",
10715 object_name, annex ? annex : "",
10716 phex_nz (offset, sizeof offset));
10717 max_size -= (i + 1);
10718
10719 /* Escape as much data as fits into rs->buf. */
10720 buf_len = remote_escape_output
10721 (writebuf, len, 1, (gdb_byte *) rs->buf.data () + i, &max_size, max_size);
10722
10723 if (putpkt_binary (rs->buf.data (), i + buf_len) < 0
10724 || getpkt_sane (&rs->buf, 0) < 0
10725 || packet_ok (rs->buf, packet) != PACKET_OK)
10726 return TARGET_XFER_E_IO;
10727
10728 unpack_varlen_hex (rs->buf.data (), &n);
10729
10730 *xfered_len = n;
10731 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10732 }
10733
10734 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10735 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10736 number of bytes read is returned, or 0 for EOF, or -1 for error.
10737 The number of bytes read may be less than LEN without indicating an
10738 EOF. PACKET is checked and updated to indicate whether the remote
10739 target supports this object. */
10740
10741 target_xfer_status
10742 remote_target::remote_read_qxfer (const char *object_name,
10743 const char *annex,
10744 gdb_byte *readbuf, ULONGEST offset,
10745 LONGEST len,
10746 ULONGEST *xfered_len,
10747 struct packet_config *packet)
10748 {
10749 struct remote_state *rs = get_remote_state ();
10750 LONGEST i, n, packet_len;
10751
10752 if (packet_config_support (packet) == PACKET_DISABLE)
10753 return TARGET_XFER_E_IO;
10754
10755 /* Check whether we've cached an end-of-object packet that matches
10756 this request. */
10757 if (rs->finished_object)
10758 {
10759 if (strcmp (object_name, rs->finished_object) == 0
10760 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10761 && offset == rs->finished_offset)
10762 return TARGET_XFER_EOF;
10763
10764
10765 /* Otherwise, we're now reading something different. Discard
10766 the cache. */
10767 xfree (rs->finished_object);
10768 xfree (rs->finished_annex);
10769 rs->finished_object = NULL;
10770 rs->finished_annex = NULL;
10771 }
10772
10773 /* Request only enough to fit in a single packet. The actual data
10774 may not, since we don't know how much of it will need to be escaped;
10775 the target is free to respond with slightly less data. We subtract
10776 five to account for the response type and the protocol frame. */
10777 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10778 snprintf (rs->buf.data (), get_remote_packet_size () - 4,
10779 "qXfer:%s:read:%s:%s,%s",
10780 object_name, annex ? annex : "",
10781 phex_nz (offset, sizeof offset),
10782 phex_nz (n, sizeof n));
10783 i = putpkt (rs->buf);
10784 if (i < 0)
10785 return TARGET_XFER_E_IO;
10786
10787 rs->buf[0] = '\0';
10788 packet_len = getpkt_sane (&rs->buf, 0);
10789 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10790 return TARGET_XFER_E_IO;
10791
10792 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10793 error (_("Unknown remote qXfer reply: %s"), rs->buf.data ());
10794
10795 /* 'm' means there is (or at least might be) more data after this
10796 batch. That does not make sense unless there's at least one byte
10797 of data in this reply. */
10798 if (rs->buf[0] == 'm' && packet_len == 1)
10799 error (_("Remote qXfer reply contained no data."));
10800
10801 /* Got some data. */
10802 i = remote_unescape_input ((gdb_byte *) rs->buf.data () + 1,
10803 packet_len - 1, readbuf, n);
10804
10805 /* 'l' is an EOF marker, possibly including a final block of data,
10806 or possibly empty. If we have the final block of a non-empty
10807 object, record this fact to bypass a subsequent partial read. */
10808 if (rs->buf[0] == 'l' && offset + i > 0)
10809 {
10810 rs->finished_object = xstrdup (object_name);
10811 rs->finished_annex = xstrdup (annex ? annex : "");
10812 rs->finished_offset = offset + i;
10813 }
10814
10815 if (i == 0)
10816 return TARGET_XFER_EOF;
10817 else
10818 {
10819 *xfered_len = i;
10820 return TARGET_XFER_OK;
10821 }
10822 }
10823
10824 enum target_xfer_status
10825 remote_target::xfer_partial (enum target_object object,
10826 const char *annex, gdb_byte *readbuf,
10827 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
10828 ULONGEST *xfered_len)
10829 {
10830 struct remote_state *rs;
10831 int i;
10832 char *p2;
10833 char query_type;
10834 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
10835
10836 set_remote_traceframe ();
10837 set_general_thread (inferior_ptid);
10838
10839 rs = get_remote_state ();
10840
10841 /* Handle memory using the standard memory routines. */
10842 if (object == TARGET_OBJECT_MEMORY)
10843 {
10844 /* If the remote target is connected but not running, we should
10845 pass this request down to a lower stratum (e.g. the executable
10846 file). */
10847 if (!target_has_execution)
10848 return TARGET_XFER_EOF;
10849
10850 if (writebuf != NULL)
10851 return remote_write_bytes (offset, writebuf, len, unit_size,
10852 xfered_len);
10853 else
10854 return remote_read_bytes (offset, readbuf, len, unit_size,
10855 xfered_len);
10856 }
10857
10858 /* Handle SPU memory using qxfer packets. */
10859 if (object == TARGET_OBJECT_SPU)
10860 {
10861 if (readbuf)
10862 return remote_read_qxfer ("spu", annex, readbuf, offset, len,
10863 xfered_len, &remote_protocol_packets
10864 [PACKET_qXfer_spu_read]);
10865 else
10866 return remote_write_qxfer ("spu", annex, writebuf, offset, len,
10867 xfered_len, &remote_protocol_packets
10868 [PACKET_qXfer_spu_write]);
10869 }
10870
10871 /* Handle extra signal info using qxfer packets. */
10872 if (object == TARGET_OBJECT_SIGNAL_INFO)
10873 {
10874 if (readbuf)
10875 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
10876 xfered_len, &remote_protocol_packets
10877 [PACKET_qXfer_siginfo_read]);
10878 else
10879 return remote_write_qxfer ("siginfo", annex,
10880 writebuf, offset, len, xfered_len,
10881 &remote_protocol_packets
10882 [PACKET_qXfer_siginfo_write]);
10883 }
10884
10885 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
10886 {
10887 if (readbuf)
10888 return remote_read_qxfer ("statictrace", annex,
10889 readbuf, offset, len, xfered_len,
10890 &remote_protocol_packets
10891 [PACKET_qXfer_statictrace_read]);
10892 else
10893 return TARGET_XFER_E_IO;
10894 }
10895
10896 /* Only handle flash writes. */
10897 if (writebuf != NULL)
10898 {
10899 switch (object)
10900 {
10901 case TARGET_OBJECT_FLASH:
10902 return remote_flash_write (offset, len, xfered_len,
10903 writebuf);
10904
10905 default:
10906 return TARGET_XFER_E_IO;
10907 }
10908 }
10909
10910 /* Map pre-existing objects onto letters. DO NOT do this for new
10911 objects!!! Instead specify new query packets. */
10912 switch (object)
10913 {
10914 case TARGET_OBJECT_AVR:
10915 query_type = 'R';
10916 break;
10917
10918 case TARGET_OBJECT_AUXV:
10919 gdb_assert (annex == NULL);
10920 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
10921 xfered_len,
10922 &remote_protocol_packets[PACKET_qXfer_auxv]);
10923
10924 case TARGET_OBJECT_AVAILABLE_FEATURES:
10925 return remote_read_qxfer
10926 ("features", annex, readbuf, offset, len, xfered_len,
10927 &remote_protocol_packets[PACKET_qXfer_features]);
10928
10929 case TARGET_OBJECT_LIBRARIES:
10930 return remote_read_qxfer
10931 ("libraries", annex, readbuf, offset, len, xfered_len,
10932 &remote_protocol_packets[PACKET_qXfer_libraries]);
10933
10934 case TARGET_OBJECT_LIBRARIES_SVR4:
10935 return remote_read_qxfer
10936 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
10937 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
10938
10939 case TARGET_OBJECT_MEMORY_MAP:
10940 gdb_assert (annex == NULL);
10941 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
10942 xfered_len,
10943 &remote_protocol_packets[PACKET_qXfer_memory_map]);
10944
10945 case TARGET_OBJECT_OSDATA:
10946 /* Should only get here if we're connected. */
10947 gdb_assert (rs->remote_desc);
10948 return remote_read_qxfer
10949 ("osdata", annex, readbuf, offset, len, xfered_len,
10950 &remote_protocol_packets[PACKET_qXfer_osdata]);
10951
10952 case TARGET_OBJECT_THREADS:
10953 gdb_assert (annex == NULL);
10954 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
10955 xfered_len,
10956 &remote_protocol_packets[PACKET_qXfer_threads]);
10957
10958 case TARGET_OBJECT_TRACEFRAME_INFO:
10959 gdb_assert (annex == NULL);
10960 return remote_read_qxfer
10961 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
10962 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
10963
10964 case TARGET_OBJECT_FDPIC:
10965 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
10966 xfered_len,
10967 &remote_protocol_packets[PACKET_qXfer_fdpic]);
10968
10969 case TARGET_OBJECT_OPENVMS_UIB:
10970 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
10971 xfered_len,
10972 &remote_protocol_packets[PACKET_qXfer_uib]);
10973
10974 case TARGET_OBJECT_BTRACE:
10975 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
10976 xfered_len,
10977 &remote_protocol_packets[PACKET_qXfer_btrace]);
10978
10979 case TARGET_OBJECT_BTRACE_CONF:
10980 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
10981 len, xfered_len,
10982 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
10983
10984 case TARGET_OBJECT_EXEC_FILE:
10985 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
10986 len, xfered_len,
10987 &remote_protocol_packets[PACKET_qXfer_exec_file]);
10988
10989 default:
10990 return TARGET_XFER_E_IO;
10991 }
10992
10993 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
10994 large enough let the caller deal with it. */
10995 if (len < get_remote_packet_size ())
10996 return TARGET_XFER_E_IO;
10997 len = get_remote_packet_size ();
10998
10999 /* Except for querying the minimum buffer size, target must be open. */
11000 if (!rs->remote_desc)
11001 error (_("remote query is only available after target open"));
11002
11003 gdb_assert (annex != NULL);
11004 gdb_assert (readbuf != NULL);
11005
11006 p2 = rs->buf.data ();
11007 *p2++ = 'q';
11008 *p2++ = query_type;
11009
11010 /* We used one buffer char for the remote protocol q command and
11011 another for the query type. As the remote protocol encapsulation
11012 uses 4 chars plus one extra in case we are debugging
11013 (remote_debug), we have PBUFZIZ - 7 left to pack the query
11014 string. */
11015 i = 0;
11016 while (annex[i] && (i < (get_remote_packet_size () - 8)))
11017 {
11018 /* Bad caller may have sent forbidden characters. */
11019 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
11020 *p2++ = annex[i];
11021 i++;
11022 }
11023 *p2 = '\0';
11024 gdb_assert (annex[i] == '\0');
11025
11026 i = putpkt (rs->buf);
11027 if (i < 0)
11028 return TARGET_XFER_E_IO;
11029
11030 getpkt (&rs->buf, 0);
11031 strcpy ((char *) readbuf, rs->buf.data ());
11032
11033 *xfered_len = strlen ((char *) readbuf);
11034 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11035 }
11036
11037 /* Implementation of to_get_memory_xfer_limit. */
11038
11039 ULONGEST
11040 remote_target::get_memory_xfer_limit ()
11041 {
11042 return get_memory_write_packet_size ();
11043 }
11044
11045 int
11046 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
11047 const gdb_byte *pattern, ULONGEST pattern_len,
11048 CORE_ADDR *found_addrp)
11049 {
11050 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
11051 struct remote_state *rs = get_remote_state ();
11052 int max_size = get_memory_write_packet_size ();
11053 struct packet_config *packet =
11054 &remote_protocol_packets[PACKET_qSearch_memory];
11055 /* Number of packet bytes used to encode the pattern;
11056 this could be more than PATTERN_LEN due to escape characters. */
11057 int escaped_pattern_len;
11058 /* Amount of pattern that was encodable in the packet. */
11059 int used_pattern_len;
11060 int i;
11061 int found;
11062 ULONGEST found_addr;
11063
11064 /* Don't go to the target if we don't have to. This is done before
11065 checking packet_config_support to avoid the possibility that a
11066 success for this edge case means the facility works in
11067 general. */
11068 if (pattern_len > search_space_len)
11069 return 0;
11070 if (pattern_len == 0)
11071 {
11072 *found_addrp = start_addr;
11073 return 1;
11074 }
11075
11076 /* If we already know the packet isn't supported, fall back to the simple
11077 way of searching memory. */
11078
11079 if (packet_config_support (packet) == PACKET_DISABLE)
11080 {
11081 /* Target doesn't provided special support, fall back and use the
11082 standard support (copy memory and do the search here). */
11083 return simple_search_memory (this, start_addr, search_space_len,
11084 pattern, pattern_len, found_addrp);
11085 }
11086
11087 /* Make sure the remote is pointing at the right process. */
11088 set_general_process ();
11089
11090 /* Insert header. */
11091 i = snprintf (rs->buf.data (), max_size,
11092 "qSearch:memory:%s;%s;",
11093 phex_nz (start_addr, addr_size),
11094 phex_nz (search_space_len, sizeof (search_space_len)));
11095 max_size -= (i + 1);
11096
11097 /* Escape as much data as fits into rs->buf. */
11098 escaped_pattern_len =
11099 remote_escape_output (pattern, pattern_len, 1,
11100 (gdb_byte *) rs->buf.data () + i,
11101 &used_pattern_len, max_size);
11102
11103 /* Bail if the pattern is too large. */
11104 if (used_pattern_len != pattern_len)
11105 error (_("Pattern is too large to transmit to remote target."));
11106
11107 if (putpkt_binary (rs->buf.data (), i + escaped_pattern_len) < 0
11108 || getpkt_sane (&rs->buf, 0) < 0
11109 || packet_ok (rs->buf, packet) != PACKET_OK)
11110 {
11111 /* The request may not have worked because the command is not
11112 supported. If so, fall back to the simple way. */
11113 if (packet_config_support (packet) == PACKET_DISABLE)
11114 {
11115 return simple_search_memory (this, start_addr, search_space_len,
11116 pattern, pattern_len, found_addrp);
11117 }
11118 return -1;
11119 }
11120
11121 if (rs->buf[0] == '0')
11122 found = 0;
11123 else if (rs->buf[0] == '1')
11124 {
11125 found = 1;
11126 if (rs->buf[1] != ',')
11127 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11128 unpack_varlen_hex (&rs->buf[2], &found_addr);
11129 *found_addrp = found_addr;
11130 }
11131 else
11132 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11133
11134 return found;
11135 }
11136
11137 void
11138 remote_target::rcmd (const char *command, struct ui_file *outbuf)
11139 {
11140 struct remote_state *rs = get_remote_state ();
11141 char *p = rs->buf.data ();
11142
11143 if (!rs->remote_desc)
11144 error (_("remote rcmd is only available after target open"));
11145
11146 /* Send a NULL command across as an empty command. */
11147 if (command == NULL)
11148 command = "";
11149
11150 /* The query prefix. */
11151 strcpy (rs->buf.data (), "qRcmd,");
11152 p = strchr (rs->buf.data (), '\0');
11153
11154 if ((strlen (rs->buf.data ()) + strlen (command) * 2 + 8/*misc*/)
11155 > get_remote_packet_size ())
11156 error (_("\"monitor\" command ``%s'' is too long."), command);
11157
11158 /* Encode the actual command. */
11159 bin2hex ((const gdb_byte *) command, p, strlen (command));
11160
11161 if (putpkt (rs->buf) < 0)
11162 error (_("Communication problem with target."));
11163
11164 /* get/display the response */
11165 while (1)
11166 {
11167 char *buf;
11168
11169 /* XXX - see also remote_get_noisy_reply(). */
11170 QUIT; /* Allow user to bail out with ^C. */
11171 rs->buf[0] = '\0';
11172 if (getpkt_sane (&rs->buf, 0) == -1)
11173 {
11174 /* Timeout. Continue to (try to) read responses.
