Use a member function to set a symbol's language
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used by some systems that use
22 COFF or ELF where the stabs data is placed in a special section (as
23 well as with many old systems that used the a.out object file
24 format). Avoid placing any object file format specific code in
25 this file. */
26
27 #include "defs.h"
28 #include "bfd.h"
29 #include "gdb_obstack.h"
30 #include "symtab.h"
31 #include "gdbtypes.h"
32 #include "expression.h"
33 #include "symfile.h"
34 #include "objfiles.h"
35 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
36 #include "libaout.h"
37 #include "aout/aout64.h"
38 #include "gdb-stabs.h"
39 #include "buildsym-legacy.h"
40 #include "complaints.h"
41 #include "demangle.h"
42 #include "gdb-demangle.h"
43 #include "language.h"
44 #include "target-float.h"
45 #include "c-lang.h"
46 #include "cp-abi.h"
47 #include "cp-support.h"
48 #include <ctype.h>
49
50 #include "stabsread.h"
51
52 /* See stabsread.h for these globals. */
53 unsigned int symnum;
54 const char *(*next_symbol_text_func) (struct objfile *);
55 unsigned char processing_gcc_compilation;
56 int within_function;
57 struct symbol *global_sym_chain[HASHSIZE];
58 struct pending_stabs *global_stabs;
59 int previous_stab_code;
60 int *this_object_header_files;
61 int n_this_object_header_files;
62 int n_allocated_this_object_header_files;
63
64 struct nextfield
65 {
66 struct nextfield *next;
67
68 /* This is the raw visibility from the stab. It is not checked
69 for being one of the visibilities we recognize, so code which
70 examines this field better be able to deal. */
71 int visibility;
72
73 struct field field;
74 };
75
76 struct next_fnfieldlist
77 {
78 struct next_fnfieldlist *next;
79 struct fn_fieldlist fn_fieldlist;
80 };
81
82 /* The routines that read and process a complete stabs for a C struct or
83 C++ class pass lists of data member fields and lists of member function
84 fields in an instance of a field_info structure, as defined below.
85 This is part of some reorganization of low level C++ support and is
86 expected to eventually go away... (FIXME) */
87
88 struct stab_field_info
89 {
90 struct nextfield *list = nullptr;
91 struct next_fnfieldlist *fnlist = nullptr;
92
93 auto_obstack obstack;
94 };
95
96 static void
97 read_one_struct_field (struct stab_field_info *, const char **, const char *,
98 struct type *, struct objfile *);
99
100 static struct type *dbx_alloc_type (int[2], struct objfile *);
101
102 static long read_huge_number (const char **, int, int *, int);
103
104 static struct type *error_type (const char **, struct objfile *);
105
106 static void
107 patch_block_stabs (struct pending *, struct pending_stabs *,
108 struct objfile *);
109
110 static void fix_common_block (struct symbol *, CORE_ADDR);
111
112 static int read_type_number (const char **, int *);
113
114 static struct type *read_type (const char **, struct objfile *);
115
116 static struct type *read_range_type (const char **, int[2],
117 int, struct objfile *);
118
119 static struct type *read_sun_builtin_type (const char **,
120 int[2], struct objfile *);
121
122 static struct type *read_sun_floating_type (const char **, int[2],
123 struct objfile *);
124
125 static struct type *read_enum_type (const char **, struct type *, struct objfile *);
126
127 static struct type *rs6000_builtin_type (int, struct objfile *);
128
129 static int
130 read_member_functions (struct stab_field_info *, const char **, struct type *,
131 struct objfile *);
132
133 static int
134 read_struct_fields (struct stab_field_info *, const char **, struct type *,
135 struct objfile *);
136
137 static int
138 read_baseclasses (struct stab_field_info *, const char **, struct type *,
139 struct objfile *);
140
141 static int
142 read_tilde_fields (struct stab_field_info *, const char **, struct type *,
143 struct objfile *);
144
145 static int attach_fn_fields_to_type (struct stab_field_info *, struct type *);
146
147 static int attach_fields_to_type (struct stab_field_info *, struct type *,
148 struct objfile *);
149
150 static struct type *read_struct_type (const char **, struct type *,
151 enum type_code,
152 struct objfile *);
153
154 static struct type *read_array_type (const char **, struct type *,
155 struct objfile *);
156
157 static struct field *read_args (const char **, int, struct objfile *,
158 int *, int *);
159
160 static void add_undefined_type (struct type *, int[2]);
161
162 static int
163 read_cpp_abbrev (struct stab_field_info *, const char **, struct type *,
164 struct objfile *);
165
166 static const char *find_name_end (const char *name);
167
168 static int process_reference (const char **string);
169
170 void stabsread_clear_cache (void);
171
172 static const char vptr_name[] = "_vptr$";
173 static const char vb_name[] = "_vb$";
174
175 static void
176 invalid_cpp_abbrev_complaint (const char *arg1)
177 {
178 complaint (_("invalid C++ abbreviation `%s'"), arg1);
179 }
180
181 static void
182 reg_value_complaint (int regnum, int num_regs, const char *sym)
183 {
184 complaint (_("bad register number %d (max %d) in symbol %s"),
185 regnum, num_regs - 1, sym);
186 }
187
188 static void
189 stabs_general_complaint (const char *arg1)
190 {
191 complaint ("%s", arg1);
192 }
193
194 /* Make a list of forward references which haven't been defined. */
195
196 static struct type **undef_types;
197 static int undef_types_allocated;
198 static int undef_types_length;
199 static struct symbol *current_symbol = NULL;
200
201 /* Make a list of nameless types that are undefined.
202 This happens when another type is referenced by its number
203 before this type is actually defined. For instance "t(0,1)=k(0,2)"
204 and type (0,2) is defined only later. */
205
206 struct nat
207 {
208 int typenums[2];
209 struct type *type;
210 };
211 static struct nat *noname_undefs;
212 static int noname_undefs_allocated;
213 static int noname_undefs_length;
214
215 /* Check for and handle cretinous stabs symbol name continuation! */
216 #define STABS_CONTINUE(pp,objfile) \
217 do { \
218 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
219 *(pp) = next_symbol_text (objfile); \
220 } while (0)
221
222 /* Vector of types defined so far, indexed by their type numbers.
223 (In newer sun systems, dbx uses a pair of numbers in parens,
224 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
225 Then these numbers must be translated through the type_translations
226 hash table to get the index into the type vector.) */
227
228 static struct type **type_vector;
229
230 /* Number of elements allocated for type_vector currently. */
231
232 static int type_vector_length;
233
234 /* Initial size of type vector. Is realloc'd larger if needed, and
235 realloc'd down to the size actually used, when completed. */
236
237 #define INITIAL_TYPE_VECTOR_LENGTH 160
238 \f
239
240 /* Look up a dbx type-number pair. Return the address of the slot
241 where the type for that number-pair is stored.
242 The number-pair is in TYPENUMS.
243
244 This can be used for finding the type associated with that pair
245 or for associating a new type with the pair. */
246
247 static struct type **
248 dbx_lookup_type (int typenums[2], struct objfile *objfile)
249 {
250 int filenum = typenums[0];
251 int index = typenums[1];
252 unsigned old_len;
253 int real_filenum;
254 struct header_file *f;
255 int f_orig_length;
256
257 if (filenum == -1) /* -1,-1 is for temporary types. */
258 return 0;
259
260 if (filenum < 0 || filenum >= n_this_object_header_files)
261 {
262 complaint (_("Invalid symbol data: type number "
263 "(%d,%d) out of range at symtab pos %d."),
264 filenum, index, symnum);
265 goto error_return;
266 }
267
268 if (filenum == 0)
269 {
270 if (index < 0)
271 {
272 /* Caller wants address of address of type. We think
273 that negative (rs6k builtin) types will never appear as
274 "lvalues", (nor should they), so we stuff the real type
275 pointer into a temp, and return its address. If referenced,
276 this will do the right thing. */
277 static struct type *temp_type;
278
279 temp_type = rs6000_builtin_type (index, objfile);
280 return &temp_type;
281 }
282
283 /* Type is defined outside of header files.
284 Find it in this object file's type vector. */
285 if (index >= type_vector_length)
286 {
287 old_len = type_vector_length;
288 if (old_len == 0)
289 {
290 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
291 type_vector = XNEWVEC (struct type *, type_vector_length);
292 }
293 while (index >= type_vector_length)
294 {
295 type_vector_length *= 2;
296 }
297 type_vector = (struct type **)
298 xrealloc ((char *) type_vector,
299 (type_vector_length * sizeof (struct type *)));
300 memset (&type_vector[old_len], 0,
301 (type_vector_length - old_len) * sizeof (struct type *));
302 }
303 return (&type_vector[index]);
304 }
305 else
306 {
307 real_filenum = this_object_header_files[filenum];
308
309 if (real_filenum >= N_HEADER_FILES (objfile))
310 {
311 static struct type *temp_type;
312
313 warning (_("GDB internal error: bad real_filenum"));
314
315 error_return:
316 temp_type = objfile_type (objfile)->builtin_error;
317 return &temp_type;
318 }
319
320 f = HEADER_FILES (objfile) + real_filenum;
321
322 f_orig_length = f->length;
323 if (index >= f_orig_length)
324 {
325 while (index >= f->length)
326 {
327 f->length *= 2;
328 }
329 f->vector = (struct type **)
330 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
331 memset (&f->vector[f_orig_length], 0,
332 (f->length - f_orig_length) * sizeof (struct type *));
333 }
334 return (&f->vector[index]);
335 }
336 }
337
338 /* Make sure there is a type allocated for type numbers TYPENUMS
339 and return the type object.
340 This can create an empty (zeroed) type object.
341 TYPENUMS may be (-1, -1) to return a new type object that is not
342 put into the type vector, and so may not be referred to by number. */
343
344 static struct type *
345 dbx_alloc_type (int typenums[2], struct objfile *objfile)
346 {
347 struct type **type_addr;
348
349 if (typenums[0] == -1)
350 {
351 return (alloc_type (objfile));
352 }
353
354 type_addr = dbx_lookup_type (typenums, objfile);
355
356 /* If we are referring to a type not known at all yet,
357 allocate an empty type for it.
358 We will fill it in later if we find out how. */
359 if (*type_addr == 0)
360 {
361 *type_addr = alloc_type (objfile);
362 }
363
364 return (*type_addr);
365 }
366
367 /* Allocate a floating-point type of size BITS. */
368
369 static struct type *
370 dbx_init_float_type (struct objfile *objfile, int bits)
371 {
372 struct gdbarch *gdbarch = get_objfile_arch (objfile);
373 const struct floatformat **format;
374 struct type *type;
375
376 format = gdbarch_floatformat_for_type (gdbarch, NULL, bits);
377 if (format)
378 type = init_float_type (objfile, bits, NULL, format);
379 else
380 type = init_type (objfile, TYPE_CODE_ERROR, bits, NULL);
381
382 return type;
383 }
384
385 /* for all the stabs in a given stab vector, build appropriate types
386 and fix their symbols in given symbol vector. */
387
388 static void
389 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
390 struct objfile *objfile)
391 {
392 int ii;
393 char *name;
394 const char *pp;
395 struct symbol *sym;
396
397 if (stabs)
398 {
399 /* for all the stab entries, find their corresponding symbols and
400 patch their types! */
401
402 for (ii = 0; ii < stabs->count; ++ii)
403 {
404 name = stabs->stab[ii];
405 pp = (char *) strchr (name, ':');
406 gdb_assert (pp); /* Must find a ':' or game's over. */
407 while (pp[1] == ':')
408 {
409 pp += 2;
410 pp = (char *) strchr (pp, ':');
411 }
412 sym = find_symbol_in_list (symbols, name, pp - name);
413 if (!sym)
414 {
415 /* FIXME-maybe: it would be nice if we noticed whether
416 the variable was defined *anywhere*, not just whether
417 it is defined in this compilation unit. But neither
418 xlc or GCC seem to need such a definition, and until
419 we do psymtabs (so that the minimal symbols from all
420 compilation units are available now), I'm not sure
421 how to get the information. */
422
423 /* On xcoff, if a global is defined and never referenced,
424 ld will remove it from the executable. There is then
425 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
426 sym = allocate_symbol (objfile);
427 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
428 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
429 sym->set_linkage_name
430 (obstack_strndup (&objfile->objfile_obstack, name, pp - name));
431 pp += 2;
432 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
433 {
434 /* I don't think the linker does this with functions,
435 so as far as I know this is never executed.
436 But it doesn't hurt to check. */
437 SYMBOL_TYPE (sym) =
438 lookup_function_type (read_type (&pp, objfile));
439 }
440 else
441 {
442 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
443 }
444 add_symbol_to_list (sym, get_global_symbols ());
445 }
446 else
447 {
448 pp += 2;
449 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
450 {
451 SYMBOL_TYPE (sym) =
452 lookup_function_type (read_type (&pp, objfile));
453 }
454 else
455 {
456 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
457 }
458 }
459 }
460 }
461 }
462 \f
463
464 /* Read a number by which a type is referred to in dbx data,
465 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
466 Just a single number N is equivalent to (0,N).
467 Return the two numbers by storing them in the vector TYPENUMS.
468 TYPENUMS will then be used as an argument to dbx_lookup_type.
469
470 Returns 0 for success, -1 for error. */
471
472 static int
473 read_type_number (const char **pp, int *typenums)
474 {
475 int nbits;
476
477 if (**pp == '(')
478 {
479 (*pp)++;
480 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
481 if (nbits != 0)
482 return -1;
483 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
484 if (nbits != 0)
485 return -1;
486 }
487 else
488 {
489 typenums[0] = 0;
490 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
491 if (nbits != 0)
492 return -1;
493 }
494 return 0;
495 }
496 \f
497
498 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
499 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
500 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
501 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
502
503 /* Structure for storing pointers to reference definitions for fast lookup
504 during "process_later". */
505
506 struct ref_map
507 {
508 const char *stabs;
509 CORE_ADDR value;
510 struct symbol *sym;
511 };
512
513 #define MAX_CHUNK_REFS 100
514 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
515 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
516
517 static struct ref_map *ref_map;
518
519 /* Ptr to free cell in chunk's linked list. */
520 static int ref_count = 0;
521
522 /* Number of chunks malloced. */
523 static int ref_chunk = 0;
524
525 /* This file maintains a cache of stabs aliases found in the symbol
526 table. If the symbol table changes, this cache must be cleared
527 or we are left holding onto data in invalid obstacks. */
528 void
529 stabsread_clear_cache (void)
530 {
531 ref_count = 0;
532 ref_chunk = 0;
533 }
534
535 /* Create array of pointers mapping refids to symbols and stab strings.
536 Add pointers to reference definition symbols and/or their values as we
537 find them, using their reference numbers as our index.
538 These will be used later when we resolve references. */
539 void
540 ref_add (int refnum, struct symbol *sym, const char *stabs, CORE_ADDR value)
541 {
542 if (ref_count == 0)
543 ref_chunk = 0;
544 if (refnum >= ref_count)
545 ref_count = refnum + 1;
546 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
547 {
548 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
549 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
550
551 ref_map = (struct ref_map *)
552 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
553 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
554 new_chunks * REF_CHUNK_SIZE);
555 ref_chunk += new_chunks;
556 }
557 ref_map[refnum].stabs = stabs;
558 ref_map[refnum].sym = sym;
559 ref_map[refnum].value = value;
560 }
561
562 /* Return defined sym for the reference REFNUM. */
563 struct symbol *
564 ref_search (int refnum)
565 {
566 if (refnum < 0 || refnum > ref_count)
567 return 0;
568 return ref_map[refnum].sym;
569 }
570
571 /* Parse a reference id in STRING and return the resulting
572 reference number. Move STRING beyond the reference id. */
573
574 static int
575 process_reference (const char **string)
576 {
577 const char *p;
578 int refnum = 0;
579
580 if (**string != '#')
581 return 0;
582
583 /* Advance beyond the initial '#'. */
584 p = *string + 1;
585
586 /* Read number as reference id. */
587 while (*p && isdigit (*p))
588 {
589 refnum = refnum * 10 + *p - '0';
590 p++;
591 }
592 *string = p;
593 return refnum;
594 }
595
596 /* If STRING defines a reference, store away a pointer to the reference
597 definition for later use. Return the reference number. */
598
599 int
600 symbol_reference_defined (const char **string)
601 {
602 const char *p = *string;
603 int refnum = 0;
604
605 refnum = process_reference (&p);
606
607 /* Defining symbols end in '='. */
608 if (*p == '=')
609 {
610 /* Symbol is being defined here. */
611 *string = p + 1;
612 return refnum;
613 }
614 else
615 {
616 /* Must be a reference. Either the symbol has already been defined,
617 or this is a forward reference to it. */
618 *string = p;
619 return -1;
620 }
621 }
622
623 static int
624 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
625 {
626 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
627
628 if (regno < 0 || regno >= gdbarch_num_cooked_regs (gdbarch))
629 {
630 reg_value_complaint (regno, gdbarch_num_cooked_regs (gdbarch),
631 sym->print_name ());
632
633 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
634 }
635
636 return regno;
637 }
638
639 static const struct symbol_register_ops stab_register_funcs = {
640 stab_reg_to_regnum
641 };
642
643 /* The "aclass" indices for computed symbols. */
644
645 static int stab_register_index;
646 static int stab_regparm_index;
647
648 struct symbol *
649 define_symbol (CORE_ADDR valu, const char *string, int desc, int type,
650 struct objfile *objfile)
651 {
652 struct gdbarch *gdbarch = get_objfile_arch (objfile);
653 struct symbol *sym;
654 const char *p = find_name_end (string);
655 int deftype;
656 int synonym = 0;
657 int i;
658
659 /* We would like to eliminate nameless symbols, but keep their types.
