Simple -Wshadow=local fixes
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2018 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 /*#include "terminal.h" */
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "filestuff.h"
46 #include "rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdb_sys_time.h"
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "common/scoped_restore.h"
76 #include "environ.h"
77 #include "common/byte-vector.h"
78 #include <unordered_map>
79
80 /* The remote target. */
81
82 static const char remote_doc[] = N_("\
83 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
84 Specify the serial device it is connected to\n\
85 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
86
87 #define OPAQUETHREADBYTES 8
88
89 /* a 64 bit opaque identifier */
90 typedef unsigned char threadref[OPAQUETHREADBYTES];
91
92 struct gdb_ext_thread_info;
93 struct threads_listing_context;
94 typedef int (*rmt_thread_action) (threadref *ref, void *context);
95 struct protocol_feature;
96 struct packet_reg;
97
98 struct stop_reply;
99 static void stop_reply_xfree (struct stop_reply *);
100
101 struct stop_reply_deleter
102 {
103 void operator() (stop_reply *r) const
104 {
105 stop_reply_xfree (r);
106 }
107 };
108
109 typedef std::unique_ptr<stop_reply, stop_reply_deleter> stop_reply_up;
110
111 /* Generic configuration support for packets the stub optionally
112 supports. Allows the user to specify the use of the packet as well
113 as allowing GDB to auto-detect support in the remote stub. */
114
115 enum packet_support
116 {
117 PACKET_SUPPORT_UNKNOWN = 0,
118 PACKET_ENABLE,
119 PACKET_DISABLE
120 };
121
122 /* Analyze a packet's return value and update the packet config
123 accordingly. */
124
125 enum packet_result
126 {
127 PACKET_ERROR,
128 PACKET_OK,
129 PACKET_UNKNOWN
130 };
131
132 struct threads_listing_context;
133
134 /* Stub vCont actions support.
135
136 Each field is a boolean flag indicating whether the stub reports
137 support for the corresponding action. */
138
139 struct vCont_action_support
140 {
141 /* vCont;t */
142 bool t = false;
143
144 /* vCont;r */
145 bool r = false;
146
147 /* vCont;s */
148 bool s = false;
149
150 /* vCont;S */
151 bool S = false;
152 };
153
154 /* About this many threadisds fit in a packet. */
155
156 #define MAXTHREADLISTRESULTS 32
157
158 /* Data for the vFile:pread readahead cache. */
159
160 struct readahead_cache
161 {
162 /* Invalidate the readahead cache. */
163 void invalidate ();
164
165 /* Invalidate the readahead cache if it is holding data for FD. */
166 void invalidate_fd (int fd);
167
168 /* Serve pread from the readahead cache. Returns number of bytes
169 read, or 0 if the request can't be served from the cache. */
170 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
171
172 /* The file descriptor for the file that is being cached. -1 if the
173 cache is invalid. */
174 int fd = -1;
175
176 /* The offset into the file that the cache buffer corresponds
177 to. */
178 ULONGEST offset = 0;
179
180 /* The buffer holding the cache contents. */
181 gdb_byte *buf = nullptr;
182 /* The buffer's size. We try to read as much as fits into a packet
183 at a time. */
184 size_t bufsize = 0;
185
186 /* Cache hit and miss counters. */
187 ULONGEST hit_count = 0;
188 ULONGEST miss_count = 0;
189 };
190
191 /* Description of the remote protocol for a given architecture. */
192
193 struct packet_reg
194 {
195 long offset; /* Offset into G packet. */
196 long regnum; /* GDB's internal register number. */
197 LONGEST pnum; /* Remote protocol register number. */
198 int in_g_packet; /* Always part of G packet. */
199 /* long size in bytes; == register_size (target_gdbarch (), regnum);
200 at present. */
201 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
202 at present. */
203 };
204
205 struct remote_arch_state
206 {
207 explicit remote_arch_state (struct gdbarch *gdbarch);
208
209 /* Description of the remote protocol registers. */
210 long sizeof_g_packet;
211
212 /* Description of the remote protocol registers indexed by REGNUM
213 (making an array gdbarch_num_regs in size). */
214 std::unique_ptr<packet_reg[]> regs;
215
216 /* This is the size (in chars) of the first response to the ``g''
217 packet. It is used as a heuristic when determining the maximum
218 size of memory-read and memory-write packets. A target will
219 typically only reserve a buffer large enough to hold the ``g''
220 packet. The size does not include packet overhead (headers and
221 trailers). */
222 long actual_register_packet_size;
223
224 /* This is the maximum size (in chars) of a non read/write packet.
225 It is also used as a cap on the size of read/write packets. */
226 long remote_packet_size;
227 };
228
229 /* Description of the remote protocol state for the currently
230 connected target. This is per-target state, and independent of the
231 selected architecture. */
232
233 class remote_state
234 {
235 public:
236
237 remote_state ();
238 ~remote_state ();
239
240 /* Get the remote arch state for GDBARCH. */
241 struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
242
243 public: /* data */
244
245 /* A buffer to use for incoming packets, and its current size. The
246 buffer is grown dynamically for larger incoming packets.
247 Outgoing packets may also be constructed in this buffer.
248 BUF_SIZE is always at least REMOTE_PACKET_SIZE;
249 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
250 packets. */
251 char *buf;
252 long buf_size;
253
254 /* True if we're going through initial connection setup (finding out
255 about the remote side's threads, relocating symbols, etc.). */
256 bool starting_up = false;
257
258 /* If we negotiated packet size explicitly (and thus can bypass
259 heuristics for the largest packet size that will not overflow
260 a buffer in the stub), this will be set to that packet size.
261 Otherwise zero, meaning to use the guessed size. */
262 long explicit_packet_size = 0;
263
264 /* remote_wait is normally called when the target is running and
265 waits for a stop reply packet. But sometimes we need to call it
266 when the target is already stopped. We can send a "?" packet
267 and have remote_wait read the response. Or, if we already have
268 the response, we can stash it in BUF and tell remote_wait to
269 skip calling getpkt. This flag is set when BUF contains a
270 stop reply packet and the target is not waiting. */
271 int cached_wait_status = 0;
272
273 /* True, if in no ack mode. That is, neither GDB nor the stub will
274 expect acks from each other. The connection is assumed to be
275 reliable. */
276 bool noack_mode = false;
277
278 /* True if we're connected in extended remote mode. */
279 bool extended = false;
280
281 /* True if we resumed the target and we're waiting for the target to
282 stop. In the mean time, we can't start another command/query.
283 The remote server wouldn't be ready to process it, so we'd
284 timeout waiting for a reply that would never come and eventually
285 we'd close the connection. This can happen in asynchronous mode
286 because we allow GDB commands while the target is running. */
287 bool waiting_for_stop_reply = false;
288
289 /* The status of the stub support for the various vCont actions. */
290 vCont_action_support supports_vCont;
291
292 /* True if the user has pressed Ctrl-C, but the target hasn't
293 responded to that. */
294 bool ctrlc_pending_p = false;
295
296 /* True if we saw a Ctrl-C while reading or writing from/to the
297 remote descriptor. At that point it is not safe to send a remote
298 interrupt packet, so we instead remember we saw the Ctrl-C and
299 process it once we're done with sending/receiving the current
300 packet, which should be shortly. If however that takes too long,
301 and the user presses Ctrl-C again, we offer to disconnect. */
302 bool got_ctrlc_during_io = false;
303
304 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
305 remote_open knows that we don't have a file open when the program
306 starts. */
307 struct serial *remote_desc = nullptr;
308
309 /* These are the threads which we last sent to the remote system. The
310 TID member will be -1 for all or -2 for not sent yet. */
311 ptid_t general_thread = null_ptid;
312 ptid_t continue_thread = null_ptid;
313
314 /* This is the traceframe which we last selected on the remote system.
315 It will be -1 if no traceframe is selected. */
316 int remote_traceframe_number = -1;
317
318 char *last_pass_packet = nullptr;
319
320 /* The last QProgramSignals packet sent to the target. We bypass
321 sending a new program signals list down to the target if the new
322 packet is exactly the same as the last we sent. IOW, we only let
323 the target know about program signals list changes. */
324 char *last_program_signals_packet = nullptr;
325
326 gdb_signal last_sent_signal = GDB_SIGNAL_0;
327
328 bool last_sent_step = false;
329
330 /* The execution direction of the last resume we got. */
331 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
332
333 char *finished_object = nullptr;
334 char *finished_annex = nullptr;
335 ULONGEST finished_offset = 0;
336
337 /* Should we try the 'ThreadInfo' query packet?
338
339 This variable (NOT available to the user: auto-detect only!)
340 determines whether GDB will use the new, simpler "ThreadInfo"
341 query or the older, more complex syntax for thread queries.
342 This is an auto-detect variable (set to true at each connect,
343 and set to false when the target fails to recognize it). */
344 bool use_threadinfo_query = false;
345 bool use_threadextra_query = false;
346
347 threadref echo_nextthread {};
348 threadref nextthread {};
349 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
350
351 /* The state of remote notification. */
352 struct remote_notif_state *notif_state = nullptr;
353
354 /* The branch trace configuration. */
355 struct btrace_config btrace_config {};
356
357 /* The argument to the last "vFile:setfs:" packet we sent, used
358 to avoid sending repeated unnecessary "vFile:setfs:" packets.
359 Initialized to -1 to indicate that no "vFile:setfs:" packet
360 has yet been sent. */
361 int fs_pid = -1;
362
363 /* A readahead cache for vFile:pread. Often, reading a binary
364 involves a sequence of small reads. E.g., when parsing an ELF
365 file. A readahead cache helps mostly the case of remote
366 debugging on a connection with higher latency, due to the
367 request/reply nature of the RSP. We only cache data for a single
368 file descriptor at a time. */
369 struct readahead_cache readahead_cache;
370
371 /* The list of already fetched and acknowledged stop events. This
372 queue is used for notification Stop, and other notifications
373 don't need queue for their events, because the notification
374 events of Stop can't be consumed immediately, so that events
375 should be queued first, and be consumed by remote_wait_{ns,as}
376 one per time. Other notifications can consume their events
377 immediately, so queue is not needed for them. */
378 std::vector<stop_reply_up> stop_reply_queue;
379
380 /* Asynchronous signal handle registered as event loop source for
381 when we have pending events ready to be passed to the core. */
382 struct async_event_handler *remote_async_inferior_event_token = nullptr;
383
384 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
385 ``forever'' still use the normal timeout mechanism. This is
386 currently used by the ASYNC code to guarentee that target reads
387 during the initial connect always time-out. Once getpkt has been
388 modified to return a timeout indication and, in turn
389 remote_wait()/wait_for_inferior() have gained a timeout parameter
390 this can go away. */
391 int wait_forever_enabled_p = 1;
392
393 private:
394 /* Mapping of remote protocol data for each gdbarch. Usually there
395 is only one entry here, though we may see more with stubs that
396 support multi-process. */
397 std::unordered_map<struct gdbarch *, remote_arch_state>
398 m_arch_states;
399 };
400
401 static const target_info remote_target_info = {
402 "remote",
403 N_("Remote serial target in gdb-specific protocol"),
404 remote_doc
405 };
406
407 class remote_target : public target_ops
408 {
409 public:
410 remote_target ()
411 {
412 to_stratum = process_stratum;
413 }
414 ~remote_target () override;
415
416 const target_info &info () const override
417 { return remote_target_info; }
418
419 thread_control_capabilities get_thread_control_capabilities () override
420 { return tc_schedlock; }
421
422 /* Open a remote connection. */
423 static void open (const char *, int);
424
425 void close () override;
426
427 void detach (inferior *, int) override;
428 void disconnect (const char *, int) override;
429
430 void commit_resume () override;
431 void resume (ptid_t, int, enum gdb_signal) override;
432 ptid_t wait (ptid_t, struct target_waitstatus *, int) override;
433
434 void fetch_registers (struct regcache *, int) override;
435 void store_registers (struct regcache *, int) override;
436 void prepare_to_store (struct regcache *) override;
437
438 void files_info () override;
439
440 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
441
442 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
443 enum remove_bp_reason) override;
444
445
446 bool stopped_by_sw_breakpoint () override;
447 bool supports_stopped_by_sw_breakpoint () override;
448
449 bool stopped_by_hw_breakpoint () override;
450
451 bool supports_stopped_by_hw_breakpoint () override;
452
453 bool stopped_by_watchpoint () override;
454
455 bool stopped_data_address (CORE_ADDR *) override;
456
457 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
458
459 int can_use_hw_breakpoint (enum bptype, int, int) override;
460
461 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
462
463 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
464
465 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
466
467 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
468 struct expression *) override;
469
470 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
471 struct expression *) override;
472
473 void kill () override;
474
475 void load (const char *, int) override;
476
477 void mourn_inferior () override;
478
479 void pass_signals (int, unsigned char *) override;
480
481 int set_syscall_catchpoint (int, bool, int,
482 gdb::array_view<const int>) override;
483
484 void program_signals (int, unsigned char *) override;
485
486 bool thread_alive (ptid_t ptid) override;
487
488 const char *thread_name (struct thread_info *) override;
489
490 void update_thread_list () override;
491
492 const char *pid_to_str (ptid_t) override;
493
494 const char *extra_thread_info (struct thread_info *) override;
495
496 ptid_t get_ada_task_ptid (long lwp, long thread) override;
497
498 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
499 int handle_len,
500 inferior *inf) override;
501
502 void stop (ptid_t) override;
503
504 void interrupt () override;
505
506 void pass_ctrlc () override;
507
508 enum target_xfer_status xfer_partial (enum target_object object,
509 const char *annex,
510 gdb_byte *readbuf,
511 const gdb_byte *writebuf,
512 ULONGEST offset, ULONGEST len,
513 ULONGEST *xfered_len) override;
514
515 ULONGEST get_memory_xfer_limit () override;
516
517 void rcmd (const char *command, struct ui_file *output) override;
518
519 char *pid_to_exec_file (int pid) override;
520
521 void log_command (const char *cmd) override
522 {
523 serial_log_command (this, cmd);
524 }
525
526 CORE_ADDR get_thread_local_address (ptid_t ptid,
527 CORE_ADDR load_module_addr,
528 CORE_ADDR offset) override;
529
530 bool has_all_memory () override { return default_child_has_all_memory (); }
531 bool has_memory () override { return default_child_has_memory (); }
532 bool has_stack () override { return default_child_has_stack (); }
533 bool has_registers () override { return default_child_has_registers (); }
534 bool has_execution (ptid_t ptid) override { return default_child_has_execution (ptid); }
535
536 bool can_execute_reverse () override;
537
538 std::vector<mem_region> memory_map () override;
539
540 void flash_erase (ULONGEST address, LONGEST length) override;
541
542 void flash_done () override;
543
544 const struct target_desc *read_description () override;
545
546 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
547 const gdb_byte *pattern, ULONGEST pattern_len,
548 CORE_ADDR *found_addrp) override;
549
550 bool can_async_p () override;
551
552 bool is_async_p () override;
553
554 void async (int) override;
555
556 void thread_events (int) override;
557
558 int can_do_single_step () override;
559
560 void terminal_inferior () override;
561
562 void terminal_ours () override;
563
564 bool supports_non_stop () override;
565
566 bool supports_multi_process () override;
567
568 bool supports_disable_randomization () override;
569
570 bool filesystem_is_local () override;
571
572
573 int fileio_open (struct inferior *inf, const char *filename,
574 int flags, int mode, int warn_if_slow,
575 int *target_errno) override;
576
577 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
578 ULONGEST offset, int *target_errno) override;
579
580 int fileio_pread (int fd, gdb_byte *read_buf, int len,
581 ULONGEST offset, int *target_errno) override;
582
583 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
584
585 int fileio_close (int fd, int *target_errno) override;
586
587 int fileio_unlink (struct inferior *inf,
588 const char *filename,
589 int *target_errno) override;
590
591 gdb::optional<std::string>
592 fileio_readlink (struct inferior *inf,
593 const char *filename,
594 int *target_errno) override;
595
596 bool supports_enable_disable_tracepoint () override;
597
598 bool supports_string_tracing () override;
599
600 bool supports_evaluation_of_breakpoint_conditions () override;
601
602 bool can_run_breakpoint_commands () override;
603
604 void trace_init () override;
605
606 void download_tracepoint (struct bp_location *location) override;
607
608 bool can_download_tracepoint () override;
609
610 void download_trace_state_variable (const trace_state_variable &tsv) override;
611
612 void enable_tracepoint (struct bp_location *location) override;
613
614 void disable_tracepoint (struct bp_location *location) override;
615
616 void trace_set_readonly_regions () override;
617
618 void trace_start () override;
619
620 int get_trace_status (struct trace_status *ts) override;
621
622 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
623 override;
624
625 void trace_stop () override;
626
627 int trace_find (enum trace_find_type type, int num,
628 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
629
630 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
631
632 int save_trace_data (const char *filename) override;
633
634 int upload_tracepoints (struct uploaded_tp **utpp) override;
635
636 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
637
638 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
639
640 int get_min_fast_tracepoint_insn_len () override;
641
642 void set_disconnected_tracing (int val) override;
643
644 void set_circular_trace_buffer (int val) override;
645
646 void set_trace_buffer_size (LONGEST val) override;
647
648 bool set_trace_notes (const char *user, const char *notes,
649 const char *stopnotes) override;
650
651 int core_of_thread (ptid_t ptid) override;
652
653 int verify_memory (const gdb_byte *data,
654 CORE_ADDR memaddr, ULONGEST size) override;
655
656
657 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
658
659 void set_permissions () override;
660
661 bool static_tracepoint_marker_at (CORE_ADDR,
662 struct static_tracepoint_marker *marker)
663 override;
664
665 std::vector<static_tracepoint_marker>
666 static_tracepoint_markers_by_strid (const char *id) override;
667
668 traceframe_info_up traceframe_info () override;
669
670 bool use_agent (bool use) override;
671 bool can_use_agent () override;
672
673 struct btrace_target_info *enable_btrace (ptid_t ptid,
674 const struct btrace_config *conf) override;
675
676 void disable_btrace (struct btrace_target_info *tinfo) override;
677
678 void teardown_btrace (struct btrace_target_info *tinfo) override;
679
680 enum btrace_error read_btrace (struct btrace_data *data,
681 struct btrace_target_info *btinfo,
682 enum btrace_read_type type) override;
683
684 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
685 bool augmented_libraries_svr4_read () override;
686 int follow_fork (int, int) override;
687 void follow_exec (struct inferior *, char *) override;
688 int insert_fork_catchpoint (int) override;
689 int remove_fork_catchpoint (int) override;
690 int insert_vfork_catchpoint (int) override;
691 int remove_vfork_catchpoint (int) override;
692 int insert_exec_catchpoint (int) override;
693 int remove_exec_catchpoint (int) override;
694 enum exec_direction_kind execution_direction () override;
695
696 public: /* Remote specific methods. */
697
698 void remote_download_command_source (int num, ULONGEST addr,
699 struct command_line *cmds);
700
701 void remote_file_put (const char *local_file, const char *remote_file,
702 int from_tty);
703 void remote_file_get (const char *remote_file, const char *local_file,
704 int from_tty);
705 void remote_file_delete (const char *remote_file, int from_tty);
706
707 int remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
708 ULONGEST offset, int *remote_errno);
709 int remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
710 ULONGEST offset, int *remote_errno);
711 int remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
712 ULONGEST offset, int *remote_errno);
713
714 int remote_hostio_send_command (int command_bytes, int which_packet,
715 int *remote_errno, char **attachment,
716 int *attachment_len);
717 int remote_hostio_set_filesystem (struct inferior *inf,
718 int *remote_errno);
719 /* We should get rid of this and use fileio_open directly. */
720 int remote_hostio_open (struct inferior *inf, const char *filename,
721 int flags, int mode, int warn_if_slow,
722 int *remote_errno);
723 int remote_hostio_close (int fd, int *remote_errno);
724
725 int remote_hostio_unlink (inferior *inf, const char *filename,
726 int *remote_errno);
727
728 struct remote_state *get_remote_state ();
729
730 long get_remote_packet_size (void);
731 long get_memory_packet_size (struct memory_packet_config *config);
732
733 long get_memory_write_packet_size ();
734 long get_memory_read_packet_size ();
735
736 char *append_pending_thread_resumptions (char *p, char *endp,
737 ptid_t ptid);
738 static void open_1 (const char *name, int from_tty, int extended_p);
739 void start_remote (int from_tty, int extended_p);
740 void remote_detach_1 (struct inferior *inf, int from_tty);
741
742 char *append_resumption (char *p, char *endp,
743 ptid_t ptid, int step, gdb_signal siggnal);
744 int remote_resume_with_vcont (ptid_t ptid, int step,
745 gdb_signal siggnal);
746
747 void add_current_inferior_and_thread (char *wait_status);
748
749 ptid_t wait_ns (ptid_t ptid, struct target_waitstatus *status,
750 int options);
751 ptid_t wait_as (ptid_t ptid, target_waitstatus *status,
752 int options);
753
754 ptid_t process_stop_reply (struct stop_reply *stop_reply,
755 target_waitstatus *status);
756
757 void remote_notice_new_inferior (ptid_t currthread, int executing);
758
759 void process_initial_stop_replies (int from_tty);
760
761 thread_info *remote_add_thread (ptid_t ptid, bool running, bool executing);
762
763 void btrace_sync_conf (const btrace_config *conf);
764
765 void remote_btrace_maybe_reopen ();
766
767 void remove_new_fork_children (threads_listing_context *context);
768 void kill_new_fork_children (int pid);
769 void discard_pending_stop_replies (struct inferior *inf);
770 int stop_reply_queue_length ();
771
772 void check_pending_events_prevent_wildcard_vcont
773 (int *may_global_wildcard_vcont);
774
775 void discard_pending_stop_replies_in_queue ();
776 struct stop_reply *remote_notif_remove_queued_reply (ptid_t ptid);
777 struct stop_reply *queued_stop_reply (ptid_t ptid);
778 int peek_stop_reply (ptid_t ptid);
779 void remote_parse_stop_reply (char *buf, stop_reply *event);
780
781 void remote_stop_ns (ptid_t ptid);
782 void remote_interrupt_as ();
783 void remote_interrupt_ns ();
784
785 char *remote_get_noisy_reply ();
786 int remote_query_attached (int pid);
787 inferior *remote_add_inferior (int fake_pid_p, int pid, int attached,
788 int try_open_exec);
789
790 ptid_t remote_current_thread (ptid_t oldpid);
791 ptid_t get_current_thread (char *wait_status);
792
793 void set_thread (ptid_t ptid, int gen);
794 void set_general_thread (ptid_t ptid);
795 void set_continue_thread (ptid_t ptid);
796 void set_general_process ();
797
798 char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
799
800 int remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
801 gdb_ext_thread_info *info);
802 int remote_get_threadinfo (threadref *threadid, int fieldset,
803 gdb_ext_thread_info *info);
804
805 int parse_threadlist_response (char *pkt, int result_limit,
806 threadref *original_echo,
807 threadref *resultlist,
808 int *doneflag);
809 int remote_get_threadlist (int startflag, threadref *nextthread,
810 int result_limit, int *done, int *result_count,
811 threadref *threadlist);
812
813 int remote_threadlist_iterator (rmt_thread_action stepfunction,
814 void *context, int looplimit);
815
816 int remote_get_threads_with_ql (threads_listing_context *context);
817 int remote_get_threads_with_qxfer (threads_listing_context *context);
818 int remote_get_threads_with_qthreadinfo (threads_listing_context *context);
819
820 void extended_remote_restart ();
821
822 void get_offsets ();
823
824 void remote_check_symbols ();
825
826 void remote_supported_packet (const struct protocol_feature *feature,
827 enum packet_support support,
828 const char *argument);
829
830 void remote_query_supported ();
831
832 void remote_packet_size (const protocol_feature *feature,
833 packet_support support, const char *value);
834
835 void remote_serial_quit_handler ();
836
837 void remote_detach_pid (int pid);
838
839 void remote_vcont_probe ();
840
841 void remote_resume_with_hc (ptid_t ptid, int step,
842 gdb_signal siggnal);
843
844 void send_interrupt_sequence ();
845 void interrupt_query ();
846
847 void remote_notif_get_pending_events (notif_client *nc);
848
849 int fetch_register_using_p (struct regcache *regcache,
850 packet_reg *reg);
851 int send_g_packet ();
852 void process_g_packet (struct regcache *regcache);
853 void fetch_registers_using_g (struct regcache *regcache);
854 int store_register_using_P (const struct regcache *regcache,
855 packet_reg *reg);
856 void store_registers_using_G (const struct regcache *regcache);
857
858 void set_remote_traceframe ();
859
860 void check_binary_download (CORE_ADDR addr);
861
862 target_xfer_status remote_write_bytes_aux (const char *header,
863 CORE_ADDR memaddr,
864 const gdb_byte *myaddr,
865 ULONGEST len_units,
866 int unit_size,
867 ULONGEST *xfered_len_units,
868 char packet_format,
869 int use_length);
870
871 target_xfer_status remote_write_bytes (CORE_ADDR memaddr,
872 const gdb_byte *myaddr, ULONGEST len,
873 int unit_size, ULONGEST *xfered_len);
874
875 target_xfer_status remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
876 ULONGEST len_units,
877 int unit_size, ULONGEST *xfered_len_units);
878
879 target_xfer_status remote_xfer_live_readonly_partial (gdb_byte *readbuf,
880 ULONGEST memaddr,
881 ULONGEST len,
882 int unit_size,
883 ULONGEST *xfered_len);
884
885 target_xfer_status remote_read_bytes (CORE_ADDR memaddr,
886 gdb_byte *myaddr, ULONGEST len,
887 int unit_size,
888 ULONGEST *xfered_len);
889
890 packet_result remote_send_printf (const char *format, ...)
891 ATTRIBUTE_PRINTF (2, 3);
892
893 target_xfer_status remote_flash_write (ULONGEST address,
894 ULONGEST length, ULONGEST *xfered_len,
895 const gdb_byte *data);
896
897 int readchar (int timeout);
898
899 void remote_serial_write (const char *str, int len);
900
901 int putpkt (const char *buf);
902 int putpkt_binary (const char *buf, int cnt);
903
904 void skip_frame ();
905 long read_frame (char **buf_p, long *sizeof_buf);
906 void getpkt (char **buf, long *sizeof_buf, int forever);
907 int getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf, int forever,
908 int expecting_notif, int *is_notif);
909 int getpkt_sane (char **buf, long *sizeof_buf, int forever);
910 int getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever,
911 int *is_notif);
912 int remote_vkill (int pid);
913 void remote_kill_k ();
914
915 void extended_remote_disable_randomization (int val);
916 int extended_remote_run (const std::string &args);
917
918 void send_environment_packet (const char *action,
919 const char *packet,
920 const char *value);
921
922 void extended_remote_environment_support ();
923 void extended_remote_set_inferior_cwd ();
924
925 target_xfer_status remote_write_qxfer (const char *object_name,
926 const char *annex,
927 const gdb_byte *writebuf,
928 ULONGEST offset, LONGEST len,
929 ULONGEST *xfered_len,
930 struct packet_config *packet);
931
932 target_xfer_status remote_read_qxfer (const char *object_name,
933 const char *annex,
934 gdb_byte *readbuf, ULONGEST offset,
935 LONGEST len,
936 ULONGEST *xfered_len,
937 struct packet_config *packet);
938
939 void push_stop_reply (struct stop_reply *new_event);
940
941 bool vcont_r_supported ();
942
943 void packet_command (const char *args, int from_tty);
944
945 private: /* data fields */
946
947 /* The remote state. Don't reference this directly. Use the
948 get_remote_state method instead. */
949 remote_state m_remote_state;
950 };
951
952 static const target_info extended_remote_target_info = {
953 "extended-remote",
954 N_("Extended remote serial target in gdb-specific protocol"),
955 remote_doc
956 };
957
958 /* Set up the extended remote target by extending the standard remote
959 target and adding to it. */
960
961 class extended_remote_target final : public remote_target
962 {
963 public:
964 const target_info &info () const override
965 { return extended_remote_target_info; }
966
967 /* Open an extended-remote connection. */
968 static void open (const char *, int);
969
970 bool can_create_inferior () override { return true; }
971 void create_inferior (const char *, const std::string &,
972 char **, int) override;
973
974 void detach (inferior *, int) override;
975
976 bool can_attach () override { return true; }
977 void attach (const char *, int) override;
978
979 void post_attach (int) override;
980 bool supports_disable_randomization () override;
981 };
982
983 /* Per-program-space data key. */
984 static const struct program_space_data *remote_pspace_data;
985
986 /* The variable registered as the control variable used by the
987 remote exec-file commands. While the remote exec-file setting is
988 per-program-space, the set/show machinery uses this as the
989 location of the remote exec-file value. */
990 static char *remote_exec_file_var;
991
992 /* The size to align memory write packets, when practical. The protocol
993 does not guarantee any alignment, and gdb will generate short
994 writes and unaligned writes, but even as a best-effort attempt this
995 can improve bulk transfers. For instance, if a write is misaligned
996 relative to the target's data bus, the stub may need to make an extra
997 round trip fetching data from the target. This doesn't make a
998 huge difference, but it's easy to do, so we try to be helpful.
999
1000 The alignment chosen is arbitrary; usually data bus width is
1001 important here, not the possibly larger cache line size. */
1002 enum { REMOTE_ALIGN_WRITES = 16 };
1003
1004 /* Prototypes for local functions. */
1005
1006 static int hexnumlen (ULONGEST num);
1007
1008 static int stubhex (int ch);
1009
1010 static int hexnumstr (char *, ULONGEST);
1011
1012 static int hexnumnstr (char *, ULONGEST, int);
1013
1014 static CORE_ADDR remote_address_masked (CORE_ADDR);
1015
1016 static void print_packet (const char *);
1017
1018 static int stub_unpack_int (char *buff, int fieldlength);
1019
1020 struct packet_config;
1021
1022 static void show_packet_config_cmd (struct packet_config *config);
1023
1024 static void show_remote_protocol_packet_cmd (struct ui_file *file,
1025 int from_tty,
1026 struct cmd_list_element *c,
1027 const char *value);
1028
1029 static ptid_t read_ptid (const char *buf, const char **obuf);
1030
1031 static void remote_async_inferior_event_handler (gdb_client_data);
1032
1033 static int remote_read_description_p (struct target_ops *target);
1034
1035 static void remote_console_output (char *msg);
1036
1037 static void remote_btrace_reset (remote_state *rs);
1038
1039 static void remote_unpush_and_throw (void);
1040
1041 /* For "remote". */
1042
1043 static struct cmd_list_element *remote_cmdlist;
1044
1045 /* For "set remote" and "show remote". */
1046
1047 static struct cmd_list_element *remote_set_cmdlist;
1048 static struct cmd_list_element *remote_show_cmdlist;
1049
1050 /* Controls whether GDB is willing to use range stepping. */
1051
1052 static int use_range_stepping = 1;
1053
1054 /* The max number of chars in debug output. The rest of chars are
1055 omitted. */
1056
1057 #define REMOTE_DEBUG_MAX_CHAR 512
1058
1059 /* Private data that we'll store in (struct thread_info)->priv. */
1060 struct remote_thread_info : public private_thread_info
1061 {
1062 std::string extra;
1063 std::string name;
1064 int core = -1;
1065
1066 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
1067 sequence of bytes. */
1068 gdb::byte_vector thread_handle;
1069
1070 /* Whether the target stopped for a breakpoint/watchpoint. */
1071 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
1072
1073 /* This is set to the data address of the access causing the target
1074 to stop for a watchpoint. */
1075 CORE_ADDR watch_data_address = 0;
1076
1077 /* Fields used by the vCont action coalescing implemented in
1078 remote_resume / remote_commit_resume. remote_resume stores each
1079 thread's last resume request in these fields, so that a later
1080 remote_commit_resume knows which is the proper action for this
1081 thread to include in the vCont packet. */
1082
1083 /* True if the last target_resume call for this thread was a step
1084 request, false if a continue request. */
1085 int last_resume_step = 0;
1086
1087 /* The signal specified in the last target_resume call for this
1088 thread. */
1089 gdb_signal last_resume_sig = GDB_SIGNAL_0;
1090
1091 /* Whether this thread was already vCont-resumed on the remote
1092 side. */
1093 int vcont_resumed = 0;
1094 };
1095
1096 remote_state::remote_state ()
1097 {
1098 /* The default buffer size is unimportant; it will be expanded
1099 whenever a larger buffer is needed. */
1100 this->buf_size = 400;
1101 this->buf = (char *) xmalloc (this->buf_size);
1102 }
1103
1104 remote_state::~remote_state ()
1105 {
1106 xfree (this->last_pass_packet);
1107 xfree (this->last_program_signals_packet);
1108 xfree (this->buf);
1109 xfree (this->finished_object);
1110 xfree (this->finished_annex);
1111 }
1112
1113 /* Utility: generate error from an incoming stub packet. */
1114 static void
1115 trace_error (char *buf)
1116 {
1117 if (*buf++ != 'E')
1118 return; /* not an error msg */
1119 switch (*buf)
1120 {
1121 case '1': /* malformed packet error */
1122 if (*++buf == '0') /* general case: */
1123 error (_("remote.c: error in outgoing packet."));
1124 else
1125 error (_("remote.c: error in outgoing packet at field #%ld."),
1126 strtol (buf, NULL, 16));
1127 default:
1128 error (_("Target returns error code '%s'."), buf);
1129 }
1130 }
1131
1132 /* Utility: wait for reply from stub, while accepting "O" packets. */
1133
1134 char *
1135 remote_target::remote_get_noisy_reply ()
1136 {
1137 struct remote_state *rs = get_remote_state ();
1138
1139 do /* Loop on reply from remote stub. */
1140 {
1141 char *buf;
1142
1143 QUIT; /* Allow user to bail out with ^C. */
1144 getpkt (&rs->buf, &rs->buf_size, 0);
1145 buf = rs->buf;
1146 if (buf[0] == 'E')
1147 trace_error (buf);
1148 else if (startswith (buf, "qRelocInsn:"))
1149 {
1150 ULONGEST ul;
1151 CORE_ADDR from, to, org_to;
1152 const char *p, *pp;
1153 int adjusted_size = 0;
1154 int relocated = 0;
1155
1156 p = buf + strlen ("qRelocInsn:");
1157 pp = unpack_varlen_hex (p, &ul);
1158 if (*pp != ';')
1159 error (_("invalid qRelocInsn packet: %s"), buf);
1160 from = ul;
1161
1162 p = pp + 1;
1163 unpack_varlen_hex (p, &ul);
1164 to = ul;
1165
1166 org_to = to;
1167
1168 TRY
1169 {
1170 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
1171 relocated = 1;
1172 }
1173 CATCH (ex, RETURN_MASK_ALL)
1174 {
1175 if (ex.error == MEMORY_ERROR)
1176 {
1177 /* Propagate memory errors silently back to the
1178 target. The stub may have limited the range of
1179 addresses we can write to, for example. */
1180 }
1181 else
1182 {
1183 /* Something unexpectedly bad happened. Be verbose
1184 so we can tell what, and propagate the error back
1185 to the stub, so it doesn't get stuck waiting for
1186 a response. */
1187 exception_fprintf (gdb_stderr, ex,
1188 _("warning: relocating instruction: "));
1189 }
1190 putpkt ("E01");
1191 }
1192 END_CATCH
1193
1194 if (relocated)
1195 {
1196 adjusted_size = to - org_to;
1197
1198 xsnprintf (buf, rs->buf_size, "qRelocInsn:%x", adjusted_size);
1199 putpkt (buf);
1200 }
1201 }
1202 else if (buf[0] == 'O' && buf[1] != 'K')
1203 remote_console_output (buf + 1); /* 'O' message from stub */
1204 else
1205 return buf; /* Here's the actual reply. */
1206 }
1207 while (1);
1208 }
1209
1210 struct remote_arch_state *
1211 remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
1212 {
1213 remote_arch_state *rsa;
1214
1215 auto it = this->m_arch_states.find (gdbarch);
1216 if (it == this->m_arch_states.end ())
1217 {
1218 auto p = this->m_arch_states.emplace (std::piecewise_construct,
1219 std::forward_as_tuple (gdbarch),
1220 std::forward_as_tuple (gdbarch));
1221 rsa = &p.first->second;
1222
1223 /* Make sure that the packet buffer is plenty big enough for
1224 this architecture. */
1225 if (this->buf_size < rsa->remote_packet_size)
1226 {
1227 this->buf_size = 2 * rsa->remote_packet_size;
1228 this->buf = (char *) xrealloc (this->buf, this->buf_size);
1229 }
1230 }
1231 else
1232 rsa = &it->second;
1233
1234 return rsa;
1235 }
1236
1237 /* Fetch the global remote target state. */
1238
1239 remote_state *
1240 remote_target::get_remote_state ()
1241 {
1242 /* Make sure that the remote architecture state has been
1243 initialized, because doing so might reallocate rs->buf. Any
1244 function which calls getpkt also needs to be mindful of changes
1245 to rs->buf, but this call limits the number of places which run
1246 into trouble. */
1247 m_remote_state.get_remote_arch_state (target_gdbarch ());
1248
1249 return &m_remote_state;
1250 }
1251
1252 /* Cleanup routine for the remote module's pspace data. */
1253
1254 static void
1255 remote_pspace_data_cleanup (struct program_space *pspace, void *arg)
1256 {
1257 char *remote_exec_file = (char *) arg;
1258
1259 xfree (remote_exec_file);
1260 }
1261
1262 /* Fetch the remote exec-file from the current program space. */
1263
1264 static const char *
1265 get_remote_exec_file (void)
1266 {
1267 char *remote_exec_file;
1268
1269 remote_exec_file
1270 = (char *) program_space_data (current_program_space,
1271 remote_pspace_data);
1272 if (remote_exec_file == NULL)
1273 return "";
1274
1275 return remote_exec_file;
1276 }
1277
1278 /* Set the remote exec file for PSPACE. */
1279
1280 static void
1281 set_pspace_remote_exec_file (struct program_space *pspace,
1282 char *remote_exec_file)
1283 {
1284 char *old_file = (char *) program_space_data (pspace, remote_pspace_data);
1285
1286 xfree (old_file);
1287 set_program_space_data (pspace, remote_pspace_data,
1288 xstrdup (remote_exec_file));
1289 }
1290
1291 /* The "set/show remote exec-file" set command hook. */
1292
1293 static void
1294 set_remote_exec_file (const char *ignored, int from_tty,
1295 struct cmd_list_element *c)
1296 {
1297 gdb_assert (remote_exec_file_var != NULL);
1298 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
1299 }
1300
1301 /* The "set/show remote exec-file" show command hook. */
1302
1303 static void
1304 show_remote_exec_file (struct ui_file *file, int from_tty,
1305 struct cmd_list_element *cmd, const char *value)
1306 {
1307 fprintf_filtered (file, "%s\n", remote_exec_file_var);
1308 }
1309
1310 static int
1311 compare_pnums (const void *lhs_, const void *rhs_)
1312 {
1313 const struct packet_reg * const *lhs
1314 = (const struct packet_reg * const *) lhs_;
1315 const struct packet_reg * const *rhs
1316 = (const struct packet_reg * const *) rhs_;
1317
1318 if ((*lhs)->pnum < (*rhs)->pnum)
1319 return -1;
1320 else if ((*lhs)->pnum == (*rhs)->pnum)
1321 return 0;
1322 else
1323 return 1;
1324 }
1325
1326 static int
1327 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1328 {
1329 int regnum, num_remote_regs, offset;
1330 struct packet_reg **remote_regs;
1331
1332 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1333 {
1334 struct packet_reg *r = &regs[regnum];
1335
1336 if (register_size (gdbarch, regnum) == 0)
1337 /* Do not try to fetch zero-sized (placeholder) registers. */
1338 r->pnum = -1;
1339 else
1340 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1341
1342 r->regnum = regnum;
1343 }
1344
1345 /* Define the g/G packet format as the contents of each register
1346 with a remote protocol number, in order of ascending protocol
1347 number. */
1348
1349 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1350 for (num_remote_regs = 0, regnum = 0;
1351 regnum < gdbarch_num_regs (gdbarch);
1352 regnum++)
1353 if (regs[regnum].pnum != -1)
1354 remote_regs[num_remote_regs++] = &regs[regnum];
1355
1356 qsort (remote_regs, num_remote_regs, sizeof (struct packet_reg *),
1357 compare_pnums);
1358
1359 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1360 {
1361 remote_regs[regnum]->in_g_packet = 1;
1362 remote_regs[regnum]->offset = offset;
1363 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1364 }
1365
1366 return offset;
1367 }
1368
1369 /* Given the architecture described by GDBARCH, return the remote
1370 protocol register's number and the register's offset in the g/G
1371 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1372 If the target does not have a mapping for REGNUM, return false,
1373 otherwise, return true. */
1374
1375 int
1376 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1377 int *pnum, int *poffset)
1378 {
1379 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1380
1381 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1382
1383 map_regcache_remote_table (gdbarch, regs.data ());
1384
1385 *pnum = regs[regnum].pnum;
1386 *poffset = regs[regnum].offset;
1387
1388 return *pnum != -1;
1389 }
1390
1391 remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1392 {
1393 /* Use the architecture to build a regnum<->pnum table, which will be
1394 1:1 unless a feature set specifies otherwise. */
1395 this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1396
1397 /* Record the maximum possible size of the g packet - it may turn out
1398 to be smaller. */
1399 this->sizeof_g_packet
1400 = map_regcache_remote_table (gdbarch, this->regs.get ());
1401
1402 /* Default maximum number of characters in a packet body. Many
1403 remote stubs have a hardwired buffer size of 400 bytes
1404 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1405 as the maximum packet-size to ensure that the packet and an extra
1406 NUL character can always fit in the buffer. This stops GDB
1407 trashing stubs that try to squeeze an extra NUL into what is
1408 already a full buffer (As of 1999-12-04 that was most stubs). */
1409 this->remote_packet_size = 400 - 1;
1410
1411 /* This one is filled in when a ``g'' packet is received. */
1412 this->actual_register_packet_size = 0;
1413
1414 /* Should rsa->sizeof_g_packet needs more space than the
1415 default, adjust the size accordingly. Remember that each byte is
1416 encoded as two characters. 32 is the overhead for the packet
1417 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1418 (``$NN:G...#NN'') is a better guess, the below has been padded a
1419 little. */
1420 if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1421 this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1422 }
1423
1424 /* Get a pointer to the current remote target. If not connected to a
1425 remote target, return NULL. */
1426
1427 static remote_target *
1428 get_current_remote_target ()
1429 {
1430 target_ops *proc_target = find_target_at (process_stratum);
1431 return dynamic_cast<remote_target *> (proc_target);
1432 }
1433
1434 /* Return the current allowed size of a remote packet. This is
1435 inferred from the current architecture, and should be used to
1436 limit the length of outgoing packets. */
1437 long
1438 remote_target::get_remote_packet_size ()
1439 {
1440 struct remote_state *rs = get_remote_state ();
1441 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1442
1443 if (rs->explicit_packet_size)
1444 return rs->explicit_packet_size;
1445
1446 return rsa->remote_packet_size;
1447 }
1448
1449 static struct packet_reg *
1450 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1451 long regnum)
1452 {
1453 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1454 return NULL;
1455 else
1456 {
1457 struct packet_reg *r = &rsa->regs[regnum];
1458
1459 gdb_assert (r->regnum == regnum);
1460 return r;
1461 }
1462 }
1463
1464 static struct packet_reg *
1465 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1466 LONGEST pnum)
1467 {
1468 int i;
1469
1470 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1471 {
1472 struct packet_reg *r = &rsa->regs[i];
1473
1474 if (r->pnum == pnum)
1475 return r;
1476 }
1477 return NULL;
1478 }
1479
1480 /* Allow the user to specify what sequence to send to the remote
1481 when he requests a program interruption: Although ^C is usually
1482 what remote systems expect (this is the default, here), it is
1483 sometimes preferable to send a break. On other systems such
1484 as the Linux kernel, a break followed by g, which is Magic SysRq g
1485 is required in order to interrupt the execution. */
1486 const char interrupt_sequence_control_c[] = "Ctrl-C";
1487 const char interrupt_sequence_break[] = "BREAK";
1488 const char interrupt_sequence_break_g[] = "BREAK-g";
1489 static const char *const interrupt_sequence_modes[] =
1490 {
1491 interrupt_sequence_control_c,
1492 interrupt_sequence_break,
1493 interrupt_sequence_break_g,
1494 NULL
1495 };
1496 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1497
1498 static void
1499 show_interrupt_sequence (struct ui_file *file, int from_tty,
1500 struct cmd_list_element *c,
1501 const char *value)
1502 {
1503 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1504 fprintf_filtered (file,
1505 _("Send the ASCII ETX character (Ctrl-c) "
1506 "to the remote target to interrupt the "
1507 "execution of the program.\n"));
1508 else if (interrupt_sequence_mode == interrupt_sequence_break)
1509 fprintf_filtered (file,
1510 _("send a break signal to the remote target "
1511 "to interrupt the execution of the program.\n"));
1512 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1513 fprintf_filtered (file,
1514 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1515 "the remote target to interrupt the execution "
1516 "of Linux kernel.\n"));
1517 else
1518 internal_error (__FILE__, __LINE__,
1519 _("Invalid value for interrupt_sequence_mode: %s."),
1520 interrupt_sequence_mode);
1521 }
1522
1523 /* This boolean variable specifies whether interrupt_sequence is sent
1524 to the remote target when gdb connects to it.
1525 This is mostly needed when you debug the Linux kernel: The Linux kernel
1526 expects BREAK g which is Magic SysRq g for connecting gdb. */
1527 static int interrupt_on_connect = 0;
1528
1529 /* This variable is used to implement the "set/show remotebreak" commands.
1530 Since these commands are now deprecated in favor of "set/show remote
1531 interrupt-sequence", it no longer has any effect on the code. */
1532 static int remote_break;
1533
1534 static void
1535 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1536 {
1537 if (remote_break)
1538 interrupt_sequence_mode = interrupt_sequence_break;
1539 else
1540 interrupt_sequence_mode = interrupt_sequence_control_c;
1541 }
1542
1543 static void
1544 show_remotebreak (struct ui_file *file, int from_tty,
1545 struct cmd_list_element *c,
1546 const char *value)
1547 {
1548 }
1549
1550 /* This variable sets the number of bits in an address that are to be
1551 sent in a memory ("M" or "m") packet. Normally, after stripping
1552 leading zeros, the entire address would be sent. This variable
1553 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1554 initial implementation of remote.c restricted the address sent in
1555 memory packets to ``host::sizeof long'' bytes - (typically 32
1556 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1557 address was never sent. Since fixing this bug may cause a break in
1558 some remote targets this variable is principly provided to
1559 facilitate backward compatibility. */
1560
1561 static unsigned int remote_address_size;
1562
1563 \f
1564 /* User configurable variables for the number of characters in a
1565 memory read/write packet. MIN (rsa->remote_packet_size,
1566 rsa->sizeof_g_packet) is the default. Some targets need smaller
1567 values (fifo overruns, et.al.) and some users need larger values
1568 (speed up transfers). The variables ``preferred_*'' (the user
1569 request), ``current_*'' (what was actually set) and ``forced_*''
1570 (Positive - a soft limit, negative - a hard limit). */
1571
1572 struct memory_packet_config
1573 {
1574 const char *name;
1575 long size;
1576 int fixed_p;
1577 };
1578
1579 /* The default max memory-write-packet-size, when the setting is
1580 "fixed". The 16k is historical. (It came from older GDB's using
1581 alloca for buffers and the knowledge (folklore?) that some hosts
1582 don't cope very well with large alloca calls.) */
1583 #define DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED 16384
1584
1585 /* The minimum remote packet size for memory transfers. Ensures we
1586 can write at least one byte. */
1587 #define MIN_MEMORY_PACKET_SIZE 20
1588
1589 /* Get the memory packet size, assuming it is fixed. */
1590
1591 static long
1592 get_fixed_memory_packet_size (struct memory_packet_config *config)
1593 {
1594 gdb_assert (config->fixed_p);
1595
1596 if (config->size <= 0)
1597 return DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED;
1598 else
1599 return config->size;
1600 }
1601
1602 /* Compute the current size of a read/write packet. Since this makes
1603 use of ``actual_register_packet_size'' the computation is dynamic. */
1604
1605 long
1606 remote_target::get_memory_packet_size (struct memory_packet_config *config)
1607 {
1608 struct remote_state *rs = get_remote_state ();
1609 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1610
1611 long what_they_get;
1612 if (config->fixed_p)
1613 what_they_get = get_fixed_memory_packet_size (config);
1614 else
1615 {
1616 what_they_get = get_remote_packet_size ();
1617 /* Limit the packet to the size specified by the user. */
1618 if (config->size > 0
1619 && what_they_get > config->size)
1620 what_they_get = config->size;
1621
1622 /* Limit it to the size of the targets ``g'' response unless we have
1623 permission from the stub to use a larger packet size. */
1624 if (rs->explicit_packet_size == 0
1625 && rsa->actual_register_packet_size > 0
1626 && what_they_get > rsa->actual_register_packet_size)
1627 what_they_get = rsa->actual_register_packet_size;
1628 }
1629 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1630 what_they_get = MIN_MEMORY_PACKET_SIZE;
1631
1632 /* Make sure there is room in the global buffer for this packet
1633 (including its trailing NUL byte). */
1634 if (rs->buf_size < what_they_get + 1)
1635 {
1636 rs->buf_size = 2 * what_they_get;
1637 rs->buf = (char *) xrealloc (rs->buf, 2 * what_they_get);
1638 }
1639
1640 return what_they_get;
1641 }
1642
1643 /* Update the size of a read/write packet. If they user wants
1644 something really big then do a sanity check. */
1645
1646 static void
1647 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1648 {
1649 int fixed_p = config->fixed_p;
1650 long size = config->size;
1651
1652 if (args == NULL)
1653 error (_("Argument required (integer, `fixed' or `limited')."));
1654 else if (strcmp (args, "hard") == 0
1655 || strcmp (args, "fixed") == 0)
1656 fixed_p = 1;
1657 else if (strcmp (args, "soft") == 0
1658 || strcmp (args, "limit") == 0)
1659 fixed_p = 0;
1660 else
1661 {
1662 char *end;
1663
1664 size = strtoul (args, &end, 0);
1665 if (args == end)
1666 error (_("Invalid %s (bad syntax)."), config->name);
1667
1668 /* Instead of explicitly capping the size of a packet to or
1669 disallowing it, the user is allowed to set the size to
1670 something arbitrarily large. */
1671 }
1672
1673 /* Extra checks? */
1674 if (fixed_p && !config->fixed_p)
1675 {
1676 /* So that the query shows the correct value. */
1677 long query_size = (size <= 0
1678 ? DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED
1679 : size);
1680
1681 if (! query (_("The target may not be able to correctly handle a %s\n"
1682 "of %ld bytes. Change the packet size? "),
1683 config->name, query_size))
1684 error (_("Packet size not changed."));
1685 }
1686 /* Update the config. */
1687 config->fixed_p = fixed_p;
1688 config->size = size;
1689 }
1690
1691 static void
1692 show_memory_packet_size (struct memory_packet_config *config)
1693 {
1694 if (config->size == 0)
1695 printf_filtered (_("The %s is 0 (default). "), config->name);
1696 else
1697 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1698 if (config->fixed_p)
1699 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1700 get_fixed_memory_packet_size (config));
1701 else
1702 {
1703 remote_target *remote = get_current_remote_target ();
1704
1705 if (remote != NULL)
1706 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1707 remote->get_memory_packet_size (config));
1708 else
1709 puts_filtered ("The actual limit will be further reduced "
1710 "dependent on the target.\n");
1711 }
1712 }
1713
1714 static struct memory_packet_config memory_write_packet_config =
1715 {
1716 "memory-write-packet-size",
1717 };
1718
1719 static void
1720 set_memory_write_packet_size (const char *args, int from_tty)
1721 {
1722 set_memory_packet_size (args, &memory_write_packet_config);
1723 }
1724
1725 static void
1726 show_memory_write_packet_size (const char *args, int from_tty)
1727 {
1728 show_memory_packet_size (&memory_write_packet_config);
1729 }
1730
1731 /* Show the number of hardware watchpoints that can be used. */
1732
1733 static void
1734 show_hardware_watchpoint_limit (struct ui_file *file, int from_tty,
1735 struct cmd_list_element *c,
1736 const char *value)
1737 {
1738 fprintf_filtered (file, _("The maximum number of target hardware "
1739 "watchpoints is %s.\n"), value);
1740 }
1741
1742 /* Show the length limit (in bytes) for hardware watchpoints. */
1743
1744 static void
1745 show_hardware_watchpoint_length_limit (struct ui_file *file, int from_tty,
1746 struct cmd_list_element *c,
1747 const char *value)
1748 {
1749 fprintf_filtered (file, _("The maximum length (in bytes) of a target "
1750 "hardware watchpoint is %s.\n"), value);
1751 }
1752
1753 /* Show the number of hardware breakpoints that can be used. */
1754
1755 static void
1756 show_hardware_breakpoint_limit (struct ui_file *file, int from_tty,
1757 struct cmd_list_element *c,
1758 const char *value)
1759 {
1760 fprintf_filtered (file, _("The maximum number of target hardware "
1761 "breakpoints is %s.\n"), value);
1762 }
1763
1764 long
1765 remote_target::get_memory_write_packet_size ()
1766 {
1767 return get_memory_packet_size (&memory_write_packet_config);
1768 }
1769
1770 static struct memory_packet_config memory_read_packet_config =
1771 {
1772 "memory-read-packet-size",
1773 };
1774
1775 static void
1776 set_memory_read_packet_size (const char *args, int from_tty)
1777 {
1778 set_memory_packet_size (args, &memory_read_packet_config);
1779 }
1780
1781 static void
1782 show_memory_read_packet_size (const char *args, int from_tty)
1783 {
1784 show_memory_packet_size (&memory_read_packet_config);
1785 }
1786
1787 long
1788 remote_target::get_memory_read_packet_size ()
1789 {
1790 long size = get_memory_packet_size (&memory_read_packet_config);
1791
1792 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1793 extra buffer size argument before the memory read size can be
1794 increased beyond this. */
1795 if (size > get_remote_packet_size ())
1796 size = get_remote_packet_size ();
1797 return size;
1798 }
1799
1800 \f
1801
1802 struct packet_config
1803 {
1804 const char *name;
1805 const char *title;
1806
1807 /* If auto, GDB auto-detects support for this packet or feature,
1808 either through qSupported, or by trying the packet and looking
1809 at the response. If true, GDB assumes the target supports this
1810 packet. If false, the packet is disabled. Configs that don't
1811 have an associated command always have this set to auto. */
1812 enum auto_boolean detect;
1813
1814 /* Does the target support this packet? */
1815 enum packet_support support;
1816 };
1817
1818 static enum packet_support packet_config_support (struct packet_config *config);
1819 static enum packet_support packet_support (int packet);
1820
1821 static void
1822 show_packet_config_cmd (struct packet_config *config)
1823 {
1824 const char *support = "internal-error";
1825
1826 switch (packet_config_support (config))
1827 {
1828 case PACKET_ENABLE:
1829 support = "enabled";
1830 break;
1831 case PACKET_DISABLE:
1832 support = "disabled";
1833 break;
1834 case PACKET_SUPPORT_UNKNOWN:
1835 support = "unknown";
1836 break;
1837 }
1838 switch (config->detect)
1839 {
1840 case AUTO_BOOLEAN_AUTO:
1841 printf_filtered (_("Support for the `%s' packet "
1842 "is auto-detected, currently %s.\n"),
1843 config->name, support);
1844 break;
1845 case AUTO_BOOLEAN_TRUE:
1846 case AUTO_BOOLEAN_FALSE:
1847 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1848 config->name, support);
1849 break;
1850 }
1851 }
1852
1853 static void
1854 add_packet_config_cmd (struct packet_config *config, const char *name,
1855 const char *title, int legacy)
1856 {
1857 char *set_doc;
1858 char *show_doc;
1859 char *cmd_name;
1860
1861 config->name = name;
1862 config->title = title;
1863 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet",
1864 name, title);
1865 show_doc = xstrprintf ("Show current use of remote "
1866 "protocol `%s' (%s) packet",
1867 name, title);
1868 /* set/show TITLE-packet {auto,on,off} */
1869 cmd_name = xstrprintf ("%s-packet", title);
1870 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1871 &config->detect, set_doc,
1872 show_doc, NULL, /* help_doc */
1873 NULL,
1874 show_remote_protocol_packet_cmd,
1875 &remote_set_cmdlist, &remote_show_cmdlist);
1876 /* The command code copies the documentation strings. */
1877 xfree (set_doc);
1878 xfree (show_doc);
1879 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1880 if (legacy)
1881 {
1882 char *legacy_name;
1883
1884 legacy_name = xstrprintf ("%s-packet", name);
1885 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1886 &remote_set_cmdlist);
1887 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1888 &remote_show_cmdlist);
1889 }
1890 }
1891
1892 static enum packet_result
1893 packet_check_result (const char *buf)
1894 {
1895 if (buf[0] != '\0')
1896 {
1897 /* The stub recognized the packet request. Check that the
1898 operation succeeded. */
1899 if (buf[0] == 'E'
1900 && isxdigit (buf[1]) && isxdigit (buf[2])
1901 && buf[3] == '\0')
1902 /* "Enn" - definitly an error. */
1903 return PACKET_ERROR;
1904
1905 /* Always treat "E." as an error. This will be used for
1906 more verbose error messages, such as E.memtypes. */
1907 if (buf[0] == 'E' && buf[1] == '.')