11175 This is better than stopping with an error, assuming the stub
11176 is still executing the (long) monitor command.
11177 If needed, the user can interrupt gdb using C-c, obtaining
11178 an effect similar to stop on timeout. */
11179 continue;
11180 }
11181 buf = rs->buf.data ();
11182 if (buf[0] == '\0')
11183 error (_("Target does not support this command."));
11184 if (buf[0] == 'O' && buf[1] != 'K')
11185 {
11186 remote_console_output (buf + 1); /* 'O' message from stub. */
11187 continue;
11188 }
11189 if (strcmp (buf, "OK") == 0)
11190 break;
11191 if (strlen (buf) == 3 && buf[0] == 'E'
11192 && isdigit (buf[1]) && isdigit (buf[2]))
11193 {
11194 error (_("Protocol error with Rcmd"));
11195 }
11196 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11197 {
11198 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11199
11200 fputc_unfiltered (c, outbuf);
11201 }
11202 break;
11203 }
11204 }
11205
11206 std::vector<mem_region>
11207 remote_target::memory_map ()
11208 {
11209 std::vector<mem_region> result;
11210 gdb::optional<gdb::char_vector> text
11211 = target_read_stralloc (current_top_target (), TARGET_OBJECT_MEMORY_MAP, NULL);
11212
11213 if (text)
11214 result = parse_memory_map (text->data ());
11215
11216 return result;
11217 }
11218
11219 static void
11220 packet_command (const char *args, int from_tty)
11221 {
11222 remote_target *remote = get_current_remote_target ();
11223
11224 if (remote == nullptr)
11225 error (_("command can only be used with remote target"));
11226
11227 remote->packet_command (args, from_tty);
11228 }
11229
11230 void
11231 remote_target::packet_command (const char *args, int from_tty)
11232 {
11233 if (!args)
11234 error (_("remote-packet command requires packet text as argument"));
11235
11236 puts_filtered ("sending: ");
11237 print_packet (args);
11238 puts_filtered ("\n");
11239 putpkt (args);
11240
11241 remote_state *rs = get_remote_state ();
11242
11243 getpkt (&rs->buf, 0);
11244 puts_filtered ("received: ");
11245 print_packet (rs->buf.data ());
11246 puts_filtered ("\n");
11247 }
11248
11249 #if 0
11250 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11251
11252 static void display_thread_info (struct gdb_ext_thread_info *info);
11253
11254 static void threadset_test_cmd (char *cmd, int tty);
11255
11256 static void threadalive_test (char *cmd, int tty);
11257
11258 static void threadlist_test_cmd (char *cmd, int tty);
11259
11260 int get_and_display_threadinfo (threadref *ref);
11261
11262 static void threadinfo_test_cmd (char *cmd, int tty);
11263
11264 static int thread_display_step (threadref *ref, void *context);
11265
11266 static void threadlist_update_test_cmd (char *cmd, int tty);
11267
11268 static void init_remote_threadtests (void);
11269
11270 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11271
11272 static void
11273 threadset_test_cmd (const char *cmd, int tty)
11274 {
11275 int sample_thread = SAMPLE_THREAD;
11276
11277 printf_filtered (_("Remote threadset test\n"));
11278 set_general_thread (sample_thread);
11279 }
11280
11281
11282 static void
11283 threadalive_test (const char *cmd, int tty)
11284 {
11285 int sample_thread = SAMPLE_THREAD;
11286 int pid = inferior_ptid.pid ();
11287 ptid_t ptid = ptid_t (pid, sample_thread, 0);
11288
11289 if (remote_thread_alive (ptid))
11290 printf_filtered ("PASS: Thread alive test\n");
11291 else
11292 printf_filtered ("FAIL: Thread alive test\n");
11293 }
11294
11295 void output_threadid (char *title, threadref *ref);
11296
11297 void
11298 output_threadid (char *title, threadref *ref)
11299 {
11300 char hexid[20];
11301
11302 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
11303 hexid[16] = 0;
11304 printf_filtered ("%s %s\n", title, (&hexid[0]));
11305 }
11306
11307 static void
11308 threadlist_test_cmd (const char *cmd, int tty)
11309 {
11310 int startflag = 1;
11311 threadref nextthread;
11312 int done, result_count;
11313 threadref threadlist[3];
11314
11315 printf_filtered ("Remote Threadlist test\n");
11316 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11317 &result_count, &threadlist[0]))
11318 printf_filtered ("FAIL: threadlist test\n");
11319 else
11320 {
11321 threadref *scan = threadlist;
11322 threadref *limit = scan + result_count;
11323
11324 while (scan < limit)
11325 output_threadid (" thread ", scan++);
11326 }
11327 }
11328
11329 void
11330 display_thread_info (struct gdb_ext_thread_info *info)
11331 {
11332 output_threadid ("Threadid: ", &info->threadid);
11333 printf_filtered ("Name: %s\n ", info->shortname);
11334 printf_filtered ("State: %s\n", info->display);
11335 printf_filtered ("other: %s\n\n", info->more_display);
11336 }
11337
11338 int
11339 get_and_display_threadinfo (threadref *ref)
11340 {
11341 int result;
11342 int set;
11343 struct gdb_ext_thread_info threadinfo;
11344
11345 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11346 | TAG_MOREDISPLAY | TAG_DISPLAY;
11347 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11348 display_thread_info (&threadinfo);
11349 return result;
11350 }
11351
11352 static void
11353 threadinfo_test_cmd (const char *cmd, int tty)
11354 {
11355 int athread = SAMPLE_THREAD;
11356 threadref thread;
11357 int set;
11358
11359 int_to_threadref (&thread, athread);
11360 printf_filtered ("Remote Threadinfo test\n");
11361 if (!get_and_display_threadinfo (&thread))
11362 printf_filtered ("FAIL cannot get thread info\n");
11363 }
11364
11365 static int
11366 thread_display_step (threadref *ref, void *context)
11367 {
11368 /* output_threadid(" threadstep ",ref); *//* simple test */
11369 return get_and_display_threadinfo (ref);
11370 }
11371
11372 static void
11373 threadlist_update_test_cmd (const char *cmd, int tty)
11374 {
11375 printf_filtered ("Remote Threadlist update test\n");
11376 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11377 }
11378
11379 static void
11380 init_remote_threadtests (void)
11381 {
11382 add_com ("tlist", class_obscure, threadlist_test_cmd,
11383 _("Fetch and print the remote list of "
11384 "thread identifiers, one pkt only"));
11385 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11386 _("Fetch and display info about one thread"));
11387 add_com ("tset", class_obscure, threadset_test_cmd,
11388 _("Test setting to a different thread"));
11389 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11390 _("Iterate through updating all remote thread info"));
11391 add_com ("talive", class_obscure, threadalive_test,
11392 _(" Remote thread alive test "));
11393 }
11394
11395 #endif /* 0 */
11396
11397 /* Convert a thread ID to a string. */
11398
11399 std::string
11400 remote_target::pid_to_str (ptid_t ptid)
11401 {
11402 struct remote_state *rs = get_remote_state ();
11403
11404 if (ptid == null_ptid)
11405 return normal_pid_to_str (ptid);
11406 else if (ptid.is_pid ())
11407 {
11408 /* Printing an inferior target id. */
11409
11410 /* When multi-process extensions are off, there's no way in the
11411 remote protocol to know the remote process id, if there's any
11412 at all. There's one exception --- when we're connected with
11413 target extended-remote, and we manually attached to a process
11414 with "attach PID". We don't record anywhere a flag that
11415 allows us to distinguish that case from the case of
11416 connecting with extended-remote and the stub already being
11417 attached to a process, and reporting yes to qAttached, hence
11418 no smart special casing here. */
11419 if (!remote_multi_process_p (rs))
11420 return "Remote target";
11421
11422 return normal_pid_to_str (ptid);
11423 }
11424 else
11425 {
11426 if (magic_null_ptid == ptid)
11427 return "Thread <main>";
11428 else if (remote_multi_process_p (rs))
11429 if (ptid.lwp () == 0)
11430 return normal_pid_to_str (ptid);
11431 else
11432 return string_printf ("Thread %d.%ld",
11433 ptid.pid (), ptid.lwp ());
11434 else
11435 return string_printf ("Thread %ld", ptid.lwp ());
11436 }
11437 }
11438
11439 /* Get the address of the thread local variable in OBJFILE which is
11440 stored at OFFSET within the thread local storage for thread PTID. */
11441
11442 CORE_ADDR
11443 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11444 CORE_ADDR offset)
11445 {
11446 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11447 {
11448 struct remote_state *rs = get_remote_state ();
11449 char *p = rs->buf.data ();
11450 char *endp = p + get_remote_packet_size ();
11451 enum packet_result result;
11452
11453 strcpy (p, "qGetTLSAddr:");
11454 p += strlen (p);
11455 p = write_ptid (p, endp, ptid);
11456 *p++ = ',';
11457 p += hexnumstr (p, offset);
11458 *p++ = ',';
11459 p += hexnumstr (p, lm);
11460 *p++ = '\0';
11461
11462 putpkt (rs->buf);
11463 getpkt (&rs->buf, 0);
11464 result = packet_ok (rs->buf,
11465 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11466 if (result == PACKET_OK)
11467 {
11468 ULONGEST addr;
11469
11470 unpack_varlen_hex (rs->buf.data (), &addr);
11471 return addr;
11472 }
11473 else if (result == PACKET_UNKNOWN)
11474 throw_error (TLS_GENERIC_ERROR,
11475 _("Remote target doesn't support qGetTLSAddr packet"));
11476 else
11477 throw_error (TLS_GENERIC_ERROR,
11478 _("Remote target failed to process qGetTLSAddr request"));
11479 }
11480 else
11481 throw_error (TLS_GENERIC_ERROR,
11482 _("TLS not supported or disabled on this target"));
11483 /* Not reached. */
11484 return 0;
11485 }
11486
11487 /* Provide thread local base, i.e. Thread Information Block address.
11488 Returns 1 if ptid is found and thread_local_base is non zero. */
11489
11490 bool
11491 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11492 {
11493 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11494 {
11495 struct remote_state *rs = get_remote_state ();
11496 char *p = rs->buf.data ();
11497 char *endp = p + get_remote_packet_size ();
11498 enum packet_result result;
11499
11500 strcpy (p, "qGetTIBAddr:");
11501 p += strlen (p);
11502 p = write_ptid (p, endp, ptid);
11503 *p++ = '\0';
11504
11505 putpkt (rs->buf);
11506 getpkt (&rs->buf, 0);
11507 result = packet_ok (rs->buf,
11508 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11509 if (result == PACKET_OK)
11510 {
11511 ULONGEST val;
11512 unpack_varlen_hex (rs->buf.data (), &val);
11513 if (addr)
11514 *addr = (CORE_ADDR) val;
11515 return true;
11516 }
11517 else if (result == PACKET_UNKNOWN)
11518 error (_("Remote target doesn't support qGetTIBAddr packet"));
11519 else
11520 error (_("Remote target failed to process qGetTIBAddr request"));
11521 }
11522 else
11523 error (_("qGetTIBAddr not supported or disabled on this target"));
11524 /* Not reached. */
11525 return false;
11526 }
11527
11528 /* Support for inferring a target description based on the current
11529 architecture and the size of a 'g' packet. While the 'g' packet
11530 can have any size (since optional registers can be left off the
11531 end), some sizes are easily recognizable given knowledge of the
11532 approximate architecture. */
11533
11534 struct remote_g_packet_guess
11535 {
11536 remote_g_packet_guess (int bytes_, const struct target_desc *tdesc_)
11537 : bytes (bytes_),
11538 tdesc (tdesc_)
11539 {
11540 }
11541
11542 int bytes;
11543 const struct target_desc *tdesc;
11544 };
11545
11546 struct remote_g_packet_data : public allocate_on_obstack
11547 {
11548 std::vector<remote_g_packet_guess> guesses;
11549 };
11550
11551 static struct gdbarch_data *remote_g_packet_data_handle;
11552
11553 static void *
11554 remote_g_packet_data_init (struct obstack *obstack)
11555 {
11556 return new (obstack) remote_g_packet_data;
11557 }
11558
11559 void
11560 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11561 const struct target_desc *tdesc)
11562 {
11563 struct remote_g_packet_data *data
11564 = ((struct remote_g_packet_data *)
11565 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11566
11567 gdb_assert (tdesc != NULL);
11568
11569 for (const remote_g_packet_guess &guess : data->guesses)
11570 if (guess.bytes == bytes)
11571 internal_error (__FILE__, __LINE__,
11572 _("Duplicate g packet description added for size %d"),
11573 bytes);
11574
11575 data->guesses.emplace_back (bytes, tdesc);
11576 }
11577
11578 /* Return true if remote_read_description would do anything on this target
11579 and architecture, false otherwise. */
11580
11581 static bool
11582 remote_read_description_p (struct target_ops *target)
11583 {
11584 struct remote_g_packet_data *data
11585 = ((struct remote_g_packet_data *)
11586 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11587
11588 return !data->guesses.empty ();
11589 }
11590
11591 const struct target_desc *
11592 remote_target::read_description ()
11593 {
11594 struct remote_g_packet_data *data
11595 = ((struct remote_g_packet_data *)
11596 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11597
11598 /* Do not try this during initial connection, when we do not know
11599 whether there is a running but stopped thread. */
11600 if (!target_has_execution || inferior_ptid == null_ptid)
11601 return beneath ()->read_description ();
11602
11603 if (!data->guesses.empty ())
11604 {
11605 int bytes = send_g_packet ();
11606
11607 for (const remote_g_packet_guess &guess : data->guesses)
11608 if (guess.bytes == bytes)
11609 return guess.tdesc;
11610
11611 /* We discard the g packet. A minor optimization would be to
11612 hold on to it, and fill the register cache once we have selected
11613 an architecture, but it's too tricky to do safely. */
11614 }
11615
11616 return beneath ()->read_description ();
11617 }
11618
11619 /* Remote file transfer support. This is host-initiated I/O, not
11620 target-initiated; for target-initiated, see remote-fileio.c. */
11621
11622 /* If *LEFT is at least the length of STRING, copy STRING to
11623 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11624 decrease *LEFT. Otherwise raise an error. */
11625
11626 static void
11627 remote_buffer_add_string (char **buffer, int *left, const char *string)
11628 {
11629 int len = strlen (string);
11630
11631 if (len > *left)
11632 error (_("Packet too long for target."));
11633
11634 memcpy (*buffer, string, len);
11635 *buffer += len;
11636 *left -= len;
11637
11638 /* NUL-terminate the buffer as a convenience, if there is
11639 room. */
11640 if (*left)
11641 **buffer = '\0';
11642 }
11643
11644 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11645 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11646 decrease *LEFT. Otherwise raise an error. */
11647
11648 static void
11649 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11650 int len)
11651 {
11652 if (2 * len > *left)
11653 error (_("Packet too long for target."));
11654
11655 bin2hex (bytes, *buffer, len);
11656 *buffer += 2 * len;
11657 *left -= 2 * len;
11658
11659 /* NUL-terminate the buffer as a convenience, if there is
11660 room. */
11661 if (*left)
11662 **buffer = '\0';
11663 }
11664
11665 /* If *LEFT is large enough, convert VALUE to hex and add it to
11666 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11667 decrease *LEFT. Otherwise raise an error. */
11668
11669 static void
11670 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11671 {
11672 int len = hexnumlen (value);
11673
11674 if (len > *left)
11675 error (_("Packet too long for target."));
11676
11677 hexnumstr (*buffer, value);
11678 *buffer += len;
11679 *left -= len;
11680
11681 /* NUL-terminate the buffer as a convenience, if there is
11682 room. */
11683 if (*left)
11684 **buffer = '\0';
11685 }
11686
11687 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11688 value, *REMOTE_ERRNO to the remote error number or zero if none
11689 was included, and *ATTACHMENT to point to the start of the annex
11690 if any. The length of the packet isn't needed here; there may
11691 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11692
11693 Return 0 if the packet could be parsed, -1 if it could not. If
11694 -1 is returned, the other variables may not be initialized. */
11695
11696 static int
11697 remote_hostio_parse_result (char *buffer, int *retcode,
11698 int *remote_errno, char **attachment)
11699 {
11700 char *p, *p2;
11701
11702 *remote_errno = 0;
11703 *attachment = NULL;
11704
11705 if (buffer[0] != 'F')
11706 return -1;
11707
11708 errno = 0;
11709 *retcode = strtol (&buffer[1], &p, 16);
11710 if (errno != 0 || p == &buffer[1])
11711 return -1;
11712
11713 /* Check for ",errno". */
11714 if (*p == ',')
11715 {
11716 errno = 0;
11717 *remote_errno = strtol (p + 1, &p2, 16);
11718 if (errno != 0 || p + 1 == p2)
11719 return -1;
11720 p = p2;
11721 }
11722
11723 /* Check for ";attachment". If there is no attachment, the
11724 packet should end here. */
11725 if (*p == ';')
11726 {
11727 *attachment = p + 1;
11728 return 0;
11729 }
11730 else if (*p == '\0')
11731 return 0;
11732 else
11733 return -1;
11734 }
11735
11736 /* Send a prepared I/O packet to the target and read its response.