660 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
661 to type 2, but, should not create a symbol to address that type. Since
662 the symbol will be nameless, there is no way any user can refer to it. */
663
664 int nameless;
665
666 /* Ignore syms with empty names. */
667 if (string[0] == 0)
668 return 0;
669
670 /* Ignore old-style symbols from cc -go. */
671 if (p == 0)
672 return 0;
673
674 while (p[1] == ':')
675 {
676 p += 2;
677 p = strchr (p, ':');
678 if (p == NULL)
679 {
680 complaint (
681 _("Bad stabs string '%s'"), string);
682 return NULL;
683 }
684 }
685
686 /* If a nameless stab entry, all we need is the type, not the symbol.
687 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
688 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
689
690 current_symbol = sym = allocate_symbol (objfile);
691
692 if (processing_gcc_compilation)
693 {
694 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
695 number of bytes occupied by a type or object, which we ignore. */
696 SYMBOL_LINE (sym) = desc;
697 }
698 else
699 {
700 SYMBOL_LINE (sym) = 0; /* unknown */
701 }
702
703 sym->set_language (get_current_subfile ()->language,
704 &objfile->objfile_obstack);
705
706 if (is_cplus_marker (string[0]))
707 {
708 /* Special GNU C++ names. */
709 switch (string[1])
710 {
711 case 't':
712 sym->set_linkage_name ("this");
713 break;
714
715 case 'v': /* $vtbl_ptr_type */
716 goto normal;
717
718 case 'e':
719 sym->set_linkage_name ("eh_throw");
720 break;
721
722 case '_':
723 /* This was an anonymous type that was never fixed up. */
724 goto normal;
725
726 case 'X':
727 /* SunPRO (3.0 at least) static variable encoding. */
728 if (gdbarch_static_transform_name_p (gdbarch))
729 goto normal;
730 /* fall through */
731
732 default:
733 complaint (_("Unknown C++ symbol name `%s'"),
734 string);
735 goto normal; /* Do *something* with it. */
736 }
737 }
738 else
739 {
740 normal:
741 std::string new_name;
742
743 if (sym->language () == language_cplus)
744 {
745 char *name = (char *) alloca (p - string + 1);
746
747 memcpy (name, string, p - string);
748 name[p - string] = '\0';
749 new_name = cp_canonicalize_string (name);
750 }
751 if (!new_name.empty ())
752 {
753 SYMBOL_SET_NAMES (sym,
754 new_name,
755 1, objfile);
756 }
757 else
758 SYMBOL_SET_NAMES (sym, gdb::string_view (string, p - string), true,
759 objfile);
760
761 if (sym->language () == language_cplus)
762 cp_scan_for_anonymous_namespaces (get_buildsym_compunit (), sym,
763 objfile);
764
765 }
766 p++;
767
768 /* Determine the type of name being defined. */
769 #if 0
770 /* Getting GDB to correctly skip the symbol on an undefined symbol
771 descriptor and not ever dump core is a very dodgy proposition if
772 we do things this way. I say the acorn RISC machine can just
773 fix their compiler. */
774 /* The Acorn RISC machine's compiler can put out locals that don't
775 start with "234=" or "(3,4)=", so assume anything other than the
776 deftypes we know how to handle is a local. */
777 if (!strchr ("cfFGpPrStTvVXCR", *p))
778 #else
779 if (isdigit (*p) || *p == '(' || *p == '-')
780 #endif
781 deftype = 'l';
782 else
783 deftype = *p++;
784
785 switch (deftype)
786 {
787 case 'c':
788 /* c is a special case, not followed by a type-number.
789 SYMBOL:c=iVALUE for an integer constant symbol.
790 SYMBOL:c=rVALUE for a floating constant symbol.
791 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
792 e.g. "b:c=e6,0" for "const b = blob1"
793 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
794 if (*p != '=')
795 {
796 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
797 SYMBOL_TYPE (sym) = error_type (&p, objfile);
798 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
799 add_symbol_to_list (sym, get_file_symbols ());
800 return sym;
801 }
802 ++p;
803 switch (*p++)
804 {
805 case 'r':
806 {
807 gdb_byte *dbl_valu;
808 struct type *dbl_type;
809
810 dbl_type = objfile_type (objfile)->builtin_double;
811 dbl_valu
812 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack,
813 TYPE_LENGTH (dbl_type));
814
815 target_float_from_string (dbl_valu, dbl_type, std::string (p));
816
817 SYMBOL_TYPE (sym) = dbl_type;
818 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
819 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
820 }
821 break;
822 case 'i':
823 {
824 /* Defining integer constants this way is kind of silly,
825 since 'e' constants allows the compiler to give not
826 only the value, but the type as well. C has at least
827 int, long, unsigned int, and long long as constant
828 types; other languages probably should have at least
829 unsigned as well as signed constants. */
830
831 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
832 SYMBOL_VALUE (sym) = atoi (p);
833 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
834 }
835 break;
836
837 case 'c':
838 {
839 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
840 SYMBOL_VALUE (sym) = atoi (p);
841 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
842 }
843 break;
844
845 case 's':
846 {
847 struct type *range_type;
848 int ind = 0;
849 char quote = *p++;
850 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
851 gdb_byte *string_value;
852
853 if (quote != '\'' && quote != '"')
854 {
855 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
856 SYMBOL_TYPE (sym) = error_type (&p, objfile);
857 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
858 add_symbol_to_list (sym, get_file_symbols ());
859 return sym;
860 }
861
862 /* Find matching quote, rejecting escaped quotes. */
863 while (*p && *p != quote)
864 {
865 if (*p == '\\' && p[1] == quote)
866 {
867 string_local[ind] = (gdb_byte) quote;
868 ind++;
869 p += 2;
870 }
871 else if (*p)
872 {
873 string_local[ind] = (gdb_byte) (*p);
874 ind++;
875 p++;
876 }
877 }
878 if (*p != quote)
879 {
880 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
881 SYMBOL_TYPE (sym) = error_type (&p, objfile);
882 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
883 add_symbol_to_list (sym, get_file_symbols ());
884 return sym;
885 }
886
887 /* NULL terminate the string. */
888 string_local[ind] = 0;
889 range_type
890 = create_static_range_type (NULL,
891 objfile_type (objfile)->builtin_int,
892 0, ind);
893 SYMBOL_TYPE (sym) = create_array_type (NULL,
894 objfile_type (objfile)->builtin_char,
895 range_type);
896 string_value
897 = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, ind + 1);
898 memcpy (string_value, string_local, ind + 1);
899 p++;
900
901 SYMBOL_VALUE_BYTES (sym) = string_value;
902 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
903 }
904 break;
905
906 case 'e':
907 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
908 can be represented as integral.
909 e.g. "b:c=e6,0" for "const b = blob1"
910 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
911 {
912 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
913 SYMBOL_TYPE (sym) = read_type (&p, objfile);
914
915 if (*p != ',')
916 {
917 SYMBOL_TYPE (sym) = error_type (&p, objfile);
918 break;
919 }
920 ++p;
921
922 /* If the value is too big to fit in an int (perhaps because
923 it is unsigned), or something like that, we silently get
924 a bogus value. The type and everything else about it is
925 correct. Ideally, we should be using whatever we have
926 available for parsing unsigned and long long values,
927 however. */
928 SYMBOL_VALUE (sym) = atoi (p);
929 }
930 break;
931 default:
932 {
933 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
934 SYMBOL_TYPE (sym) = error_type (&p, objfile);
935 }
936 }
937 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
938 add_symbol_to_list (sym, get_file_symbols ());
939 return sym;
940
941 case 'C':
942 /* The name of a caught exception. */
943 SYMBOL_TYPE (sym) = read_type (&p, objfile);
944 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
945 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
946 SET_SYMBOL_VALUE_ADDRESS (sym, valu);
947 add_symbol_to_list (sym, get_local_symbols ());
948 break;
949
950 case 'f':
951 /* A static function definition. */
952 SYMBOL_TYPE (sym) = read_type (&p, objfile);
953 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
954 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
955 add_symbol_to_list (sym, get_file_symbols ());
956 /* fall into process_function_types. */
957
958 process_function_types:
959 /* Function result types are described as the result type in stabs.
960 We need to convert this to the function-returning-type-X type
961 in GDB. E.g. "int" is converted to "function returning int". */
962 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
963 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
964
965 /* All functions in C++ have prototypes. Stabs does not offer an
966 explicit way to identify prototyped or unprototyped functions,
967 but both GCC and Sun CC emit stabs for the "call-as" type rather
968 than the "declared-as" type for unprototyped functions, so
969 we treat all functions as if they were prototyped. This is used
970 primarily for promotion when calling the function from GDB. */
971 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
972
973 /* fall into process_prototype_types. */
974
975 process_prototype_types:
976 /* Sun acc puts declared types of arguments here. */
977 if (*p == ';')
978 {
979 struct type *ftype = SYMBOL_TYPE (sym);
980 int nsemi = 0;
981 int nparams = 0;
982 const char *p1 = p;
983
984 /* Obtain a worst case guess for the number of arguments
985 by counting the semicolons. */
986 while (*p1)
987 {
988 if (*p1++ == ';')
989 nsemi++;
990 }
991
992 /* Allocate parameter information fields and fill them in. */
993 TYPE_FIELDS (ftype) = (struct field *)
994 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
995 while (*p++ == ';')
996 {
997 struct type *ptype;
998
999 /* A type number of zero indicates the start of varargs.
1000 FIXME: GDB currently ignores vararg functions. */
1001 if (p[0] == '0' && p[1] == '\0')
1002 break;
1003 ptype = read_type (&p, objfile);
1004
1005 /* The Sun compilers mark integer arguments, which should
1006 be promoted to the width of the calling conventions, with
1007 a type which references itself. This type is turned into
1008 a TYPE_CODE_VOID type by read_type, and we have to turn
1009 it back into builtin_int here.
1010 FIXME: Do we need a new builtin_promoted_int_arg ? */
1011 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
1012 ptype = objfile_type (objfile)->builtin_int;
1013 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
1014 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
1015 }
1016 TYPE_NFIELDS (ftype) = nparams;
1017 TYPE_PROTOTYPED (ftype) = 1;
1018 }
1019 break;
1020
1021 case 'F':
1022 /* A global function definition. */
1023 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1024 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
1025 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1026 add_symbol_to_list (sym, get_global_symbols ());
1027 goto process_function_types;
1028
1029 case 'G':
1030 /* For a class G (global) symbol, it appears that the
1031 value is not correct. It is necessary to search for the
1032 corresponding linker definition to find the value.
1033 These definitions appear at the end of the namelist. */
1034 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1035 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1036 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1037 /* Don't add symbol references to global_sym_chain.
1038 Symbol references don't have valid names and wont't match up with
1039 minimal symbols when the global_sym_chain is relocated.
1040 We'll fixup symbol references when we fixup the defining symbol. */
1041 if (sym->linkage_name () && sym->linkage_name ()[0] != '#')
1042 {
1043 i = hashname (sym->linkage_name ());
1044 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1045 global_sym_chain[i] = sym;
1046 }
1047 add_symbol_to_list (sym, get_global_symbols ());
1048 break;
1049
1050 /* This case is faked by a conditional above,
1051 when there is no code letter in the dbx data.
1052 Dbx data never actually contains 'l'. */
1053 case 's':
1054 case 'l':
1055 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1056 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1057 SYMBOL_VALUE (sym) = valu;
1058 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1059 add_symbol_to_list (sym, get_local_symbols ());
1060 break;
1061
1062 case 'p':
1063 if (*p == 'F')
1064 /* pF is a two-letter code that means a function parameter in Fortran.
1065 The type-number specifies the type of the return value.
1066 Translate it into a pointer-to-function type. */
1067 {
1068 p++;
1069 SYMBOL_TYPE (sym)
1070 = lookup_pointer_type
1071 (lookup_function_type (read_type (&p, objfile)));
1072 }
1073 else
1074 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1075
1076 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
1077 SYMBOL_VALUE (sym) = valu;
1078 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1079 SYMBOL_IS_ARGUMENT (sym) = 1;
1080 add_symbol_to_list (sym, get_local_symbols ());
1081
1082 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1083 {
1084 /* On little-endian machines, this crud is never necessary,
1085 and, if the extra bytes contain garbage, is harmful. */
1086 break;
1087 }
1088
1089 /* If it's gcc-compiled, if it says `short', believe it. */
1090 if (processing_gcc_compilation
1091 || gdbarch_believe_pcc_promotion (gdbarch))
1092 break;
1093
1094 if (!gdbarch_believe_pcc_promotion (gdbarch))
1095 {
1096 /* If PCC says a parameter is a short or a char, it is
1097 really an int. */
1098 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1099 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1100 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1101 {
1102 SYMBOL_TYPE (sym) =
1103 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1104 ? objfile_type (objfile)->builtin_unsigned_int
1105 : objfile_type (objfile)->builtin_int;
1106 }
1107 break;
1108 }
1109 /* Fall through. */
1110
1111 case 'P':
1112 /* acc seems to use P to declare the prototypes of functions that
1113 are referenced by this file. gdb is not prepared to deal
1114 with this extra information. FIXME, it ought to. */
1115 if (type == N_FUN)
1116 {
1117 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1118 goto process_prototype_types;
1119 }
1120 /*FALLTHROUGH */
1121
1122 case 'R':
1123 /* Parameter which is in a register. */
1124 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1125 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1126 SYMBOL_IS_ARGUMENT (sym) = 1;
1127 SYMBOL_VALUE (sym) = valu;
1128 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1129 add_symbol_to_list (sym, get_local_symbols ());
1130 break;
1131
1132 case 'r':
1133 /* Register variable (either global or local). */
1134 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1135 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1136 SYMBOL_VALUE (sym) = valu;
1137 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1138 if (within_function)
1139 {
1140 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1141 the same name to represent an argument passed in a
1142 register. GCC uses 'P' for the same case. So if we find
1143 such a symbol pair we combine it into one 'P' symbol.
1144 For Sun cc we need to do this regardless of stabs_argument_has_addr, because the compiler puts out
1145 the 'p' symbol even if it never saves the argument onto
1146 the stack.
1147
1148 On most machines, we want to preserve both symbols, so
1149 that we can still get information about what is going on
1150 with the stack (VAX for computing args_printed, using
1151 stack slots instead of saved registers in backtraces,
1152 etc.).
1153
1154 Note that this code illegally combines
1155 main(argc) struct foo argc; { register struct foo argc; }
1156 but this case is considered pathological and causes a warning
1157 from a decent compiler. */
1158
1159 struct pending *local_symbols = *get_local_symbols ();
1160 if (local_symbols
1161 && local_symbols->nsyms > 0
1162 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1163 {
1164 struct symbol *prev_sym;
1165
1166 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1167 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1168 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1169 && strcmp (prev_sym->linkage_name (),
1170 sym->linkage_name ()) == 0)
1171 {
1172 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
1173 /* Use the type from the LOC_REGISTER; that is the type
1174 that is actually in that register. */
1175 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1176 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1177 sym = prev_sym;
1178 break;
1179 }
1180 }
1181 add_symbol_to_list (sym, get_local_symbols ());
1182 }
1183 else
1184 add_symbol_to_list (sym, get_file_symbols ());
1185 break;
1186
1187 case 'S':
1188 /* Static symbol at top level of file. */
1189 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1190 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1191 SET_SYMBOL_VALUE_ADDRESS (sym, valu);
1192 if (gdbarch_static_transform_name_p (gdbarch)
1193 && gdbarch_static_transform_name (gdbarch, sym->linkage_name ())
1194 != sym->linkage_name ())
1195 {
1196 struct bound_minimal_symbol msym;
1197
1198 msym = lookup_minimal_symbol (sym->linkage_name (), NULL, objfile);
1199 if (msym.minsym != NULL)
1200 {
1201 const char *new_name = gdbarch_static_transform_name
1202 (gdbarch, sym->linkage_name ());
1203
1204 sym->set_linkage_name (new_name);
1205 SET_SYMBOL_VALUE_ADDRESS (sym,
1206 BMSYMBOL_VALUE_ADDRESS (msym));
1207 }
1208 }
1209 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1210 add_symbol_to_list (sym, get_file_symbols ());
1211 break;
1212
1213 case 't':
1214 /* In Ada, there is no distinction between typedef and non-typedef;
1215 any type declaration implicitly has the equivalent of a typedef,
1216 and thus 't' is in fact equivalent to 'Tt'.
1217
1218 Therefore, for Ada units, we check the character immediately
1219 before the 't', and if we do not find a 'T', then make sure to
1220 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1221 will be stored in the VAR_DOMAIN). If the symbol was indeed
1222 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1223 elsewhere, so we don't need to take care of that.