1908 return PACKET_ERROR;
1909
1910 /* The packet may or may not be OK. Just assume it is. */
1911 return PACKET_OK;
1912 }
1913 else
1914 /* The stub does not support the packet. */
1915 return PACKET_UNKNOWN;
1916 }
1917
1918 static enum packet_result
1919 packet_ok (const char *buf, struct packet_config *config)
1920 {
1921 enum packet_result result;
1922
1923 if (config->detect != AUTO_BOOLEAN_TRUE
1924 && config->support == PACKET_DISABLE)
1925 internal_error (__FILE__, __LINE__,
1926 _("packet_ok: attempt to use a disabled packet"));
1927
1928 result = packet_check_result (buf);
1929 switch (result)
1930 {
1931 case PACKET_OK:
1932 case PACKET_ERROR:
1933 /* The stub recognized the packet request. */
1934 if (config->support == PACKET_SUPPORT_UNKNOWN)
1935 {
1936 if (remote_debug)
1937 fprintf_unfiltered (gdb_stdlog,
1938 "Packet %s (%s) is supported\n",
1939 config->name, config->title);
1940 config->support = PACKET_ENABLE;
1941 }
1942 break;
1943 case PACKET_UNKNOWN:
1944 /* The stub does not support the packet. */
1945 if (config->detect == AUTO_BOOLEAN_AUTO
1946 && config->support == PACKET_ENABLE)
1947 {
1948 /* If the stub previously indicated that the packet was
1949 supported then there is a protocol error. */
1950 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1951 config->name, config->title);
1952 }
1953 else if (config->detect == AUTO_BOOLEAN_TRUE)
1954 {
1955 /* The user set it wrong. */
1956 error (_("Enabled packet %s (%s) not recognized by stub"),
1957 config->name, config->title);
1958 }
1959
1960 if (remote_debug)
1961 fprintf_unfiltered (gdb_stdlog,
1962 "Packet %s (%s) is NOT supported\n",
1963 config->name, config->title);
1964 config->support = PACKET_DISABLE;
1965 break;
1966 }
1967
1968 return result;
1969 }
1970
1971 enum {
1972 PACKET_vCont = 0,
1973 PACKET_X,
1974 PACKET_qSymbol,
1975 PACKET_P,
1976 PACKET_p,
1977 PACKET_Z0,
1978 PACKET_Z1,
1979 PACKET_Z2,
1980 PACKET_Z3,
1981 PACKET_Z4,
1982 PACKET_vFile_setfs,
1983 PACKET_vFile_open,
1984 PACKET_vFile_pread,
1985 PACKET_vFile_pwrite,
1986 PACKET_vFile_close,
1987 PACKET_vFile_unlink,
1988 PACKET_vFile_readlink,
1989 PACKET_vFile_fstat,
1990 PACKET_qXfer_auxv,
1991 PACKET_qXfer_features,
1992 PACKET_qXfer_exec_file,
1993 PACKET_qXfer_libraries,
1994 PACKET_qXfer_libraries_svr4,
1995 PACKET_qXfer_memory_map,
1996 PACKET_qXfer_spu_read,
1997 PACKET_qXfer_spu_write,
1998 PACKET_qXfer_osdata,
1999 PACKET_qXfer_threads,
2000 PACKET_qXfer_statictrace_read,
2001 PACKET_qXfer_traceframe_info,
2002 PACKET_qXfer_uib,
2003 PACKET_qGetTIBAddr,
2004 PACKET_qGetTLSAddr,
2005 PACKET_qSupported,
2006 PACKET_qTStatus,
2007 PACKET_QPassSignals,
2008 PACKET_QCatchSyscalls,
2009 PACKET_QProgramSignals,
2010 PACKET_QSetWorkingDir,
2011 PACKET_QStartupWithShell,
2012 PACKET_QEnvironmentHexEncoded,
2013 PACKET_QEnvironmentReset,
2014 PACKET_QEnvironmentUnset,
2015 PACKET_qCRC,
2016 PACKET_qSearch_memory,
2017 PACKET_vAttach,
2018 PACKET_vRun,
2019 PACKET_QStartNoAckMode,
2020 PACKET_vKill,
2021 PACKET_qXfer_siginfo_read,
2022 PACKET_qXfer_siginfo_write,
2023 PACKET_qAttached,
2024
2025 /* Support for conditional tracepoints. */
2026 PACKET_ConditionalTracepoints,
2027
2028 /* Support for target-side breakpoint conditions. */
2029 PACKET_ConditionalBreakpoints,
2030
2031 /* Support for target-side breakpoint commands. */
2032 PACKET_BreakpointCommands,
2033
2034 /* Support for fast tracepoints. */
2035 PACKET_FastTracepoints,
2036
2037 /* Support for static tracepoints. */
2038 PACKET_StaticTracepoints,
2039
2040 /* Support for installing tracepoints while a trace experiment is
2041 running. */
2042 PACKET_InstallInTrace,
2043
2044 PACKET_bc,
2045 PACKET_bs,
2046 PACKET_TracepointSource,
2047 PACKET_QAllow,
2048 PACKET_qXfer_fdpic,
2049 PACKET_QDisableRandomization,
2050 PACKET_QAgent,
2051 PACKET_QTBuffer_size,
2052 PACKET_Qbtrace_off,
2053 PACKET_Qbtrace_bts,
2054 PACKET_Qbtrace_pt,
2055 PACKET_qXfer_btrace,
2056
2057 /* Support for the QNonStop packet. */
2058 PACKET_QNonStop,
2059
2060 /* Support for the QThreadEvents packet. */
2061 PACKET_QThreadEvents,
2062
2063 /* Support for multi-process extensions. */
2064 PACKET_multiprocess_feature,
2065
2066 /* Support for enabling and disabling tracepoints while a trace
2067 experiment is running. */
2068 PACKET_EnableDisableTracepoints_feature,
2069
2070 /* Support for collecting strings using the tracenz bytecode. */
2071 PACKET_tracenz_feature,
2072
2073 /* Support for continuing to run a trace experiment while GDB is
2074 disconnected. */
2075 PACKET_DisconnectedTracing_feature,
2076
2077 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
2078 PACKET_augmented_libraries_svr4_read_feature,
2079
2080 /* Support for the qXfer:btrace-conf:read packet. */
2081 PACKET_qXfer_btrace_conf,
2082
2083 /* Support for the Qbtrace-conf:bts:size packet. */
2084 PACKET_Qbtrace_conf_bts_size,
2085
2086 /* Support for swbreak+ feature. */
2087 PACKET_swbreak_feature,
2088
2089 /* Support for hwbreak+ feature. */
2090 PACKET_hwbreak_feature,
2091
2092 /* Support for fork events. */
2093 PACKET_fork_event_feature,
2094
2095 /* Support for vfork events. */
2096 PACKET_vfork_event_feature,
2097
2098 /* Support for the Qbtrace-conf:pt:size packet. */
2099 PACKET_Qbtrace_conf_pt_size,
2100
2101 /* Support for exec events. */
2102 PACKET_exec_event_feature,
2103
2104 /* Support for query supported vCont actions. */
2105 PACKET_vContSupported,
2106
2107 /* Support remote CTRL-C. */
2108 PACKET_vCtrlC,
2109
2110 /* Support TARGET_WAITKIND_NO_RESUMED. */
2111 PACKET_no_resumed,
2112
2113 PACKET_MAX
2114 };
2115
2116 static struct packet_config remote_protocol_packets[PACKET_MAX];
2117
2118 /* Returns the packet's corresponding "set remote foo-packet" command
2119 state. See struct packet_config for more details. */
2120
2121 static enum auto_boolean
2122 packet_set_cmd_state (int packet)
2123 {
2124 return remote_protocol_packets[packet].detect;
2125 }
2126
2127 /* Returns whether a given packet or feature is supported. This takes
2128 into account the state of the corresponding "set remote foo-packet"
2129 command, which may be used to bypass auto-detection. */
2130
2131 static enum packet_support
2132 packet_config_support (struct packet_config *config)
2133 {
2134 switch (config->detect)
2135 {
2136 case AUTO_BOOLEAN_TRUE:
2137 return PACKET_ENABLE;
2138 case AUTO_BOOLEAN_FALSE:
2139 return PACKET_DISABLE;
2140 case AUTO_BOOLEAN_AUTO:
2141 return config->support;
2142 default:
2143 gdb_assert_not_reached (_("bad switch"));
2144 }
2145 }
2146
2147 /* Same as packet_config_support, but takes the packet's enum value as
2148 argument. */
2149
2150 static enum packet_support
2151 packet_support (int packet)
2152 {
2153 struct packet_config *config = &remote_protocol_packets[packet];
2154
2155 return packet_config_support (config);
2156 }
2157
2158 static void
2159 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
2160 struct cmd_list_element *c,
2161 const char *value)
2162 {
2163 struct packet_config *packet;
2164
2165 for (packet = remote_protocol_packets;
2166 packet < &remote_protocol_packets[PACKET_MAX];
2167 packet++)
2168 {
2169 if (&packet->detect == c->var)
2170 {
2171 show_packet_config_cmd (packet);
2172 return;
2173 }
2174 }
2175 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
2176 c->name);
2177 }
2178
2179 /* Should we try one of the 'Z' requests? */
2180
2181 enum Z_packet_type
2182 {
2183 Z_PACKET_SOFTWARE_BP,
2184 Z_PACKET_HARDWARE_BP,
2185 Z_PACKET_WRITE_WP,
2186 Z_PACKET_READ_WP,
2187 Z_PACKET_ACCESS_WP,
2188 NR_Z_PACKET_TYPES
2189 };
2190
2191 /* For compatibility with older distributions. Provide a ``set remote
2192 Z-packet ...'' command that updates all the Z packet types. */
2193
2194 static enum auto_boolean remote_Z_packet_detect;
2195
2196 static void
2197 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
2198 struct cmd_list_element *c)
2199 {
2200 int i;
2201
2202 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2203 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
2204 }
2205
2206 static void
2207 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
2208 struct cmd_list_element *c,
2209 const char *value)
2210 {
2211 int i;
2212
2213 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2214 {
2215 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
2216 }
2217 }
2218
2219 /* Returns true if the multi-process extensions are in effect. */
2220
2221 static int
2222 remote_multi_process_p (struct remote_state *rs)
2223 {
2224 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
2225 }
2226
2227 /* Returns true if fork events are supported. */
2228
2229 static int
2230 remote_fork_event_p (struct remote_state *rs)
2231 {
2232 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
2233 }
2234
2235 /* Returns true if vfork events are supported. */
2236
2237 static int
2238 remote_vfork_event_p (struct remote_state *rs)
2239 {
2240 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
2241 }
2242
2243 /* Returns true if exec events are supported. */
2244
2245 static int
2246 remote_exec_event_p (struct remote_state *rs)
2247 {
2248 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
2249 }
2250
2251 /* Insert fork catchpoint target routine. If fork events are enabled
2252 then return success, nothing more to do. */
2253
2254 int
2255 remote_target::insert_fork_catchpoint (int pid)
2256 {
2257 struct remote_state *rs = get_remote_state ();
2258
2259 return !remote_fork_event_p (rs);
2260 }
2261
2262 /* Remove fork catchpoint target routine. Nothing to do, just
2263 return success. */
2264
2265 int
2266 remote_target::remove_fork_catchpoint (int pid)
2267 {
2268 return 0;
2269 }
2270
2271 /* Insert vfork catchpoint target routine. If vfork events are enabled
2272 then return success, nothing more to do. */
2273
2274 int
2275 remote_target::insert_vfork_catchpoint (int pid)
2276 {
2277 struct remote_state *rs = get_remote_state ();
2278
2279 return !remote_vfork_event_p (rs);
2280 }
2281
2282 /* Remove vfork catchpoint target routine. Nothing to do, just
2283 return success. */
2284
2285 int
2286 remote_target::remove_vfork_catchpoint (int pid)
2287 {
2288 return 0;
2289 }
2290
2291 /* Insert exec catchpoint target routine. If exec events are
2292 enabled, just return success. */
2293
2294 int
2295 remote_target::insert_exec_catchpoint (int pid)
2296 {
2297 struct remote_state *rs = get_remote_state ();
2298
2299 return !remote_exec_event_p (rs);
2300 }
2301
2302 /* Remove exec catchpoint target routine. Nothing to do, just
2303 return success. */
2304
2305 int
2306 remote_target::remove_exec_catchpoint (int pid)
2307 {
2308 return 0;
2309 }
2310
2311 \f
2312
2313 static ptid_t magic_null_ptid;
2314 static ptid_t not_sent_ptid;
2315 static ptid_t any_thread_ptid;
2316
2317 /* Find out if the stub attached to PID (and hence GDB should offer to
2318 detach instead of killing it when bailing out). */
2319
2320 int
2321 remote_target::remote_query_attached (int pid)
2322 {
2323 struct remote_state *rs = get_remote_state ();
2324 size_t size = get_remote_packet_size ();
2325
2326 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2327 return 0;
2328
2329 if (remote_multi_process_p (rs))
2330 xsnprintf (rs->buf, size, "qAttached:%x", pid);
2331 else
2332 xsnprintf (rs->buf, size, "qAttached");
2333
2334 putpkt (rs->buf);
2335 getpkt (&rs->buf, &rs->buf_size, 0);
2336
2337 switch (packet_ok (rs->buf,
2338 &remote_protocol_packets[PACKET_qAttached]))
2339 {
2340 case PACKET_OK:
2341 if (strcmp (rs->buf, "1") == 0)
2342 return 1;
2343 break;
2344 case PACKET_ERROR:
2345 warning (_("Remote failure reply: %s"), rs->buf);
2346 break;
2347 case PACKET_UNKNOWN:
2348 break;
2349 }
2350
2351 return 0;
2352 }
2353
2354 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2355 has been invented by GDB, instead of reported by the target. Since
2356 we can be connected to a remote system before before knowing about
2357 any inferior, mark the target with execution when we find the first
2358 inferior. If ATTACHED is 1, then we had just attached to this
2359 inferior. If it is 0, then we just created this inferior. If it
2360 is -1, then try querying the remote stub to find out if it had
2361 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2362 attempt to open this inferior's executable as the main executable
2363 if no main executable is open already. */
2364
2365 inferior *
2366 remote_target::remote_add_inferior (int fake_pid_p, int pid, int attached,
2367 int try_open_exec)
2368 {
2369 struct inferior *inf;
2370
2371 /* Check whether this process we're learning about is to be
2372 considered attached, or if is to be considered to have been
2373 spawned by the stub. */
2374 if (attached == -1)
2375 attached = remote_query_attached (pid);
2376
2377 if (gdbarch_has_global_solist (target_gdbarch ()))
2378 {
2379 /* If the target shares code across all inferiors, then every
2380 attach adds a new inferior. */
2381 inf = add_inferior (pid);
2382
2383 /* ... and every inferior is bound to the same program space.
2384 However, each inferior may still have its own address
2385 space. */
2386 inf->aspace = maybe_new_address_space ();
2387 inf->pspace = current_program_space;
2388 }
2389 else
2390 {
2391 /* In the traditional debugging scenario, there's a 1-1 match
2392 between program/address spaces. We simply bind the inferior
2393 to the program space's address space. */
2394 inf = current_inferior ();
2395 inferior_appeared (inf, pid);
2396 }
2397
2398 inf->attach_flag = attached;
2399 inf->fake_pid_p = fake_pid_p;
2400
2401 /* If no main executable is currently open then attempt to
2402 open the file that was executed to create this inferior. */
2403 if (try_open_exec && get_exec_file (0) == NULL)
2404 exec_file_locate_attach (pid, 0, 1);
2405
2406 return inf;
2407 }
2408
2409 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2410 static remote_thread_info *get_remote_thread_info (ptid_t ptid);
2411
2412 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2413 according to RUNNING. */
2414
2415 thread_info *
2416 remote_target::remote_add_thread (ptid_t ptid, bool running, bool executing)
2417 {
2418 struct remote_state *rs = get_remote_state ();
2419 struct thread_info *thread;
2420
2421 /* GDB historically didn't pull threads in the initial connection
2422 setup. If the remote target doesn't even have a concept of
2423 threads (e.g., a bare-metal target), even if internally we
2424 consider that a single-threaded target, mentioning a new thread
2425 might be confusing to the user. Be silent then, preserving the
2426 age old behavior. */
2427 if (rs->starting_up)
2428 thread = add_thread_silent (ptid);
2429 else
2430 thread = add_thread (ptid);
2431
2432 get_remote_thread_info (thread)->vcont_resumed = executing;
2433 set_executing (ptid, executing);
2434 set_running (ptid, running);
2435
2436 return thread;
2437 }
2438
2439 /* Come here when we learn about a thread id from the remote target.
2440 It may be the first time we hear about such thread, so take the
2441 opportunity to add it to GDB's thread list. In case this is the
2442 first time we're noticing its corresponding inferior, add it to
2443 GDB's inferior list as well. EXECUTING indicates whether the
2444 thread is (internally) executing or stopped. */
2445
2446 void
2447 remote_target::remote_notice_new_inferior (ptid_t currthread, int executing)
2448 {
2449 /* In non-stop mode, we assume new found threads are (externally)
2450 running until proven otherwise with a stop reply. In all-stop,
2451 we can only get here if all threads are stopped. */
2452 int running = target_is_non_stop_p () ? 1 : 0;
2453
2454 /* If this is a new thread, add it to GDB's thread list.
2455 If we leave it up to WFI to do this, bad things will happen. */
2456
2457 thread_info *tp = find_thread_ptid (currthread);
2458 if (tp != NULL && tp->state == THREAD_EXITED)
2459 {
2460 /* We're seeing an event on a thread id we knew had exited.
2461 This has to be a new thread reusing the old id. Add it. */
2462 remote_add_thread (currthread, running, executing);
2463 return;
2464 }
2465
2466 if (!in_thread_list (currthread))
2467 {
2468 struct inferior *inf = NULL;
2469 int pid = currthread.pid ();
2470
2471 if (inferior_ptid.is_pid ()
2472 && pid == inferior_ptid.pid ())
2473 {
2474 /* inferior_ptid has no thread member yet. This can happen
2475 with the vAttach -> remote_wait,"TAAthread:" path if the
2476 stub doesn't support qC. This is the first stop reported
2477 after an attach, so this is the main thread. Update the
2478 ptid in the thread list. */
2479 if (in_thread_list (ptid_t (pid)))
2480 thread_change_ptid (inferior_ptid, currthread);
2481 else
2482 {
2483 remote_add_thread (currthread, running, executing);
2484 inferior_ptid = currthread;
2485 }
2486 return;
2487 }
2488
2489 if (magic_null_ptid == inferior_ptid)
2490 {
2491 /* inferior_ptid is not set yet. This can happen with the
2492 vRun -> remote_wait,"TAAthread:" path if the stub
2493 doesn't support qC. This is the first stop reported
2494 after an attach, so this is the main thread. Update the
2495 ptid in the thread list. */
2496 thread_change_ptid (inferior_ptid, currthread);
2497 return;
2498 }
2499
2500 /* When connecting to a target remote, or to a target
2501 extended-remote which already was debugging an inferior, we
2502 may not know about it yet. Add it before adding its child
2503 thread, so notifications are emitted in a sensible order. */
2504 if (find_inferior_pid (currthread.pid ()) == NULL)
2505 {
2506 struct remote_state *rs = get_remote_state ();
2507 int fake_pid_p = !remote_multi_process_p (rs);
2508
2509 inf = remote_add_inferior (fake_pid_p,
2510 currthread.pid (), -1, 1);
2511 }
2512
2513 /* This is really a new thread. Add it. */
2514 thread_info *new_thr
2515 = remote_add_thread (currthread, running, executing);
2516
2517 /* If we found a new inferior, let the common code do whatever
2518 it needs to with it (e.g., read shared libraries, insert
2519 breakpoints), unless we're just setting up an all-stop
2520 connection. */
2521 if (inf != NULL)
2522 {
2523 struct remote_state *rs = get_remote_state ();
2524
2525 if (!rs->starting_up)
2526 notice_new_inferior (new_thr, executing, 0);
2527 }
2528 }
2529 }
2530
2531 /* Return THREAD's private thread data, creating it if necessary. */
2532
2533 static remote_thread_info *
2534 get_remote_thread_info (thread_info *thread)
2535 {
2536 gdb_assert (thread != NULL);
2537
2538 if (thread->priv == NULL)
2539 thread->priv.reset (new remote_thread_info);
2540
2541 return static_cast<remote_thread_info *> (thread->priv.get ());
2542 }
2543
2544 static remote_thread_info *
2545 get_remote_thread_info (ptid_t ptid)
2546 {
2547 thread_info *thr = find_thread_ptid (ptid);
2548 return get_remote_thread_info (thr);
2549 }
2550
2551 /* Call this function as a result of
2552 1) A halt indication (T packet) containing a thread id
2553 2) A direct query of currthread
2554 3) Successful execution of set thread */
2555
2556 static void
2557 record_currthread (struct remote_state *rs, ptid_t currthread)
2558 {
2559 rs->general_thread = currthread;
2560 }
2561
2562 /* If 'QPassSignals' is supported, tell the remote stub what signals
2563 it can simply pass through to the inferior without reporting. */
2564
2565 void
2566 remote_target::pass_signals (int numsigs, unsigned char *pass_signals)
2567 {
2568 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2569 {
2570 char *pass_packet, *p;
2571 int count = 0, i;
2572 struct remote_state *rs = get_remote_state ();
2573
2574 gdb_assert (numsigs < 256);
2575 for (i = 0; i < numsigs; i++)
2576 {
2577 if (pass_signals[i])
2578 count++;
2579 }
2580 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2581 strcpy (pass_packet, "QPassSignals:");
2582 p = pass_packet + strlen (pass_packet);
2583 for (i = 0; i < numsigs; i++)
2584 {
2585 if (pass_signals[i])
2586 {
2587 if (i >= 16)
2588 *p++ = tohex (i >> 4);
2589 *p++ = tohex (i & 15);
2590 if (count)
2591 *p++ = ';';
2592 else
2593 break;
2594 count--;
2595 }
2596 }
2597 *p = 0;
2598 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2599 {
2600 putpkt (pass_packet);
2601 getpkt (&rs->buf, &rs->buf_size, 0);
2602 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2603 if (rs->last_pass_packet)
2604 xfree (rs->last_pass_packet);
2605 rs->last_pass_packet = pass_packet;
2606 }
2607 else
2608 xfree (pass_packet);
2609 }
2610 }
2611
2612 /* If 'QCatchSyscalls' is supported, tell the remote stub
2613 to report syscalls to GDB. */
2614
2615 int
2616 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2617 gdb::array_view<const int> syscall_counts)
2618 {
2619 const char *catch_packet;
2620 enum packet_result result;
2621 int n_sysno = 0;
2622
2623 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2624 {
2625 /* Not supported. */
2626 return 1;
2627 }
2628
2629 if (needed && any_count == 0)
2630 {
2631 /* Count how many syscalls are to be caught. */
2632 for (size_t i = 0; i < syscall_counts.size (); i++)
2633 {
2634 if (syscall_counts[i] != 0)
2635 n_sysno++;
2636 }
2637 }
2638
2639 if (remote_debug)
2640 {
2641 fprintf_unfiltered (gdb_stdlog,
2642 "remote_set_syscall_catchpoint "
2643 "pid %d needed %d any_count %d n_sysno %d\n",
2644 pid, needed, any_count, n_sysno);
2645 }
2646
2647 std::string built_packet;
2648 if (needed)
2649 {
2650 /* Prepare a packet with the sysno list, assuming max 8+1
2651 characters for a sysno. If the resulting packet size is too
2652 big, fallback on the non-selective packet. */
2653 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2654 built_packet.reserve (maxpktsz);
2655 built_packet = "QCatchSyscalls:1";
2656 if (any_count == 0)
2657 {
2658 /* Add in each syscall to be caught. */
2659 for (size_t i = 0; i < syscall_counts.size (); i++)
2660 {
2661 if (syscall_counts[i] != 0)
2662 string_appendf (built_packet, ";%zx", i);
2663 }
2664 }
2665 if (built_packet.size () > get_remote_packet_size ())
2666 {
2667 /* catch_packet too big. Fallback to less efficient
2668 non selective mode, with GDB doing the filtering. */
2669 catch_packet = "QCatchSyscalls:1";
2670 }
2671 else
2672 catch_packet = built_packet.c_str ();
2673 }
2674 else
2675 catch_packet = "QCatchSyscalls:0";
2676
2677 struct remote_state *rs = get_remote_state ();
2678
2679 putpkt (catch_packet);
2680 getpkt (&rs->buf, &rs->buf_size, 0);
2681 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2682 if (result == PACKET_OK)
2683 return 0;
2684 else
2685 return -1;
2686 }
2687
2688 /* If 'QProgramSignals' is supported, tell the remote stub what
2689 signals it should pass through to the inferior when detaching. */
2690
2691 void
2692 remote_target::program_signals (int numsigs, unsigned char *signals)
2693 {
2694 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2695 {
2696 char *packet, *p;
2697 int count = 0, i;
2698 struct remote_state *rs = get_remote_state ();
2699
2700 gdb_assert (numsigs < 256);
2701 for (i = 0; i < numsigs; i++)
2702 {
2703 if (signals[i])
2704 count++;
2705 }
2706 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2707 strcpy (packet, "QProgramSignals:");
2708 p = packet + strlen (packet);
2709 for (i = 0; i < numsigs; i++)
2710 {
2711 if (signal_pass_state (i))
2712 {
2713 if (i >= 16)
2714 *p++ = tohex (i >> 4);
2715 *p++ = tohex (i & 15);
2716 if (count)
2717 *p++ = ';';
2718 else
2719 break;
2720 count--;
2721 }
2722 }
2723 *p = 0;
2724 if (!rs->last_program_signals_packet
2725 || strcmp (rs->last_program_signals_packet, packet) != 0)
2726 {
2727 putpkt (packet);
2728 getpkt (&rs->buf, &rs->buf_size, 0);
2729 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2730 xfree (rs->last_program_signals_packet);
2731 rs->last_program_signals_packet = packet;
2732 }
2733 else
2734 xfree (packet);
2735 }
2736 }
2737
2738 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2739 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2740 thread. If GEN is set, set the general thread, if not, then set
2741 the step/continue thread. */
2742 void
2743 remote_target::set_thread (ptid_t ptid, int gen)
2744 {
2745 struct remote_state *rs = get_remote_state ();
2746 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2747 char *buf = rs->buf;
2748 char *endbuf = rs->buf + get_remote_packet_size ();
2749
2750 if (state == ptid)
2751 return;
2752
2753 *buf++ = 'H';
2754 *buf++ = gen ? 'g' : 'c';
2755 if (ptid == magic_null_ptid)
2756 xsnprintf (buf, endbuf - buf, "0");
2757 else if (ptid == any_thread_ptid)
2758 xsnprintf (buf, endbuf - buf, "0");
2759 else if (ptid == minus_one_ptid)
2760 xsnprintf (buf, endbuf - buf, "-1");
2761 else
2762 write_ptid (buf, endbuf, ptid);
2763 putpkt (rs->buf);
2764 getpkt (&rs->buf, &rs->buf_size, 0);
2765 if (gen)
2766 rs->general_thread = ptid;
2767 else
2768 rs->continue_thread = ptid;
2769 }
2770
2771 void
2772 remote_target::set_general_thread (ptid_t ptid)
2773 {
2774 set_thread (ptid, 1);
2775 }
2776
2777 void
2778 remote_target::set_continue_thread (ptid_t ptid)
2779 {
2780 set_thread (ptid, 0);
2781 }
2782
2783 /* Change the remote current process. Which thread within the process
2784 ends up selected isn't important, as long as it is the same process
2785 as what INFERIOR_PTID points to.
2786
2787 This comes from that fact that there is no explicit notion of
2788 "selected process" in the protocol. The selected process for
2789 general operations is the process the selected general thread
2790 belongs to. */
2791
2792 void
2793 remote_target::set_general_process ()
2794 {
2795 struct remote_state *rs = get_remote_state ();
2796
2797 /* If the remote can't handle multiple processes, don't bother. */
2798 if (!remote_multi_process_p (rs))
2799 return;
2800
2801 /* We only need to change the remote current thread if it's pointing
2802 at some other process. */
2803 if (rs->general_thread.pid () != inferior_ptid.pid ())
2804 set_general_thread (inferior_ptid);
2805 }
2806
2807 \f
2808 /* Return nonzero if this is the main thread that we made up ourselves
2809 to model non-threaded targets as single-threaded. */
2810
2811 static int
2812 remote_thread_always_alive (ptid_t ptid)
2813 {
2814 if (ptid == magic_null_ptid)
2815 /* The main thread is always alive. */
2816 return 1;
2817
2818 if (ptid.pid () != 0 && ptid.lwp () == 0)
2819 /* The main thread is always alive. This can happen after a
2820 vAttach, if the remote side doesn't support
2821 multi-threading. */
2822 return 1;
2823
2824 return 0;
2825 }
2826
2827 /* Return nonzero if the thread PTID is still alive on the remote
2828 system. */
2829
2830 bool
2831 remote_target::thread_alive (ptid_t ptid)
2832 {
2833 struct remote_state *rs = get_remote_state ();
2834 char *p, *endp;
2835
2836 /* Check if this is a thread that we made up ourselves to model
2837 non-threaded targets as single-threaded. */
2838 if (remote_thread_always_alive (ptid))
2839 return 1;
2840
2841 p = rs->buf;
2842 endp = rs->buf + get_remote_packet_size ();
2843
2844 *p++ = 'T';
2845 write_ptid (p, endp, ptid);
2846
2847 putpkt (rs->buf);
2848 getpkt (&rs->buf, &rs->buf_size, 0);
2849 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2850 }
2851
2852 /* Return a pointer to a thread name if we know it and NULL otherwise.
2853 The thread_info object owns the memory for the name. */
2854
2855 const char *
2856 remote_target::thread_name (struct thread_info *info)
2857 {
2858 if (info->priv != NULL)
2859 {
2860 const std::string &name = get_remote_thread_info (info)->name;
2861 return !name.empty () ? name.c_str () : NULL;
2862 }
2863
2864 return NULL;
2865 }
2866
2867 /* About these extended threadlist and threadinfo packets. They are
2868 variable length packets but, the fields within them are often fixed
2869 length. They are redundent enough to send over UDP as is the
2870 remote protocol in general. There is a matching unit test module
2871 in libstub. */
2872
2873 /* WARNING: This threadref data structure comes from the remote O.S.,
2874 libstub protocol encoding, and remote.c. It is not particularly
2875 changable. */
2876
2877 /* Right now, the internal structure is int. We want it to be bigger.
2878 Plan to fix this. */
2879
2880 typedef int gdb_threadref; /* Internal GDB thread reference. */
2881
2882 /* gdb_ext_thread_info is an internal GDB data structure which is
2883 equivalent to the reply of the remote threadinfo packet. */
2884
2885 struct gdb_ext_thread_info
2886 {
2887 threadref threadid; /* External form of thread reference. */
2888 int active; /* Has state interesting to GDB?
2889 regs, stack. */
2890 char display[256]; /* Brief state display, name,
2891 blocked/suspended. */
2892 char shortname[32]; /* To be used to name threads. */
2893 char more_display[256]; /* Long info, statistics, queue depth,
2894 whatever. */
2895 };
2896
2897 /* The volume of remote transfers can be limited by submitting
2898 a mask containing bits specifying the desired information.
2899 Use a union of these values as the 'selection' parameter to
2900 get_thread_info. FIXME: Make these TAG names more thread specific. */
2901
2902 #define TAG_THREADID 1
2903 #define TAG_EXISTS 2
2904 #define TAG_DISPLAY 4
2905 #define TAG_THREADNAME 8
2906 #define TAG_MOREDISPLAY 16
2907
2908 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2909
2910 static char *unpack_nibble (char *buf, int *val);
2911
2912 static char *unpack_byte (char *buf, int *value);
2913
2914 static char *pack_int (char *buf, int value);
2915
2916 static char *unpack_int (char *buf, int *value);
2917
2918 static char *unpack_string (char *src, char *dest, int length);
2919
2920 static char *pack_threadid (char *pkt, threadref *id);
2921
2922 static char *unpack_threadid (char *inbuf, threadref *id);
2923
2924 void int_to_threadref (threadref *id, int value);
2925
2926 static int threadref_to_int (threadref *ref);
2927
2928 static void copy_threadref (threadref *dest, threadref *src);
2929
2930 static int threadmatch (threadref *dest, threadref *src);
2931
2932 static char *pack_threadinfo_request (char *pkt, int mode,
2933 threadref *id);
2934
2935 static char *pack_threadlist_request (char *pkt, int startflag,
2936 int threadcount,
2937 threadref *nextthread);
2938
2939 static int remote_newthread_step (threadref *ref, void *context);
2940
2941
2942 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2943 buffer we're allowed to write to. Returns
2944 BUF+CHARACTERS_WRITTEN. */
2945
2946 char *
2947 remote_target::write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2948 {
2949 int pid, tid;
2950 struct remote_state *rs = get_remote_state ();
2951
2952 if (remote_multi_process_p (rs))
2953 {
2954 pid = ptid.pid ();
2955 if (pid < 0)
2956 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2957 else
2958 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2959 }
2960 tid = ptid.lwp ();
2961 if (tid < 0)
2962 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2963 else
2964 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2965
2966 return buf;
2967 }
2968
2969 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
2970 last parsed char. Returns null_ptid if no thread id is found, and
2971 throws an error if the thread id has an invalid format. */
2972
2973 static ptid_t
2974 read_ptid (const char *buf, const char **obuf)
2975 {
2976 const char *p = buf;
2977 const char *pp;
2978 ULONGEST pid = 0, tid = 0;
2979
2980 if (*p == 'p')
2981 {
2982 /* Multi-process ptid. */
2983 pp = unpack_varlen_hex (p + 1, &pid);
2984 if (*pp != '.')
2985 error (_("invalid remote ptid: %s"), p);
2986
2987 p = pp;
2988 pp = unpack_varlen_hex (p + 1, &tid);
2989 if (obuf)
2990 *obuf = pp;
2991 return ptid_t (pid, tid, 0);
2992 }
2993
2994 /* No multi-process. Just a tid. */
2995 pp = unpack_varlen_hex (p, &tid);
2996
2997 /* Return null_ptid when no thread id is found. */
2998 if (p == pp)
2999 {
3000 if (obuf)
3001 *obuf = pp;
3002 return null_ptid;
3003 }
3004
3005 /* Since the stub is not sending a process id, then default to
3006 what's in inferior_ptid, unless it's null at this point. If so,
3007 then since there's no way to know the pid of the reported
3008 threads, use the magic number. */
3009 if (inferior_ptid == null_ptid)
3010 pid = magic_null_ptid.pid ();
3011 else
3012 pid = inferior_ptid.pid ();
3013
3014 if (obuf)
3015 *obuf = pp;
3016 return ptid_t (pid, tid, 0);
3017 }
3018
3019 static int
3020 stubhex (int ch)
3021 {
3022 if (ch >= 'a' && ch <= 'f')
3023 return ch - 'a' + 10;
3024 if (ch >= '0' && ch <= '9')
3025 return ch - '0';
3026 if (ch >= 'A' && ch <= 'F')
3027 return ch - 'A' + 10;
3028 return -1;
3029 }
3030
3031 static int
3032 stub_unpack_int (char *buff, int fieldlength)
3033 {
3034 int nibble;
3035 int retval = 0;
3036
3037 while (fieldlength)
3038 {
3039 nibble = stubhex (*buff++);
3040 retval |= nibble;
3041 fieldlength--;
3042 if (fieldlength)
3043 retval = retval << 4;
3044 }
3045 return retval;
3046 }
3047
3048 static char *
3049 unpack_nibble (char *buf, int *val)
3050 {
3051 *val = fromhex (*buf++);
3052 return buf;
3053 }
3054
3055 static char *
3056 unpack_byte (char *buf, int *value)
3057 {
3058 *value = stub_unpack_int (buf, 2);
3059 return buf + 2;
3060 }
3061
3062 static char *
3063 pack_int (char *buf, int value)
3064 {
3065 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
3066 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
3067 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
3068 buf = pack_hex_byte (buf, (value & 0xff));
3069 return buf;
3070 }
3071
3072 static char *
3073 unpack_int (char *buf, int *value)
3074 {
3075 *value = stub_unpack_int (buf, 8);
3076 return buf + 8;
3077 }
3078
3079 #if 0 /* Currently unused, uncomment when needed. */
3080 static char *pack_string (char *pkt, char *string);
3081
3082 static char *
3083 pack_string (char *pkt, char *string)
3084 {
3085 char ch;
3086 int len;
3087
3088 len = strlen (string);
3089 if (len > 200)
3090 len = 200; /* Bigger than most GDB packets, junk??? */
3091 pkt = pack_hex_byte (pkt, len);
3092 while (len-- > 0)
3093 {
3094 ch = *string++;
3095 if ((ch == '\0') || (ch == '#'))
3096 ch = '*'; /* Protect encapsulation. */
3097 *pkt++ = ch;
3098 }
3099 return pkt;
3100 }
3101 #endif /* 0 (unused) */
3102
3103 static char *
3104 unpack_string (char *src, char *dest, int length)
3105 {
3106 while (length--)
3107 *dest++ = *src++;
3108 *dest = '\0';
3109 return src;
3110 }
3111
3112 static char *
3113 pack_threadid (char *pkt, threadref *id)
3114 {
3115 char *limit;
3116 unsigned char *altid;
3117
3118 altid = (unsigned char *) id;
3119 limit = pkt + BUF_THREAD_ID_SIZE;
3120 while (pkt < limit)
3121 pkt = pack_hex_byte (pkt, *altid++);
3122 return pkt;
3123 }
3124
3125
3126 static char *
3127 unpack_threadid (char *inbuf, threadref *id)
3128 {
3129 char *altref;
3130 char *limit = inbuf + BUF_THREAD_ID_SIZE;
3131 int x, y;
3132
3133 altref = (char *) id;
3134
3135 while (inbuf < limit)
3136 {
3137 x = stubhex (*inbuf++);
3138 y = stubhex (*inbuf++);
3139 *altref++ = (x << 4) | y;
3140 }
3141 return inbuf;
3142 }
3143
3144 /* Externally, threadrefs are 64 bits but internally, they are still
3145 ints. This is due to a mismatch of specifications. We would like
3146 to use 64bit thread references internally. This is an adapter
3147 function. */
3148
3149 void
3150 int_to_threadref (threadref *id, int value)
3151 {
3152 unsigned char *scan;
3153
3154 scan = (unsigned char *) id;
3155 {
3156 int i = 4;
3157 while (i--)
3158 *scan++ = 0;
3159 }
3160 *scan++ = (value >> 24) & 0xff;
3161 *scan++ = (value >> 16) & 0xff;
3162 *scan++ = (value >> 8) & 0xff;
3163 *scan++ = (value & 0xff);
3164 }
3165
3166 static int
3167 threadref_to_int (threadref *ref)
3168 {
3169 int i, value = 0;
3170 unsigned char *scan;
3171
3172 scan = *ref;
3173 scan += 4;
3174 i = 4;
3175 while (i-- > 0)
3176 value = (value << 8) | ((*scan++) & 0xff);
3177 return value;
3178 }
3179
3180 static void
3181 copy_threadref (threadref *dest, threadref *src)
3182 {
3183 int i;
3184 unsigned char *csrc, *cdest;
3185
3186 csrc = (unsigned char *) src;
3187 cdest = (unsigned char *) dest;
3188 i = 8;
3189 while (i--)
3190 *cdest++ = *csrc++;
3191 }
3192
3193 static int
3194 threadmatch (threadref *dest, threadref *src)
3195 {
3196 /* Things are broken right now, so just assume we got a match. */
3197 #if 0
3198 unsigned char *srcp, *destp;
3199 int i, result;
3200 srcp = (char *) src;
3201 destp = (char *) dest;
3202
3203 result = 1;
3204 while (i-- > 0)
3205 result &= (*srcp++ == *destp++) ? 1 : 0;
3206 return result;
3207 #endif
3208 return 1;
3209 }
3210
3211 /*
3212 threadid:1, # always request threadid
3213 context_exists:2,
3214 display:4,
3215 unique_name:8,
3216 more_display:16
3217 */
3218
3219 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
3220
3221 static char *
3222 pack_threadinfo_request (char *pkt, int mode, threadref *id)
3223 {
3224 *pkt++ = 'q'; /* Info Query */
3225 *pkt++ = 'P'; /* process or thread info */
3226 pkt = pack_int (pkt, mode); /* mode */
3227 pkt = pack_threadid (pkt, id); /* threadid */
3228 *pkt = '\0'; /* terminate */
3229 return pkt;
3230 }
3231
3232 /* These values tag the fields in a thread info response packet. */
3233 /* Tagging the fields allows us to request specific fields and to
3234 add more fields as time goes by. */
3235
3236 #define TAG_THREADID 1 /* Echo the thread identifier. */
3237 #define TAG_EXISTS 2 /* Is this process defined enough to
3238 fetch registers and its stack? */
3239 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
3240 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
3241 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
3242 the process. */
3243
3244 int
3245 remote_target::remote_unpack_thread_info_response (char *pkt,
3246 threadref *expectedref,
3247 gdb_ext_thread_info *info)
3248 {
3249 struct remote_state *rs = get_remote_state ();
3250 int mask, length;
3251 int tag;
3252 threadref ref;
3253 char *limit = pkt + rs->buf_size; /* Plausible parsing limit. */
3254 int retval = 1;
3255
3256 /* info->threadid = 0; FIXME: implement zero_threadref. */
3257 info->active = 0;
3258 info->display[0] = '\0';
3259 info->shortname[0] = '\0';
3260 info->more_display[0] = '\0';
3261
3262 /* Assume the characters indicating the packet type have been
3263 stripped. */
3264 pkt = unpack_int (pkt, &mask); /* arg mask */
3265 pkt = unpack_threadid (pkt, &ref);
3266
3267 if (mask == 0)
3268 warning (_("Incomplete response to threadinfo request."));
3269 if (!threadmatch (&ref, expectedref))
3270 { /* This is an answer to a different request. */
3271 warning (_("ERROR RMT Thread info mismatch."));
3272 return 0;
3273 }
3274 copy_threadref (&info->threadid, &ref);
3275
3276 /* Loop on tagged fields , try to bail if somthing goes wrong. */
3277
3278 /* Packets are terminated with nulls. */
3279 while ((pkt < limit) && mask && *pkt)
3280 {
3281 pkt = unpack_int (pkt, &tag); /* tag */
3282 pkt = unpack_byte (pkt, &length); /* length */
3283 if (!(tag & mask)) /* Tags out of synch with mask. */
3284 {
3285 warning (_("ERROR RMT: threadinfo tag mismatch."));
3286 retval = 0;
3287 break;
3288 }
3289 if (tag == TAG_THREADID)
3290 {
3291 if (length != 16)
3292 {
3293 warning (_("ERROR RMT: length of threadid is not 16."));
3294 retval = 0;
3295 break;
3296 }
3297 pkt = unpack_threadid (pkt, &ref);
3298 mask = mask & ~TAG_THREADID;
3299 continue;
3300 }
3301 if (tag == TAG_EXISTS)
3302 {
3303 info->active = stub_unpack_int (pkt, length);
3304 pkt += length;
3305 mask = mask & ~(TAG_EXISTS);
3306 if (length > 8)
3307 {
3308 warning (_("ERROR RMT: 'exists' length too long."));
3309 retval = 0;
3310 break;
3311 }
3312 continue;
3313 }
3314 if (tag == TAG_THREADNAME)
3315 {
3316 pkt = unpack_string (pkt, &info->shortname[0], length);
3317 mask = mask & ~TAG_THREADNAME;
3318 continue;
3319 }
3320 if (tag == TAG_DISPLAY)
3321 {
3322 pkt = unpack_string (pkt, &info->display[0], length);
3323 mask = mask & ~TAG_DISPLAY;
3324 continue;
3325 }
3326 if (tag == TAG_MOREDISPLAY)
3327 {
3328 pkt = unpack_string (pkt, &info->more_display[0], length);
3329 mask = mask & ~TAG_MOREDISPLAY;
3330 continue;
3331 }
3332 warning (_("ERROR RMT: unknown thread info tag."));
3333 break; /* Not a tag we know about. */
3334 }
3335 return retval;
3336 }
3337
3338 int
3339 remote_target::remote_get_threadinfo (threadref *threadid,
3340 int fieldset,
3341 gdb_ext_thread_info *info)
3342 {
3343 struct remote_state *rs = get_remote_state ();
3344 int result;
3345
3346 pack_threadinfo_request (rs->buf, fieldset, threadid);
3347 putpkt (rs->buf);
3348 getpkt (&rs->buf, &rs->buf_size, 0);
3349
3350 if (rs->buf[0] == '\0')
3351 return 0;
3352
3353 result = remote_unpack_thread_info_response (rs->buf + 2,
3354 threadid, info);
3355 return result;
3356 }
3357
3358 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3359
3360 static char *
3361 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3362 threadref *nextthread)
3363 {
3364 *pkt++ = 'q'; /* info query packet */
3365 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3366 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3367 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3368 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3369 *pkt = '\0';
3370 return pkt;
3371 }
3372
3373 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3374
3375 int
3376 remote_target::parse_threadlist_response (char *pkt, int result_limit,
3377 threadref *original_echo,
3378 threadref *resultlist,
3379 int *doneflag)
3380 {
3381 struct remote_state *rs = get_remote_state ();
3382 char *limit;
3383 int count, resultcount, done;
3384
3385 resultcount = 0;
3386 /* Assume the 'q' and 'M chars have been stripped. */
3387 limit = pkt + (rs->buf_size - BUF_THREAD_ID_SIZE);
3388 /* done parse past here */
3389 pkt = unpack_byte (pkt, &count); /* count field */
3390 pkt = unpack_nibble (pkt, &done);
3391 /* The first threadid is the argument threadid. */
3392 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3393 while ((count-- > 0) && (pkt < limit))
3394 {
3395 pkt = unpack_threadid (pkt, resultlist++);
3396 if (resultcount++ >= result_limit)
3397 break;
3398 }
3399 if (doneflag)
3400 *doneflag = done;
3401 return resultcount;
3402 }
3403
3404 /* Fetch the next batch of threads from the remote. Returns -1 if the
3405 qL packet is not supported, 0 on error and 1 on success. */
3406
3407 int
3408 remote_target::remote_get_threadlist (int startflag, threadref *nextthread,
3409 int result_limit, int *done, int *result_count,
3410 threadref *threadlist)
3411 {
3412 struct remote_state *rs = get_remote_state ();
3413 int result = 1;
3414
3415 /* Trancate result limit to be smaller than the packet size. */
3416 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3417 >= get_remote_packet_size ())
3418 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3419
3420 pack_threadlist_request (rs->buf, startflag, result_limit, nextthread);
3421 putpkt (rs->buf);
3422 getpkt (&rs->buf, &rs->buf_size, 0);
3423 if (*rs->buf == '\0')
3424 {
3425 /* Packet not supported. */
3426 return -1;
3427 }
3428
3429 *result_count =
3430 parse_threadlist_response (rs->buf + 2, result_limit,
3431 &rs->echo_nextthread, threadlist, done);
3432
3433 if (!threadmatch (&rs->echo_nextthread, nextthread))
3434 {
3435 /* FIXME: This is a good reason to drop the packet. */
3436 /* Possably, there is a duplicate response. */
3437 /* Possabilities :
3438 retransmit immediatly - race conditions
3439 retransmit after timeout - yes
3440 exit
3441 wait for packet, then exit
3442 */
3443 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3444 return 0; /* I choose simply exiting. */
3445 }
3446 if (*result_count <= 0)
3447 {
3448 if (*done != 1)
3449 {
3450 warning (_("RMT ERROR : failed to get remote thread list."));
3451 result = 0;
3452 }
3453 return result; /* break; */
3454 }
3455 if (*result_count > result_limit)
3456 {
3457 *result_count = 0;
3458 warning (_("RMT ERROR: threadlist response longer than requested."));
3459 return 0;
3460 }
3461 return result;
3462 }
3463
3464 /* Fetch the list of remote threads, with the qL packet, and call
3465 STEPFUNCTION for each thread found. Stops iterating and returns 1
3466 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3467 STEPFUNCTION returns false. If the packet is not supported,
3468 returns -1. */
3469
3470 int
3471 remote_target::remote_threadlist_iterator (rmt_thread_action stepfunction,
3472 void *context, int looplimit)
3473 {
3474 struct remote_state *rs = get_remote_state ();
3475 int done, i, result_count;
3476 int startflag = 1;
3477 int result = 1;
3478 int loopcount = 0;
3479
3480 done = 0;
3481 while (!done)
3482 {
3483 if (loopcount++ > looplimit)
3484 {
3485 result = 0;
3486 warning (_("Remote fetch threadlist -infinite loop-."));
3487 break;
3488 }
3489 result = remote_get_threadlist (startflag, &rs->nextthread,
3490 MAXTHREADLISTRESULTS,
3491 &done, &result_count,
3492 rs->resultthreadlist);
3493 if (result <= 0)
3494 break;
3495 /* Clear for later iterations. */
3496 startflag = 0;
3497 /* Setup to resume next batch of thread references, set nextthread. */
3498 if (result_count >= 1)
3499 copy_threadref (&rs->nextthread,
3500 &rs->resultthreadlist[result_count - 1]);
3501 i = 0;
3502 while (result_count--)
3503 {
3504 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3505 {
3506 result = 0;
3507 break;
3508 }
3509 }
3510 }
3511 return result;
3512 }
3513
3514 /* A thread found on the remote target. */
3515
3516 struct thread_item
3517 {
3518 explicit thread_item (ptid_t ptid_)
3519 : ptid (ptid_)
3520 {}
3521
3522 thread_item (thread_item &&other) = default;
3523 thread_item &operator= (thread_item &&other) = default;
3524
3525 DISABLE_COPY_AND_ASSIGN (thread_item);
3526
3527 /* The thread's PTID. */
3528 ptid_t ptid;
3529
3530 /* The thread's extra info. */
3531 std::string extra;
3532
3533 /* The thread's name. */
3534 std::string name;
3535
3536 /* The core the thread was running on. -1 if not known. */
3537 int core = -1;
3538
3539 /* The thread handle associated with the thread. */
3540 gdb::byte_vector thread_handle;
3541 };
3542
3543 /* Context passed around to the various methods listing remote
3544 threads. As new threads are found, they're added to the ITEMS
3545 vector. */
3546
3547 struct threads_listing_context
3548 {
3549 /* Return true if this object contains an entry for a thread with ptid
3550 PTID. */
3551
3552 bool contains_thread (ptid_t ptid) const
3553 {
3554 auto match_ptid = [&] (const thread_item &item)
3555 {
3556 return item.ptid == ptid;
3557 };
3558
3559 auto it = std::find_if (this->items.begin (),
3560 this->items.end (),
3561 match_ptid);
3562
3563 return it != this->items.end ();
3564 }
3565
3566 /* Remove the thread with ptid PTID. */
3567
3568 void remove_thread (ptid_t ptid)
3569 {
3570 auto match_ptid = [&] (const thread_item &item)
3571 {
3572 return item.ptid == ptid;
3573 };
3574
3575 auto it = std::remove_if (this->items.begin (),
3576 this->items.end (),
3577 match_ptid);
3578
3579 if (it != this->items.end ())
3580 this->items.erase (it);
3581 }
3582
3583 /* The threads found on the remote target. */
3584 std::vector<thread_item> items;
3585 };
3586
3587 static int
3588 remote_newthread_step (threadref *ref, void *data)
3589 {
3590 struct threads_listing_context *context
3591 = (struct threads_listing_context *) data;
3592 int pid = inferior_ptid.pid ();
3593 int lwp = threadref_to_int (ref);
3594 ptid_t ptid (pid, lwp);
3595
3596 context->items.emplace_back (ptid);
3597
3598 return 1; /* continue iterator */
3599 }
3600
3601 #define CRAZY_MAX_THREADS 1000
3602
3603 ptid_t
3604 remote_target::remote_current_thread (ptid_t oldpid)
3605 {
3606 struct remote_state *rs = get_remote_state ();
3607
3608 putpkt ("qC");
3609 getpkt (&rs->buf, &rs->buf_size, 0);
3610 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3611 {
3612 const char *obuf;
3613 ptid_t result;
3614
3615 result = read_ptid (&rs->buf[2], &obuf);
3616 if (*obuf != '\0' && remote_debug)
3617 fprintf_unfiltered (gdb_stdlog,
3618 "warning: garbage in qC reply\n");
3619
3620 return result;
3621 }
3622 else
3623 return oldpid;
3624 }
3625
3626 /* List remote threads using the deprecated qL packet. */
3627
3628 int
3629 remote_target::remote_get_threads_with_ql (threads_listing_context *context)
3630 {
3631 if (remote_threadlist_iterator (remote_newthread_step, context,
3632 CRAZY_MAX_THREADS) >= 0)
3633 return 1;
3634
3635 return 0;
3636 }
3637
3638 #if defined(HAVE_LIBEXPAT)
3639
3640 static void
3641 start_thread (struct gdb_xml_parser *parser,
3642 const struct gdb_xml_element *element,
3643 void *user_data,
3644 std::vector<gdb_xml_value> &attributes)
3645 {
3646 struct threads_listing_context *data
3647 = (struct threads_listing_context *) user_data;
3648 struct gdb_xml_value *attr;
3649
3650 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3651 ptid_t ptid = read_ptid (id, NULL);
3652
3653 data->items.emplace_back (ptid);
3654 thread_item &item = data->items.back ();
3655
3656 attr = xml_find_attribute (attributes, "core");
3657 if (attr != NULL)
3658 item.core = *(ULONGEST *) attr->value.get ();
3659
3660 attr = xml_find_attribute (attributes, "name");
3661 if (attr != NULL)
3662 item.name = (const char *) attr->value.get ();
3663
3664 attr = xml_find_attribute (attributes, "handle");
3665 if (attr != NULL)
3666 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3667 }
3668
3669 static void
3670 end_thread (struct gdb_xml_parser *parser,
3671 const struct gdb_xml_element *element,
3672 void *user_data, const char *body_text)
3673 {
3674 struct threads_listing_context *data
3675 = (struct threads_listing_context *) user_data;
3676
3677 if (body_text != NULL && *body_text != '\0')
3678 data->items.back ().extra = body_text;
3679 }
3680
3681 const struct gdb_xml_attribute thread_attributes[] = {
3682 { "id", GDB_XML_AF_NONE, NULL, NULL },
3683 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3684 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3685 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3686 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3687 };
3688
3689 const struct gdb_xml_element thread_children[] = {
3690 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3691 };
3692
3693 const struct gdb_xml_element threads_children[] = {
3694 { "thread", thread_attributes, thread_children,
3695 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3696 start_thread, end_thread },
3697 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3698 };
3699
3700 const struct gdb_xml_element threads_elements[] = {
3701 { "threads", NULL, threads_children,
3702 GDB_XML_EF_NONE, NULL, NULL },
3703 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3704 };
3705
3706 #endif
3707
3708 /* List remote threads using qXfer:threads:read. */
3709
3710 int
3711 remote_target::remote_get_threads_with_qxfer (threads_listing_context *context)
3712 {
3713 #if defined(HAVE_LIBEXPAT)
3714 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3715 {
3716 gdb::optional<gdb::char_vector> xml
3717 = target_read_stralloc (this, TARGET_OBJECT_THREADS, NULL);
3718
3719 if (xml && (*xml)[0] != '\0')
3720 {
3721 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3722 threads_elements, xml->data (), context);
3723 }
3724
3725 return 1;
3726 }
3727 #endif
3728
3729 return 0;
3730 }
3731
3732 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3733
3734 int
3735 remote_target::remote_get_threads_with_qthreadinfo (threads_listing_context *context)
3736 {
3737 struct remote_state *rs = get_remote_state ();
3738
3739 if (rs->use_threadinfo_query)
3740 {
3741 const char *bufp;
3742
3743 putpkt ("qfThreadInfo");
3744 getpkt (&rs->buf, &rs->buf_size, 0);
3745 bufp = rs->buf;
3746 if (bufp[0] != '\0') /* q packet recognized */
3747 {
3748 while (*bufp++ == 'm') /* reply contains one or more TID */
3749 {
3750 do
3751 {
3752 ptid_t ptid = read_ptid (bufp, &bufp);
3753 context->items.emplace_back (ptid);
3754 }
3755 while (*bufp++ == ','); /* comma-separated list */
3756 putpkt ("qsThreadInfo");
3757 getpkt (&rs->buf, &rs->buf_size, 0);
3758 bufp = rs->buf;
3759 }
3760 return 1;
3761 }
3762 else
3763 {
3764 /* Packet not recognized. */
3765 rs->use_threadinfo_query = 0;
3766 }
3767 }
3768
3769 return 0;
3770 }
3771
3772 /* Implement the to_update_thread_list function for the remote
3773 targets. */
3774
3775 void
3776 remote_target::update_thread_list ()
3777 {
3778 struct threads_listing_context context;
3779 int got_list = 0;
3780
3781 /* We have a few different mechanisms to fetch the thread list. Try
3782 them all, starting with the most preferred one first, falling
3783 back to older methods. */
3784 if (remote_get_threads_with_qxfer (&context)
3785 || remote_get_threads_with_qthreadinfo (&context)
3786 || remote_get_threads_with_ql (&context))
3787 {
3788 struct thread_info *tp, *tmp;
3789
3790 got_list = 1;
3791
3792 if (context.items.empty ()
3793 && remote_thread_always_alive (inferior_ptid))
3794 {
3795 /* Some targets don't really support threads, but still
3796 reply an (empty) thread list in response to the thread
3797 listing packets, instead of replying "packet not
3798 supported". Exit early so we don't delete the main
3799 thread. */
3800 return;
3801 }
3802
3803 /* CONTEXT now holds the current thread list on the remote
3804 target end. Delete GDB-side threads no longer found on the
3805 target. */
3806 ALL_THREADS_SAFE (tp, tmp)
3807 {
3808 if (!context.contains_thread (tp->ptid))
3809 {
3810 /* Not found. */
3811 delete_thread (tp);
3812 }
3813 }
3814
3815 /* Remove any unreported fork child threads from CONTEXT so
3816 that we don't interfere with follow fork, which is where
3817 creation of such threads is handled. */
3818 remove_new_fork_children (&context);
3819
3820 /* And now add threads we don't know about yet to our list. */
3821 for (thread_item &item : context.items)
3822 {
3823 if (item.ptid != null_ptid)
3824 {
3825 /* In non-stop mode, we assume new found threads are
3826 executing until proven otherwise with a stop reply.