11737 The prepared packet is in the global RS->BUF before this function
11738 is called, and the answer is there when we return.
11739
11740 COMMAND_BYTES is the length of the request to send, which may include
11741 binary data. WHICH_PACKET is the packet configuration to check
11742 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11743 is set to the error number and -1 is returned. Otherwise the value
11744 returned by the function is returned.
11745
11746 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11747 attachment is expected; an error will be reported if there's a
11748 mismatch. If one is found, *ATTACHMENT will be set to point into
11749 the packet buffer and *ATTACHMENT_LEN will be set to the
11750 attachment's length. */
11751
11752 int
11753 remote_target::remote_hostio_send_command (int command_bytes, int which_packet,
11754 int *remote_errno, char **attachment,
11755 int *attachment_len)
11756 {
11757 struct remote_state *rs = get_remote_state ();
11758 int ret, bytes_read;
11759 char *attachment_tmp;
11760
11761 if (packet_support (which_packet) == PACKET_DISABLE)
11762 {
11763 *remote_errno = FILEIO_ENOSYS;
11764 return -1;
11765 }
11766
11767 putpkt_binary (rs->buf.data (), command_bytes);
11768 bytes_read = getpkt_sane (&rs->buf, 0);
11769
11770 /* If it timed out, something is wrong. Don't try to parse the
11771 buffer. */
11772 if (bytes_read < 0)
11773 {
11774 *remote_errno = FILEIO_EINVAL;
11775 return -1;
11776 }
11777
11778 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11779 {
11780 case PACKET_ERROR:
11781 *remote_errno = FILEIO_EINVAL;
11782 return -1;
11783 case PACKET_UNKNOWN:
11784 *remote_errno = FILEIO_ENOSYS;
11785 return -1;
11786 case PACKET_OK:
11787 break;
11788 }
11789
11790 if (remote_hostio_parse_result (rs->buf.data (), &ret, remote_errno,
11791 &attachment_tmp))
11792 {
11793 *remote_errno = FILEIO_EINVAL;
11794 return -1;
11795 }
11796
11797 /* Make sure we saw an attachment if and only if we expected one. */
11798 if ((attachment_tmp == NULL && attachment != NULL)
11799 || (attachment_tmp != NULL && attachment == NULL))
11800 {
11801 *remote_errno = FILEIO_EINVAL;
11802 return -1;
11803 }
11804
11805 /* If an attachment was found, it must point into the packet buffer;
11806 work out how many bytes there were. */
11807 if (attachment_tmp != NULL)
11808 {
11809 *attachment = attachment_tmp;
11810 *attachment_len = bytes_read - (*attachment - rs->buf.data ());
11811 }
11812
11813 return ret;
11814 }
11815
11816 /* See declaration.h. */
11817
11818 void
11819 readahead_cache::invalidate ()
11820 {
11821 this->fd = -1;
11822 }
11823
11824 /* See declaration.h. */
11825
11826 void
11827 readahead_cache::invalidate_fd (int fd)
11828 {
11829 if (this->fd == fd)
11830 this->fd = -1;
11831 }
11832
11833 /* Set the filesystem remote_hostio functions that take FILENAME
11834 arguments will use. Return 0 on success, or -1 if an error
11835 occurs (and set *REMOTE_ERRNO). */
11836
11837 int
11838 remote_target::remote_hostio_set_filesystem (struct inferior *inf,
11839 int *remote_errno)
11840 {
11841 struct remote_state *rs = get_remote_state ();
11842 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
11843 char *p = rs->buf.data ();
11844 int left = get_remote_packet_size () - 1;
11845 char arg[9];
11846 int ret;
11847
11848 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11849 return 0;
11850
11851 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11852 return 0;
11853
11854 remote_buffer_add_string (&p, &left, "vFile:setfs:");
11855
11856 xsnprintf (arg, sizeof (arg), "%x", required_pid);
11857 remote_buffer_add_string (&p, &left, arg);
11858
11859 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_setfs,
11860 remote_errno, NULL, NULL);
11861
11862 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11863 return 0;
11864
11865 if (ret == 0)
11866 rs->fs_pid = required_pid;
11867
11868 return ret;
11869 }
11870
11871 /* Implementation of to_fileio_open. */
11872
11873 int
11874 remote_target::remote_hostio_open (inferior *inf, const char *filename,
11875 int flags, int mode, int warn_if_slow,
11876 int *remote_errno)
11877 {
11878 struct remote_state *rs = get_remote_state ();
11879 char *p = rs->buf.data ();
11880 int left = get_remote_packet_size () - 1;
11881
11882 if (warn_if_slow)
11883 {
11884 static int warning_issued = 0;
11885
11886 printf_unfiltered (_("Reading %s from remote target...\n"),
11887 filename);
11888
11889 if (!warning_issued)
11890 {
11891 warning (_("File transfers from remote targets can be slow."
11892 " Use \"set sysroot\" to access files locally"
11893 " instead."));
11894 warning_issued = 1;
11895 }
11896 }
11897
11898 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11899 return -1;
11900
11901 remote_buffer_add_string (&p, &left, "vFile:open:");
11902
11903 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11904 strlen (filename));
11905 remote_buffer_add_string (&p, &left, ",");
11906
11907 remote_buffer_add_int (&p, &left, flags);
11908 remote_buffer_add_string (&p, &left, ",");
11909
11910 remote_buffer_add_int (&p, &left, mode);
11911
11912 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_open,
11913 remote_errno, NULL, NULL);
11914 }
11915
11916 int
11917 remote_target::fileio_open (struct inferior *inf, const char *filename,
11918 int flags, int mode, int warn_if_slow,
11919 int *remote_errno)
11920 {
11921 return remote_hostio_open (inf, filename, flags, mode, warn_if_slow,
11922 remote_errno);
11923 }
11924
11925 /* Implementation of to_fileio_pwrite. */
11926
11927 int
11928 remote_target::remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
11929 ULONGEST offset, int *remote_errno)
11930 {
11931 struct remote_state *rs = get_remote_state ();
11932 char *p = rs->buf.data ();
11933 int left = get_remote_packet_size ();
11934 int out_len;
11935
11936 rs->readahead_cache.invalidate_fd (fd);
11937
11938 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
11939
11940 remote_buffer_add_int (&p, &left, fd);
11941 remote_buffer_add_string (&p, &left, ",");
11942
11943 remote_buffer_add_int (&p, &left, offset);
11944 remote_buffer_add_string (&p, &left, ",");
11945
11946 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
11947 (get_remote_packet_size ()
11948 - (p - rs->buf.data ())));
11949
11950 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pwrite,
11951 remote_errno, NULL, NULL);
11952 }
11953
11954 int
11955 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
11956 ULONGEST offset, int *remote_errno)
11957 {
11958 return remote_hostio_pwrite (fd, write_buf, len, offset, remote_errno);
11959 }
11960
11961 /* Helper for the implementation of to_fileio_pread. Read the file
11962 from the remote side with vFile:pread. */
11963
11964 int
11965 remote_target::remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
11966 ULONGEST offset, int *remote_errno)
11967 {
11968 struct remote_state *rs = get_remote_state ();
11969 char *p = rs->buf.data ();
11970 char *attachment;
11971 int left = get_remote_packet_size ();
11972 int ret, attachment_len;
11973 int read_len;
11974
11975 remote_buffer_add_string (&p, &left, "vFile:pread:");
11976
11977 remote_buffer_add_int (&p, &left, fd);
11978 remote_buffer_add_string (&p, &left, ",");
11979
11980 remote_buffer_add_int (&p, &left, len);
11981 remote_buffer_add_string (&p, &left, ",");
11982
11983 remote_buffer_add_int (&p, &left, offset);
11984
11985 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pread,
11986 remote_errno, &attachment,
11987 &attachment_len);
11988
11989 if (ret < 0)
11990 return ret;
11991
11992 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
11993 read_buf, len);
11994 if (read_len != ret)
11995 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
11996
11997 return ret;
11998 }
11999
12000 /* See declaration.h. */
12001
12002 int
12003 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
12004 ULONGEST offset)
12005 {
12006 if (this->fd == fd
12007 && this->offset <= offset
12008 && offset < this->offset + this->bufsize)
12009 {
12010 ULONGEST max = this->offset + this->bufsize;
12011
12012 if (offset + len > max)
12013 len = max - offset;
12014
12015 memcpy (read_buf, this->buf + offset - this->offset, len);
12016 return len;
12017 }
12018
12019 return 0;
12020 }
12021
12022 /* Implementation of to_fileio_pread. */
12023
12024 int
12025 remote_target::remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
12026 ULONGEST offset, int *remote_errno)
12027 {
12028 int ret;
12029 struct remote_state *rs = get_remote_state ();
12030 readahead_cache *cache = &rs->readahead_cache;
12031
12032 ret = cache->pread (fd, read_buf, len, offset);
12033 if (ret > 0)
12034 {
12035 cache->hit_count++;
12036
12037 if (remote_debug)
12038 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
12039 pulongest (cache->hit_count));
12040 return ret;
12041 }
12042
12043 cache->miss_count++;
12044 if (remote_debug)
12045 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
12046 pulongest (cache->miss_count));
12047
12048 cache->fd = fd;
12049 cache->offset = offset;
12050 cache->bufsize = get_remote_packet_size ();
12051 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
12052
12053 ret = remote_hostio_pread_vFile (cache->fd, cache->buf, cache->bufsize,
12054 cache->offset, remote_errno);
12055 if (ret <= 0)
12056 {
12057 cache->invalidate_fd (fd);
12058 return ret;
12059 }
12060
12061 cache->bufsize = ret;
12062 return cache->pread (fd, read_buf, len, offset);
12063 }
12064
12065 int
12066 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
12067 ULONGEST offset, int *remote_errno)
12068 {
12069 return remote_hostio_pread (fd, read_buf, len, offset, remote_errno);
12070 }
12071
12072 /* Implementation of to_fileio_close. */
12073
12074 int
12075 remote_target::remote_hostio_close (int fd, int *remote_errno)
12076 {
12077 struct remote_state *rs = get_remote_state ();
12078 char *p = rs->buf.data ();
12079 int left = get_remote_packet_size () - 1;
12080
12081 rs->readahead_cache.invalidate_fd (fd);
12082
12083 remote_buffer_add_string (&p, &left, "vFile:close:");
12084
12085 remote_buffer_add_int (&p, &left, fd);
12086
12087 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_close,
12088 remote_errno, NULL, NULL);
12089 }
12090
12091 int
12092 remote_target::fileio_close (int fd, int *remote_errno)
12093 {
12094 return remote_hostio_close (fd, remote_errno);
12095 }
12096
12097 /* Implementation of to_fileio_unlink. */
12098
12099 int
12100 remote_target::remote_hostio_unlink (inferior *inf, const char *filename,
12101 int *remote_errno)
12102 {
12103 struct remote_state *rs = get_remote_state ();
12104 char *p = rs->buf.data ();
12105 int left = get_remote_packet_size () - 1;
12106
12107 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12108 return -1;
12109
12110 remote_buffer_add_string (&p, &left, "vFile:unlink:");
12111
12112 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12113 strlen (filename));
12114
12115 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_unlink,
12116 remote_errno, NULL, NULL);
12117 }
12118
12119 int
12120 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12121 int *remote_errno)
12122 {
12123 return remote_hostio_unlink (inf, filename, remote_errno);
12124 }
12125
12126 /* Implementation of to_fileio_readlink. */
12127
12128 gdb::optional<std::string>
12129 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12130 int *remote_errno)
12131 {
12132 struct remote_state *rs = get_remote_state ();
12133 char *p = rs->buf.data ();
12134 char *attachment;
12135 int left = get_remote_packet_size ();
12136 int len, attachment_len;
12137 int read_len;
12138
12139 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12140 return {};
12141
12142 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12143
12144 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12145 strlen (filename));
12146
12147 len = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_readlink,
12148 remote_errno, &attachment,
12149 &attachment_len);
12150
12151 if (len < 0)
12152 return {};
12153
12154 std::string ret (len, '\0');
12155
12156 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12157 (gdb_byte *) &ret[0], len);
12158 if (read_len != len)
12159 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12160
12161 return ret;
12162 }
12163
12164 /* Implementation of to_fileio_fstat. */
12165
12166 int
12167 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12168 {
12169 struct remote_state *rs = get_remote_state ();
12170 char *p = rs->buf.data ();
12171 int left = get_remote_packet_size ();
12172 int attachment_len, ret;
12173 char *attachment;
12174 struct fio_stat fst;
12175 int read_len;
12176
12177 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12178
12179 remote_buffer_add_int (&p, &left, fd);
12180
12181 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_fstat,
12182 remote_errno, &attachment,
12183 &attachment_len);
12184 if (ret < 0)
12185 {
12186 if (*remote_errno != FILEIO_ENOSYS)
12187 return ret;
12188
12189 /* Strictly we should return -1, ENOSYS here, but when
12190 "set sysroot remote:" was implemented in August 2008
12191 BFD's need for a stat function was sidestepped with
12192 this hack. This was not remedied until March 2015
12193 so we retain the previous behavior to avoid breaking
12194 compatibility.