1224
1225 This is important to do, because of forward references:
1226 The cleanup of undefined types stored in undef_types only uses
1227 STRUCT_DOMAIN symbols to perform the replacement. */
1228 synonym = (sym->language () == language_ada && p[-2] != 'T');
1229
1230 /* Typedef */
1231 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1232
1233 /* For a nameless type, we don't want a create a symbol, thus we
1234 did not use `sym'. Return without further processing. */
1235 if (nameless)
1236 return NULL;
1237
1238 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1239 SYMBOL_VALUE (sym) = valu;
1240 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1241 /* C++ vagaries: we may have a type which is derived from
1242 a base type which did not have its name defined when the
1243 derived class was output. We fill in the derived class's
1244 base part member's name here in that case. */
1245 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1246 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1247 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1248 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1249 {
1250 int j;
1251
1252 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1253 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1254 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1255 TYPE_NAME (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1256 }
1257
1258 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1259 {
1260 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1261 && strcmp (sym->linkage_name (), vtbl_ptr_name))
1262 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1263 {
1264 /* If we are giving a name to a type such as "pointer to
1265 foo" or "function returning foo", we better not set
1266 the TYPE_NAME. If the program contains "typedef char
1267 *caddr_t;", we don't want all variables of type char
1268 * to print as caddr_t. This is not just a
1269 consequence of GDB's type management; PCC and GCC (at
1270 least through version 2.4) both output variables of
1271 either type char * or caddr_t with the type number
1272 defined in the 't' symbol for caddr_t. If a future
1273 compiler cleans this up it GDB is not ready for it
1274 yet, but if it becomes ready we somehow need to
1275 disable this check (without breaking the PCC/GCC2.4
1276 case).
1277
1278 Sigh.
1279
1280 Fortunately, this check seems not to be necessary
1281 for anything except pointers or functions. */
1282 /* ezannoni: 2000-10-26. This seems to apply for
1283 versions of gcc older than 2.8. This was the original
1284 problem: with the following code gdb would tell that
1285 the type for name1 is caddr_t, and func is char().
1286
1287 typedef char *caddr_t;
1288 char *name2;
1289 struct x
1290 {
1291 char *name1;
1292 } xx;
1293 char *func()
1294 {
1295 }
1296 main () {}
1297 */
1298
1299 /* Pascal accepts names for pointer types. */
1300 if (get_current_subfile ()->language == language_pascal)
1301 {
1302 TYPE_NAME (SYMBOL_TYPE (sym)) = sym->linkage_name ();
1303 }
1304 }
1305 else
1306 TYPE_NAME (SYMBOL_TYPE (sym)) = sym->linkage_name ();
1307 }
1308
1309 add_symbol_to_list (sym, get_file_symbols ());
1310
1311 if (synonym)
1312 {
1313 /* Create the STRUCT_DOMAIN clone. */
1314 struct symbol *struct_sym = allocate_symbol (objfile);
1315
1316 *struct_sym = *sym;
1317 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
1318 SYMBOL_VALUE (struct_sym) = valu;
1319 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1320 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1321 TYPE_NAME (SYMBOL_TYPE (sym))
1322 = obconcat (&objfile->objfile_obstack, sym->linkage_name (),
1323 (char *) NULL);
1324 add_symbol_to_list (struct_sym, get_file_symbols ());
1325 }
1326
1327 break;
1328
1329 case 'T':
1330 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1331 by 't' which means we are typedef'ing it as well. */
1332 synonym = *p == 't';
1333
1334 if (synonym)
1335 p++;
1336
1337 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1338
1339 /* For a nameless type, we don't want a create a symbol, thus we
1340 did not use `sym'. Return without further processing. */
1341 if (nameless)
1342 return NULL;
1343
1344 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1345 SYMBOL_VALUE (sym) = valu;
1346 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1347 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1348 TYPE_NAME (SYMBOL_TYPE (sym))
1349 = obconcat (&objfile->objfile_obstack, sym->linkage_name (),
1350 (char *) NULL);
1351 add_symbol_to_list (sym, get_file_symbols ());
1352
1353 if (synonym)
1354 {
1355 /* Clone the sym and then modify it. */
1356 struct symbol *typedef_sym = allocate_symbol (objfile);
1357
1358 *typedef_sym = *sym;
1359 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
1360 SYMBOL_VALUE (typedef_sym) = valu;
1361 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1362 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1363 TYPE_NAME (SYMBOL_TYPE (sym))
1364 = obconcat (&objfile->objfile_obstack, sym->linkage_name (),
1365 (char *) NULL);
1366 add_symbol_to_list (typedef_sym, get_file_symbols ());
1367 }
1368 break;
1369
1370 case 'V':
1371 /* Static symbol of local scope. */
1372 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1373 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1374 SET_SYMBOL_VALUE_ADDRESS (sym, valu);
1375 if (gdbarch_static_transform_name_p (gdbarch)
1376 && gdbarch_static_transform_name (gdbarch, sym->linkage_name ())
1377 != sym->linkage_name ())
1378 {
1379 struct bound_minimal_symbol msym;
1380
1381 msym = lookup_minimal_symbol (sym->linkage_name (), NULL, objfile);
1382 if (msym.minsym != NULL)
1383 {
1384 const char *new_name = gdbarch_static_transform_name
1385 (gdbarch, sym->linkage_name ());
1386
1387 sym->set_linkage_name (new_name);
1388 SET_SYMBOL_VALUE_ADDRESS (sym, BMSYMBOL_VALUE_ADDRESS (msym));
1389 }
1390 }
1391 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1392 add_symbol_to_list (sym, get_local_symbols ());
1393 break;
1394
1395 case 'v':
1396 /* Reference parameter */
1397 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1398 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1399 SYMBOL_IS_ARGUMENT (sym) = 1;
1400 SYMBOL_VALUE (sym) = valu;
1401 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1402 add_symbol_to_list (sym, get_local_symbols ());
1403 break;
1404
1405 case 'a':
1406 /* Reference parameter which is in a register. */
1407 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1408 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
1409 SYMBOL_IS_ARGUMENT (sym) = 1;
1410 SYMBOL_VALUE (sym) = valu;
1411 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1412 add_symbol_to_list (sym, get_local_symbols ());
1413 break;
1414
1415 case 'X':
1416 /* This is used by Sun FORTRAN for "function result value".
1417 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1418 that Pascal uses it too, but when I tried it Pascal used
1419 "x:3" (local symbol) instead. */
1420 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1421 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1422 SYMBOL_VALUE (sym) = valu;
1423 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1424 add_symbol_to_list (sym, get_local_symbols ());
1425 break;
1426
1427 default:
1428 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1429 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
1430 SYMBOL_VALUE (sym) = 0;
1431 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1432 add_symbol_to_list (sym, get_file_symbols ());
1433 break;
1434 }
1435
1436 /* Some systems pass variables of certain types by reference instead
1437 of by value, i.e. they will pass the address of a structure (in a
1438 register or on the stack) instead of the structure itself. */
1439
1440 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1441 && SYMBOL_IS_ARGUMENT (sym))
1442 {
1443 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1444 variables passed in a register). */
1445 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1446 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
1447 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1448 and subsequent arguments on SPARC, for example). */
1449 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1450 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1451 }
1452
1453 return sym;
1454 }
1455
1456 /* Skip rest of this symbol and return an error type.
1457
1458 General notes on error recovery: error_type always skips to the
1459 end of the symbol (modulo cretinous dbx symbol name continuation).
1460 Thus code like this:
1461
1462 if (*(*pp)++ != ';')
1463 return error_type (pp, objfile);
1464
1465 is wrong because if *pp starts out pointing at '\0' (typically as the
1466 result of an earlier error), it will be incremented to point to the
1467 start of the next symbol, which might produce strange results, at least
1468 if you run off the end of the string table. Instead use
1469
1470 if (**pp != ';')
1471 return error_type (pp, objfile);
1472 ++*pp;
1473
1474 or
1475
1476 if (**pp != ';')
1477 foo = error_type (pp, objfile);
1478 else
1479 ++*pp;
1480
1481 And in case it isn't obvious, the point of all this hair is so the compiler
1482 can define new types and new syntaxes, and old versions of the
1483 debugger will be able to read the new symbol tables. */
1484
1485 static struct type *
1486 error_type (const char **pp, struct objfile *objfile)
1487 {
1488 complaint (_("couldn't parse type; debugger out of date?"));
1489 while (1)
1490 {
1491 /* Skip to end of symbol. */
1492 while (**pp != '\0')
1493 {
1494 (*pp)++;
1495 }
1496
1497 /* Check for and handle cretinous dbx symbol name continuation! */
1498 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1499 {
1500 *pp = next_symbol_text (objfile);
1501 }
1502 else
1503 {
1504 break;
1505 }
1506 }
1507 return objfile_type (objfile)->builtin_error;
1508 }
1509 \f
1510
1511 /* Read type information or a type definition; return the type. Even
1512 though this routine accepts either type information or a type
1513 definition, the distinction is relevant--some parts of stabsread.c
1514 assume that type information starts with a digit, '-', or '(' in
1515 deciding whether to call read_type. */
1516
1517 static struct type *
1518 read_type (const char **pp, struct objfile *objfile)
1519 {
1520 struct type *type = 0;
1521 struct type *type1;
1522 int typenums[2];
1523 char type_descriptor;
1524
1525 /* Size in bits of type if specified by a type attribute, or -1 if
1526 there is no size attribute. */
1527 int type_size = -1;
1528
1529 /* Used to distinguish string and bitstring from char-array and set. */
1530 int is_string = 0;
1531
1532 /* Used to distinguish vector from array. */
1533 int is_vector = 0;
1534
1535 /* Read type number if present. The type number may be omitted.
1536 for instance in a two-dimensional array declared with type
1537 "ar1;1;10;ar1;1;10;4". */
1538 if ((**pp >= '0' && **pp <= '9')
1539 || **pp == '('
1540 || **pp == '-')
1541 {
1542 if (read_type_number (pp, typenums) != 0)
1543 return error_type (pp, objfile);
1544
1545 if (**pp != '=')
1546 {
1547 /* Type is not being defined here. Either it already
1548 exists, or this is a forward reference to it.
1549 dbx_alloc_type handles both cases. */
1550 type = dbx_alloc_type (typenums, objfile);
1551
1552 /* If this is a forward reference, arrange to complain if it
1553 doesn't get patched up by the time we're done
1554 reading. */
1555 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1556 add_undefined_type (type, typenums);
1557
1558 return type;
1559 }
1560
1561 /* Type is being defined here. */
1562 /* Skip the '='.
1563 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1564 (*pp) += 2;
1565 }
1566 else
1567 {
1568 /* 'typenums=' not present, type is anonymous. Read and return
1569 the definition, but don't put it in the type vector. */
1570 typenums[0] = typenums[1] = -1;
1571 (*pp)++;
1572 }
1573
1574 again:
1575 type_descriptor = (*pp)[-1];
1576 switch (type_descriptor)
1577 {
1578 case 'x':
1579 {
1580 enum type_code code;
1581
1582 /* Used to index through file_symbols. */
1583 struct pending *ppt;
1584 int i;
1585
1586 /* Name including "struct", etc. */
1587 char *type_name;
1588
1589 {
1590 const char *from, *p, *q1, *q2;
1591
1592 /* Set the type code according to the following letter. */
1593 switch ((*pp)[0])
1594 {
1595 case 's':
1596 code = TYPE_CODE_STRUCT;
1597 break;
1598 case 'u':
1599 code = TYPE_CODE_UNION;
1600 break;
1601 case 'e':
1602 code = TYPE_CODE_ENUM;
1603 break;
1604 default:
1605 {
1606 /* Complain and keep going, so compilers can invent new
1607 cross-reference types. */
1608 complaint (_("Unrecognized cross-reference type `%c'"),
1609 (*pp)[0]);
1610 code = TYPE_CODE_STRUCT;
1611 break;
1612 }
1613 }
1614
1615 q1 = strchr (*pp, '<');
1616 p = strchr (*pp, ':');
1617 if (p == NULL)
1618 return error_type (pp, objfile);
1619 if (q1 && p > q1 && p[1] == ':')
1620 {
1621 int nesting_level = 0;
1622
1623 for (q2 = q1; *q2; q2++)
1624 {
1625 if (*q2 == '<')
1626 nesting_level++;
1627 else if (*q2 == '>')
1628 nesting_level--;
1629 else if (*q2 == ':' && nesting_level == 0)
1630 break;
1631 }
1632 p = q2;
1633 if (*p != ':')
1634 return error_type (pp, objfile);
1635 }
1636 type_name = NULL;
1637 if (get_current_subfile ()->language == language_cplus)
1638 {
1639 char *name = (char *) alloca (p - *pp + 1);
1640
1641 memcpy (name, *pp, p - *pp);
1642 name[p - *pp] = '\0';
1643
1644 std::string new_name = cp_canonicalize_string (name);
1645 if (!new_name.empty ())
1646 type_name = obstack_strdup (&objfile->objfile_obstack,
1647 new_name);
1648 }
1649 if (type_name == NULL)
1650 {
1651 char *to = type_name = (char *)
1652 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1653
1654 /* Copy the name. */
1655 from = *pp + 1;
1656 while (from < p)
1657 *to++ = *from++;
1658 *to = '\0';
1659 }
1660
1661 /* Set the pointer ahead of the name which we just read, and
1662 the colon. */
1663 *pp = p + 1;
1664 }
1665
1666 /* If this type has already been declared, then reuse the same
1667 type, rather than allocating a new one. This saves some
1668 memory. */
1669
1670 for (ppt = *get_file_symbols (); ppt; ppt = ppt->next)
1671 for (i = 0; i < ppt->nsyms; i++)
1672 {
1673 struct symbol *sym = ppt->symbol[i];
1674
1675 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1676 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1677 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1678 && strcmp (sym->linkage_name (), type_name) == 0)
1679 {
1680 obstack_free (&objfile->objfile_obstack, type_name);
1681 type = SYMBOL_TYPE (sym);
1682 if (typenums[0] != -1)
1683 *dbx_lookup_type (typenums, objfile) = type;
1684 return type;
1685 }
1686 }
1687
1688 /* Didn't find the type to which this refers, so we must
1689 be dealing with a forward reference. Allocate a type
1690 structure for it, and keep track of it so we can
1691 fill in the rest of the fields when we get the full
1692 type. */
1693 type = dbx_alloc_type (typenums, objfile);
1694 TYPE_CODE (type) = code;
1695 TYPE_NAME (type) = type_name;
1696 INIT_CPLUS_SPECIFIC (type);
1697 TYPE_STUB (type) = 1;
1698
1699 add_undefined_type (type, typenums);
1700 return type;
1701 }
1702
1703 case '-': /* RS/6000 built-in type */
1704 case '0':
1705 case '1':
1706 case '2':
1707 case '3':
1708 case '4':
1709 case '5':
1710 case '6':
1711 case '7':
1712 case '8':
1713 case '9':
1714 case '(':
1715 (*pp)--;
1716
1717 /* We deal with something like t(1,2)=(3,4)=... which
1718 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1719
1720 /* Allocate and enter the typedef type first.
1721 This handles recursive types. */
1722 type = dbx_alloc_type (typenums, objfile);
1723 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1724 {
1725 struct type *xtype = read_type (pp, objfile);
1726
1727 if (type == xtype)
1728 {
1729 /* It's being defined as itself. That means it is "void". */
1730 TYPE_CODE (type) = TYPE_CODE_VOID;
1731 TYPE_LENGTH (type) = 1;
1732 }
1733 else if (type_size >= 0 || is_string)
1734 {
1735 /* This is the absolute wrong way to construct types. Every
1736 other debug format has found a way around this problem and
1737 the related problems with unnecessarily stubbed types;
1738 someone motivated should attempt to clean up the issue
1739 here as well. Once a type pointed to has been created it
1740 should not be modified.
1741
1742 Well, it's not *absolutely* wrong. Constructing recursive
1743 types (trees, linked lists) necessarily entails modifying
1744 types after creating them. Constructing any loop structure
1745 entails side effects. The Dwarf 2 reader does handle this
1746 more gracefully (it never constructs more than once
1747 instance of a type object, so it doesn't have to copy type
1748 objects wholesale), but it still mutates type objects after
1749 other folks have references to them.
1750
1751 Keep in mind that this circularity/mutation issue shows up
1752 at the source language level, too: C's "incomplete types",
1753 for example. So the proper cleanup, I think, would be to
1754 limit GDB's type smashing to match exactly those required
1755 by the source language. So GDB could have a
1756 "complete_this_type" function, but never create unnecessary
1757 copies of a type otherwise. */
1758 replace_type (type, xtype);
1759 TYPE_NAME (type) = NULL;
1760 }
1761 else
1762 {
1763 TYPE_TARGET_STUB (type) = 1;
1764 TYPE_TARGET_TYPE (type) = xtype;
1765 }
1766 }
1767 break;
1768
1769 /* In the following types, we must be sure to overwrite any existing
1770 type that the typenums refer to, rather than allocating a new one
1771 and making the typenums point to the new one. This is because there
1772 may already be pointers to the existing type (if it had been
1773 forward-referenced), and we must change it to a pointer, function,
1774 reference, or whatever, *in-place*. */
1775
1776 case '*': /* Pointer to another type */
1777 type1 = read_type (pp, objfile);
1778 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1779 break;
1780
1781 case '&': /* Reference to another type */
1782 type1 = read_type (pp, objfile);
1783 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile),
1784 TYPE_CODE_REF);
1785 break;
1786
1787 case 'f': /* Function returning another type */
1788 type1 = read_type (pp, objfile);
1789 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1790 break;
1791
1792 case 'g': /* Prototyped function. (Sun) */
1793 {
1794 /* Unresolved questions:
1795
1796 - According to Sun's ``STABS Interface Manual'', for 'f'
1797 and 'F' symbol descriptors, a `0' in the argument type list
1798 indicates a varargs function. But it doesn't say how 'g'
1799 type descriptors represent that info. Someone with access
1800 to Sun's toolchain should try it out.