3827 In all-stop, we can only get here if all threads are
3828 stopped. */
3829 int executing = target_is_non_stop_p () ? 1 : 0;
3830
3831 remote_notice_new_inferior (item.ptid, executing);
3832
3833 tp = find_thread_ptid (item.ptid);
3834 remote_thread_info *info = get_remote_thread_info (tp);
3835 info->core = item.core;
3836 info->extra = std::move (item.extra);
3837 info->name = std::move (item.name);
3838 info->thread_handle = std::move (item.thread_handle);
3839 }
3840 }
3841 }
3842
3843 if (!got_list)
3844 {
3845 /* If no thread listing method is supported, then query whether
3846 each known thread is alive, one by one, with the T packet.
3847 If the target doesn't support threads at all, then this is a
3848 no-op. See remote_thread_alive. */
3849 prune_threads ();
3850 }
3851 }
3852
3853 /*
3854 * Collect a descriptive string about the given thread.
3855 * The target may say anything it wants to about the thread
3856 * (typically info about its blocked / runnable state, name, etc.).
3857 * This string will appear in the info threads display.
3858 *
3859 * Optional: targets are not required to implement this function.
3860 */
3861
3862 const char *
3863 remote_target::extra_thread_info (thread_info *tp)
3864 {
3865 struct remote_state *rs = get_remote_state ();
3866 int set;
3867 threadref id;
3868 struct gdb_ext_thread_info threadinfo;
3869
3870 if (rs->remote_desc == 0) /* paranoia */
3871 internal_error (__FILE__, __LINE__,
3872 _("remote_threads_extra_info"));
3873
3874 if (tp->ptid == magic_null_ptid
3875 || (tp->ptid.pid () != 0 && tp->ptid.lwp () == 0))
3876 /* This is the main thread which was added by GDB. The remote
3877 server doesn't know about it. */
3878 return NULL;
3879
3880 std::string &extra = get_remote_thread_info (tp)->extra;
3881
3882 /* If already have cached info, use it. */
3883 if (!extra.empty ())
3884 return extra.c_str ();
3885
3886 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3887 {
3888 /* If we're using qXfer:threads:read, then the extra info is
3889 included in the XML. So if we didn't have anything cached,
3890 it's because there's really no extra info. */
3891 return NULL;
3892 }
3893
3894 if (rs->use_threadextra_query)
3895 {
3896 char *b = rs->buf;
3897 char *endb = rs->buf + get_remote_packet_size ();
3898
3899 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3900 b += strlen (b);
3901 write_ptid (b, endb, tp->ptid);
3902
3903 putpkt (rs->buf);
3904 getpkt (&rs->buf, &rs->buf_size, 0);
3905 if (rs->buf[0] != 0)
3906 {
3907 extra.resize (strlen (rs->buf) / 2);
3908 hex2bin (rs->buf, (gdb_byte *) &extra[0], extra.size ());
3909 return extra.c_str ();
3910 }
3911 }
3912
3913 /* If the above query fails, fall back to the old method. */
3914 rs->use_threadextra_query = 0;
3915 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3916 | TAG_MOREDISPLAY | TAG_DISPLAY;
3917 int_to_threadref (&id, tp->ptid.lwp ());
3918 if (remote_get_threadinfo (&id, set, &threadinfo))
3919 if (threadinfo.active)
3920 {
3921 if (*threadinfo.shortname)
3922 string_appendf (extra, " Name: %s", threadinfo.shortname);
3923 if (*threadinfo.display)
3924 {
3925 if (!extra.empty ())
3926 extra += ',';
3927 string_appendf (extra, " State: %s", threadinfo.display);
3928 }
3929 if (*threadinfo.more_display)
3930 {
3931 if (!extra.empty ())
3932 extra += ',';
3933 string_appendf (extra, " Priority: %s", threadinfo.more_display);
3934 }
3935 return extra.c_str ();
3936 }
3937 return NULL;
3938 }
3939 \f
3940
3941 bool
3942 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
3943 struct static_tracepoint_marker *marker)
3944 {
3945 struct remote_state *rs = get_remote_state ();
3946 char *p = rs->buf;
3947
3948 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3949 p += strlen (p);
3950 p += hexnumstr (p, addr);
3951 putpkt (rs->buf);
3952 getpkt (&rs->buf, &rs->buf_size, 0);
3953 p = rs->buf;
3954
3955 if (*p == 'E')
3956 error (_("Remote failure reply: %s"), p);
3957
3958 if (*p++ == 'm')
3959 {
3960 parse_static_tracepoint_marker_definition (p, NULL, marker);
3961 return true;
3962 }
3963
3964 return false;
3965 }
3966
3967 std::vector<static_tracepoint_marker>
3968 remote_target::static_tracepoint_markers_by_strid (const char *strid)
3969 {
3970 struct remote_state *rs = get_remote_state ();
3971 std::vector<static_tracepoint_marker> markers;
3972 const char *p;
3973 static_tracepoint_marker marker;
3974
3975 /* Ask for a first packet of static tracepoint marker
3976 definition. */
3977 putpkt ("qTfSTM");
3978 getpkt (&rs->buf, &rs->buf_size, 0);
3979 p = rs->buf;
3980 if (*p == 'E')
3981 error (_("Remote failure reply: %s"), p);
3982
3983 while (*p++ == 'm')
3984 {
3985 do
3986 {
3987 parse_static_tracepoint_marker_definition (p, &p, &marker);
3988
3989 if (strid == NULL || marker.str_id == strid)
3990 markers.push_back (std::move (marker));
3991 }
3992 while (*p++ == ','); /* comma-separated list */
3993 /* Ask for another packet of static tracepoint definition. */
3994 putpkt ("qTsSTM");
3995 getpkt (&rs->buf, &rs->buf_size, 0);
3996 p = rs->buf;
3997 }
3998
3999 return markers;
4000 }
4001
4002 \f
4003 /* Implement the to_get_ada_task_ptid function for the remote targets. */
4004
4005 ptid_t
4006 remote_target::get_ada_task_ptid (long lwp, long thread)
4007 {
4008 return ptid_t (inferior_ptid.pid (), lwp, 0);
4009 }
4010 \f
4011
4012 /* Restart the remote side; this is an extended protocol operation. */
4013
4014 void
4015 remote_target::extended_remote_restart ()
4016 {
4017 struct remote_state *rs = get_remote_state ();
4018
4019 /* Send the restart command; for reasons I don't understand the
4020 remote side really expects a number after the "R". */
4021 xsnprintf (rs->buf, get_remote_packet_size (), "R%x", 0);
4022 putpkt (rs->buf);
4023
4024 remote_fileio_reset ();
4025 }
4026 \f
4027 /* Clean up connection to a remote debugger. */
4028
4029 void
4030 remote_target::close ()
4031 {
4032 /* Make sure we leave stdin registered in the event loop. */
4033 terminal_ours ();
4034
4035 /* We don't have a connection to the remote stub anymore. Get rid
4036 of all the inferiors and their threads we were controlling.
4037 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
4038 will be unable to find the thread corresponding to (pid, 0, 0). */
4039 inferior_ptid = null_ptid;
4040 discard_all_inferiors ();
4041
4042 trace_reset_local_state ();
4043
4044 delete this;
4045 }
4046
4047 remote_target::~remote_target ()
4048 {
4049 struct remote_state *rs = get_remote_state ();
4050
4051 /* Check for NULL because we may get here with a partially
4052 constructed target/connection. */
4053 if (rs->remote_desc == nullptr)
4054 return;
4055
4056 serial_close (rs->remote_desc);
4057
4058 /* We are destroying the remote target, so we should discard
4059 everything of this target. */
4060 discard_pending_stop_replies_in_queue ();
4061
4062 if (rs->remote_async_inferior_event_token)
4063 delete_async_event_handler (&rs->remote_async_inferior_event_token);
4064
4065 remote_notif_state_xfree (rs->notif_state);
4066 }
4067
4068 /* Query the remote side for the text, data and bss offsets. */
4069
4070 void
4071 remote_target::get_offsets ()
4072 {
4073 struct remote_state *rs = get_remote_state ();
4074 char *buf;
4075 char *ptr;
4076 int lose, num_segments = 0, do_sections, do_segments;
4077 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
4078 struct section_offsets *offs;
4079 struct symfile_segment_data *data;
4080
4081 if (symfile_objfile == NULL)
4082 return;
4083
4084 putpkt ("qOffsets");
4085 getpkt (&rs->buf, &rs->buf_size, 0);
4086 buf = rs->buf;
4087
4088 if (buf[0] == '\000')
4089 return; /* Return silently. Stub doesn't support
4090 this command. */
4091 if (buf[0] == 'E')
4092 {
4093 warning (_("Remote failure reply: %s"), buf);
4094 return;
4095 }
4096
4097 /* Pick up each field in turn. This used to be done with scanf, but
4098 scanf will make trouble if CORE_ADDR size doesn't match
4099 conversion directives correctly. The following code will work
4100 with any size of CORE_ADDR. */
4101 text_addr = data_addr = bss_addr = 0;
4102 ptr = buf;
4103 lose = 0;
4104
4105 if (startswith (ptr, "Text="))
4106 {
4107 ptr += 5;
4108 /* Don't use strtol, could lose on big values. */
4109 while (*ptr && *ptr != ';')
4110 text_addr = (text_addr << 4) + fromhex (*ptr++);
4111
4112 if (startswith (ptr, ";Data="))
4113 {
4114 ptr += 6;
4115 while (*ptr && *ptr != ';')
4116 data_addr = (data_addr << 4) + fromhex (*ptr++);
4117 }
4118 else
4119 lose = 1;
4120
4121 if (!lose && startswith (ptr, ";Bss="))
4122 {
4123 ptr += 5;
4124 while (*ptr && *ptr != ';')
4125 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
4126
4127 if (bss_addr != data_addr)
4128 warning (_("Target reported unsupported offsets: %s"), buf);
4129 }
4130 else
4131 lose = 1;
4132 }
4133 else if (startswith (ptr, "TextSeg="))
4134 {
4135 ptr += 8;
4136 /* Don't use strtol, could lose on big values. */
4137 while (*ptr && *ptr != ';')
4138 text_addr = (text_addr << 4) + fromhex (*ptr++);
4139 num_segments = 1;
4140
4141 if (startswith (ptr, ";DataSeg="))
4142 {
4143 ptr += 9;
4144 while (*ptr && *ptr != ';')
4145 data_addr = (data_addr << 4) + fromhex (*ptr++);
4146 num_segments++;
4147 }
4148 }
4149 else
4150 lose = 1;
4151
4152 if (lose)
4153 error (_("Malformed response to offset query, %s"), buf);
4154 else if (*ptr != '\0')
4155 warning (_("Target reported unsupported offsets: %s"), buf);
4156
4157 offs = ((struct section_offsets *)
4158 alloca (SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections)));
4159 memcpy (offs, symfile_objfile->section_offsets,
4160 SIZEOF_N_SECTION_OFFSETS (symfile_objfile->num_sections));
4161
4162 data = get_symfile_segment_data (symfile_objfile->obfd);
4163 do_segments = (data != NULL);
4164 do_sections = num_segments == 0;
4165
4166 if (num_segments > 0)
4167 {
4168 segments[0] = text_addr;
4169 segments[1] = data_addr;
4170 }
4171 /* If we have two segments, we can still try to relocate everything
4172 by assuming that the .text and .data offsets apply to the whole
4173 text and data segments. Convert the offsets given in the packet
4174 to base addresses for symfile_map_offsets_to_segments. */
4175 else if (data && data->num_segments == 2)
4176 {
4177 segments[0] = data->segment_bases[0] + text_addr;
4178 segments[1] = data->segment_bases[1] + data_addr;
4179 num_segments = 2;
4180 }
4181 /* If the object file has only one segment, assume that it is text
4182 rather than data; main programs with no writable data are rare,
4183 but programs with no code are useless. Of course the code might
4184 have ended up in the data segment... to detect that we would need
4185 the permissions here. */
4186 else if (data && data->num_segments == 1)
4187 {
4188 segments[0] = data->segment_bases[0] + text_addr;
4189 num_segments = 1;
4190 }
4191 /* There's no way to relocate by segment. */
4192 else
4193 do_segments = 0;
4194
4195 if (do_segments)
4196 {
4197 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
4198 offs, num_segments, segments);
4199
4200 if (ret == 0 && !do_sections)
4201 error (_("Can not handle qOffsets TextSeg "
4202 "response with this symbol file"));
4203
4204 if (ret > 0)
4205 do_sections = 0;
4206 }
4207
4208 if (data)
4209 free_symfile_segment_data (data);
4210
4211 if (do_sections)
4212 {
4213 offs->offsets[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
4214
4215 /* This is a temporary kludge to force data and bss to use the
4216 same offsets because that's what nlmconv does now. The real
4217 solution requires changes to the stub and remote.c that I
4218 don't have time to do right now. */
4219
4220 offs->offsets[SECT_OFF_DATA (symfile_objfile)] = data_addr;
4221 offs->offsets[SECT_OFF_BSS (symfile_objfile)] = data_addr;
4222 }
4223
4224 objfile_relocate (symfile_objfile, offs);
4225 }
4226
4227 /* Send interrupt_sequence to remote target. */
4228
4229 void
4230 remote_target::send_interrupt_sequence ()
4231 {
4232 struct remote_state *rs = get_remote_state ();
4233
4234 if (interrupt_sequence_mode == interrupt_sequence_control_c)
4235 remote_serial_write ("\x03", 1);
4236 else if (interrupt_sequence_mode == interrupt_sequence_break)
4237 serial_send_break (rs->remote_desc);
4238 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
4239 {
4240 serial_send_break (rs->remote_desc);
4241 remote_serial_write ("g", 1);
4242 }
4243 else
4244 internal_error (__FILE__, __LINE__,
4245 _("Invalid value for interrupt_sequence_mode: %s."),
4246 interrupt_sequence_mode);
4247 }
4248
4249
4250 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
4251 and extract the PTID. Returns NULL_PTID if not found. */
4252
4253 static ptid_t
4254 stop_reply_extract_thread (char *stop_reply)
4255 {
4256 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4257 {
4258 const char *p;
4259
4260 /* Txx r:val ; r:val (...) */
4261 p = &stop_reply[3];
4262
4263 /* Look for "register" named "thread". */
4264 while (*p != '\0')
4265 {
4266 const char *p1;
4267
4268 p1 = strchr (p, ':');
4269 if (p1 == NULL)
4270 return null_ptid;
4271
4272 if (strncmp (p, "thread", p1 - p) == 0)
4273 return read_ptid (++p1, &p);
4274
4275 p1 = strchr (p, ';');
4276 if (p1 == NULL)
4277 return null_ptid;
4278 p1++;
4279
4280 p = p1;
4281 }
4282 }
4283
4284 return null_ptid;
4285 }
4286
4287 /* Determine the remote side's current thread. If we have a stop
4288 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4289 "thread" register we can extract the current thread from. If not,
4290 ask the remote which is the current thread with qC. The former
4291 method avoids a roundtrip. */
4292
4293 ptid_t
4294 remote_target::get_current_thread (char *wait_status)
4295 {
4296 ptid_t ptid = null_ptid;
4297
4298 /* Note we don't use remote_parse_stop_reply as that makes use of
4299 the target architecture, which we haven't yet fully determined at
4300 this point. */
4301 if (wait_status != NULL)
4302 ptid = stop_reply_extract_thread (wait_status);
4303 if (ptid == null_ptid)
4304 ptid = remote_current_thread (inferior_ptid);
4305
4306 return ptid;
4307 }
4308
4309 /* Query the remote target for which is the current thread/process,
4310 add it to our tables, and update INFERIOR_PTID. The caller is
4311 responsible for setting the state such that the remote end is ready
4312 to return the current thread.
4313
4314 This function is called after handling the '?' or 'vRun' packets,
4315 whose response is a stop reply from which we can also try
4316 extracting the thread. If the target doesn't support the explicit
4317 qC query, we infer the current thread from that stop reply, passed
4318 in in WAIT_STATUS, which may be NULL. */
4319
4320 void
4321 remote_target::add_current_inferior_and_thread (char *wait_status)
4322 {
4323 struct remote_state *rs = get_remote_state ();
4324 int fake_pid_p = 0;
4325
4326 inferior_ptid = null_ptid;
4327
4328 /* Now, if we have thread information, update inferior_ptid. */
4329 ptid_t curr_ptid = get_current_thread (wait_status);
4330
4331 if (curr_ptid != null_ptid)
4332 {
4333 if (!remote_multi_process_p (rs))
4334 fake_pid_p = 1;
4335 }
4336 else
4337 {
4338 /* Without this, some commands which require an active target
4339 (such as kill) won't work. This variable serves (at least)
4340 double duty as both the pid of the target process (if it has
4341 such), and as a flag indicating that a target is active. */
4342 curr_ptid = magic_null_ptid;
4343 fake_pid_p = 1;
4344 }
4345
4346 remote_add_inferior (fake_pid_p, curr_ptid.pid (), -1, 1);
4347
4348 /* Add the main thread and switch to it. Don't try reading
4349 registers yet, since we haven't fetched the target description
4350 yet. */
4351 thread_info *tp = add_thread_silent (curr_ptid);
4352 switch_to_thread_no_regs (tp);
4353 }
4354
4355 /* Print info about a thread that was found already stopped on
4356 connection. */
4357
4358 static void
4359 print_one_stopped_thread (struct thread_info *thread)
4360 {
4361 struct target_waitstatus *ws = &thread->suspend.waitstatus;
4362
4363 switch_to_thread (thread);
4364 thread->suspend.stop_pc = get_frame_pc (get_current_frame ());
4365 set_current_sal_from_frame (get_current_frame ());
4366
4367 thread->suspend.waitstatus_pending_p = 0;
4368
4369 if (ws->kind == TARGET_WAITKIND_STOPPED)
4370 {
4371 enum gdb_signal sig = ws->value.sig;
4372
4373 if (signal_print_state (sig))
4374 gdb::observers::signal_received.notify (sig);
4375 }
4376 gdb::observers::normal_stop.notify (NULL, 1);
4377 }
4378
4379 /* Process all initial stop replies the remote side sent in response
4380 to the ? packet. These indicate threads that were already stopped
4381 on initial connection. We mark these threads as stopped and print
4382 their current frame before giving the user the prompt. */
4383
4384 void
4385 remote_target::process_initial_stop_replies (int from_tty)
4386 {
4387 int pending_stop_replies = stop_reply_queue_length ();
4388 struct inferior *inf;
4389 struct thread_info *thread;
4390 struct thread_info *selected = NULL;
4391 struct thread_info *lowest_stopped = NULL;
4392 struct thread_info *first = NULL;
4393
4394 /* Consume the initial pending events. */
4395 while (pending_stop_replies-- > 0)
4396 {
4397 ptid_t waiton_ptid = minus_one_ptid;
4398 ptid_t event_ptid;
4399 struct target_waitstatus ws;
4400 int ignore_event = 0;
4401
4402 memset (&ws, 0, sizeof (ws));
4403 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4404 if (remote_debug)
4405 print_target_wait_results (waiton_ptid, event_ptid, &ws);
4406
4407 switch (ws.kind)
4408 {
4409 case TARGET_WAITKIND_IGNORE:
4410 case TARGET_WAITKIND_NO_RESUMED:
4411 case TARGET_WAITKIND_SIGNALLED:
4412 case TARGET_WAITKIND_EXITED:
4413 /* We shouldn't see these, but if we do, just ignore. */
4414 if (remote_debug)
4415 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
4416 ignore_event = 1;
4417 break;
4418
4419 case TARGET_WAITKIND_EXECD:
4420 xfree (ws.value.execd_pathname);
4421 break;
4422 default:
4423 break;
4424 }
4425
4426 if (ignore_event)
4427 continue;
4428
4429 struct thread_info *evthread = find_thread_ptid (event_ptid);
4430
4431 if (ws.kind == TARGET_WAITKIND_STOPPED)
4432 {
4433 enum gdb_signal sig = ws.value.sig;
4434
4435 /* Stubs traditionally report SIGTRAP as initial signal,
4436 instead of signal 0. Suppress it. */
4437 if (sig == GDB_SIGNAL_TRAP)
4438 sig = GDB_SIGNAL_0;
4439 evthread->suspend.stop_signal = sig;
4440 ws.value.sig = sig;
4441 }
4442
4443 evthread->suspend.waitstatus = ws;
4444
4445 if (ws.kind != TARGET_WAITKIND_STOPPED
4446 || ws.value.sig != GDB_SIGNAL_0)
4447 evthread->suspend.waitstatus_pending_p = 1;
4448
4449 set_executing (event_ptid, 0);
4450 set_running (event_ptid, 0);
4451 get_remote_thread_info (evthread)->vcont_resumed = 0;
4452 }
4453
4454 /* "Notice" the new inferiors before anything related to
4455 registers/memory. */
4456 ALL_INFERIORS (inf)
4457 {
4458 if (inf->pid == 0)
4459 continue;
4460
4461 inf->needs_setup = 1;
4462
4463 if (non_stop)
4464 {
4465 thread = any_live_thread_of_inferior (inf);
4466 notice_new_inferior (thread, thread->state == THREAD_RUNNING,
4467 from_tty);
4468 }
4469 }
4470
4471 /* If all-stop on top of non-stop, pause all threads. Note this
4472 records the threads' stop pc, so must be done after "noticing"
4473 the inferiors. */
4474 if (!non_stop)
4475 {
4476 stop_all_threads ();
4477
4478 /* If all threads of an inferior were already stopped, we
4479 haven't setup the inferior yet. */
4480 ALL_INFERIORS (inf)
4481 {
4482 if (inf->pid == 0)
4483 continue;
4484
4485 if (inf->needs_setup)
4486 {
4487 thread = any_live_thread_of_inferior (inf);
4488 switch_to_thread_no_regs (thread);
4489 setup_inferior (0);
4490 }
4491 }
4492 }
4493
4494 /* Now go over all threads that are stopped, and print their current
4495 frame. If all-stop, then if there's a signalled thread, pick
4496 that as current. */
4497 ALL_NON_EXITED_THREADS (thread)
4498 {
4499 if (first == NULL)
4500 first = thread;
4501
4502 if (!non_stop)
4503 thread->set_running (false);
4504 else if (thread->state != THREAD_STOPPED)
4505 continue;
4506
4507 if (selected == NULL
4508 && thread->suspend.waitstatus_pending_p)
4509 selected = thread;
4510
4511 if (lowest_stopped == NULL
4512 || thread->inf->num < lowest_stopped->inf->num
4513 || thread->per_inf_num < lowest_stopped->per_inf_num)
4514 lowest_stopped = thread;
4515
4516 if (non_stop)
4517 print_one_stopped_thread (thread);
4518 }
4519
4520 /* In all-stop, we only print the status of one thread, and leave
4521 others with their status pending. */
4522 if (!non_stop)
4523 {
4524 thread = selected;
4525 if (thread == NULL)
4526 thread = lowest_stopped;
4527 if (thread == NULL)
4528 thread = first;
4529
4530 print_one_stopped_thread (thread);
4531 }
4532
4533 /* For "info program". */
4534 thread = inferior_thread ();
4535 if (thread->state == THREAD_STOPPED)
4536 set_last_target_status (inferior_ptid, thread->suspend.waitstatus);
4537 }
4538
4539 /* Start the remote connection and sync state. */
4540
4541 void
4542 remote_target::start_remote (int from_tty, int extended_p)
4543 {
4544 struct remote_state *rs = get_remote_state ();
4545 struct packet_config *noack_config;
4546 char *wait_status = NULL;
4547
4548 /* Signal other parts that we're going through the initial setup,
4549 and so things may not be stable yet. E.g., we don't try to
4550 install tracepoints until we've relocated symbols. Also, a
4551 Ctrl-C before we're connected and synced up can't interrupt the
4552 target. Instead, it offers to drop the (potentially wedged)
4553 connection. */
4554 rs->starting_up = 1;
4555
4556 QUIT;
4557
4558 if (interrupt_on_connect)
4559 send_interrupt_sequence ();
4560
4561 /* Ack any packet which the remote side has already sent. */
4562 remote_serial_write ("+", 1);
4563
4564 /* The first packet we send to the target is the optional "supported
4565 packets" request. If the target can answer this, it will tell us
4566 which later probes to skip. */
4567 remote_query_supported ();
4568
4569 /* If the stub wants to get a QAllow, compose one and send it. */
4570 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4571 set_permissions ();
4572
4573 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4574 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4575 as a reply to known packet. For packet "vFile:setfs:" it is an
4576 invalid reply and GDB would return error in
4577 remote_hostio_set_filesystem, making remote files access impossible.
4578 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4579 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4580 {
4581 const char v_mustreplyempty[] = "vMustReplyEmpty";
4582
4583 putpkt (v_mustreplyempty);
4584 getpkt (&rs->buf, &rs->buf_size, 0);
4585 if (strcmp (rs->buf, "OK") == 0)
4586 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4587 else if (strcmp (rs->buf, "") != 0)
4588 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4589 rs->buf);
4590 }
4591
4592 /* Next, we possibly activate noack mode.
4593
4594 If the QStartNoAckMode packet configuration is set to AUTO,
4595 enable noack mode if the stub reported a wish for it with
4596 qSupported.
4597
4598 If set to TRUE, then enable noack mode even if the stub didn't
4599 report it in qSupported. If the stub doesn't reply OK, the
4600 session ends with an error.
4601
4602 If FALSE, then don't activate noack mode, regardless of what the
4603 stub claimed should be the default with qSupported. */
4604
4605 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4606 if (packet_config_support (noack_config) != PACKET_DISABLE)
4607 {
4608 putpkt ("QStartNoAckMode");
4609 getpkt (&rs->buf, &rs->buf_size, 0);
4610 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4611 rs->noack_mode = 1;
4612 }
4613
4614 if (extended_p)
4615 {
4616 /* Tell the remote that we are using the extended protocol. */
4617 putpkt ("!");
4618 getpkt (&rs->buf, &rs->buf_size, 0);
4619 }
4620
4621 /* Let the target know which signals it is allowed to pass down to
4622 the program. */
4623 update_signals_program_target ();
4624
4625 /* Next, if the target can specify a description, read it. We do
4626 this before anything involving memory or registers. */
4627 target_find_description ();
4628
4629 /* Next, now that we know something about the target, update the
4630 address spaces in the program spaces. */
4631 update_address_spaces ();
4632
4633 /* On OSs where the list of libraries is global to all
4634 processes, we fetch them early. */
4635 if (gdbarch_has_global_solist (target_gdbarch ()))
4636 solib_add (NULL, from_tty, auto_solib_add);
4637
4638 if (target_is_non_stop_p ())
4639 {
4640 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4641 error (_("Non-stop mode requested, but remote "
4642 "does not support non-stop"));
4643
4644 putpkt ("QNonStop:1");
4645 getpkt (&rs->buf, &rs->buf_size, 0);
4646
4647 if (strcmp (rs->buf, "OK") != 0)
4648 error (_("Remote refused setting non-stop mode with: %s"), rs->buf);
4649
4650 /* Find about threads and processes the stub is already
4651 controlling. We default to adding them in the running state.
4652 The '?' query below will then tell us about which threads are
4653 stopped. */
4654 this->update_thread_list ();
4655 }
4656 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4657 {
4658 /* Don't assume that the stub can operate in all-stop mode.
4659 Request it explicitly. */
4660 putpkt ("QNonStop:0");
4661 getpkt (&rs->buf, &rs->buf_size, 0);
4662
4663 if (strcmp (rs->buf, "OK") != 0)
4664 error (_("Remote refused setting all-stop mode with: %s"), rs->buf);
4665 }
4666
4667 /* Upload TSVs regardless of whether the target is running or not. The
4668 remote stub, such as GDBserver, may have some predefined or builtin
4669 TSVs, even if the target is not running. */
4670 if (get_trace_status (current_trace_status ()) != -1)
4671 {
4672 struct uploaded_tsv *uploaded_tsvs = NULL;
4673
4674 upload_trace_state_variables (&uploaded_tsvs);
4675 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4676 }
4677
4678 /* Check whether the target is running now. */
4679 putpkt ("?");
4680 getpkt (&rs->buf, &rs->buf_size, 0);
4681
4682 if (!target_is_non_stop_p ())
4683 {
4684 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4685 {
4686 if (!extended_p)
4687 error (_("The target is not running (try extended-remote?)"));
4688
4689 /* We're connected, but not running. Drop out before we
4690 call start_remote. */
4691 rs->starting_up = 0;
4692 return;
4693 }
4694 else
4695 {
4696 /* Save the reply for later. */
4697 wait_status = (char *) alloca (strlen (rs->buf) + 1);
4698 strcpy (wait_status, rs->buf);
4699 }
4700
4701 /* Fetch thread list. */
4702 target_update_thread_list ();
4703
4704 /* Let the stub know that we want it to return the thread. */
4705 set_continue_thread (minus_one_ptid);
4706
4707 if (thread_count () == 0)
4708 {
4709 /* Target has no concept of threads at all. GDB treats
4710 non-threaded target as single-threaded; add a main
4711 thread. */
4712 add_current_inferior_and_thread (wait_status);
4713 }
4714 else
4715 {
4716 /* We have thread information; select the thread the target
4717 says should be current. If we're reconnecting to a
4718 multi-threaded program, this will ideally be the thread
4719 that last reported an event before GDB disconnected. */
4720 inferior_ptid = get_current_thread (wait_status);
4721 if (inferior_ptid == null_ptid)
4722 {
4723 /* Odd... The target was able to list threads, but not
4724 tell us which thread was current (no "thread"
4725 register in T stop reply?). Just pick the first
4726 thread in the thread list then. */
4727
4728 if (remote_debug)
4729 fprintf_unfiltered (gdb_stdlog,
4730 "warning: couldn't determine remote "
4731 "current thread; picking first in list.\n");
4732
4733 inferior_ptid = thread_list->ptid;
4734 }
4735 }
4736
4737 /* init_wait_for_inferior should be called before get_offsets in order
4738 to manage `inserted' flag in bp loc in a correct state.
4739 breakpoint_init_inferior, called from init_wait_for_inferior, set
4740 `inserted' flag to 0, while before breakpoint_re_set, called from
4741 start_remote, set `inserted' flag to 1. In the initialization of
4742 inferior, breakpoint_init_inferior should be called first, and then
4743 breakpoint_re_set can be called. If this order is broken, state of
4744 `inserted' flag is wrong, and cause some problems on breakpoint
4745 manipulation. */
4746 init_wait_for_inferior ();
4747
4748 get_offsets (); /* Get text, data & bss offsets. */
4749
4750 /* If we could not find a description using qXfer, and we know
4751 how to do it some other way, try again. This is not
4752 supported for non-stop; it could be, but it is tricky if
4753 there are no stopped threads when we connect. */
4754 if (remote_read_description_p (this)
4755 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4756 {
4757 target_clear_description ();
4758 target_find_description ();
4759 }
4760
4761 /* Use the previously fetched status. */
4762 gdb_assert (wait_status != NULL);
4763 strcpy (rs->buf, wait_status);
4764 rs->cached_wait_status = 1;
4765
4766 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4767 }
4768 else
4769 {
4770 /* Clear WFI global state. Do this before finding about new
4771 threads and inferiors, and setting the current inferior.
4772 Otherwise we would clear the proceed status of the current
4773 inferior when we want its stop_soon state to be preserved
4774 (see notice_new_inferior). */
4775 init_wait_for_inferior ();
4776
4777 /* In non-stop, we will either get an "OK", meaning that there
4778 are no stopped threads at this time; or, a regular stop
4779 reply. In the latter case, there may be more than one thread
4780 stopped --- we pull them all out using the vStopped
4781 mechanism. */
4782 if (strcmp (rs->buf, "OK") != 0)
4783 {
4784 struct notif_client *notif = &notif_client_stop;
4785
4786 /* remote_notif_get_pending_replies acks this one, and gets
4787 the rest out. */
4788 rs->notif_state->pending_event[notif_client_stop.id]
4789 = remote_notif_parse (this, notif, rs->buf);
4790 remote_notif_get_pending_events (notif);
4791 }
4792
4793 if (thread_count () == 0)
4794 {
4795 if (!extended_p)
4796 error (_("The target is not running (try extended-remote?)"));
4797
4798 /* We're connected, but not running. Drop out before we
4799 call start_remote. */
4800 rs->starting_up = 0;
4801 return;
4802 }
4803
4804 /* In non-stop mode, any cached wait status will be stored in
4805 the stop reply queue. */
4806 gdb_assert (wait_status == NULL);
4807
4808 /* Report all signals during attach/startup. */
4809 pass_signals (0, NULL);
4810
4811 /* If there are already stopped threads, mark them stopped and
4812 report their stops before giving the prompt to the user. */
4813 process_initial_stop_replies (from_tty);
4814
4815 if (target_can_async_p ())
4816 target_async (1);
4817 }
4818
4819 /* If we connected to a live target, do some additional setup. */
4820 if (target_has_execution)
4821 {
4822 if (symfile_objfile) /* No use without a symbol-file. */
4823 remote_check_symbols ();
4824 }
4825
4826 /* Possibly the target has been engaged in a trace run started
4827 previously; find out where things are at. */
4828 if (get_trace_status (current_trace_status ()) != -1)
4829 {
4830 struct uploaded_tp *uploaded_tps = NULL;
4831
4832 if (current_trace_status ()->running)
4833 printf_filtered (_("Trace is already running on the target.\n"));
4834
4835 upload_tracepoints (&uploaded_tps);
4836
4837 merge_uploaded_tracepoints (&uploaded_tps);
4838 }
4839
4840 /* Possibly the target has been engaged in a btrace record started
4841 previously; find out where things are at. */
4842 remote_btrace_maybe_reopen ();
4843
4844 /* The thread and inferior lists are now synchronized with the
4845 target, our symbols have been relocated, and we're merged the
4846 target's tracepoints with ours. We're done with basic start
4847 up. */
4848 rs->starting_up = 0;
4849
4850 /* Maybe breakpoints are global and need to be inserted now. */
4851 if (breakpoints_should_be_inserted_now ())
4852 insert_breakpoints ();
4853 }
4854
4855 /* Open a connection to a remote debugger.
4856 NAME is the filename used for communication. */
4857
4858 void
4859 remote_target::open (const char *name, int from_tty)
4860 {
4861 open_1 (name, from_tty, 0);
4862 }
4863
4864 /* Open a connection to a remote debugger using the extended
4865 remote gdb protocol. NAME is the filename used for communication. */
4866
4867 void
4868 extended_remote_target::open (const char *name, int from_tty)
4869 {
4870 open_1 (name, from_tty, 1 /*extended_p */);
4871 }
4872
4873 /* Reset all packets back to "unknown support". Called when opening a
4874 new connection to a remote target. */
4875
4876 static void
4877 reset_all_packet_configs_support (void)
4878 {
4879 int i;
4880
4881 for (i = 0; i < PACKET_MAX; i++)
4882 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4883 }
4884
4885 /* Initialize all packet configs. */
4886
4887 static void
4888 init_all_packet_configs (void)
4889 {
4890 int i;
4891
4892 for (i = 0; i < PACKET_MAX; i++)
4893 {
4894 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4895 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4896 }
4897 }
4898
4899 /* Symbol look-up. */
4900
4901 void
4902 remote_target::remote_check_symbols ()
4903 {
4904 char *msg, *reply, *tmp;
4905 int end;
4906 long reply_size;
4907 struct cleanup *old_chain;
4908
4909 /* The remote side has no concept of inferiors that aren't running
4910 yet, it only knows about running processes. If we're connected
4911 but our current inferior is not running, we should not invite the
4912 remote target to request symbol lookups related to its
4913 (unrelated) current process. */
4914 if (!target_has_execution)
4915 return;
4916
4917 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4918 return;
4919
4920 /* Make sure the remote is pointing at the right process. Note
4921 there's no way to select "no process". */
4922 set_general_process ();
4923
4924 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4925 because we need both at the same time. */
4926 msg = (char *) xmalloc (get_remote_packet_size ());
4927 old_chain = make_cleanup (xfree, msg);
4928 reply = (char *) xmalloc (get_remote_packet_size ());
4929 make_cleanup (free_current_contents, &reply);
4930 reply_size = get_remote_packet_size ();
4931
4932 /* Invite target to request symbol lookups. */
4933
4934 putpkt ("qSymbol::");
4935 getpkt (&reply, &reply_size, 0);
4936 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4937
4938 while (startswith (reply, "qSymbol:"))
4939 {
4940 struct bound_minimal_symbol sym;
4941
4942 tmp = &reply[8];
4943 end = hex2bin (tmp, (gdb_byte *) msg, strlen (tmp) / 2);
4944 msg[end] = '\0';
4945 sym = lookup_minimal_symbol (msg, NULL, NULL);
4946 if (sym.minsym == NULL)
4947 xsnprintf (msg, get_remote_packet_size (), "qSymbol::%s", &reply[8]);
4948 else
4949 {
4950 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4951 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4952
4953 /* If this is a function address, return the start of code
4954 instead of any data function descriptor. */
4955 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4956 sym_addr,
4957 current_top_target ());
4958
4959 xsnprintf (msg, get_remote_packet_size (), "qSymbol:%s:%s",
4960 phex_nz (sym_addr, addr_size), &reply[8]);
4961 }
4962
4963 putpkt (msg);
4964 getpkt (&reply, &reply_size, 0);
4965 }
4966
4967 do_cleanups (old_chain);
4968 }
4969
4970 static struct serial *
4971 remote_serial_open (const char *name)
4972 {
4973 static int udp_warning = 0;
4974
4975 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
4976 of in ser-tcp.c, because it is the remote protocol assuming that the
4977 serial connection is reliable and not the serial connection promising
4978 to be. */
4979 if (!udp_warning && startswith (name, "udp:"))
4980 {
4981 warning (_("The remote protocol may be unreliable over UDP.\n"
4982 "Some events may be lost, rendering further debugging "
4983 "impossible."));
4984 udp_warning = 1;
4985 }
4986
4987 return serial_open (name);
4988 }
4989
4990 /* Inform the target of our permission settings. The permission flags
4991 work without this, but if the target knows the settings, it can do
4992 a couple things. First, it can add its own check, to catch cases
4993 that somehow manage to get by the permissions checks in target
4994 methods. Second, if the target is wired to disallow particular
4995 settings (for instance, a system in the field that is not set up to
4996 be able to stop at a breakpoint), it can object to any unavailable
4997 permissions. */
4998
4999 void
5000 remote_target::set_permissions ()
5001 {
5002 struct remote_state *rs = get_remote_state ();
5003
5004 xsnprintf (rs->buf, get_remote_packet_size (), "QAllow:"
5005 "WriteReg:%x;WriteMem:%x;"
5006 "InsertBreak:%x;InsertTrace:%x;"
5007 "InsertFastTrace:%x;Stop:%x",
5008 may_write_registers, may_write_memory,
5009 may_insert_breakpoints, may_insert_tracepoints,
5010 may_insert_fast_tracepoints, may_stop);
5011 putpkt (rs->buf);
5012 getpkt (&rs->buf, &rs->buf_size, 0);
5013
5014 /* If the target didn't like the packet, warn the user. Do not try
5015 to undo the user's settings, that would just be maddening. */
5016 if (strcmp (rs->buf, "OK") != 0)
5017 warning (_("Remote refused setting permissions with: %s"), rs->buf);
5018 }
5019
5020 /* This type describes each known response to the qSupported
5021 packet. */
5022 struct protocol_feature
5023 {
5024 /* The name of this protocol feature. */
5025 const char *name;
5026
5027 /* The default for this protocol feature. */
5028 enum packet_support default_support;
5029
5030 /* The function to call when this feature is reported, or after
5031 qSupported processing if the feature is not supported.
5032 The first argument points to this structure. The second
5033 argument indicates whether the packet requested support be
5034 enabled, disabled, or probed (or the default, if this function
5035 is being called at the end of processing and this feature was
5036 not reported). The third argument may be NULL; if not NULL, it
5037 is a NUL-terminated string taken from the packet following
5038 this feature's name and an equals sign. */
5039 void (*func) (remote_target *remote, const struct protocol_feature *,
5040 enum packet_support, const char *);
5041
5042 /* The corresponding packet for this feature. Only used if
5043 FUNC is remote_supported_packet. */
5044 int packet;
5045 };
5046
5047 static void
5048 remote_supported_packet (remote_target *remote,
5049 const struct protocol_feature *feature,
5050 enum packet_support support,
5051 const char *argument)
5052 {
5053 if (argument)
5054 {
5055 warning (_("Remote qSupported response supplied an unexpected value for"
5056 " \"%s\"."), feature->name);
5057 return;
5058 }
5059
5060 remote_protocol_packets[feature->packet].support = support;
5061 }
5062
5063 void
5064 remote_target::remote_packet_size (const protocol_feature *feature,
5065 enum packet_support support, const char *value)
5066 {
5067 struct remote_state *rs = get_remote_state ();
5068
5069 int packet_size;
5070 char *value_end;
5071
5072 if (support != PACKET_ENABLE)
5073 return;
5074
5075 if (value == NULL || *value == '\0')
5076 {
5077 warning (_("Remote target reported \"%s\" without a size."),
5078 feature->name);
5079 return;
5080 }
5081
5082 errno = 0;
5083 packet_size = strtol (value, &value_end, 16);
5084 if (errno != 0 || *value_end != '\0' || packet_size < 0)
5085 {
5086 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
5087 feature->name, value);
5088 return;
5089 }
5090
5091 /* Record the new maximum packet size. */
5092 rs->explicit_packet_size = packet_size;
5093 }
5094
5095 void
5096 remote_packet_size (remote_target *remote, const protocol_feature *feature,
5097 enum packet_support support, const char *value)
5098 {
5099 remote->remote_packet_size (feature, support, value);
5100 }
5101
5102 static const struct protocol_feature remote_protocol_features[] = {
5103 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
5104 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
5105 PACKET_qXfer_auxv },
5106 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
5107 PACKET_qXfer_exec_file },
5108 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
5109 PACKET_qXfer_features },
5110 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
5111 PACKET_qXfer_libraries },
5112 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
5113 PACKET_qXfer_libraries_svr4 },
5114 { "augmented-libraries-svr4-read", PACKET_DISABLE,
5115 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
5116 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
5117 PACKET_qXfer_memory_map },
5118 { "qXfer:spu:read", PACKET_DISABLE, remote_supported_packet,
5119 PACKET_qXfer_spu_read },
5120 { "qXfer:spu:write", PACKET_DISABLE, remote_supported_packet,
5121 PACKET_qXfer_spu_write },
5122 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
5123 PACKET_qXfer_osdata },
5124 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
5125 PACKET_qXfer_threads },
5126 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
5127 PACKET_qXfer_traceframe_info },
5128 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
5129 PACKET_QPassSignals },
5130 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
5131 PACKET_QCatchSyscalls },
5132 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
5133 PACKET_QProgramSignals },
5134 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
5135 PACKET_QSetWorkingDir },
5136 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
5137 PACKET_QStartupWithShell },
5138 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
5139 PACKET_QEnvironmentHexEncoded },
5140 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
5141 PACKET_QEnvironmentReset },
5142 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
5143 PACKET_QEnvironmentUnset },
5144 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
5145 PACKET_QStartNoAckMode },
5146 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
5147 PACKET_multiprocess_feature },
5148 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
5149 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
5150 PACKET_qXfer_siginfo_read },
5151 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
5152 PACKET_qXfer_siginfo_write },
5153 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
5154 PACKET_ConditionalTracepoints },
5155 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
5156 PACKET_ConditionalBreakpoints },
5157 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
5158 PACKET_BreakpointCommands },
5159 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
5160 PACKET_FastTracepoints },
5161 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
5162 PACKET_StaticTracepoints },
5163 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
5164 PACKET_InstallInTrace},
5165 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
5166 PACKET_DisconnectedTracing_feature },
5167 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
5168 PACKET_bc },
5169 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
5170 PACKET_bs },
5171 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
5172 PACKET_TracepointSource },
5173 { "QAllow", PACKET_DISABLE, remote_supported_packet,
5174 PACKET_QAllow },
5175 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
5176 PACKET_EnableDisableTracepoints_feature },
5177 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
5178 PACKET_qXfer_fdpic },
5179 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
5180 PACKET_qXfer_uib },
5181 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
5182 PACKET_QDisableRandomization },
5183 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
5184 { "QTBuffer:size", PACKET_DISABLE,
5185 remote_supported_packet, PACKET_QTBuffer_size},
5186 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
5187 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
5188 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
5189 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
5190 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
5191 PACKET_qXfer_btrace },
5192 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
5193 PACKET_qXfer_btrace_conf },
5194 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
5195 PACKET_Qbtrace_conf_bts_size },
5196 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
5197 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
5198 { "fork-events", PACKET_DISABLE, remote_supported_packet,
5199 PACKET_fork_event_feature },
5200 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
5201 PACKET_vfork_event_feature },
5202 { "exec-events", PACKET_DISABLE, remote_supported_packet,
5203 PACKET_exec_event_feature },
5204 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
5205 PACKET_Qbtrace_conf_pt_size },
5206 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
5207 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
5208 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
5209 };
5210
5211 static char *remote_support_xml;
5212
5213 /* Register string appended to "xmlRegisters=" in qSupported query. */
5214
5215 void
5216 register_remote_support_xml (const char *xml)
5217 {
5218 #if defined(HAVE_LIBEXPAT)
5219 if (remote_support_xml == NULL)
5220 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
5221 else
5222 {
5223 char *copy = xstrdup (remote_support_xml + 13);
5224 char *p = strtok (copy, ",");
5225
5226 do
5227 {
5228 if (strcmp (p, xml) == 0)
5229 {
5230 /* already there */
5231 xfree (copy);
5232 return;
5233 }
5234 }
5235 while ((p = strtok (NULL, ",")) != NULL);
5236 xfree (copy);
5237
5238 remote_support_xml = reconcat (remote_support_xml,
5239 remote_support_xml, ",", xml,
5240 (char *) NULL);
5241 }
5242 #endif
5243 }
5244
5245 static void
5246 remote_query_supported_append (std::string *msg, const char *append)
5247 {
5248 if (!msg->empty ())
5249 msg->append (";");
5250 msg->append (append);
5251 }
5252
5253 void
5254 remote_target::remote_query_supported ()
5255 {
5256 struct remote_state *rs = get_remote_state ();
5257 char *next;
5258 int i;
5259 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5260
5261 /* The packet support flags are handled differently for this packet
5262 than for most others. We treat an error, a disabled packet, and
5263 an empty response identically: any features which must be reported
5264 to be used will be automatically disabled. An empty buffer
5265 accomplishes this, since that is also the representation for a list
5266 containing no features. */
5267
5268 rs->buf[0] = 0;
5269 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5270 {
5271 std::string q;
5272
5273 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5274 remote_query_supported_append (&q, "multiprocess+");
5275
5276 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5277 remote_query_supported_append (&q, "swbreak+");
5278 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5279 remote_query_supported_append (&q, "hwbreak+");
5280
5281 remote_query_supported_append (&q, "qRelocInsn+");
5282
5283 if (packet_set_cmd_state (PACKET_fork_event_feature)
5284 != AUTO_BOOLEAN_FALSE)
5285 remote_query_supported_append (&q, "fork-events+");
5286 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5287 != AUTO_BOOLEAN_FALSE)
5288 remote_query_supported_append (&q, "vfork-events+");
5289 if (packet_set_cmd_state (PACKET_exec_event_feature)
5290 != AUTO_BOOLEAN_FALSE)
5291 remote_query_supported_append (&q, "exec-events+");
5292
5293 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5294 remote_query_supported_append (&q, "vContSupported+");
5295
5296 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5297 remote_query_supported_append (&q, "QThreadEvents+");
5298
5299 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5300 remote_query_supported_append (&q, "no-resumed+");
5301
5302 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5303 the qSupported:xmlRegisters=i386 handling. */
5304 if (remote_support_xml != NULL
5305 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5306 remote_query_supported_append (&q, remote_support_xml);
5307
5308 q = "qSupported:" + q;
5309 putpkt (q.c_str ());
5310
5311 getpkt (&rs->buf, &rs->buf_size, 0);
5312
5313 /* If an error occured, warn, but do not return - just reset the
5314 buffer to empty and go on to disable features. */
5315 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5316 == PACKET_ERROR)
5317 {
5318 warning (_("Remote failure reply: %s"), rs->buf);
5319 rs->buf[0] = 0;
5320 }
5321 }
5322
5323 memset (seen, 0, sizeof (seen));
5324
5325 next = rs->buf;
5326 while (*next)
5327 {
5328 enum packet_support is_supported;
5329 char *p, *end, *name_end, *value;
5330
5331 /* First separate out this item from the rest of the packet. If
5332 there's another item after this, we overwrite the separator
5333 (terminated strings are much easier to work with). */
5334 p = next;
5335 end = strchr (p, ';');
5336 if (end == NULL)
5337 {
5338 end = p + strlen (p);
5339 next = end;
5340 }
5341 else
5342 {
5343 *end = '\0';
5344 next = end + 1;
5345
5346 if (end == p)
5347 {
5348 warning (_("empty item in \"qSupported\" response"));
5349 continue;
5350 }
5351 }
5352
5353 name_end = strchr (p, '=');
5354 if (name_end)
5355 {
5356 /* This is a name=value entry. */
5357 is_supported = PACKET_ENABLE;
5358 value = name_end + 1;
5359 *name_end = '\0';
5360 }
5361 else
5362 {
5363 value = NULL;
5364 switch (end[-1])
5365 {
5366 case '+':
5367 is_supported = PACKET_ENABLE;
5368 break;
5369
5370 case '-':
5371 is_supported = PACKET_DISABLE;
5372 break;
5373
5374 case '?':
5375 is_supported = PACKET_SUPPORT_UNKNOWN;
5376 break;
5377
5378 default:
5379 warning (_("unrecognized item \"%s\" "
5380 "in \"qSupported\" response"), p);
5381 continue;
5382 }
5383 end[-1] = '\0';
5384 }
5385
5386 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5387 if (strcmp (remote_protocol_features[i].name, p) == 0)
5388 {
5389 const struct protocol_feature *feature;
5390
5391 seen[i] = 1;
5392 feature = &remote_protocol_features[i];
5393 feature->func (this, feature, is_supported, value);
5394 break;
5395 }
5396 }
5397
5398 /* If we increased the packet size, make sure to increase the global
5399 buffer size also. We delay this until after parsing the entire
5400 qSupported packet, because this is the same buffer we were
5401 parsing. */
5402 if (rs->buf_size < rs->explicit_packet_size)
5403 {
5404 rs->buf_size = rs->explicit_packet_size;
5405 rs->buf = (char *) xrealloc (rs->buf, rs->buf_size);
5406 }
5407
5408 /* Handle the defaults for unmentioned features. */
5409 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5410 if (!seen[i])
5411 {
5412 const struct protocol_feature *feature;
5413
5414 feature = &remote_protocol_features[i];
5415 feature->func (this, feature, feature->default_support, NULL);
5416 }
5417 }
5418
5419 /* Serial QUIT handler for the remote serial descriptor.
5420
5421 Defers handling a Ctrl-C until we're done with the current
5422 command/response packet sequence, unless:
5423
5424 - We're setting up the connection. Don't send a remote interrupt
5425 request, as we're not fully synced yet. Quit immediately
5426 instead.
5427
5428 - The target has been resumed in the foreground
5429 (target_terminal::is_ours is false) with a synchronous resume
5430 packet, and we're blocked waiting for the stop reply, thus a
5431 Ctrl-C should be immediately sent to the target.
5432
5433 - We get a second Ctrl-C while still within the same serial read or
5434 write. In that case the serial is seemingly wedged --- offer to
5435 quit/disconnect.
5436
5437 - We see a second Ctrl-C without target response, after having
5438 previously interrupted the target. In that case the target/stub
5439 is probably wedged --- offer to quit/disconnect.
5440 */
5441
5442 void
5443 remote_target::remote_serial_quit_handler ()
5444 {
5445 struct remote_state *rs = get_remote_state ();
5446
5447 if (check_quit_flag ())
5448 {
5449 /* If we're starting up, we're not fully synced yet. Quit
5450 immediately. */
5451 if (rs->starting_up)
5452 quit ();
5453 else if (rs->got_ctrlc_during_io)
5454 {
5455 if (query (_("The target is not responding to GDB commands.\n"
5456 "Stop debugging it? ")))
5457 remote_unpush_and_throw ();
5458 }
5459 /* If ^C has already been sent once, offer to disconnect. */
5460 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5461 interrupt_query ();
5462 /* All-stop protocol, and blocked waiting for stop reply. Send
5463 an interrupt request. */
5464 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5465 target_interrupt ();
5466 else
5467 rs->got_ctrlc_during_io = 1;
5468 }
5469 }
5470
5471 /* The remote_target that is current while the quit handler is
5472 overridden with remote_serial_quit_handler. */
5473 static remote_target *curr_quit_handler_target;
5474
5475 static void
5476 remote_serial_quit_handler ()
5477 {
5478 curr_quit_handler_target->remote_serial_quit_handler ();
5479 }
5480
5481 /* Remove any of the remote.c targets from target stack. Upper targets depend
5482 on it so remove them first. */
5483
5484 static void
5485 remote_unpush_target (void)
5486 {
5487 pop_all_targets_at_and_above (process_stratum);
5488 }
5489
5490 static void
5491 remote_unpush_and_throw (void)
5492 {
5493 remote_unpush_target ();
5494 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5495 }
5496
5497 void
5498 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5499 {
5500 remote_target *curr_remote = get_current_remote_target ();
5501
5502 if (name == 0)
5503 error (_("To open a remote debug connection, you need to specify what\n"
5504 "serial device is attached to the remote system\n"
5505 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5506
5507 /* If we're connected to a running target, target_preopen will kill it.