12195
12196 Note that the memset is a March 2015 addition; older
12197 GDBs set st_size *and nothing else* so the structure
12198 would have garbage in all other fields. This might
12199 break something but retaining the previous behavior
12200 here would be just too wrong. */
12201
12202 memset (st, 0, sizeof (struct stat));
12203 st->st_size = INT_MAX;
12204 return 0;
12205 }
12206
12207 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12208 (gdb_byte *) &fst, sizeof (fst));
12209
12210 if (read_len != ret)
12211 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12212
12213 if (read_len != sizeof (fst))
12214 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12215 read_len, (int) sizeof (fst));
12216
12217 remote_fileio_to_host_stat (&fst, st);
12218
12219 return 0;
12220 }
12221
12222 /* Implementation of to_filesystem_is_local. */
12223
12224 bool
12225 remote_target::filesystem_is_local ()
12226 {
12227 /* Valgrind GDB presents itself as a remote target but works
12228 on the local filesystem: it does not implement remote get
12229 and users are not expected to set a sysroot. To handle
12230 this case we treat the remote filesystem as local if the
12231 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12232 does not support vFile:open. */
12233 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
12234 {
12235 enum packet_support ps = packet_support (PACKET_vFile_open);
12236
12237 if (ps == PACKET_SUPPORT_UNKNOWN)
12238 {
12239 int fd, remote_errno;
12240
12241 /* Try opening a file to probe support. The supplied
12242 filename is irrelevant, we only care about whether
12243 the stub recognizes the packet or not. */
12244 fd = remote_hostio_open (NULL, "just probing",
12245 FILEIO_O_RDONLY, 0700, 0,
12246 &remote_errno);
12247
12248 if (fd >= 0)
12249 remote_hostio_close (fd, &remote_errno);
12250
12251 ps = packet_support (PACKET_vFile_open);
12252 }
12253
12254 if (ps == PACKET_DISABLE)
12255 {
12256 static int warning_issued = 0;
12257
12258 if (!warning_issued)
12259 {
12260 warning (_("remote target does not support file"
12261 " transfer, attempting to access files"
12262 " from local filesystem."));
12263 warning_issued = 1;
12264 }
12265
12266 return true;
12267 }
12268 }
12269
12270 return false;
12271 }
12272
12273 static int
12274 remote_fileio_errno_to_host (int errnum)
12275 {
12276 switch (errnum)
12277 {
12278 case FILEIO_EPERM:
12279 return EPERM;
12280 case FILEIO_ENOENT:
12281 return ENOENT;
12282 case FILEIO_EINTR:
12283 return EINTR;
12284 case FILEIO_EIO:
12285 return EIO;
12286 case FILEIO_EBADF:
12287 return EBADF;
12288 case FILEIO_EACCES:
12289 return EACCES;
12290 case FILEIO_EFAULT:
12291 return EFAULT;
12292 case FILEIO_EBUSY:
12293 return EBUSY;
12294 case FILEIO_EEXIST:
12295 return EEXIST;
12296 case FILEIO_ENODEV:
12297 return ENODEV;
12298 case FILEIO_ENOTDIR:
12299 return ENOTDIR;
12300 case FILEIO_EISDIR:
12301 return EISDIR;
12302 case FILEIO_EINVAL:
12303 return EINVAL;
12304 case FILEIO_ENFILE:
12305 return ENFILE;
12306 case FILEIO_EMFILE:
12307 return EMFILE;
12308 case FILEIO_EFBIG:
12309 return EFBIG;
12310 case FILEIO_ENOSPC:
12311 return ENOSPC;
12312 case FILEIO_ESPIPE:
12313 return ESPIPE;
12314 case FILEIO_EROFS:
12315 return EROFS;
12316 case FILEIO_ENOSYS:
12317 return ENOSYS;
12318 case FILEIO_ENAMETOOLONG:
12319 return ENAMETOOLONG;
12320 }
12321 return -1;
12322 }
12323
12324 static char *
12325 remote_hostio_error (int errnum)
12326 {
12327 int host_error = remote_fileio_errno_to_host (errnum);
12328
12329 if (host_error == -1)
12330 error (_("Unknown remote I/O error %d"), errnum);
12331 else
12332 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12333 }
12334
12335 /* A RAII wrapper around a remote file descriptor. */
12336
12337 class scoped_remote_fd
12338 {
12339 public:
12340 scoped_remote_fd (remote_target *remote, int fd)
12341 : m_remote (remote), m_fd (fd)
12342 {
12343 }
12344
12345 ~scoped_remote_fd ()
12346 {
12347 if (m_fd != -1)
12348 {
12349 try
12350 {
12351 int remote_errno;
12352 m_remote->remote_hostio_close (m_fd, &remote_errno);
12353 }
12354 catch (...)
12355 {
12356 /* Swallow exception before it escapes the dtor. If
12357 something goes wrong, likely the connection is gone,
12358 and there's nothing else that can be done. */
12359 }
12360 }
12361 }
12362
12363 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12364
12365 /* Release ownership of the file descriptor, and return it. */
12366 ATTRIBUTE_UNUSED_RESULT int release () noexcept
12367 {
12368 int fd = m_fd;
12369 m_fd = -1;
12370 return fd;
12371 }
12372
12373 /* Return the owned file descriptor. */
12374 int get () const noexcept
12375 {
12376 return m_fd;
12377 }
12378
12379 private:
12380 /* The remote target. */
12381 remote_target *m_remote;
12382
12383 /* The owned remote I/O file descriptor. */
12384 int m_fd;
12385 };
12386
12387 void
12388 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12389 {
12390 remote_target *remote = get_current_remote_target ();
12391
12392 if (remote == nullptr)
12393 error (_("command can only be used with remote target"));
12394
12395 remote->remote_file_put (local_file, remote_file, from_tty);
12396 }
12397
12398 void
12399 remote_target::remote_file_put (const char *local_file, const char *remote_file,
12400 int from_tty)
12401 {
12402 int retcode, remote_errno, bytes, io_size;
12403 int bytes_in_buffer;
12404 int saw_eof;
12405 ULONGEST offset;
12406
12407 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12408 if (file == NULL)
12409 perror_with_name (local_file);
12410
12411 scoped_remote_fd fd
12412 (this, remote_hostio_open (NULL,
12413 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12414 | FILEIO_O_TRUNC),
12415 0700, 0, &remote_errno));
12416 if (fd.get () == -1)
12417 remote_hostio_error (remote_errno);
12418
12419 /* Send up to this many bytes at once. They won't all fit in the
12420 remote packet limit, so we'll transfer slightly fewer. */
12421 io_size = get_remote_packet_size ();
12422 gdb::byte_vector buffer (io_size);
12423
12424 bytes_in_buffer = 0;
12425 saw_eof = 0;
12426 offset = 0;
12427 while (bytes_in_buffer || !saw_eof)
12428 {
12429 if (!saw_eof)
12430 {
12431 bytes = fread (buffer.data () + bytes_in_buffer, 1,
12432 io_size - bytes_in_buffer,
12433 file.get ());
12434 if (bytes == 0)
12435 {
12436 if (ferror (file.get ()))
12437 error (_("Error reading %s."), local_file);
12438 else
12439 {
12440 /* EOF. Unless there is something still in the
12441 buffer from the last iteration, we are done. */
12442 saw_eof = 1;
12443 if (bytes_in_buffer == 0)
12444 break;
12445 }
12446 }
12447 }
12448 else
12449 bytes = 0;
12450
12451 bytes += bytes_in_buffer;
12452 bytes_in_buffer = 0;
12453
12454 retcode = remote_hostio_pwrite (fd.get (), buffer.data (), bytes,
12455 offset, &remote_errno);
12456
12457 if (retcode < 0)
12458 remote_hostio_error (remote_errno);
12459 else if (retcode == 0)
12460 error (_("Remote write of %d bytes returned 0!"), bytes);
12461 else if (retcode < bytes)
12462 {
12463 /* Short write. Save the rest of the read data for the next
12464 write. */
12465 bytes_in_buffer = bytes - retcode;
12466 memmove (buffer.data (), buffer.data () + retcode, bytes_in_buffer);
12467 }
12468
12469 offset += retcode;
12470 }
12471
12472 if (remote_hostio_close (fd.release (), &remote_errno))
12473 remote_hostio_error (remote_errno);
12474
12475 if (from_tty)
12476 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12477 }
12478
12479 void
12480 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12481 {
12482 remote_target *remote = get_current_remote_target ();
12483
12484 if (remote == nullptr)
12485 error (_("command can only be used with remote target"));
12486
12487 remote->remote_file_get (remote_file, local_file, from_tty);
12488 }
12489
12490 void
12491 remote_target::remote_file_get (const char *remote_file, const char *local_file,
12492 int from_tty)
12493 {
12494 int remote_errno, bytes, io_size;
12495 ULONGEST offset;
12496
12497 scoped_remote_fd fd
12498 (this, remote_hostio_open (NULL,
12499 remote_file, FILEIO_O_RDONLY, 0, 0,
12500 &remote_errno));
12501 if (fd.get () == -1)
12502 remote_hostio_error (remote_errno);
12503
12504 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12505 if (file == NULL)
12506 perror_with_name (local_file);
12507
12508 /* Send up to this many bytes at once. They won't all fit in the
12509 remote packet limit, so we'll transfer slightly fewer. */
12510 io_size = get_remote_packet_size ();
12511 gdb::byte_vector buffer (io_size);
12512
12513 offset = 0;
12514 while (1)
12515 {
12516 bytes = remote_hostio_pread (fd.get (), buffer.data (), io_size, offset,
12517 &remote_errno);
12518 if (bytes == 0)
12519 /* Success, but no bytes, means end-of-file. */
12520 break;
12521 if (bytes == -1)
12522 remote_hostio_error (remote_errno);
12523
12524 offset += bytes;
12525
12526 bytes = fwrite (buffer.data (), 1, bytes, file.get ());
12527 if (bytes == 0)
12528 perror_with_name (local_file);
12529 }
12530
12531 if (remote_hostio_close (fd.release (), &remote_errno))
12532 remote_hostio_error (remote_errno);
12533
12534 if (from_tty)
12535 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12536 }
12537
12538 void
12539 remote_file_delete (const char *remote_file, int from_tty)
12540 {
12541 remote_target *remote = get_current_remote_target ();
12542
12543 if (remote == nullptr)
12544 error (_("command can only be used with remote target"));
12545
12546 remote->remote_file_delete (remote_file, from_tty);
12547 }
12548
12549 void
12550 remote_target::remote_file_delete (const char *remote_file, int from_tty)
12551 {
12552 int retcode, remote_errno;
12553
12554 retcode = remote_hostio_unlink (NULL, remote_file, &remote_errno);
12555 if (retcode == -1)
12556 remote_hostio_error (remote_errno);
12557
12558 if (from_tty)
12559 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12560 }
12561
12562 static void
12563 remote_put_command (const char *args, int from_tty)
12564 {
12565 if (args == NULL)
12566 error_no_arg (_("file to put"));
12567
12568 gdb_argv argv (args);
12569 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12570 error (_("Invalid parameters to remote put"));
12571
12572 remote_file_put (argv[0], argv[1], from_tty);
12573 }
12574
12575 static void
12576 remote_get_command (const char *args, int from_tty)
12577 {
12578 if (args == NULL)
12579 error_no_arg (_("file to get"));
12580
12581 gdb_argv argv (args);
12582 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12583 error (_("Invalid parameters to remote get"));
12584
12585 remote_file_get (argv[0], argv[1], from_tty);
12586 }
12587
12588 static void
12589 remote_delete_command (const char *args, int from_tty)
12590 {
12591 if (args == NULL)
12592 error_no_arg (_("file to delete"));
12593
12594 gdb_argv argv (args);
12595 if (argv[0] == NULL || argv[1] != NULL)
12596 error (_("Invalid parameters to remote delete"));
12597
12598 remote_file_delete (argv[0], from_tty);
12599 }
12600
12601 static void
12602 remote_command (const char *args, int from_tty)
12603 {
12604 help_list (remote_cmdlist, "remote ", all_commands, gdb_stdout);
12605 }
12606
12607 bool
12608 remote_target::can_execute_reverse ()
12609 {
12610 if (packet_support (PACKET_bs) == PACKET_ENABLE
12611 || packet_support (PACKET_bc) == PACKET_ENABLE)
12612 return true;
12613 else
12614 return false;
12615 }
12616
12617 bool
12618 remote_target::supports_non_stop ()
12619 {
12620 return true;
12621 }
12622
12623 bool
12624 remote_target::supports_disable_randomization ()
12625 {
12626 /* Only supported in extended mode. */
12627 return false;
12628 }
12629
12630 bool
12631 remote_target::supports_multi_process ()
12632 {
12633 struct remote_state *rs = get_remote_state ();
12634
12635 return remote_multi_process_p (rs);
12636 }
12637
12638 static int
12639 remote_supports_cond_tracepoints ()
12640 {
12641 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12642 }
12643
12644 bool
12645 remote_target::supports_evaluation_of_breakpoint_conditions ()
12646 {
12647 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12648 }
12649
12650 static int
12651 remote_supports_fast_tracepoints ()
12652 {
12653 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12654 }
12655
12656 static int
12657 remote_supports_static_tracepoints ()
12658 {
12659 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12660 }
12661
12662 static int
12663 remote_supports_install_in_trace ()
12664 {
12665 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12666 }
12667
12668 bool
12669 remote_target::supports_enable_disable_tracepoint ()
12670 {
12671 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12672 == PACKET_ENABLE);
12673 }
12674
12675 bool
12676 remote_target::supports_string_tracing ()
12677 {
12678 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12679 }
12680
12681 bool
12682 remote_target::can_run_breakpoint_commands ()
12683 {
12684 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12685 }
12686
12687 void
12688 remote_target::trace_init ()
12689 {
12690 struct remote_state *rs = get_remote_state ();
12691
12692 putpkt ("QTinit");
12693 remote_get_noisy_reply ();
12694 if (strcmp (rs->buf.data (), "OK") != 0)
12695 error (_("Target does not support this command."));
12696 }
12697
12698 /* Recursive routine to walk through command list including loops, and
12699 download packets for each command. */
12700
12701 void
12702 remote_target::remote_download_command_source (int num, ULONGEST addr,
12703 struct command_line *cmds)
12704 {
12705 struct remote_state *rs = get_remote_state ();
12706 struct command_line *cmd;
12707
12708 for (cmd = cmds; cmd; cmd = cmd->next)
12709 {
12710 QUIT; /* Allow user to bail out with ^C. */
12711 strcpy (rs->buf.data (), "QTDPsrc:");
12712 encode_source_string (num, addr, "cmd", cmd->line,
12713 rs->buf.data () + strlen (rs->buf.data ()),
12714 rs->buf.size () - strlen (rs->buf.data ()));
12715 putpkt (rs->buf);
12716 remote_get_noisy_reply ();
12717 if (strcmp (rs->buf.data (), "OK"))
12718 warning (_("Target does not support source download."));
12719
12720 if (cmd->control_type == while_control
12721 || cmd->control_type == while_stepping_control)
12722 {