1801
1802 - According to the comment in define_symbol (search for
1803 `process_prototype_types:'), Sun emits integer arguments as
1804 types which ref themselves --- like `void' types. Do we
1805 have to deal with that here, too? Again, someone with
1806 access to Sun's toolchain should try it out and let us
1807 know. */
1808
1809 const char *type_start = (*pp) - 1;
1810 struct type *return_type = read_type (pp, objfile);
1811 struct type *func_type
1812 = make_function_type (return_type,
1813 dbx_lookup_type (typenums, objfile));
1814 struct type_list {
1815 struct type *type;
1816 struct type_list *next;
1817 } *arg_types = 0;
1818 int num_args = 0;
1819
1820 while (**pp && **pp != '#')
1821 {
1822 struct type *arg_type = read_type (pp, objfile);
1823 struct type_list *newobj = XALLOCA (struct type_list);
1824 newobj->type = arg_type;
1825 newobj->next = arg_types;
1826 arg_types = newobj;
1827 num_args++;
1828 }
1829 if (**pp == '#')
1830 ++*pp;
1831 else
1832 {
1833 complaint (_("Prototyped function type didn't "
1834 "end arguments with `#':\n%s"),
1835 type_start);
1836 }
1837
1838 /* If there is just one argument whose type is `void', then
1839 that's just an empty argument list. */
1840 if (arg_types
1841 && ! arg_types->next
1842 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1843 num_args = 0;
1844
1845 TYPE_FIELDS (func_type)
1846 = (struct field *) TYPE_ALLOC (func_type,
1847 num_args * sizeof (struct field));
1848 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1849 {
1850 int i;
1851 struct type_list *t;
1852
1853 /* We stuck each argument type onto the front of the list
1854 when we read it, so the list is reversed. Build the
1855 fields array right-to-left. */
1856 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1857 TYPE_FIELD_TYPE (func_type, i) = t->type;
1858 }
1859 TYPE_NFIELDS (func_type) = num_args;
1860 TYPE_PROTOTYPED (func_type) = 1;
1861
1862 type = func_type;
1863 break;
1864 }
1865
1866 case 'k': /* Const qualifier on some type (Sun) */
1867 type = read_type (pp, objfile);
1868 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1869 dbx_lookup_type (typenums, objfile));
1870 break;
1871
1872 case 'B': /* Volatile qual on some type (Sun) */
1873 type = read_type (pp, objfile);
1874 type = make_cv_type (TYPE_CONST (type), 1, type,
1875 dbx_lookup_type (typenums, objfile));
1876 break;
1877
1878 case '@':
1879 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1880 { /* Member (class & variable) type */
1881 /* FIXME -- we should be doing smash_to_XXX types here. */
1882
1883 struct type *domain = read_type (pp, objfile);
1884 struct type *memtype;
1885
1886 if (**pp != ',')
1887 /* Invalid member type data format. */
1888 return error_type (pp, objfile);
1889 ++*pp;
1890
1891 memtype = read_type (pp, objfile);
1892 type = dbx_alloc_type (typenums, objfile);
1893 smash_to_memberptr_type (type, domain, memtype);
1894 }
1895 else
1896 /* type attribute */
1897 {
1898 const char *attr = *pp;
1899
1900 /* Skip to the semicolon. */
1901 while (**pp != ';' && **pp != '\0')
1902 ++(*pp);
1903 if (**pp == '\0')
1904 return error_type (pp, objfile);
1905 else
1906 ++ * pp; /* Skip the semicolon. */
1907
1908 switch (*attr)
1909 {
1910 case 's': /* Size attribute */
1911 type_size = atoi (attr + 1);
1912 if (type_size <= 0)
1913 type_size = -1;
1914 break;
1915
1916 case 'S': /* String attribute */
1917 /* FIXME: check to see if following type is array? */
1918 is_string = 1;
1919 break;
1920
1921 case 'V': /* Vector attribute */
1922 /* FIXME: check to see if following type is array? */
1923 is_vector = 1;
1924 break;
1925
1926 default:
1927 /* Ignore unrecognized type attributes, so future compilers
1928 can invent new ones. */
1929 break;
1930 }
1931 ++*pp;
1932 goto again;
1933 }
1934 break;
1935
1936 case '#': /* Method (class & fn) type */
1937 if ((*pp)[0] == '#')
1938 {
1939 /* We'll get the parameter types from the name. */
1940 struct type *return_type;
1941
1942 (*pp)++;
1943 return_type = read_type (pp, objfile);
1944 if (*(*pp)++ != ';')
1945 complaint (_("invalid (minimal) member type "
1946 "data format at symtab pos %d."),
1947 symnum);
1948 type = allocate_stub_method (return_type);
1949 if (typenums[0] != -1)
1950 *dbx_lookup_type (typenums, objfile) = type;
1951 }
1952 else
1953 {
1954 struct type *domain = read_type (pp, objfile);
1955 struct type *return_type;
1956 struct field *args;
1957 int nargs, varargs;
1958
1959 if (**pp != ',')
1960 /* Invalid member type data format. */
1961 return error_type (pp, objfile);
1962 else
1963 ++(*pp);
1964
1965 return_type = read_type (pp, objfile);
1966 args = read_args (pp, ';', objfile, &nargs, &varargs);
1967 if (args == NULL)
1968 return error_type (pp, objfile);
1969 type = dbx_alloc_type (typenums, objfile);
1970 smash_to_method_type (type, domain, return_type, args,
1971 nargs, varargs);
1972 }
1973 break;
1974
1975 case 'r': /* Range type */
1976 type = read_range_type (pp, typenums, type_size, objfile);
1977 if (typenums[0] != -1)
1978 *dbx_lookup_type (typenums, objfile) = type;
1979 break;
1980
1981 case 'b':
1982 {
1983 /* Sun ACC builtin int type */
1984 type = read_sun_builtin_type (pp, typenums, objfile);
1985 if (typenums[0] != -1)
1986 *dbx_lookup_type (typenums, objfile) = type;
1987 }
1988 break;
1989
1990 case 'R': /* Sun ACC builtin float type */
1991 type = read_sun_floating_type (pp, typenums, objfile);
1992 if (typenums[0] != -1)
1993 *dbx_lookup_type (typenums, objfile) = type;
1994 break;
1995
1996 case 'e': /* Enumeration type */
1997 type = dbx_alloc_type (typenums, objfile);
1998 type = read_enum_type (pp, type, objfile);
1999 if (typenums[0] != -1)
2000 *dbx_lookup_type (typenums, objfile) = type;
2001 break;
2002
2003 case 's': /* Struct type */
2004 case 'u': /* Union type */
2005 {
2006 enum type_code type_code = TYPE_CODE_UNDEF;
2007 type = dbx_alloc_type (typenums, objfile);
2008 switch (type_descriptor)
2009 {
2010 case 's':
2011 type_code = TYPE_CODE_STRUCT;
2012 break;
2013 case 'u':
2014 type_code = TYPE_CODE_UNION;
2015 break;
2016 }
2017 type = read_struct_type (pp, type, type_code, objfile);
2018 break;
2019 }
2020
2021 case 'a': /* Array type */
2022 if (**pp != 'r')
2023 return error_type (pp, objfile);
2024 ++*pp;
2025
2026 type = dbx_alloc_type (typenums, objfile);
2027 type = read_array_type (pp, type, objfile);
2028 if (is_string)
2029 TYPE_CODE (type) = TYPE_CODE_STRING;
2030 if (is_vector)
2031 make_vector_type (type);
2032 break;
2033
2034 case 'S': /* Set type */
2035 type1 = read_type (pp, objfile);
2036 type = create_set_type (NULL, type1);
2037 if (typenums[0] != -1)
2038 *dbx_lookup_type (typenums, objfile) = type;
2039 break;
2040
2041 default:
2042 --*pp; /* Go back to the symbol in error. */
2043 /* Particularly important if it was \0! */
2044 return error_type (pp, objfile);
2045 }
2046
2047 if (type == 0)
2048 {
2049 warning (_("GDB internal error, type is NULL in stabsread.c."));
2050 return error_type (pp, objfile);
2051 }
2052
2053 /* Size specified in a type attribute overrides any other size. */
2054 if (type_size != -1)
2055 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2056
2057 return type;
2058 }
2059 \f
2060 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2061 Return the proper type node for a given builtin type number. */
2062
2063 static const struct objfile_key<struct type *,
2064 gdb::noop_deleter<struct type *>>
2065 rs6000_builtin_type_data;
2066
2067 static struct type *
2068 rs6000_builtin_type (int typenum, struct objfile *objfile)
2069 {
2070 struct type **negative_types = rs6000_builtin_type_data.get (objfile);
2071
2072 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2073 #define NUMBER_RECOGNIZED 34
2074 struct type *rettype = NULL;
2075
2076 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2077 {
2078 complaint (_("Unknown builtin type %d"), typenum);
2079 return objfile_type (objfile)->builtin_error;
2080 }
2081
2082 if (!negative_types)
2083 {
2084 /* This includes an empty slot for type number -0. */
2085 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2086 NUMBER_RECOGNIZED + 1, struct type *);
2087 rs6000_builtin_type_data.set (objfile, negative_types);
2088 }
2089
2090 if (negative_types[-typenum] != NULL)
2091 return negative_types[-typenum];
2092
2093 #if TARGET_CHAR_BIT != 8
2094 #error This code wrong for TARGET_CHAR_BIT not 8
2095 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2096 that if that ever becomes not true, the correct fix will be to
2097 make the size in the struct type to be in bits, not in units of
2098 TARGET_CHAR_BIT. */
2099 #endif
2100
2101 switch (-typenum)
2102 {
2103 case 1:
2104 /* The size of this and all the other types are fixed, defined
2105 by the debugging format. If there is a type called "int" which
2106 is other than 32 bits, then it should use a new negative type
2107 number (or avoid negative type numbers for that case).
2108 See stabs.texinfo. */
2109 rettype = init_integer_type (objfile, 32, 0, "int");
2110 break;
2111 case 2:
2112 rettype = init_integer_type (objfile, 8, 0, "char");
2113 TYPE_NOSIGN (rettype) = 1;
2114 break;
2115 case 3:
2116 rettype = init_integer_type (objfile, 16, 0, "short");
2117 break;
2118 case 4:
2119 rettype = init_integer_type (objfile, 32, 0, "long");
2120 break;
2121 case 5:
2122 rettype = init_integer_type (objfile, 8, 1, "unsigned char");
2123 break;
2124 case 6:
2125 rettype = init_integer_type (objfile, 8, 0, "signed char");
2126 break;
2127 case 7:
2128 rettype = init_integer_type (objfile, 16, 1, "unsigned short");
2129 break;
2130 case 8:
2131 rettype = init_integer_type (objfile, 32, 1, "unsigned int");
2132 break;
2133 case 9:
2134 rettype = init_integer_type (objfile, 32, 1, "unsigned");
2135 break;
2136 case 10:
2137 rettype = init_integer_type (objfile, 32, 1, "unsigned long");
2138 break;
2139 case 11:
2140 rettype = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, "void");
2141 break;
2142 case 12:
2143 /* IEEE single precision (32 bit). */
2144 rettype = init_float_type (objfile, 32, "float",
2145 floatformats_ieee_single);
2146 break;
2147 case 13:
2148 /* IEEE double precision (64 bit). */
2149 rettype = init_float_type (objfile, 64, "double",
2150 floatformats_ieee_double);
2151 break;
2152 case 14:
2153 /* This is an IEEE double on the RS/6000, and different machines with
2154 different sizes for "long double" should use different negative
2155 type numbers. See stabs.texinfo. */
2156 rettype = init_float_type (objfile, 64, "long double",
2157 floatformats_ieee_double);
2158 break;
2159 case 15:
2160 rettype = init_integer_type (objfile, 32, 0, "integer");
2161 break;
2162 case 16:
2163 rettype = init_boolean_type (objfile, 32, 1, "boolean");
2164 break;
2165 case 17:
2166 rettype = init_float_type (objfile, 32, "short real",
2167 floatformats_ieee_single);
2168 break;
2169 case 18:
2170 rettype = init_float_type (objfile, 64, "real",
2171 floatformats_ieee_double);
2172 break;
2173 case 19:
2174 rettype = init_type (objfile, TYPE_CODE_ERROR, 0, "stringptr");
2175 break;
2176 case 20:
2177 rettype = init_character_type (objfile, 8, 1, "character");
2178 break;
2179 case 21:
2180 rettype = init_boolean_type (objfile, 8, 1, "logical*1");
2181 break;
2182 case 22:
2183 rettype = init_boolean_type (objfile, 16, 1, "logical*2");
2184 break;
2185 case 23:
2186 rettype = init_boolean_type (objfile, 32, 1, "logical*4");
2187 break;
2188 case 24:
2189 rettype = init_boolean_type (objfile, 32, 1, "logical");
2190 break;
2191 case 25:
2192 /* Complex type consisting of two IEEE single precision values. */
2193 rettype = init_complex_type (objfile, "complex",
2194 rs6000_builtin_type (12, objfile));
2195 break;
2196 case 26:
2197 /* Complex type consisting of two IEEE double precision values. */
2198 rettype = init_complex_type (objfile, "double complex",
2199 rs6000_builtin_type (13, objfile));
2200 break;
2201 case 27:
2202 rettype = init_integer_type (objfile, 8, 0, "integer*1");
2203 break;
2204 case 28:
2205 rettype = init_integer_type (objfile, 16, 0, "integer*2");
2206 break;
2207 case 29:
2208 rettype = init_integer_type (objfile, 32, 0, "integer*4");
2209 break;
2210 case 30:
2211 rettype = init_character_type (objfile, 16, 0, "wchar");
2212 break;
2213 case 31:
2214 rettype = init_integer_type (objfile, 64, 0, "long long");
2215 break;
2216 case 32:
2217 rettype = init_integer_type (objfile, 64, 1, "unsigned long long");
2218 break;
2219 case 33:
2220 rettype = init_integer_type (objfile, 64, 1, "logical*8");
2221 break;
2222 case 34:
2223 rettype = init_integer_type (objfile, 64, 0, "integer*8");
2224 break;
2225 }
2226 negative_types[-typenum] = rettype;
2227 return rettype;
2228 }
2229 \f
2230 /* This page contains subroutines of read_type. */
2231
2232 /* Wrapper around method_name_from_physname to flag a complaint
2233 if there is an error. */
2234
2235 static char *
2236 stabs_method_name_from_physname (const char *physname)
2237 {
2238 char *method_name;
2239
2240 method_name = method_name_from_physname (physname);
2241
2242 if (method_name == NULL)
2243 {
2244 complaint (_("Method has bad physname %s\n"), physname);
2245 return NULL;
2246 }
2247
2248 return method_name;
2249 }
2250
2251 /* Read member function stabs info for C++ classes. The form of each member
2252 function data is:
2253
2254 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2255
2256 An example with two member functions is:
2257
2258 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2259
2260 For the case of overloaded operators, the format is op$::*.funcs, where
2261 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2262 name (such as `+=') and `.' marks the end of the operator name.
2263
2264 Returns 1 for success, 0 for failure. */
2265
2266 static int
2267 read_member_functions (struct stab_field_info *fip, const char **pp,
2268 struct type *type, struct objfile *objfile)
2269 {
2270 int nfn_fields = 0;
2271 int length = 0;
2272 int i;
2273 struct next_fnfield
2274 {
2275 struct next_fnfield *next;
2276 struct fn_field fn_field;
2277 }
2278 *sublist;
2279 struct type *look_ahead_type;
2280 struct next_fnfieldlist *new_fnlist;
2281 struct next_fnfield *new_sublist;
2282 char *main_fn_name;
2283 const char *p;
2284
2285 /* Process each list until we find something that is not a member function
2286 or find the end of the functions. */
2287
2288 while (**pp != ';')
2289 {
2290 /* We should be positioned at the start of the function name.
2291 Scan forward to find the first ':' and if it is not the
2292 first of a "::" delimiter, then this is not a member function. */
2293 p = *pp;
2294 while (*p != ':')
2295 {
2296 p++;
2297 }
2298 if (p[1] != ':')
2299 {
2300 break;
2301 }
2302
2303 sublist = NULL;
2304 look_ahead_type = NULL;
2305 length = 0;
2306
2307 new_fnlist = OBSTACK_ZALLOC (&fip->obstack, struct next_fnfieldlist);
2308
2309 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2310 {
2311 /* This is a completely wierd case. In order to stuff in the
2312 names that might contain colons (the usual name delimiter),
2313 Mike Tiemann defined a different name format which is
2314 signalled if the identifier is "op$". In that case, the
2315 format is "op$::XXXX." where XXXX is the name. This is
2316 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2317 /* This lets the user type "break operator+".