5508 Ask this question first, before target_preopen has a chance to kill
5509 anything. */
5510 if (curr_remote != NULL && !have_inferiors ())
5511 {
5512 if (from_tty
5513 && !query (_("Already connected to a remote target. Disconnect? ")))
5514 error (_("Still connected."));
5515 }
5516
5517 /* Here the possibly existing remote target gets unpushed. */
5518 target_preopen (from_tty);
5519
5520 remote_fileio_reset ();
5521 reopen_exec_file ();
5522 reread_symbols ();
5523
5524 remote_target *remote
5525 = (extended_p ? new extended_remote_target () : new remote_target ());
5526 target_ops_up target_holder (remote);
5527
5528 remote_state *rs = remote->get_remote_state ();
5529
5530 /* See FIXME above. */
5531 if (!target_async_permitted)
5532 rs->wait_forever_enabled_p = 1;
5533
5534 rs->remote_desc = remote_serial_open (name);
5535 if (!rs->remote_desc)
5536 perror_with_name (name);
5537
5538 if (baud_rate != -1)
5539 {
5540 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5541 {
5542 /* The requested speed could not be set. Error out to
5543 top level after closing remote_desc. Take care to
5544 set remote_desc to NULL to avoid closing remote_desc
5545 more than once. */
5546 serial_close (rs->remote_desc);
5547 rs->remote_desc = NULL;
5548 perror_with_name (name);
5549 }
5550 }
5551
5552 serial_setparity (rs->remote_desc, serial_parity);
5553 serial_raw (rs->remote_desc);
5554
5555 /* If there is something sitting in the buffer we might take it as a
5556 response to a command, which would be bad. */
5557 serial_flush_input (rs->remote_desc);
5558
5559 if (from_tty)
5560 {
5561 puts_filtered ("Remote debugging using ");
5562 puts_filtered (name);
5563 puts_filtered ("\n");
5564 }
5565
5566 /* Switch to using the remote target now. */
5567 push_target (remote);
5568 /* The target stack owns the target now. */
5569 target_holder.release ();
5570
5571 /* Register extra event sources in the event loop. */
5572 rs->remote_async_inferior_event_token
5573 = create_async_event_handler (remote_async_inferior_event_handler,
5574 remote);
5575 rs->notif_state = remote_notif_state_allocate (remote);
5576
5577 /* Reset the target state; these things will be queried either by
5578 remote_query_supported or as they are needed. */
5579 reset_all_packet_configs_support ();
5580 rs->cached_wait_status = 0;
5581 rs->explicit_packet_size = 0;
5582 rs->noack_mode = 0;
5583 rs->extended = extended_p;
5584 rs->waiting_for_stop_reply = 0;
5585 rs->ctrlc_pending_p = 0;
5586 rs->got_ctrlc_during_io = 0;
5587
5588 rs->general_thread = not_sent_ptid;
5589 rs->continue_thread = not_sent_ptid;
5590 rs->remote_traceframe_number = -1;
5591
5592 rs->last_resume_exec_dir = EXEC_FORWARD;
5593
5594 /* Probe for ability to use "ThreadInfo" query, as required. */
5595 rs->use_threadinfo_query = 1;
5596 rs->use_threadextra_query = 1;
5597
5598 rs->readahead_cache.invalidate ();
5599
5600 if (target_async_permitted)
5601 {
5602 /* FIXME: cagney/1999-09-23: During the initial connection it is
5603 assumed that the target is already ready and able to respond to
5604 requests. Unfortunately remote_start_remote() eventually calls
5605 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5606 around this. Eventually a mechanism that allows
5607 wait_for_inferior() to expect/get timeouts will be
5608 implemented. */
5609 rs->wait_forever_enabled_p = 0;
5610 }
5611
5612 /* First delete any symbols previously loaded from shared libraries. */
5613 no_shared_libraries (NULL, 0);
5614
5615 /* Start afresh. */
5616 init_thread_list ();
5617
5618 /* Start the remote connection. If error() or QUIT, discard this
5619 target (we'd otherwise be in an inconsistent state) and then
5620 propogate the error on up the exception chain. This ensures that
5621 the caller doesn't stumble along blindly assuming that the
5622 function succeeded. The CLI doesn't have this problem but other
5623 UI's, such as MI do.
5624
5625 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5626 this function should return an error indication letting the
5627 caller restore the previous state. Unfortunately the command
5628 ``target remote'' is directly wired to this function making that
5629 impossible. On a positive note, the CLI side of this problem has
5630 been fixed - the function set_cmd_context() makes it possible for
5631 all the ``target ....'' commands to share a common callback
5632 function. See cli-dump.c. */
5633 {
5634
5635 TRY
5636 {
5637 remote->start_remote (from_tty, extended_p);
5638 }
5639 CATCH (ex, RETURN_MASK_ALL)
5640 {
5641 /* Pop the partially set up target - unless something else did
5642 already before throwing the exception. */
5643 if (ex.error != TARGET_CLOSE_ERROR)
5644 remote_unpush_target ();
5645 throw_exception (ex);
5646 }
5647 END_CATCH
5648 }
5649
5650 remote_btrace_reset (rs);
5651
5652 if (target_async_permitted)
5653 rs->wait_forever_enabled_p = 1;
5654 }
5655
5656 /* Detach the specified process. */
5657
5658 void
5659 remote_target::remote_detach_pid (int pid)
5660 {
5661 struct remote_state *rs = get_remote_state ();
5662
5663 /* This should not be necessary, but the handling for D;PID in
5664 GDBserver versions prior to 8.2 incorrectly assumes that the
5665 selected process points to the same process we're detaching,
5666 leading to misbehavior (and possibly GDBserver crashing) when it
5667 does not. Since it's easy and cheap, work around it by forcing
5668 GDBserver to select GDB's current process. */
5669 set_general_process ();
5670
5671 if (remote_multi_process_p (rs))
5672 xsnprintf (rs->buf, get_remote_packet_size (), "D;%x", pid);
5673 else
5674 strcpy (rs->buf, "D");
5675
5676 putpkt (rs->buf);
5677 getpkt (&rs->buf, &rs->buf_size, 0);
5678
5679 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5680 ;
5681 else if (rs->buf[0] == '\0')
5682 error (_("Remote doesn't know how to detach"));
5683 else
5684 error (_("Can't detach process."));
5685 }
5686
5687 /* This detaches a program to which we previously attached, using
5688 inferior_ptid to identify the process. After this is done, GDB
5689 can be used to debug some other program. We better not have left
5690 any breakpoints in the target program or it'll die when it hits
5691 one. */
5692
5693 void
5694 remote_target::remote_detach_1 (inferior *inf, int from_tty)
5695 {
5696 int pid = inferior_ptid.pid ();
5697 struct remote_state *rs = get_remote_state ();
5698 int is_fork_parent;
5699
5700 if (!target_has_execution)
5701 error (_("No process to detach from."));
5702
5703 target_announce_detach (from_tty);
5704
5705 /* Tell the remote target to detach. */
5706 remote_detach_pid (pid);
5707
5708 /* Exit only if this is the only active inferior. */
5709 if (from_tty && !rs->extended && number_of_live_inferiors () == 1)
5710 puts_filtered (_("Ending remote debugging.\n"));
5711
5712 struct thread_info *tp = find_thread_ptid (inferior_ptid);
5713
5714 /* Check to see if we are detaching a fork parent. Note that if we
5715 are detaching a fork child, tp == NULL. */
5716 is_fork_parent = (tp != NULL
5717 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5718
5719 /* If doing detach-on-fork, we don't mourn, because that will delete
5720 breakpoints that should be available for the followed inferior. */
5721 if (!is_fork_parent)
5722 {
5723 /* Save the pid as a string before mourning, since that will
5724 unpush the remote target, and we need the string after. */
5725 std::string infpid = target_pid_to_str (ptid_t (pid));
5726
5727 target_mourn_inferior (inferior_ptid);
5728 if (print_inferior_events)
5729 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5730 inf->num, infpid.c_str ());
5731 }
5732 else
5733 {
5734 inferior_ptid = null_ptid;
5735 detach_inferior (current_inferior ());
5736 }
5737 }
5738
5739 void
5740 remote_target::detach (inferior *inf, int from_tty)
5741 {
5742 remote_detach_1 (inf, from_tty);
5743 }
5744
5745 void
5746 extended_remote_target::detach (inferior *inf, int from_tty)
5747 {
5748 remote_detach_1 (inf, from_tty);
5749 }
5750
5751 /* Target follow-fork function for remote targets. On entry, and
5752 at return, the current inferior is the fork parent.
5753
5754 Note that although this is currently only used for extended-remote,
5755 it is named remote_follow_fork in anticipation of using it for the
5756 remote target as well. */
5757
5758 int
5759 remote_target::follow_fork (int follow_child, int detach_fork)
5760 {
5761 struct remote_state *rs = get_remote_state ();
5762 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5763
5764 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5765 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5766 {
5767 /* When following the parent and detaching the child, we detach
5768 the child here. For the case of following the child and
5769 detaching the parent, the detach is done in the target-
5770 independent follow fork code in infrun.c. We can't use
5771 target_detach when detaching an unfollowed child because
5772 the client side doesn't know anything about the child. */
5773 if (detach_fork && !follow_child)
5774 {
5775 /* Detach the fork child. */
5776 ptid_t child_ptid;
5777 pid_t child_pid;
5778
5779 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5780 child_pid = child_ptid.pid ();
5781
5782 remote_detach_pid (child_pid);
5783 }
5784 }
5785 return 0;
5786 }
5787
5788 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5789 in the program space of the new inferior. On entry and at return the
5790 current inferior is the exec'ing inferior. INF is the new exec'd
5791 inferior, which may be the same as the exec'ing inferior unless
5792 follow-exec-mode is "new". */
5793
5794 void
5795 remote_target::follow_exec (struct inferior *inf, char *execd_pathname)
5796 {
5797 /* We know that this is a target file name, so if it has the "target:"
5798 prefix we strip it off before saving it in the program space. */
5799 if (is_target_filename (execd_pathname))
5800 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5801
5802 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5803 }
5804
5805 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5806
5807 void
5808 remote_target::disconnect (const char *args, int from_tty)
5809 {
5810 if (args)
5811 error (_("Argument given to \"disconnect\" when remotely debugging."));
5812
5813 /* Make sure we unpush even the extended remote targets. Calling
5814 target_mourn_inferior won't unpush, and remote_mourn won't
5815 unpush if there is more than one inferior left. */
5816 unpush_target (this);
5817 generic_mourn_inferior ();
5818
5819 if (from_tty)
5820 puts_filtered ("Ending remote debugging.\n");
5821 }
5822
5823 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5824 be chatty about it. */
5825
5826 void
5827 extended_remote_target::attach (const char *args, int from_tty)
5828 {
5829 struct remote_state *rs = get_remote_state ();
5830 int pid;
5831 char *wait_status = NULL;
5832
5833 pid = parse_pid_to_attach (args);
5834
5835 /* Remote PID can be freely equal to getpid, do not check it here the same
5836 way as in other targets. */
5837
5838 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5839 error (_("This target does not support attaching to a process"));
5840
5841 if (from_tty)
5842 {
5843 char *exec_file = get_exec_file (0);
5844
5845 if (exec_file)
5846 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5847 target_pid_to_str (ptid_t (pid)));
5848 else
5849 printf_unfiltered (_("Attaching to %s\n"),
5850 target_pid_to_str (ptid_t (pid)));
5851
5852 gdb_flush (gdb_stdout);
5853 }
5854
5855 xsnprintf (rs->buf, get_remote_packet_size (), "vAttach;%x", pid);
5856 putpkt (rs->buf);
5857 getpkt (&rs->buf, &rs->buf_size, 0);
5858
5859 switch (packet_ok (rs->buf,
5860 &remote_protocol_packets[PACKET_vAttach]))
5861 {
5862 case PACKET_OK:
5863 if (!target_is_non_stop_p ())
5864 {
5865 /* Save the reply for later. */
5866 wait_status = (char *) alloca (strlen (rs->buf) + 1);
5867 strcpy (wait_status, rs->buf);
5868 }
5869 else if (strcmp (rs->buf, "OK") != 0)
5870 error (_("Attaching to %s failed with: %s"),
5871 target_pid_to_str (ptid_t (pid)),
5872 rs->buf);
5873 break;
5874 case PACKET_UNKNOWN:
5875 error (_("This target does not support attaching to a process"));
5876 default:
5877 error (_("Attaching to %s failed"),
5878 target_pid_to_str (ptid_t (pid)));
5879 }
5880
5881 set_current_inferior (remote_add_inferior (0, pid, 1, 0));
5882
5883 inferior_ptid = ptid_t (pid);
5884
5885 if (target_is_non_stop_p ())
5886 {
5887 struct thread_info *thread;
5888
5889 /* Get list of threads. */
5890 update_thread_list ();
5891
5892 thread = first_thread_of_inferior (current_inferior ());
5893 if (thread)
5894 inferior_ptid = thread->ptid;
5895 else
5896 inferior_ptid = ptid_t (pid);
5897
5898 /* Invalidate our notion of the remote current thread. */
5899 record_currthread (rs, minus_one_ptid);
5900 }
5901 else
5902 {
5903 /* Now, if we have thread information, update inferior_ptid. */
5904 inferior_ptid = remote_current_thread (inferior_ptid);
5905
5906 /* Add the main thread to the thread list. */
5907 thread_info *thr = add_thread_silent (inferior_ptid);
5908 /* Don't consider the thread stopped until we've processed the
5909 saved stop reply. */
5910 set_executing (thr->ptid, true);
5911 }
5912
5913 /* Next, if the target can specify a description, read it. We do
5914 this before anything involving memory or registers. */
5915 target_find_description ();
5916
5917 if (!target_is_non_stop_p ())
5918 {
5919 /* Use the previously fetched status. */
5920 gdb_assert (wait_status != NULL);
5921
5922 if (target_can_async_p ())
5923 {
5924 struct notif_event *reply
5925 = remote_notif_parse (this, &notif_client_stop, wait_status);
5926
5927 push_stop_reply ((struct stop_reply *) reply);
5928
5929 target_async (1);
5930 }
5931 else
5932 {
5933 gdb_assert (wait_status != NULL);
5934 strcpy (rs->buf, wait_status);
5935 rs->cached_wait_status = 1;
5936 }
5937 }
5938 else
5939 gdb_assert (wait_status == NULL);
5940 }
5941
5942 /* Implementation of the to_post_attach method. */
5943
5944 void
5945 extended_remote_target::post_attach (int pid)
5946 {
5947 /* Get text, data & bss offsets. */
5948 get_offsets ();
5949
5950 /* In certain cases GDB might not have had the chance to start
5951 symbol lookup up until now. This could happen if the debugged
5952 binary is not using shared libraries, the vsyscall page is not
5953 present (on Linux) and the binary itself hadn't changed since the
5954 debugging process was started. */
5955 if (symfile_objfile != NULL)
5956 remote_check_symbols();
5957 }
5958
5959 \f
5960 /* Check for the availability of vCont. This function should also check
5961 the response. */
5962
5963 void
5964 remote_target::remote_vcont_probe ()
5965 {
5966 remote_state *rs = get_remote_state ();
5967 char *buf;
5968
5969 strcpy (rs->buf, "vCont?");
5970 putpkt (rs->buf);
5971 getpkt (&rs->buf, &rs->buf_size, 0);
5972 buf = rs->buf;
5973
5974 /* Make sure that the features we assume are supported. */
5975 if (startswith (buf, "vCont"))
5976 {
5977 char *p = &buf[5];
5978 int support_c, support_C;
5979
5980 rs->supports_vCont.s = 0;
5981 rs->supports_vCont.S = 0;
5982 support_c = 0;
5983 support_C = 0;
5984 rs->supports_vCont.t = 0;
5985 rs->supports_vCont.r = 0;
5986 while (p && *p == ';')
5987 {
5988 p++;
5989 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
5990 rs->supports_vCont.s = 1;
5991 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
5992 rs->supports_vCont.S = 1;
5993 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
5994 support_c = 1;
5995 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
5996 support_C = 1;
5997 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
5998 rs->supports_vCont.t = 1;
5999 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
6000 rs->supports_vCont.r = 1;
6001
6002 p = strchr (p, ';');
6003 }
6004
6005 /* If c, and C are not all supported, we can't use vCont. Clearing
6006 BUF will make packet_ok disable the packet. */
6007 if (!support_c || !support_C)
6008 buf[0] = 0;
6009 }
6010
6011 packet_ok (buf, &remote_protocol_packets[PACKET_vCont]);
6012 }
6013
6014 /* Helper function for building "vCont" resumptions. Write a
6015 resumption to P. ENDP points to one-passed-the-end of the buffer
6016 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
6017 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
6018 resumed thread should be single-stepped and/or signalled. If PTID
6019 equals minus_one_ptid, then all threads are resumed; if PTID
6020 represents a process, then all threads of the process are resumed;
6021 the thread to be stepped and/or signalled is given in the global
6022 INFERIOR_PTID. */
6023
6024 char *
6025 remote_target::append_resumption (char *p, char *endp,
6026 ptid_t ptid, int step, gdb_signal siggnal)
6027 {
6028 struct remote_state *rs = get_remote_state ();
6029
6030 if (step && siggnal != GDB_SIGNAL_0)
6031 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
6032 else if (step
6033 /* GDB is willing to range step. */
6034 && use_range_stepping
6035 /* Target supports range stepping. */
6036 && rs->supports_vCont.r
6037 /* We don't currently support range stepping multiple
6038 threads with a wildcard (though the protocol allows it,
6039 so stubs shouldn't make an active effort to forbid
6040 it). */
6041 && !(remote_multi_process_p (rs) && ptid.is_pid ()))
6042 {
6043 struct thread_info *tp;
6044
6045 if (ptid == minus_one_ptid)
6046 {
6047 /* If we don't know about the target thread's tid, then
6048 we're resuming magic_null_ptid (see caller). */
6049 tp = find_thread_ptid (magic_null_ptid);
6050 }
6051 else
6052 tp = find_thread_ptid (ptid);
6053 gdb_assert (tp != NULL);
6054
6055 if (tp->control.may_range_step)
6056 {
6057 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6058
6059 p += xsnprintf (p, endp - p, ";r%s,%s",
6060 phex_nz (tp->control.step_range_start,
6061 addr_size),
6062 phex_nz (tp->control.step_range_end,
6063 addr_size));
6064 }
6065 else
6066 p += xsnprintf (p, endp - p, ";s");
6067 }
6068 else if (step)
6069 p += xsnprintf (p, endp - p, ";s");
6070 else if (siggnal != GDB_SIGNAL_0)
6071 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
6072 else
6073 p += xsnprintf (p, endp - p, ";c");
6074
6075 if (remote_multi_process_p (rs) && ptid.is_pid ())
6076 {
6077 ptid_t nptid;
6078
6079 /* All (-1) threads of process. */
6080 nptid = ptid_t (ptid.pid (), -1, 0);
6081
6082 p += xsnprintf (p, endp - p, ":");
6083 p = write_ptid (p, endp, nptid);
6084 }
6085 else if (ptid != minus_one_ptid)
6086 {
6087 p += xsnprintf (p, endp - p, ":");
6088 p = write_ptid (p, endp, ptid);
6089 }
6090
6091 return p;
6092 }
6093
6094 /* Clear the thread's private info on resume. */
6095
6096 static void
6097 resume_clear_thread_private_info (struct thread_info *thread)
6098 {
6099 if (thread->priv != NULL)
6100 {
6101 remote_thread_info *priv = get_remote_thread_info (thread);
6102
6103 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6104 priv->watch_data_address = 0;
6105 }
6106 }
6107
6108 /* Append a vCont continue-with-signal action for threads that have a
6109 non-zero stop signal. */
6110
6111 char *
6112 remote_target::append_pending_thread_resumptions (char *p, char *endp,
6113 ptid_t ptid)
6114 {
6115 struct thread_info *thread;
6116
6117 ALL_NON_EXITED_THREADS (thread)
6118 if (thread->ptid.matches (ptid)
6119 && inferior_ptid != thread->ptid
6120 && thread->suspend.stop_signal != GDB_SIGNAL_0)
6121 {
6122 p = append_resumption (p, endp, thread->ptid,
6123 0, thread->suspend.stop_signal);
6124 thread->suspend.stop_signal = GDB_SIGNAL_0;
6125 resume_clear_thread_private_info (thread);
6126 }
6127
6128 return p;
6129 }
6130
6131 /* Set the target running, using the packets that use Hc
6132 (c/s/C/S). */
6133
6134 void
6135 remote_target::remote_resume_with_hc (ptid_t ptid, int step,
6136 gdb_signal siggnal)
6137 {
6138 struct remote_state *rs = get_remote_state ();
6139 struct thread_info *thread;
6140 char *buf;
6141
6142 rs->last_sent_signal = siggnal;
6143 rs->last_sent_step = step;
6144
6145 /* The c/s/C/S resume packets use Hc, so set the continue
6146 thread. */
6147 if (ptid == minus_one_ptid)
6148 set_continue_thread (any_thread_ptid);
6149 else
6150 set_continue_thread (ptid);
6151
6152 ALL_NON_EXITED_THREADS (thread)
6153 resume_clear_thread_private_info (thread);
6154
6155 buf = rs->buf;
6156 if (::execution_direction == EXEC_REVERSE)
6157 {
6158 /* We don't pass signals to the target in reverse exec mode. */
6159 if (info_verbose && siggnal != GDB_SIGNAL_0)
6160 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
6161 siggnal);
6162
6163 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
6164 error (_("Remote reverse-step not supported."));
6165 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
6166 error (_("Remote reverse-continue not supported."));
6167
6168 strcpy (buf, step ? "bs" : "bc");
6169 }
6170 else if (siggnal != GDB_SIGNAL_0)
6171 {
6172 buf[0] = step ? 'S' : 'C';
6173 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
6174 buf[2] = tohex (((int) siggnal) & 0xf);
6175 buf[3] = '\0';
6176 }
6177 else
6178 strcpy (buf, step ? "s" : "c");
6179
6180 putpkt (buf);
6181 }
6182
6183 /* Resume the remote inferior by using a "vCont" packet. The thread
6184 to be resumed is PTID; STEP and SIGGNAL indicate whether the
6185 resumed thread should be single-stepped and/or signalled. If PTID
6186 equals minus_one_ptid, then all threads are resumed; the thread to
6187 be stepped and/or signalled is given in the global INFERIOR_PTID.
6188 This function returns non-zero iff it resumes the inferior.
6189
6190 This function issues a strict subset of all possible vCont commands
6191 at the moment. */
6192
6193 int
6194 remote_target::remote_resume_with_vcont (ptid_t ptid, int step,
6195 enum gdb_signal siggnal)
6196 {
6197 struct remote_state *rs = get_remote_state ();
6198 char *p;
6199 char *endp;
6200
6201 /* No reverse execution actions defined for vCont. */
6202 if (::execution_direction == EXEC_REVERSE)
6203 return 0;
6204
6205 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6206 remote_vcont_probe ();
6207
6208 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
6209 return 0;
6210
6211 p = rs->buf;
6212 endp = rs->buf + get_remote_packet_size ();
6213
6214 /* If we could generate a wider range of packets, we'd have to worry
6215 about overflowing BUF. Should there be a generic
6216 "multi-part-packet" packet? */
6217
6218 p += xsnprintf (p, endp - p, "vCont");
6219
6220 if (ptid == magic_null_ptid)
6221 {
6222 /* MAGIC_NULL_PTID means that we don't have any active threads,
6223 so we don't have any TID numbers the inferior will
6224 understand. Make sure to only send forms that do not specify
6225 a TID. */
6226 append_resumption (p, endp, minus_one_ptid, step, siggnal);
6227 }
6228 else if (ptid == minus_one_ptid || ptid.is_pid ())
6229 {
6230 /* Resume all threads (of all processes, or of a single
6231 process), with preference for INFERIOR_PTID. This assumes
6232 inferior_ptid belongs to the set of all threads we are about
6233 to resume. */
6234 if (step || siggnal != GDB_SIGNAL_0)
6235 {
6236 /* Step inferior_ptid, with or without signal. */
6237 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
6238 }
6239
6240 /* Also pass down any pending signaled resumption for other
6241 threads not the current. */
6242 p = append_pending_thread_resumptions (p, endp, ptid);
6243
6244 /* And continue others without a signal. */
6245 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
6246 }
6247 else
6248 {
6249 /* Scheduler locking; resume only PTID. */
6250 append_resumption (p, endp, ptid, step, siggnal);
6251 }
6252
6253 gdb_assert (strlen (rs->buf) < get_remote_packet_size ());
6254 putpkt (rs->buf);
6255
6256 if (target_is_non_stop_p ())
6257 {
6258 /* In non-stop, the stub replies to vCont with "OK". The stop
6259 reply will be reported asynchronously by means of a `%Stop'
6260 notification. */
6261 getpkt (&rs->buf, &rs->buf_size, 0);
6262 if (strcmp (rs->buf, "OK") != 0)
6263 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
6264 }
6265
6266 return 1;
6267 }
6268
6269 /* Tell the remote machine to resume. */
6270
6271 void
6272 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
6273 {
6274 struct remote_state *rs = get_remote_state ();
6275
6276 /* When connected in non-stop mode, the core resumes threads
6277 individually. Resuming remote threads directly in target_resume
6278 would thus result in sending one packet per thread. Instead, to
6279 minimize roundtrip latency, here we just store the resume
6280 request; the actual remote resumption will be done in
6281 target_commit_resume / remote_commit_resume, where we'll be able
6282 to do vCont action coalescing. */
6283 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6284 {
6285 remote_thread_info *remote_thr;
6286
6287 if (minus_one_ptid == ptid || ptid.is_pid ())
6288 remote_thr = get_remote_thread_info (inferior_ptid);
6289 else
6290 remote_thr = get_remote_thread_info (ptid);
6291
6292 remote_thr->last_resume_step = step;
6293 remote_thr->last_resume_sig = siggnal;
6294 return;
6295 }
6296
6297 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6298 (explained in remote-notif.c:handle_notification) so
6299 remote_notif_process is not called. We need find a place where
6300 it is safe to start a 'vNotif' sequence. It is good to do it
6301 before resuming inferior, because inferior was stopped and no RSP
6302 traffic at that moment. */
6303 if (!target_is_non_stop_p ())
6304 remote_notif_process (rs->notif_state, &notif_client_stop);
6305
6306 rs->last_resume_exec_dir = ::execution_direction;
6307
6308 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6309 if (!remote_resume_with_vcont (ptid, step, siggnal))
6310 remote_resume_with_hc (ptid, step, siggnal);
6311
6312 /* We are about to start executing the inferior, let's register it
6313 with the event loop. NOTE: this is the one place where all the
6314 execution commands end up. We could alternatively do this in each
6315 of the execution commands in infcmd.c. */
6316 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6317 into infcmd.c in order to allow inferior function calls to work
6318 NOT asynchronously. */
6319 if (target_can_async_p ())
6320 target_async (1);
6321
6322 /* We've just told the target to resume. The remote server will
6323 wait for the inferior to stop, and then send a stop reply. In
6324 the mean time, we can't start another command/query ourselves
6325 because the stub wouldn't be ready to process it. This applies
6326 only to the base all-stop protocol, however. In non-stop (which
6327 only supports vCont), the stub replies with an "OK", and is
6328 immediate able to process further serial input. */
6329 if (!target_is_non_stop_p ())
6330 rs->waiting_for_stop_reply = 1;
6331 }
6332
6333 static int is_pending_fork_parent_thread (struct thread_info *thread);
6334
6335 /* Private per-inferior info for target remote processes. */
6336
6337 struct remote_inferior : public private_inferior
6338 {
6339 /* Whether we can send a wildcard vCont for this process. */
6340 bool may_wildcard_vcont = true;
6341 };
6342
6343 /* Get the remote private inferior data associated to INF. */
6344
6345 static remote_inferior *
6346 get_remote_inferior (inferior *inf)
6347 {
6348 if (inf->priv == NULL)
6349 inf->priv.reset (new remote_inferior);
6350
6351 return static_cast<remote_inferior *> (inf->priv.get ());
6352 }
6353
6354 /* Class used to track the construction of a vCont packet in the
6355 outgoing packet buffer. This is used to send multiple vCont
6356 packets if we have more actions than would fit a single packet. */
6357
6358 class vcont_builder
6359 {
6360 public:
6361 explicit vcont_builder (remote_target *remote)
6362 : m_remote (remote)
6363 {
6364 restart ();
6365 }
6366
6367 void flush ();
6368 void push_action (ptid_t ptid, bool step, gdb_signal siggnal);
6369
6370 private:
6371 void restart ();
6372
6373 /* The remote target. */
6374 remote_target *m_remote;
6375
6376 /* Pointer to the first action. P points here if no action has been
6377 appended yet. */
6378 char *m_first_action;
6379
6380 /* Where the next action will be appended. */
6381 char *m_p;
6382
6383 /* The end of the buffer. Must never write past this. */
6384 char *m_endp;
6385 };
6386
6387 /* Prepare the outgoing buffer for a new vCont packet. */
6388
6389 void
6390 vcont_builder::restart ()
6391 {
6392 struct remote_state *rs = m_remote->get_remote_state ();
6393
6394 m_p = rs->buf;
6395 m_endp = rs->buf + m_remote->get_remote_packet_size ();
6396 m_p += xsnprintf (m_p, m_endp - m_p, "vCont");
6397 m_first_action = m_p;
6398 }
6399
6400 /* If the vCont packet being built has any action, send it to the
6401 remote end. */
6402
6403 void
6404 vcont_builder::flush ()
6405 {
6406 struct remote_state *rs;
6407
6408 if (m_p == m_first_action)
6409 return;
6410
6411 rs = m_remote->get_remote_state ();
6412 m_remote->putpkt (rs->buf);
6413 m_remote->getpkt (&rs->buf, &rs->buf_size, 0);
6414 if (strcmp (rs->buf, "OK") != 0)
6415 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf);
6416 }
6417
6418 /* The largest action is range-stepping, with its two addresses. This
6419 is more than sufficient. If a new, bigger action is created, it'll
6420 quickly trigger a failed assertion in append_resumption (and we'll
6421 just bump this). */
6422 #define MAX_ACTION_SIZE 200
6423
6424 /* Append a new vCont action in the outgoing packet being built. If
6425 the action doesn't fit the packet along with previous actions, push
6426 what we've got so far to the remote end and start over a new vCont
6427 packet (with the new action). */
6428
6429 void
6430 vcont_builder::push_action (ptid_t ptid, bool step, gdb_signal siggnal)
6431 {
6432 char buf[MAX_ACTION_SIZE + 1];
6433
6434 char *endp = m_remote->append_resumption (buf, buf + sizeof (buf),
6435 ptid, step, siggnal);
6436
6437 /* Check whether this new action would fit in the vCont packet along
6438 with previous actions. If not, send what we've got so far and
6439 start a new vCont packet. */
6440 size_t rsize = endp - buf;
6441 if (rsize > m_endp - m_p)
6442 {
6443 flush ();
6444 restart ();
6445
6446 /* Should now fit. */
6447 gdb_assert (rsize <= m_endp - m_p);
6448 }
6449
6450 memcpy (m_p, buf, rsize);
6451 m_p += rsize;
6452 *m_p = '\0';
6453 }
6454
6455 /* to_commit_resume implementation. */
6456
6457 void
6458 remote_target::commit_resume ()
6459 {
6460 struct inferior *inf;
6461 struct thread_info *tp;
6462 int any_process_wildcard;
6463 int may_global_wildcard_vcont;
6464
6465 /* If connected in all-stop mode, we'd send the remote resume
6466 request directly from remote_resume. Likewise if
6467 reverse-debugging, as there are no defined vCont actions for
6468 reverse execution. */
6469 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6470 return;
6471
6472 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6473 instead of resuming all threads of each process individually.
6474 However, if any thread of a process must remain halted, we can't
6475 send wildcard resumes and must send one action per thread.
6476
6477 Care must be taken to not resume threads/processes the server
6478 side already told us are stopped, but the core doesn't know about
6479 yet, because the events are still in the vStopped notification
6480 queue. For example:
6481
6482 #1 => vCont s:p1.1;c
6483 #2 <= OK
6484 #3 <= %Stopped T05 p1.1
6485 #4 => vStopped
6486 #5 <= T05 p1.2
6487 #6 => vStopped
6488 #7 <= OK
6489 #8 (infrun handles the stop for p1.1 and continues stepping)
6490 #9 => vCont s:p1.1;c
6491
6492 The last vCont above would resume thread p1.2 by mistake, because
6493 the server has no idea that the event for p1.2 had not been
6494 handled yet.
6495
6496 The server side must similarly ignore resume actions for the
6497 thread that has a pending %Stopped notification (and any other
6498 threads with events pending), until GDB acks the notification
6499 with vStopped. Otherwise, e.g., the following case is
6500 mishandled:
6501
6502 #1 => g (or any other packet)
6503 #2 <= [registers]
6504 #3 <= %Stopped T05 p1.2
6505 #4 => vCont s:p1.1;c
6506 #5 <= OK
6507
6508 Above, the server must not resume thread p1.2. GDB can't know
6509 that p1.2 stopped until it acks the %Stopped notification, and
6510 since from GDB's perspective all threads should be running, it
6511 sends a "c" action.
6512
6513 Finally, special care must also be given to handling fork/vfork
6514 events. A (v)fork event actually tells us that two processes
6515 stopped -- the parent and the child. Until we follow the fork,
6516 we must not resume the child. Therefore, if we have a pending
6517 fork follow, we must not send a global wildcard resume action
6518 (vCont;c). We can still send process-wide wildcards though. */
6519
6520 /* Start by assuming a global wildcard (vCont;c) is possible. */
6521 may_global_wildcard_vcont = 1;
6522
6523 /* And assume every process is individually wildcard-able too. */
6524 ALL_NON_EXITED_INFERIORS (inf)
6525 {
6526 remote_inferior *priv = get_remote_inferior (inf);
6527
6528 priv->may_wildcard_vcont = true;
6529 }
6530
6531 /* Check for any pending events (not reported or processed yet) and
6532 disable process and global wildcard resumes appropriately. */
6533 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6534
6535 ALL_NON_EXITED_THREADS (tp)
6536 {
6537 /* If a thread of a process is not meant to be resumed, then we
6538 can't wildcard that process. */
6539 if (!tp->executing)
6540 {
6541 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6542
6543 /* And if we can't wildcard a process, we can't wildcard
6544 everything either. */
6545 may_global_wildcard_vcont = 0;
6546 continue;
6547 }
6548
6549 /* If a thread is the parent of an unfollowed fork, then we
6550 can't do a global wildcard, as that would resume the fork
6551 child. */
6552 if (is_pending_fork_parent_thread (tp))
6553 may_global_wildcard_vcont = 0;
6554 }
6555
6556 /* Now let's build the vCont packet(s). Actions must be appended
6557 from narrower to wider scopes (thread -> process -> global). If
6558 we end up with too many actions for a single packet vcont_builder
6559 flushes the current vCont packet to the remote side and starts a
6560 new one. */
6561 struct vcont_builder vcont_builder (this);
6562
6563 /* Threads first. */
6564 ALL_NON_EXITED_THREADS (tp)
6565 {
6566 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6567
6568 if (!tp->executing || remote_thr->vcont_resumed)
6569 continue;
6570
6571 gdb_assert (!thread_is_in_step_over_chain (tp));
6572
6573 if (!remote_thr->last_resume_step
6574 && remote_thr->last_resume_sig == GDB_SIGNAL_0
6575 && get_remote_inferior (tp->inf)->may_wildcard_vcont)
6576 {
6577 /* We'll send a wildcard resume instead. */
6578 remote_thr->vcont_resumed = 1;
6579 continue;
6580 }
6581
6582 vcont_builder.push_action (tp->ptid,
6583 remote_thr->last_resume_step,
6584 remote_thr->last_resume_sig);
6585 remote_thr->vcont_resumed = 1;
6586 }
6587
6588 /* Now check whether we can send any process-wide wildcard. This is
6589 to avoid sending a global wildcard in the case nothing is
6590 supposed to be resumed. */
6591 any_process_wildcard = 0;
6592
6593 ALL_NON_EXITED_INFERIORS (inf)
6594 {
6595 if (get_remote_inferior (inf)->may_wildcard_vcont)
6596 {
6597 any_process_wildcard = 1;
6598 break;
6599 }
6600 }
6601
6602 if (any_process_wildcard)
6603 {
6604 /* If all processes are wildcard-able, then send a single "c"
6605 action, otherwise, send an "all (-1) threads of process"
6606 continue action for each running process, if any. */
6607 if (may_global_wildcard_vcont)
6608 {
6609 vcont_builder.push_action (minus_one_ptid,
6610 false, GDB_SIGNAL_0);
6611 }
6612 else
6613 {
6614 ALL_NON_EXITED_INFERIORS (inf)
6615 {
6616 if (get_remote_inferior (inf)->may_wildcard_vcont)
6617 {
6618 vcont_builder.push_action (ptid_t (inf->pid),
6619 false, GDB_SIGNAL_0);
6620 }
6621 }
6622 }
6623 }
6624
6625 vcont_builder.flush ();
6626 }
6627
6628 \f
6629
6630 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6631 thread, all threads of a remote process, or all threads of all
6632 processes. */
6633
6634 void
6635 remote_target::remote_stop_ns (ptid_t ptid)
6636 {
6637 struct remote_state *rs = get_remote_state ();
6638 char *p = rs->buf;
6639 char *endp = rs->buf + get_remote_packet_size ();
6640
6641 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6642 remote_vcont_probe ();
6643
6644 if (!rs->supports_vCont.t)
6645 error (_("Remote server does not support stopping threads"));
6646
6647 if (ptid == minus_one_ptid
6648 || (!remote_multi_process_p (rs) && ptid.is_pid ()))
6649 p += xsnprintf (p, endp - p, "vCont;t");
6650 else
6651 {
6652 ptid_t nptid;
6653
6654 p += xsnprintf (p, endp - p, "vCont;t:");
6655
6656 if (ptid.is_pid ())
6657 /* All (-1) threads of process. */
6658 nptid = ptid_t (ptid.pid (), -1, 0);
6659 else
6660 {
6661 /* Small optimization: if we already have a stop reply for
6662 this thread, no use in telling the stub we want this
6663 stopped. */
6664 if (peek_stop_reply (ptid))
6665 return;
6666
6667 nptid = ptid;
6668 }
6669
6670 write_ptid (p, endp, nptid);
6671 }
6672
6673 /* In non-stop, we get an immediate OK reply. The stop reply will
6674 come in asynchronously by notification. */
6675 putpkt (rs->buf);
6676 getpkt (&rs->buf, &rs->buf_size, 0);
6677 if (strcmp (rs->buf, "OK") != 0)
6678 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid), rs->buf);
6679 }
6680
6681 /* All-stop version of target_interrupt. Sends a break or a ^C to
6682 interrupt the remote target. It is undefined which thread of which
6683 process reports the interrupt. */
6684
6685 void
6686 remote_target::remote_interrupt_as ()
6687 {
6688 struct remote_state *rs = get_remote_state ();
6689
6690 rs->ctrlc_pending_p = 1;
6691
6692 /* If the inferior is stopped already, but the core didn't know
6693 about it yet, just ignore the request. The cached wait status
6694 will be collected in remote_wait. */
6695 if (rs->cached_wait_status)
6696 return;
6697
6698 /* Send interrupt_sequence to remote target. */
6699 send_interrupt_sequence ();
6700 }
6701
6702 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6703 the remote target. It is undefined which thread of which process
6704 reports the interrupt. Throws an error if the packet is not
6705 supported by the server. */
6706
6707 void
6708 remote_target::remote_interrupt_ns ()
6709 {
6710 struct remote_state *rs = get_remote_state ();
6711 char *p = rs->buf;
6712 char *endp = rs->buf + get_remote_packet_size ();
6713
6714 xsnprintf (p, endp - p, "vCtrlC");
6715
6716 /* In non-stop, we get an immediate OK reply. The stop reply will
6717 come in asynchronously by notification. */
6718 putpkt (rs->buf);
6719 getpkt (&rs->buf, &rs->buf_size, 0);
6720
6721 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6722 {
6723 case PACKET_OK:
6724 break;
6725 case PACKET_UNKNOWN:
6726 error (_("No support for interrupting the remote target."));
6727 case PACKET_ERROR:
6728 error (_("Interrupting target failed: %s"), rs->buf);
6729 }
6730 }
6731
6732 /* Implement the to_stop function for the remote targets. */
6733
6734 void
6735 remote_target::stop (ptid_t ptid)
6736 {
6737 if (remote_debug)
6738 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6739
6740 if (target_is_non_stop_p ())
6741 remote_stop_ns (ptid);
6742 else
6743 {
6744 /* We don't currently have a way to transparently pause the
6745 remote target in all-stop mode. Interrupt it instead. */
6746 remote_interrupt_as ();
6747 }
6748 }
6749
6750 /* Implement the to_interrupt function for the remote targets. */
6751
6752 void
6753 remote_target::interrupt ()
6754 {
6755 if (remote_debug)
6756 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6757
6758 if (target_is_non_stop_p ())
6759 remote_interrupt_ns ();
6760 else
6761 remote_interrupt_as ();
6762 }
6763
6764 /* Implement the to_pass_ctrlc function for the remote targets. */
6765
6766 void
6767 remote_target::pass_ctrlc ()
6768 {
6769 struct remote_state *rs = get_remote_state ();
6770
6771 if (remote_debug)
6772 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6773
6774 /* If we're starting up, we're not fully synced yet. Quit
6775 immediately. */
6776 if (rs->starting_up)
6777 quit ();
6778 /* If ^C has already been sent once, offer to disconnect. */
6779 else if (rs->ctrlc_pending_p)
6780 interrupt_query ();
6781 else
6782 target_interrupt ();
6783 }
6784
6785 /* Ask the user what to do when an interrupt is received. */
6786
6787 void
6788 remote_target::interrupt_query ()
6789 {
6790 struct remote_state *rs = get_remote_state ();
6791
6792 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6793 {
6794 if (query (_("The target is not responding to interrupt requests.\n"
6795 "Stop debugging it? ")))
6796 {
6797 remote_unpush_target ();
6798 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6799 }
6800 }
6801 else
6802 {
6803 if (query (_("Interrupted while waiting for the program.\n"
6804 "Give up waiting? ")))
6805 quit ();
6806 }
6807 }
6808
6809 /* Enable/disable target terminal ownership. Most targets can use
6810 terminal groups to control terminal ownership. Remote targets are
6811 different in that explicit transfer of ownership to/from GDB/target
6812 is required. */
6813
6814 void
6815 remote_target::terminal_inferior ()
6816 {
6817 /* NOTE: At this point we could also register our selves as the
6818 recipient of all input. Any characters typed could then be
6819 passed on down to the target. */
6820 }
6821
6822 void
6823 remote_target::terminal_ours ()
6824 {
6825 }
6826
6827 static void
6828 remote_console_output (char *msg)
6829 {
6830 char *p;
6831
6832 for (p = msg; p[0] && p[1]; p += 2)
6833 {
6834 char tb[2];
6835 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6836
6837 tb[0] = c;
6838 tb[1] = 0;
6839 fputs_unfiltered (tb, gdb_stdtarg);
6840 }
6841 gdb_flush (gdb_stdtarg);
6842 }
6843
6844 DEF_VEC_O(cached_reg_t);
6845
6846 typedef struct stop_reply
6847 {
6848 struct notif_event base;
6849
6850 /* The identifier of the thread about this event */
6851 ptid_t ptid;
6852
6853 /* The remote state this event is associated with. When the remote
6854 connection, represented by a remote_state object, is closed,
6855 all the associated stop_reply events should be released. */
6856 struct remote_state *rs;
6857
6858 struct target_waitstatus ws;
6859
6860 /* The architecture associated with the expedited registers. */
6861 gdbarch *arch;
6862
6863 /* Expedited registers. This makes remote debugging a bit more
6864 efficient for those targets that provide critical registers as
6865 part of their normal status mechanism (as another roundtrip to
6866 fetch them is avoided). */
6867 VEC(cached_reg_t) *regcache;
6868
6869 enum target_stop_reason stop_reason;
6870
6871 CORE_ADDR watch_data_address;
6872
6873 int core;
6874 } *stop_reply_p;
6875
6876 static void
6877 stop_reply_xfree (struct stop_reply *r)
6878 {
6879 notif_event_xfree ((struct notif_event *) r);
6880 }
6881
6882 /* Return the length of the stop reply queue. */
6883
6884 int
6885 remote_target::stop_reply_queue_length ()
6886 {
6887 remote_state *rs = get_remote_state ();
6888 return rs->stop_reply_queue.size ();
6889 }
6890
6891 void
6892 remote_notif_stop_parse (remote_target *remote,
6893 struct notif_client *self, char *buf,
6894 struct notif_event *event)
6895 {
6896 remote->remote_parse_stop_reply (buf, (struct stop_reply *) event);
6897 }
6898
6899 static void
6900 remote_notif_stop_ack (remote_target *remote,
6901 struct notif_client *self, char *buf,
6902 struct notif_event *event)
6903 {
6904 struct stop_reply *stop_reply = (struct stop_reply *) event;
6905
6906 /* acknowledge */
6907 putpkt (remote, self->ack_command);
6908
6909 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6910 {
6911 /* We got an unknown stop reply. */
6912 error (_("Unknown stop reply"));
6913 }
6914
6915 remote->push_stop_reply (stop_reply);
6916 }
6917
6918 static int
6919 remote_notif_stop_can_get_pending_events (remote_target *remote,
6920 struct notif_client *self)
6921 {
6922 /* We can't get pending events in remote_notif_process for
6923 notification stop, and we have to do this in remote_wait_ns
6924 instead. If we fetch all queued events from stub, remote stub
6925 may exit and we have no chance to process them back in
6926 remote_wait_ns. */
6927 remote_state *rs = remote->get_remote_state ();
6928 mark_async_event_handler (rs->remote_async_inferior_event_token);
6929 return 0;
6930 }
6931
6932 static void
6933 stop_reply_dtr (struct notif_event *event)
6934 {
6935 struct stop_reply *r = (struct stop_reply *) event;
6936 cached_reg_t *reg;
6937 int ix;
6938
6939 for (ix = 0;
6940 VEC_iterate (cached_reg_t, r->regcache, ix, reg);
6941 ix++)
6942 xfree (reg->data);
6943
6944 VEC_free (cached_reg_t, r->regcache);
6945 }
6946
6947 static struct notif_event *
6948 remote_notif_stop_alloc_reply (void)
6949 {
6950 /* We cast to a pointer to the "base class". */
6951 struct notif_event *r = (struct notif_event *) XNEW (struct stop_reply);
6952
6953 r->dtr = stop_reply_dtr;
6954
6955 return r;
6956 }
6957
6958 /* A client of notification Stop. */
6959
6960 struct notif_client notif_client_stop =
6961 {
6962 "Stop",
6963 "vStopped",
6964 remote_notif_stop_parse,
6965 remote_notif_stop_ack,
6966 remote_notif_stop_can_get_pending_events,
6967 remote_notif_stop_alloc_reply,
6968 REMOTE_NOTIF_STOP,
6969 };
6970
6971 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
6972 the pid of the process that owns the threads we want to check, or
6973 -1 if we want to check all threads. */
6974
6975 static int
6976 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6977 ptid_t thread_ptid)
6978 {
6979 if (ws->kind == TARGET_WAITKIND_FORKED
6980 || ws->kind == TARGET_WAITKIND_VFORKED)
6981 {
6982 if (event_pid == -1 || event_pid == thread_ptid.pid ())
6983 return 1;
6984 }
6985
6986 return 0;
6987 }
6988
6989 /* Return the thread's pending status used to determine whether the
6990 thread is a fork parent stopped at a fork event. */
6991
6992 static struct target_waitstatus *
6993 thread_pending_fork_status (struct thread_info *thread)
6994 {
6995 if (thread->suspend.waitstatus_pending_p)
6996 return &thread->suspend.waitstatus;
6997 else
6998 return &thread->pending_follow;
6999 }
7000
7001 /* Determine if THREAD is a pending fork parent thread. */
7002
7003 static int
7004 is_pending_fork_parent_thread (struct thread_info *thread)
7005 {
7006 struct target_waitstatus *ws = thread_pending_fork_status (thread);
7007 int pid = -1;
7008
7009 return is_pending_fork_parent (ws, pid, thread->ptid);
7010 }
7011
7012 /* If CONTEXT contains any fork child threads that have not been
7013 reported yet, remove them from the CONTEXT list. If such a
7014 thread exists it is because we are stopped at a fork catchpoint
7015 and have not yet called follow_fork, which will set up the
7016 host-side data structures for the new process. */
7017
7018 void
7019 remote_target::remove_new_fork_children (threads_listing_context *context)
7020 {
7021 struct thread_info * thread;
7022 int pid = -1;
7023 struct notif_client *notif = &notif_client_stop;
7024
7025 /* For any threads stopped at a fork event, remove the corresponding
7026 fork child threads from the CONTEXT list. */
7027 ALL_NON_EXITED_THREADS (thread)
7028 {
7029 struct target_waitstatus *ws = thread_pending_fork_status (thread);
7030
7031 if (is_pending_fork_parent (ws, pid, thread->ptid))
7032 context->remove_thread (ws->value.related_pid);
7033 }
7034
7035 /* Check for any pending fork events (not reported or processed yet)
7036 in process PID and remove those fork child threads from the
7037 CONTEXT list as well. */
7038 remote_notif_get_pending_events (notif);
7039 for (auto &event : get_remote_state ()->stop_reply_queue)
7040 if (event->ws.kind == TARGET_WAITKIND_FORKED
7041 || event->ws.kind == TARGET_WAITKIND_VFORKED
7042 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
7043 context->remove_thread (event->ws.value.related_pid);
7044 }
7045
7046 /* Check whether any event pending in the vStopped queue would prevent
7047 a global or process wildcard vCont action. Clear
7048 *may_global_wildcard if we can't do a global wildcard (vCont;c),
7049 and clear the event inferior's may_wildcard_vcont flag if we can't
7050 do a process-wide wildcard resume (vCont;c:pPID.-1). */
7051
7052 void
7053 remote_target::check_pending_events_prevent_wildcard_vcont
7054 (int *may_global_wildcard)
7055 {
7056 struct notif_client *notif = &notif_client_stop;
7057
7058 remote_notif_get_pending_events (notif);
7059 for (auto &event : get_remote_state ()->stop_reply_queue)
7060 {
7061 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
7062 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
7063 continue;
7064
7065 if (event->ws.kind == TARGET_WAITKIND_FORKED
7066 || event->ws.kind == TARGET_WAITKIND_VFORKED)
7067 *may_global_wildcard = 0;
7068
7069 struct inferior *inf = find_inferior_ptid (event->ptid);
7070
7071 /* This may be the first time we heard about this process.
7072 Regardless, we must not do a global wildcard resume, otherwise
7073 we'd resume this process too. */
7074 *may_global_wildcard = 0;
7075 if (inf != NULL)
7076 get_remote_inferior (inf)->may_wildcard_vcont = false;
7077 }
7078 }
7079
7080 /* Discard all pending stop replies of inferior INF. */
7081
7082 void
7083 remote_target::discard_pending_stop_replies (struct inferior *inf)
7084 {
7085 struct stop_reply *reply;
7086 struct remote_state *rs = get_remote_state ();
7087 struct remote_notif_state *rns = rs->notif_state;
7088
7089 /* This function can be notified when an inferior exists. When the
7090 target is not remote, the notification state is NULL. */
7091 if (rs->remote_desc == NULL)
7092 return;
7093
7094 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
7095
7096 /* Discard the in-flight notification. */
7097 if (reply != NULL && reply->ptid.pid () == inf->pid)
7098 {
7099 stop_reply_xfree (reply);
7100 rns->pending_event[notif_client_stop.id] = NULL;
7101 }
7102
7103 /* Discard the stop replies we have already pulled with
7104 vStopped. */
7105 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7106 rs->stop_reply_queue.end (),
7107 [=] (const stop_reply_up &event)
7108 {
7109 return event->ptid.pid () == inf->pid;
7110 });
7111 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7112 }
7113
7114 /* Discard the stop replies for RS in stop_reply_queue. */
7115
7116 void
7117 remote_target::discard_pending_stop_replies_in_queue ()
7118 {
7119 remote_state *rs = get_remote_state ();
7120
7121 /* Discard the stop replies we have already pulled with
7122 vStopped. */
7123 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7124 rs->stop_reply_queue.end (),
7125 [=] (const stop_reply_up &event)
7126 {
7127 return event->rs == rs;
7128 });
7129 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7130 }
7131
7132 /* Remove the first reply in 'stop_reply_queue' which matches
7133 PTID. */
7134
7135 struct stop_reply *
7136 remote_target::remote_notif_remove_queued_reply (ptid_t ptid)
7137 {
7138 remote_state *rs = get_remote_state ();
7139
7140 auto iter = std::find_if (rs->stop_reply_queue.begin (),
7141 rs->stop_reply_queue.end (),
7142 [=] (const stop_reply_up &event)
7143 {
7144 return event->ptid.matches (ptid);
7145 });
7146 struct stop_reply *result;
7147 if (iter == rs->stop_reply_queue.end ())
7148 result = nullptr;
7149 else
7150 {
7151 result = iter->release ();
7152 rs->stop_reply_queue.erase (iter);
7153 }
7154
7155 if (notif_debug)
7156 fprintf_unfiltered (gdb_stdlog,
7157 "notif: discard queued event: 'Stop' in %s\n",
7158 target_pid_to_str (ptid));
7159
7160 return result;
7161 }
7162
7163 /* Look for a queued stop reply belonging to PTID. If one is found,
7164 remove it from the queue, and return it. Returns NULL if none is
7165 found. If there are still queued events left to process, tell the
7166 event loop to get back to target_wait soon. */
7167
7168 struct stop_reply *
7169 remote_target::queued_stop_reply (ptid_t ptid)
7170 {
7171 remote_state *rs = get_remote_state ();
7172 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
7173
7174 if (!rs->stop_reply_queue.empty ())
7175 {
7176 /* There's still at least an event left. */
7177 mark_async_event_handler (rs->remote_async_inferior_event_token);
7178 }
7179
7180 return r;
7181 }
7182
7183 /* Push a fully parsed stop reply in the stop reply queue. Since we
7184 know that we now have at least one queued event left to pass to the
7185 core side, tell the event loop to get back to target_wait soon. */
7186
7187 void
7188 remote_target::push_stop_reply (struct stop_reply *new_event)
7189 {
7190 remote_state *rs = get_remote_state ();
7191 rs->stop_reply_queue.push_back (stop_reply_up (new_event));
7192
7193 if (notif_debug)
7194 fprintf_unfiltered (gdb_stdlog,
7195 "notif: push 'Stop' %s to queue %d\n",
7196 target_pid_to_str (new_event->ptid),
7197 int (rs->stop_reply_queue.size ()));
7198
7199 mark_async_event_handler (rs->remote_async_inferior_event_token);
7200 }
7201
7202 /* Returns true if we have a stop reply for PTID. */
7203
7204 int
7205 remote_target::peek_stop_reply (ptid_t ptid)
7206 {
7207 remote_state *rs = get_remote_state ();
7208 for (auto &event : rs->stop_reply_queue)
7209 if (ptid == event->ptid
7210 && event->ws.kind == TARGET_WAITKIND_STOPPED)
7211 return 1;
7212 return 0;
7213 }
7214
7215 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7216 starting with P and ending with PEND matches PREFIX. */
7217
7218 static int
7219 strprefix (const char *p, const char *pend, const char *prefix)
7220 {
7221 for ( ; p < pend; p++, prefix++)
7222 if (*p != *prefix)
7223 return 0;
7224 return *prefix == '\0';
7225 }
7226
7227 /* Parse the stop reply in BUF. Either the function succeeds, and the
7228 result is stored in EVENT, or throws an error. */
7229
7230 void
7231 remote_target::remote_parse_stop_reply (char *buf, stop_reply *event)
7232 {
7233 remote_arch_state *rsa = NULL;
7234 ULONGEST addr;
7235 const char *p;
7236 int skipregs = 0;
7237
7238 event->ptid = null_ptid;
7239 event->rs = get_remote_state ();
7240 event->ws.kind = TARGET_WAITKIND_IGNORE;
7241 event->ws.value.integer = 0;
7242 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7243 event->regcache = NULL;
7244 event->core = -1;
7245
7246 switch (buf[0])
7247 {
7248 case 'T': /* Status with PC, SP, FP, ... */
7249 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7250 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7251 ss = signal number
7252 n... = register number
7253 r... = register contents
7254 */
7255
7256 p = &buf[3]; /* after Txx */
7257 while (*p)
7258 {
7259 const char *p1;
7260 int fieldsize;
7261
7262 p1 = strchr (p, ':');
7263 if (p1 == NULL)
7264 error (_("Malformed packet(a) (missing colon): %s\n\
7265 Packet: '%s'\n"),
7266 p, buf);
7267 if (p == p1)
7268 error (_("Malformed packet(a) (missing register number): %s\n\
7269 Packet: '%s'\n"),
7270 p, buf);
7271
7272 /* Some "registers" are actually extended stop information.
7273 Note if you're adding a new entry here: GDB 7.9 and
7274 earlier assume that all register "numbers" that start
7275 with an hex digit are real register numbers. Make sure
7276 the server only sends such a packet if it knows the
7277 client understands it. */
7278
7279 if (strprefix (p, p1, "thread"))
7280 event->ptid = read_ptid (++p1, &p);
7281 else if (strprefix (p, p1, "syscall_entry"))
7282 {
7283 ULONGEST sysno;
7284
7285 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
7286 p = unpack_varlen_hex (++p1, &sysno);
7287 event->ws.value.syscall_number = (int) sysno;
7288 }
7289 else if (strprefix (p, p1, "syscall_return"))
7290 {
7291 ULONGEST sysno;
7292
7293 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
7294 p = unpack_varlen_hex (++p1, &sysno);
7295 event->ws.value.syscall_number = (int) sysno;
7296 }
7297 else if (strprefix (p, p1, "watch")
7298 || strprefix (p, p1, "rwatch")
7299 || strprefix (p, p1, "awatch"))
7300 {
7301 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7302 p = unpack_varlen_hex (++p1, &addr);
7303 event->watch_data_address = (CORE_ADDR) addr;
7304 }
7305 else if (strprefix (p, p1, "swbreak"))
7306 {
7307 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7308
7309 /* Make sure the stub doesn't forget to indicate support
7310 with qSupported. */
7311 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7312 error (_("Unexpected swbreak stop reason"));
7313
7314 /* The value part is documented as "must be empty",
7315 though we ignore it, in case we ever decide to make
7316 use of it in a backward compatible way. */
7317 p = strchrnul (p1 + 1, ';');
7318 }
7319 else if (strprefix (p, p1, "hwbreak"))
7320 {
7321 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7322
7323 /* Make sure the stub doesn't forget to indicate support
7324 with qSupported. */
7325 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7326 error (_("Unexpected hwbreak stop reason"));
7327
7328 /* See above. */
7329 p = strchrnul (p1 + 1, ';');
7330 }
7331 else if (strprefix (p, p1, "library"))
7332 {
7333 event->ws.kind = TARGET_WAITKIND_LOADED;
7334 p = strchrnul (p1 + 1, ';');
7335 }
7336 else if (strprefix (p, p1, "replaylog"))
7337 {
7338 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
7339 /* p1 will indicate "begin" or "end", but it makes
7340 no difference for now, so ignore it. */
7341 p = strchrnul (p1 + 1, ';');
7342 }
7343 else if (strprefix (p, p1, "core"))
7344 {
7345 ULONGEST c;
7346
7347 p = unpack_varlen_hex (++p1, &c);
7348 event->core = c;
7349 }
7350 else if (strprefix (p, p1, "fork"))
7351 {
7352 event->ws.value.related_pid = read_ptid (++p1, &p);
7353 event->ws.kind = TARGET_WAITKIND_FORKED;
7354 }
7355 else if (strprefix (p, p1, "vfork"))
7356 {
7357 event->ws.value.related_pid = read_ptid (++p1, &p);
7358 event->ws.kind = TARGET_WAITKIND_VFORKED;
7359 }
7360 else if (strprefix (p, p1, "vforkdone"))
7361 {
7362 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
7363 p = strchrnul (p1 + 1, ';');
7364 }
7365 else if (strprefix (p, p1, "exec"))
7366 {
7367 ULONGEST ignored;
7368 char pathname[PATH_MAX];
7369 int pathlen;
7370
7371 /* Determine the length of the execd pathname. */
7372 p = unpack_varlen_hex (++p1, &ignored);
7373 pathlen = (p - p1) / 2;
7374
7375 /* Save the pathname for event reporting and for
7376 the next run command. */
7377 hex2bin (p1, (gdb_byte *) pathname, pathlen);
7378 pathname[pathlen] = '\0';
7379
7380 /* This is freed during event handling. */
7381 event->ws.value.execd_pathname = xstrdup (pathname);
7382 event->ws.kind = TARGET_WAITKIND_EXECD;
7383
7384 /* Skip the registers included in this packet, since
7385 they may be for an architecture different from the
7386 one used by the original program. */
7387 skipregs = 1;
7388 }
7389 else if (strprefix (p, p1, "create"))
7390 {
7391 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
7392 p = strchrnul (p1 + 1, ';');
7393 }
7394 else
7395 {
7396 ULONGEST pnum;
7397 const char *p_temp;
7398
7399 if (skipregs)
7400 {
7401 p = strchrnul (p1 + 1, ';');
7402 p++;
7403 continue;
7404 }
7405
7406 /* Maybe a real ``P'' register number. */
7407 p_temp = unpack_varlen_hex (p, &pnum);
7408 /* If the first invalid character is the colon, we got a
7409 register number. Otherwise, it's an unknown stop
7410 reason. */
7411 if (p_temp == p1)
7412 {
7413 /* If we haven't parsed the event's thread yet, find
7414 it now, in order to find the architecture of the
7415 reported expedited registers. */
7416 if (event->ptid == null_ptid)
7417 {
7418 const char *thr = strstr (p1 + 1, ";thread:");
7419 if (thr != NULL)
7420 event->ptid = read_ptid (thr + strlen (";thread:"),
7421 NULL);
7422 else
7423 {
7424 /* Either the current thread hasn't changed,
7425 or the inferior is not multi-threaded.