12723 remote_download_command_source (num, addr, cmd->body_list_0.get ());
12724
12725 QUIT; /* Allow user to bail out with ^C. */
12726 strcpy (rs->buf.data (), "QTDPsrc:");
12727 encode_source_string (num, addr, "cmd", "end",
12728 rs->buf.data () + strlen (rs->buf.data ()),
12729 rs->buf.size () - strlen (rs->buf.data ()));
12730 putpkt (rs->buf);
12731 remote_get_noisy_reply ();
12732 if (strcmp (rs->buf.data (), "OK"))
12733 warning (_("Target does not support source download."));
12734 }
12735 }
12736 }
12737
12738 void
12739 remote_target::download_tracepoint (struct bp_location *loc)
12740 {
12741 CORE_ADDR tpaddr;
12742 char addrbuf[40];
12743 std::vector<std::string> tdp_actions;
12744 std::vector<std::string> stepping_actions;
12745 char *pkt;
12746 struct breakpoint *b = loc->owner;
12747 struct tracepoint *t = (struct tracepoint *) b;
12748 struct remote_state *rs = get_remote_state ();
12749 int ret;
12750 const char *err_msg = _("Tracepoint packet too large for target.");
12751 size_t size_left;
12752
12753 /* We use a buffer other than rs->buf because we'll build strings
12754 across multiple statements, and other statements in between could
12755 modify rs->buf. */
12756 gdb::char_vector buf (get_remote_packet_size ());
12757
12758 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12759
12760 tpaddr = loc->address;
12761 sprintf_vma (addrbuf, tpaddr);
12762 ret = snprintf (buf.data (), buf.size (), "QTDP:%x:%s:%c:%lx:%x",
12763 b->number, addrbuf, /* address */
12764 (b->enable_state == bp_enabled ? 'E' : 'D'),
12765 t->step_count, t->pass_count);
12766
12767 if (ret < 0 || ret >= buf.size ())
12768 error ("%s", err_msg);
12769
12770 /* Fast tracepoints are mostly handled by the target, but we can
12771 tell the target how big of an instruction block should be moved
12772 around. */
12773 if (b->type == bp_fast_tracepoint)
12774 {
12775 /* Only test for support at download time; we may not know
12776 target capabilities at definition time. */
12777 if (remote_supports_fast_tracepoints ())
12778 {
12779 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12780 NULL))
12781 {
12782 size_left = buf.size () - strlen (buf.data ());
12783 ret = snprintf (buf.data () + strlen (buf.data ()),
12784 size_left, ":F%x",
12785 gdb_insn_length (loc->gdbarch, tpaddr));
12786
12787 if (ret < 0 || ret >= size_left)
12788 error ("%s", err_msg);
12789 }
12790 else
12791 /* If it passed validation at definition but fails now,
12792 something is very wrong. */
12793 internal_error (__FILE__, __LINE__,
12794 _("Fast tracepoint not "
12795 "valid during download"));
12796 }
12797 else
12798 /* Fast tracepoints are functionally identical to regular
12799 tracepoints, so don't take lack of support as a reason to
12800 give up on the trace run. */
12801 warning (_("Target does not support fast tracepoints, "
12802 "downloading %d as regular tracepoint"), b->number);
12803 }
12804 else if (b->type == bp_static_tracepoint)
12805 {
12806 /* Only test for support at download time; we may not know
12807 target capabilities at definition time. */
12808 if (remote_supports_static_tracepoints ())
12809 {
12810 struct static_tracepoint_marker marker;
12811
12812 if (target_static_tracepoint_marker_at (tpaddr, &marker))
12813 {
12814 size_left = buf.size () - strlen (buf.data ());
12815 ret = snprintf (buf.data () + strlen (buf.data ()),
12816 size_left, ":S");
12817
12818 if (ret < 0 || ret >= size_left)
12819 error ("%s", err_msg);
12820 }
12821 else
12822 error (_("Static tracepoint not valid during download"));
12823 }
12824 else
12825 /* Fast tracepoints are functionally identical to regular
12826 tracepoints, so don't take lack of support as a reason
12827 to give up on the trace run. */
12828 error (_("Target does not support static tracepoints"));
12829 }
12830 /* If the tracepoint has a conditional, make it into an agent
12831 expression and append to the definition. */
12832 if (loc->cond)
12833 {
12834 /* Only test support at download time, we may not know target
12835 capabilities at definition time. */
12836 if (remote_supports_cond_tracepoints ())
12837 {
12838 agent_expr_up aexpr = gen_eval_for_expr (tpaddr,
12839 loc->cond.get ());
12840
12841 size_left = buf.size () - strlen (buf.data ());
12842
12843 ret = snprintf (buf.data () + strlen (buf.data ()),
12844 size_left, ":X%x,", aexpr->len);
12845
12846 if (ret < 0 || ret >= size_left)
12847 error ("%s", err_msg);
12848
12849 size_left = buf.size () - strlen (buf.data ());
12850
12851 /* Two bytes to encode each aexpr byte, plus the terminating
12852 null byte. */
12853 if (aexpr->len * 2 + 1 > size_left)
12854 error ("%s", err_msg);
12855
12856 pkt = buf.data () + strlen (buf.data ());
12857
12858 for (int ndx = 0; ndx < aexpr->len; ++ndx)
12859 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
12860 *pkt = '\0';
12861 }
12862 else
12863 warning (_("Target does not support conditional tracepoints, "
12864 "ignoring tp %d cond"), b->number);
12865 }
12866
12867 if (b->commands || *default_collect)
12868 {
12869 size_left = buf.size () - strlen (buf.data ());
12870
12871 ret = snprintf (buf.data () + strlen (buf.data ()),
12872 size_left, "-");
12873
12874 if (ret < 0 || ret >= size_left)
12875 error ("%s", err_msg);
12876 }
12877
12878 putpkt (buf.data ());
12879 remote_get_noisy_reply ();
12880 if (strcmp (rs->buf.data (), "OK"))
12881 error (_("Target does not support tracepoints."));
12882
12883 /* do_single_steps (t); */
12884 for (auto action_it = tdp_actions.begin ();
12885 action_it != tdp_actions.end (); action_it++)
12886 {
12887 QUIT; /* Allow user to bail out with ^C. */
12888
12889 bool has_more = ((action_it + 1) != tdp_actions.end ()
12890 || !stepping_actions.empty ());
12891
12892 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%c",
12893 b->number, addrbuf, /* address */
12894 action_it->c_str (),
12895 has_more ? '-' : 0);
12896
12897 if (ret < 0 || ret >= buf.size ())
12898 error ("%s", err_msg);
12899
12900 putpkt (buf.data ());
12901 remote_get_noisy_reply ();
12902 if (strcmp (rs->buf.data (), "OK"))
12903 error (_("Error on target while setting tracepoints."));
12904 }
12905
12906 for (auto action_it = stepping_actions.begin ();
12907 action_it != stepping_actions.end (); action_it++)
12908 {
12909 QUIT; /* Allow user to bail out with ^C. */
12910
12911 bool is_first = action_it == stepping_actions.begin ();
12912 bool has_more = (action_it + 1) != stepping_actions.end ();
12913
12914 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%s%s",
12915 b->number, addrbuf, /* address */
12916 is_first ? "S" : "",
12917 action_it->c_str (),
12918 has_more ? "-" : "");
12919
12920 if (ret < 0 || ret >= buf.size ())
12921 error ("%s", err_msg);
12922
12923 putpkt (buf.data ());
12924 remote_get_noisy_reply ();
12925 if (strcmp (rs->buf.data (), "OK"))
12926 error (_("Error on target while setting tracepoints."));
12927 }
12928
12929 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
12930 {
12931 if (b->location != NULL)
12932 {
12933 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
12934
12935 if (ret < 0 || ret >= buf.size ())
12936 error ("%s", err_msg);
12937
12938 encode_source_string (b->number, loc->address, "at",
12939 event_location_to_string (b->location.get ()),
12940 buf.data () + strlen (buf.data ()),
12941 buf.size () - strlen (buf.data ()));
12942 putpkt (buf.data ());
12943 remote_get_noisy_reply ();
12944 if (strcmp (rs->buf.data (), "OK"))
12945 warning (_("Target does not support source download."));
12946 }
12947 if (b->cond_string)
12948 {
12949 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
12950
12951 if (ret < 0 || ret >= buf.size ())
12952 error ("%s", err_msg);
12953
12954 encode_source_string (b->number, loc->address,
12955 "cond", b->cond_string,
12956 buf.data () + strlen (buf.data ()),
12957 buf.size () - strlen (buf.data ()));
12958 putpkt (buf.data ());
12959 remote_get_noisy_reply ();
12960 if (strcmp (rs->buf.data (), "OK"))
12961 warning (_("Target does not support source download."));
12962 }
12963 remote_download_command_source (b->number, loc->address,
12964 breakpoint_commands (b));
12965 }
12966 }
12967
12968 bool
12969 remote_target::can_download_tracepoint ()
12970 {
12971 struct remote_state *rs = get_remote_state ();
12972 struct trace_status *ts;
12973 int status;
12974
12975 /* Don't try to install tracepoints until we've relocated our
12976 symbols, and fetched and merged the target's tracepoint list with
12977 ours. */
12978 if (rs->starting_up)
12979 return false;
12980
12981 ts = current_trace_status ();
12982 status = get_trace_status (ts);
12983
12984 if (status == -1 || !ts->running_known || !ts->running)
12985 return false;
12986
12987 /* If we are in a tracing experiment, but remote stub doesn't support
12988 installing tracepoint in trace, we have to return. */
12989 if (!remote_supports_install_in_trace ())
12990 return false;
12991
12992 return true;
12993 }
12994
12995
12996 void
12997 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
12998 {
12999 struct remote_state *rs = get_remote_state ();
13000 char *p;
13001
13002 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDV:%x:%s:%x:",
13003 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
13004 tsv.builtin);
13005 p = rs->buf.data () + strlen (rs->buf.data ());
13006 if ((p - rs->buf.data ()) + tsv.name.length () * 2
13007 >= get_remote_packet_size ())
13008 error (_("Trace state variable name too long for tsv definition packet"));
13009 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
13010 *p++ = '\0';
13011 putpkt (rs->buf);
13012 remote_get_noisy_reply ();
13013 if (rs->buf[0] == '\0')
13014 error (_("Target does not support this command."));
13015 if (strcmp (rs->buf.data (), "OK") != 0)
13016 error (_("Error on target while downloading trace state variable."));
13017 }
13018
13019 void
13020 remote_target::enable_tracepoint (struct bp_location *location)
13021 {
13022 struct remote_state *rs = get_remote_state ();
13023 char addr_buf[40];
13024
13025 sprintf_vma (addr_buf, location->address);
13026 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTEnable:%x:%s",
13027 location->owner->number, addr_buf);
13028 putpkt (rs->buf);
13029 remote_get_noisy_reply ();
13030 if (rs->buf[0] == '\0')
13031 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
13032 if (strcmp (rs->buf.data (), "OK") != 0)
13033 error (_("Error on target while enabling tracepoint."));
13034 }
13035
13036 void
13037 remote_target::disable_tracepoint (struct bp_location *location)
13038 {
13039 struct remote_state *rs = get_remote_state ();
13040 char addr_buf[40];
13041
13042 sprintf_vma (addr_buf, location->address);
13043 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDisable:%x:%s",
13044 location->owner->number, addr_buf);
13045 putpkt (rs->buf);
13046 remote_get_noisy_reply ();
13047 if (rs->buf[0] == '\0')
13048 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
13049 if (strcmp (rs->buf.data (), "OK") != 0)
13050 error (_("Error on target while disabling tracepoint."));
13051 }
13052
13053 void
13054 remote_target::trace_set_readonly_regions ()
13055 {
13056 asection *s;
13057 bfd *abfd = NULL;
13058 bfd_size_type size;
13059 bfd_vma vma;
13060 int anysecs = 0;
13061 int offset = 0;
13062
13063 if (!exec_bfd)
13064 return; /* No information to give. */
13065
13066 struct remote_state *rs = get_remote_state ();
13067
13068 strcpy (rs->buf.data (), "QTro");
13069 offset = strlen (rs->buf.data ());
13070 for (s = exec_bfd->sections; s; s = s->next)
13071 {
13072 char tmp1[40], tmp2[40];
13073 int sec_length;
13074
13075 if ((s->flags & SEC_LOAD) == 0 ||
13076 /* (s->flags & SEC_CODE) == 0 || */
13077 (s->flags & SEC_READONLY) == 0)
13078 continue;
13079
13080 anysecs = 1;
13081 vma = bfd_get_section_vma (abfd, s);
13082 size = bfd_get_section_size (s);
13083 sprintf_vma (tmp1, vma);
13084 sprintf_vma (tmp2, vma + size);
13085 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
13086 if (offset + sec_length + 1 > rs->buf.size ())
13087 {
13088 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
13089 warning (_("\
13090 Too many sections for read-only sections definition packet."));
13091 break;
13092 }
13093 xsnprintf (rs->buf.data () + offset, rs->buf.size () - offset, ":%s,%s",
13094 tmp1, tmp2);
13095 offset += sec_length;
13096 }
13097 if (anysecs)
13098 {
13099 putpkt (rs->buf);
13100 getpkt (&rs->buf, 0);
13101 }
13102 }
13103
13104 void
13105 remote_target::trace_start ()
13106 {
13107 struct remote_state *rs = get_remote_state ();
13108
13109 putpkt ("QTStart");
13110 remote_get_noisy_reply ();
13111 if (rs->buf[0] == '\0')
13112 error (_("Target does not support this command."));
13113 if (strcmp (rs->buf.data (), "OK") != 0)
13114 error (_("Bogus reply from target: %s"), rs->buf.data ());
13115 }
13116
13117 int
13118 remote_target::get_trace_status (struct trace_status *ts)
13119 {
13120 /* Initialize it just to avoid a GCC false warning. */
13121 char *p = NULL;
13122 /* FIXME we need to get register block size some other way. */
13123 extern int trace_regblock_size;
13124 enum packet_result result;
13125 struct remote_state *rs = get_remote_state ();
13126
13127 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
13128 return -1;
13129
13130 trace_regblock_size
13131 = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
13132
13133 putpkt ("qTStatus");
13134
13135 try
13136 {
13137 p = remote_get_noisy_reply ();
13138 }
13139 catch (const gdb_exception_error &ex)
13140 {
13141 if (ex.error != TARGET_CLOSE_ERROR)
13142 {
13143 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
13144 return -1;
13145 }
13146 throw_exception (ex);
13147 }
13148
13149 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
13150
13151 /* If the remote target doesn't do tracing, flag it. */
13152 if (result == PACKET_UNKNOWN)
13153 return -1;
13154
13155 /* We're working with a live target. */
13156 ts->filename = NULL;
13157
13158 if (*p++ != 'T')
13159 error (_("Bogus trace status reply from target: %s"), rs->buf.data ());
13160
13161 /* Function 'parse_trace_status' sets default value of each field of
13162 'ts' at first, so we don't have to do it here. */
13163 parse_trace_status (p, ts);
13164
13165 return ts->running;