2318 We could just put in "+" as the name, but that wouldn't
2319 work for "*". */
2320 static char opname[32] = "op$";
2321 char *o = opname + 3;
2322
2323 /* Skip past '::'. */
2324 *pp = p + 2;
2325
2326 STABS_CONTINUE (pp, objfile);
2327 p = *pp;
2328 while (*p != '.')
2329 {
2330 *o++ = *p++;
2331 }
2332 main_fn_name = savestring (opname, o - opname);
2333 /* Skip past '.' */
2334 *pp = p + 1;
2335 }
2336 else
2337 {
2338 main_fn_name = savestring (*pp, p - *pp);
2339 /* Skip past '::'. */
2340 *pp = p + 2;
2341 }
2342 new_fnlist->fn_fieldlist.name = main_fn_name;
2343
2344 do
2345 {
2346 new_sublist = OBSTACK_ZALLOC (&fip->obstack, struct next_fnfield);
2347
2348 /* Check for and handle cretinous dbx symbol name continuation! */
2349 if (look_ahead_type == NULL)
2350 {
2351 /* Normal case. */
2352 STABS_CONTINUE (pp, objfile);
2353
2354 new_sublist->fn_field.type = read_type (pp, objfile);
2355 if (**pp != ':')
2356 {
2357 /* Invalid symtab info for member function. */
2358 return 0;
2359 }
2360 }
2361 else
2362 {
2363 /* g++ version 1 kludge */
2364 new_sublist->fn_field.type = look_ahead_type;
2365 look_ahead_type = NULL;
2366 }
2367
2368 (*pp)++;
2369 p = *pp;
2370 while (*p != ';')
2371 {
2372 p++;
2373 }
2374
2375 /* These are methods, not functions. */
2376 if (TYPE_CODE (new_sublist->fn_field.type) == TYPE_CODE_FUNC)
2377 TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
2378 else
2379 gdb_assert (TYPE_CODE (new_sublist->fn_field.type)
2380 == TYPE_CODE_METHOD);
2381
2382 /* If this is just a stub, then we don't have the real name here. */
2383 if (TYPE_STUB (new_sublist->fn_field.type))
2384 {
2385 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
2386 set_type_self_type (new_sublist->fn_field.type, type);
2387 new_sublist->fn_field.is_stub = 1;
2388 }
2389
2390 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2391 *pp = p + 1;
2392
2393 /* Set this member function's visibility fields. */
2394 switch (*(*pp)++)
2395 {
2396 case VISIBILITY_PRIVATE:
2397 new_sublist->fn_field.is_private = 1;
2398 break;
2399 case VISIBILITY_PROTECTED:
2400 new_sublist->fn_field.is_protected = 1;
2401 break;
2402 }
2403
2404 STABS_CONTINUE (pp, objfile);
2405 switch (**pp)
2406 {
2407 case 'A': /* Normal functions. */
2408 new_sublist->fn_field.is_const = 0;
2409 new_sublist->fn_field.is_volatile = 0;
2410 (*pp)++;
2411 break;
2412 case 'B': /* `const' member functions. */
2413 new_sublist->fn_field.is_const = 1;
2414 new_sublist->fn_field.is_volatile = 0;
2415 (*pp)++;
2416 break;
2417 case 'C': /* `volatile' member function. */
2418 new_sublist->fn_field.is_const = 0;
2419 new_sublist->fn_field.is_volatile = 1;
2420 (*pp)++;
2421 break;
2422 case 'D': /* `const volatile' member function. */
2423 new_sublist->fn_field.is_const = 1;
2424 new_sublist->fn_field.is_volatile = 1;
2425 (*pp)++;
2426 break;
2427 case '*': /* File compiled with g++ version 1 --
2428 no info. */
2429 case '?':
2430 case '.':
2431 break;
2432 default:
2433 complaint (_("const/volatile indicator missing, got '%c'"),
2434 **pp);
2435 break;
2436 }
2437
2438 switch (*(*pp)++)
2439 {
2440 case '*':
2441 {
2442 int nbits;
2443 /* virtual member function, followed by index.
2444 The sign bit is set to distinguish pointers-to-methods
2445 from virtual function indicies. Since the array is
2446 in words, the quantity must be shifted left by 1
2447 on 16 bit machine, and by 2 on 32 bit machine, forcing
2448 the sign bit out, and usable as a valid index into
2449 the array. Remove the sign bit here. */
2450 new_sublist->fn_field.voffset =
2451 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2452 if (nbits != 0)
2453 return 0;
2454
2455 STABS_CONTINUE (pp, objfile);
2456 if (**pp == ';' || **pp == '\0')
2457 {
2458 /* Must be g++ version 1. */
2459 new_sublist->fn_field.fcontext = 0;
2460 }
2461 else
2462 {
2463 /* Figure out from whence this virtual function came.
2464 It may belong to virtual function table of
2465 one of its baseclasses. */
2466 look_ahead_type = read_type (pp, objfile);
2467 if (**pp == ':')
2468 {
2469 /* g++ version 1 overloaded methods. */
2470 }
2471 else
2472 {
2473 new_sublist->fn_field.fcontext = look_ahead_type;
2474 if (**pp != ';')
2475 {
2476 return 0;
2477 }
2478 else
2479 {
2480 ++*pp;
2481 }
2482 look_ahead_type = NULL;
2483 }
2484 }
2485 break;
2486 }
2487 case '?':
2488 /* static member function. */
2489 {
2490 int slen = strlen (main_fn_name);
2491
2492 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2493
2494 /* For static member functions, we can't tell if they
2495 are stubbed, as they are put out as functions, and not as
2496 methods.
2497 GCC v2 emits the fully mangled name if
2498 dbxout.c:flag_minimal_debug is not set, so we have to
2499 detect a fully mangled physname here and set is_stub
2500 accordingly. Fully mangled physnames in v2 start with
2501 the member function name, followed by two underscores.
2502 GCC v3 currently always emits stubbed member functions,
2503 but with fully mangled physnames, which start with _Z. */
2504 if (!(strncmp (new_sublist->fn_field.physname,
2505 main_fn_name, slen) == 0
2506 && new_sublist->fn_field.physname[slen] == '_'
2507 && new_sublist->fn_field.physname[slen + 1] == '_'))
2508 {
2509 new_sublist->fn_field.is_stub = 1;
2510 }
2511 break;
2512 }
2513
2514 default:
2515 /* error */
2516 complaint (_("member function type missing, got '%c'"),
2517 (*pp)[-1]);
2518 /* Normal member function. */
2519 /* Fall through. */
2520
2521 case '.':
2522 /* normal member function. */
2523 new_sublist->fn_field.voffset = 0;
2524 new_sublist->fn_field.fcontext = 0;
2525 break;
2526 }
2527
2528 new_sublist->next = sublist;
2529 sublist = new_sublist;
2530 length++;
2531 STABS_CONTINUE (pp, objfile);
2532 }
2533 while (**pp != ';' && **pp != '\0');
2534
2535 (*pp)++;
2536 STABS_CONTINUE (pp, objfile);
2537
2538 /* Skip GCC 3.X member functions which are duplicates of the callable
2539 constructor/destructor. */
2540 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2541 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2542 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2543 {
2544 xfree (main_fn_name);
2545 }
2546 else
2547 {
2548 int has_destructor = 0, has_other = 0;
2549 int is_v3 = 0;
2550 struct next_fnfield *tmp_sublist;
2551
2552 /* Various versions of GCC emit various mostly-useless
2553 strings in the name field for special member functions.
2554
2555 For stub methods, we need to defer correcting the name
2556 until we are ready to unstub the method, because the current
2557 name string is used by gdb_mangle_name. The only stub methods
2558 of concern here are GNU v2 operators; other methods have their
2559 names correct (see caveat below).
2560
2561 For non-stub methods, in GNU v3, we have a complete physname.
2562 Therefore we can safely correct the name now. This primarily
2563 affects constructors and destructors, whose name will be
2564 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2565 operators will also have incorrect names; for instance,
2566 "operator int" will be named "operator i" (i.e. the type is
2567 mangled).
2568
2569 For non-stub methods in GNU v2, we have no easy way to
2570 know if we have a complete physname or not. For most
2571 methods the result depends on the platform (if CPLUS_MARKER
2572 can be `$' or `.', it will use minimal debug information, or
2573 otherwise the full physname will be included).
2574
2575 Rather than dealing with this, we take a different approach.
2576 For v3 mangled names, we can use the full physname; for v2,
2577 we use cplus_demangle_opname (which is actually v2 specific),
2578 because the only interesting names are all operators - once again
2579 barring the caveat below. Skip this process if any method in the
2580 group is a stub, to prevent our fouling up the workings of
2581 gdb_mangle_name.
2582
2583 The caveat: GCC 2.95.x (and earlier?) put constructors and
2584 destructors in the same method group. We need to split this
2585 into two groups, because they should have different names.
2586 So for each method group we check whether it contains both
2587 routines whose physname appears to be a destructor (the physnames
2588 for and destructors are always provided, due to quirks in v2
2589 mangling) and routines whose physname does not appear to be a
2590 destructor. If so then we break up the list into two halves.
2591 Even if the constructors and destructors aren't in the same group
2592 the destructor will still lack the leading tilde, so that also
2593 needs to be fixed.
2594
2595 So, to summarize what we expect and handle here:
2596
2597 Given Given Real Real Action
2598 method name physname physname method name
2599
2600 __opi [none] __opi__3Foo operator int opname
2601 [now or later]
2602 Foo _._3Foo _._3Foo ~Foo separate and
2603 rename
2604 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2605 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2606 */
2607
2608 tmp_sublist = sublist;
2609 while (tmp_sublist != NULL)
2610 {
2611 if (tmp_sublist->fn_field.physname[0] == '_'
2612 && tmp_sublist->fn_field.physname[1] == 'Z')
2613 is_v3 = 1;
2614
2615 if (is_destructor_name (tmp_sublist->fn_field.physname))
2616 has_destructor++;
2617 else
2618 has_other++;
2619
2620 tmp_sublist = tmp_sublist->next;
2621 }
2622
2623 if (has_destructor && has_other)
2624 {
2625 struct next_fnfieldlist *destr_fnlist;
2626 struct next_fnfield *last_sublist;
2627
2628 /* Create a new fn_fieldlist for the destructors. */
2629
2630 destr_fnlist = OBSTACK_ZALLOC (&fip->obstack,
2631 struct next_fnfieldlist);
2632
2633 destr_fnlist->fn_fieldlist.name
2634 = obconcat (&objfile->objfile_obstack, "~",
2635 new_fnlist->fn_fieldlist.name, (char *) NULL);
2636
2637 destr_fnlist->fn_fieldlist.fn_fields =
2638 XOBNEWVEC (&objfile->objfile_obstack,
2639 struct fn_field, has_destructor);
2640 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2641 sizeof (struct fn_field) * has_destructor);
2642 tmp_sublist = sublist;
2643 last_sublist = NULL;
2644 i = 0;
2645 while (tmp_sublist != NULL)
2646 {
2647 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2648 {
2649 tmp_sublist = tmp_sublist->next;
2650 continue;
2651 }
2652
2653 destr_fnlist->fn_fieldlist.fn_fields[i++]
2654 = tmp_sublist->fn_field;
2655 if (last_sublist)
2656 last_sublist->next = tmp_sublist->next;
2657 else
2658 sublist = tmp_sublist->next;
2659 last_sublist = tmp_sublist;
2660 tmp_sublist = tmp_sublist->next;
2661 }
2662
2663 destr_fnlist->fn_fieldlist.length = has_destructor;
2664 destr_fnlist->next = fip->fnlist;
2665 fip->fnlist = destr_fnlist;
2666 nfn_fields++;
2667 length -= has_destructor;
2668 }
2669 else if (is_v3)
2670 {
2671 /* v3 mangling prevents the use of abbreviated physnames,
2672 so we can do this here. There are stubbed methods in v3
2673 only:
2674 - in -gstabs instead of -gstabs+
2675 - or for static methods, which are output as a function type
2676 instead of a method type. */
2677 char *new_method_name =
2678 stabs_method_name_from_physname (sublist->fn_field.physname);
2679
2680 if (new_method_name != NULL
2681 && strcmp (new_method_name,
2682 new_fnlist->fn_fieldlist.name) != 0)
2683 {
2684 new_fnlist->fn_fieldlist.name = new_method_name;
2685 xfree (main_fn_name);
2686 }
2687 else
2688 xfree (new_method_name);
2689 }
2690 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2691 {
2692 new_fnlist->fn_fieldlist.name =
2693 obconcat (&objfile->objfile_obstack,
2694 "~", main_fn_name, (char *)NULL);
2695 xfree (main_fn_name);
2696 }
2697
2698 new_fnlist->fn_fieldlist.fn_fields
2699 = OBSTACK_CALLOC (&objfile->objfile_obstack, length, fn_field);
2700 for (i = length; (i--, sublist); sublist = sublist->next)
2701 {
2702 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2703 }
2704
2705 new_fnlist->fn_fieldlist.length = length;
2706 new_fnlist->next = fip->fnlist;
2707 fip->fnlist = new_fnlist;
2708 nfn_fields++;
2709 }
2710 }
2711
2712 if (nfn_fields)
2713 {
2714 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2715 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2716 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2717 memset (TYPE_FN_FIELDLISTS (type), 0,
2718 sizeof (struct fn_fieldlist) * nfn_fields);
2719 TYPE_NFN_FIELDS (type) = nfn_fields;
2720 }
2721
2722 return 1;
2723 }
2724
2725 /* Special GNU C++ name.
2726
2727 Returns 1 for success, 0 for failure. "failure" means that we can't
2728 keep parsing and it's time for error_type(). */
2729
2730 static int
2731 read_cpp_abbrev (struct stab_field_info *fip, const char **pp,
2732 struct type *type, struct objfile *objfile)
2733 {
2734 const char *p;
2735 const char *name;
2736 char cpp_abbrev;
2737 struct type *context;
2738
2739 p = *pp;
2740 if (*++p == 'v')
2741 {
2742 name = NULL;
2743 cpp_abbrev = *++p;
2744
2745 *pp = p + 1;
2746
2747 /* At this point, *pp points to something like "22:23=*22...",
2748 where the type number before the ':' is the "context" and
2749 everything after is a regular type definition. Lookup the
2750 type, find it's name, and construct the field name. */
2751
2752 context = read_type (pp, objfile);
2753
2754 switch (cpp_abbrev)
2755 {
2756 case 'f': /* $vf -- a virtual function table pointer */
2757 name = TYPE_NAME (context);
2758 if (name == NULL)
2759 {
2760 name = "";
2761 }
2762 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2763 vptr_name, name, (char *) NULL);
2764 break;
2765
2766 case 'b': /* $vb -- a virtual bsomethingorother */
2767 name = TYPE_NAME (context);
2768 if (name == NULL)
2769 {
2770 complaint (_("C++ abbreviated type name "
2771 "unknown at symtab pos %d"),
2772 symnum);
2773 name = "FOO";
2774 }
2775 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2776 name, (char *) NULL);
2777 break;
2778
2779 default:
2780 invalid_cpp_abbrev_complaint (*pp);
2781 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2782 "INVALID_CPLUSPLUS_ABBREV",
2783 (char *) NULL);
2784 break;
2785 }
2786
2787 /* At this point, *pp points to the ':'. Skip it and read the
2788 field type. */
2789
2790 p = ++(*pp);
2791 if (p[-1] != ':')
2792 {
2793 invalid_cpp_abbrev_complaint (*pp);
2794 return 0;
2795 }
2796 fip->list->field.type = read_type (pp, objfile);
2797 if (**pp == ',')
2798 (*pp)++; /* Skip the comma. */
2799 else
2800 return 0;
2801
2802 {
2803 int nbits;
2804
2805 SET_FIELD_BITPOS (fip->list->field,
2806 read_huge_number (pp, ';', &nbits, 0));
2807 if (nbits != 0)
2808 return 0;
2809 }
2810 /* This field is unpacked. */
2811 FIELD_BITSIZE (fip->list->field) = 0;
2812 fip->list->visibility = VISIBILITY_PRIVATE;
2813 }
2814 else
2815 {
2816 invalid_cpp_abbrev_complaint (*pp);
2817 /* We have no idea what syntax an unrecognized abbrev would have, so
2818 better return 0. If we returned 1, we would need to at least advance
2819 *pp to avoid an infinite loop. */
2820 return 0;
2821 }
2822 return 1;
2823 }
2824
2825 static void
2826 read_one_struct_field (struct stab_field_info *fip, const char **pp,
2827 const char *p, struct type *type,
2828 struct objfile *objfile)
2829 {
2830 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2831
2832 fip->list->field.name
2833 = obstack_strndup (&objfile->objfile_obstack, *pp, p - *pp);
2834 *pp = p + 1;
2835
2836 /* This means we have a visibility for a field coming. */
2837 if (**pp == '/')
2838 {
2839 (*pp)++;
2840 fip->list->visibility = *(*pp)++;
2841 }
2842 else
2843 {
2844 /* normal dbx-style format, no explicit visibility */
2845 fip->list->visibility = VISIBILITY_PUBLIC;
2846 }
2847
2848 fip->list->field.type = read_type (pp, objfile);
2849 if (**pp == ':')
2850 {
2851 p = ++(*pp);
2852 #if 0
2853 /* Possible future hook for nested types. */
2854 if (**pp == '!')