7426 The event must be for the thread we last
7427 set as (or learned as being) current. */
7428 event->ptid = event->rs->general_thread;
7429 }
7430 }
7431
7432 if (rsa == NULL)
7433 {
7434 inferior *inf = (event->ptid == null_ptid
7435 ? NULL
7436 : find_inferior_ptid (event->ptid));
7437 /* If this is the first time we learn anything
7438 about this process, skip the registers
7439 included in this packet, since we don't yet
7440 know which architecture to use to parse them.
7441 We'll determine the architecture later when
7442 we process the stop reply and retrieve the
7443 target description, via
7444 remote_notice_new_inferior ->
7445 post_create_inferior. */
7446 if (inf == NULL)
7447 {
7448 p = strchrnul (p1 + 1, ';');
7449 p++;
7450 continue;
7451 }
7452
7453 event->arch = inf->gdbarch;
7454 rsa = event->rs->get_remote_arch_state (event->arch);
7455 }
7456
7457 packet_reg *reg
7458 = packet_reg_from_pnum (event->arch, rsa, pnum);
7459 cached_reg_t cached_reg;
7460
7461 if (reg == NULL)
7462 error (_("Remote sent bad register number %s: %s\n\
7463 Packet: '%s'\n"),
7464 hex_string (pnum), p, buf);
7465
7466 cached_reg.num = reg->regnum;
7467 cached_reg.data = (gdb_byte *)
7468 xmalloc (register_size (event->arch, reg->regnum));
7469
7470 p = p1 + 1;
7471 fieldsize = hex2bin (p, cached_reg.data,
7472 register_size (event->arch, reg->regnum));
7473 p += 2 * fieldsize;
7474 if (fieldsize < register_size (event->arch, reg->regnum))
7475 warning (_("Remote reply is too short: %s"), buf);
7476
7477 VEC_safe_push (cached_reg_t, event->regcache, &cached_reg);
7478 }
7479 else
7480 {
7481 /* Not a number. Silently skip unknown optional
7482 info. */
7483 p = strchrnul (p1 + 1, ';');
7484 }
7485 }
7486
7487 if (*p != ';')
7488 error (_("Remote register badly formatted: %s\nhere: %s"),
7489 buf, p);
7490 ++p;
7491 }
7492
7493 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7494 break;
7495
7496 /* fall through */
7497 case 'S': /* Old style status, just signal only. */
7498 {
7499 int sig;
7500
7501 event->ws.kind = TARGET_WAITKIND_STOPPED;
7502 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7503 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7504 event->ws.value.sig = (enum gdb_signal) sig;
7505 else
7506 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7507 }
7508 break;
7509 case 'w': /* Thread exited. */
7510 {
7511 ULONGEST value;
7512
7513 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7514 p = unpack_varlen_hex (&buf[1], &value);
7515 event->ws.value.integer = value;
7516 if (*p != ';')
7517 error (_("stop reply packet badly formatted: %s"), buf);
7518 event->ptid = read_ptid (++p, NULL);
7519 break;
7520 }
7521 case 'W': /* Target exited. */
7522 case 'X':
7523 {
7524 int pid;
7525 ULONGEST value;
7526
7527 /* GDB used to accept only 2 hex chars here. Stubs should
7528 only send more if they detect GDB supports multi-process
7529 support. */
7530 p = unpack_varlen_hex (&buf[1], &value);
7531
7532 if (buf[0] == 'W')
7533 {
7534 /* The remote process exited. */
7535 event->ws.kind = TARGET_WAITKIND_EXITED;
7536 event->ws.value.integer = value;
7537 }
7538 else
7539 {
7540 /* The remote process exited with a signal. */
7541 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7542 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7543 event->ws.value.sig = (enum gdb_signal) value;
7544 else
7545 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7546 }
7547
7548 /* If no process is specified, assume inferior_ptid. */
7549 pid = inferior_ptid.pid ();
7550 if (*p == '\0')
7551 ;
7552 else if (*p == ';')
7553 {
7554 p++;
7555
7556 if (*p == '\0')
7557 ;
7558 else if (startswith (p, "process:"))
7559 {
7560 ULONGEST upid;
7561
7562 p += sizeof ("process:") - 1;
7563 unpack_varlen_hex (p, &upid);
7564 pid = upid;
7565 }
7566 else
7567 error (_("unknown stop reply packet: %s"), buf);
7568 }
7569 else
7570 error (_("unknown stop reply packet: %s"), buf);
7571 event->ptid = ptid_t (pid);
7572 }
7573 break;
7574 case 'N':
7575 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7576 event->ptid = minus_one_ptid;
7577 break;
7578 }
7579
7580 if (target_is_non_stop_p () && event->ptid == null_ptid)
7581 error (_("No process or thread specified in stop reply: %s"), buf);
7582 }
7583
7584 /* When the stub wants to tell GDB about a new notification reply, it
7585 sends a notification (%Stop, for example). Those can come it at
7586 any time, hence, we have to make sure that any pending
7587 putpkt/getpkt sequence we're making is finished, before querying
7588 the stub for more events with the corresponding ack command
7589 (vStopped, for example). E.g., if we started a vStopped sequence
7590 immediately upon receiving the notification, something like this
7591 could happen:
7592
7593 1.1) --> Hg 1
7594 1.2) <-- OK
7595 1.3) --> g
7596 1.4) <-- %Stop
7597 1.5) --> vStopped
7598 1.6) <-- (registers reply to step #1.3)
7599
7600 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7601 query.
7602
7603 To solve this, whenever we parse a %Stop notification successfully,
7604 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7605 doing whatever we were doing:
7606
7607 2.1) --> Hg 1
7608 2.2) <-- OK
7609 2.3) --> g
7610 2.4) <-- %Stop
7611 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7612 2.5) <-- (registers reply to step #2.3)
7613
7614 Eventualy after step #2.5, we return to the event loop, which
7615 notices there's an event on the
7616 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7617 associated callback --- the function below. At this point, we're
7618 always safe to start a vStopped sequence. :
7619
7620 2.6) --> vStopped
7621 2.7) <-- T05 thread:2
7622 2.8) --> vStopped
7623 2.9) --> OK
7624 */
7625
7626 void
7627 remote_target::remote_notif_get_pending_events (notif_client *nc)
7628 {
7629 struct remote_state *rs = get_remote_state ();
7630
7631 if (rs->notif_state->pending_event[nc->id] != NULL)
7632 {
7633 if (notif_debug)
7634 fprintf_unfiltered (gdb_stdlog,
7635 "notif: process: '%s' ack pending event\n",
7636 nc->name);
7637
7638 /* acknowledge */
7639 nc->ack (this, nc, rs->buf, rs->notif_state->pending_event[nc->id]);
7640 rs->notif_state->pending_event[nc->id] = NULL;
7641
7642 while (1)
7643 {
7644 getpkt (&rs->buf, &rs->buf_size, 0);
7645 if (strcmp (rs->buf, "OK") == 0)
7646 break;
7647 else
7648 remote_notif_ack (this, nc, rs->buf);
7649 }
7650 }
7651 else
7652 {
7653 if (notif_debug)
7654 fprintf_unfiltered (gdb_stdlog,
7655 "notif: process: '%s' no pending reply\n",
7656 nc->name);
7657 }
7658 }
7659
7660 /* Wrapper around remote_target::remote_notif_get_pending_events to
7661 avoid having to export the whole remote_target class. */
7662
7663 void
7664 remote_notif_get_pending_events (remote_target *remote, notif_client *nc)
7665 {
7666 remote->remote_notif_get_pending_events (nc);
7667 }
7668
7669 /* Called when it is decided that STOP_REPLY holds the info of the
7670 event that is to be returned to the core. This function always
7671 destroys STOP_REPLY. */
7672
7673 ptid_t
7674 remote_target::process_stop_reply (struct stop_reply *stop_reply,
7675 struct target_waitstatus *status)
7676 {
7677 ptid_t ptid;
7678
7679 *status = stop_reply->ws;
7680 ptid = stop_reply->ptid;
7681
7682 /* If no thread/process was reported by the stub, assume the current
7683 inferior. */
7684 if (ptid == null_ptid)
7685 ptid = inferior_ptid;
7686
7687 if (status->kind != TARGET_WAITKIND_EXITED
7688 && status->kind != TARGET_WAITKIND_SIGNALLED
7689 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7690 {
7691 /* Expedited registers. */
7692 if (stop_reply->regcache)
7693 {
7694 struct regcache *regcache
7695 = get_thread_arch_regcache (ptid, stop_reply->arch);
7696 cached_reg_t *reg;
7697 int ix;
7698
7699 for (ix = 0;
7700 VEC_iterate (cached_reg_t, stop_reply->regcache, ix, reg);
7701 ix++)
7702 {
7703 regcache->raw_supply (reg->num, reg->data);
7704 xfree (reg->data);
7705 }
7706
7707 VEC_free (cached_reg_t, stop_reply->regcache);
7708 }
7709
7710 remote_notice_new_inferior (ptid, 0);
7711 remote_thread_info *remote_thr = get_remote_thread_info (ptid);
7712 remote_thr->core = stop_reply->core;
7713 remote_thr->stop_reason = stop_reply->stop_reason;
7714 remote_thr->watch_data_address = stop_reply->watch_data_address;
7715 remote_thr->vcont_resumed = 0;
7716 }
7717
7718 stop_reply_xfree (stop_reply);
7719 return ptid;
7720 }
7721
7722 /* The non-stop mode version of target_wait. */
7723
7724 ptid_t
7725 remote_target::wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
7726 {
7727 struct remote_state *rs = get_remote_state ();
7728 struct stop_reply *stop_reply;
7729 int ret;
7730 int is_notif = 0;
7731
7732 /* If in non-stop mode, get out of getpkt even if a
7733 notification is received. */
7734
7735 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7736 0 /* forever */, &is_notif);
7737 while (1)
7738 {
7739 if (ret != -1 && !is_notif)
7740 switch (rs->buf[0])
7741 {
7742 case 'E': /* Error of some sort. */
7743 /* We're out of sync with the target now. Did it continue
7744 or not? We can't tell which thread it was in non-stop,
7745 so just ignore this. */
7746 warning (_("Remote failure reply: %s"), rs->buf);
7747 break;
7748 case 'O': /* Console output. */
7749 remote_console_output (rs->buf + 1);
7750 break;
7751 default:
7752 warning (_("Invalid remote reply: %s"), rs->buf);
7753 break;
7754 }
7755
7756 /* Acknowledge a pending stop reply that may have arrived in the
7757 mean time. */
7758 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7759 remote_notif_get_pending_events (&notif_client_stop);
7760
7761 /* If indeed we noticed a stop reply, we're done. */
7762 stop_reply = queued_stop_reply (ptid);
7763 if (stop_reply != NULL)
7764 return process_stop_reply (stop_reply, status);
7765
7766 /* Still no event. If we're just polling for an event, then
7767 return to the event loop. */
7768 if (options & TARGET_WNOHANG)
7769 {
7770 status->kind = TARGET_WAITKIND_IGNORE;
7771 return minus_one_ptid;
7772 }
7773
7774 /* Otherwise do a blocking wait. */
7775 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7776 1 /* forever */, &is_notif);
7777 }
7778 }
7779
7780 /* Wait until the remote machine stops, then return, storing status in
7781 STATUS just as `wait' would. */
7782
7783 ptid_t
7784 remote_target::wait_as (ptid_t ptid, target_waitstatus *status, int options)
7785 {
7786 struct remote_state *rs = get_remote_state ();
7787 ptid_t event_ptid = null_ptid;
7788 char *buf;
7789 struct stop_reply *stop_reply;
7790
7791 again:
7792
7793 status->kind = TARGET_WAITKIND_IGNORE;
7794 status->value.integer = 0;
7795
7796 stop_reply = queued_stop_reply (ptid);
7797 if (stop_reply != NULL)
7798 return process_stop_reply (stop_reply, status);
7799
7800 if (rs->cached_wait_status)
7801 /* Use the cached wait status, but only once. */
7802 rs->cached_wait_status = 0;
7803 else
7804 {
7805 int ret;
7806 int is_notif;
7807 int forever = ((options & TARGET_WNOHANG) == 0
7808 && rs->wait_forever_enabled_p);
7809
7810 if (!rs->waiting_for_stop_reply)
7811 {
7812 status->kind = TARGET_WAITKIND_NO_RESUMED;
7813 return minus_one_ptid;
7814 }
7815
7816 /* FIXME: cagney/1999-09-27: If we're in async mode we should
7817 _never_ wait for ever -> test on target_is_async_p().
7818 However, before we do that we need to ensure that the caller
7819 knows how to take the target into/out of async mode. */
7820 ret = getpkt_or_notif_sane (&rs->buf, &rs->buf_size,
7821 forever, &is_notif);
7822
7823 /* GDB gets a notification. Return to core as this event is
7824 not interesting. */
7825 if (ret != -1 && is_notif)
7826 return minus_one_ptid;
7827
7828 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7829 return minus_one_ptid;
7830 }
7831
7832 buf = rs->buf;
7833
7834 /* Assume that the target has acknowledged Ctrl-C unless we receive
7835 an 'F' or 'O' packet. */
7836 if (buf[0] != 'F' && buf[0] != 'O')
7837 rs->ctrlc_pending_p = 0;
7838
7839 switch (buf[0])
7840 {
7841 case 'E': /* Error of some sort. */
7842 /* We're out of sync with the target now. Did it continue or
7843 not? Not is more likely, so report a stop. */
7844 rs->waiting_for_stop_reply = 0;
7845
7846 warning (_("Remote failure reply: %s"), buf);
7847 status->kind = TARGET_WAITKIND_STOPPED;
7848 status->value.sig = GDB_SIGNAL_0;
7849 break;
7850 case 'F': /* File-I/O request. */
7851 /* GDB may access the inferior memory while handling the File-I/O
7852 request, but we don't want GDB accessing memory while waiting
7853 for a stop reply. See the comments in putpkt_binary. Set
7854 waiting_for_stop_reply to 0 temporarily. */
7855 rs->waiting_for_stop_reply = 0;
7856 remote_fileio_request (this, buf, rs->ctrlc_pending_p);
7857 rs->ctrlc_pending_p = 0;
7858 /* GDB handled the File-I/O request, and the target is running
7859 again. Keep waiting for events. */
7860 rs->waiting_for_stop_reply = 1;
7861 break;
7862 case 'N': case 'T': case 'S': case 'X': case 'W':
7863 {
7864 /* There is a stop reply to handle. */
7865 rs->waiting_for_stop_reply = 0;
7866
7867 stop_reply
7868 = (struct stop_reply *) remote_notif_parse (this,
7869 &notif_client_stop,
7870 rs->buf);
7871
7872 event_ptid = process_stop_reply (stop_reply, status);
7873 break;
7874 }
7875 case 'O': /* Console output. */
7876 remote_console_output (buf + 1);
7877 break;
7878 case '\0':
7879 if (rs->last_sent_signal != GDB_SIGNAL_0)
7880 {
7881 /* Zero length reply means that we tried 'S' or 'C' and the
7882 remote system doesn't support it. */
7883 target_terminal::ours_for_output ();
7884 printf_filtered
7885 ("Can't send signals to this remote system. %s not sent.\n",
7886 gdb_signal_to_name (rs->last_sent_signal));
7887 rs->last_sent_signal = GDB_SIGNAL_0;
7888 target_terminal::inferior ();
7889
7890 strcpy (buf, rs->last_sent_step ? "s" : "c");
7891 putpkt (buf);
7892 break;
7893 }
7894 /* fallthrough */
7895 default:
7896 warning (_("Invalid remote reply: %s"), buf);
7897 break;
7898 }
7899
7900 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7901 return minus_one_ptid;
7902 else if (status->kind == TARGET_WAITKIND_IGNORE)
7903 {
7904 /* Nothing interesting happened. If we're doing a non-blocking
7905 poll, we're done. Otherwise, go back to waiting. */
7906 if (options & TARGET_WNOHANG)
7907 return minus_one_ptid;
7908 else
7909 goto again;
7910 }
7911 else if (status->kind != TARGET_WAITKIND_EXITED
7912 && status->kind != TARGET_WAITKIND_SIGNALLED)
7913 {
7914 if (event_ptid != null_ptid)
7915 record_currthread (rs, event_ptid);
7916 else
7917 event_ptid = inferior_ptid;
7918 }
7919 else
7920 /* A process exit. Invalidate our notion of current thread. */
7921 record_currthread (rs, minus_one_ptid);
7922
7923 return event_ptid;
7924 }
7925
7926 /* Wait until the remote machine stops, then return, storing status in
7927 STATUS just as `wait' would. */
7928
7929 ptid_t
7930 remote_target::wait (ptid_t ptid, struct target_waitstatus *status, int options)
7931 {
7932 ptid_t event_ptid;
7933
7934 if (target_is_non_stop_p ())
7935 event_ptid = wait_ns (ptid, status, options);
7936 else
7937 event_ptid = wait_as (ptid, status, options);
7938
7939 if (target_is_async_p ())
7940 {
7941 remote_state *rs = get_remote_state ();
7942
7943 /* If there are are events left in the queue tell the event loop
7944 to return here. */
7945 if (!rs->stop_reply_queue.empty ())
7946 mark_async_event_handler (rs->remote_async_inferior_event_token);
7947 }
7948
7949 return event_ptid;
7950 }
7951
7952 /* Fetch a single register using a 'p' packet. */
7953
7954 int
7955 remote_target::fetch_register_using_p (struct regcache *regcache,
7956 packet_reg *reg)
7957 {
7958 struct gdbarch *gdbarch = regcache->arch ();
7959 struct remote_state *rs = get_remote_state ();
7960 char *buf, *p;
7961 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7962 int i;
7963
7964 if (packet_support (PACKET_p) == PACKET_DISABLE)
7965 return 0;
7966
7967 if (reg->pnum == -1)
7968 return 0;
7969
7970 p = rs->buf;
7971 *p++ = 'p';
7972 p += hexnumstr (p, reg->pnum);
7973 *p++ = '\0';
7974 putpkt (rs->buf);
7975 getpkt (&rs->buf, &rs->buf_size, 0);
7976
7977 buf = rs->buf;
7978
7979 switch (packet_ok (buf, &remote_protocol_packets[PACKET_p]))
7980 {
7981 case PACKET_OK:
7982 break;
7983 case PACKET_UNKNOWN:
7984 return 0;
7985 case PACKET_ERROR:
7986 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
7987 gdbarch_register_name (regcache->arch (),
7988 reg->regnum),
7989 buf);
7990 }
7991
7992 /* If this register is unfetchable, tell the regcache. */
7993 if (buf[0] == 'x')
7994 {
7995 regcache->raw_supply (reg->regnum, NULL);
7996 return 1;
7997 }
7998
7999 /* Otherwise, parse and supply the value. */
8000 p = buf;
8001 i = 0;
8002 while (p[0] != 0)
8003 {
8004 if (p[1] == 0)
8005 error (_("fetch_register_using_p: early buf termination"));
8006
8007 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
8008 p += 2;
8009 }
8010 regcache->raw_supply (reg->regnum, regp);
8011 return 1;
8012 }
8013
8014 /* Fetch the registers included in the target's 'g' packet. */
8015
8016 int
8017 remote_target::send_g_packet ()
8018 {
8019 struct remote_state *rs = get_remote_state ();
8020 int buf_len;
8021
8022 xsnprintf (rs->buf, get_remote_packet_size (), "g");
8023 putpkt (rs->buf);
8024 getpkt (&rs->buf, &rs->buf_size, 0);
8025 if (packet_check_result (rs->buf) == PACKET_ERROR)
8026 error (_("Could not read registers; remote failure reply '%s'"),
8027 rs->buf);
8028
8029 /* We can get out of synch in various cases. If the first character
8030 in the buffer is not a hex character, assume that has happened
8031 and try to fetch another packet to read. */
8032 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
8033 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
8034 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
8035 && rs->buf[0] != 'x') /* New: unavailable register value. */
8036 {
8037 if (remote_debug)
8038 fprintf_unfiltered (gdb_stdlog,
8039 "Bad register packet; fetching a new packet\n");
8040 getpkt (&rs->buf, &rs->buf_size, 0);
8041 }
8042
8043 buf_len = strlen (rs->buf);
8044
8045 /* Sanity check the received packet. */
8046 if (buf_len % 2 != 0)
8047 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf);
8048
8049 return buf_len / 2;
8050 }
8051
8052 void
8053 remote_target::process_g_packet (struct regcache *regcache)
8054 {
8055 struct gdbarch *gdbarch = regcache->arch ();
8056 struct remote_state *rs = get_remote_state ();
8057 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8058 int i, buf_len;
8059 char *p;
8060 char *regs;
8061
8062 buf_len = strlen (rs->buf);
8063
8064 /* Further sanity checks, with knowledge of the architecture. */
8065 if (buf_len > 2 * rsa->sizeof_g_packet)
8066 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
8067 "bytes): %s"), rsa->sizeof_g_packet, buf_len / 2, rs->buf);
8068
8069 /* Save the size of the packet sent to us by the target. It is used
8070 as a heuristic when determining the max size of packets that the
8071 target can safely receive. */
8072 if (rsa->actual_register_packet_size == 0)
8073 rsa->actual_register_packet_size = buf_len;
8074
8075 /* If this is smaller than we guessed the 'g' packet would be,
8076 update our records. A 'g' reply that doesn't include a register's
8077 value implies either that the register is not available, or that
8078 the 'p' packet must be used. */
8079 if (buf_len < 2 * rsa->sizeof_g_packet)
8080 {
8081 long sizeof_g_packet = buf_len / 2;
8082
8083 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8084 {
8085 long offset = rsa->regs[i].offset;
8086 long reg_size = register_size (gdbarch, i);
8087
8088 if (rsa->regs[i].pnum == -1)
8089 continue;
8090
8091 if (offset >= sizeof_g_packet)
8092 rsa->regs[i].in_g_packet = 0;
8093 else if (offset + reg_size > sizeof_g_packet)
8094 error (_("Truncated register %d in remote 'g' packet"), i);
8095 else
8096 rsa->regs[i].in_g_packet = 1;
8097 }
8098
8099 /* Looks valid enough, we can assume this is the correct length
8100 for a 'g' packet. It's important not to adjust
8101 rsa->sizeof_g_packet if we have truncated registers otherwise
8102 this "if" won't be run the next time the method is called
8103 with a packet of the same size and one of the internal errors
8104 below will trigger instead. */
8105 rsa->sizeof_g_packet = sizeof_g_packet;
8106 }
8107
8108 regs = (char *) alloca (rsa->sizeof_g_packet);
8109
8110 /* Unimplemented registers read as all bits zero. */
8111 memset (regs, 0, rsa->sizeof_g_packet);
8112
8113 /* Reply describes registers byte by byte, each byte encoded as two
8114 hex characters. Suck them all up, then supply them to the
8115 register cacheing/storage mechanism. */
8116
8117 p = rs->buf;
8118 for (i = 0; i < rsa->sizeof_g_packet; i++)
8119 {
8120 if (p[0] == 0 || p[1] == 0)
8121 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
8122 internal_error (__FILE__, __LINE__,
8123 _("unexpected end of 'g' packet reply"));
8124
8125 if (p[0] == 'x' && p[1] == 'x')
8126 regs[i] = 0; /* 'x' */
8127 else
8128 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
8129 p += 2;
8130 }
8131
8132 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8133 {
8134 struct packet_reg *r = &rsa->regs[i];
8135 long reg_size = register_size (gdbarch, i);
8136
8137 if (r->in_g_packet)
8138 {
8139 if ((r->offset + reg_size) * 2 > strlen (rs->buf))
8140 /* This shouldn't happen - we adjusted in_g_packet above. */
8141 internal_error (__FILE__, __LINE__,
8142 _("unexpected end of 'g' packet reply"));
8143 else if (rs->buf[r->offset * 2] == 'x')
8144 {
8145 gdb_assert (r->offset * 2 < strlen (rs->buf));
8146 /* The register isn't available, mark it as such (at
8147 the same time setting the value to zero). */
8148 regcache->raw_supply (r->regnum, NULL);
8149 }
8150 else
8151 regcache->raw_supply (r->regnum, regs + r->offset);
8152 }
8153 }
8154 }
8155
8156 void
8157 remote_target::fetch_registers_using_g (struct regcache *regcache)
8158 {
8159 send_g_packet ();
8160 process_g_packet (regcache);
8161 }
8162
8163 /* Make the remote selected traceframe match GDB's selected
8164 traceframe. */
8165
8166 void
8167 remote_target::set_remote_traceframe ()
8168 {
8169 int newnum;
8170 struct remote_state *rs = get_remote_state ();
8171
8172 if (rs->remote_traceframe_number == get_traceframe_number ())
8173 return;
8174
8175 /* Avoid recursion, remote_trace_find calls us again. */
8176 rs->remote_traceframe_number = get_traceframe_number ();
8177
8178 newnum = target_trace_find (tfind_number,
8179 get_traceframe_number (), 0, 0, NULL);
8180
8181 /* Should not happen. If it does, all bets are off. */
8182 if (newnum != get_traceframe_number ())
8183 warning (_("could not set remote traceframe"));
8184 }
8185
8186 void
8187 remote_target::fetch_registers (struct regcache *regcache, int regnum)
8188 {
8189 struct gdbarch *gdbarch = regcache->arch ();
8190 struct remote_state *rs = get_remote_state ();
8191 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8192 int i;
8193
8194 set_remote_traceframe ();
8195 set_general_thread (regcache->ptid ());
8196
8197 if (regnum >= 0)
8198 {
8199 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8200
8201 gdb_assert (reg != NULL);
8202
8203 /* If this register might be in the 'g' packet, try that first -
8204 we are likely to read more than one register. If this is the
8205 first 'g' packet, we might be overly optimistic about its
8206 contents, so fall back to 'p'. */
8207 if (reg->in_g_packet)
8208 {
8209 fetch_registers_using_g (regcache);
8210 if (reg->in_g_packet)
8211 return;
8212 }
8213
8214 if (fetch_register_using_p (regcache, reg))
8215 return;
8216
8217 /* This register is not available. */
8218 regcache->raw_supply (reg->regnum, NULL);
8219
8220 return;
8221 }
8222
8223 fetch_registers_using_g (regcache);
8224
8225 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8226 if (!rsa->regs[i].in_g_packet)
8227 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8228 {
8229 /* This register is not available. */
8230 regcache->raw_supply (i, NULL);
8231 }
8232 }
8233
8234 /* Prepare to store registers. Since we may send them all (using a
8235 'G' request), we have to read out the ones we don't want to change
8236 first. */
8237
8238 void
8239 remote_target::prepare_to_store (struct regcache *regcache)
8240 {
8241 struct remote_state *rs = get_remote_state ();
8242 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8243 int i;
8244
8245 /* Make sure the entire registers array is valid. */
8246 switch (packet_support (PACKET_P))
8247 {
8248 case PACKET_DISABLE:
8249 case PACKET_SUPPORT_UNKNOWN:
8250 /* Make sure all the necessary registers are cached. */
8251 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8252 if (rsa->regs[i].in_g_packet)
8253 regcache->raw_update (rsa->regs[i].regnum);
8254 break;
8255 case PACKET_ENABLE:
8256 break;
8257 }
8258 }
8259
8260 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8261 packet was not recognized. */
8262
8263 int
8264 remote_target::store_register_using_P (const struct regcache *regcache,
8265 packet_reg *reg)
8266 {
8267 struct gdbarch *gdbarch = regcache->arch ();
8268 struct remote_state *rs = get_remote_state ();
8269 /* Try storing a single register. */
8270 char *buf = rs->buf;
8271 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8272 char *p;
8273
8274 if (packet_support (PACKET_P) == PACKET_DISABLE)
8275 return 0;
8276
8277 if (reg->pnum == -1)
8278 return 0;
8279
8280 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8281 p = buf + strlen (buf);
8282 regcache->raw_collect (reg->regnum, regp);
8283 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8284 putpkt (rs->buf);
8285 getpkt (&rs->buf, &rs->buf_size, 0);
8286
8287 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8288 {
8289 case PACKET_OK:
8290 return 1;
8291 case PACKET_ERROR:
8292 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8293 gdbarch_register_name (gdbarch, reg->regnum), rs->buf);
8294 case PACKET_UNKNOWN:
8295 return 0;
8296 default:
8297 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8298 }
8299 }
8300
8301 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8302 contents of the register cache buffer. FIXME: ignores errors. */
8303
8304 void
8305 remote_target::store_registers_using_G (const struct regcache *regcache)
8306 {
8307 struct remote_state *rs = get_remote_state ();
8308 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8309 gdb_byte *regs;
8310 char *p;
8311
8312 /* Extract all the registers in the regcache copying them into a
8313 local buffer. */
8314 {
8315 int i;
8316
8317 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8318 memset (regs, 0, rsa->sizeof_g_packet);
8319 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8320 {
8321 struct packet_reg *r = &rsa->regs[i];
8322
8323 if (r->in_g_packet)
8324 regcache->raw_collect (r->regnum, regs + r->offset);
8325 }
8326 }
8327
8328 /* Command describes registers byte by byte,
8329 each byte encoded as two hex characters. */
8330 p = rs->buf;
8331 *p++ = 'G';
8332 bin2hex (regs, p, rsa->sizeof_g_packet);
8333 putpkt (rs->buf);
8334 getpkt (&rs->buf, &rs->buf_size, 0);
8335 if (packet_check_result (rs->buf) == PACKET_ERROR)
8336 error (_("Could not write registers; remote failure reply '%s'"),
8337 rs->buf);
8338 }
8339
8340 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8341 of the register cache buffer. FIXME: ignores errors. */
8342
8343 void
8344 remote_target::store_registers (struct regcache *regcache, int regnum)
8345 {
8346 struct gdbarch *gdbarch = regcache->arch ();
8347 struct remote_state *rs = get_remote_state ();
8348 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8349 int i;
8350
8351 set_remote_traceframe ();
8352 set_general_thread (regcache->ptid ());
8353
8354 if (regnum >= 0)
8355 {
8356 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8357
8358 gdb_assert (reg != NULL);
8359
8360 /* Always prefer to store registers using the 'P' packet if
8361 possible; we often change only a small number of registers.
8362 Sometimes we change a larger number; we'd need help from a
8363 higher layer to know to use 'G'. */
8364 if (store_register_using_P (regcache, reg))
8365 return;
8366
8367 /* For now, don't complain if we have no way to write the
8368 register. GDB loses track of unavailable registers too
8369 easily. Some day, this may be an error. We don't have
8370 any way to read the register, either... */
8371 if (!reg->in_g_packet)
8372 return;
8373
8374 store_registers_using_G (regcache);
8375 return;
8376 }
8377
8378 store_registers_using_G (regcache);
8379
8380 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8381 if (!rsa->regs[i].in_g_packet)
8382 if (!store_register_using_P (regcache, &rsa->regs[i]))
8383 /* See above for why we do not issue an error here. */
8384 continue;
8385 }
8386 \f
8387
8388 /* Return the number of hex digits in num. */
8389
8390 static int
8391 hexnumlen (ULONGEST num)
8392 {
8393 int i;
8394
8395 for (i = 0; num != 0; i++)
8396 num >>= 4;
8397
8398 return std::max (i, 1);
8399 }
8400
8401 /* Set BUF to the minimum number of hex digits representing NUM. */
8402
8403 static int
8404 hexnumstr (char *buf, ULONGEST num)
8405 {
8406 int len = hexnumlen (num);
8407
8408 return hexnumnstr (buf, num, len);
8409 }
8410
8411
8412 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8413
8414 static int
8415 hexnumnstr (char *buf, ULONGEST num, int width)
8416 {
8417 int i;
8418
8419 buf[width] = '\0';
8420
8421 for (i = width - 1; i >= 0; i--)
8422 {
8423 buf[i] = "0123456789abcdef"[(num & 0xf)];
8424 num >>= 4;
8425 }
8426
8427 return width;
8428 }
8429
8430 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8431
8432 static CORE_ADDR
8433 remote_address_masked (CORE_ADDR addr)
8434 {
8435 unsigned int address_size = remote_address_size;
8436
8437 /* If "remoteaddresssize" was not set, default to target address size. */
8438 if (!address_size)
8439 address_size = gdbarch_addr_bit (target_gdbarch ());
8440
8441 if (address_size > 0
8442 && address_size < (sizeof (ULONGEST) * 8))
8443 {
8444 /* Only create a mask when that mask can safely be constructed
8445 in a ULONGEST variable. */
8446 ULONGEST mask = 1;
8447
8448 mask = (mask << address_size) - 1;
8449 addr &= mask;
8450 }
8451 return addr;
8452 }
8453
8454 /* Determine whether the remote target supports binary downloading.
8455 This is accomplished by sending a no-op memory write of zero length
8456 to the target at the specified address. It does not suffice to send
8457 the whole packet, since many stubs strip the eighth bit and
8458 subsequently compute a wrong checksum, which causes real havoc with
8459 remote_write_bytes.
8460
8461 NOTE: This can still lose if the serial line is not eight-bit
8462 clean. In cases like this, the user should clear "remote
8463 X-packet". */
8464
8465 void
8466 remote_target::check_binary_download (CORE_ADDR addr)
8467 {
8468 struct remote_state *rs = get_remote_state ();
8469
8470 switch (packet_support (PACKET_X))
8471 {
8472 case PACKET_DISABLE:
8473 break;
8474 case PACKET_ENABLE:
8475 break;
8476 case PACKET_SUPPORT_UNKNOWN:
8477 {
8478 char *p;
8479
8480 p = rs->buf;
8481 *p++ = 'X';
8482 p += hexnumstr (p, (ULONGEST) addr);
8483 *p++ = ',';
8484 p += hexnumstr (p, (ULONGEST) 0);
8485 *p++ = ':';
8486 *p = '\0';
8487
8488 putpkt_binary (rs->buf, (int) (p - rs->buf));
8489 getpkt (&rs->buf, &rs->buf_size, 0);
8490
8491 if (rs->buf[0] == '\0')
8492 {
8493 if (remote_debug)
8494 fprintf_unfiltered (gdb_stdlog,
8495 "binary downloading NOT "
8496 "supported by target\n");
8497 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8498 }
8499 else
8500 {
8501 if (remote_debug)
8502 fprintf_unfiltered (gdb_stdlog,
8503 "binary downloading supported by target\n");
8504 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8505 }
8506 break;
8507 }
8508 }
8509 }
8510
8511 /* Helper function to resize the payload in order to try to get a good
8512 alignment. We try to write an amount of data such that the next write will
8513 start on an address aligned on REMOTE_ALIGN_WRITES. */
8514
8515 static int
8516 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8517 {
8518 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8519 }
8520
8521 /* Write memory data directly to the remote machine.
8522 This does not inform the data cache; the data cache uses this.
8523 HEADER is the starting part of the packet.
8524 MEMADDR is the address in the remote memory space.
8525 MYADDR is the address of the buffer in our space.
8526 LEN_UNITS is the number of addressable units to write.
8527 UNIT_SIZE is the length in bytes of an addressable unit.
8528 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8529 should send data as binary ('X'), or hex-encoded ('M').
8530
8531 The function creates packet of the form
8532 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8533
8534 where encoding of <DATA> is terminated by PACKET_FORMAT.
8535
8536 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8537 are omitted.
8538
8539 Return the transferred status, error or OK (an
8540 'enum target_xfer_status' value). Save the number of addressable units
8541 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8542
8543 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8544 exchange between gdb and the stub could look like (?? in place of the
8545 checksum):
8546
8547 -> $m1000,4#??
8548 <- aaaabbbbccccdddd
8549
8550 -> $M1000,3:eeeeffffeeee#??
8551 <- OK
8552
8553 -> $m1000,4#??
8554 <- eeeeffffeeeedddd */
8555
8556 target_xfer_status
8557 remote_target::remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8558 const gdb_byte *myaddr,
8559 ULONGEST len_units,
8560 int unit_size,
8561 ULONGEST *xfered_len_units,
8562 char packet_format, int use_length)
8563 {
8564 struct remote_state *rs = get_remote_state ();
8565 char *p;
8566 char *plen = NULL;
8567 int plenlen = 0;
8568 int todo_units;
8569 int units_written;
8570 int payload_capacity_bytes;
8571 int payload_length_bytes;
8572
8573 if (packet_format != 'X' && packet_format != 'M')
8574 internal_error (__FILE__, __LINE__,
8575 _("remote_write_bytes_aux: bad packet format"));
8576
8577 if (len_units == 0)
8578 return TARGET_XFER_EOF;
8579
8580 payload_capacity_bytes = get_memory_write_packet_size ();
8581
8582 /* The packet buffer will be large enough for the payload;
8583 get_memory_packet_size ensures this. */
8584 rs->buf[0] = '\0';
8585
8586 /* Compute the size of the actual payload by subtracting out the
8587 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8588
8589 payload_capacity_bytes -= strlen ("$,:#NN");
8590 if (!use_length)
8591 /* The comma won't be used. */
8592 payload_capacity_bytes += 1;
8593 payload_capacity_bytes -= strlen (header);
8594 payload_capacity_bytes -= hexnumlen (memaddr);
8595
8596 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8597
8598 strcat (rs->buf, header);
8599 p = rs->buf + strlen (header);
8600
8601 /* Compute a best guess of the number of bytes actually transfered. */
8602 if (packet_format == 'X')
8603 {
8604 /* Best guess at number of bytes that will fit. */
8605 todo_units = std::min (len_units,
8606 (ULONGEST) payload_capacity_bytes / unit_size);
8607 if (use_length)
8608 payload_capacity_bytes -= hexnumlen (todo_units);
8609 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8610 }
8611 else
8612 {
8613 /* Number of bytes that will fit. */
8614 todo_units
8615 = std::min (len_units,
8616 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8617 if (use_length)
8618 payload_capacity_bytes -= hexnumlen (todo_units);
8619 todo_units = std::min (todo_units,
8620 (payload_capacity_bytes / unit_size) / 2);
8621 }
8622
8623 if (todo_units <= 0)
8624 internal_error (__FILE__, __LINE__,
8625 _("minimum packet size too small to write data"));
8626
8627 /* If we already need another packet, then try to align the end
8628 of this packet to a useful boundary. */
8629 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8630 todo_units = align_for_efficient_write (todo_units, memaddr);
8631
8632 /* Append "<memaddr>". */
8633 memaddr = remote_address_masked (memaddr);
8634 p += hexnumstr (p, (ULONGEST) memaddr);
8635
8636 if (use_length)
8637 {
8638 /* Append ",". */
8639 *p++ = ',';
8640
8641 /* Append the length and retain its location and size. It may need to be
8642 adjusted once the packet body has been created. */
8643 plen = p;
8644 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8645 p += plenlen;
8646 }
8647
8648 /* Append ":". */
8649 *p++ = ':';
8650 *p = '\0';
8651
8652 /* Append the packet body. */
8653 if (packet_format == 'X')
8654 {
8655 /* Binary mode. Send target system values byte by byte, in
8656 increasing byte addresses. Only escape certain critical
8657 characters. */
8658 payload_length_bytes =
8659 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8660 &units_written, payload_capacity_bytes);
8661
8662 /* If not all TODO units fit, then we'll need another packet. Make
8663 a second try to keep the end of the packet aligned. Don't do
8664 this if the packet is tiny. */
8665 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8666 {
8667 int new_todo_units;
8668
8669 new_todo_units = align_for_efficient_write (units_written, memaddr);
8670
8671 if (new_todo_units != units_written)
8672 payload_length_bytes =
8673 remote_escape_output (myaddr, new_todo_units, unit_size,
8674 (gdb_byte *) p, &units_written,
8675 payload_capacity_bytes);
8676 }
8677
8678 p += payload_length_bytes;
8679 if (use_length && units_written < todo_units)
8680 {
8681 /* Escape chars have filled up the buffer prematurely,
8682 and we have actually sent fewer units than planned.
8683 Fix-up the length field of the packet. Use the same
8684 number of characters as before. */
8685 plen += hexnumnstr (plen, (ULONGEST) units_written,
8686 plenlen);
8687 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8688 }
8689 }
8690 else
8691 {
8692 /* Normal mode: Send target system values byte by byte, in
8693 increasing byte addresses. Each byte is encoded as a two hex
8694 value. */
8695 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8696 units_written = todo_units;
8697 }
8698
8699 putpkt_binary (rs->buf, (int) (p - rs->buf));
8700 getpkt (&rs->buf, &rs->buf_size, 0);
8701
8702 if (rs->buf[0] == 'E')
8703 return TARGET_XFER_E_IO;
8704
8705 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8706 send fewer units than we'd planned. */
8707 *xfered_len_units = (ULONGEST) units_written;
8708 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8709 }
8710
8711 /* Write memory data directly to the remote machine.
8712 This does not inform the data cache; the data cache uses this.
8713 MEMADDR is the address in the remote memory space.
8714 MYADDR is the address of the buffer in our space.
8715 LEN is the number of bytes.
8716
8717 Return the transferred status, error or OK (an
8718 'enum target_xfer_status' value). Save the number of bytes
8719 transferred in *XFERED_LEN. Only transfer a single packet. */
8720
8721 target_xfer_status
8722 remote_target::remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr,
8723 ULONGEST len, int unit_size,
8724 ULONGEST *xfered_len)
8725 {
8726 const char *packet_format = NULL;
8727
8728 /* Check whether the target supports binary download. */
8729 check_binary_download (memaddr);
8730
8731 switch (packet_support (PACKET_X))
8732 {
8733 case PACKET_ENABLE:
8734 packet_format = "X";
8735 break;
8736 case PACKET_DISABLE:
8737 packet_format = "M";
8738 break;
8739 case PACKET_SUPPORT_UNKNOWN:
8740 internal_error (__FILE__, __LINE__,
8741 _("remote_write_bytes: bad internal state"));
8742 default:
8743 internal_error (__FILE__, __LINE__, _("bad switch"));
8744 }
8745
8746 return remote_write_bytes_aux (packet_format,
8747 memaddr, myaddr, len, unit_size, xfered_len,
8748 packet_format[0], 1);
8749 }
8750
8751 /* Read memory data directly from the remote machine.
8752 This does not use the data cache; the data cache uses this.
8753 MEMADDR is the address in the remote memory space.
8754 MYADDR is the address of the buffer in our space.
8755 LEN_UNITS is the number of addressable memory units to read..
8756 UNIT_SIZE is the length in bytes of an addressable unit.
8757
8758 Return the transferred status, error or OK (an
8759 'enum target_xfer_status' value). Save the number of bytes
8760 transferred in *XFERED_LEN_UNITS.
8761
8762 See the comment of remote_write_bytes_aux for an example of
8763 memory read/write exchange between gdb and the stub. */
8764
8765 target_xfer_status
8766 remote_target::remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
8767 ULONGEST len_units,
8768 int unit_size, ULONGEST *xfered_len_units)
8769 {
8770 struct remote_state *rs = get_remote_state ();
8771 int buf_size_bytes; /* Max size of packet output buffer. */
8772 char *p;
8773 int todo_units;
8774 int decoded_bytes;
8775
8776 buf_size_bytes = get_memory_read_packet_size ();
8777 /* The packet buffer will be large enough for the payload;
8778 get_memory_packet_size ensures this. */
8779
8780 /* Number of units that will fit. */
8781 todo_units = std::min (len_units,
8782 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8783
8784 /* Construct "m"<memaddr>","<len>". */
8785 memaddr = remote_address_masked (memaddr);
8786 p = rs->buf;
8787 *p++ = 'm';
8788 p += hexnumstr (p, (ULONGEST) memaddr);
8789 *p++ = ',';
8790 p += hexnumstr (p, (ULONGEST) todo_units);
8791 *p = '\0';
8792 putpkt (rs->buf);
8793 getpkt (&rs->buf, &rs->buf_size, 0);
8794 if (rs->buf[0] == 'E'
8795 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8796 && rs->buf[3] == '\0')
8797 return TARGET_XFER_E_IO;
8798 /* Reply describes memory byte by byte, each byte encoded as two hex
8799 characters. */
8800 p = rs->buf;
8801 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8802 /* Return what we have. Let higher layers handle partial reads. */
8803 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8804 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8805 }
8806
8807 /* Using the set of read-only target sections of remote, read live
8808 read-only memory.
8809
8810 For interface/parameters/return description see target.h,
8811 to_xfer_partial. */
8812
8813 target_xfer_status
8814 remote_target::remote_xfer_live_readonly_partial (gdb_byte *readbuf,
8815 ULONGEST memaddr,
8816 ULONGEST len,
8817 int unit_size,
8818 ULONGEST *xfered_len)
8819 {
8820 struct target_section *secp;
8821 struct target_section_table *table;
8822
8823 secp = target_section_by_addr (this, memaddr);
8824 if (secp != NULL
8825 && (bfd_get_section_flags (secp->the_bfd_section->owner,
8826 secp->the_bfd_section)
8827 & SEC_READONLY))
8828 {
8829 struct target_section *p;
8830 ULONGEST memend = memaddr + len;
8831
8832 table = target_get_section_table (this);
8833
8834 for (p = table->sections; p < table->sections_end; p++)
8835 {
8836 if (memaddr >= p->addr)
8837 {
8838 if (memend <= p->endaddr)
8839 {
8840 /* Entire transfer is within this section. */
8841 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8842 xfered_len);
8843 }
8844 else if (memaddr >= p->endaddr)
8845 {
8846 /* This section ends before the transfer starts. */
8847 continue;
8848 }
8849 else
8850 {
8851 /* This section overlaps the transfer. Just do half. */
8852 len = p->endaddr - memaddr;
8853 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8854 xfered_len);
8855 }
8856 }
8857 }
8858 }
8859
8860 return TARGET_XFER_EOF;
8861 }
8862
8863 /* Similar to remote_read_bytes_1, but it reads from the remote stub
8864 first if the requested memory is unavailable in traceframe.
8865 Otherwise, fall back to remote_read_bytes_1. */
8866
8867 target_xfer_status
8868 remote_target::remote_read_bytes (CORE_ADDR memaddr,
8869 gdb_byte *myaddr, ULONGEST len, int unit_size,
8870 ULONGEST *xfered_len)
8871 {
8872 if (len == 0)
8873 return TARGET_XFER_EOF;
8874
8875 if (get_traceframe_number () != -1)
8876 {
8877 std::vector<mem_range> available;
8878
8879 /* If we fail to get the set of available memory, then the
8880 target does not support querying traceframe info, and so we
8881 attempt reading from the traceframe anyway (assuming the
8882 target implements the old QTro packet then). */
8883 if (traceframe_available_memory (&available, memaddr, len))
8884 {
8885 if (available.empty () || available[0].start != memaddr)
8886 {
8887 enum target_xfer_status res;
8888
8889 /* Don't read into the traceframe's available
8890 memory. */
8891 if (!available.empty ())
8892 {
8893 LONGEST oldlen = len;
8894
8895 len = available[0].start - memaddr;
8896 gdb_assert (len <= oldlen);
8897 }
8898
8899 /* This goes through the topmost target again. */
8900 res = remote_xfer_live_readonly_partial (myaddr, memaddr,
8901 len, unit_size, xfered_len);
8902 if (res == TARGET_XFER_OK)
8903 return TARGET_XFER_OK;
8904 else
8905 {
8906 /* No use trying further, we know some memory starting
8907 at MEMADDR isn't available. */
8908 *xfered_len = len;
8909 return (*xfered_len != 0) ?
8910 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
8911 }
8912 }
8913
8914 /* Don't try to read more than how much is available, in
8915 case the target implements the deprecated QTro packet to
8916 cater for older GDBs (the target's knowledge of read-only
8917 sections may be outdated by now). */
8918 len = available[0].length;
8919 }
8920 }
8921
8922 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8923 }
8924
8925 \f
8926
8927 /* Sends a packet with content determined by the printf format string
8928 FORMAT and the remaining arguments, then gets the reply. Returns
8929 whether the packet was a success, a failure, or unknown. */
8930
8931 packet_result
8932 remote_target::remote_send_printf (const char *format, ...)
8933 {
8934 struct remote_state *rs = get_remote_state ();
8935 int max_size = get_remote_packet_size ();
8936 va_list ap;
8937
8938 va_start (ap, format);
8939
8940 rs->buf[0] = '\0';
8941 if (vsnprintf (rs->buf, max_size, format, ap) >= max_size)
8942 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
8943
8944 if (putpkt (rs->buf) < 0)
8945 error (_("Communication problem with target."));
8946
8947 rs->buf[0] = '\0';
8948 getpkt (&rs->buf, &rs->buf_size, 0);
8949
8950 return packet_check_result (rs->buf);
8951 }
8952
8953 /* Flash writing can take quite some time. We'll set
8954 effectively infinite timeout for flash operations.
8955 In future, we'll need to decide on a better approach. */
8956 static const int remote_flash_timeout = 1000;
8957
8958 void
8959 remote_target::flash_erase (ULONGEST address, LONGEST length)
8960 {
8961 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8962 enum packet_result ret;
8963 scoped_restore restore_timeout
8964 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8965
8966 ret = remote_send_printf ("vFlashErase:%s,%s",
8967 phex (address, addr_size),
8968 phex (length, 4));
8969 switch (ret)
8970 {
8971 case PACKET_UNKNOWN:
8972 error (_("Remote target does not support flash erase"));
8973 case PACKET_ERROR:
8974 error (_("Error erasing flash with vFlashErase packet"));
8975 default:
8976 break;
8977 }
8978 }
8979
8980 target_xfer_status
8981 remote_target::remote_flash_write (ULONGEST address,
8982 ULONGEST length, ULONGEST *xfered_len,
8983 const gdb_byte *data)
8984 {
8985 scoped_restore restore_timeout
8986 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8987 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
8988 xfered_len,'X', 0);
8989 }
8990
8991 void
8992 remote_target::flash_done ()
8993 {
8994 int ret;
8995
8996 scoped_restore restore_timeout
8997 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8998
8999 ret = remote_send_printf ("vFlashDone");
9000
9001 switch (ret)
9002 {
9003 case PACKET_UNKNOWN:
9004 error (_("Remote target does not support vFlashDone"));
9005 case PACKET_ERROR:
9006 error (_("Error finishing flash operation"));
9007 default:
9008 break;
9009 }
9010 }
9011
9012 void
9013 remote_target::files_info ()
9014 {
9015 puts_filtered ("Debugging a target over a serial line.\n");
9016 }
9017 \f
9018 /* Stuff for dealing with the packets which are part of this protocol.
9019 See comment at top of file for details. */
9020
9021 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
9022 error to higher layers. Called when a serial error is detected.
9023 The exception message is STRING, followed by a colon and a blank,
9024 the system error message for errno at function entry and final dot
9025 for output compatibility with throw_perror_with_name. */
9026
9027 static void
9028 unpush_and_perror (const char *string)
9029 {
9030 int saved_errno = errno;
9031
9032 remote_unpush_target ();
9033 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
9034 safe_strerror (saved_errno));
9035 }
9036
9037 /* Read a single character from the remote end. The current quit
9038 handler is overridden to avoid quitting in the middle of packet
9039 sequence, as that would break communication with the remote server.
9040 See remote_serial_quit_handler for more detail. */
9041
9042 int
9043 remote_target::readchar (int timeout)
9044 {
9045 int ch;
9046 struct remote_state *rs = get_remote_state ();
9047
9048 {
9049 scoped_restore restore_quit_target
9050 = make_scoped_restore (&curr_quit_handler_target, this);
9051 scoped_restore restore_quit
9052 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9053
9054 rs->got_ctrlc_during_io = 0;
9055
9056 ch = serial_readchar (rs->remote_desc, timeout);
9057
9058 if (rs->got_ctrlc_during_io)
9059 set_quit_flag ();
9060 }
9061
9062 if (ch >= 0)
9063 return ch;
9064
9065 switch ((enum serial_rc) ch)
9066 {
9067 case SERIAL_EOF:
9068 remote_unpush_target ();
9069 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
9070 /* no return */
9071 case SERIAL_ERROR:
9072 unpush_and_perror (_("Remote communication error. "
9073 "Target disconnected."));
9074 /* no return */
9075 case SERIAL_TIMEOUT:
9076 break;
9077 }
9078 return ch;
9079 }
9080
9081 /* Wrapper for serial_write that closes the target and throws if
9082 writing fails. The current quit handler is overridden to avoid
9083 quitting in the middle of packet sequence, as that would break
9084 communication with the remote server. See
9085 remote_serial_quit_handler for more detail. */
9086
9087 void
9088 remote_target::remote_serial_write (const char *str, int len)
9089 {
9090 struct remote_state *rs = get_remote_state ();
9091
9092 scoped_restore restore_quit_target
9093 = make_scoped_restore (&curr_quit_handler_target, this);
9094 scoped_restore restore_quit
9095 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9096
9097 rs->got_ctrlc_during_io = 0;
9098
9099 if (serial_write (rs->remote_desc, str, len))
9100 {
9101 unpush_and_perror (_("Remote communication error. "
9102 "Target disconnected."));
9103 }
9104
9105 if (rs->got_ctrlc_during_io)
9106 set_quit_flag ();
9107 }
9108
9109 /* Return a string representing an escaped version of BUF, of len N.
9110 E.g. \n is converted to \\n, \t to \\t, etc. */
9111
9112 static std::string
9113 escape_buffer (const char *buf, int n)
9114 {
9115 string_file stb;
9116
9117 stb.putstrn (buf, n, '\\');
9118 return std::move (stb.string ());
9119 }
9120
9121 /* Display a null-terminated packet on stdout, for debugging, using C
9122 string notation. */
9123
9124 static void
9125 print_packet (const char *buf)
9126 {
9127 puts_filtered ("\"");
9128 fputstr_filtered (buf, '"', gdb_stdout);
9129 puts_filtered ("\"");
9130 }
9131
9132 int
9133 remote_target::putpkt (const char *buf)
9134 {
9135 return putpkt_binary (buf, strlen (buf));
9136 }
9137
9138 /* Wrapper around remote_target::putpkt to avoid exporting
9139 remote_target. */
9140
9141 int
9142 putpkt (remote_target *remote, const char *buf)
9143 {
9144 return remote->putpkt (buf);
9145 }
9146
9147 /* Send a packet to the remote machine, with error checking. The data
9148 of the packet is in BUF. The string in BUF can be at most
9149 get_remote_packet_size () - 5 to account for the $, # and checksum,
9150 and for a possible /0 if we are debugging (remote_debug) and want
9151 to print the sent packet as a string. */
9152
9153 int
9154 remote_target::putpkt_binary (const char *buf, int cnt)
9155 {
9156 struct remote_state *rs = get_remote_state ();
9157 int i;
9158 unsigned char csum = 0;
9159 gdb::def_vector<char> data (cnt + 6);
9160 char *buf2 = data.data ();
9161
9162 int ch;
9163 int tcount = 0;
9164 char *p;
9165
9166 /* Catch cases like trying to read memory or listing threads while
9167 we're waiting for a stop reply. The remote server wouldn't be
9168 ready to handle this request, so we'd hang and timeout. We don't
9169 have to worry about this in synchronous mode, because in that
9170 case it's not possible to issue a command while the target is
9171 running. This is not a problem in non-stop mode, because in that
9172 case, the stub is always ready to process serial input. */
9173 if (!target_is_non_stop_p ()
9174 && target_is_async_p ()
9175 && rs->waiting_for_stop_reply)
9176 {
9177 error (_("Cannot execute this command while the target is running.\n"
9178 "Use the \"interrupt\" command to stop the target\n"
9179 "and then try again."));
9180 }
9181
9182 /* We're sending out a new packet. Make sure we don't look at a
9183 stale cached response. */
9184 rs->cached_wait_status = 0;
9185
9186 /* Copy the packet into buffer BUF2, encapsulating it
9187 and giving it a checksum. */
9188
9189 p = buf2;
9190 *p++ = '$';
9191
9192 for (i = 0; i < cnt; i++)
9193 {
9194 csum += buf[i];
9195 *p++ = buf[i];
9196 }
9197 *p++ = '#';
9198 *p++ = tohex ((csum >> 4) & 0xf);
9199 *p++ = tohex (csum & 0xf);
9200
9201 /* Send it over and over until we get a positive ack. */
9202
9203 while (1)
9204 {
9205 int started_error_output = 0;
9206
9207 if (remote_debug)
9208 {
9209 *p = '\0';
9210
9211 int len = (int) (p - buf2);
9212
9213 std::string str
9214 = escape_buffer (buf2, std::min (len, REMOTE_DEBUG_MAX_CHAR));
9215
9216 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
9217
9218 if (len > REMOTE_DEBUG_MAX_CHAR)
9219 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9220 len - REMOTE_DEBUG_MAX_CHAR);
9221
9222 fprintf_unfiltered (gdb_stdlog, "...");
9223
9224 gdb_flush (gdb_stdlog);
9225 }
9226 remote_serial_write (buf2, p - buf2);
9227
9228 /* If this is a no acks version of the remote protocol, send the
9229 packet and move on. */
9230 if (rs->noack_mode)
9231 break;
9232
9233 /* Read until either a timeout occurs (-2) or '+' is read.