13166 }
13167
13168 void
13169 remote_target::get_tracepoint_status (struct breakpoint *bp,
13170 struct uploaded_tp *utp)
13171 {
13172 struct remote_state *rs = get_remote_state ();
13173 char *reply;
13174 struct bp_location *loc;
13175 struct tracepoint *tp = (struct tracepoint *) bp;
13176 size_t size = get_remote_packet_size ();
13177
13178 if (tp)
13179 {
13180 tp->hit_count = 0;
13181 tp->traceframe_usage = 0;
13182 for (loc = tp->loc; loc; loc = loc->next)
13183 {
13184 /* If the tracepoint was never downloaded, don't go asking for
13185 any status. */
13186 if (tp->number_on_target == 0)
13187 continue;
13188 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", tp->number_on_target,
13189 phex_nz (loc->address, 0));
13190 putpkt (rs->buf);
13191 reply = remote_get_noisy_reply ();
13192 if (reply && *reply)
13193 {
13194 if (*reply == 'V')
13195 parse_tracepoint_status (reply + 1, bp, utp);
13196 }
13197 }
13198 }
13199 else if (utp)
13200 {
13201 utp->hit_count = 0;
13202 utp->traceframe_usage = 0;
13203 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", utp->number,
13204 phex_nz (utp->addr, 0));
13205 putpkt (rs->buf);
13206 reply = remote_get_noisy_reply ();
13207 if (reply && *reply)
13208 {
13209 if (*reply == 'V')
13210 parse_tracepoint_status (reply + 1, bp, utp);
13211 }
13212 }
13213 }
13214
13215 void
13216 remote_target::trace_stop ()
13217 {
13218 struct remote_state *rs = get_remote_state ();
13219
13220 putpkt ("QTStop");
13221 remote_get_noisy_reply ();
13222 if (rs->buf[0] == '\0')
13223 error (_("Target does not support this command."));
13224 if (strcmp (rs->buf.data (), "OK") != 0)
13225 error (_("Bogus reply from target: %s"), rs->buf.data ());
13226 }
13227
13228 int
13229 remote_target::trace_find (enum trace_find_type type, int num,
13230 CORE_ADDR addr1, CORE_ADDR addr2,
13231 int *tpp)
13232 {
13233 struct remote_state *rs = get_remote_state ();
13234 char *endbuf = rs->buf.data () + get_remote_packet_size ();
13235 char *p, *reply;
13236 int target_frameno = -1, target_tracept = -1;
13237
13238 /* Lookups other than by absolute frame number depend on the current
13239 trace selected, so make sure it is correct on the remote end
13240 first. */
13241 if (type != tfind_number)
13242 set_remote_traceframe ();
13243
13244 p = rs->buf.data ();
13245 strcpy (p, "QTFrame:");
13246 p = strchr (p, '\0');
13247 switch (type)
13248 {
13249 case tfind_number:
13250 xsnprintf (p, endbuf - p, "%x", num);
13251 break;
13252 case tfind_pc:
13253 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13254 break;
13255 case tfind_tp:
13256 xsnprintf (p, endbuf - p, "tdp:%x", num);
13257 break;
13258 case tfind_range:
13259 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13260 phex_nz (addr2, 0));
13261 break;
13262 case tfind_outside:
13263 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13264 phex_nz (addr2, 0));
13265 break;
13266 default:
13267 error (_("Unknown trace find type %d"), type);
13268 }
13269
13270 putpkt (rs->buf);
13271 reply = remote_get_noisy_reply ();
13272 if (*reply == '\0')
13273 error (_("Target does not support this command."));
13274
13275 while (reply && *reply)
13276 switch (*reply)
13277 {
13278 case 'F':
13279 p = ++reply;
13280 target_frameno = (int) strtol (p, &reply, 16);
13281 if (reply == p)
13282 error (_("Unable to parse trace frame number"));
13283 /* Don't update our remote traceframe number cache on failure
13284 to select a remote traceframe. */
13285 if (target_frameno == -1)
13286 return -1;
13287 break;
13288 case 'T':
13289 p = ++reply;
13290 target_tracept = (int) strtol (p, &reply, 16);
13291 if (reply == p)
13292 error (_("Unable to parse tracepoint number"));
13293 break;
13294 case 'O': /* "OK"? */
13295 if (reply[1] == 'K' && reply[2] == '\0')
13296 reply += 2;
13297 else
13298 error (_("Bogus reply from target: %s"), reply);
13299 break;
13300 default:
13301 error (_("Bogus reply from target: %s"), reply);
13302 }
13303 if (tpp)
13304 *tpp = target_tracept;
13305
13306 rs->remote_traceframe_number = target_frameno;
13307 return target_frameno;
13308 }
13309
13310 bool
13311 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13312 {
13313 struct remote_state *rs = get_remote_state ();
13314 char *reply;
13315 ULONGEST uval;
13316
13317 set_remote_traceframe ();
13318
13319 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTV:%x", tsvnum);
13320 putpkt (rs->buf);
13321 reply = remote_get_noisy_reply ();
13322 if (reply && *reply)
13323 {
13324 if (*reply == 'V')
13325 {
13326 unpack_varlen_hex (reply + 1, &uval);
13327 *val = (LONGEST) uval;
13328 return true;
13329 }
13330 }
13331 return false;
13332 }
13333
13334 int
13335 remote_target::save_trace_data (const char *filename)
13336 {
13337 struct remote_state *rs = get_remote_state ();
13338 char *p, *reply;
13339
13340 p = rs->buf.data ();
13341 strcpy (p, "QTSave:");
13342 p += strlen (p);
13343 if ((p - rs->buf.data ()) + strlen (filename) * 2
13344 >= get_remote_packet_size ())
13345 error (_("Remote file name too long for trace save packet"));
13346 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13347 *p++ = '\0';
13348 putpkt (rs->buf);
13349 reply = remote_get_noisy_reply ();
13350 if (*reply == '\0')
13351 error (_("Target does not support this command."));
13352 if (strcmp (reply, "OK") != 0)
13353 error (_("Bogus reply from target: %s"), reply);
13354 return 0;
13355 }
13356
13357 /* This is basically a memory transfer, but needs to be its own packet
13358 because we don't know how the target actually organizes its trace
13359 memory, plus we want to be able to ask for as much as possible, but
13360 not be unhappy if we don't get as much as we ask for. */
13361
13362 LONGEST
13363 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13364 {
13365 struct remote_state *rs = get_remote_state ();
13366 char *reply;
13367 char *p;
13368 int rslt;
13369
13370 p = rs->buf.data ();
13371 strcpy (p, "qTBuffer:");
13372 p += strlen (p);
13373 p += hexnumstr (p, offset);
13374 *p++ = ',';
13375 p += hexnumstr (p, len);
13376 *p++ = '\0';
13377
13378 putpkt (rs->buf);
13379 reply = remote_get_noisy_reply ();
13380 if (reply && *reply)
13381 {
13382 /* 'l' by itself means we're at the end of the buffer and
13383 there is nothing more to get. */
13384 if (*reply == 'l')
13385 return 0;
13386
13387 /* Convert the reply into binary. Limit the number of bytes to
13388 convert according to our passed-in buffer size, rather than
13389 what was returned in the packet; if the target is
13390 unexpectedly generous and gives us a bigger reply than we
13391 asked for, we don't want to crash. */
13392 rslt = hex2bin (reply, buf, len);
13393 return rslt;
13394 }
13395
13396 /* Something went wrong, flag as an error. */
13397 return -1;
13398 }
13399
13400 void
13401 remote_target::set_disconnected_tracing (int val)
13402 {
13403 struct remote_state *rs = get_remote_state ();
13404
13405 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13406 {
13407 char *reply;
13408
13409 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13410 "QTDisconnected:%x", val);
13411 putpkt (rs->buf);
13412 reply = remote_get_noisy_reply ();
13413 if (*reply == '\0')
13414 error (_("Target does not support this command."));
13415 if (strcmp (reply, "OK") != 0)
13416 error (_("Bogus reply from target: %s"), reply);
13417 }
13418 else if (val)
13419 warning (_("Target does not support disconnected tracing."));
13420 }
13421
13422 int
13423 remote_target::core_of_thread (ptid_t ptid)
13424 {
13425 struct thread_info *info = find_thread_ptid (ptid);
13426
13427 if (info != NULL && info->priv != NULL)
13428 return get_remote_thread_info (info)->core;
13429
13430 return -1;
13431 }
13432
13433 void
13434 remote_target::set_circular_trace_buffer (int val)
13435 {
13436 struct remote_state *rs = get_remote_state ();
13437 char *reply;
13438
13439 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13440 "QTBuffer:circular:%x", val);
13441 putpkt (rs->buf);
13442 reply = remote_get_noisy_reply ();
13443 if (*reply == '\0')
13444 error (_("Target does not support this command."));
13445 if (strcmp (reply, "OK") != 0)
13446 error (_("Bogus reply from target: %s"), reply);
13447 }
13448
13449 traceframe_info_up
13450 remote_target::traceframe_info ()
13451 {
13452 gdb::optional<gdb::char_vector> text
13453 = target_read_stralloc (current_top_target (), TARGET_OBJECT_TRACEFRAME_INFO,
13454 NULL);
13455 if (text)
13456 return parse_traceframe_info (text->data ());
13457
13458 return NULL;
13459 }
13460
13461 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13462 instruction on which a fast tracepoint may be placed. Returns -1
13463 if the packet is not supported, and 0 if the minimum instruction
13464 length is unknown. */
13465
13466 int
13467 remote_target::get_min_fast_tracepoint_insn_len ()
13468 {
13469 struct remote_state *rs = get_remote_state ();
13470 char *reply;
13471
13472 /* If we're not debugging a process yet, the IPA can't be
13473 loaded. */
13474 if (!target_has_execution)
13475 return 0;
13476
13477 /* Make sure the remote is pointing at the right process. */
13478 set_general_process ();
13479
13480 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTMinFTPILen");
13481 putpkt (rs->buf);
13482 reply = remote_get_noisy_reply ();
13483 if (*reply == '\0')
13484 return -1;
13485 else
13486 {
13487 ULONGEST min_insn_len;
13488
13489 unpack_varlen_hex (reply, &min_insn_len);
13490
13491 return (int) min_insn_len;
13492 }
13493 }
13494
13495 void
13496 remote_target::set_trace_buffer_size (LONGEST val)
13497 {
13498 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13499 {
13500 struct remote_state *rs = get_remote_state ();
13501 char *buf = rs->buf.data ();
13502 char *endbuf = buf + get_remote_packet_size ();
13503 enum packet_result result;
13504
13505 gdb_assert (val >= 0 || val == -1);
13506 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13507 /* Send -1 as literal "-1" to avoid host size dependency. */
13508 if (val < 0)
13509 {
13510 *buf++ = '-';
13511 buf += hexnumstr (buf, (ULONGEST) -val);
13512 }
13513 else
13514 buf += hexnumstr (buf, (ULONGEST) val);
13515
13516 putpkt (rs->buf);
13517 remote_get_noisy_reply ();
13518 result = packet_ok (rs->buf,
13519 &remote_protocol_packets[PACKET_QTBuffer_size]);
13520
13521 if (result != PACKET_OK)
13522 warning (_("Bogus reply from target: %s"), rs->buf.data ());
13523 }
13524 }
13525
13526 bool
13527 remote_target::set_trace_notes (const char *user, const char *notes,
13528 const char *stop_notes)
13529 {
13530 struct remote_state *rs = get_remote_state ();
13531 char *reply;
13532 char *buf = rs->buf.data ();
13533 char *endbuf = buf + get_remote_packet_size ();
13534 int nbytes;
13535
13536 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13537 if (user)
13538 {
13539 buf += xsnprintf (buf, endbuf - buf, "user:");
13540 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13541 buf += 2 * nbytes;
13542 *buf++ = ';';
13543 }
13544 if (notes)
13545 {
13546 buf += xsnprintf (buf, endbuf - buf, "notes:");
13547 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13548 buf += 2 * nbytes;
13549 *buf++ = ';';
13550 }
13551 if (stop_notes)
13552 {
13553 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13554 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13555 buf += 2 * nbytes;
13556 *buf++ = ';';
13557 }
13558 /* Ensure the buffer is terminated. */
13559 *buf = '\0';
13560
13561 putpkt (rs->buf);
13562 reply = remote_get_noisy_reply ();
13563 if (*reply == '\0')
13564 return false;
13565
13566 if (strcmp (reply, "OK") != 0)
13567 error (_("Bogus reply from target: %s"), reply);
13568
13569 return true;
13570 }
13571
13572 bool
13573 remote_target::use_agent (bool use)
13574 {
13575 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13576 {
13577 struct remote_state *rs = get_remote_state ();
13578
13579 /* If the stub supports QAgent. */
13580 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAgent:%d", use);
13581 putpkt (rs->buf);
13582 getpkt (&rs->buf, 0);
13583
13584 if (strcmp (rs->buf.data (), "OK") == 0)
13585 {
13586 ::use_agent = use;
13587 return true;
13588 }
13589 }
13590
13591 return false;
13592 }
13593
13594 bool
13595 remote_target::can_use_agent ()
13596 {
13597 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13598 }
13599
13600 struct btrace_target_info
13601 {
13602 /* The ptid of the traced thread. */
13603 ptid_t ptid;
13604
13605 /* The obtained branch trace configuration. */
13606 struct btrace_config conf;
13607 };
13608
13609 /* Reset our idea of our target's btrace configuration. */
13610
13611 static void
13612 remote_btrace_reset (remote_state *rs)
13613 {
13614 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13615 }
13616
13617 /* Synchronize the configuration with the target. */
13618
13619 void
13620 remote_target::btrace_sync_conf (const btrace_config *conf)
13621 {
13622 struct packet_config *packet;
13623 struct remote_state *rs;
13624 char *buf, *pos, *endbuf;
13625
13626 rs = get_remote_state ();
13627 buf = rs->buf.data ();
13628 endbuf = buf + get_remote_packet_size ();
13629
13630 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13631 if (packet_config_support (packet) == PACKET_ENABLE
13632 && conf->bts.size != rs->btrace_config.bts.size)
13633 {
13634 pos = buf;
13635 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13636 conf->bts.size);
13637
13638 putpkt (buf);
13639 getpkt (&rs->buf, 0);
13640
13641 if (packet_ok (buf, packet) == PACKET_ERROR)
13642 {
13643 if (buf[0] == 'E' && buf[1] == '.')
13644 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13645 else
13646 error (_("Failed to configure the BTS buffer size."));
13647 }
13648
13649 rs->btrace_config.bts.size = conf->bts.size;
13650 }
13651
13652 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13653 if (packet_config_support (packet) == PACKET_ENABLE
13654 && conf->pt.size != rs->btrace_config.pt.size)
13655 {
13656 pos = buf;
13657 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13658 conf->pt.size);
13659
13660 putpkt (buf);
13661 getpkt (&rs->buf, 0);
13662
13663 if (packet_ok (buf, packet) == PACKET_ERROR)
13664 {
13665 if (buf[0] == 'E' && buf[1] == '.')