2855 {
2856 fip->list->field.bitpos = (long) -2; /* nested type */
2857 p = ++(*pp);
2858 }
2859 else
2860 ...;
2861 #endif
2862 while (*p != ';')
2863 {
2864 p++;
2865 }
2866 /* Static class member. */
2867 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2868 *pp = p + 1;
2869 return;
2870 }
2871 else if (**pp != ',')
2872 {
2873 /* Bad structure-type format. */
2874 stabs_general_complaint ("bad structure-type format");
2875 return;
2876 }
2877
2878 (*pp)++; /* Skip the comma. */
2879
2880 {
2881 int nbits;
2882
2883 SET_FIELD_BITPOS (fip->list->field,
2884 read_huge_number (pp, ',', &nbits, 0));
2885 if (nbits != 0)
2886 {
2887 stabs_general_complaint ("bad structure-type format");
2888 return;
2889 }
2890 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2891 if (nbits != 0)
2892 {
2893 stabs_general_complaint ("bad structure-type format");
2894 return;
2895 }
2896 }
2897
2898 if (FIELD_BITPOS (fip->list->field) == 0
2899 && FIELD_BITSIZE (fip->list->field) == 0)
2900 {
2901 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2902 it is a field which has been optimized out. The correct stab for
2903 this case is to use VISIBILITY_IGNORE, but that is a recent
2904 invention. (2) It is a 0-size array. For example
2905 union { int num; char str[0]; } foo. Printing _("<no value>" for
2906 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2907 will continue to work, and a 0-size array as a whole doesn't
2908 have any contents to print.
2909
2910 I suspect this probably could also happen with gcc -gstabs (not
2911 -gstabs+) for static fields, and perhaps other C++ extensions.
2912 Hopefully few people use -gstabs with gdb, since it is intended
2913 for dbx compatibility. */
2914
2915 /* Ignore this field. */
2916 fip->list->visibility = VISIBILITY_IGNORE;
2917 }
2918 else
2919 {
2920 /* Detect an unpacked field and mark it as such.
2921 dbx gives a bit size for all fields.
2922 Note that forward refs cannot be packed,
2923 and treat enums as if they had the width of ints. */
2924
2925 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2926
2927 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2928 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2929 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2930 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2931 {
2932 FIELD_BITSIZE (fip->list->field) = 0;
2933 }
2934 if ((FIELD_BITSIZE (fip->list->field)
2935 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2936 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2937 && FIELD_BITSIZE (fip->list->field)
2938 == gdbarch_int_bit (gdbarch))
2939 )
2940 &&
2941 FIELD_BITPOS (fip->list->field) % 8 == 0)
2942 {
2943 FIELD_BITSIZE (fip->list->field) = 0;
2944 }
2945 }
2946 }
2947
2948
2949 /* Read struct or class data fields. They have the form:
2950
2951 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2952
2953 At the end, we see a semicolon instead of a field.
2954
2955 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2956 a static field.
2957
2958 The optional VISIBILITY is one of:
2959
2960 '/0' (VISIBILITY_PRIVATE)
2961 '/1' (VISIBILITY_PROTECTED)
2962 '/2' (VISIBILITY_PUBLIC)
2963 '/9' (VISIBILITY_IGNORE)
2964
2965 or nothing, for C style fields with public visibility.
2966
2967 Returns 1 for success, 0 for failure. */
2968
2969 static int
2970 read_struct_fields (struct stab_field_info *fip, const char **pp,
2971 struct type *type, struct objfile *objfile)
2972 {
2973 const char *p;
2974 struct nextfield *newobj;
2975
2976 /* We better set p right now, in case there are no fields at all... */
2977
2978 p = *pp;
2979
2980 /* Read each data member type until we find the terminating ';' at the end of
2981 the data member list, or break for some other reason such as finding the
2982 start of the member function list. */
2983 /* Stab string for structure/union does not end with two ';' in
2984 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
2985
2986 while (**pp != ';' && **pp != '\0')
2987 {
2988 STABS_CONTINUE (pp, objfile);
2989 /* Get space to record the next field's data. */
2990 newobj = OBSTACK_ZALLOC (&fip->obstack, struct nextfield);
2991
2992 newobj->next = fip->list;
2993 fip->list = newobj;
2994
2995 /* Get the field name. */
2996 p = *pp;
2997
2998 /* If is starts with CPLUS_MARKER it is a special abbreviation,
2999 unless the CPLUS_MARKER is followed by an underscore, in
3000 which case it is just the name of an anonymous type, which we
3001 should handle like any other type name. */
3002
3003 if (is_cplus_marker (p[0]) && p[1] != '_')
3004 {
3005 if (!read_cpp_abbrev (fip, pp, type, objfile))
3006 return 0;
3007 continue;
3008 }
3009
3010 /* Look for the ':' that separates the field name from the field
3011 values. Data members are delimited by a single ':', while member
3012 functions are delimited by a pair of ':'s. When we hit the member
3013 functions (if any), terminate scan loop and return. */
3014
3015 while (*p != ':' && *p != '\0')
3016 {
3017 p++;
3018 }
3019 if (*p == '\0')
3020 return 0;
3021
3022 /* Check to see if we have hit the member functions yet. */
3023 if (p[1] == ':')
3024 {
3025 break;
3026 }
3027 read_one_struct_field (fip, pp, p, type, objfile);
3028 }
3029 if (p[0] == ':' && p[1] == ':')
3030 {
3031 /* (the deleted) chill the list of fields: the last entry (at
3032 the head) is a partially constructed entry which we now
3033 scrub. */
3034 fip->list = fip->list->next;
3035 }
3036 return 1;
3037 }
3038 /* *INDENT-OFF* */
3039 /* The stabs for C++ derived classes contain baseclass information which
3040 is marked by a '!' character after the total size. This function is
3041 called when we encounter the baseclass marker, and slurps up all the
3042 baseclass information.
3043
3044 Immediately following the '!' marker is the number of base classes that
3045 the class is derived from, followed by information for each base class.
3046 For each base class, there are two visibility specifiers, a bit offset
3047 to the base class information within the derived class, a reference to
3048 the type for the base class, and a terminating semicolon.
3049
3050 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3051 ^^ ^ ^ ^ ^ ^ ^
3052 Baseclass information marker __________________|| | | | | | |
3053 Number of baseclasses __________________________| | | | | | |
3054 Visibility specifiers (2) ________________________| | | | | |
3055 Offset in bits from start of class _________________| | | | |
3056 Type number for base class ___________________________| | | |
3057 Visibility specifiers (2) _______________________________| | |
3058 Offset in bits from start of class ________________________| |
3059 Type number of base class ____________________________________|
3060
3061 Return 1 for success, 0 for (error-type-inducing) failure. */
3062 /* *INDENT-ON* */
3063
3064
3065
3066 static int
3067 read_baseclasses (struct stab_field_info *fip, const char **pp,
3068 struct type *type, struct objfile *objfile)
3069 {
3070 int i;
3071 struct nextfield *newobj;
3072
3073 if (**pp != '!')
3074 {
3075 return 1;
3076 }
3077 else
3078 {
3079 /* Skip the '!' baseclass information marker. */
3080 (*pp)++;
3081 }
3082
3083 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3084 {
3085 int nbits;
3086
3087 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3088 if (nbits != 0)
3089 return 0;
3090 }
3091
3092 #if 0
3093 /* Some stupid compilers have trouble with the following, so break
3094 it up into simpler expressions. */
3095 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3096 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3097 #else
3098 {
3099 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3100 char *pointer;
3101
3102 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3103 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3104 }
3105 #endif /* 0 */
3106
3107 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3108
3109 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3110 {
3111 newobj = OBSTACK_ZALLOC (&fip->obstack, struct nextfield);
3112
3113 newobj->next = fip->list;
3114 fip->list = newobj;
3115 FIELD_BITSIZE (newobj->field) = 0; /* This should be an unpacked
3116 field! */
3117
3118 STABS_CONTINUE (pp, objfile);
3119 switch (**pp)
3120 {
3121 case '0':
3122 /* Nothing to do. */
3123 break;
3124 case '1':
3125 SET_TYPE_FIELD_VIRTUAL (type, i);
3126 break;
3127 default:
3128 /* Unknown character. Complain and treat it as non-virtual. */
3129 {
3130 complaint (_("Unknown virtual character `%c' for baseclass"),
3131 **pp);
3132 }
3133 }
3134 ++(*pp);
3135
3136 newobj->visibility = *(*pp)++;
3137 switch (newobj->visibility)
3138 {
3139 case VISIBILITY_PRIVATE:
3140 case VISIBILITY_PROTECTED:
3141 case VISIBILITY_PUBLIC:
3142 break;
3143 default:
3144 /* Bad visibility format. Complain and treat it as
3145 public. */
3146 {
3147 complaint (_("Unknown visibility `%c' for baseclass"),
3148 newobj->visibility);
3149 newobj->visibility = VISIBILITY_PUBLIC;
3150 }
3151 }
3152
3153 {
3154 int nbits;
3155
3156 /* The remaining value is the bit offset of the portion of the object
3157 corresponding to this baseclass. Always zero in the absence of
3158 multiple inheritance. */
3159
3160 SET_FIELD_BITPOS (newobj->field, read_huge_number (pp, ',', &nbits, 0));
3161 if (nbits != 0)
3162 return 0;
3163 }
3164
3165 /* The last piece of baseclass information is the type of the
3166 base class. Read it, and remember it's type name as this
3167 field's name. */
3168
3169 newobj->field.type = read_type (pp, objfile);
3170 newobj->field.name = TYPE_NAME (newobj->field.type);
3171
3172 /* Skip trailing ';' and bump count of number of fields seen. */
3173 if (**pp == ';')
3174 (*pp)++;
3175 else
3176 return 0;
3177 }
3178 return 1;
3179 }
3180
3181 /* The tail end of stabs for C++ classes that contain a virtual function
3182 pointer contains a tilde, a %, and a type number.
3183 The type number refers to the base class (possibly this class itself) which
3184 contains the vtable pointer for the current class.
3185
3186 This function is called when we have parsed all the method declarations,
3187 so we can look for the vptr base class info. */
3188
3189 static int
3190 read_tilde_fields (struct stab_field_info *fip, const char **pp,
3191 struct type *type, struct objfile *objfile)
3192 {
3193 const char *p;
3194
3195 STABS_CONTINUE (pp, objfile);
3196
3197 /* If we are positioned at a ';', then skip it. */
3198 if (**pp == ';')
3199 {
3200 (*pp)++;
3201 }
3202
3203 if (**pp == '~')
3204 {
3205 (*pp)++;
3206
3207 if (**pp == '=' || **pp == '+' || **pp == '-')
3208 {
3209 /* Obsolete flags that used to indicate the presence
3210 of constructors and/or destructors. */
3211 (*pp)++;
3212 }
3213
3214 /* Read either a '%' or the final ';'. */
3215 if (*(*pp)++ == '%')
3216 {
3217 /* The next number is the type number of the base class
3218 (possibly our own class) which supplies the vtable for
3219 this class. Parse it out, and search that class to find
3220 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3221 and TYPE_VPTR_FIELDNO. */
3222
3223 struct type *t;
3224 int i;
3225
3226 t = read_type (pp, objfile);
3227 p = (*pp)++;
3228 while (*p != '\0' && *p != ';')
3229 {
3230 p++;
3231 }
3232 if (*p == '\0')
3233 {
3234 /* Premature end of symbol. */
3235 return 0;
3236 }
3237
3238 set_type_vptr_basetype (type, t);
3239 if (type == t) /* Our own class provides vtbl ptr. */
3240 {
3241 for (i = TYPE_NFIELDS (t) - 1;
3242 i >= TYPE_N_BASECLASSES (t);
3243 --i)
3244 {
3245 const char *name = TYPE_FIELD_NAME (t, i);
3246
3247 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3248 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3249 {
3250 set_type_vptr_fieldno (type, i);
3251 goto gotit;
3252 }
3253 }
3254 /* Virtual function table field not found. */
3255 complaint (_("virtual function table pointer "
3256 "not found when defining class `%s'"),
3257 TYPE_NAME (type));
3258 return 0;
3259 }
3260 else
3261 {
3262 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
3263 }
3264
3265 gotit:
3266 *pp = p + 1;
3267 }
3268 }
3269 return 1;
3270 }
3271
3272 static int
3273 attach_fn_fields_to_type (struct stab_field_info *fip, struct type *type)
3274 {
3275 int n;
3276
3277 for (n = TYPE_NFN_FIELDS (type);
3278 fip->fnlist != NULL;
3279 fip->fnlist = fip->fnlist->next)
3280 {
3281 --n; /* Circumvent Sun3 compiler bug. */
3282 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3283 }
3284 return 1;
3285 }
3286
3287 /* Create the vector of fields, and record how big it is.
3288 We need this info to record proper virtual function table information
3289 for this class's virtual functions. */
3290
3291 static int
3292 attach_fields_to_type (struct stab_field_info *fip, struct type *type,
3293 struct objfile *objfile)
3294 {
3295 int nfields = 0;
3296 int non_public_fields = 0;
3297 struct nextfield *scan;
3298
3299 /* Count up the number of fields that we have, as well as taking note of
3300 whether or not there are any non-public fields, which requires us to
3301 allocate and build the private_field_bits and protected_field_bits
3302 bitfields. */
3303
3304 for (scan = fip->list; scan != NULL; scan = scan->next)
3305 {
3306 nfields++;
3307 if (scan->visibility != VISIBILITY_PUBLIC)
3308 {
3309 non_public_fields++;
3310 }
3311 }
3312
3313 /* Now we know how many fields there are, and whether or not there are any
3314 non-public fields. Record the field count, allocate space for the
3315 array of fields, and create blank visibility bitfields if necessary. */
3316
3317 TYPE_NFIELDS (type) = nfields;
3318 TYPE_FIELDS (type) = (struct field *)
3319 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3320 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3321
3322 if (non_public_fields)
3323 {
3324 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3325
3326 TYPE_FIELD_PRIVATE_BITS (type) =
3327 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3328 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3329
3330 TYPE_FIELD_PROTECTED_BITS (type) =
3331 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3332 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3333
3334 TYPE_FIELD_IGNORE_BITS (type) =
3335 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3336 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3337 }
3338
3339 /* Copy the saved-up fields into the field vector. Start from the
3340 head of the list, adding to the tail of the field array, so that
3341 they end up in the same order in the array in which they were
3342 added to the list. */
3343
3344 while (nfields-- > 0)
3345 {
3346 TYPE_FIELD (type, nfields) = fip->list->field;
3347 switch (fip->list->visibility)
3348 {
3349 case VISIBILITY_PRIVATE:
3350 SET_TYPE_FIELD_PRIVATE (type, nfields);
3351 break;
3352
3353 case VISIBILITY_PROTECTED:
3354 SET_TYPE_FIELD_PROTECTED (type, nfields);
3355 break;
3356
3357 case VISIBILITY_IGNORE:
3358 SET_TYPE_FIELD_IGNORE (type, nfields);
3359 break;
3360
3361 case VISIBILITY_PUBLIC:
3362 break;
3363
3364 default:
3365 /* Unknown visibility. Complain and treat it as public. */
3366 {
3367 complaint (_("Unknown visibility `%c' for field"),
3368 fip->list->visibility);
3369 }
3370 break;
3371 }
3372 fip->list = fip->list->next;
3373 }
3374 return 1;
3375 }
3376
3377
3378 /* Complain that the compiler has emitted more than one definition for the
3379 structure type TYPE. */
3380 static void
3381 complain_about_struct_wipeout (struct type *type)
3382 {
3383 const char *name = "";
3384 const char *kind = "";
3385
3386 if (TYPE_NAME (type))
3387 {
3388 name = TYPE_NAME (type);
3389 switch (TYPE_CODE (type))
3390 {
3391 case TYPE_CODE_STRUCT: kind = "struct "; break;
3392 case TYPE_CODE_UNION: kind = "union "; break;
3393 case TYPE_CODE_ENUM: kind = "enum "; break;
3394 default: kind = "";
3395 }
3396 }
3397 else
3398 {
3399 name = "<unknown>";
3400 kind = "";
3401 }
3402
3403 complaint (_("struct/union type gets multiply defined: %s%s"), kind, name);
3404 }
3405
3406 /* Set the length for all variants of a same main_type, which are
3407 connected in the closed chain.
3408
3409 This is something that needs to be done when a type is defined *after*
3410 some cross references to this type have already been read. Consider
3411 for instance the following scenario where we have the following two
3412 stabs entries:
3413
3414 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3415 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3416
3417 A stubbed version of type dummy is created while processing the first
3418 stabs entry. The length of that type is initially set to zero, since
3419 it is unknown at this point. Also, a "constant" variation of type
3420 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3421 the stabs line).