9234 Handle any notification that arrives in the mean time. */
9235 while (1)
9236 {
9237 ch = readchar (remote_timeout);
9238
9239 if (remote_debug)
9240 {
9241 switch (ch)
9242 {
9243 case '+':
9244 case '-':
9245 case SERIAL_TIMEOUT:
9246 case '$':
9247 case '%':
9248 if (started_error_output)
9249 {
9250 putchar_unfiltered ('\n');
9251 started_error_output = 0;
9252 }
9253 }
9254 }
9255
9256 switch (ch)
9257 {
9258 case '+':
9259 if (remote_debug)
9260 fprintf_unfiltered (gdb_stdlog, "Ack\n");
9261 return 1;
9262 case '-':
9263 if (remote_debug)
9264 fprintf_unfiltered (gdb_stdlog, "Nak\n");
9265 /* FALLTHROUGH */
9266 case SERIAL_TIMEOUT:
9267 tcount++;
9268 if (tcount > 3)
9269 return 0;
9270 break; /* Retransmit buffer. */
9271 case '$':
9272 {
9273 if (remote_debug)
9274 fprintf_unfiltered (gdb_stdlog,
9275 "Packet instead of Ack, ignoring it\n");
9276 /* It's probably an old response sent because an ACK
9277 was lost. Gobble up the packet and ack it so it
9278 doesn't get retransmitted when we resend this
9279 packet. */
9280 skip_frame ();
9281 remote_serial_write ("+", 1);
9282 continue; /* Now, go look for +. */
9283 }
9284
9285 case '%':
9286 {
9287 int val;
9288
9289 /* If we got a notification, handle it, and go back to looking
9290 for an ack. */
9291 /* We've found the start of a notification. Now
9292 collect the data. */
9293 val = read_frame (&rs->buf, &rs->buf_size);
9294 if (val >= 0)
9295 {
9296 if (remote_debug)
9297 {
9298 std::string str = escape_buffer (rs->buf, val);
9299
9300 fprintf_unfiltered (gdb_stdlog,
9301 " Notification received: %s\n",
9302 str.c_str ());
9303 }
9304 handle_notification (rs->notif_state, rs->buf);
9305 /* We're in sync now, rewait for the ack. */
9306 tcount = 0;
9307 }
9308 else
9309 {
9310 if (remote_debug)
9311 {
9312 if (!started_error_output)
9313 {
9314 started_error_output = 1;
9315 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9316 }
9317 fputc_unfiltered (ch & 0177, gdb_stdlog);
9318 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf);
9319 }
9320 }
9321 continue;
9322 }
9323 /* fall-through */
9324 default:
9325 if (remote_debug)
9326 {
9327 if (!started_error_output)
9328 {
9329 started_error_output = 1;
9330 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9331 }
9332 fputc_unfiltered (ch & 0177, gdb_stdlog);
9333 }
9334 continue;
9335 }
9336 break; /* Here to retransmit. */
9337 }
9338
9339 #if 0
9340 /* This is wrong. If doing a long backtrace, the user should be
9341 able to get out next time we call QUIT, without anything as
9342 violent as interrupt_query. If we want to provide a way out of
9343 here without getting to the next QUIT, it should be based on
9344 hitting ^C twice as in remote_wait. */
9345 if (quit_flag)
9346 {
9347 quit_flag = 0;
9348 interrupt_query ();
9349 }
9350 #endif
9351 }
9352
9353 return 0;
9354 }
9355
9356 /* Come here after finding the start of a frame when we expected an
9357 ack. Do our best to discard the rest of this packet. */
9358
9359 void
9360 remote_target::skip_frame ()
9361 {
9362 int c;
9363
9364 while (1)
9365 {
9366 c = readchar (remote_timeout);
9367 switch (c)
9368 {
9369 case SERIAL_TIMEOUT:
9370 /* Nothing we can do. */
9371 return;
9372 case '#':
9373 /* Discard the two bytes of checksum and stop. */
9374 c = readchar (remote_timeout);
9375 if (c >= 0)
9376 c = readchar (remote_timeout);
9377
9378 return;
9379 case '*': /* Run length encoding. */
9380 /* Discard the repeat count. */
9381 c = readchar (remote_timeout);
9382 if (c < 0)
9383 return;
9384 break;
9385 default:
9386 /* A regular character. */
9387 break;
9388 }
9389 }
9390 }
9391
9392 /* Come here after finding the start of the frame. Collect the rest
9393 into *BUF, verifying the checksum, length, and handling run-length
9394 compression. NUL terminate the buffer. If there is not enough room,
9395 expand *BUF using xrealloc.
9396
9397 Returns -1 on error, number of characters in buffer (ignoring the
9398 trailing NULL) on success. (could be extended to return one of the
9399 SERIAL status indications). */
9400
9401 long
9402 remote_target::read_frame (char **buf_p, long *sizeof_buf)
9403 {
9404 unsigned char csum;
9405 long bc;
9406 int c;
9407 char *buf = *buf_p;
9408 struct remote_state *rs = get_remote_state ();
9409
9410 csum = 0;
9411 bc = 0;
9412
9413 while (1)
9414 {
9415 c = readchar (remote_timeout);
9416 switch (c)
9417 {
9418 case SERIAL_TIMEOUT:
9419 if (remote_debug)
9420 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
9421 return -1;
9422 case '$':
9423 if (remote_debug)
9424 fputs_filtered ("Saw new packet start in middle of old one\n",
9425 gdb_stdlog);
9426 return -1; /* Start a new packet, count retries. */
9427 case '#':
9428 {
9429 unsigned char pktcsum;
9430 int check_0 = 0;
9431 int check_1 = 0;
9432
9433 buf[bc] = '\0';
9434
9435 check_0 = readchar (remote_timeout);
9436 if (check_0 >= 0)
9437 check_1 = readchar (remote_timeout);
9438
9439 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9440 {
9441 if (remote_debug)
9442 fputs_filtered ("Timeout in checksum, retrying\n",
9443 gdb_stdlog);
9444 return -1;
9445 }
9446 else if (check_0 < 0 || check_1 < 0)
9447 {
9448 if (remote_debug)
9449 fputs_filtered ("Communication error in checksum\n",
9450 gdb_stdlog);
9451 return -1;
9452 }
9453
9454 /* Don't recompute the checksum; with no ack packets we
9455 don't have any way to indicate a packet retransmission
9456 is necessary. */
9457 if (rs->noack_mode)
9458 return bc;
9459
9460 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9461 if (csum == pktcsum)
9462 return bc;
9463
9464 if (remote_debug)
9465 {
9466 std::string str = escape_buffer (buf, bc);
9467
9468 fprintf_unfiltered (gdb_stdlog,
9469 "Bad checksum, sentsum=0x%x, "
9470 "csum=0x%x, buf=%s\n",
9471 pktcsum, csum, str.c_str ());
9472 }
9473 /* Number of characters in buffer ignoring trailing
9474 NULL. */
9475 return -1;
9476 }
9477 case '*': /* Run length encoding. */
9478 {
9479 int repeat;
9480
9481 csum += c;
9482 c = readchar (remote_timeout);
9483 csum += c;
9484 repeat = c - ' ' + 3; /* Compute repeat count. */
9485
9486 /* The character before ``*'' is repeated. */
9487
9488 if (repeat > 0 && repeat <= 255 && bc > 0)
9489 {
9490 if (bc + repeat - 1 >= *sizeof_buf - 1)
9491 {
9492 /* Make some more room in the buffer. */
9493 *sizeof_buf += repeat;
9494 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
9495 buf = *buf_p;
9496 }
9497
9498 memset (&buf[bc], buf[bc - 1], repeat);
9499 bc += repeat;
9500 continue;
9501 }
9502
9503 buf[bc] = '\0';
9504 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9505 return -1;
9506 }
9507 default:
9508 if (bc >= *sizeof_buf - 1)
9509 {
9510 /* Make some more room in the buffer. */
9511 *sizeof_buf *= 2;
9512 *buf_p = (char *) xrealloc (*buf_p, *sizeof_buf);
9513 buf = *buf_p;
9514 }
9515
9516 buf[bc++] = c;
9517 csum += c;
9518 continue;
9519 }
9520 }
9521 }
9522
9523 /* Read a packet from the remote machine, with error checking, and
9524 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9525 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9526 rather than timing out; this is used (in synchronous mode) to wait
9527 for a target that is is executing user code to stop. */
9528 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9529 don't have to change all the calls to getpkt to deal with the
9530 return value, because at the moment I don't know what the right
9531 thing to do it for those. */
9532
9533 void
9534 remote_target::getpkt (char **buf, long *sizeof_buf, int forever)
9535 {
9536 getpkt_sane (buf, sizeof_buf, forever);
9537 }
9538
9539
9540 /* Read a packet from the remote machine, with error checking, and
9541 store it in *BUF. Resize *BUF using xrealloc if necessary to hold
9542 the result, and update *SIZEOF_BUF. If FOREVER, wait forever
9543 rather than timing out; this is used (in synchronous mode) to wait
9544 for a target that is is executing user code to stop. If FOREVER ==
9545 0, this function is allowed to time out gracefully and return an
9546 indication of this to the caller. Otherwise return the number of
9547 bytes read. If EXPECTING_NOTIF, consider receiving a notification
9548 enough reason to return to the caller. *IS_NOTIF is an output
9549 boolean that indicates whether *BUF holds a notification or not
9550 (a regular packet). */
9551
9552 int
9553 remote_target::getpkt_or_notif_sane_1 (char **buf, long *sizeof_buf,
9554 int forever, int expecting_notif,
9555 int *is_notif)
9556 {
9557 struct remote_state *rs = get_remote_state ();
9558 int c;
9559 int tries;
9560 int timeout;
9561 int val = -1;
9562
9563 /* We're reading a new response. Make sure we don't look at a
9564 previously cached response. */
9565 rs->cached_wait_status = 0;
9566
9567 strcpy (*buf, "timeout");
9568
9569 if (forever)
9570 timeout = watchdog > 0 ? watchdog : -1;
9571 else if (expecting_notif)
9572 timeout = 0; /* There should already be a char in the buffer. If
9573 not, bail out. */
9574 else
9575 timeout = remote_timeout;
9576
9577 #define MAX_TRIES 3
9578
9579 /* Process any number of notifications, and then return when
9580 we get a packet. */
9581 for (;;)
9582 {
9583 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9584 times. */
9585 for (tries = 1; tries <= MAX_TRIES; tries++)
9586 {
9587 /* This can loop forever if the remote side sends us
9588 characters continuously, but if it pauses, we'll get
9589 SERIAL_TIMEOUT from readchar because of timeout. Then
9590 we'll count that as a retry.
9591
9592 Note that even when forever is set, we will only wait
9593 forever prior to the start of a packet. After that, we
9594 expect characters to arrive at a brisk pace. They should
9595 show up within remote_timeout intervals. */
9596 do
9597 c = readchar (timeout);
9598 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9599
9600 if (c == SERIAL_TIMEOUT)
9601 {
9602 if (expecting_notif)
9603 return -1; /* Don't complain, it's normal to not get
9604 anything in this case. */
9605
9606 if (forever) /* Watchdog went off? Kill the target. */
9607 {
9608 remote_unpush_target ();
9609 throw_error (TARGET_CLOSE_ERROR,
9610 _("Watchdog timeout has expired. "
9611 "Target detached."));
9612 }
9613 if (remote_debug)
9614 fputs_filtered ("Timed out.\n", gdb_stdlog);
9615 }
9616 else
9617 {
9618 /* We've found the start of a packet or notification.
9619 Now collect the data. */
9620 val = read_frame (buf, sizeof_buf);
9621 if (val >= 0)
9622 break;
9623 }
9624
9625 remote_serial_write ("-", 1);
9626 }
9627
9628 if (tries > MAX_TRIES)
9629 {
9630 /* We have tried hard enough, and just can't receive the
9631 packet/notification. Give up. */
9632 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9633
9634 /* Skip the ack char if we're in no-ack mode. */
9635 if (!rs->noack_mode)
9636 remote_serial_write ("+", 1);
9637 return -1;
9638 }
9639
9640 /* If we got an ordinary packet, return that to our caller. */
9641 if (c == '$')
9642 {
9643 if (remote_debug)
9644 {
9645 std::string str
9646 = escape_buffer (*buf,
9647 std::min (val, REMOTE_DEBUG_MAX_CHAR));
9648
9649 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9650 str.c_str ());
9651
9652 if (val > REMOTE_DEBUG_MAX_CHAR)
9653 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9654 val - REMOTE_DEBUG_MAX_CHAR);
9655
9656 fprintf_unfiltered (gdb_stdlog, "\n");
9657 }
9658
9659 /* Skip the ack char if we're in no-ack mode. */
9660 if (!rs->noack_mode)
9661 remote_serial_write ("+", 1);
9662 if (is_notif != NULL)
9663 *is_notif = 0;
9664 return val;
9665 }
9666
9667 /* If we got a notification, handle it, and go back to looking
9668 for a packet. */
9669 else
9670 {
9671 gdb_assert (c == '%');
9672
9673 if (remote_debug)
9674 {
9675 std::string str = escape_buffer (*buf, val);
9676
9677 fprintf_unfiltered (gdb_stdlog,
9678 " Notification received: %s\n",
9679 str.c_str ());
9680 }
9681 if (is_notif != NULL)
9682 *is_notif = 1;
9683
9684 handle_notification (rs->notif_state, *buf);
9685
9686 /* Notifications require no acknowledgement. */
9687
9688 if (expecting_notif)
9689 return val;
9690 }
9691 }
9692 }
9693
9694 int
9695 remote_target::getpkt_sane (char **buf, long *sizeof_buf, int forever)
9696 {
9697 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 0, NULL);
9698 }
9699
9700 int
9701 remote_target::getpkt_or_notif_sane (char **buf, long *sizeof_buf, int forever,
9702 int *is_notif)
9703 {
9704 return getpkt_or_notif_sane_1 (buf, sizeof_buf, forever, 1,
9705 is_notif);
9706 }
9707
9708 /* Kill any new fork children of process PID that haven't been
9709 processed by follow_fork. */
9710
9711 void
9712 remote_target::kill_new_fork_children (int pid)
9713 {
9714 remote_state *rs = get_remote_state ();
9715 struct thread_info *thread;
9716 struct notif_client *notif = &notif_client_stop;
9717
9718 /* Kill the fork child threads of any threads in process PID
9719 that are stopped at a fork event. */
9720 ALL_NON_EXITED_THREADS (thread)
9721 {
9722 struct target_waitstatus *ws = &thread->pending_follow;
9723
9724 if (is_pending_fork_parent (ws, pid, thread->ptid))
9725 {
9726 int child_pid = ws->value.related_pid.pid ();
9727 int res;
9728
9729 res = remote_vkill (child_pid);
9730 if (res != 0)
9731 error (_("Can't kill fork child process %d"), child_pid);
9732 }
9733 }
9734
9735 /* Check for any pending fork events (not reported or processed yet)
9736 in process PID and kill those fork child threads as well. */
9737 remote_notif_get_pending_events (notif);
9738 for (auto &event : rs->stop_reply_queue)
9739 if (is_pending_fork_parent (&event->ws, pid, event->ptid))
9740 {
9741 int child_pid = event->ws.value.related_pid.pid ();
9742 int res;
9743
9744 res = remote_vkill (child_pid);
9745 if (res != 0)
9746 error (_("Can't kill fork child process %d"), child_pid);
9747 }
9748 }
9749
9750 \f
9751 /* Target hook to kill the current inferior. */
9752
9753 void
9754 remote_target::kill ()
9755 {
9756 int res = -1;
9757 int pid = inferior_ptid.pid ();
9758 struct remote_state *rs = get_remote_state ();
9759
9760 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9761 {
9762 /* If we're stopped while forking and we haven't followed yet,
9763 kill the child task. We need to do this before killing the
9764 parent task because if this is a vfork then the parent will
9765 be sleeping. */
9766 kill_new_fork_children (pid);
9767
9768 res = remote_vkill (pid);
9769 if (res == 0)
9770 {
9771 target_mourn_inferior (inferior_ptid);
9772 return;
9773 }
9774 }
9775
9776 /* If we are in 'target remote' mode and we are killing the only
9777 inferior, then we will tell gdbserver to exit and unpush the
9778 target. */
9779 if (res == -1 && !remote_multi_process_p (rs)
9780 && number_of_live_inferiors () == 1)
9781 {
9782 remote_kill_k ();
9783
9784 /* We've killed the remote end, we get to mourn it. If we are
9785 not in extended mode, mourning the inferior also unpushes
9786 remote_ops from the target stack, which closes the remote
9787 connection. */
9788 target_mourn_inferior (inferior_ptid);
9789
9790 return;
9791 }
9792
9793 error (_("Can't kill process"));
9794 }
9795
9796 /* Send a kill request to the target using the 'vKill' packet. */
9797
9798 int
9799 remote_target::remote_vkill (int pid)
9800 {
9801 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9802 return -1;
9803
9804 remote_state *rs = get_remote_state ();
9805
9806 /* Tell the remote target to detach. */
9807 xsnprintf (rs->buf, get_remote_packet_size (), "vKill;%x", pid);
9808 putpkt (rs->buf);
9809 getpkt (&rs->buf, &rs->buf_size, 0);
9810
9811 switch (packet_ok (rs->buf,
9812 &remote_protocol_packets[PACKET_vKill]))
9813 {
9814 case PACKET_OK:
9815 return 0;
9816 case PACKET_ERROR:
9817 return 1;
9818 case PACKET_UNKNOWN:
9819 return -1;
9820 default:
9821 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9822 }
9823 }
9824
9825 /* Send a kill request to the target using the 'k' packet. */
9826
9827 void
9828 remote_target::remote_kill_k ()
9829 {
9830 /* Catch errors so the user can quit from gdb even when we
9831 aren't on speaking terms with the remote system. */
9832 TRY
9833 {
9834 putpkt ("k");
9835 }
9836 CATCH (ex, RETURN_MASK_ERROR)
9837 {
9838 if (ex.error == TARGET_CLOSE_ERROR)
9839 {
9840 /* If we got an (EOF) error that caused the target
9841 to go away, then we're done, that's what we wanted.
9842 "k" is susceptible to cause a premature EOF, given
9843 that the remote server isn't actually required to
9844 reply to "k", and it can happen that it doesn't
9845 even get to reply ACK to the "k". */
9846 return;
9847 }
9848
9849 /* Otherwise, something went wrong. We didn't actually kill
9850 the target. Just propagate the exception, and let the
9851 user or higher layers decide what to do. */
9852 throw_exception (ex);
9853 }
9854 END_CATCH
9855 }
9856
9857 void
9858 remote_target::mourn_inferior ()
9859 {
9860 struct remote_state *rs = get_remote_state ();
9861
9862 /* We're no longer interested in notification events of an inferior
9863 that exited or was killed/detached. */
9864 discard_pending_stop_replies (current_inferior ());
9865
9866 /* In 'target remote' mode with one inferior, we close the connection. */
9867 if (!rs->extended && number_of_live_inferiors () <= 1)
9868 {
9869 unpush_target (this);
9870
9871 /* remote_close takes care of doing most of the clean up. */
9872 generic_mourn_inferior ();
9873 return;
9874 }
9875
9876 /* In case we got here due to an error, but we're going to stay
9877 connected. */
9878 rs->waiting_for_stop_reply = 0;
9879
9880 /* If the current general thread belonged to the process we just
9881 detached from or has exited, the remote side current general
9882 thread becomes undefined. Considering a case like this:
9883
9884 - We just got here due to a detach.
9885 - The process that we're detaching from happens to immediately
9886 report a global breakpoint being hit in non-stop mode, in the
9887 same thread we had selected before.
9888 - GDB attaches to this process again.
9889 - This event happens to be the next event we handle.
9890
9891 GDB would consider that the current general thread didn't need to
9892 be set on the stub side (with Hg), since for all it knew,
9893 GENERAL_THREAD hadn't changed.
9894
9895 Notice that although in all-stop mode, the remote server always
9896 sets the current thread to the thread reporting the stop event,
9897 that doesn't happen in non-stop mode; in non-stop, the stub *must
9898 not* change the current thread when reporting a breakpoint hit,
9899 due to the decoupling of event reporting and event handling.
9900
9901 To keep things simple, we always invalidate our notion of the
9902 current thread. */
9903 record_currthread (rs, minus_one_ptid);
9904
9905 /* Call common code to mark the inferior as not running. */
9906 generic_mourn_inferior ();
9907
9908 if (!have_inferiors ())
9909 {
9910 if (!remote_multi_process_p (rs))
9911 {
9912 /* Check whether the target is running now - some remote stubs
9913 automatically restart after kill. */
9914 putpkt ("?");
9915 getpkt (&rs->buf, &rs->buf_size, 0);
9916
9917 if (rs->buf[0] == 'S' || rs->buf[0] == 'T')
9918 {
9919 /* Assume that the target has been restarted. Set
9920 inferior_ptid so that bits of core GDB realizes
9921 there's something here, e.g., so that the user can
9922 say "kill" again. */
9923 inferior_ptid = magic_null_ptid;
9924 }
9925 }
9926 }
9927 }
9928
9929 bool
9930 extended_remote_target::supports_disable_randomization ()
9931 {
9932 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
9933 }
9934
9935 void
9936 remote_target::extended_remote_disable_randomization (int val)
9937 {
9938 struct remote_state *rs = get_remote_state ();
9939 char *reply;
9940
9941 xsnprintf (rs->buf, get_remote_packet_size (), "QDisableRandomization:%x",
9942 val);
9943 putpkt (rs->buf);
9944 reply = remote_get_noisy_reply ();
9945 if (*reply == '\0')
9946 error (_("Target does not support QDisableRandomization."));
9947 if (strcmp (reply, "OK") != 0)
9948 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
9949 }
9950
9951 int
9952 remote_target::extended_remote_run (const std::string &args)
9953 {
9954 struct remote_state *rs = get_remote_state ();
9955 int len;
9956 const char *remote_exec_file = get_remote_exec_file ();
9957
9958 /* If the user has disabled vRun support, or we have detected that
9959 support is not available, do not try it. */
9960 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
9961 return -1;
9962
9963 strcpy (rs->buf, "vRun;");
9964 len = strlen (rs->buf);
9965
9966 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
9967 error (_("Remote file name too long for run packet"));
9968 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf + len,
9969 strlen (remote_exec_file));
9970
9971 if (!args.empty ())
9972 {
9973 int i;
9974
9975 gdb_argv argv (args.c_str ());
9976 for (i = 0; argv[i] != NULL; i++)
9977 {
9978 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
9979 error (_("Argument list too long for run packet"));
9980 rs->buf[len++] = ';';
9981 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf + len,
9982 strlen (argv[i]));
9983 }
9984 }
9985
9986 rs->buf[len++] = '\0';
9987
9988 putpkt (rs->buf);
9989 getpkt (&rs->buf, &rs->buf_size, 0);
9990
9991 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
9992 {
9993 case PACKET_OK:
9994 /* We have a wait response. All is well. */
9995 return 0;
9996 case PACKET_UNKNOWN:
9997 return -1;
9998 case PACKET_ERROR:
9999 if (remote_exec_file[0] == '\0')
10000 error (_("Running the default executable on the remote target failed; "
10001 "try \"set remote exec-file\"?"));
10002 else
10003 error (_("Running \"%s\" on the remote target failed"),
10004 remote_exec_file);
10005 default:
10006 gdb_assert_not_reached (_("bad switch"));
10007 }
10008 }
10009
10010 /* Helper function to send set/unset environment packets. ACTION is
10011 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
10012 or "QEnvironmentUnsetVariable". VALUE is the variable to be
10013 sent. */
10014
10015 void
10016 remote_target::send_environment_packet (const char *action,
10017 const char *packet,
10018 const char *value)
10019 {
10020 remote_state *rs = get_remote_state ();
10021
10022 /* Convert the environment variable to an hex string, which
10023 is the best format to be transmitted over the wire. */
10024 std::string encoded_value = bin2hex ((const gdb_byte *) value,
10025 strlen (value));
10026
10027 xsnprintf (rs->buf, get_remote_packet_size (),
10028 "%s:%s", packet, encoded_value.c_str ());
10029
10030 putpkt (rs->buf);
10031 getpkt (&rs->buf, &rs->buf_size, 0);
10032 if (strcmp (rs->buf, "OK") != 0)
10033 warning (_("Unable to %s environment variable '%s' on remote."),
10034 action, value);
10035 }
10036
10037 /* Helper function to handle the QEnvironment* packets. */
10038
10039 void
10040 remote_target::extended_remote_environment_support ()
10041 {
10042 remote_state *rs = get_remote_state ();
10043
10044 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
10045 {
10046 putpkt ("QEnvironmentReset");
10047 getpkt (&rs->buf, &rs->buf_size, 0);
10048 if (strcmp (rs->buf, "OK") != 0)
10049 warning (_("Unable to reset environment on remote."));
10050 }
10051
10052 gdb_environ *e = &current_inferior ()->environment;
10053
10054 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
10055 for (const std::string &el : e->user_set_env ())
10056 send_environment_packet ("set", "QEnvironmentHexEncoded",
10057 el.c_str ());
10058
10059 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
10060 for (const std::string &el : e->user_unset_env ())
10061 send_environment_packet ("unset", "QEnvironmentUnset", el.c_str ());
10062 }
10063
10064 /* Helper function to set the current working directory for the
10065 inferior in the remote target. */
10066
10067 void
10068 remote_target::extended_remote_set_inferior_cwd ()
10069 {
10070 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
10071 {
10072 const char *inferior_cwd = get_inferior_cwd ();
10073 remote_state *rs = get_remote_state ();
10074
10075 if (inferior_cwd != NULL)
10076 {
10077 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
10078 strlen (inferior_cwd));
10079
10080 xsnprintf (rs->buf, get_remote_packet_size (),
10081 "QSetWorkingDir:%s", hexpath.c_str ());
10082 }
10083 else
10084 {
10085 /* An empty inferior_cwd means that the user wants us to
10086 reset the remote server's inferior's cwd. */
10087 xsnprintf (rs->buf, get_remote_packet_size (),
10088 "QSetWorkingDir:");
10089 }
10090
10091 putpkt (rs->buf);
10092 getpkt (&rs->buf, &rs->buf_size, 0);
10093 if (packet_ok (rs->buf,
10094 &remote_protocol_packets[PACKET_QSetWorkingDir])
10095 != PACKET_OK)
10096 error (_("\
10097 Remote replied unexpectedly while setting the inferior's working\n\
10098 directory: %s"),
10099 rs->buf);
10100
10101 }
10102 }
10103
10104 /* In the extended protocol we want to be able to do things like
10105 "run" and have them basically work as expected. So we need
10106 a special create_inferior function. We support changing the
10107 executable file and the command line arguments, but not the
10108 environment. */
10109
10110 void
10111 extended_remote_target::create_inferior (const char *exec_file,
10112 const std::string &args,
10113 char **env, int from_tty)
10114 {
10115 int run_worked;
10116 char *stop_reply;
10117 struct remote_state *rs = get_remote_state ();
10118 const char *remote_exec_file = get_remote_exec_file ();
10119
10120 /* If running asynchronously, register the target file descriptor
10121 with the event loop. */
10122 if (target_can_async_p ())
10123 target_async (1);
10124
10125 /* Disable address space randomization if requested (and supported). */
10126 if (supports_disable_randomization ())
10127 extended_remote_disable_randomization (disable_randomization);
10128
10129 /* If startup-with-shell is on, we inform gdbserver to start the
10130 remote inferior using a shell. */
10131 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
10132 {
10133 xsnprintf (rs->buf, get_remote_packet_size (),
10134 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
10135 putpkt (rs->buf);
10136 getpkt (&rs->buf, &rs->buf_size, 0);
10137 if (strcmp (rs->buf, "OK") != 0)
10138 error (_("\
10139 Remote replied unexpectedly while setting startup-with-shell: %s"),
10140 rs->buf);
10141 }
10142
10143 extended_remote_environment_support ();
10144
10145 extended_remote_set_inferior_cwd ();
10146
10147 /* Now restart the remote server. */
10148 run_worked = extended_remote_run (args) != -1;
10149 if (!run_worked)
10150 {
10151 /* vRun was not supported. Fail if we need it to do what the
10152 user requested. */
10153 if (remote_exec_file[0])
10154 error (_("Remote target does not support \"set remote exec-file\""));
10155 if (!args.empty ())
10156 error (_("Remote target does not support \"set args\" or run ARGS"));
10157
10158 /* Fall back to "R". */
10159 extended_remote_restart ();
10160 }
10161
10162 if (!have_inferiors ())
10163 {
10164 /* Clean up from the last time we ran, before we mark the target
10165 running again. This will mark breakpoints uninserted, and
10166 get_offsets may insert breakpoints. */
10167 init_thread_list ();
10168 init_wait_for_inferior ();
10169 }
10170
10171 /* vRun's success return is a stop reply. */
10172 stop_reply = run_worked ? rs->buf : NULL;
10173 add_current_inferior_and_thread (stop_reply);
10174
10175 /* Get updated offsets, if the stub uses qOffsets. */
10176 get_offsets ();
10177 }
10178 \f
10179
10180 /* Given a location's target info BP_TGT and the packet buffer BUF, output
10181 the list of conditions (in agent expression bytecode format), if any, the
10182 target needs to evaluate. The output is placed into the packet buffer
10183 started from BUF and ended at BUF_END. */
10184
10185 static int
10186 remote_add_target_side_condition (struct gdbarch *gdbarch,
10187 struct bp_target_info *bp_tgt, char *buf,
10188 char *buf_end)
10189 {
10190 if (bp_tgt->conditions.empty ())
10191 return 0;
10192
10193 buf += strlen (buf);
10194 xsnprintf (buf, buf_end - buf, "%s", ";");
10195 buf++;
10196
10197 /* Send conditions to the target. */
10198 for (agent_expr *aexpr : bp_tgt->conditions)
10199 {
10200 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10201 buf += strlen (buf);
10202 for (int i = 0; i < aexpr->len; ++i)
10203 buf = pack_hex_byte (buf, aexpr->buf[i]);
10204 *buf = '\0';
10205 }
10206 return 0;
10207 }
10208
10209 static void
10210 remote_add_target_side_commands (struct gdbarch *gdbarch,
10211 struct bp_target_info *bp_tgt, char *buf)
10212 {
10213 if (bp_tgt->tcommands.empty ())
10214 return;
10215
10216 buf += strlen (buf);
10217
10218 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10219 buf += strlen (buf);
10220
10221 /* Concatenate all the agent expressions that are commands into the
10222 cmds parameter. */
10223 for (agent_expr *aexpr : bp_tgt->tcommands)
10224 {
10225 sprintf (buf, "X%x,", aexpr->len);
10226 buf += strlen (buf);
10227 for (int i = 0; i < aexpr->len; ++i)
10228 buf = pack_hex_byte (buf, aexpr->buf[i]);
10229 *buf = '\0';
10230 }
10231 }
10232
10233 /* Insert a breakpoint. On targets that have software breakpoint
10234 support, we ask the remote target to do the work; on targets
10235 which don't, we insert a traditional memory breakpoint. */
10236
10237 int
10238 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10239 struct bp_target_info *bp_tgt)
10240 {
10241 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10242 If it succeeds, then set the support to PACKET_ENABLE. If it
10243 fails, and the user has explicitly requested the Z support then
10244 report an error, otherwise, mark it disabled and go on. */
10245
10246 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10247 {
10248 CORE_ADDR addr = bp_tgt->reqstd_address;
10249 struct remote_state *rs;
10250 char *p, *endbuf;
10251
10252 /* Make sure the remote is pointing at the right process, if
10253 necessary. */
10254 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10255 set_general_process ();
10256
10257 rs = get_remote_state ();
10258 p = rs->buf;
10259 endbuf = rs->buf + get_remote_packet_size ();
10260
10261 *(p++) = 'Z';
10262 *(p++) = '0';
10263 *(p++) = ',';
10264 addr = (ULONGEST) remote_address_masked (addr);
10265 p += hexnumstr (p, addr);
10266 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10267
10268 if (supports_evaluation_of_breakpoint_conditions ())
10269 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10270
10271 if (can_run_breakpoint_commands ())
10272 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10273
10274 putpkt (rs->buf);
10275 getpkt (&rs->buf, &rs->buf_size, 0);
10276
10277 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10278 {
10279 case PACKET_ERROR:
10280 return -1;
10281 case PACKET_OK:
10282 return 0;
10283 case PACKET_UNKNOWN:
10284 break;
10285 }
10286 }
10287
10288 /* If this breakpoint has target-side commands but this stub doesn't
10289 support Z0 packets, throw error. */
10290 if (!bp_tgt->tcommands.empty ())
10291 throw_error (NOT_SUPPORTED_ERROR, _("\
10292 Target doesn't support breakpoints that have target side commands."));
10293
10294 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10295 }
10296
10297 int
10298 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10299 struct bp_target_info *bp_tgt,
10300 enum remove_bp_reason reason)
10301 {
10302 CORE_ADDR addr = bp_tgt->placed_address;
10303 struct remote_state *rs = get_remote_state ();
10304
10305 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10306 {
10307 char *p = rs->buf;
10308 char *endbuf = rs->buf + get_remote_packet_size ();
10309
10310 /* Make sure the remote is pointing at the right process, if
10311 necessary. */
10312 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10313 set_general_process ();
10314
10315 *(p++) = 'z';
10316 *(p++) = '0';
10317 *(p++) = ',';
10318
10319 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10320 p += hexnumstr (p, addr);
10321 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10322
10323 putpkt (rs->buf);
10324 getpkt (&rs->buf, &rs->buf_size, 0);
10325
10326 return (rs->buf[0] == 'E');
10327 }
10328
10329 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10330 }
10331
10332 static enum Z_packet_type
10333 watchpoint_to_Z_packet (int type)
10334 {
10335 switch (type)
10336 {
10337 case hw_write:
10338 return Z_PACKET_WRITE_WP;
10339 break;
10340 case hw_read:
10341 return Z_PACKET_READ_WP;
10342 break;
10343 case hw_access:
10344 return Z_PACKET_ACCESS_WP;
10345 break;
10346 default:
10347 internal_error (__FILE__, __LINE__,
10348 _("hw_bp_to_z: bad watchpoint type %d"), type);
10349 }
10350 }
10351
10352 int
10353 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10354 enum target_hw_bp_type type, struct expression *cond)
10355 {
10356 struct remote_state *rs = get_remote_state ();
10357 char *endbuf = rs->buf + get_remote_packet_size ();
10358 char *p;
10359 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10360
10361 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10362 return 1;
10363
10364 /* Make sure the remote is pointing at the right process, if
10365 necessary. */
10366 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10367 set_general_process ();
10368
10369 xsnprintf (rs->buf, endbuf - rs->buf, "Z%x,", packet);
10370 p = strchr (rs->buf, '\0');
10371 addr = remote_address_masked (addr);
10372 p += hexnumstr (p, (ULONGEST) addr);
10373 xsnprintf (p, endbuf - p, ",%x", len);
10374
10375 putpkt (rs->buf);
10376 getpkt (&rs->buf, &rs->buf_size, 0);
10377
10378 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10379 {
10380 case PACKET_ERROR:
10381 return -1;
10382 case PACKET_UNKNOWN:
10383 return 1;
10384 case PACKET_OK:
10385 return 0;
10386 }
10387 internal_error (__FILE__, __LINE__,
10388 _("remote_insert_watchpoint: reached end of function"));
10389 }
10390
10391 bool
10392 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10393 CORE_ADDR start, int length)
10394 {
10395 CORE_ADDR diff = remote_address_masked (addr - start);
10396
10397 return diff < length;
10398 }
10399
10400
10401 int
10402 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10403 enum target_hw_bp_type type, struct expression *cond)
10404 {
10405 struct remote_state *rs = get_remote_state ();
10406 char *endbuf = rs->buf + get_remote_packet_size ();
10407 char *p;
10408 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10409
10410 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10411 return -1;
10412
10413 /* Make sure the remote is pointing at the right process, if
10414 necessary. */
10415 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10416 set_general_process ();
10417
10418 xsnprintf (rs->buf, endbuf - rs->buf, "z%x,", packet);
10419 p = strchr (rs->buf, '\0');
10420 addr = remote_address_masked (addr);
10421 p += hexnumstr (p, (ULONGEST) addr);
10422 xsnprintf (p, endbuf - p, ",%x", len);
10423 putpkt (rs->buf);
10424 getpkt (&rs->buf, &rs->buf_size, 0);
10425
10426 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10427 {
10428 case PACKET_ERROR:
10429 case PACKET_UNKNOWN:
10430 return -1;
10431 case PACKET_OK:
10432 return 0;
10433 }
10434 internal_error (__FILE__, __LINE__,
10435 _("remote_remove_watchpoint: reached end of function"));
10436 }
10437
10438
10439 int remote_hw_watchpoint_limit = -1;
10440 int remote_hw_watchpoint_length_limit = -1;
10441 int remote_hw_breakpoint_limit = -1;
10442
10443 int
10444 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10445 {
10446 if (remote_hw_watchpoint_length_limit == 0)
10447 return 0;
10448 else if (remote_hw_watchpoint_length_limit < 0)
10449 return 1;
10450 else if (len <= remote_hw_watchpoint_length_limit)
10451 return 1;
10452 else
10453 return 0;
10454 }
10455
10456 int
10457 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10458 {
10459 if (type == bp_hardware_breakpoint)
10460 {
10461 if (remote_hw_breakpoint_limit == 0)
10462 return 0;
10463 else if (remote_hw_breakpoint_limit < 0)
10464 return 1;
10465 else if (cnt <= remote_hw_breakpoint_limit)
10466 return 1;
10467 }
10468 else
10469 {
10470 if (remote_hw_watchpoint_limit == 0)
10471 return 0;
10472 else if (remote_hw_watchpoint_limit < 0)
10473 return 1;
10474 else if (ot)
10475 return -1;
10476 else if (cnt <= remote_hw_watchpoint_limit)
10477 return 1;
10478 }
10479 return -1;
10480 }
10481
10482 /* The to_stopped_by_sw_breakpoint method of target remote. */
10483
10484 bool
10485 remote_target::stopped_by_sw_breakpoint ()
10486 {
10487 struct thread_info *thread = inferior_thread ();
10488
10489 return (thread->priv != NULL
10490 && (get_remote_thread_info (thread)->stop_reason
10491 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10492 }
10493
10494 /* The to_supports_stopped_by_sw_breakpoint method of target
10495 remote. */
10496
10497 bool
10498 remote_target::supports_stopped_by_sw_breakpoint ()
10499 {
10500 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10501 }
10502
10503 /* The to_stopped_by_hw_breakpoint method of target remote. */
10504
10505 bool
10506 remote_target::stopped_by_hw_breakpoint ()
10507 {
10508 struct thread_info *thread = inferior_thread ();
10509
10510 return (thread->priv != NULL
10511 && (get_remote_thread_info (thread)->stop_reason
10512 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10513 }
10514
10515 /* The to_supports_stopped_by_hw_breakpoint method of target
10516 remote. */
10517
10518 bool
10519 remote_target::supports_stopped_by_hw_breakpoint ()
10520 {
10521 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10522 }
10523
10524 bool
10525 remote_target::stopped_by_watchpoint ()
10526 {
10527 struct thread_info *thread = inferior_thread ();
10528
10529 return (thread->priv != NULL
10530 && (get_remote_thread_info (thread)->stop_reason
10531 == TARGET_STOPPED_BY_WATCHPOINT));
10532 }
10533
10534 bool
10535 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10536 {
10537 struct thread_info *thread = inferior_thread ();
10538
10539 if (thread->priv != NULL
10540 && (get_remote_thread_info (thread)->stop_reason
10541 == TARGET_STOPPED_BY_WATCHPOINT))
10542 {
10543 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10544 return true;
10545 }
10546
10547 return false;
10548 }
10549
10550
10551 int
10552 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10553 struct bp_target_info *bp_tgt)
10554 {
10555 CORE_ADDR addr = bp_tgt->reqstd_address;
10556 struct remote_state *rs;
10557 char *p, *endbuf;
10558 char *message;
10559
10560 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10561 return -1;
10562
10563 /* Make sure the remote is pointing at the right process, if
10564 necessary. */
10565 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10566 set_general_process ();
10567
10568 rs = get_remote_state ();
10569 p = rs->buf;
10570 endbuf = rs->buf + get_remote_packet_size ();
10571
10572 *(p++) = 'Z';
10573 *(p++) = '1';
10574 *(p++) = ',';
10575
10576 addr = remote_address_masked (addr);
10577 p += hexnumstr (p, (ULONGEST) addr);
10578 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10579
10580 if (supports_evaluation_of_breakpoint_conditions ())
10581 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10582
10583 if (can_run_breakpoint_commands ())
10584 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10585
10586 putpkt (rs->buf);
10587 getpkt (&rs->buf, &rs->buf_size, 0);
10588
10589 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10590 {
10591 case PACKET_ERROR:
10592 if (rs->buf[1] == '.')
10593 {
10594 message = strchr (rs->buf + 2, '.');
10595 if (message)
10596 error (_("Remote failure reply: %s"), message + 1);
10597 }
10598 return -1;
10599 case PACKET_UNKNOWN:
10600 return -1;
10601 case PACKET_OK:
10602 return 0;
10603 }
10604 internal_error (__FILE__, __LINE__,
10605 _("remote_insert_hw_breakpoint: reached end of function"));
10606 }
10607
10608
10609 int
10610 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10611 struct bp_target_info *bp_tgt)
10612 {
10613 CORE_ADDR addr;
10614 struct remote_state *rs = get_remote_state ();
10615 char *p = rs->buf;
10616 char *endbuf = rs->buf + get_remote_packet_size ();
10617
10618 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10619 return -1;
10620
10621 /* Make sure the remote is pointing at the right process, if
10622 necessary. */
10623 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10624 set_general_process ();
10625
10626 *(p++) = 'z';
10627 *(p++) = '1';
10628 *(p++) = ',';
10629
10630 addr = remote_address_masked (bp_tgt->placed_address);
10631 p += hexnumstr (p, (ULONGEST) addr);
10632 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10633
10634 putpkt (rs->buf);
10635 getpkt (&rs->buf, &rs->buf_size, 0);
10636
10637 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10638 {
10639 case PACKET_ERROR:
10640 case PACKET_UNKNOWN:
10641 return -1;
10642 case PACKET_OK:
10643 return 0;
10644 }
10645 internal_error (__FILE__, __LINE__,
10646 _("remote_remove_hw_breakpoint: reached end of function"));
10647 }
10648
10649 /* Verify memory using the "qCRC:" request. */
10650
10651 int
10652 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10653 {
10654 struct remote_state *rs = get_remote_state ();
10655 unsigned long host_crc, target_crc;
10656 char *tmp;
10657
10658 /* It doesn't make sense to use qCRC if the remote target is
10659 connected but not running. */
10660 if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10661 {
10662 enum packet_result result;
10663
10664 /* Make sure the remote is pointing at the right process. */
10665 set_general_process ();
10666
10667 /* FIXME: assumes lma can fit into long. */
10668 xsnprintf (rs->buf, get_remote_packet_size (), "qCRC:%lx,%lx",
10669 (long) lma, (long) size);
10670 putpkt (rs->buf);
10671
10672 /* Be clever; compute the host_crc before waiting for target
10673 reply. */
10674 host_crc = xcrc32 (data, size, 0xffffffff);
10675
10676 getpkt (&rs->buf, &rs->buf_size, 0);
10677
10678 result = packet_ok (rs->buf,
10679 &remote_protocol_packets[PACKET_qCRC]);
10680 if (result == PACKET_ERROR)
10681 return -1;
10682 else if (result == PACKET_OK)
10683 {
10684 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10685 target_crc = target_crc * 16 + fromhex (*tmp);
10686
10687 return (host_crc == target_crc);
10688 }
10689 }
10690
10691 return simple_verify_memory (this, data, lma, size);
10692 }
10693
10694 /* compare-sections command
10695
10696 With no arguments, compares each loadable section in the exec bfd
10697 with the same memory range on the target, and reports mismatches.
10698 Useful for verifying the image on the target against the exec file. */
10699
10700 static void
10701 compare_sections_command (const char *args, int from_tty)
10702 {
10703 asection *s;
10704 const char *sectname;
10705 bfd_size_type size;
10706 bfd_vma lma;
10707 int matched = 0;
10708 int mismatched = 0;
10709 int res;
10710 int read_only = 0;
10711
10712 if (!exec_bfd)
10713 error (_("command cannot be used without an exec file"));
10714
10715 if (args != NULL && strcmp (args, "-r") == 0)
10716 {
10717 read_only = 1;
10718 args = NULL;
10719 }
10720
10721 for (s = exec_bfd->sections; s; s = s->next)
10722 {
10723 if (!(s->flags & SEC_LOAD))
10724 continue; /* Skip non-loadable section. */
10725
10726 if (read_only && (s->flags & SEC_READONLY) == 0)
10727 continue; /* Skip writeable sections */
10728
10729 size = bfd_get_section_size (s);
10730 if (size == 0)
10731 continue; /* Skip zero-length section. */
10732
10733 sectname = bfd_get_section_name (exec_bfd, s);
10734 if (args && strcmp (args, sectname) != 0)
10735 continue; /* Not the section selected by user. */
10736
10737 matched = 1; /* Do this section. */
10738 lma = s->lma;
10739
10740 gdb::byte_vector sectdata (size);
10741 bfd_get_section_contents (exec_bfd, s, sectdata.data (), 0, size);
10742
10743 res = target_verify_memory (sectdata.data (), lma, size);
10744
10745 if (res == -1)
10746 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10747 paddress (target_gdbarch (), lma),
10748 paddress (target_gdbarch (), lma + size));
10749
10750 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10751 paddress (target_gdbarch (), lma),
10752 paddress (target_gdbarch (), lma + size));
10753 if (res)
10754 printf_filtered ("matched.\n");
10755 else
10756 {
10757 printf_filtered ("MIS-MATCHED!\n");
10758 mismatched++;
10759 }
10760 }
10761 if (mismatched > 0)
10762 warning (_("One or more sections of the target image does not match\n\
10763 the loaded file\n"));
10764 if (args && !matched)
10765 printf_filtered (_("No loaded section named '%s'.\n"), args);
10766 }
10767
10768 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10769 into remote target. The number of bytes written to the remote
10770 target is returned, or -1 for error. */
10771
10772 target_xfer_status
10773 remote_target::remote_write_qxfer (const char *object_name,
10774 const char *annex, const gdb_byte *writebuf,
10775 ULONGEST offset, LONGEST len,
10776 ULONGEST *xfered_len,
10777 struct packet_config *packet)
10778 {
10779 int i, buf_len;
10780 ULONGEST n;
10781 struct remote_state *rs = get_remote_state ();
10782 int max_size = get_memory_write_packet_size ();
10783
10784 if (packet_config_support (packet) == PACKET_DISABLE)
10785 return TARGET_XFER_E_IO;
10786
10787 /* Insert header. */
10788 i = snprintf (rs->buf, max_size,
10789 "qXfer:%s:write:%s:%s:",
10790 object_name, annex ? annex : "",
10791 phex_nz (offset, sizeof offset));
10792 max_size -= (i + 1);
10793
10794 /* Escape as much data as fits into rs->buf. */
10795 buf_len = remote_escape_output
10796 (writebuf, len, 1, (gdb_byte *) rs->buf + i, &max_size, max_size);
10797
10798 if (putpkt_binary (rs->buf, i + buf_len) < 0
10799 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
10800 || packet_ok (rs->buf, packet) != PACKET_OK)
10801 return TARGET_XFER_E_IO;
10802
10803 unpack_varlen_hex (rs->buf, &n);
10804
10805 *xfered_len = n;
10806 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10807 }
10808
10809 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10810 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10811 number of bytes read is returned, or 0 for EOF, or -1 for error.
10812 The number of bytes read may be less than LEN without indicating an
10813 EOF. PACKET is checked and updated to indicate whether the remote
10814 target supports this object. */
10815
10816 target_xfer_status
10817 remote_target::remote_read_qxfer (const char *object_name,
10818 const char *annex,
10819 gdb_byte *readbuf, ULONGEST offset,
10820 LONGEST len,
10821 ULONGEST *xfered_len,
10822 struct packet_config *packet)
10823 {
10824 struct remote_state *rs = get_remote_state ();
10825 LONGEST i, n, packet_len;
10826
10827 if (packet_config_support (packet) == PACKET_DISABLE)
10828 return TARGET_XFER_E_IO;
10829
10830 /* Check whether we've cached an end-of-object packet that matches
10831 this request. */
10832 if (rs->finished_object)
10833 {
10834 if (strcmp (object_name, rs->finished_object) == 0
10835 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10836 && offset == rs->finished_offset)
10837 return TARGET_XFER_EOF;
10838
10839
10840 /* Otherwise, we're now reading something different. Discard
10841 the cache. */
10842 xfree (rs->finished_object);
10843 xfree (rs->finished_annex);
10844 rs->finished_object = NULL;
10845 rs->finished_annex = NULL;
10846 }
10847
10848 /* Request only enough to fit in a single packet. The actual data
10849 may not, since we don't know how much of it will need to be escaped;
10850 the target is free to respond with slightly less data. We subtract
10851 five to account for the response type and the protocol frame. */
10852 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10853 snprintf (rs->buf, get_remote_packet_size () - 4, "qXfer:%s:read:%s:%s,%s",
10854 object_name, annex ? annex : "",
10855 phex_nz (offset, sizeof offset),
10856 phex_nz (n, sizeof n));
10857 i = putpkt (rs->buf);
10858 if (i < 0)
10859 return TARGET_XFER_E_IO;
10860
10861 rs->buf[0] = '\0';
10862 packet_len = getpkt_sane (&rs->buf, &rs->buf_size, 0);
10863 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10864 return TARGET_XFER_E_IO;
10865
10866 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10867 error (_("Unknown remote qXfer reply: %s"), rs->buf);
10868
10869 /* 'm' means there is (or at least might be) more data after this
10870 batch. That does not make sense unless there's at least one byte
10871 of data in this reply. */
10872 if (rs->buf[0] == 'm' && packet_len == 1)
10873 error (_("Remote qXfer reply contained no data."));
10874
10875 /* Got some data. */
10876 i = remote_unescape_input ((gdb_byte *) rs->buf + 1,
10877 packet_len - 1, readbuf, n);
10878
10879 /* 'l' is an EOF marker, possibly including a final block of data,
10880 or possibly empty. If we have the final block of a non-empty
10881 object, record this fact to bypass a subsequent partial read. */
10882 if (rs->buf[0] == 'l' && offset + i > 0)
10883 {
10884 rs->finished_object = xstrdup (object_name);
10885 rs->finished_annex = xstrdup (annex ? annex : "");
10886 rs->finished_offset = offset + i;
10887 }
10888
10889 if (i == 0)
10890 return TARGET_XFER_EOF;
10891 else
10892 {
10893 *xfered_len = i;
10894 return TARGET_XFER_OK;
10895 }
10896 }
10897
10898 enum target_xfer_status
10899 remote_target::xfer_partial (enum target_object object,
10900 const char *annex, gdb_byte *readbuf,
10901 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
10902 ULONGEST *xfered_len)
10903 {
10904 struct remote_state *rs;
10905 int i;
10906 char *p2;
10907 char query_type;
10908 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
10909
10910 set_remote_traceframe ();
10911 set_general_thread (inferior_ptid);
10912
10913 rs = get_remote_state ();
10914
10915 /* Handle memory using the standard memory routines. */
10916 if (object == TARGET_OBJECT_MEMORY)
10917 {
10918 /* If the remote target is connected but not running, we should
10919 pass this request down to a lower stratum (e.g. the executable
10920 file). */
10921 if (!target_has_execution)
10922 return TARGET_XFER_EOF;
10923
10924 if (writebuf != NULL)
10925 return remote_write_bytes (offset, writebuf, len, unit_size,
10926 xfered_len);
10927 else
10928 return remote_read_bytes (offset, readbuf, len, unit_size,
10929 xfered_len);
10930 }
10931
10932 /* Handle SPU memory using qxfer packets. */
10933 if (object == TARGET_OBJECT_SPU)
10934 {
10935 if (readbuf)
10936 return remote_read_qxfer ("spu", annex, readbuf, offset, len,
10937 xfered_len, &remote_protocol_packets
10938 [PACKET_qXfer_spu_read]);
10939 else
10940 return remote_write_qxfer ("spu", annex, writebuf, offset, len,
10941 xfered_len, &remote_protocol_packets
10942 [PACKET_qXfer_spu_write]);
10943 }
10944
10945 /* Handle extra signal info using qxfer packets. */
10946 if (object == TARGET_OBJECT_SIGNAL_INFO)
10947 {
10948 if (readbuf)
10949 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
10950 xfered_len, &remote_protocol_packets
10951 [PACKET_qXfer_siginfo_read]);
10952 else
10953 return remote_write_qxfer ("siginfo", annex,
10954 writebuf, offset, len, xfered_len,
10955 &remote_protocol_packets
10956 [PACKET_qXfer_siginfo_write]);
10957 }
10958
10959 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
10960 {
10961 if (readbuf)
10962 return remote_read_qxfer ("statictrace", annex,
10963 readbuf, offset, len, xfered_len,
10964 &remote_protocol_packets
10965 [PACKET_qXfer_statictrace_read]);
10966 else
10967 return TARGET_XFER_E_IO;
10968 }
10969
10970 /* Only handle flash writes. */
10971 if (writebuf != NULL)
10972 {
10973 switch (object)
10974 {
10975 case TARGET_OBJECT_FLASH:
10976 return remote_flash_write (offset, len, xfered_len,
10977 writebuf);
10978
10979 default:
10980 return TARGET_XFER_E_IO;
10981 }
10982 }
10983
10984 /* Map pre-existing objects onto letters. DO NOT do this for new
10985 objects!!! Instead specify new query packets. */
10986 switch (object)
10987 {
10988 case TARGET_OBJECT_AVR:
10989 query_type = 'R';
10990 break;
10991
10992 case TARGET_OBJECT_AUXV:
10993 gdb_assert (annex == NULL);
10994 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
10995 xfered_len,
10996 &remote_protocol_packets[PACKET_qXfer_auxv]);
10997
10998 case TARGET_OBJECT_AVAILABLE_FEATURES:
10999 return remote_read_qxfer
11000 ("features", annex, readbuf, offset, len, xfered_len,
11001 &remote_protocol_packets[PACKET_qXfer_features]);
11002
11003 case TARGET_OBJECT_LIBRARIES:
11004 return remote_read_qxfer
11005 ("libraries", annex, readbuf, offset, len, xfered_len,
11006 &remote_protocol_packets[PACKET_qXfer_libraries]);
11007
11008 case TARGET_OBJECT_LIBRARIES_SVR4:
11009 return remote_read_qxfer
11010 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
11011 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
11012
11013 case TARGET_OBJECT_MEMORY_MAP:
11014 gdb_assert (annex == NULL);
11015 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
11016 xfered_len,
11017 &remote_protocol_packets[PACKET_qXfer_memory_map]);
11018
11019 case TARGET_OBJECT_OSDATA:
11020 /* Should only get here if we're connected. */
11021 gdb_assert (rs->remote_desc);
11022 return remote_read_qxfer
11023 ("osdata", annex, readbuf, offset, len, xfered_len,
11024 &remote_protocol_packets[PACKET_qXfer_osdata]);
11025
11026 case TARGET_OBJECT_THREADS:
11027 gdb_assert (annex == NULL);
11028 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
11029 xfered_len,
11030 &remote_protocol_packets[PACKET_qXfer_threads]);
11031
11032 case TARGET_OBJECT_TRACEFRAME_INFO:
11033 gdb_assert (annex == NULL);
11034 return remote_read_qxfer
11035 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
11036 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
11037
11038 case TARGET_OBJECT_FDPIC:
11039 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
11040 xfered_len,
11041 &remote_protocol_packets[PACKET_qXfer_fdpic]);
11042
11043 case TARGET_OBJECT_OPENVMS_UIB:
11044 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
11045 xfered_len,
11046 &remote_protocol_packets[PACKET_qXfer_uib]);
11047
11048 case TARGET_OBJECT_BTRACE:
11049 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
11050 xfered_len,
11051 &remote_protocol_packets[PACKET_qXfer_btrace]);
11052
11053 case TARGET_OBJECT_BTRACE_CONF:
11054 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
11055 len, xfered_len,
11056 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
11057
11058 case TARGET_OBJECT_EXEC_FILE:
11059 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
11060 len, xfered_len,
11061 &remote_protocol_packets[PACKET_qXfer_exec_file]);
11062
11063 default:
11064 return TARGET_XFER_E_IO;
11065 }
11066
11067 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
11068 large enough let the caller deal with it. */
11069 if (len < get_remote_packet_size ())
11070 return TARGET_XFER_E_IO;
11071 len = get_remote_packet_size ();
11072
11073 /* Except for querying the minimum buffer size, target must be open. */
11074 if (!rs->remote_desc)
11075 error (_("remote query is only available after target open"));
11076
11077 gdb_assert (annex != NULL);
11078 gdb_assert (readbuf != NULL);
11079
11080 p2 = rs->buf;
11081 *p2++ = 'q';
11082 *p2++ = query_type;
11083
11084 /* We used one buffer char for the remote protocol q command and
11085 another for the query type. As the remote protocol encapsulation
11086 uses 4 chars plus one extra in case we are debugging
11087 (remote_debug), we have PBUFZIZ - 7 left to pack the query
11088 string. */
11089 i = 0;
11090 while (annex[i] && (i < (get_remote_packet_size () - 8)))
11091 {
11092 /* Bad caller may have sent forbidden characters. */
11093 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
11094 *p2++ = annex[i];
11095 i++;
11096 }
11097 *p2 = '\0';
11098 gdb_assert (annex[i] == '\0');
11099
11100 i = putpkt (rs->buf);
11101 if (i < 0)
11102 return TARGET_XFER_E_IO;
11103
11104 getpkt (&rs->buf, &rs->buf_size, 0);
11105 strcpy ((char *) readbuf, rs->buf);
11106
11107 *xfered_len = strlen ((char *) readbuf);
11108 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11109 }
11110
11111 /* Implementation of to_get_memory_xfer_limit. */
11112
11113 ULONGEST
11114 remote_target::get_memory_xfer_limit ()
11115 {
11116 return get_memory_write_packet_size ();
11117 }
11118
11119 int
11120 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
11121 const gdb_byte *pattern, ULONGEST pattern_len,
11122 CORE_ADDR *found_addrp)
11123 {
11124 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
11125 struct remote_state *rs = get_remote_state ();
11126 int max_size = get_memory_write_packet_size ();
11127 struct packet_config *packet =
11128 &remote_protocol_packets[PACKET_qSearch_memory];
11129 /* Number of packet bytes used to encode the pattern;
11130 this could be more than PATTERN_LEN due to escape characters. */
11131 int escaped_pattern_len;
11132 /* Amount of pattern that was encodable in the packet. */
11133 int used_pattern_len;
11134 int i;
11135 int found;
11136 ULONGEST found_addr;
11137
11138 /* Don't go to the target if we don't have to. This is done before
11139 checking packet_config_support to avoid the possibility that a
11140 success for this edge case means the facility works in
11141 general. */
11142 if (pattern_len > search_space_len)
11143 return 0;
11144 if (pattern_len == 0)
11145 {
11146 *found_addrp = start_addr;
11147 return 1;
11148 }
11149
11150 /* If we already know the packet isn't supported, fall back to the simple
11151 way of searching memory. */
11152
11153 if (packet_config_support (packet) == PACKET_DISABLE)
11154 {
11155 /* Target doesn't provided special support, fall back and use the
11156 standard support (copy memory and do the search here). */
11157 return simple_search_memory (this, start_addr, search_space_len,
11158 pattern, pattern_len, found_addrp);
11159 }
11160
11161 /* Make sure the remote is pointing at the right process. */
11162 set_general_process ();
11163
11164 /* Insert header. */
11165 i = snprintf (rs->buf, max_size,
11166 "qSearch:memory:%s;%s;",
11167 phex_nz (start_addr, addr_size),
11168 phex_nz (search_space_len, sizeof (search_space_len)));
11169 max_size -= (i + 1);
11170
11171 /* Escape as much data as fits into rs->buf. */
11172 escaped_pattern_len =
11173 remote_escape_output (pattern, pattern_len, 1, (gdb_byte *) rs->buf + i,
11174 &used_pattern_len, max_size);
11175
11176 /* Bail if the pattern is too large. */
11177 if (used_pattern_len != pattern_len)
11178 error (_("Pattern is too large to transmit to remote target."));
11179
11180 if (putpkt_binary (rs->buf, i + escaped_pattern_len) < 0
11181 || getpkt_sane (&rs->buf, &rs->buf_size, 0) < 0
11182 || packet_ok (rs->buf, packet) != PACKET_OK)
11183 {
11184 /* The request may not have worked because the command is not
11185 supported. If so, fall back to the simple way. */
11186 if (packet_config_support (packet) == PACKET_DISABLE)
11187 {
11188 return simple_search_memory (this, start_addr, search_space_len,
11189 pattern, pattern_len, found_addrp);
11190 }
11191 return -1;
11192 }
11193
11194 if (rs->buf[0] == '0')
11195 found = 0;
11196 else if (rs->buf[0] == '1')
11197 {
11198 found = 1;
11199 if (rs->buf[1] != ',')
11200 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
11201 unpack_varlen_hex (rs->buf + 2, &found_addr);
11202 *found_addrp = found_addr;
11203 }
11204 else
11205 error (_("Unknown qSearch:memory reply: %s"), rs->buf);
11206
11207 return found;
11208 }
11209
11210 void
11211 remote_target::rcmd (const char *command, struct ui_file *outbuf)
11212 {
11213 struct remote_state *rs = get_remote_state ();
11214 char *p = rs->buf;
11215
11216 if (!rs->remote_desc)
11217 error (_("remote rcmd is only available after target open"));
11218
11219 /* Send a NULL command across as an empty command. */
11220 if (command == NULL)
11221 command = "";
11222
11223 /* The query prefix. */
11224 strcpy (rs->buf, "qRcmd,");
11225 p = strchr (rs->buf, '\0');
11226
11227 if ((strlen (rs->buf) + strlen (command) * 2 + 8/*misc*/)
11228 > get_remote_packet_size ())
11229 error (_("\"monitor\" command ``%s'' is too long."), command);
11230
11231 /* Encode the actual command. */
11232 bin2hex ((const gdb_byte *) command, p, strlen (command));
11233
11234 if (putpkt (rs->buf) < 0)
11235 error (_("Communication problem with target."));
11236
11237 /* get/display the response */
11238 while (1)
11239 {
11240 char *buf;
11241
11242 /* XXX - see also remote_get_noisy_reply(). */
11243 QUIT; /* Allow user to bail out with ^C. */
11244 rs->buf[0] = '\0';
11245 if (getpkt_sane (&rs->buf, &rs->buf_size, 0) == -1)
11246 {
11247 /* Timeout. Continue to (try to) read responses.