13666 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13667 else
13668 error (_("Failed to configure the trace buffer size."));
13669 }
13670
13671 rs->btrace_config.pt.size = conf->pt.size;
13672 }
13673 }
13674
13675 /* Read the current thread's btrace configuration from the target and
13676 store it into CONF. */
13677
13678 static void
13679 btrace_read_config (struct btrace_config *conf)
13680 {
13681 gdb::optional<gdb::char_vector> xml
13682 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE_CONF, "");
13683 if (xml)
13684 parse_xml_btrace_conf (conf, xml->data ());
13685 }
13686
13687 /* Maybe reopen target btrace. */
13688
13689 void
13690 remote_target::remote_btrace_maybe_reopen ()
13691 {
13692 struct remote_state *rs = get_remote_state ();
13693 int btrace_target_pushed = 0;
13694 #if !defined (HAVE_LIBIPT)
13695 int warned = 0;
13696 #endif
13697
13698 scoped_restore_current_thread restore_thread;
13699
13700 for (thread_info *tp : all_non_exited_threads ())
13701 {
13702 set_general_thread (tp->ptid);
13703
13704 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13705 btrace_read_config (&rs->btrace_config);
13706
13707 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13708 continue;
13709
13710 #if !defined (HAVE_LIBIPT)
13711 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13712 {
13713 if (!warned)
13714 {
13715 warned = 1;
13716 warning (_("Target is recording using Intel Processor Trace "
13717 "but support was disabled at compile time."));
13718 }
13719
13720 continue;
13721 }
13722 #endif /* !defined (HAVE_LIBIPT) */
13723
13724 /* Push target, once, but before anything else happens. This way our
13725 changes to the threads will be cleaned up by unpushing the target
13726 in case btrace_read_config () throws. */
13727 if (!btrace_target_pushed)
13728 {
13729 btrace_target_pushed = 1;
13730 record_btrace_push_target ();
13731 printf_filtered (_("Target is recording using %s.\n"),
13732 btrace_format_string (rs->btrace_config.format));
13733 }
13734
13735 tp->btrace.target = XCNEW (struct btrace_target_info);
13736 tp->btrace.target->ptid = tp->ptid;
13737 tp->btrace.target->conf = rs->btrace_config;
13738 }
13739 }
13740
13741 /* Enable branch tracing. */
13742
13743 struct btrace_target_info *
13744 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
13745 {
13746 struct btrace_target_info *tinfo = NULL;
13747 struct packet_config *packet = NULL;
13748 struct remote_state *rs = get_remote_state ();
13749 char *buf = rs->buf.data ();
13750 char *endbuf = buf + get_remote_packet_size ();
13751
13752 switch (conf->format)
13753 {
13754 case BTRACE_FORMAT_BTS:
13755 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13756 break;
13757
13758 case BTRACE_FORMAT_PT:
13759 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13760 break;
13761 }
13762
13763 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13764 error (_("Target does not support branch tracing."));
13765
13766 btrace_sync_conf (conf);
13767
13768 set_general_thread (ptid);
13769
13770 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13771 putpkt (rs->buf);
13772 getpkt (&rs->buf, 0);
13773
13774 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13775 {
13776 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13777 error (_("Could not enable branch tracing for %s: %s"),
13778 target_pid_to_str (ptid).c_str (), &rs->buf[2]);
13779 else
13780 error (_("Could not enable branch tracing for %s."),
13781 target_pid_to_str (ptid).c_str ());
13782 }
13783
13784 tinfo = XCNEW (struct btrace_target_info);
13785 tinfo->ptid = ptid;
13786
13787 /* If we fail to read the configuration, we lose some information, but the
13788 tracing itself is not impacted. */
13789 try
13790 {
13791 btrace_read_config (&tinfo->conf);
13792 }
13793 catch (const gdb_exception_error &err)
13794 {
13795 if (err.message != NULL)
13796 warning ("%s", err.what ());
13797 }
13798
13799 return tinfo;
13800 }
13801
13802 /* Disable branch tracing. */
13803
13804 void
13805 remote_target::disable_btrace (struct btrace_target_info *tinfo)
13806 {
13807 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13808 struct remote_state *rs = get_remote_state ();
13809 char *buf = rs->buf.data ();
13810 char *endbuf = buf + get_remote_packet_size ();
13811
13812 if (packet_config_support (packet) != PACKET_ENABLE)
13813 error (_("Target does not support branch tracing."));
13814
13815 set_general_thread (tinfo->ptid);
13816
13817 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13818 putpkt (rs->buf);
13819 getpkt (&rs->buf, 0);
13820
13821 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13822 {
13823 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13824 error (_("Could not disable branch tracing for %s: %s"),
13825 target_pid_to_str (tinfo->ptid).c_str (), &rs->buf[2]);
13826 else
13827 error (_("Could not disable branch tracing for %s."),
13828 target_pid_to_str (tinfo->ptid).c_str ());
13829 }
13830
13831 xfree (tinfo);
13832 }
13833
13834 /* Teardown branch tracing. */
13835
13836 void
13837 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
13838 {
13839 /* We must not talk to the target during teardown. */
13840 xfree (tinfo);
13841 }
13842
13843 /* Read the branch trace. */
13844
13845 enum btrace_error
13846 remote_target::read_btrace (struct btrace_data *btrace,
13847 struct btrace_target_info *tinfo,
13848 enum btrace_read_type type)
13849 {
13850 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13851 const char *annex;
13852
13853 if (packet_config_support (packet) != PACKET_ENABLE)
13854 error (_("Target does not support branch tracing."));
13855
13856 #if !defined(HAVE_LIBEXPAT)
13857 error (_("Cannot process branch tracing result. XML parsing not supported."));
13858 #endif
13859
13860 switch (type)
13861 {
13862 case BTRACE_READ_ALL:
13863 annex = "all";
13864 break;
13865 case BTRACE_READ_NEW:
13866 annex = "new";
13867 break;
13868 case BTRACE_READ_DELTA:
13869 annex = "delta";
13870 break;
13871 default:
13872 internal_error (__FILE__, __LINE__,
13873 _("Bad branch tracing read type: %u."),
13874 (unsigned int) type);
13875 }
13876
13877 gdb::optional<gdb::char_vector> xml
13878 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE, annex);
13879 if (!xml)
13880 return BTRACE_ERR_UNKNOWN;
13881
13882 parse_xml_btrace (btrace, xml->data ());
13883
13884 return BTRACE_ERR_NONE;
13885 }
13886
13887 const struct btrace_config *
13888 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
13889 {
13890 return &tinfo->conf;
13891 }
13892
13893 bool
13894 remote_target::augmented_libraries_svr4_read ()
13895 {
13896 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
13897 == PACKET_ENABLE);
13898 }
13899
13900 /* Implementation of to_load. */
13901
13902 void
13903 remote_target::load (const char *name, int from_tty)
13904 {
13905 generic_load (name, from_tty);
13906 }
13907
13908 /* Accepts an integer PID; returns a string representing a file that
13909 can be opened on the remote side to get the symbols for the child
13910 process. Returns NULL if the operation is not supported. */
13911
13912 char *
13913 remote_target::pid_to_exec_file (int pid)
13914 {
13915 static gdb::optional<gdb::char_vector> filename;
13916 struct inferior *inf;
13917 char *annex = NULL;
13918
13919 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
13920 return NULL;
13921
13922 inf = find_inferior_pid (pid);
13923 if (inf == NULL)
13924 internal_error (__FILE__, __LINE__,
13925 _("not currently attached to process %d"), pid);
13926
13927 if (!inf->fake_pid_p)
13928 {
13929 const int annex_size = 9;
13930
13931 annex = (char *) alloca (annex_size);
13932 xsnprintf (annex, annex_size, "%x", pid);
13933 }
13934
13935 filename = target_read_stralloc (current_top_target (),
13936 TARGET_OBJECT_EXEC_FILE, annex);
13937
13938 return filename ? filename->data () : nullptr;
13939 }
13940
13941 /* Implement the to_can_do_single_step target_ops method. */
13942
13943 int
13944 remote_target::can_do_single_step ()
13945 {
13946 /* We can only tell whether target supports single step or not by
13947 supported s and S vCont actions if the stub supports vContSupported
13948 feature. If the stub doesn't support vContSupported feature,
13949 we have conservatively to think target doesn't supports single
13950 step. */
13951 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
13952 {
13953 struct remote_state *rs = get_remote_state ();
13954
13955 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13956 remote_vcont_probe ();
13957
13958 return rs->supports_vCont.s && rs->supports_vCont.S;
13959 }
13960 else
13961 return 0;
13962 }
13963
13964 /* Implementation of the to_execution_direction method for the remote
13965 target. */
13966
13967 enum exec_direction_kind
13968 remote_target::execution_direction ()
13969 {
13970 struct remote_state *rs = get_remote_state ();
13971
13972 return rs->last_resume_exec_dir;
13973 }
13974
13975 /* Return pointer to the thread_info struct which corresponds to
13976 THREAD_HANDLE (having length HANDLE_LEN). */
13977
13978 thread_info *
13979 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
13980 int handle_len,
13981 inferior *inf)
13982 {
13983 for (thread_info *tp : all_non_exited_threads ())
13984 {
13985 remote_thread_info *priv = get_remote_thread_info (tp);
13986
13987 if (tp->inf == inf && priv != NULL)
13988 {
13989 if (handle_len != priv->thread_handle.size ())
13990 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
13991 handle_len, priv->thread_handle.size ());
13992 if (memcmp (thread_handle, priv->thread_handle.data (),
13993 handle_len) == 0)
13994 return tp;
13995 }
13996 }
13997
13998 return NULL;
13999 }
14000
14001 bool
14002 remote_target::can_async_p ()
14003 {
14004 struct remote_state *rs = get_remote_state ();
14005
14006 /* We don't go async if the user has explicitly prevented it with the
14007 "maint set target-async" command. */
14008 if (!target_async_permitted)
14009 return false;
14010
14011 /* We're async whenever the serial device is. */
14012 return serial_can_async_p (rs->remote_desc);
14013 }
14014
14015 bool
14016 remote_target::is_async_p ()
14017 {
14018 struct remote_state *rs = get_remote_state ();
14019
14020 if (!target_async_permitted)
14021 /* We only enable async when the user specifically asks for it. */
14022 return false;
14023
14024 /* We're async whenever the serial device is. */
14025 return serial_is_async_p (rs->remote_desc);
14026 }
14027
14028 /* Pass the SERIAL event on and up to the client. One day this code
14029 will be able to delay notifying the client of an event until the
14030 point where an entire packet has been received. */
14031
14032 static serial_event_ftype remote_async_serial_handler;
14033
14034 static void
14035 remote_async_serial_handler (struct serial *scb, void *context)
14036 {
14037 /* Don't propogate error information up to the client. Instead let
14038 the client find out about the error by querying the target. */
14039 inferior_event_handler (INF_REG_EVENT, NULL);
14040 }
14041
14042 static void
14043 remote_async_inferior_event_handler (gdb_client_data data)
14044 {
14045 inferior_event_handler (INF_REG_EVENT, data);
14046 }
14047
14048 void
14049 remote_target::async (int enable)
14050 {
14051 struct remote_state *rs = get_remote_state ();
14052
14053 if (enable)
14054 {
14055 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
14056
14057 /* If there are pending events in the stop reply queue tell the
14058 event loop to process them. */
14059 if (!rs->stop_reply_queue.empty ())
14060 mark_async_event_handler (rs->remote_async_inferior_event_token);
14061 /* For simplicity, below we clear the pending events token
14062 without remembering whether it is marked, so here we always
14063 mark it. If there's actually no pending notification to
14064 process, this ends up being a no-op (other than a spurious
14065 event-loop wakeup). */
14066 if (target_is_non_stop_p ())
14067 mark_async_event_handler (rs->notif_state->get_pending_events_token);
14068 }
14069 else
14070 {
14071 serial_async (rs->remote_desc, NULL, NULL);
14072 /* If the core is disabling async, it doesn't want to be
14073 disturbed with target events. Clear all async event sources
14074 too. */
14075 clear_async_event_handler (rs->remote_async_inferior_event_token);
14076 if (target_is_non_stop_p ())
14077 clear_async_event_handler (rs->notif_state->get_pending_events_token);
14078 }
14079 }
14080
14081 /* Implementation of the to_thread_events method. */
14082
14083 void
14084 remote_target::thread_events (int enable)
14085 {
14086 struct remote_state *rs = get_remote_state ();
14087 size_t size = get_remote_packet_size ();
14088
14089 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
14090 return;
14091
14092 xsnprintf (rs->buf.data (), size, "QThreadEvents:%x", enable ? 1 : 0);
14093 putpkt (rs->buf);
14094 getpkt (&rs->buf, 0);
14095
14096 switch (packet_ok (rs->buf,
14097 &remote_protocol_packets[PACKET_QThreadEvents]))
14098 {
14099 case PACKET_OK:
14100 if (strcmp (rs->buf.data (), "OK") != 0)
14101 error (_("Remote refused setting thread events: %s"), rs->buf.data ());
14102 break;
14103 case PACKET_ERROR:
14104 warning (_("Remote failure reply: %s"), rs->buf.data ());
14105 break;
14106 case PACKET_UNKNOWN:
14107 break;
14108 }
14109 }
14110
14111 static void
14112 set_remote_cmd (const char *args, int from_tty)
14113 {
14114 help_list (remote_set_cmdlist, "set remote ", all_commands, gdb_stdout);
14115 }
14116
14117 static void
14118 show_remote_cmd (const char *args, int from_tty)
14119 {
14120 /* We can't just use cmd_show_list here, because we want to skip
14121 the redundant "show remote Z-packet" and the legacy aliases. */
14122 struct cmd_list_element *list = remote_show_cmdlist;
14123 struct ui_out *uiout = current_uiout;
14124
14125 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
14126 for (; list != NULL; list = list->next)
14127 if (strcmp (list->name, "Z-packet") == 0)
14128 continue;
14129 else if (list->type == not_set_cmd)
14130 /* Alias commands are exactly like the original, except they
14131 don't have the normal type. */
14132 continue;
14133 else
14134 {
14135 ui_out_emit_tuple option_emitter (uiout, "option");
14136
14137 uiout->field_string ("name", list->name);
14138 uiout->text (": ");
14139 if (list->type == show_cmd)
14140 do_show_command (NULL, from_tty, list);
14141 else
14142 cmd_func (list, NULL, from_tty);
14143 }
14144 }
14145
14146
14147 /* Function to be called whenever a new objfile (shlib) is detected. */
14148 static void
14149 remote_new_objfile (struct objfile *objfile)
14150 {
14151 remote_target *remote = get_current_remote_target ();
14152
14153 if (remote != NULL) /* Have a remote connection. */
14154 remote->remote_check_symbols ();
14155 }
14156
14157 /* Pull all the tracepoints defined on the target and create local
14158 data structures representing them. We don't want to create real
14159 tracepoints yet, we don't want to mess up the user's existing
14160 collection. */
14161
14162 int
14163 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
14164 {
14165 struct remote_state *rs = get_remote_state ();
14166 char *p;
14167
14168 /* Ask for a first packet of tracepoint definition. */
14169 putpkt ("qTfP");
14170 getpkt (&rs->buf, 0);
14171 p = rs->buf.data ();
14172 while (*p && *p != 'l')
14173 {
14174 parse_tracepoint_definition (p, utpp);
14175 /* Ask for another packet of tracepoint definition. */
14176 putpkt ("qTsP");
14177 getpkt (&rs->buf, 0);
14178 p = rs->buf.data ();
14179 }
14180 return 0;
14181 }
14182
14183 int
14184 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
14185 {
14186 struct remote_state *rs = get_remote_state ();
14187 char *p;
14188
14189 /* Ask for a first packet of variable definition. */
14190 putpkt ("qTfV");
14191 getpkt (&rs->buf, 0);
14192 p = rs->buf.data ();
14193 while (*p && *p != 'l')
14194 {
14195 parse_tsv_definition (p, utsvp);
14196 /* Ask for another packet of variable definition. */
14197 putpkt ("qTsV");
14198 getpkt (&rs->buf, 0);
14199 p = rs->buf.data ();
14200 }
14201 return 0;
14202 }
14203
14204 /* The "set/show range-stepping" show hook. */
14205
14206 static void
14207 show_range_stepping (struct ui_file *file, int from_tty,
14208 struct cmd_list_element *c,
14209 const char *value)
14210 {
14211 fprintf_filtered (file,
14212 _("Debugger's willingness to use range stepping "
14213 "is %s.\n"), value);
14214 }
14215
14216 /* Return true if the vCont;r action is supported by the remote
14217 stub. */
14218
14219 bool
14220 remote_target::vcont_r_supported ()
14221 {
14222 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14223 remote_vcont_probe ();
14224
14225 return (packet_support (PACKET_vCont) == PACKET_ENABLE
14226 && get_remote_state ()->supports_vCont.r);
14227 }
14228
14229 /* The "set/show range-stepping" set hook. */
14230
14231 static void
14232 set_range_stepping (const char *ignore_args, int from_tty,
14233 struct cmd_list_element *c)
14234 {
14235 /* When enabling, check whether range stepping is actually supported
14236 by the target, and warn if not. */
14237 if (use_range_stepping)
14238 {
14239 remote_target *remote = get_current_remote_target ();
14240 if (remote == NULL
14241 || !remote->vcont_r_supported ())
14242 warning (_("Range stepping is not supported by the current target"));
14243 }
14244 }
14245
14246 void
14247 _initialize_remote (void)
14248 {
14249 struct cmd_list_element *cmd;
14250 const char *cmd_name;
14251
14252 /* architecture specific data */
14253 remote_g_packet_data_handle =
14254 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14255
14256 remote_pspace_data
14257 = register_program_space_data_with_cleanup (NULL,
14258 remote_pspace_data_cleanup);
14259
14260 add_target (remote_target_info, remote_target::open);
14261 add_target (extended_remote_target_info, extended_remote_target::open);
14262
14263 /* Hook into new objfile notification. */
14264 gdb::observers::new_objfile.attach (remote_new_objfile);
14265
14266 #if 0
14267 init_remote_threadtests ();
14268 #endif
14269
14270 /* set/show remote ... */
14271
14272 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
14273 Remote protocol specific variables\n\
14274 Configure various remote-protocol specific variables such as\n\
14275 the packets being used"),
14276 &remote_set_cmdlist, "set remote ",
14277 0 /* allow-unknown */, &setlist);