3422
3423 The second stabs entry allows us to replace the stubbed definition
3424 with the real definition. However, we still need to adjust the length
3425 of the "constant" variation of that type, as its length was left
3426 untouched during the main type replacement... */
3427
3428 static void
3429 set_length_in_type_chain (struct type *type)
3430 {
3431 struct type *ntype = TYPE_CHAIN (type);
3432
3433 while (ntype != type)
3434 {
3435 if (TYPE_LENGTH(ntype) == 0)
3436 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3437 else
3438 complain_about_struct_wipeout (ntype);
3439 ntype = TYPE_CHAIN (ntype);
3440 }
3441 }
3442
3443 /* Read the description of a structure (or union type) and return an object
3444 describing the type.
3445
3446 PP points to a character pointer that points to the next unconsumed token
3447 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3448 *PP will point to "4a:1,0,32;;".
3449
3450 TYPE points to an incomplete type that needs to be filled in.
3451
3452 OBJFILE points to the current objfile from which the stabs information is
3453 being read. (Note that it is redundant in that TYPE also contains a pointer
3454 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3455 */
3456
3457 static struct type *
3458 read_struct_type (const char **pp, struct type *type, enum type_code type_code,
3459 struct objfile *objfile)
3460 {
3461 struct stab_field_info fi;
3462
3463 /* When describing struct/union/class types in stabs, G++ always drops
3464 all qualifications from the name. So if you've got:
3465 struct A { ... struct B { ... }; ... };
3466 then G++ will emit stabs for `struct A::B' that call it simply
3467 `struct B'. Obviously, if you've got a real top-level definition for
3468 `struct B', or other nested definitions, this is going to cause
3469 problems.
3470
3471 Obviously, GDB can't fix this by itself, but it can at least avoid
3472 scribbling on existing structure type objects when new definitions
3473 appear. */
3474 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3475 || TYPE_STUB (type)))
3476 {
3477 complain_about_struct_wipeout (type);
3478
3479 /* It's probably best to return the type unchanged. */
3480 return type;
3481 }
3482
3483 INIT_CPLUS_SPECIFIC (type);
3484 TYPE_CODE (type) = type_code;
3485 TYPE_STUB (type) = 0;
3486
3487 /* First comes the total size in bytes. */
3488
3489 {
3490 int nbits;
3491
3492 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3493 if (nbits != 0)
3494 return error_type (pp, objfile);
3495 set_length_in_type_chain (type);
3496 }
3497
3498 /* Now read the baseclasses, if any, read the regular C struct or C++
3499 class member fields, attach the fields to the type, read the C++
3500 member functions, attach them to the type, and then read any tilde
3501 field (baseclass specifier for the class holding the main vtable). */
3502
3503 if (!read_baseclasses (&fi, pp, type, objfile)
3504 || !read_struct_fields (&fi, pp, type, objfile)
3505 || !attach_fields_to_type (&fi, type, objfile)
3506 || !read_member_functions (&fi, pp, type, objfile)
3507 || !attach_fn_fields_to_type (&fi, type)
3508 || !read_tilde_fields (&fi, pp, type, objfile))
3509 {
3510 type = error_type (pp, objfile);
3511 }
3512
3513 return (type);
3514 }
3515
3516 /* Read a definition of an array type,
3517 and create and return a suitable type object.
3518 Also creates a range type which represents the bounds of that
3519 array. */
3520
3521 static struct type *
3522 read_array_type (const char **pp, struct type *type,
3523 struct objfile *objfile)
3524 {
3525 struct type *index_type, *element_type, *range_type;
3526 int lower, upper;
3527 int adjustable = 0;
3528 int nbits;
3529
3530 /* Format of an array type:
3531 "ar<index type>;lower;upper;<array_contents_type>".
3532 OS9000: "arlower,upper;<array_contents_type>".
3533
3534 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3535 for these, produce a type like float[][]. */
3536
3537 {
3538 index_type = read_type (pp, objfile);
3539 if (**pp != ';')
3540 /* Improper format of array type decl. */
3541 return error_type (pp, objfile);
3542 ++*pp;
3543 }
3544
3545 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3546 {
3547 (*pp)++;
3548 adjustable = 1;
3549 }
3550 lower = read_huge_number (pp, ';', &nbits, 0);
3551
3552 if (nbits != 0)
3553 return error_type (pp, objfile);
3554
3555 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3556 {
3557 (*pp)++;
3558 adjustable = 1;
3559 }
3560 upper = read_huge_number (pp, ';', &nbits, 0);
3561 if (nbits != 0)
3562 return error_type (pp, objfile);
3563
3564 element_type = read_type (pp, objfile);
3565
3566 if (adjustable)
3567 {
3568 lower = 0;
3569 upper = -1;
3570 }
3571
3572 range_type =
3573 create_static_range_type (NULL, index_type, lower, upper);
3574 type = create_array_type (type, element_type, range_type);
3575
3576 return type;
3577 }
3578
3579
3580 /* Read a definition of an enumeration type,
3581 and create and return a suitable type object.
3582 Also defines the symbols that represent the values of the type. */
3583
3584 static struct type *
3585 read_enum_type (const char **pp, struct type *type,
3586 struct objfile *objfile)
3587 {
3588 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3589 const char *p;
3590 char *name;
3591 long n;
3592 struct symbol *sym;
3593 int nsyms = 0;
3594 struct pending **symlist;
3595 struct pending *osyms, *syms;
3596 int o_nsyms;
3597 int nbits;
3598 int unsigned_enum = 1;
3599
3600 #if 0
3601 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3602 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3603 to do? For now, force all enum values to file scope. */
3604 if (within_function)
3605 symlist = get_local_symbols ();
3606 else
3607 #endif
3608 symlist = get_file_symbols ();
3609 osyms = *symlist;
3610 o_nsyms = osyms ? osyms->nsyms : 0;
3611
3612 /* The aix4 compiler emits an extra field before the enum members;
3613 my guess is it's a type of some sort. Just ignore it. */
3614 if (**pp == '-')
3615 {
3616 /* Skip over the type. */
3617 while (**pp != ':')
3618 (*pp)++;
3619
3620 /* Skip over the colon. */
3621 (*pp)++;
3622 }
3623
3624 /* Read the value-names and their values.
3625 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3626 A semicolon or comma instead of a NAME means the end. */
3627 while (**pp && **pp != ';' && **pp != ',')
3628 {
3629 STABS_CONTINUE (pp, objfile);
3630 p = *pp;
3631 while (*p != ':')
3632 p++;
3633 name = obstack_strndup (&objfile->objfile_obstack, *pp, p - *pp);
3634 *pp = p + 1;
3635 n = read_huge_number (pp, ',', &nbits, 0);
3636 if (nbits != 0)
3637 return error_type (pp, objfile);
3638
3639 sym = allocate_symbol (objfile);
3640 sym->set_linkage_name (name);
3641 sym->set_language (get_current_subfile ()->language,
3642 &objfile->objfile_obstack);
3643 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
3644 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3645 SYMBOL_VALUE (sym) = n;
3646 if (n < 0)
3647 unsigned_enum = 0;
3648 add_symbol_to_list (sym, symlist);
3649 nsyms++;
3650 }
3651
3652 if (**pp == ';')
3653 (*pp)++; /* Skip the semicolon. */
3654
3655 /* Now fill in the fields of the type-structure. */
3656
3657 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3658 set_length_in_type_chain (type);
3659 TYPE_CODE (type) = TYPE_CODE_ENUM;
3660 TYPE_STUB (type) = 0;
3661 if (unsigned_enum)
3662 TYPE_UNSIGNED (type) = 1;
3663 TYPE_NFIELDS (type) = nsyms;
3664 TYPE_FIELDS (type) = (struct field *)
3665 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3666 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3667
3668 /* Find the symbols for the values and put them into the type.
3669 The symbols can be found in the symlist that we put them on
3670 to cause them to be defined. osyms contains the old value
3671 of that symlist; everything up to there was defined by us. */
3672 /* Note that we preserve the order of the enum constants, so
3673 that in something like "enum {FOO, LAST_THING=FOO}" we print
3674 FOO, not LAST_THING. */
3675
3676 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3677 {
3678 int last = syms == osyms ? o_nsyms : 0;
3679 int j = syms->nsyms;
3680
3681 for (; --j >= last; --n)
3682 {
3683 struct symbol *xsym = syms->symbol[j];
3684
3685 SYMBOL_TYPE (xsym) = type;
3686 TYPE_FIELD_NAME (type, n) = xsym->linkage_name ();
3687 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
3688 TYPE_FIELD_BITSIZE (type, n) = 0;
3689 }
3690 if (syms == osyms)
3691 break;
3692 }
3693
3694 return type;
3695 }
3696
3697 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3698 typedefs in every file (for int, long, etc):
3699
3700 type = b <signed> <width> <format type>; <offset>; <nbits>
3701 signed = u or s.
3702 optional format type = c or b for char or boolean.
3703 offset = offset from high order bit to start bit of type.
3704 width is # bytes in object of this type, nbits is # bits in type.
3705
3706 The width/offset stuff appears to be for small objects stored in
3707 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3708 FIXME. */
3709
3710 static struct type *
3711 read_sun_builtin_type (const char **pp, int typenums[2], struct objfile *objfile)
3712 {
3713 int type_bits;
3714 int nbits;
3715 int unsigned_type;
3716 int boolean_type = 0;
3717
3718 switch (**pp)
3719 {
3720 case 's':
3721 unsigned_type = 0;
3722 break;
3723 case 'u':
3724 unsigned_type = 1;
3725 break;
3726 default:
3727 return error_type (pp, objfile);
3728 }
3729 (*pp)++;
3730
3731 /* For some odd reason, all forms of char put a c here. This is strange
3732 because no other type has this honor. We can safely ignore this because
3733 we actually determine 'char'acterness by the number of bits specified in
3734 the descriptor.
3735 Boolean forms, e.g Fortran logical*X, put a b here. */
3736
3737 if (**pp == 'c')
3738 (*pp)++;
3739 else if (**pp == 'b')
3740 {
3741 boolean_type = 1;
3742 (*pp)++;
3743 }
3744
3745 /* The first number appears to be the number of bytes occupied
3746 by this type, except that unsigned short is 4 instead of 2.
3747 Since this information is redundant with the third number,
3748 we will ignore it. */
3749 read_huge_number (pp, ';', &nbits, 0);
3750 if (nbits != 0)
3751 return error_type (pp, objfile);
3752
3753 /* The second number is always 0, so ignore it too. */
3754 read_huge_number (pp, ';', &nbits, 0);
3755 if (nbits != 0)
3756 return error_type (pp, objfile);
3757
3758 /* The third number is the number of bits for this type. */
3759 type_bits = read_huge_number (pp, 0, &nbits, 0);
3760 if (nbits != 0)
3761 return error_type (pp, objfile);
3762 /* The type *should* end with a semicolon. If it are embedded
3763 in a larger type the semicolon may be the only way to know where
3764 the type ends. If this type is at the end of the stabstring we
3765 can deal with the omitted semicolon (but we don't have to like
3766 it). Don't bother to complain(), Sun's compiler omits the semicolon
3767 for "void". */
3768 if (**pp == ';')
3769 ++(*pp);
3770
3771 if (type_bits == 0)
3772 {
3773 struct type *type = init_type (objfile, TYPE_CODE_VOID,
3774 TARGET_CHAR_BIT, NULL);
3775 if (unsigned_type)
3776 TYPE_UNSIGNED (type) = 1;
3777 return type;
3778 }
3779
3780 if (boolean_type)
3781 return init_boolean_type (objfile, type_bits, unsigned_type, NULL);
3782 else
3783 return init_integer_type (objfile, type_bits, unsigned_type, NULL);
3784 }
3785
3786 static struct type *
3787 read_sun_floating_type (const char **pp, int typenums[2],
3788 struct objfile *objfile)
3789 {
3790 int nbits;
3791 int details;
3792 int nbytes;
3793 struct type *rettype;
3794
3795 /* The first number has more details about the type, for example
3796 FN_COMPLEX. */
3797 details = read_huge_number (pp, ';', &nbits, 0);
3798 if (nbits != 0)
3799 return error_type (pp, objfile);
3800
3801 /* The second number is the number of bytes occupied by this type. */
3802 nbytes = read_huge_number (pp, ';', &nbits, 0);
3803 if (nbits != 0)
3804 return error_type (pp, objfile);
3805
3806 nbits = nbytes * TARGET_CHAR_BIT;
3807
3808 if (details == NF_COMPLEX || details == NF_COMPLEX16
3809 || details == NF_COMPLEX32)
3810 {
3811 rettype = dbx_init_float_type (objfile, nbits / 2);
3812 return init_complex_type (objfile, NULL, rettype);
3813 }
3814
3815 return dbx_init_float_type (objfile, nbits);
3816 }
3817
3818 /* Read a number from the string pointed to by *PP.
3819 The value of *PP is advanced over the number.
3820 If END is nonzero, the character that ends the
3821 number must match END, or an error happens;
3822 and that character is skipped if it does match.
3823 If END is zero, *PP is left pointing to that character.
3824
3825 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3826 the number is represented in an octal representation, assume that
3827 it is represented in a 2's complement representation with a size of
3828 TWOS_COMPLEMENT_BITS.
3829
3830 If the number fits in a long, set *BITS to 0 and return the value.
3831 If not, set *BITS to be the number of bits in the number and return 0.
3832
3833 If encounter garbage, set *BITS to -1 and return 0. */
3834
3835 static long
3836 read_huge_number (const char **pp, int end, int *bits,
3837 int twos_complement_bits)
3838 {
3839 const char *p = *pp;
3840 int sign = 1;
3841 int sign_bit = 0;
3842 long n = 0;
3843 int radix = 10;
3844 char overflow = 0;
3845 int nbits = 0;
3846 int c;
3847 long upper_limit;
3848 int twos_complement_representation = 0;
3849
3850 if (*p == '-')
3851 {
3852 sign = -1;
3853 p++;
3854 }
3855
3856 /* Leading zero means octal. GCC uses this to output values larger
3857 than an int (because that would be hard in decimal). */
3858 if (*p == '0')
3859 {
3860 radix = 8;
3861 p++;
3862 }
3863
3864 /* Skip extra zeros. */
3865 while (*p == '0')
3866 p++;
3867
3868 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3869 {
3870 /* Octal, possibly signed. Check if we have enough chars for a
3871 negative number. */
3872
3873 size_t len;
3874 const char *p1 = p;
3875
3876 while ((c = *p1) >= '0' && c < '8')
3877 p1++;
3878
3879 len = p1 - p;
3880 if (len > twos_complement_bits / 3
3881 || (twos_complement_bits % 3 == 0
3882 && len == twos_complement_bits / 3))
3883 {
3884 /* Ok, we have enough characters for a signed value, check
3885 for signedness by testing if the sign bit is set. */
3886 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3887 c = *p - '0';
3888 if (c & (1 << sign_bit))
3889 {
3890 /* Definitely signed. */
3891 twos_complement_representation = 1;
3892 sign = -1;
3893 }
3894 }
3895 }
3896
3897 upper_limit = LONG_MAX / radix;
3898
3899 while ((c = *p++) >= '0' && c < ('0' + radix))
3900 {
3901 if (n <= upper_limit)
3902 {
3903 if (twos_complement_representation)
3904 {
3905 /* Octal, signed, twos complement representation. In
3906 this case, n is the corresponding absolute value. */
3907 if (n == 0)
3908 {
3909 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3910
3911 n = -sn;
3912 }
3913 else
3914 {
3915 n *= radix;
3916 n -= c - '0';
3917 }
3918 }
3919 else
3920 {
3921 /* unsigned representation */
3922 n *= radix;
3923 n += c - '0'; /* FIXME this overflows anyway. */
3924 }
3925 }
3926 else
3927 overflow = 1;
3928
3929 /* This depends on large values being output in octal, which is
3930 what GCC does. */
3931 if (radix == 8)
3932 {
3933 if (nbits == 0)
3934 {
3935 if (c == '0')
3936 /* Ignore leading zeroes. */
3937 ;
3938 else if (c == '1')
3939 nbits = 1;
3940 else if (c == '2' || c == '3')
3941 nbits = 2;
3942 else
3943 nbits = 3;
3944 }
3945 else
3946 nbits += 3;
3947 }
3948 }
3949 if (end)
3950 {
3951 if (c && c != end)
3952 {
3953 if (bits != NULL)
3954 *bits = -1;
3955 return 0;
3956 }
3957 }
3958 else
3959 --p;
3960
3961 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
3962 {
3963 /* We were supposed to parse a number with maximum
3964 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
3965 if (bits != NULL)
3966 *bits = -1;
3967 return 0;
3968 }
3969
3970 *pp = p;
3971 if (overflow)
3972 {
3973 if (nbits == 0)
3974 {
3975 /* Large decimal constants are an error (because it is hard to
3976 count how many bits are in them). */
3977 if (bits != NULL)
3978 *bits = -1;
3979 return 0;
3980 }
3981
3982 /* -0x7f is the same as 0x80. So deal with it by adding one to
3983 the number of bits. Two's complement represention octals
3984 can't have a '-' in front. */
3985 if (sign == -1 && !twos_complement_representation)
3986 ++nbits;
3987 if (bits)
3988 *bits = nbits;
3989 }
3990 else
3991 {
3992 if (bits)
3993 *bits = 0;
3994 return n * sign;
3995 }
3996 /* It's *BITS which has the interesting information. */
3997 return 0;
3998 }
3999
4000 static struct type *
4001 read_range_type (const char **pp, int typenums[2], int type_size,
4002 struct objfile *objfile)
4003 {
4004 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4005 const char *orig_pp = *pp;
4006 int rangenums[2];
4007 long n2, n3;
4008 int n2bits, n3bits;
4009 int self_subrange;
4010 struct type *result_type;
4011 struct type *index_type = NULL;
4012
4013 /* First comes a type we are a subrange of.