11248 This is better than stopping with an error, assuming the stub
11249 is still executing the (long) monitor command.
11250 If needed, the user can interrupt gdb using C-c, obtaining
11251 an effect similar to stop on timeout. */
11252 continue;
11253 }
11254 buf = rs->buf;
11255 if (buf[0] == '\0')
11256 error (_("Target does not support this command."));
11257 if (buf[0] == 'O' && buf[1] != 'K')
11258 {
11259 remote_console_output (buf + 1); /* 'O' message from stub. */
11260 continue;
11261 }
11262 if (strcmp (buf, "OK") == 0)
11263 break;
11264 if (strlen (buf) == 3 && buf[0] == 'E'
11265 && isdigit (buf[1]) && isdigit (buf[2]))
11266 {
11267 error (_("Protocol error with Rcmd"));
11268 }
11269 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11270 {
11271 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11272
11273 fputc_unfiltered (c, outbuf);
11274 }
11275 break;
11276 }
11277 }
11278
11279 std::vector<mem_region>
11280 remote_target::memory_map ()
11281 {
11282 std::vector<mem_region> result;
11283 gdb::optional<gdb::char_vector> text
11284 = target_read_stralloc (current_top_target (), TARGET_OBJECT_MEMORY_MAP, NULL);
11285
11286 if (text)
11287 result = parse_memory_map (text->data ());
11288
11289 return result;
11290 }
11291
11292 static void
11293 packet_command (const char *args, int from_tty)
11294 {
11295 remote_target *remote = get_current_remote_target ();
11296
11297 if (remote == nullptr)
11298 error (_("command can only be used with remote target"));
11299
11300 remote->packet_command (args, from_tty);
11301 }
11302
11303 void
11304 remote_target::packet_command (const char *args, int from_tty)
11305 {
11306 if (!args)
11307 error (_("remote-packet command requires packet text as argument"));
11308
11309 puts_filtered ("sending: ");
11310 print_packet (args);
11311 puts_filtered ("\n");
11312 putpkt (args);
11313
11314 remote_state *rs = get_remote_state ();
11315
11316 getpkt (&rs->buf, &rs->buf_size, 0);
11317 puts_filtered ("received: ");
11318 print_packet (rs->buf);
11319 puts_filtered ("\n");
11320 }
11321
11322 #if 0
11323 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11324
11325 static void display_thread_info (struct gdb_ext_thread_info *info);
11326
11327 static void threadset_test_cmd (char *cmd, int tty);
11328
11329 static void threadalive_test (char *cmd, int tty);
11330
11331 static void threadlist_test_cmd (char *cmd, int tty);
11332
11333 int get_and_display_threadinfo (threadref *ref);
11334
11335 static void threadinfo_test_cmd (char *cmd, int tty);
11336
11337 static int thread_display_step (threadref *ref, void *context);
11338
11339 static void threadlist_update_test_cmd (char *cmd, int tty);
11340
11341 static void init_remote_threadtests (void);
11342
11343 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11344
11345 static void
11346 threadset_test_cmd (const char *cmd, int tty)
11347 {
11348 int sample_thread = SAMPLE_THREAD;
11349
11350 printf_filtered (_("Remote threadset test\n"));
11351 set_general_thread (sample_thread);
11352 }
11353
11354
11355 static void
11356 threadalive_test (const char *cmd, int tty)
11357 {
11358 int sample_thread = SAMPLE_THREAD;
11359 int pid = inferior_ptid.pid ();
11360 ptid_t ptid = ptid_t (pid, sample_thread, 0);
11361
11362 if (remote_thread_alive (ptid))
11363 printf_filtered ("PASS: Thread alive test\n");
11364 else
11365 printf_filtered ("FAIL: Thread alive test\n");
11366 }
11367
11368 void output_threadid (char *title, threadref *ref);
11369
11370 void
11371 output_threadid (char *title, threadref *ref)
11372 {
11373 char hexid[20];
11374
11375 pack_threadid (&hexid[0], ref); /* Convert threead id into hex. */
11376 hexid[16] = 0;
11377 printf_filtered ("%s %s\n", title, (&hexid[0]));
11378 }
11379
11380 static void
11381 threadlist_test_cmd (const char *cmd, int tty)
11382 {
11383 int startflag = 1;
11384 threadref nextthread;
11385 int done, result_count;
11386 threadref threadlist[3];
11387
11388 printf_filtered ("Remote Threadlist test\n");
11389 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11390 &result_count, &threadlist[0]))
11391 printf_filtered ("FAIL: threadlist test\n");
11392 else
11393 {
11394 threadref *scan = threadlist;
11395 threadref *limit = scan + result_count;
11396
11397 while (scan < limit)
11398 output_threadid (" thread ", scan++);
11399 }
11400 }
11401
11402 void
11403 display_thread_info (struct gdb_ext_thread_info *info)
11404 {
11405 output_threadid ("Threadid: ", &info->threadid);
11406 printf_filtered ("Name: %s\n ", info->shortname);
11407 printf_filtered ("State: %s\n", info->display);
11408 printf_filtered ("other: %s\n\n", info->more_display);
11409 }
11410
11411 int
11412 get_and_display_threadinfo (threadref *ref)
11413 {
11414 int result;
11415 int set;
11416 struct gdb_ext_thread_info threadinfo;
11417
11418 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11419 | TAG_MOREDISPLAY | TAG_DISPLAY;
11420 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11421 display_thread_info (&threadinfo);
11422 return result;
11423 }
11424
11425 static void
11426 threadinfo_test_cmd (const char *cmd, int tty)
11427 {
11428 int athread = SAMPLE_THREAD;
11429 threadref thread;
11430 int set;
11431
11432 int_to_threadref (&thread, athread);
11433 printf_filtered ("Remote Threadinfo test\n");
11434 if (!get_and_display_threadinfo (&thread))
11435 printf_filtered ("FAIL cannot get thread info\n");
11436 }
11437
11438 static int
11439 thread_display_step (threadref *ref, void *context)
11440 {
11441 /* output_threadid(" threadstep ",ref); *//* simple test */
11442 return get_and_display_threadinfo (ref);
11443 }
11444
11445 static void
11446 threadlist_update_test_cmd (const char *cmd, int tty)
11447 {
11448 printf_filtered ("Remote Threadlist update test\n");
11449 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11450 }
11451
11452 static void
11453 init_remote_threadtests (void)
11454 {
11455 add_com ("tlist", class_obscure, threadlist_test_cmd,
11456 _("Fetch and print the remote list of "
11457 "thread identifiers, one pkt only"));
11458 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11459 _("Fetch and display info about one thread"));
11460 add_com ("tset", class_obscure, threadset_test_cmd,
11461 _("Test setting to a different thread"));
11462 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11463 _("Iterate through updating all remote thread info"));
11464 add_com ("talive", class_obscure, threadalive_test,
11465 _(" Remote thread alive test "));
11466 }
11467
11468 #endif /* 0 */
11469
11470 /* Convert a thread ID to a string. Returns the string in a static
11471 buffer. */
11472
11473 const char *
11474 remote_target::pid_to_str (ptid_t ptid)
11475 {
11476 static char buf[64];
11477 struct remote_state *rs = get_remote_state ();
11478
11479 if (ptid == null_ptid)
11480 return normal_pid_to_str (ptid);
11481 else if (ptid.is_pid ())
11482 {
11483 /* Printing an inferior target id. */
11484
11485 /* When multi-process extensions are off, there's no way in the
11486 remote protocol to know the remote process id, if there's any
11487 at all. There's one exception --- when we're connected with
11488 target extended-remote, and we manually attached to a process
11489 with "attach PID". We don't record anywhere a flag that
11490 allows us to distinguish that case from the case of
11491 connecting with extended-remote and the stub already being
11492 attached to a process, and reporting yes to qAttached, hence
11493 no smart special casing here. */
11494 if (!remote_multi_process_p (rs))
11495 {
11496 xsnprintf (buf, sizeof buf, "Remote target");
11497 return buf;
11498 }
11499
11500 return normal_pid_to_str (ptid);
11501 }
11502 else
11503 {
11504 if (magic_null_ptid == ptid)
11505 xsnprintf (buf, sizeof buf, "Thread <main>");
11506 else if (remote_multi_process_p (rs))
11507 if (ptid.lwp () == 0)
11508 return normal_pid_to_str (ptid);
11509 else
11510 xsnprintf (buf, sizeof buf, "Thread %d.%ld",
11511 ptid.pid (), ptid.lwp ());
11512 else
11513 xsnprintf (buf, sizeof buf, "Thread %ld",
11514 ptid.lwp ());
11515 return buf;
11516 }
11517 }
11518
11519 /* Get the address of the thread local variable in OBJFILE which is
11520 stored at OFFSET within the thread local storage for thread PTID. */
11521
11522 CORE_ADDR
11523 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11524 CORE_ADDR offset)
11525 {
11526 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11527 {
11528 struct remote_state *rs = get_remote_state ();
11529 char *p = rs->buf;
11530 char *endp = rs->buf + get_remote_packet_size ();
11531 enum packet_result result;
11532
11533 strcpy (p, "qGetTLSAddr:");
11534 p += strlen (p);
11535 p = write_ptid (p, endp, ptid);
11536 *p++ = ',';
11537 p += hexnumstr (p, offset);
11538 *p++ = ',';
11539 p += hexnumstr (p, lm);
11540 *p++ = '\0';
11541
11542 putpkt (rs->buf);
11543 getpkt (&rs->buf, &rs->buf_size, 0);
11544 result = packet_ok (rs->buf,
11545 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11546 if (result == PACKET_OK)
11547 {
11548 ULONGEST addr;
11549
11550 unpack_varlen_hex (rs->buf, &addr);
11551 return addr;
11552 }
11553 else if (result == PACKET_UNKNOWN)
11554 throw_error (TLS_GENERIC_ERROR,
11555 _("Remote target doesn't support qGetTLSAddr packet"));
11556 else
11557 throw_error (TLS_GENERIC_ERROR,
11558 _("Remote target failed to process qGetTLSAddr request"));
11559 }
11560 else
11561 throw_error (TLS_GENERIC_ERROR,
11562 _("TLS not supported or disabled on this target"));
11563 /* Not reached. */
11564 return 0;
11565 }
11566
11567 /* Provide thread local base, i.e. Thread Information Block address.
11568 Returns 1 if ptid is found and thread_local_base is non zero. */
11569
11570 bool
11571 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11572 {
11573 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11574 {
11575 struct remote_state *rs = get_remote_state ();
11576 char *p = rs->buf;
11577 char *endp = rs->buf + get_remote_packet_size ();
11578 enum packet_result result;
11579
11580 strcpy (p, "qGetTIBAddr:");
11581 p += strlen (p);
11582 p = write_ptid (p, endp, ptid);
11583 *p++ = '\0';
11584
11585 putpkt (rs->buf);
11586 getpkt (&rs->buf, &rs->buf_size, 0);
11587 result = packet_ok (rs->buf,
11588 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11589 if (result == PACKET_OK)
11590 {
11591 ULONGEST val;
11592 unpack_varlen_hex (rs->buf, &val);
11593 if (addr)
11594 *addr = (CORE_ADDR) val;
11595 return true;
11596 }
11597 else if (result == PACKET_UNKNOWN)
11598 error (_("Remote target doesn't support qGetTIBAddr packet"));
11599 else
11600 error (_("Remote target failed to process qGetTIBAddr request"));
11601 }
11602 else
11603 error (_("qGetTIBAddr not supported or disabled on this target"));
11604 /* Not reached. */
11605 return false;
11606 }
11607
11608 /* Support for inferring a target description based on the current
11609 architecture and the size of a 'g' packet. While the 'g' packet
11610 can have any size (since optional registers can be left off the
11611 end), some sizes are easily recognizable given knowledge of the
11612 approximate architecture. */
11613
11614 struct remote_g_packet_guess
11615 {
11616 int bytes;
11617 const struct target_desc *tdesc;
11618 };
11619 typedef struct remote_g_packet_guess remote_g_packet_guess_s;
11620 DEF_VEC_O(remote_g_packet_guess_s);
11621
11622 struct remote_g_packet_data
11623 {
11624 VEC(remote_g_packet_guess_s) *guesses;
11625 };
11626
11627 static struct gdbarch_data *remote_g_packet_data_handle;
11628
11629 static void *
11630 remote_g_packet_data_init (struct obstack *obstack)
11631 {
11632 return OBSTACK_ZALLOC (obstack, struct remote_g_packet_data);
11633 }
11634
11635 void
11636 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11637 const struct target_desc *tdesc)
11638 {
11639 struct remote_g_packet_data *data
11640 = ((struct remote_g_packet_data *)
11641 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11642 struct remote_g_packet_guess new_guess, *guess;
11643 int ix;
11644
11645 gdb_assert (tdesc != NULL);
11646
11647 for (ix = 0;
11648 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
11649 ix++)
11650 if (guess->bytes == bytes)
11651 internal_error (__FILE__, __LINE__,
11652 _("Duplicate g packet description added for size %d"),
11653 bytes);
11654
11655 new_guess.bytes = bytes;
11656 new_guess.tdesc = tdesc;
11657 VEC_safe_push (remote_g_packet_guess_s, data->guesses, &new_guess);
11658 }
11659
11660 /* Return 1 if remote_read_description would do anything on this target
11661 and architecture, 0 otherwise. */
11662
11663 static int
11664 remote_read_description_p (struct target_ops *target)
11665 {
11666 struct remote_g_packet_data *data
11667 = ((struct remote_g_packet_data *)
11668 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11669
11670 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
11671 return 1;
11672
11673 return 0;
11674 }
11675
11676 const struct target_desc *
11677 remote_target::read_description ()
11678 {
11679 struct remote_g_packet_data *data
11680 = ((struct remote_g_packet_data *)
11681 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11682
11683 /* Do not try this during initial connection, when we do not know
11684 whether there is a running but stopped thread. */
11685 if (!target_has_execution || inferior_ptid == null_ptid)
11686 return beneath ()->read_description ();
11687
11688 if (!VEC_empty (remote_g_packet_guess_s, data->guesses))
11689 {
11690 struct remote_g_packet_guess *guess;
11691 int ix;
11692 int bytes = send_g_packet ();
11693
11694 for (ix = 0;
11695 VEC_iterate (remote_g_packet_guess_s, data->guesses, ix, guess);
11696 ix++)
11697 if (guess->bytes == bytes)
11698 return guess->tdesc;
11699
11700 /* We discard the g packet. A minor optimization would be to
11701 hold on to it, and fill the register cache once we have selected
11702 an architecture, but it's too tricky to do safely. */
11703 }
11704
11705 return beneath ()->read_description ();
11706 }
11707
11708 /* Remote file transfer support. This is host-initiated I/O, not
11709 target-initiated; for target-initiated, see remote-fileio.c. */
11710
11711 /* If *LEFT is at least the length of STRING, copy STRING to
11712 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11713 decrease *LEFT. Otherwise raise an error. */
11714
11715 static void
11716 remote_buffer_add_string (char **buffer, int *left, const char *string)
11717 {
11718 int len = strlen (string);
11719
11720 if (len > *left)
11721 error (_("Packet too long for target."));
11722
11723 memcpy (*buffer, string, len);
11724 *buffer += len;
11725 *left -= len;
11726
11727 /* NUL-terminate the buffer as a convenience, if there is
11728 room. */
11729 if (*left)
11730 **buffer = '\0';
11731 }
11732
11733 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11734 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11735 decrease *LEFT. Otherwise raise an error. */
11736
11737 static void
11738 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11739 int len)
11740 {
11741 if (2 * len > *left)
11742 error (_("Packet too long for target."));
11743
11744 bin2hex (bytes, *buffer, len);
11745 *buffer += 2 * len;
11746 *left -= 2 * len;
11747
11748 /* NUL-terminate the buffer as a convenience, if there is
11749 room. */
11750 if (*left)
11751 **buffer = '\0';
11752 }
11753
11754 /* If *LEFT is large enough, convert VALUE to hex and add it to
11755 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11756 decrease *LEFT. Otherwise raise an error. */
11757
11758 static void
11759 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11760 {
11761 int len = hexnumlen (value);
11762
11763 if (len > *left)
11764 error (_("Packet too long for target."));
11765
11766 hexnumstr (*buffer, value);
11767 *buffer += len;
11768 *left -= len;
11769
11770 /* NUL-terminate the buffer as a convenience, if there is
11771 room. */
11772 if (*left)
11773 **buffer = '\0';
11774 }
11775
11776 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11777 value, *REMOTE_ERRNO to the remote error number or zero if none
11778 was included, and *ATTACHMENT to point to the start of the annex
11779 if any. The length of the packet isn't needed here; there may
11780 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11781
11782 Return 0 if the packet could be parsed, -1 if it could not. If
11783 -1 is returned, the other variables may not be initialized. */
11784
11785 static int
11786 remote_hostio_parse_result (char *buffer, int *retcode,
11787 int *remote_errno, char **attachment)
11788 {
11789 char *p, *p2;
11790
11791 *remote_errno = 0;
11792 *attachment = NULL;
11793
11794 if (buffer[0] != 'F')
11795 return -1;
11796
11797 errno = 0;
11798 *retcode = strtol (&buffer[1], &p, 16);
11799 if (errno != 0 || p == &buffer[1])
11800 return -1;
11801
11802 /* Check for ",errno". */
11803 if (*p == ',')
11804 {
11805 errno = 0;
11806 *remote_errno = strtol (p + 1, &p2, 16);
11807 if (errno != 0 || p + 1 == p2)
11808 return -1;
11809 p = p2;
11810 }
11811
11812 /* Check for ";attachment". If there is no attachment, the
11813 packet should end here. */
11814 if (*p == ';')
11815 {
11816 *attachment = p + 1;
11817 return 0;
11818 }
11819 else if (*p == '\0')
11820 return 0;
11821 else
11822 return -1;
11823 }
11824
11825 /* Send a prepared I/O packet to the target and read its response.
11826 The prepared packet is in the global RS->BUF before this function
11827 is called, and the answer is there when we return.
11828
11829 COMMAND_BYTES is the length of the request to send, which may include
11830 binary data. WHICH_PACKET is the packet configuration to check
11831 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11832 is set to the error number and -1 is returned. Otherwise the value
11833 returned by the function is returned.
11834
11835 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11836 attachment is expected; an error will be reported if there's a
11837 mismatch. If one is found, *ATTACHMENT will be set to point into
11838 the packet buffer and *ATTACHMENT_LEN will be set to the
11839 attachment's length. */
11840
11841 int
11842 remote_target::remote_hostio_send_command (int command_bytes, int which_packet,
11843 int *remote_errno, char **attachment,
11844 int *attachment_len)
11845 {
11846 struct remote_state *rs = get_remote_state ();
11847 int ret, bytes_read;
11848 char *attachment_tmp;
11849
11850 if (packet_support (which_packet) == PACKET_DISABLE)
11851 {
11852 *remote_errno = FILEIO_ENOSYS;
11853 return -1;
11854 }
11855
11856 putpkt_binary (rs->buf, command_bytes);
11857 bytes_read = getpkt_sane (&rs->buf, &rs->buf_size, 0);
11858
11859 /* If it timed out, something is wrong. Don't try to parse the
11860 buffer. */
11861 if (bytes_read < 0)
11862 {
11863 *remote_errno = FILEIO_EINVAL;
11864 return -1;
11865 }
11866
11867 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11868 {
11869 case PACKET_ERROR:
11870 *remote_errno = FILEIO_EINVAL;
11871 return -1;
11872 case PACKET_UNKNOWN:
11873 *remote_errno = FILEIO_ENOSYS;
11874 return -1;
11875 case PACKET_OK:
11876 break;
11877 }
11878
11879 if (remote_hostio_parse_result (rs->buf, &ret, remote_errno,
11880 &attachment_tmp))
11881 {
11882 *remote_errno = FILEIO_EINVAL;
11883 return -1;
11884 }
11885
11886 /* Make sure we saw an attachment if and only if we expected one. */
11887 if ((attachment_tmp == NULL && attachment != NULL)
11888 || (attachment_tmp != NULL && attachment == NULL))
11889 {
11890 *remote_errno = FILEIO_EINVAL;
11891 return -1;
11892 }
11893
11894 /* If an attachment was found, it must point into the packet buffer;
11895 work out how many bytes there were. */
11896 if (attachment_tmp != NULL)
11897 {
11898 *attachment = attachment_tmp;
11899 *attachment_len = bytes_read - (*attachment - rs->buf);
11900 }
11901
11902 return ret;
11903 }
11904
11905 /* See declaration.h. */
11906
11907 void
11908 readahead_cache::invalidate ()
11909 {
11910 this->fd = -1;
11911 }
11912
11913 /* See declaration.h. */
11914
11915 void
11916 readahead_cache::invalidate_fd (int fd)
11917 {
11918 if (this->fd == fd)
11919 this->fd = -1;
11920 }
11921
11922 /* Set the filesystem remote_hostio functions that take FILENAME
11923 arguments will use. Return 0 on success, or -1 if an error
11924 occurs (and set *REMOTE_ERRNO). */
11925
11926 int
11927 remote_target::remote_hostio_set_filesystem (struct inferior *inf,
11928 int *remote_errno)
11929 {
11930 struct remote_state *rs = get_remote_state ();
11931 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
11932 char *p = rs->buf;
11933 int left = get_remote_packet_size () - 1;
11934 char arg[9];
11935 int ret;
11936
11937 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11938 return 0;
11939
11940 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11941 return 0;
11942
11943 remote_buffer_add_string (&p, &left, "vFile:setfs:");
11944
11945 xsnprintf (arg, sizeof (arg), "%x", required_pid);
11946 remote_buffer_add_string (&p, &left, arg);
11947
11948 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_setfs,
11949 remote_errno, NULL, NULL);
11950
11951 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11952 return 0;
11953
11954 if (ret == 0)
11955 rs->fs_pid = required_pid;
11956
11957 return ret;
11958 }
11959
11960 /* Implementation of to_fileio_open. */
11961
11962 int
11963 remote_target::remote_hostio_open (inferior *inf, const char *filename,
11964 int flags, int mode, int warn_if_slow,
11965 int *remote_errno)
11966 {
11967 struct remote_state *rs = get_remote_state ();
11968 char *p = rs->buf;
11969 int left = get_remote_packet_size () - 1;
11970
11971 if (warn_if_slow)
11972 {
11973 static int warning_issued = 0;
11974
11975 printf_unfiltered (_("Reading %s from remote target...\n"),
11976 filename);
11977
11978 if (!warning_issued)
11979 {
11980 warning (_("File transfers from remote targets can be slow."
11981 " Use \"set sysroot\" to access files locally"
11982 " instead."));
11983 warning_issued = 1;
11984 }
11985 }
11986
11987 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11988 return -1;
11989
11990 remote_buffer_add_string (&p, &left, "vFile:open:");
11991
11992 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11993 strlen (filename));
11994 remote_buffer_add_string (&p, &left, ",");
11995
11996 remote_buffer_add_int (&p, &left, flags);
11997 remote_buffer_add_string (&p, &left, ",");
11998
11999 remote_buffer_add_int (&p, &left, mode);
12000
12001 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_open,
12002 remote_errno, NULL, NULL);
12003 }
12004
12005 int
12006 remote_target::fileio_open (struct inferior *inf, const char *filename,
12007 int flags, int mode, int warn_if_slow,
12008 int *remote_errno)
12009 {
12010 return remote_hostio_open (inf, filename, flags, mode, warn_if_slow,
12011 remote_errno);
12012 }
12013
12014 /* Implementation of to_fileio_pwrite. */
12015
12016 int
12017 remote_target::remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
12018 ULONGEST offset, int *remote_errno)
12019 {
12020 struct remote_state *rs = get_remote_state ();
12021 char *p = rs->buf;
12022 int left = get_remote_packet_size ();
12023 int out_len;
12024
12025 rs->readahead_cache.invalidate_fd (fd);
12026
12027 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
12028
12029 remote_buffer_add_int (&p, &left, fd);
12030 remote_buffer_add_string (&p, &left, ",");
12031
12032 remote_buffer_add_int (&p, &left, offset);
12033 remote_buffer_add_string (&p, &left, ",");
12034
12035 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
12036 get_remote_packet_size () - (p - rs->buf));
12037
12038 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_pwrite,
12039 remote_errno, NULL, NULL);
12040 }
12041
12042 int
12043 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
12044 ULONGEST offset, int *remote_errno)
12045 {
12046 return remote_hostio_pwrite (fd, write_buf, len, offset, remote_errno);
12047 }
12048
12049 /* Helper for the implementation of to_fileio_pread. Read the file
12050 from the remote side with vFile:pread. */
12051
12052 int
12053 remote_target::remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
12054 ULONGEST offset, int *remote_errno)
12055 {
12056 struct remote_state *rs = get_remote_state ();
12057 char *p = rs->buf;
12058 char *attachment;
12059 int left = get_remote_packet_size ();
12060 int ret, attachment_len;
12061 int read_len;
12062
12063 remote_buffer_add_string (&p, &left, "vFile:pread:");
12064
12065 remote_buffer_add_int (&p, &left, fd);
12066 remote_buffer_add_string (&p, &left, ",");
12067
12068 remote_buffer_add_int (&p, &left, len);
12069 remote_buffer_add_string (&p, &left, ",");
12070
12071 remote_buffer_add_int (&p, &left, offset);
12072
12073 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_pread,
12074 remote_errno, &attachment,
12075 &attachment_len);
12076
12077 if (ret < 0)
12078 return ret;
12079
12080 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12081 read_buf, len);
12082 if (read_len != ret)
12083 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
12084
12085 return ret;
12086 }
12087
12088 /* See declaration.h. */
12089
12090 int
12091 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
12092 ULONGEST offset)
12093 {
12094 if (this->fd == fd
12095 && this->offset <= offset
12096 && offset < this->offset + this->bufsize)
12097 {
12098 ULONGEST max = this->offset + this->bufsize;
12099
12100 if (offset + len > max)
12101 len = max - offset;
12102
12103 memcpy (read_buf, this->buf + offset - this->offset, len);
12104 return len;
12105 }
12106
12107 return 0;
12108 }
12109
12110 /* Implementation of to_fileio_pread. */
12111
12112 int
12113 remote_target::remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
12114 ULONGEST offset, int *remote_errno)
12115 {
12116 int ret;
12117 struct remote_state *rs = get_remote_state ();
12118 readahead_cache *cache = &rs->readahead_cache;
12119
12120 ret = cache->pread (fd, read_buf, len, offset);
12121 if (ret > 0)
12122 {
12123 cache->hit_count++;
12124
12125 if (remote_debug)
12126 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
12127 pulongest (cache->hit_count));
12128 return ret;
12129 }
12130
12131 cache->miss_count++;
12132 if (remote_debug)
12133 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
12134 pulongest (cache->miss_count));
12135
12136 cache->fd = fd;
12137 cache->offset = offset;
12138 cache->bufsize = get_remote_packet_size ();
12139 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
12140
12141 ret = remote_hostio_pread_vFile (cache->fd, cache->buf, cache->bufsize,
12142 cache->offset, remote_errno);
12143 if (ret <= 0)
12144 {
12145 cache->invalidate_fd (fd);
12146 return ret;
12147 }
12148
12149 cache->bufsize = ret;
12150 return cache->pread (fd, read_buf, len, offset);
12151 }
12152
12153 int
12154 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
12155 ULONGEST offset, int *remote_errno)
12156 {
12157 return remote_hostio_pread (fd, read_buf, len, offset, remote_errno);
12158 }
12159
12160 /* Implementation of to_fileio_close. */
12161
12162 int
12163 remote_target::remote_hostio_close (int fd, int *remote_errno)
12164 {
12165 struct remote_state *rs = get_remote_state ();
12166 char *p = rs->buf;
12167 int left = get_remote_packet_size () - 1;
12168
12169 rs->readahead_cache.invalidate_fd (fd);
12170
12171 remote_buffer_add_string (&p, &left, "vFile:close:");
12172
12173 remote_buffer_add_int (&p, &left, fd);
12174
12175 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_close,
12176 remote_errno, NULL, NULL);
12177 }
12178
12179 int
12180 remote_target::fileio_close (int fd, int *remote_errno)
12181 {
12182 return remote_hostio_close (fd, remote_errno);
12183 }
12184
12185 /* Implementation of to_fileio_unlink. */
12186
12187 int
12188 remote_target::remote_hostio_unlink (inferior *inf, const char *filename,
12189 int *remote_errno)
12190 {
12191 struct remote_state *rs = get_remote_state ();
12192 char *p = rs->buf;
12193 int left = get_remote_packet_size () - 1;
12194
12195 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12196 return -1;
12197
12198 remote_buffer_add_string (&p, &left, "vFile:unlink:");
12199
12200 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12201 strlen (filename));
12202
12203 return remote_hostio_send_command (p - rs->buf, PACKET_vFile_unlink,
12204 remote_errno, NULL, NULL);
12205 }
12206
12207 int
12208 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12209 int *remote_errno)
12210 {
12211 return remote_hostio_unlink (inf, filename, remote_errno);
12212 }
12213
12214 /* Implementation of to_fileio_readlink. */
12215
12216 gdb::optional<std::string>
12217 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12218 int *remote_errno)
12219 {
12220 struct remote_state *rs = get_remote_state ();
12221 char *p = rs->buf;
12222 char *attachment;
12223 int left = get_remote_packet_size ();
12224 int len, attachment_len;
12225 int read_len;
12226
12227 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12228 return {};
12229
12230 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12231
12232 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12233 strlen (filename));
12234
12235 len = remote_hostio_send_command (p - rs->buf, PACKET_vFile_readlink,
12236 remote_errno, &attachment,
12237 &attachment_len);
12238
12239 if (len < 0)
12240 return {};
12241
12242 std::string ret (len, '\0');
12243
12244 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12245 (gdb_byte *) &ret[0], len);
12246 if (read_len != len)
12247 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12248
12249 return ret;
12250 }
12251
12252 /* Implementation of to_fileio_fstat. */
12253
12254 int
12255 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12256 {
12257 struct remote_state *rs = get_remote_state ();
12258 char *p = rs->buf;
12259 int left = get_remote_packet_size ();
12260 int attachment_len, ret;
12261 char *attachment;
12262 struct fio_stat fst;
12263 int read_len;
12264
12265 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12266
12267 remote_buffer_add_int (&p, &left, fd);
12268
12269 ret = remote_hostio_send_command (p - rs->buf, PACKET_vFile_fstat,
12270 remote_errno, &attachment,
12271 &attachment_len);
12272 if (ret < 0)
12273 {
12274 if (*remote_errno != FILEIO_ENOSYS)
12275 return ret;
12276
12277 /* Strictly we should return -1, ENOSYS here, but when
12278 "set sysroot remote:" was implemented in August 2008
12279 BFD's need for a stat function was sidestepped with
12280 this hack. This was not remedied until March 2015
12281 so we retain the previous behavior to avoid breaking
12282 compatibility.
12283
12284 Note that the memset is a March 2015 addition; older
12285 GDBs set st_size *and nothing else* so the structure
12286 would have garbage in all other fields. This might
12287 break something but retaining the previous behavior
12288 here would be just too wrong. */
12289
12290 memset (st, 0, sizeof (struct stat));
12291 st->st_size = INT_MAX;
12292 return 0;
12293 }
12294
12295 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12296 (gdb_byte *) &fst, sizeof (fst));
12297
12298 if (read_len != ret)
12299 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12300
12301 if (read_len != sizeof (fst))
12302 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12303 read_len, (int) sizeof (fst));
12304
12305 remote_fileio_to_host_stat (&fst, st);
12306
12307 return 0;
12308 }
12309
12310 /* Implementation of to_filesystem_is_local. */
12311
12312 bool
12313 remote_target::filesystem_is_local ()
12314 {
12315 /* Valgrind GDB presents itself as a remote target but works
12316 on the local filesystem: it does not implement remote get
12317 and users are not expected to set a sysroot. To handle
12318 this case we treat the remote filesystem as local if the
12319 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12320 does not support vFile:open. */
12321 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
12322 {
12323 enum packet_support ps = packet_support (PACKET_vFile_open);
12324
12325 if (ps == PACKET_SUPPORT_UNKNOWN)
12326 {
12327 int fd, remote_errno;
12328
12329 /* Try opening a file to probe support. The supplied
12330 filename is irrelevant, we only care about whether
12331 the stub recognizes the packet or not. */
12332 fd = remote_hostio_open (NULL, "just probing",
12333 FILEIO_O_RDONLY, 0700, 0,
12334 &remote_errno);
12335
12336 if (fd >= 0)
12337 remote_hostio_close (fd, &remote_errno);
12338
12339 ps = packet_support (PACKET_vFile_open);
12340 }
12341
12342 if (ps == PACKET_DISABLE)
12343 {
12344 static int warning_issued = 0;
12345
12346 if (!warning_issued)
12347 {
12348 warning (_("remote target does not support file"
12349 " transfer, attempting to access files"
12350 " from local filesystem."));
12351 warning_issued = 1;
12352 }
12353
12354 return true;
12355 }
12356 }
12357
12358 return false;
12359 }
12360
12361 static int
12362 remote_fileio_errno_to_host (int errnum)
12363 {
12364 switch (errnum)
12365 {
12366 case FILEIO_EPERM:
12367 return EPERM;
12368 case FILEIO_ENOENT:
12369 return ENOENT;
12370 case FILEIO_EINTR:
12371 return EINTR;
12372 case FILEIO_EIO:
12373 return EIO;
12374 case FILEIO_EBADF:
12375 return EBADF;
12376 case FILEIO_EACCES:
12377 return EACCES;
12378 case FILEIO_EFAULT:
12379 return EFAULT;
12380 case FILEIO_EBUSY:
12381 return EBUSY;
12382 case FILEIO_EEXIST:
12383 return EEXIST;
12384 case FILEIO_ENODEV:
12385 return ENODEV;
12386 case FILEIO_ENOTDIR:
12387 return ENOTDIR;
12388 case FILEIO_EISDIR:
12389 return EISDIR;
12390 case FILEIO_EINVAL:
12391 return EINVAL;
12392 case FILEIO_ENFILE:
12393 return ENFILE;
12394 case FILEIO_EMFILE:
12395 return EMFILE;
12396 case FILEIO_EFBIG:
12397 return EFBIG;
12398 case FILEIO_ENOSPC:
12399 return ENOSPC;
12400 case FILEIO_ESPIPE:
12401 return ESPIPE;
12402 case FILEIO_EROFS:
12403 return EROFS;
12404 case FILEIO_ENOSYS:
12405 return ENOSYS;
12406 case FILEIO_ENAMETOOLONG:
12407 return ENAMETOOLONG;
12408 }
12409 return -1;
12410 }
12411
12412 static char *
12413 remote_hostio_error (int errnum)
12414 {
12415 int host_error = remote_fileio_errno_to_host (errnum);
12416
12417 if (host_error == -1)
12418 error (_("Unknown remote I/O error %d"), errnum);
12419 else
12420 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12421 }
12422
12423 /* A RAII wrapper around a remote file descriptor. */
12424
12425 class scoped_remote_fd
12426 {
12427 public:
12428 scoped_remote_fd (remote_target *remote, int fd)
12429 : m_remote (remote), m_fd (fd)
12430 {
12431 }
12432
12433 ~scoped_remote_fd ()
12434 {
12435 if (m_fd != -1)
12436 {
12437 try
12438 {
12439 int remote_errno;
12440 m_remote->remote_hostio_close (m_fd, &remote_errno);
12441 }
12442 catch (...)