14278 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14279 Remote protocol specific variables\n\
14280 Configure various remote-protocol specific variables such as\n\
14281 the packets being used"),
14282 &remote_show_cmdlist, "show remote ",
14283 0 /* allow-unknown */, &showlist);
14284
14285 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14286 Compare section data on target to the exec file.\n\
14287 Argument is a single section name (default: all loaded sections).\n\
14288 To compare only read-only loaded sections, specify the -r option."),
14289 &cmdlist);
14290
14291 add_cmd ("packet", class_maintenance, packet_command, _("\
14292 Send an arbitrary packet to a remote target.\n\
14293 maintenance packet TEXT\n\
14294 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14295 this command sends the string TEXT to the inferior, and displays the\n\
14296 response packet. GDB supplies the initial `$' character, and the\n\
14297 terminating `#' character and checksum."),
14298 &maintenancelist);
14299
14300 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14301 Set whether to send break if interrupted."), _("\
14302 Show whether to send break if interrupted."), _("\
14303 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14304 set_remotebreak, show_remotebreak,
14305 &setlist, &showlist);
14306 cmd_name = "remotebreak";
14307 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
14308 deprecate_cmd (cmd, "set remote interrupt-sequence");
14309 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14310 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
14311 deprecate_cmd (cmd, "show remote interrupt-sequence");
14312
14313 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14314 interrupt_sequence_modes, &interrupt_sequence_mode,
14315 _("\
14316 Set interrupt sequence to remote target."), _("\
14317 Show interrupt sequence to remote target."), _("\
14318 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14319 NULL, show_interrupt_sequence,
14320 &remote_set_cmdlist,
14321 &remote_show_cmdlist);
14322
14323 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14324 &interrupt_on_connect, _("\
14325 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14326 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14327 If set, interrupt sequence is sent to remote target."),
14328 NULL, NULL,
14329 &remote_set_cmdlist, &remote_show_cmdlist);
14330
14331 /* Install commands for configuring memory read/write packets. */
14332
14333 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14334 Set the maximum number of bytes per memory write packet (deprecated)."),
14335 &setlist);
14336 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14337 Show the maximum number of bytes per memory write packet (deprecated)."),
14338 &showlist);
14339 add_cmd ("memory-write-packet-size", no_class,
14340 set_memory_write_packet_size, _("\
14341 Set the maximum number of bytes per memory-write packet.\n\
14342 Specify the number of bytes in a packet or 0 (zero) for the\n\
14343 default packet size. The actual limit is further reduced\n\
14344 dependent on the target. Specify ``fixed'' to disable the\n\
14345 further restriction and ``limit'' to enable that restriction."),
14346 &remote_set_cmdlist);
14347 add_cmd ("memory-read-packet-size", no_class,
14348 set_memory_read_packet_size, _("\
14349 Set the maximum number of bytes per memory-read packet.\n\
14350 Specify the number of bytes in a packet or 0 (zero) for the\n\
14351 default packet size. The actual limit is further reduced\n\
14352 dependent on the target. Specify ``fixed'' to disable the\n\
14353 further restriction and ``limit'' to enable that restriction."),
14354 &remote_set_cmdlist);
14355 add_cmd ("memory-write-packet-size", no_class,
14356 show_memory_write_packet_size,
14357 _("Show the maximum number of bytes per memory-write packet."),
14358 &remote_show_cmdlist);
14359 add_cmd ("memory-read-packet-size", no_class,
14360 show_memory_read_packet_size,
14361 _("Show the maximum number of bytes per memory-read packet."),
14362 &remote_show_cmdlist);
14363
14364 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-limit", no_class,
14365 &remote_hw_watchpoint_limit, _("\
14366 Set the maximum number of target hardware watchpoints."), _("\
14367 Show the maximum number of target hardware watchpoints."), _("\
14368 Specify \"unlimited\" for unlimited hardware watchpoints."),
14369 NULL, show_hardware_watchpoint_limit,
14370 &remote_set_cmdlist,
14371 &remote_show_cmdlist);
14372 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-length-limit",
14373 no_class,
14374 &remote_hw_watchpoint_length_limit, _("\
14375 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14376 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14377 Specify \"unlimited\" to allow watchpoints of unlimited size."),
14378 NULL, show_hardware_watchpoint_length_limit,
14379 &remote_set_cmdlist, &remote_show_cmdlist);
14380 add_setshow_zuinteger_unlimited_cmd ("hardware-breakpoint-limit", no_class,
14381 &remote_hw_breakpoint_limit, _("\
14382 Set the maximum number of target hardware breakpoints."), _("\
14383 Show the maximum number of target hardware breakpoints."), _("\
14384 Specify \"unlimited\" for unlimited hardware breakpoints."),
14385 NULL, show_hardware_breakpoint_limit,
14386 &remote_set_cmdlist, &remote_show_cmdlist);
14387
14388 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14389 &remote_address_size, _("\
14390 Set the maximum size of the address (in bits) in a memory packet."), _("\
14391 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14392 NULL,
14393 NULL, /* FIXME: i18n: */
14394 &setlist, &showlist);
14395
14396 init_all_packet_configs ();
14397
14398 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14399 "X", "binary-download", 1);
14400
14401 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14402 "vCont", "verbose-resume", 0);
14403
14404 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14405 "QPassSignals", "pass-signals", 0);
14406
14407 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14408 "QCatchSyscalls", "catch-syscalls", 0);
14409
14410 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14411 "QProgramSignals", "program-signals", 0);
14412
14413 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14414 "QSetWorkingDir", "set-working-dir", 0);
14415
14416 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14417 "QStartupWithShell", "startup-with-shell", 0);
14418
14419 add_packet_config_cmd (&remote_protocol_packets
14420 [PACKET_QEnvironmentHexEncoded],
14421 "QEnvironmentHexEncoded", "environment-hex-encoded",
14422 0);
14423
14424 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14425 "QEnvironmentReset", "environment-reset",
14426 0);
14427
14428 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14429 "QEnvironmentUnset", "environment-unset",
14430 0);
14431
14432 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14433 "qSymbol", "symbol-lookup", 0);
14434
14435 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14436 "P", "set-register", 1);
14437
14438 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14439 "p", "fetch-register", 1);
14440
14441 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14442 "Z0", "software-breakpoint", 0);
14443
14444 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14445 "Z1", "hardware-breakpoint", 0);
14446
14447 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14448 "Z2", "write-watchpoint", 0);
14449
14450 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14451 "Z3", "read-watchpoint", 0);
14452
14453 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14454 "Z4", "access-watchpoint", 0);
14455
14456 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14457 "qXfer:auxv:read", "read-aux-vector", 0);
14458
14459 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14460 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14461
14462 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14463 "qXfer:features:read", "target-features", 0);
14464
14465 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14466 "qXfer:libraries:read", "library-info", 0);
14467
14468 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14469 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14470
14471 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14472 "qXfer:memory-map:read", "memory-map", 0);
14473
14474 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
14475 "qXfer:spu:read", "read-spu-object", 0);
14476
14477 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
14478 "qXfer:spu:write", "write-spu-object", 0);
14479
14480 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14481 "qXfer:osdata:read", "osdata", 0);
14482
14483 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14484 "qXfer:threads:read", "threads", 0);
14485
14486 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14487 "qXfer:siginfo:read", "read-siginfo-object", 0);
14488
14489 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14490 "qXfer:siginfo:write", "write-siginfo-object", 0);
14491
14492 add_packet_config_cmd
14493 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14494 "qXfer:traceframe-info:read", "traceframe-info", 0);
14495
14496 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14497 "qXfer:uib:read", "unwind-info-block", 0);
14498
14499 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14500 "qGetTLSAddr", "get-thread-local-storage-address",
14501 0);
14502
14503 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14504 "qGetTIBAddr", "get-thread-information-block-address",
14505 0);
14506
14507 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14508 "bc", "reverse-continue", 0);
14509
14510 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14511 "bs", "reverse-step", 0);
14512
14513 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14514 "qSupported", "supported-packets", 0);
14515
14516 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14517 "qSearch:memory", "search-memory", 0);
14518
14519 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14520 "qTStatus", "trace-status", 0);
14521
14522 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14523 "vFile:setfs", "hostio-setfs", 0);
14524
14525 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14526 "vFile:open", "hostio-open", 0);
14527
14528 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14529 "vFile:pread", "hostio-pread", 0);
14530
14531 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14532 "vFile:pwrite", "hostio-pwrite", 0);
14533
14534 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14535 "vFile:close", "hostio-close", 0);
14536
14537 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14538 "vFile:unlink", "hostio-unlink", 0);
14539
14540 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14541 "vFile:readlink", "hostio-readlink", 0);
14542
14543 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14544 "vFile:fstat", "hostio-fstat", 0);
14545
14546 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14547 "vAttach", "attach", 0);
14548
14549 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14550 "vRun", "run", 0);
14551
14552 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14553 "QStartNoAckMode", "noack", 0);
14554
14555 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14556 "vKill", "kill", 0);
14557
14558 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14559 "qAttached", "query-attached", 0);
14560
14561 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14562 "ConditionalTracepoints",
14563 "conditional-tracepoints", 0);
14564
14565 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14566 "ConditionalBreakpoints",
14567 "conditional-breakpoints", 0);
14568
14569 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14570 "BreakpointCommands",
14571 "breakpoint-commands", 0);
14572
14573 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14574 "FastTracepoints", "fast-tracepoints", 0);
14575
14576 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14577 "TracepointSource", "TracepointSource", 0);
14578
14579 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14580 "QAllow", "allow", 0);
14581
14582 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14583 "StaticTracepoints", "static-tracepoints", 0);
14584
14585 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14586 "InstallInTrace", "install-in-trace", 0);
14587
14588 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14589 "qXfer:statictrace:read", "read-sdata-object", 0);
14590
14591 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14592 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14593
14594 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14595 "QDisableRandomization", "disable-randomization", 0);
14596
14597 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14598 "QAgent", "agent", 0);
14599
14600 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14601 "QTBuffer:size", "trace-buffer-size", 0);
14602
14603 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14604 "Qbtrace:off", "disable-btrace", 0);
14605
14606 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14607 "Qbtrace:bts", "enable-btrace-bts", 0);
14608
14609 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14610 "Qbtrace:pt", "enable-btrace-pt", 0);
14611
14612 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14613 "qXfer:btrace", "read-btrace", 0);
14614
14615 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14616 "qXfer:btrace-conf", "read-btrace-conf", 0);
14617
14618 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14619 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14620
14621 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14622 "multiprocess-feature", "multiprocess-feature", 0);
14623
14624 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14625 "swbreak-feature", "swbreak-feature", 0);
14626
14627 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14628 "hwbreak-feature", "hwbreak-feature", 0);
14629
14630 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14631 "fork-event-feature", "fork-event-feature", 0);
14632
14633 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14634 "vfork-event-feature", "vfork-event-feature", 0);
14635
14636 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14637 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14638
14639 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14640 "vContSupported", "verbose-resume-supported", 0);
14641
14642 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14643 "exec-event-feature", "exec-event-feature", 0);
14644
14645 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14646 "vCtrlC", "ctrl-c", 0);
14647
14648 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14649 "QThreadEvents", "thread-events", 0);
14650
14651 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14652 "N stop reply", "no-resumed-stop-reply", 0);
14653
14654 /* Assert that we've registered "set remote foo-packet" commands
14655 for all packet configs. */
14656 {
14657 int i;
14658
14659 for (i = 0; i < PACKET_MAX; i++)
14660 {
14661 /* Ideally all configs would have a command associated. Some
14662 still don't though. */
14663 int excepted;
14664
14665 switch (i)
14666 {
14667 case PACKET_QNonStop:
14668 case PACKET_EnableDisableTracepoints_feature:
14669 case PACKET_tracenz_feature:
14670 case PACKET_DisconnectedTracing_feature:
14671 case PACKET_augmented_libraries_svr4_read_feature:
14672 case PACKET_qCRC:
14673 /* Additions to this list need to be well justified:
14674 pre-existing packets are OK; new packets are not. */
14675 excepted = 1;
14676 break;
14677 default:
14678 excepted = 0;
14679 break;
14680 }
14681
14682 /* This catches both forgetting to add a config command, and
14683 forgetting to remove a packet from the exception list. */
14684 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14685 }
14686 }
14687
14688 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14689 Z sub-packet has its own set and show commands, but users may
14690 have sets to this variable in their .gdbinit files (or in their
14691 documentation). */
14692 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14693 &remote_Z_packet_detect, _("\
14694 Set use of remote protocol `Z' packets"), _("\
14695 Show use of remote protocol `Z' packets "), _("\
14696 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14697 packets."),
14698 set_remote_protocol_Z_packet_cmd,
14699 show_remote_protocol_Z_packet_cmd,
14700 /* FIXME: i18n: Use of remote protocol
14701 `Z' packets is %s. */
14702 &remote_set_cmdlist, &remote_show_cmdlist);
14703
14704 add_prefix_cmd ("remote", class_files, remote_command, _("\
14705 Manipulate files on the remote system\n\
14706 Transfer files to and from the remote target system."),
14707 &remote_cmdlist, "remote ",
14708 0 /* allow-unknown */, &cmdlist);
14709
14710 add_cmd ("put", class_files, remote_put_command,
14711 _("Copy a local file to the remote system."),
14712 &remote_cmdlist);
14713
14714 add_cmd ("get", class_files, remote_get_command,
14715 _("Copy a remote file to the local system."),
14716 &remote_cmdlist);
14717
14718 add_cmd ("delete", class_files, remote_delete_command,
14719 _("Delete a remote file."),
14720 &remote_cmdlist);
14721
14722 add_setshow_string_noescape_cmd ("exec-file", class_files,
14723 &remote_exec_file_var, _("\
14724 Set the remote pathname for \"run\""), _("\
14725 Show the remote pathname for \"run\""), NULL,
14726 set_remote_exec_file,
14727 show_remote_exec_file,
14728 &remote_set_cmdlist,
14729 &remote_show_cmdlist);
14730
14731 add_setshow_boolean_cmd ("range-stepping", class_run,
14732 &use_range_stepping, _("\
14733 Enable or disable range stepping."), _("\
14734 Show whether target-assisted range stepping is enabled."), _("\
14735 If on, and the target supports it, when stepping a source line, GDB\n\
14736 tells the target to step the corresponding range of addresses itself instead\n\
14737 of issuing multiple single-steps. This speeds up source level\n\
14738 stepping. If off, GDB always issues single-steps, even if range\n\
14739 stepping is supported by the target. The default is on."),
14740 set_range_stepping,
14741 show_range_stepping,
14742 &setlist,
14743 &showlist);
14744
14745 /* Eventually initialize fileio. See fileio.c */
14746 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
14747 }
This page took 0.306108 seconds and 5 git commands to generate.