12443 {
12444 /* Swallow exception before it escapes the dtor. If
12445 something goes wrong, likely the connection is gone,
12446 and there's nothing else that can be done. */
12447 }
12448 }
12449 }
12450
12451 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12452
12453 /* Release ownership of the file descriptor, and return it. */
12454 int release () noexcept
12455 {
12456 int fd = m_fd;
12457 m_fd = -1;
12458 return fd;
12459 }
12460
12461 /* Return the owned file descriptor. */
12462 int get () const noexcept
12463 {
12464 return m_fd;
12465 }
12466
12467 private:
12468 /* The remote target. */
12469 remote_target *m_remote;
12470
12471 /* The owned remote I/O file descriptor. */
12472 int m_fd;
12473 };
12474
12475 void
12476 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12477 {
12478 remote_target *remote = get_current_remote_target ();
12479
12480 if (remote == nullptr)
12481 error (_("command can only be used with remote target"));
12482
12483 remote->remote_file_put (local_file, remote_file, from_tty);
12484 }
12485
12486 void
12487 remote_target::remote_file_put (const char *local_file, const char *remote_file,
12488 int from_tty)
12489 {
12490 int retcode, remote_errno, bytes, io_size;
12491 int bytes_in_buffer;
12492 int saw_eof;
12493 ULONGEST offset;
12494
12495 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12496 if (file == NULL)
12497 perror_with_name (local_file);
12498
12499 scoped_remote_fd fd
12500 (this, remote_hostio_open (NULL,
12501 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12502 | FILEIO_O_TRUNC),
12503 0700, 0, &remote_errno));
12504 if (fd.get () == -1)
12505 remote_hostio_error (remote_errno);
12506
12507 /* Send up to this many bytes at once. They won't all fit in the
12508 remote packet limit, so we'll transfer slightly fewer. */
12509 io_size = get_remote_packet_size ();
12510 gdb::byte_vector buffer (io_size);
12511
12512 bytes_in_buffer = 0;
12513 saw_eof = 0;
12514 offset = 0;
12515 while (bytes_in_buffer || !saw_eof)
12516 {
12517 if (!saw_eof)
12518 {
12519 bytes = fread (buffer.data () + bytes_in_buffer, 1,
12520 io_size - bytes_in_buffer,
12521 file.get ());
12522 if (bytes == 0)
12523 {
12524 if (ferror (file.get ()))
12525 error (_("Error reading %s."), local_file);
12526 else
12527 {
12528 /* EOF. Unless there is something still in the
12529 buffer from the last iteration, we are done. */
12530 saw_eof = 1;
12531 if (bytes_in_buffer == 0)
12532 break;
12533 }
12534 }
12535 }
12536 else
12537 bytes = 0;
12538
12539 bytes += bytes_in_buffer;
12540 bytes_in_buffer = 0;
12541
12542 retcode = remote_hostio_pwrite (fd.get (), buffer.data (), bytes,
12543 offset, &remote_errno);
12544
12545 if (retcode < 0)
12546 remote_hostio_error (remote_errno);
12547 else if (retcode == 0)
12548 error (_("Remote write of %d bytes returned 0!"), bytes);
12549 else if (retcode < bytes)
12550 {
12551 /* Short write. Save the rest of the read data for the next
12552 write. */
12553 bytes_in_buffer = bytes - retcode;
12554 memmove (buffer.data (), buffer.data () + retcode, bytes_in_buffer);
12555 }
12556
12557 offset += retcode;
12558 }
12559
12560 if (remote_hostio_close (fd.release (), &remote_errno))
12561 remote_hostio_error (remote_errno);
12562
12563 if (from_tty)
12564 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12565 }
12566
12567 void
12568 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12569 {
12570 remote_target *remote = get_current_remote_target ();
12571
12572 if (remote == nullptr)
12573 error (_("command can only be used with remote target"));
12574
12575 remote->remote_file_get (remote_file, local_file, from_tty);
12576 }
12577
12578 void
12579 remote_target::remote_file_get (const char *remote_file, const char *local_file,
12580 int from_tty)
12581 {
12582 int remote_errno, bytes, io_size;
12583 ULONGEST offset;
12584
12585 scoped_remote_fd fd
12586 (this, remote_hostio_open (NULL,
12587 remote_file, FILEIO_O_RDONLY, 0, 0,
12588 &remote_errno));
12589 if (fd.get () == -1)
12590 remote_hostio_error (remote_errno);
12591
12592 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12593 if (file == NULL)
12594 perror_with_name (local_file);
12595
12596 /* Send up to this many bytes at once. They won't all fit in the
12597 remote packet limit, so we'll transfer slightly fewer. */
12598 io_size = get_remote_packet_size ();
12599 gdb::byte_vector buffer (io_size);
12600
12601 offset = 0;
12602 while (1)
12603 {
12604 bytes = remote_hostio_pread (fd.get (), buffer.data (), io_size, offset,
12605 &remote_errno);
12606 if (bytes == 0)
12607 /* Success, but no bytes, means end-of-file. */
12608 break;
12609 if (bytes == -1)
12610 remote_hostio_error (remote_errno);
12611
12612 offset += bytes;
12613
12614 bytes = fwrite (buffer.data (), 1, bytes, file.get ());
12615 if (bytes == 0)
12616 perror_with_name (local_file);
12617 }
12618
12619 if (remote_hostio_close (fd.release (), &remote_errno))
12620 remote_hostio_error (remote_errno);
12621
12622 if (from_tty)
12623 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12624 }
12625
12626 void
12627 remote_file_delete (const char *remote_file, int from_tty)
12628 {
12629 remote_target *remote = get_current_remote_target ();
12630
12631 if (remote == nullptr)
12632 error (_("command can only be used with remote target"));
12633
12634 remote->remote_file_delete (remote_file, from_tty);
12635 }
12636
12637 void
12638 remote_target::remote_file_delete (const char *remote_file, int from_tty)
12639 {
12640 int retcode, remote_errno;
12641
12642 retcode = remote_hostio_unlink (NULL, remote_file, &remote_errno);
12643 if (retcode == -1)
12644 remote_hostio_error (remote_errno);
12645
12646 if (from_tty)
12647 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12648 }
12649
12650 static void
12651 remote_put_command (const char *args, int from_tty)
12652 {
12653 if (args == NULL)
12654 error_no_arg (_("file to put"));
12655
12656 gdb_argv argv (args);
12657 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12658 error (_("Invalid parameters to remote put"));
12659
12660 remote_file_put (argv[0], argv[1], from_tty);
12661 }
12662
12663 static void
12664 remote_get_command (const char *args, int from_tty)
12665 {
12666 if (args == NULL)
12667 error_no_arg (_("file to get"));
12668
12669 gdb_argv argv (args);
12670 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12671 error (_("Invalid parameters to remote get"));
12672
12673 remote_file_get (argv[0], argv[1], from_tty);
12674 }
12675
12676 static void
12677 remote_delete_command (const char *args, int from_tty)
12678 {
12679 if (args == NULL)
12680 error_no_arg (_("file to delete"));
12681
12682 gdb_argv argv (args);
12683 if (argv[0] == NULL || argv[1] != NULL)
12684 error (_("Invalid parameters to remote delete"));
12685
12686 remote_file_delete (argv[0], from_tty);
12687 }
12688
12689 static void
12690 remote_command (const char *args, int from_tty)
12691 {
12692 help_list (remote_cmdlist, "remote ", all_commands, gdb_stdout);
12693 }
12694
12695 bool
12696 remote_target::can_execute_reverse ()
12697 {
12698 if (packet_support (PACKET_bs) == PACKET_ENABLE
12699 || packet_support (PACKET_bc) == PACKET_ENABLE)
12700 return true;
12701 else
12702 return false;
12703 }
12704
12705 bool
12706 remote_target::supports_non_stop ()
12707 {
12708 return true;
12709 }
12710
12711 bool
12712 remote_target::supports_disable_randomization ()
12713 {
12714 /* Only supported in extended mode. */
12715 return false;
12716 }
12717
12718 bool
12719 remote_target::supports_multi_process ()
12720 {
12721 struct remote_state *rs = get_remote_state ();
12722
12723 return remote_multi_process_p (rs);
12724 }
12725
12726 static int
12727 remote_supports_cond_tracepoints ()
12728 {
12729 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12730 }
12731
12732 bool
12733 remote_target::supports_evaluation_of_breakpoint_conditions ()
12734 {
12735 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12736 }
12737
12738 static int
12739 remote_supports_fast_tracepoints ()
12740 {
12741 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12742 }
12743
12744 static int
12745 remote_supports_static_tracepoints ()
12746 {
12747 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12748 }
12749
12750 static int
12751 remote_supports_install_in_trace ()
12752 {
12753 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12754 }
12755
12756 bool
12757 remote_target::supports_enable_disable_tracepoint ()
12758 {
12759 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12760 == PACKET_ENABLE);
12761 }
12762
12763 bool
12764 remote_target::supports_string_tracing ()
12765 {
12766 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12767 }
12768
12769 bool
12770 remote_target::can_run_breakpoint_commands ()
12771 {
12772 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12773 }
12774
12775 void
12776 remote_target::trace_init ()
12777 {
12778 struct remote_state *rs = get_remote_state ();
12779
12780 putpkt ("QTinit");
12781 remote_get_noisy_reply ();
12782 if (strcmp (rs->buf, "OK") != 0)
12783 error (_("Target does not support this command."));
12784 }
12785
12786 /* Recursive routine to walk through command list including loops, and
12787 download packets for each command. */
12788
12789 void
12790 remote_target::remote_download_command_source (int num, ULONGEST addr,
12791 struct command_line *cmds)
12792 {
12793 struct remote_state *rs = get_remote_state ();
12794 struct command_line *cmd;
12795
12796 for (cmd = cmds; cmd; cmd = cmd->next)
12797 {
12798 QUIT; /* Allow user to bail out with ^C. */
12799 strcpy (rs->buf, "QTDPsrc:");
12800 encode_source_string (num, addr, "cmd", cmd->line,
12801 rs->buf + strlen (rs->buf),
12802 rs->buf_size - strlen (rs->buf));
12803 putpkt (rs->buf);
12804 remote_get_noisy_reply ();
12805 if (strcmp (rs->buf, "OK"))
12806 warning (_("Target does not support source download."));
12807
12808 if (cmd->control_type == while_control
12809 || cmd->control_type == while_stepping_control)
12810 {
12811 remote_download_command_source (num, addr, cmd->body_list_0.get ());
12812
12813 QUIT; /* Allow user to bail out with ^C. */
12814 strcpy (rs->buf, "QTDPsrc:");
12815 encode_source_string (num, addr, "cmd", "end",
12816 rs->buf + strlen (rs->buf),
12817 rs->buf_size - strlen (rs->buf));
12818 putpkt (rs->buf);
12819 remote_get_noisy_reply ();
12820 if (strcmp (rs->buf, "OK"))
12821 warning (_("Target does not support source download."));
12822 }
12823 }
12824 }
12825
12826 void
12827 remote_target::download_tracepoint (struct bp_location *loc)
12828 {
12829 CORE_ADDR tpaddr;
12830 char addrbuf[40];
12831 std::vector<std::string> tdp_actions;
12832 std::vector<std::string> stepping_actions;
12833 char *pkt;
12834 struct breakpoint *b = loc->owner;
12835 struct tracepoint *t = (struct tracepoint *) b;
12836 struct remote_state *rs = get_remote_state ();
12837 int ret;
12838 const char *err_msg = _("Tracepoint packet too large for target.");
12839 size_t size_left;
12840
12841 /* We use a buffer other than rs->buf because we'll build strings
12842 across multiple statements, and other statements in between could
12843 modify rs->buf. */
12844 gdb::char_vector buf (get_remote_packet_size ());
12845
12846 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12847
12848 tpaddr = loc->address;
12849 sprintf_vma (addrbuf, tpaddr);
12850 ret = snprintf (buf.data (), buf.size (), "QTDP:%x:%s:%c:%lx:%x",
12851 b->number, addrbuf, /* address */
12852 (b->enable_state == bp_enabled ? 'E' : 'D'),
12853 t->step_count, t->pass_count);
12854
12855 if (ret < 0 || ret >= buf.size ())
12856 error ("%s", err_msg);
12857
12858 /* Fast tracepoints are mostly handled by the target, but we can
12859 tell the target how big of an instruction block should be moved
12860 around. */
12861 if (b->type == bp_fast_tracepoint)
12862 {
12863 /* Only test for support at download time; we may not know
12864 target capabilities at definition time. */
12865 if (remote_supports_fast_tracepoints ())
12866 {
12867 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12868 NULL))
12869 {
12870 size_left = buf.size () - strlen (buf.data ());
12871 ret = snprintf (buf.data () + strlen (buf.data ()),
12872 size_left, ":F%x",
12873 gdb_insn_length (loc->gdbarch, tpaddr));
12874
12875 if (ret < 0 || ret >= size_left)
12876 error ("%s", err_msg);
12877 }
12878 else
12879 /* If it passed validation at definition but fails now,
12880 something is very wrong. */
12881 internal_error (__FILE__, __LINE__,
12882 _("Fast tracepoint not "
12883 "valid during download"));
12884 }
12885 else
12886 /* Fast tracepoints are functionally identical to regular
12887 tracepoints, so don't take lack of support as a reason to
12888 give up on the trace run. */
12889 warning (_("Target does not support fast tracepoints, "
12890 "downloading %d as regular tracepoint"), b->number);
12891 }
12892 else if (b->type == bp_static_tracepoint)
12893 {
12894 /* Only test for support at download time; we may not know
12895 target capabilities at definition time. */
12896 if (remote_supports_static_tracepoints ())
12897 {
12898 struct static_tracepoint_marker marker;
12899
12900 if (target_static_tracepoint_marker_at (tpaddr, &marker))
12901 {
12902 size_left = buf.size () - strlen (buf.data ());
12903 ret = snprintf (buf.data () + strlen (buf.data ()),
12904 size_left, ":S");
12905
12906 if (ret < 0 || ret >= size_left)
12907 error ("%s", err_msg);
12908 }
12909 else
12910 error (_("Static tracepoint not valid during download"));
12911 }
12912 else
12913 /* Fast tracepoints are functionally identical to regular
12914 tracepoints, so don't take lack of support as a reason
12915 to give up on the trace run. */
12916 error (_("Target does not support static tracepoints"));
12917 }
12918 /* If the tracepoint has a conditional, make it into an agent
12919 expression and append to the definition. */
12920 if (loc->cond)
12921 {
12922 /* Only test support at download time, we may not know target
12923 capabilities at definition time. */
12924 if (remote_supports_cond_tracepoints ())
12925 {
12926 agent_expr_up aexpr = gen_eval_for_expr (tpaddr,
12927 loc->cond.get ());
12928
12929 size_left = buf.size () - strlen (buf.data ());
12930
12931 ret = snprintf (buf.data () + strlen (buf.data ()),
12932 size_left, ":X%x,", aexpr->len);
12933
12934 if (ret < 0 || ret >= size_left)
12935 error ("%s", err_msg);
12936
12937 size_left = buf.size () - strlen (buf.data ());
12938
12939 /* Two bytes to encode each aexpr byte, plus the terminating
12940 null byte. */
12941 if (aexpr->len * 2 + 1 > size_left)
12942 error ("%s", err_msg);
12943
12944 pkt = buf.data () + strlen (buf.data ());
12945
12946 for (int ndx = 0; ndx < aexpr->len; ++ndx)
12947 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
12948 *pkt = '\0';
12949 }
12950 else
12951 warning (_("Target does not support conditional tracepoints, "
12952 "ignoring tp %d cond"), b->number);
12953 }
12954
12955 if (b->commands || *default_collect)
12956 {
12957 size_left = buf.size () - strlen (buf.data ());
12958
12959 ret = snprintf (buf.data () + strlen (buf.data ()),
12960 size_left, "-");
12961
12962 if (ret < 0 || ret >= size_left)
12963 error ("%s", err_msg);
12964 }
12965
12966 putpkt (buf.data ());
12967 remote_get_noisy_reply ();
12968 if (strcmp (rs->buf, "OK"))
12969 error (_("Target does not support tracepoints."));
12970
12971 /* do_single_steps (t); */
12972 for (auto action_it = tdp_actions.begin ();
12973 action_it != tdp_actions.end (); action_it++)
12974 {
12975 QUIT; /* Allow user to bail out with ^C. */
12976
12977 bool has_more = ((action_it + 1) != tdp_actions.end ()
12978 || !stepping_actions.empty ());
12979
12980 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%c",
12981 b->number, addrbuf, /* address */
12982 action_it->c_str (),
12983 has_more ? '-' : 0);
12984
12985 if (ret < 0 || ret >= buf.size ())
12986 error ("%s", err_msg);
12987
12988 putpkt (buf.data ());
12989 remote_get_noisy_reply ();
12990 if (strcmp (rs->buf, "OK"))
12991 error (_("Error on target while setting tracepoints."));
12992 }
12993
12994 for (auto action_it = stepping_actions.begin ();
12995 action_it != stepping_actions.end (); action_it++)
12996 {
12997 QUIT; /* Allow user to bail out with ^C. */
12998
12999 bool is_first = action_it == stepping_actions.begin ();
13000 bool has_more = (action_it + 1) != stepping_actions.end ();
13001
13002 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%s%s",
13003 b->number, addrbuf, /* address */
13004 is_first ? "S" : "",
13005 action_it->c_str (),
13006 has_more ? "-" : "");
13007
13008 if (ret < 0 || ret >= buf.size ())
13009 error ("%s", err_msg);
13010
13011 putpkt (buf.data ());
13012 remote_get_noisy_reply ();
13013 if (strcmp (rs->buf, "OK"))
13014 error (_("Error on target while setting tracepoints."));
13015 }
13016
13017 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
13018 {
13019 if (b->location != NULL)
13020 {
13021 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13022
13023 if (ret < 0 || ret >= buf.size ())
13024 error ("%s", err_msg);
13025
13026 encode_source_string (b->number, loc->address, "at",
13027 event_location_to_string (b->location.get ()),
13028 buf.data () + strlen (buf.data ()),
13029 buf.size () - strlen (buf.data ()));
13030 putpkt (buf.data ());
13031 remote_get_noisy_reply ();
13032 if (strcmp (rs->buf, "OK"))
13033 warning (_("Target does not support source download."));
13034 }
13035 if (b->cond_string)
13036 {
13037 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13038
13039 if (ret < 0 || ret >= buf.size ())
13040 error ("%s", err_msg);
13041
13042 encode_source_string (b->number, loc->address,
13043 "cond", b->cond_string,
13044 buf.data () + strlen (buf.data ()),
13045 buf.size () - strlen (buf.data ()));
13046 putpkt (buf.data ());
13047 remote_get_noisy_reply ();
13048 if (strcmp (rs->buf, "OK"))
13049 warning (_("Target does not support source download."));
13050 }
13051 remote_download_command_source (b->number, loc->address,
13052 breakpoint_commands (b));
13053 }
13054 }
13055
13056 bool
13057 remote_target::can_download_tracepoint ()
13058 {
13059 struct remote_state *rs = get_remote_state ();
13060 struct trace_status *ts;
13061 int status;
13062
13063 /* Don't try to install tracepoints until we've relocated our
13064 symbols, and fetched and merged the target's tracepoint list with
13065 ours. */
13066 if (rs->starting_up)
13067 return false;
13068
13069 ts = current_trace_status ();
13070 status = get_trace_status (ts);
13071
13072 if (status == -1 || !ts->running_known || !ts->running)
13073 return false;
13074
13075 /* If we are in a tracing experiment, but remote stub doesn't support
13076 installing tracepoint in trace, we have to return. */
13077 if (!remote_supports_install_in_trace ())
13078 return false;
13079
13080 return true;
13081 }
13082
13083
13084 void
13085 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
13086 {
13087 struct remote_state *rs = get_remote_state ();
13088 char *p;
13089
13090 xsnprintf (rs->buf, get_remote_packet_size (), "QTDV:%x:%s:%x:",
13091 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
13092 tsv.builtin);
13093 p = rs->buf + strlen (rs->buf);
13094 if ((p - rs->buf) + tsv.name.length () * 2 >= get_remote_packet_size ())
13095 error (_("Trace state variable name too long for tsv definition packet"));
13096 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
13097 *p++ = '\0';
13098 putpkt (rs->buf);
13099 remote_get_noisy_reply ();
13100 if (*rs->buf == '\0')
13101 error (_("Target does not support this command."));
13102 if (strcmp (rs->buf, "OK") != 0)
13103 error (_("Error on target while downloading trace state variable."));
13104 }
13105
13106 void
13107 remote_target::enable_tracepoint (struct bp_location *location)
13108 {
13109 struct remote_state *rs = get_remote_state ();
13110 char addr_buf[40];
13111
13112 sprintf_vma (addr_buf, location->address);
13113 xsnprintf (rs->buf, get_remote_packet_size (), "QTEnable:%x:%s",
13114 location->owner->number, addr_buf);
13115 putpkt (rs->buf);
13116 remote_get_noisy_reply ();
13117 if (*rs->buf == '\0')
13118 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
13119 if (strcmp (rs->buf, "OK") != 0)
13120 error (_("Error on target while enabling tracepoint."));
13121 }
13122
13123 void
13124 remote_target::disable_tracepoint (struct bp_location *location)
13125 {
13126 struct remote_state *rs = get_remote_state ();
13127 char addr_buf[40];
13128
13129 sprintf_vma (addr_buf, location->address);
13130 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisable:%x:%s",
13131 location->owner->number, addr_buf);
13132 putpkt (rs->buf);
13133 remote_get_noisy_reply ();
13134 if (*rs->buf == '\0')
13135 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
13136 if (strcmp (rs->buf, "OK") != 0)
13137 error (_("Error on target while disabling tracepoint."));
13138 }
13139
13140 void
13141 remote_target::trace_set_readonly_regions ()
13142 {
13143 asection *s;
13144 bfd *abfd = NULL;
13145 bfd_size_type size;
13146 bfd_vma vma;
13147 int anysecs = 0;
13148 int offset = 0;
13149
13150 if (!exec_bfd)
13151 return; /* No information to give. */
13152
13153 struct remote_state *rs = get_remote_state ();
13154
13155 strcpy (rs->buf, "QTro");
13156 offset = strlen (rs->buf);
13157 for (s = exec_bfd->sections; s; s = s->next)
13158 {
13159 char tmp1[40], tmp2[40];
13160 int sec_length;
13161
13162 if ((s->flags & SEC_LOAD) == 0 ||
13163 /* (s->flags & SEC_CODE) == 0 || */
13164 (s->flags & SEC_READONLY) == 0)
13165 continue;
13166
13167 anysecs = 1;
13168 vma = bfd_get_section_vma (abfd, s);
13169 size = bfd_get_section_size (s);
13170 sprintf_vma (tmp1, vma);
13171 sprintf_vma (tmp2, vma + size);
13172 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
13173 if (offset + sec_length + 1 > rs->buf_size)
13174 {
13175 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
13176 warning (_("\
13177 Too many sections for read-only sections definition packet."));
13178 break;
13179 }
13180 xsnprintf (rs->buf + offset, rs->buf_size - offset, ":%s,%s",
13181 tmp1, tmp2);
13182 offset += sec_length;
13183 }
13184 if (anysecs)
13185 {
13186 putpkt (rs->buf);
13187 getpkt (&rs->buf, &rs->buf_size, 0);
13188 }
13189 }
13190
13191 void
13192 remote_target::trace_start ()
13193 {
13194 struct remote_state *rs = get_remote_state ();
13195
13196 putpkt ("QTStart");
13197 remote_get_noisy_reply ();
13198 if (*rs->buf == '\0')
13199 error (_("Target does not support this command."));
13200 if (strcmp (rs->buf, "OK") != 0)
13201 error (_("Bogus reply from target: %s"), rs->buf);
13202 }
13203
13204 int
13205 remote_target::get_trace_status (struct trace_status *ts)
13206 {
13207 /* Initialize it just to avoid a GCC false warning. */
13208 char *p = NULL;
13209 /* FIXME we need to get register block size some other way. */
13210 extern int trace_regblock_size;
13211 enum packet_result result;
13212 struct remote_state *rs = get_remote_state ();
13213
13214 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
13215 return -1;
13216
13217 trace_regblock_size
13218 = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
13219
13220 putpkt ("qTStatus");
13221
13222 TRY
13223 {
13224 p = remote_get_noisy_reply ();
13225 }
13226 CATCH (ex, RETURN_MASK_ERROR)
13227 {
13228 if (ex.error != TARGET_CLOSE_ERROR)
13229 {
13230 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
13231 return -1;
13232 }
13233 throw_exception (ex);
13234 }
13235 END_CATCH
13236
13237 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
13238
13239 /* If the remote target doesn't do tracing, flag it. */
13240 if (result == PACKET_UNKNOWN)
13241 return -1;
13242
13243 /* We're working with a live target. */
13244 ts->filename = NULL;
13245
13246 if (*p++ != 'T')
13247 error (_("Bogus trace status reply from target: %s"), rs->buf);
13248
13249 /* Function 'parse_trace_status' sets default value of each field of
13250 'ts' at first, so we don't have to do it here. */
13251 parse_trace_status (p, ts);
13252
13253 return ts->running;
13254 }
13255
13256 void
13257 remote_target::get_tracepoint_status (struct breakpoint *bp,
13258 struct uploaded_tp *utp)
13259 {
13260 struct remote_state *rs = get_remote_state ();
13261 char *reply;
13262 struct bp_location *loc;
13263 struct tracepoint *tp = (struct tracepoint *) bp;
13264 size_t size = get_remote_packet_size ();
13265
13266 if (tp)
13267 {
13268 tp->hit_count = 0;
13269 tp->traceframe_usage = 0;
13270 for (loc = tp->loc; loc; loc = loc->next)
13271 {
13272 /* If the tracepoint was never downloaded, don't go asking for
13273 any status. */
13274 if (tp->number_on_target == 0)
13275 continue;
13276 xsnprintf (rs->buf, size, "qTP:%x:%s", tp->number_on_target,
13277 phex_nz (loc->address, 0));
13278 putpkt (rs->buf);
13279 reply = remote_get_noisy_reply ();
13280 if (reply && *reply)
13281 {
13282 if (*reply == 'V')
13283 parse_tracepoint_status (reply + 1, bp, utp);
13284 }
13285 }
13286 }
13287 else if (utp)
13288 {
13289 utp->hit_count = 0;
13290 utp->traceframe_usage = 0;
13291 xsnprintf (rs->buf, size, "qTP:%x:%s", utp->number,
13292 phex_nz (utp->addr, 0));
13293 putpkt (rs->buf);
13294 reply = remote_get_noisy_reply ();
13295 if (reply && *reply)
13296 {
13297 if (*reply == 'V')
13298 parse_tracepoint_status (reply + 1, bp, utp);
13299 }
13300 }
13301 }
13302
13303 void
13304 remote_target::trace_stop ()
13305 {
13306 struct remote_state *rs = get_remote_state ();
13307
13308 putpkt ("QTStop");
13309 remote_get_noisy_reply ();
13310 if (*rs->buf == '\0')
13311 error (_("Target does not support this command."));
13312 if (strcmp (rs->buf, "OK") != 0)
13313 error (_("Bogus reply from target: %s"), rs->buf);
13314 }
13315
13316 int
13317 remote_target::trace_find (enum trace_find_type type, int num,
13318 CORE_ADDR addr1, CORE_ADDR addr2,
13319 int *tpp)
13320 {
13321 struct remote_state *rs = get_remote_state ();
13322 char *endbuf = rs->buf + get_remote_packet_size ();
13323 char *p, *reply;
13324 int target_frameno = -1, target_tracept = -1;
13325
13326 /* Lookups other than by absolute frame number depend on the current
13327 trace selected, so make sure it is correct on the remote end
13328 first. */
13329 if (type != tfind_number)
13330 set_remote_traceframe ();
13331
13332 p = rs->buf;
13333 strcpy (p, "QTFrame:");
13334 p = strchr (p, '\0');
13335 switch (type)
13336 {
13337 case tfind_number:
13338 xsnprintf (p, endbuf - p, "%x", num);
13339 break;
13340 case tfind_pc:
13341 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13342 break;
13343 case tfind_tp:
13344 xsnprintf (p, endbuf - p, "tdp:%x", num);
13345 break;
13346 case tfind_range:
13347 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13348 phex_nz (addr2, 0));
13349 break;
13350 case tfind_outside:
13351 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13352 phex_nz (addr2, 0));
13353 break;
13354 default:
13355 error (_("Unknown trace find type %d"), type);
13356 }
13357
13358 putpkt (rs->buf);
13359 reply = remote_get_noisy_reply ();
13360 if (*reply == '\0')
13361 error (_("Target does not support this command."));
13362
13363 while (reply && *reply)
13364 switch (*reply)
13365 {
13366 case 'F':
13367 p = ++reply;
13368 target_frameno = (int) strtol (p, &reply, 16);
13369 if (reply == p)
13370 error (_("Unable to parse trace frame number"));
13371 /* Don't update our remote traceframe number cache on failure
13372 to select a remote traceframe. */
13373 if (target_frameno == -1)
13374 return -1;
13375 break;
13376 case 'T':
13377 p = ++reply;
13378 target_tracept = (int) strtol (p, &reply, 16);
13379 if (reply == p)
13380 error (_("Unable to parse tracepoint number"));
13381 break;
13382 case 'O': /* "OK"? */
13383 if (reply[1] == 'K' && reply[2] == '\0')
13384 reply += 2;
13385 else
13386 error (_("Bogus reply from target: %s"), reply);
13387 break;
13388 default:
13389 error (_("Bogus reply from target: %s"), reply);
13390 }
13391 if (tpp)
13392 *tpp = target_tracept;
13393
13394 rs->remote_traceframe_number = target_frameno;
13395 return target_frameno;
13396 }
13397
13398 bool
13399 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13400 {
13401 struct remote_state *rs = get_remote_state ();
13402 char *reply;
13403 ULONGEST uval;
13404
13405 set_remote_traceframe ();
13406
13407 xsnprintf (rs->buf, get_remote_packet_size (), "qTV:%x", tsvnum);
13408 putpkt (rs->buf);
13409 reply = remote_get_noisy_reply ();
13410 if (reply && *reply)
13411 {
13412 if (*reply == 'V')
13413 {
13414 unpack_varlen_hex (reply + 1, &uval);
13415 *val = (LONGEST) uval;
13416 return true;
13417 }
13418 }
13419 return false;
13420 }
13421
13422 int
13423 remote_target::save_trace_data (const char *filename)
13424 {
13425 struct remote_state *rs = get_remote_state ();
13426 char *p, *reply;
13427
13428 p = rs->buf;
13429 strcpy (p, "QTSave:");
13430 p += strlen (p);
13431 if ((p - rs->buf) + strlen (filename) * 2 >= get_remote_packet_size ())
13432 error (_("Remote file name too long for trace save packet"));
13433 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13434 *p++ = '\0';
13435 putpkt (rs->buf);
13436 reply = remote_get_noisy_reply ();
13437 if (*reply == '\0')
13438 error (_("Target does not support this command."));
13439 if (strcmp (reply, "OK") != 0)
13440 error (_("Bogus reply from target: %s"), reply);
13441 return 0;
13442 }
13443
13444 /* This is basically a memory transfer, but needs to be its own packet
13445 because we don't know how the target actually organizes its trace
13446 memory, plus we want to be able to ask for as much as possible, but
13447 not be unhappy if we don't get as much as we ask for. */
13448
13449 LONGEST
13450 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13451 {
13452 struct remote_state *rs = get_remote_state ();
13453 char *reply;
13454 char *p;
13455 int rslt;
13456
13457 p = rs->buf;
13458 strcpy (p, "qTBuffer:");
13459 p += strlen (p);
13460 p += hexnumstr (p, offset);
13461 *p++ = ',';
13462 p += hexnumstr (p, len);
13463 *p++ = '\0';
13464
13465 putpkt (rs->buf);
13466 reply = remote_get_noisy_reply ();
13467 if (reply && *reply)
13468 {
13469 /* 'l' by itself means we're at the end of the buffer and
13470 there is nothing more to get. */
13471 if (*reply == 'l')
13472 return 0;
13473
13474 /* Convert the reply into binary. Limit the number of bytes to
13475 convert according to our passed-in buffer size, rather than
13476 what was returned in the packet; if the target is
13477 unexpectedly generous and gives us a bigger reply than we
13478 asked for, we don't want to crash. */
13479 rslt = hex2bin (reply, buf, len);
13480 return rslt;
13481 }
13482
13483 /* Something went wrong, flag as an error. */
13484 return -1;
13485 }
13486
13487 void
13488 remote_target::set_disconnected_tracing (int val)
13489 {
13490 struct remote_state *rs = get_remote_state ();
13491
13492 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13493 {
13494 char *reply;
13495
13496 xsnprintf (rs->buf, get_remote_packet_size (), "QTDisconnected:%x", val);
13497 putpkt (rs->buf);
13498 reply = remote_get_noisy_reply ();
13499 if (*reply == '\0')
13500 error (_("Target does not support this command."));
13501 if (strcmp (reply, "OK") != 0)
13502 error (_("Bogus reply from target: %s"), reply);
13503 }
13504 else if (val)
13505 warning (_("Target does not support disconnected tracing."));
13506 }
13507
13508 int
13509 remote_target::core_of_thread (ptid_t ptid)
13510 {
13511 struct thread_info *info = find_thread_ptid (ptid);
13512
13513 if (info != NULL && info->priv != NULL)
13514 return get_remote_thread_info (info)->core;
13515
13516 return -1;
13517 }
13518
13519 void
13520 remote_target::set_circular_trace_buffer (int val)
13521 {
13522 struct remote_state *rs = get_remote_state ();
13523 char *reply;
13524
13525 xsnprintf (rs->buf, get_remote_packet_size (), "QTBuffer:circular:%x", val);
13526 putpkt (rs->buf);
13527 reply = remote_get_noisy_reply ();
13528 if (*reply == '\0')
13529 error (_("Target does not support this command."));
13530 if (strcmp (reply, "OK") != 0)
13531 error (_("Bogus reply from target: %s"), reply);
13532 }
13533
13534 traceframe_info_up
13535 remote_target::traceframe_info ()
13536 {
13537 gdb::optional<gdb::char_vector> text
13538 = target_read_stralloc (current_top_target (), TARGET_OBJECT_TRACEFRAME_INFO,
13539 NULL);
13540 if (text)
13541 return parse_traceframe_info (text->data ());
13542
13543 return NULL;
13544 }
13545
13546 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13547 instruction on which a fast tracepoint may be placed. Returns -1
13548 if the packet is not supported, and 0 if the minimum instruction
13549 length is unknown. */
13550
13551 int
13552 remote_target::get_min_fast_tracepoint_insn_len ()
13553 {
13554 struct remote_state *rs = get_remote_state ();
13555 char *reply;
13556
13557 /* If we're not debugging a process yet, the IPA can't be
13558 loaded. */
13559 if (!target_has_execution)
13560 return 0;
13561
13562 /* Make sure the remote is pointing at the right process. */
13563 set_general_process ();
13564
13565 xsnprintf (rs->buf, get_remote_packet_size (), "qTMinFTPILen");
13566 putpkt (rs->buf);
13567 reply = remote_get_noisy_reply ();
13568 if (*reply == '\0')
13569 return -1;
13570 else
13571 {
13572 ULONGEST min_insn_len;
13573
13574 unpack_varlen_hex (reply, &min_insn_len);
13575
13576 return (int) min_insn_len;
13577 }
13578 }
13579
13580 void
13581 remote_target::set_trace_buffer_size (LONGEST val)
13582 {
13583 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13584 {
13585 struct remote_state *rs = get_remote_state ();
13586 char *buf = rs->buf;
13587 char *endbuf = rs->buf + get_remote_packet_size ();
13588 enum packet_result result;
13589
13590 gdb_assert (val >= 0 || val == -1);
13591 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13592 /* Send -1 as literal "-1" to avoid host size dependency. */
13593 if (val < 0)
13594 {
13595 *buf++ = '-';
13596 buf += hexnumstr (buf, (ULONGEST) -val);
13597 }
13598 else
13599 buf += hexnumstr (buf, (ULONGEST) val);
13600
13601 putpkt (rs->buf);
13602 remote_get_noisy_reply ();
13603 result = packet_ok (rs->buf,
13604 &remote_protocol_packets[PACKET_QTBuffer_size]);
13605
13606 if (result != PACKET_OK)
13607 warning (_("Bogus reply from target: %s"), rs->buf);
13608 }
13609 }
13610
13611 bool
13612 remote_target::set_trace_notes (const char *user, const char *notes,
13613 const char *stop_notes)
13614 {
13615 struct remote_state *rs = get_remote_state ();
13616 char *reply;
13617 char *buf = rs->buf;
13618 char *endbuf = rs->buf + get_remote_packet_size ();
13619 int nbytes;
13620
13621 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13622 if (user)
13623 {
13624 buf += xsnprintf (buf, endbuf - buf, "user:");
13625 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13626 buf += 2 * nbytes;
13627 *buf++ = ';';
13628 }
13629 if (notes)
13630 {
13631 buf += xsnprintf (buf, endbuf - buf, "notes:");
13632 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13633 buf += 2 * nbytes;
13634 *buf++ = ';';
13635 }
13636 if (stop_notes)
13637 {
13638 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13639 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13640 buf += 2 * nbytes;
13641 *buf++ = ';';
13642 }
13643 /* Ensure the buffer is terminated. */
13644 *buf = '\0';
13645
13646 putpkt (rs->buf);
13647 reply = remote_get_noisy_reply ();
13648 if (*reply == '\0')
13649 return false;
13650
13651 if (strcmp (reply, "OK") != 0)
13652 error (_("Bogus reply from target: %s"), reply);
13653
13654 return true;
13655 }
13656
13657 bool
13658 remote_target::use_agent (bool use)
13659 {
13660 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13661 {
13662 struct remote_state *rs = get_remote_state ();
13663
13664 /* If the stub supports QAgent. */
13665 xsnprintf (rs->buf, get_remote_packet_size (), "QAgent:%d", use);
13666 putpkt (rs->buf);
13667 getpkt (&rs->buf, &rs->buf_size, 0);
13668
13669 if (strcmp (rs->buf, "OK") == 0)
13670 {
13671 ::use_agent = use;
13672 return true;
13673 }
13674 }
13675
13676 return false;
13677 }
13678
13679 bool
13680 remote_target::can_use_agent ()
13681 {
13682 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13683 }
13684
13685 struct btrace_target_info
13686 {
13687 /* The ptid of the traced thread. */
13688 ptid_t ptid;
13689
13690 /* The obtained branch trace configuration. */
13691 struct btrace_config conf;
13692 };
13693
13694 /* Reset our idea of our target's btrace configuration. */
13695
13696 static void
13697 remote_btrace_reset (remote_state *rs)
13698 {
13699 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13700 }
13701
13702 /* Synchronize the configuration with the target. */
13703
13704 void
13705 remote_target::btrace_sync_conf (const btrace_config *conf)
13706 {
13707 struct packet_config *packet;
13708 struct remote_state *rs;
13709 char *buf, *pos, *endbuf;
13710
13711 rs = get_remote_state ();
13712 buf = rs->buf;
13713 endbuf = buf + get_remote_packet_size ();
13714
13715 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13716 if (packet_config_support (packet) == PACKET_ENABLE
13717 && conf->bts.size != rs->btrace_config.bts.size)
13718 {
13719 pos = buf;
13720 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13721 conf->bts.size);
13722
13723 putpkt (buf);
13724 getpkt (&buf, &rs->buf_size, 0);
13725
13726 if (packet_ok (buf, packet) == PACKET_ERROR)
13727 {
13728 if (buf[0] == 'E' && buf[1] == '.')
13729 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13730 else
13731 error (_("Failed to configure the BTS buffer size."));
13732 }
13733
13734 rs->btrace_config.bts.size = conf->bts.size;
13735 }
13736
13737 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13738 if (packet_config_support (packet) == PACKET_ENABLE
13739 && conf->pt.size != rs->btrace_config.pt.size)
13740 {
13741 pos = buf;
13742 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13743 conf->pt.size);
13744
13745 putpkt (buf);
13746 getpkt (&buf, &rs->buf_size, 0);
13747
13748 if (packet_ok (buf, packet) == PACKET_ERROR)
13749 {
13750 if (buf[0] == 'E' && buf[1] == '.')
13751 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13752 else
13753 error (_("Failed to configure the trace buffer size."));
13754 }
13755
13756 rs->btrace_config.pt.size = conf->pt.size;
13757 }
13758 }
13759
13760 /* Read the current thread's btrace configuration from the target and
13761 store it into CONF. */
13762
13763 static void
13764 btrace_read_config (struct btrace_config *conf)
13765 {
13766 gdb::optional<gdb::char_vector> xml
13767 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE_CONF, "");
13768 if (xml)
13769 parse_xml_btrace_conf (conf, xml->data ());
13770 }
13771
13772 /* Maybe reopen target btrace. */
13773
13774 void
13775 remote_target::remote_btrace_maybe_reopen ()
13776 {
13777 struct remote_state *rs = get_remote_state ();
13778 struct thread_info *tp;
13779 int btrace_target_pushed = 0;
13780 #if !defined (HAVE_LIBIPT)
13781 int warned = 0;
13782 #endif
13783
13784 scoped_restore_current_thread restore_thread;
13785
13786 ALL_NON_EXITED_THREADS (tp)
13787 {
13788 set_general_thread (tp->ptid);
13789
13790 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13791 btrace_read_config (&rs->btrace_config);
13792
13793 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13794 continue;
13795
13796 #if !defined (HAVE_LIBIPT)
13797 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13798 {
13799 if (!warned)
13800 {
13801 warned = 1;
13802 warning (_("Target is recording using Intel Processor Trace "
13803 "but support was disabled at compile time."));
13804 }
13805
13806 continue;
13807 }
13808 #endif /* !defined (HAVE_LIBIPT) */
13809
13810 /* Push target, once, but before anything else happens. This way our
13811 changes to the threads will be cleaned up by unpushing the target
13812 in case btrace_read_config () throws. */
13813 if (!btrace_target_pushed)
13814 {
13815 btrace_target_pushed = 1;
13816 record_btrace_push_target ();
13817 printf_filtered (_("Target is recording using %s.\n"),
13818 btrace_format_string (rs->btrace_config.format));
13819 }
13820
13821 tp->btrace.target = XCNEW (struct btrace_target_info);
13822 tp->btrace.target->ptid = tp->ptid;
13823 tp->btrace.target->conf = rs->btrace_config;
13824 }
13825 }
13826
13827 /* Enable branch tracing. */
13828
13829 struct btrace_target_info *
13830 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
13831 {
13832 struct btrace_target_info *tinfo = NULL;
13833 struct packet_config *packet = NULL;
13834 struct remote_state *rs = get_remote_state ();
13835 char *buf = rs->buf;
13836 char *endbuf = rs->buf + get_remote_packet_size ();
13837
13838 switch (conf->format)
13839 {
13840 case BTRACE_FORMAT_BTS:
13841 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13842 break;
13843
13844 case BTRACE_FORMAT_PT:
13845 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13846 break;
13847 }
13848
13849 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13850 error (_("Target does not support branch tracing."));
13851
13852 btrace_sync_conf (conf);
13853
13854 set_general_thread (ptid);
13855
13856 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13857 putpkt (rs->buf);
13858 getpkt (&rs->buf, &rs->buf_size, 0);
13859
13860 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13861 {
13862 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13863 error (_("Could not enable branch tracing for %s: %s"),
13864 target_pid_to_str (ptid), rs->buf + 2);
13865 else
13866 error (_("Could not enable branch tracing for %s."),
13867 target_pid_to_str (ptid));
13868 }
13869
13870 tinfo = XCNEW (struct btrace_target_info);
13871 tinfo->ptid = ptid;
13872
13873 /* If we fail to read the configuration, we lose some information, but the
13874 tracing itself is not impacted. */
13875 TRY
13876 {
13877 btrace_read_config (&tinfo->conf);
13878 }
13879 CATCH (err, RETURN_MASK_ERROR)
13880 {
13881 if (err.message != NULL)
13882 warning ("%s", err.message);
13883 }
13884 END_CATCH
13885
13886 return tinfo;
13887 }
13888
13889 /* Disable branch tracing. */
13890
13891 void
13892 remote_target::disable_btrace (struct btrace_target_info *tinfo)
13893 {
13894 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13895 struct remote_state *rs = get_remote_state ();
13896 char *buf = rs->buf;
13897 char *endbuf = rs->buf + get_remote_packet_size ();
13898
13899 if (packet_config_support (packet) != PACKET_ENABLE)
13900 error (_("Target does not support branch tracing."));
13901
13902 set_general_thread (tinfo->ptid);
13903
13904 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13905 putpkt (rs->buf);
13906 getpkt (&rs->buf, &rs->buf_size, 0);
13907
13908 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13909 {
13910 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13911 error (_("Could not disable branch tracing for %s: %s"),
13912 target_pid_to_str (tinfo->ptid), rs->buf + 2);
13913 else
13914 error (_("Could not disable branch tracing for %s."),
13915 target_pid_to_str (tinfo->ptid));
13916 }
13917
13918 xfree (tinfo);
13919 }
13920
13921 /* Teardown branch tracing. */
13922
13923 void
13924 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
13925 {
13926 /* We must not talk to the target during teardown. */
13927 xfree (tinfo);
13928 }
13929
13930 /* Read the branch trace. */
13931
13932 enum btrace_error
13933 remote_target::read_btrace (struct btrace_data *btrace,
13934 struct btrace_target_info *tinfo,
13935 enum btrace_read_type type)
13936 {
13937 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13938 const char *annex;
13939
13940 if (packet_config_support (packet) != PACKET_ENABLE)
13941 error (_("Target does not support branch tracing."));
13942
13943 #if !defined(HAVE_LIBEXPAT)
13944 error (_("Cannot process branch tracing result. XML parsing not supported."));
13945 #endif
13946
13947 switch (type)
13948 {
13949 case BTRACE_READ_ALL:
13950 annex = "all";
13951 break;
13952 case BTRACE_READ_NEW:
13953 annex = "new";
13954 break;
13955 case BTRACE_READ_DELTA:
13956 annex = "delta";
13957 break;
13958 default:
13959 internal_error (__FILE__, __LINE__,
13960 _("Bad branch tracing read type: %u."),
13961 (unsigned int) type);
13962 }
13963
13964 gdb::optional<gdb::char_vector> xml
13965 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE, annex);
13966 if (!xml)
13967 return BTRACE_ERR_UNKNOWN;
13968
13969 parse_xml_btrace (btrace, xml->data ());
13970
13971 return BTRACE_ERR_NONE;
13972 }
13973
13974 const struct btrace_config *
13975 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
13976 {
13977 return &tinfo->conf;
13978 }
13979
13980 bool
13981 remote_target::augmented_libraries_svr4_read ()
13982 {
13983 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
13984 == PACKET_ENABLE);
13985 }
13986
13987 /* Implementation of to_load. */
13988
13989 void
13990 remote_target::load (const char *name, int from_tty)
13991 {
13992 generic_load (name, from_tty);
13993 }
13994
13995 /* Accepts an integer PID; returns a string representing a file that
13996 can be opened on the remote side to get the symbols for the child
13997 process. Returns NULL if the operation is not supported. */
13998
13999 char *
14000 remote_target::pid_to_exec_file (int pid)
14001 {
14002 static gdb::optional<gdb::char_vector> filename;
14003 struct inferior *inf;
14004 char *annex = NULL;
14005
14006 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
14007 return NULL;
14008
14009 inf = find_inferior_pid (pid);
14010 if (inf == NULL)
14011 internal_error (__FILE__, __LINE__,
14012 _("not currently attached to process %d"), pid);
14013
14014 if (!inf->fake_pid_p)
14015 {
14016 const int annex_size = 9;
14017
14018 annex = (char *) alloca (annex_size);
14019 xsnprintf (annex, annex_size, "%x", pid);
14020 }
14021
14022 filename = target_read_stralloc (current_top_target (),
14023 TARGET_OBJECT_EXEC_FILE, annex);
14024
14025 return filename ? filename->data () : nullptr;
14026 }
14027
14028 /* Implement the to_can_do_single_step target_ops method. */
14029
14030 int
14031 remote_target::can_do_single_step ()
14032 {
14033 /* We can only tell whether target supports single step or not by
14034 supported s and S vCont actions if the stub supports vContSupported
14035 feature. If the stub doesn't support vContSupported feature,
14036 we have conservatively to think target doesn't supports single
14037 step. */
14038 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
14039 {
14040 struct remote_state *rs = get_remote_state ();
14041
14042 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14043 remote_vcont_probe ();
14044
14045 return rs->supports_vCont.s && rs->supports_vCont.S;
14046 }
14047 else
14048 return 0;
14049 }
14050
14051 /* Implementation of the to_execution_direction method for the remote
14052 target. */
14053
14054 enum exec_direction_kind
14055 remote_target::execution_direction ()
14056 {
14057 struct remote_state *rs = get_remote_state ();
14058
14059 return rs->last_resume_exec_dir;
14060 }
14061
14062 /* Return pointer to the thread_info struct which corresponds to
14063 THREAD_HANDLE (having length HANDLE_LEN). */
14064
14065 thread_info *
14066 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
14067 int handle_len,
14068 inferior *inf)
14069 {
14070 struct thread_info *tp;
14071
14072 ALL_NON_EXITED_THREADS (tp)
14073 {
14074 remote_thread_info *priv = get_remote_thread_info (tp);
14075
14076 if (tp->inf == inf && priv != NULL)
14077 {
14078 if (handle_len != priv->thread_handle.size ())
14079 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
14080 handle_len, priv->thread_handle.size ());
14081 if (memcmp (thread_handle, priv->thread_handle.data (),
14082 handle_len) == 0)
14083 return tp;
14084 }
14085 }
14086
14087 return NULL;
14088 }
14089
14090 bool
14091 remote_target::can_async_p ()
14092 {
14093 struct remote_state *rs = get_remote_state ();
14094
14095 /* We don't go async if the user has explicitly prevented it with the
14096 "maint set target-async" command. */
14097 if (!target_async_permitted)
14098 return false;
14099
14100 /* We're async whenever the serial device is. */
14101 return serial_can_async_p (rs->remote_desc);
14102 }
14103
14104 bool
14105 remote_target::is_async_p ()
14106 {
14107 struct remote_state *rs = get_remote_state ();
14108
14109 if (!target_async_permitted)
14110 /* We only enable async when the user specifically asks for it. */
14111 return false;
14112
14113 /* We're async whenever the serial device is. */
14114 return serial_is_async_p (rs->remote_desc);
14115 }
14116
14117 /* Pass the SERIAL event on and up to the client. One day this code
14118 will be able to delay notifying the client of an event until the
14119 point where an entire packet has been received. */
14120
14121 static serial_event_ftype remote_async_serial_handler;
14122
14123 static void
14124 remote_async_serial_handler (struct serial *scb, void *context)
14125 {
14126 /* Don't propogate error information up to the client. Instead let
14127 the client find out about the error by querying the target. */
14128 inferior_event_handler (INF_REG_EVENT, NULL);
14129 }
14130
14131 static void
14132 remote_async_inferior_event_handler (gdb_client_data data)
14133 {
14134 inferior_event_handler (INF_REG_EVENT, data);
14135 }
14136
14137 void
14138 remote_target::async (int enable)
14139 {
14140 struct remote_state *rs = get_remote_state ();
14141
14142 if (enable)
14143 {
14144 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
14145
14146 /* If there are pending events in the stop reply queue tell the
14147 event loop to process them. */
14148 if (!rs->stop_reply_queue.empty ())
14149 mark_async_event_handler (rs->remote_async_inferior_event_token);
14150 /* For simplicity, below we clear the pending events token
14151 without remembering whether it is marked, so here we always
14152 mark it. If there's actually no pending notification to
14153 process, this ends up being a no-op (other than a spurious
14154 event-loop wakeup). */
14155 if (target_is_non_stop_p ())
14156 mark_async_event_handler (rs->notif_state->get_pending_events_token);
14157 }
14158 else
14159 {
14160 serial_async (rs->remote_desc, NULL, NULL);
14161 /* If the core is disabling async, it doesn't want to be
14162 disturbed with target events. Clear all async event sources
14163 too. */
14164 clear_async_event_handler (rs->remote_async_inferior_event_token);
14165 if (target_is_non_stop_p ())
14166 clear_async_event_handler (rs->notif_state->get_pending_events_token);
14167 }
14168 }
14169
14170 /* Implementation of the to_thread_events method. */
14171
14172 void
14173 remote_target::thread_events (int enable)
14174 {
14175 struct remote_state *rs = get_remote_state ();
14176 size_t size = get_remote_packet_size ();
14177
14178 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
14179 return;
14180
14181 xsnprintf (rs->buf, size, "QThreadEvents:%x", enable ? 1 : 0);
14182 putpkt (rs->buf);
14183 getpkt (&rs->buf, &rs->buf_size, 0);
14184
14185 switch (packet_ok (rs->buf,
14186 &remote_protocol_packets[PACKET_QThreadEvents]))
14187 {
14188 case PACKET_OK:
14189 if (strcmp (rs->buf, "OK") != 0)
14190 error (_("Remote refused setting thread events: %s"), rs->buf);
14191 break;
14192 case PACKET_ERROR:
14193 warning (_("Remote failure reply: %s"), rs->buf);
14194 break;
14195 case PACKET_UNKNOWN:
14196 break;
14197 }
14198 }
14199
14200 static void
14201 set_remote_cmd (const char *args, int from_tty)
14202 {
14203 help_list (remote_set_cmdlist, "set remote ", all_commands, gdb_stdout);
14204 }
14205
14206 static void
14207 show_remote_cmd (const char *args, int from_tty)
14208 {
14209 /* We can't just use cmd_show_list here, because we want to skip
14210 the redundant "show remote Z-packet" and the legacy aliases. */
14211 struct cmd_list_element *list = remote_show_cmdlist;
14212 struct ui_out *uiout = current_uiout;
14213
14214 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
14215 for (; list != NULL; list = list->next)
14216 if (strcmp (list->name, "Z-packet") == 0)
14217 continue;
14218 else if (list->type == not_set_cmd)
14219 /* Alias commands are exactly like the original, except they
14220 don't have the normal type. */
14221 continue;
14222 else
14223 {
14224 ui_out_emit_tuple option_emitter (uiout, "option");
14225
14226 uiout->field_string ("name", list->name);
14227 uiout->text (": ");
14228 if (list->type == show_cmd)
14229 do_show_command (NULL, from_tty, list);
14230 else
14231 cmd_func (list, NULL, from_tty);
14232 }
14233 }
14234
14235
14236 /* Function to be called whenever a new objfile (shlib) is detected. */
14237 static void
14238 remote_new_objfile (struct objfile *objfile)
14239 {
14240 remote_target *remote = get_current_remote_target ();
14241
14242 if (remote != NULL) /* Have a remote connection. */
14243 remote->remote_check_symbols ();
14244 }
14245
14246 /* Pull all the tracepoints defined on the target and create local
14247 data structures representing them. We don't want to create real
14248 tracepoints yet, we don't want to mess up the user's existing
14249 collection. */
14250
14251 int
14252 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
14253 {
14254 struct remote_state *rs = get_remote_state ();
14255 char *p;
14256
14257 /* Ask for a first packet of tracepoint definition. */
14258 putpkt ("qTfP");
14259 getpkt (&rs->buf, &rs->buf_size, 0);
14260 p = rs->buf;
14261 while (*p && *p != 'l')
14262 {
14263 parse_tracepoint_definition (p, utpp);
14264 /* Ask for another packet of tracepoint definition. */
14265 putpkt ("qTsP");
14266 getpkt (&rs->buf, &rs->buf_size, 0);
14267 p = rs->buf;
14268 }
14269 return 0;
14270 }
14271
14272 int
14273 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
14274 {
14275 struct remote_state *rs = get_remote_state ();
14276 char *p;
14277
14278 /* Ask for a first packet of variable definition. */
14279 putpkt ("qTfV");
14280 getpkt (&rs->buf, &rs->buf_size, 0);
14281 p = rs->buf;
14282 while (*p && *p != 'l')
14283 {
14284 parse_tsv_definition (p, utsvp);
14285 /* Ask for another packet of variable definition. */
14286 putpkt ("qTsV");
14287 getpkt (&rs->buf, &rs->buf_size, 0);
14288 p = rs->buf;
14289 }
14290 return 0;
14291 }
14292
14293 /* The "set/show range-stepping" show hook. */
14294
14295 static void
14296 show_range_stepping (struct ui_file *file, int from_tty,
14297 struct cmd_list_element *c,
14298 const char *value)
14299 {
14300 fprintf_filtered (file,
14301 _("Debugger's willingness to use range stepping "
14302 "is %s.\n"), value);
14303 }
14304
14305 /* Return true if the vCont;r action is supported by the remote
14306 stub. */
14307
14308 bool
14309 remote_target::vcont_r_supported ()
14310 {
14311 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14312 remote_vcont_probe ();
14313
14314 return (packet_support (PACKET_vCont) == PACKET_ENABLE
14315 && get_remote_state ()->supports_vCont.r);
14316 }
14317
14318 /* The "set/show range-stepping" set hook. */
14319
14320 static void
14321 set_range_stepping (const char *ignore_args, int from_tty,
14322 struct cmd_list_element *c)
14323 {
14324 /* When enabling, check whether range stepping is actually supported
14325 by the target, and warn if not. */
14326 if (use_range_stepping)
14327 {
14328 remote_target *remote = get_current_remote_target ();
14329 if (remote == NULL
14330 || !remote->vcont_r_supported ())
14331 warning (_("Range stepping is not supported by the current target"));
14332 }
14333 }
14334
14335 void
14336 _initialize_remote (void)
14337 {
14338 struct cmd_list_element *cmd;
14339 const char *cmd_name;
14340
14341 /* architecture specific data */
14342 remote_g_packet_data_handle =
14343 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14344
14345 remote_pspace_data
14346 = register_program_space_data_with_cleanup (NULL,
14347 remote_pspace_data_cleanup);
14348
14349 add_target (remote_target_info, remote_target::open);
14350 add_target (extended_remote_target_info, extended_remote_target::open);
14351
14352 /* Hook into new objfile notification. */
14353 gdb::observers::new_objfile.attach (remote_new_objfile);
14354
14355 #if 0
14356 init_remote_threadtests ();
14357 #endif
14358
14359 /* set/show remote ... */
14360
14361 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
14362 Remote protocol specific variables\n\
14363 Configure various remote-protocol specific variables such as\n\
14364 the packets being used"),
14365 &remote_set_cmdlist, "set remote ",
14366 0 /* allow-unknown */, &setlist);
14367 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14368 Remote protocol specific variables\n\
14369 Configure various remote-protocol specific variables such as\n\
14370 the packets being used"),
14371 &remote_show_cmdlist, "show remote ",
14372 0 /* allow-unknown */, &showlist);
14373
14374 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14375 Compare section data on target to the exec file.\n\
14376 Argument is a single section name (default: all loaded sections).\n\
14377 To compare only read-only loaded sections, specify the -r option."),
14378 &cmdlist);
14379
14380 add_cmd ("packet", class_maintenance, packet_command, _("\
14381 Send an arbitrary packet to a remote target.\n\
14382 maintenance packet TEXT\n\
14383 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14384 this command sends the string TEXT to the inferior, and displays the\n\
14385 response packet. GDB supplies the initial `$' character, and the\n\
14386 terminating `#' character and checksum."),
14387 &maintenancelist);
14388
14389 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14390 Set whether to send break if interrupted."), _("\
14391 Show whether to send break if interrupted."), _("\
14392 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14393 set_remotebreak, show_remotebreak,
14394 &setlist, &showlist);
14395 cmd_name = "remotebreak";
14396 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
14397 deprecate_cmd (cmd, "set remote interrupt-sequence");
14398 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14399 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
14400 deprecate_cmd (cmd, "show remote interrupt-sequence");
14401
14402 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14403 interrupt_sequence_modes, &interrupt_sequence_mode,
14404 _("\
14405 Set interrupt sequence to remote target."), _("\
14406 Show interrupt sequence to remote target."), _("\
14407 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14408 NULL, show_interrupt_sequence,
14409 &remote_set_cmdlist,
14410 &remote_show_cmdlist);
14411
14412 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14413 &interrupt_on_connect, _("\
14414 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14415 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _(" \
14416 If set, interrupt sequence is sent to remote target."),
14417 NULL, NULL,
14418 &remote_set_cmdlist, &remote_show_cmdlist);
14419
14420 /* Install commands for configuring memory read/write packets. */
14421
14422 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14423 Set the maximum number of bytes per memory write packet (deprecated)."),
14424 &setlist);
14425 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14426 Show the maximum number of bytes per memory write packet (deprecated)."),
14427 &showlist);
14428 add_cmd ("memory-write-packet-size", no_class,
14429 set_memory_write_packet_size, _("\
14430 Set the maximum number of bytes per memory-write packet.\n\
14431 Specify the number of bytes in a packet or 0 (zero) for the\n\
14432 default packet size. The actual limit is further reduced\n\
14433 dependent on the target. Specify ``fixed'' to disable the\n\
14434 further restriction and ``limit'' to enable that restriction."),
14435 &remote_set_cmdlist);
14436 add_cmd ("memory-read-packet-size", no_class,
14437 set_memory_read_packet_size, _("\
14438 Set the maximum number of bytes per memory-read packet.\n\
14439 Specify the number of bytes in a packet or 0 (zero) for the\n\
14440 default packet size. The actual limit is further reduced\n\
14441 dependent on the target. Specify ``fixed'' to disable the\n\
14442 further restriction and ``limit'' to enable that restriction."),
14443 &remote_set_cmdlist);
14444 add_cmd ("memory-write-packet-size", no_class,
14445 show_memory_write_packet_size,
14446 _("Show the maximum number of bytes per memory-write packet."),
14447 &remote_show_cmdlist);
14448 add_cmd ("memory-read-packet-size", no_class,
14449 show_memory_read_packet_size,
14450 _("Show the maximum number of bytes per memory-read packet."),
14451 &remote_show_cmdlist);
14452
14453 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-limit", no_class,
14454 &remote_hw_watchpoint_limit, _("\
14455 Set the maximum number of target hardware watchpoints."), _("\
14456 Show the maximum number of target hardware watchpoints."), _("\
14457 Specify \"unlimited\" for unlimited hardware watchpoints."),
14458 NULL, show_hardware_watchpoint_limit,
14459 &remote_set_cmdlist,
14460 &remote_show_cmdlist);
14461 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-length-limit",
14462 no_class,
14463 &remote_hw_watchpoint_length_limit, _("\
14464 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14465 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14466 Specify \"unlimited\" to allow watchpoints of unlimited size."),
14467 NULL, show_hardware_watchpoint_length_limit,
14468 &remote_set_cmdlist, &remote_show_cmdlist);
14469 add_setshow_zuinteger_unlimited_cmd ("hardware-breakpoint-limit", no_class,
14470 &remote_hw_breakpoint_limit, _("\
14471 Set the maximum number of target hardware breakpoints."), _("\
14472 Show the maximum number of target hardware breakpoints."), _("\
14473 Specify \"unlimited\" for unlimited hardware breakpoints."),
14474 NULL, show_hardware_breakpoint_limit,
14475 &remote_set_cmdlist, &remote_show_cmdlist);
14476
14477 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14478 &remote_address_size, _("\
14479 Set the maximum size of the address (in bits) in a memory packet."), _("\
14480 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14481 NULL,
14482 NULL, /* FIXME: i18n: */
14483 &setlist, &showlist);
14484
14485 init_all_packet_configs ();
14486
14487 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14488 "X", "binary-download", 1);
14489
14490 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14491 "vCont", "verbose-resume", 0);
14492
14493 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14494 "QPassSignals", "pass-signals", 0);
14495
14496 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14497 "QCatchSyscalls", "catch-syscalls", 0);
14498
14499 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14500 "QProgramSignals", "program-signals", 0);
14501
14502 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14503 "QSetWorkingDir", "set-working-dir", 0);
14504
14505 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14506 "QStartupWithShell", "startup-with-shell", 0);
14507
14508 add_packet_config_cmd (&remote_protocol_packets
14509 [PACKET_QEnvironmentHexEncoded],
14510 "QEnvironmentHexEncoded", "environment-hex-encoded",
14511 0);
14512
14513 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14514 "QEnvironmentReset", "environment-reset",
14515 0);
14516
14517 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14518 "QEnvironmentUnset", "environment-unset",
14519 0);
14520
14521 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14522 "qSymbol", "symbol-lookup", 0);
14523
14524 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14525 "P", "set-register", 1);
14526
14527 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14528 "p", "fetch-register", 1);
14529
14530 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14531 "Z0", "software-breakpoint", 0);
14532
14533 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14534 "Z1", "hardware-breakpoint", 0);
14535
14536 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14537 "Z2", "write-watchpoint", 0);
14538
14539 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14540 "Z3", "read-watchpoint", 0);
14541
14542 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14543 "Z4", "access-watchpoint", 0);
14544
14545 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14546 "qXfer:auxv:read", "read-aux-vector", 0);
14547
14548 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14549 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14550
14551 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14552 "qXfer:features:read", "target-features", 0);
14553
14554 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14555 "qXfer:libraries:read", "library-info", 0);
14556
14557 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14558 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14559
14560 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14561 "qXfer:memory-map:read", "memory-map", 0);
14562
14563 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_read],
14564 "qXfer:spu:read", "read-spu-object", 0);
14565
14566 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_spu_write],
14567 "qXfer:spu:write", "write-spu-object", 0);
14568
14569 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14570 "qXfer:osdata:read", "osdata", 0);
14571
14572 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14573 "qXfer:threads:read", "threads", 0);
14574
14575 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14576 "qXfer:siginfo:read", "read-siginfo-object", 0);
14577
14578 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14579 "qXfer:siginfo:write", "write-siginfo-object", 0);
14580
14581 add_packet_config_cmd
14582 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14583 "qXfer:traceframe-info:read", "traceframe-info", 0);
14584
14585 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14586 "qXfer:uib:read", "unwind-info-block", 0);
14587
14588 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14589 "qGetTLSAddr", "get-thread-local-storage-address",
14590 0);
14591
14592 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14593 "qGetTIBAddr", "get-thread-information-block-address",
14594 0);
14595
14596 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14597 "bc", "reverse-continue", 0);
14598
14599 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14600 "bs", "reverse-step", 0);
14601
14602 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14603 "qSupported", "supported-packets", 0);
14604
14605 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14606 "qSearch:memory", "search-memory", 0);
14607
14608 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14609 "qTStatus", "trace-status", 0);
14610
14611 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14612 "vFile:setfs", "hostio-setfs", 0);
14613
14614 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14615 "vFile:open", "hostio-open", 0);
14616
14617 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14618 "vFile:pread", "hostio-pread", 0);
14619
14620 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14621 "vFile:pwrite", "hostio-pwrite", 0);
14622
14623 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14624 "vFile:close", "hostio-close", 0);
14625
14626 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14627 "vFile:unlink", "hostio-unlink", 0);
14628
14629 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14630 "vFile:readlink", "hostio-readlink", 0);
14631
14632 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14633 "vFile:fstat", "hostio-fstat", 0);
14634
14635 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14636 "vAttach", "attach", 0);
14637
14638 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14639 "vRun", "run", 0);
14640
14641 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14642 "QStartNoAckMode", "noack", 0);
14643
14644 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14645 "vKill", "kill", 0);
14646
14647 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14648 "qAttached", "query-attached", 0);
14649
14650 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14651 "ConditionalTracepoints",
14652 "conditional-tracepoints", 0);
14653
14654 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14655 "ConditionalBreakpoints",
14656 "conditional-breakpoints", 0);
14657
14658 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14659 "BreakpointCommands",
14660 "breakpoint-commands", 0);
14661
14662 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14663 "FastTracepoints", "fast-tracepoints", 0);
14664
14665 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14666 "TracepointSource", "TracepointSource", 0);
14667
14668 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14669 "QAllow", "allow", 0);
14670
14671 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14672 "StaticTracepoints", "static-tracepoints", 0);
14673
14674 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14675 "InstallInTrace", "install-in-trace", 0);
14676
14677 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14678 "qXfer:statictrace:read", "read-sdata-object", 0);
14679
14680 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14681 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14682
14683 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14684 "QDisableRandomization", "disable-randomization", 0);
14685
14686 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14687 "QAgent", "agent", 0);
14688
14689 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14690 "QTBuffer:size", "trace-buffer-size", 0);
14691
14692 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14693 "Qbtrace:off", "disable-btrace", 0);
14694
14695 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14696 "Qbtrace:bts", "enable-btrace-bts", 0);
14697
14698 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14699 "Qbtrace:pt", "enable-btrace-pt", 0);
14700
14701 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14702 "qXfer:btrace", "read-btrace", 0);
14703
14704 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14705 "qXfer:btrace-conf", "read-btrace-conf", 0);
14706
14707 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14708 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14709
14710 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14711 "multiprocess-feature", "multiprocess-feature", 0);
14712
14713 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14714 "swbreak-feature", "swbreak-feature", 0);
14715
14716 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14717 "hwbreak-feature", "hwbreak-feature", 0);
14718
14719 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14720 "fork-event-feature", "fork-event-feature", 0);
14721
14722 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14723 "vfork-event-feature", "vfork-event-feature", 0);
14724
14725 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14726 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14727
14728 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14729 "vContSupported", "verbose-resume-supported", 0);
14730
14731 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14732 "exec-event-feature", "exec-event-feature", 0);
14733
14734 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14735 "vCtrlC", "ctrl-c", 0);
14736
14737 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14738 "QThreadEvents", "thread-events", 0);
14739
14740 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14741 "N stop reply", "no-resumed-stop-reply", 0);
14742
14743 /* Assert that we've registered "set remote foo-packet" commands
14744 for all packet configs. */
14745 {
14746 int i;
14747
14748 for (i = 0; i < PACKET_MAX; i++)
14749 {
14750 /* Ideally all configs would have a command associated. Some
14751 still don't though. */
14752 int excepted;
14753
14754 switch (i)
14755 {
14756 case PACKET_QNonStop:
14757 case PACKET_EnableDisableTracepoints_feature:
14758 case PACKET_tracenz_feature:
14759 case PACKET_DisconnectedTracing_feature:
14760 case PACKET_augmented_libraries_svr4_read_feature:
14761 case PACKET_qCRC:
14762 /* Additions to this list need to be well justified:
14763 pre-existing packets are OK; new packets are not. */
14764 excepted = 1;
14765 break;
14766 default:
14767 excepted = 0;
14768 break;
14769 }
14770
14771 /* This catches both forgetting to add a config command, and
14772 forgetting to remove a packet from the exception list. */
14773 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14774 }
14775 }
14776
14777 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14778 Z sub-packet has its own set and show commands, but users may
14779 have sets to this variable in their .gdbinit files (or in their
14780 documentation). */
14781 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14782 &remote_Z_packet_detect, _("\
14783 Set use of remote protocol `Z' packets"), _("\
14784 Show use of remote protocol `Z' packets "), _("\
14785 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14786 packets."),
14787 set_remote_protocol_Z_packet_cmd,
14788 show_remote_protocol_Z_packet_cmd,
14789 /* FIXME: i18n: Use of remote protocol
14790 `Z' packets is %s. */
14791 &remote_set_cmdlist, &remote_show_cmdlist);
14792
14793 add_prefix_cmd ("remote", class_files, remote_command, _("\
14794 Manipulate files on the remote system\n\
14795 Transfer files to and from the remote target system."),
14796 &remote_cmdlist, "remote ",
14797 0 /* allow-unknown */, &cmdlist);
14798
14799 add_cmd ("put", class_files, remote_put_command,
14800 _("Copy a local file to the remote system."),
14801 &remote_cmdlist);
14802
14803 add_cmd ("get", class_files, remote_get_command,
14804 _("Copy a remote file to the local system."),
14805 &remote_cmdlist);
14806
14807 add_cmd ("delete", class_files, remote_delete_command,
14808 _("Delete a remote file."),
14809 &remote_cmdlist);
14810
14811 add_setshow_string_noescape_cmd ("exec-file", class_files,
14812 &remote_exec_file_var, _("\
14813 Set the remote pathname for \"run\""), _("\
14814 Show the remote pathname for \"run\""), NULL,
14815 set_remote_exec_file,
14816 show_remote_exec_file,
14817 &remote_set_cmdlist,
14818 &remote_show_cmdlist);
14819
14820 add_setshow_boolean_cmd ("range-stepping", class_run,
14821 &use_range_stepping, _("\
14822 Enable or disable range stepping."), _("\
14823 Show whether target-assisted range stepping is enabled."), _("\
14824 If on, and the target supports it, when stepping a source line, GDB\n\
14825 tells the target to step the corresponding range of addresses itself instead\n\
14826 of issuing multiple single-steps. This speeds up source level\n\
14827 stepping. If off, GDB always issues single-steps, even if range\n\
14828 stepping is supported by the target. The default is on."),
14829 set_range_stepping,
14830 show_range_stepping,
14831 &setlist,
14832 &showlist);
14833
14834 /* Eventually initialize fileio. See fileio.c */
14835 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
14836
14837 /* Take advantage of the fact that the TID field is not used, to tag
14838 special ptids with it set to != 0. */
14839 magic_null_ptid = ptid_t (42000, -1, 1);
14840 not_sent_ptid = ptid_t (42000, -2, 1);
14841 any_thread_ptid = ptid_t (42000, 0, 1);
14842 }
This page took 0.330432 seconds and 5 git commands to generate.