4014 In C it is usually 0, 1 or the type being defined. */
4015 if (read_type_number (pp, rangenums) != 0)
4016 return error_type (pp, objfile);
4017 self_subrange = (rangenums[0] == typenums[0] &&
4018 rangenums[1] == typenums[1]);
4019
4020 if (**pp == '=')
4021 {
4022 *pp = orig_pp;
4023 index_type = read_type (pp, objfile);
4024 }
4025
4026 /* A semicolon should now follow; skip it. */
4027 if (**pp == ';')
4028 (*pp)++;
4029
4030 /* The remaining two operands are usually lower and upper bounds
4031 of the range. But in some special cases they mean something else. */
4032 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4033 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4034
4035 if (n2bits == -1 || n3bits == -1)
4036 return error_type (pp, objfile);
4037
4038 if (index_type)
4039 goto handle_true_range;
4040
4041 /* If limits are huge, must be large integral type. */
4042 if (n2bits != 0 || n3bits != 0)
4043 {
4044 char got_signed = 0;
4045 char got_unsigned = 0;
4046 /* Number of bits in the type. */
4047 int nbits = 0;
4048
4049 /* If a type size attribute has been specified, the bounds of
4050 the range should fit in this size. If the lower bounds needs
4051 more bits than the upper bound, then the type is signed. */
4052 if (n2bits <= type_size && n3bits <= type_size)
4053 {
4054 if (n2bits == type_size && n2bits > n3bits)
4055 got_signed = 1;
4056 else
4057 got_unsigned = 1;
4058 nbits = type_size;
4059 }
4060 /* Range from 0 to <large number> is an unsigned large integral type. */
4061 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4062 {
4063 got_unsigned = 1;
4064 nbits = n3bits;
4065 }
4066 /* Range from <large number> to <large number>-1 is a large signed
4067 integral type. Take care of the case where <large number> doesn't
4068 fit in a long but <large number>-1 does. */
4069 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4070 || (n2bits != 0 && n3bits == 0
4071 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4072 && n3 == LONG_MAX))
4073 {
4074 got_signed = 1;
4075 nbits = n2bits;
4076 }
4077
4078 if (got_signed || got_unsigned)
4079 return init_integer_type (objfile, nbits, got_unsigned, NULL);
4080 else
4081 return error_type (pp, objfile);
4082 }
4083
4084 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4085 if (self_subrange && n2 == 0 && n3 == 0)
4086 return init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
4087
4088 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4089 is the width in bytes.
4090
4091 Fortran programs appear to use this for complex types also. To
4092 distinguish between floats and complex, g77 (and others?) seem
4093 to use self-subranges for the complexes, and subranges of int for
4094 the floats.
4095
4096 Also note that for complexes, g77 sets n2 to the size of one of
4097 the member floats, not the whole complex beast. My guess is that
4098 this was to work well with pre-COMPLEX versions of gdb. */
4099
4100 if (n3 == 0 && n2 > 0)
4101 {
4102 struct type *float_type
4103 = dbx_init_float_type (objfile, n2 * TARGET_CHAR_BIT);
4104
4105 if (self_subrange)
4106 return init_complex_type (objfile, NULL, float_type);
4107 else
4108 return float_type;
4109 }
4110
4111 /* If the upper bound is -1, it must really be an unsigned integral. */
4112
4113 else if (n2 == 0 && n3 == -1)
4114 {
4115 int bits = type_size;
4116
4117 if (bits <= 0)
4118 {
4119 /* We don't know its size. It is unsigned int or unsigned
4120 long. GCC 2.3.3 uses this for long long too, but that is
4121 just a GDB 3.5 compatibility hack. */
4122 bits = gdbarch_int_bit (gdbarch);
4123 }
4124
4125 return init_integer_type (objfile, bits, 1, NULL);
4126 }
4127
4128 /* Special case: char is defined (Who knows why) as a subrange of
4129 itself with range 0-127. */
4130 else if (self_subrange && n2 == 0 && n3 == 127)
4131 {
4132 struct type *type = init_integer_type (objfile, TARGET_CHAR_BIT,
4133 0, NULL);
4134 TYPE_NOSIGN (type) = 1;
4135 return type;
4136 }
4137 /* We used to do this only for subrange of self or subrange of int. */
4138 else if (n2 == 0)
4139 {
4140 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4141 "unsigned long", and we already checked for that,
4142 so don't need to test for it here. */
4143
4144 if (n3 < 0)
4145 /* n3 actually gives the size. */
4146 return init_integer_type (objfile, -n3 * TARGET_CHAR_BIT, 1, NULL);
4147
4148 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4149 unsigned n-byte integer. But do require n to be a power of
4150 two; we don't want 3- and 5-byte integers flying around. */
4151 {
4152 int bytes;
4153 unsigned long bits;
4154
4155 bits = n3;
4156 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4157 bits >>= 8;
4158 if (bits == 0
4159 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4160 return init_integer_type (objfile, bytes * TARGET_CHAR_BIT, 1, NULL);
4161 }
4162 }
4163 /* I think this is for Convex "long long". Since I don't know whether
4164 Convex sets self_subrange, I also accept that particular size regardless
4165 of self_subrange. */
4166 else if (n3 == 0 && n2 < 0
4167 && (self_subrange
4168 || n2 == -gdbarch_long_long_bit
4169 (gdbarch) / TARGET_CHAR_BIT))
4170 return init_integer_type (objfile, -n2 * TARGET_CHAR_BIT, 0, NULL);
4171 else if (n2 == -n3 - 1)
4172 {
4173 if (n3 == 0x7f)
4174 return init_integer_type (objfile, 8, 0, NULL);
4175 if (n3 == 0x7fff)
4176 return init_integer_type (objfile, 16, 0, NULL);
4177 if (n3 == 0x7fffffff)
4178 return init_integer_type (objfile, 32, 0, NULL);
4179 }
4180
4181 /* We have a real range type on our hands. Allocate space and
4182 return a real pointer. */
4183 handle_true_range:
4184
4185 if (self_subrange)
4186 index_type = objfile_type (objfile)->builtin_int;
4187 else
4188 index_type = *dbx_lookup_type (rangenums, objfile);
4189 if (index_type == NULL)
4190 {
4191 /* Does this actually ever happen? Is that why we are worrying
4192 about dealing with it rather than just calling error_type? */
4193
4194 complaint (_("base type %d of range type is not defined"), rangenums[1]);
4195
4196 index_type = objfile_type (objfile)->builtin_int;
4197 }
4198
4199 result_type
4200 = create_static_range_type (NULL, index_type, n2, n3);
4201 return (result_type);
4202 }
4203
4204 /* Read in an argument list. This is a list of types, separated by commas
4205 and terminated with END. Return the list of types read in, or NULL
4206 if there is an error. */
4207
4208 static struct field *
4209 read_args (const char **pp, int end, struct objfile *objfile, int *nargsp,
4210 int *varargsp)
4211 {
4212 /* FIXME! Remove this arbitrary limit! */
4213 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4214 int n = 0, i;
4215 struct field *rval;
4216
4217 while (**pp != end)
4218 {
4219 if (**pp != ',')
4220 /* Invalid argument list: no ','. */
4221 return NULL;
4222 (*pp)++;
4223 STABS_CONTINUE (pp, objfile);
4224 types[n++] = read_type (pp, objfile);
4225 }
4226 (*pp)++; /* get past `end' (the ':' character). */
4227
4228 if (n == 0)
4229 {
4230 /* We should read at least the THIS parameter here. Some broken stabs
4231 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4232 have been present ";-16,(0,43)" reference instead. This way the
4233 excessive ";" marker prematurely stops the parameters parsing. */
4234
4235 complaint (_("Invalid (empty) method arguments"));
4236 *varargsp = 0;
4237 }
4238 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4239 *varargsp = 1;
4240 else
4241 {
4242 n--;
4243 *varargsp = 0;
4244 }
4245
4246 rval = XCNEWVEC (struct field, n);
4247 for (i = 0; i < n; i++)
4248 rval[i].type = types[i];
4249 *nargsp = n;
4250 return rval;
4251 }
4252 \f
4253 /* Common block handling. */
4254
4255 /* List of symbols declared since the last BCOMM. This list is a tail
4256 of local_symbols. When ECOMM is seen, the symbols on the list
4257 are noted so their proper addresses can be filled in later,
4258 using the common block base address gotten from the assembler
4259 stabs. */
4260
4261 static struct pending *common_block;
4262 static int common_block_i;
4263
4264 /* Name of the current common block. We get it from the BCOMM instead of the
4265 ECOMM to match IBM documentation (even though IBM puts the name both places
4266 like everyone else). */
4267 static char *common_block_name;
4268
4269 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4270 to remain after this function returns. */
4271
4272 void
4273 common_block_start (const char *name, struct objfile *objfile)
4274 {
4275 if (common_block_name != NULL)
4276 {
4277 complaint (_("Invalid symbol data: common block within common block"));
4278 }
4279 common_block = *get_local_symbols ();
4280 common_block_i = common_block ? common_block->nsyms : 0;
4281 common_block_name = obstack_strdup (&objfile->objfile_obstack, name);
4282 }
4283
4284 /* Process a N_ECOMM symbol. */
4285
4286 void
4287 common_block_end (struct objfile *objfile)
4288 {
4289 /* Symbols declared since the BCOMM are to have the common block
4290 start address added in when we know it. common_block and
4291 common_block_i point to the first symbol after the BCOMM in
4292 the local_symbols list; copy the list and hang it off the
4293 symbol for the common block name for later fixup. */
4294 int i;
4295 struct symbol *sym;
4296 struct pending *newobj = 0;
4297 struct pending *next;
4298 int j;
4299
4300 if (common_block_name == NULL)
4301 {
4302 complaint (_("ECOMM symbol unmatched by BCOMM"));
4303 return;
4304 }
4305
4306 sym = allocate_symbol (objfile);
4307 /* Note: common_block_name already saved on objfile_obstack. */
4308 sym->set_linkage_name (common_block_name);
4309 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
4310
4311 /* Now we copy all the symbols which have been defined since the BCOMM. */
4312
4313 /* Copy all the struct pendings before common_block. */
4314 for (next = *get_local_symbols ();
4315 next != NULL && next != common_block;
4316 next = next->next)
4317 {
4318 for (j = 0; j < next->nsyms; j++)
4319 add_symbol_to_list (next->symbol[j], &newobj);
4320 }
4321
4322 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4323 NULL, it means copy all the local symbols (which we already did
4324 above). */
4325
4326 if (common_block != NULL)
4327 for (j = common_block_i; j < common_block->nsyms; j++)
4328 add_symbol_to_list (common_block->symbol[j], &newobj);
4329
4330 SYMBOL_TYPE (sym) = (struct type *) newobj;
4331
4332 /* Should we be putting local_symbols back to what it was?
4333 Does it matter? */
4334
4335 i = hashname (sym->linkage_name ());
4336 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4337 global_sym_chain[i] = sym;
4338 common_block_name = NULL;
4339 }
4340
4341 /* Add a common block's start address to the offset of each symbol
4342 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4343 the common block name). */
4344
4345 static void
4346 fix_common_block (struct symbol *sym, CORE_ADDR valu)
4347 {
4348 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4349
4350 for (; next; next = next->next)
4351 {
4352 int j;
4353
4354 for (j = next->nsyms - 1; j >= 0; j--)
4355 SET_SYMBOL_VALUE_ADDRESS (next->symbol[j],
4356 SYMBOL_VALUE_ADDRESS (next->symbol[j])
4357 + valu);
4358 }
4359 }
4360 \f
4361
4362
4363 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4364 See add_undefined_type for more details. */
4365
4366 static void
4367 add_undefined_type_noname (struct type *type, int typenums[2])
4368 {
4369 struct nat nat;
4370
4371 nat.typenums[0] = typenums [0];
4372 nat.typenums[1] = typenums [1];
4373 nat.type = type;
4374
4375 if (noname_undefs_length == noname_undefs_allocated)
4376 {
4377 noname_undefs_allocated *= 2;
4378 noname_undefs = (struct nat *)
4379 xrealloc ((char *) noname_undefs,
4380 noname_undefs_allocated * sizeof (struct nat));
4381 }
4382 noname_undefs[noname_undefs_length++] = nat;
4383 }
4384
4385 /* Add TYPE to the UNDEF_TYPES vector.
4386 See add_undefined_type for more details. */
4387
4388 static void
4389 add_undefined_type_1 (struct type *type)
4390 {
4391 if (undef_types_length == undef_types_allocated)
4392 {
4393 undef_types_allocated *= 2;
4394 undef_types = (struct type **)
4395 xrealloc ((char *) undef_types,
4396 undef_types_allocated * sizeof (struct type *));
4397 }
4398 undef_types[undef_types_length++] = type;
4399 }
4400
4401 /* What about types defined as forward references inside of a small lexical
4402 scope? */
4403 /* Add a type to the list of undefined types to be checked through
4404 once this file has been read in.
4405
4406 In practice, we actually maintain two such lists: The first list
4407 (UNDEF_TYPES) is used for types whose name has been provided, and
4408 concerns forward references (eg 'xs' or 'xu' forward references);
4409 the second list (NONAME_UNDEFS) is used for types whose name is
4410 unknown at creation time, because they were referenced through
4411 their type number before the actual type was declared.
4412 This function actually adds the given type to the proper list. */
4413
4414 static void
4415 add_undefined_type (struct type *type, int typenums[2])
4416 {
4417 if (TYPE_NAME (type) == NULL)
4418 add_undefined_type_noname (type, typenums);
4419 else
4420 add_undefined_type_1 (type);
4421 }
4422
4423 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4424
4425 static void
4426 cleanup_undefined_types_noname (struct objfile *objfile)
4427 {
4428 int i;
4429
4430 for (i = 0; i < noname_undefs_length; i++)
4431 {
4432 struct nat nat = noname_undefs[i];
4433 struct type **type;
4434
4435 type = dbx_lookup_type (nat.typenums, objfile);
4436 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4437 {
4438 /* The instance flags of the undefined type are still unset,
4439 and needs to be copied over from the reference type.
4440 Since replace_type expects them to be identical, we need
4441 to set these flags manually before hand. */
4442 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4443 replace_type (nat.type, *type);
4444 }
4445 }
4446
4447 noname_undefs_length = 0;
4448 }
4449
4450 /* Go through each undefined type, see if it's still undefined, and fix it
4451 up if possible. We have two kinds of undefined types:
4452
4453 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4454 Fix: update array length using the element bounds
4455 and the target type's length.
4456 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4457 yet defined at the time a pointer to it was made.
4458 Fix: Do a full lookup on the struct/union tag. */
4459
4460 static void
4461 cleanup_undefined_types_1 (void)
4462 {
4463 struct type **type;
4464
4465 /* Iterate over every undefined type, and look for a symbol whose type
4466 matches our undefined type. The symbol matches if:
4467 1. It is a typedef in the STRUCT domain;
4468 2. It has the same name, and same type code;
4469 3. The instance flags are identical.
4470
4471 It is important to check the instance flags, because we have seen
4472 examples where the debug info contained definitions such as:
4473
4474 "foo_t:t30=B31=xefoo_t:"
4475
4476 In this case, we have created an undefined type named "foo_t" whose
4477 instance flags is null (when processing "xefoo_t"), and then created
4478 another type with the same name, but with different instance flags
4479 ('B' means volatile). I think that the definition above is wrong,
4480 since the same type cannot be volatile and non-volatile at the same
4481 time, but we need to be able to cope with it when it happens. The
4482 approach taken here is to treat these two types as different. */
4483
4484 for (type = undef_types; type < undef_types + undef_types_length; type++)
4485 {
4486 switch (TYPE_CODE (*type))
4487 {
4488
4489 case TYPE_CODE_STRUCT:
4490 case TYPE_CODE_UNION:
4491 case TYPE_CODE_ENUM:
4492 {
4493 /* Check if it has been defined since. Need to do this here
4494 as well as in check_typedef to deal with the (legitimate in
4495 C though not C++) case of several types with the same name
4496 in different source files. */
4497 if (TYPE_STUB (*type))
4498 {
4499 struct pending *ppt;
4500 int i;
4501 /* Name of the type, without "struct" or "union". */
4502 const char *type_name = TYPE_NAME (*type);
4503
4504 if (type_name == NULL)
4505 {
4506 complaint (_("need a type name"));
4507 break;
4508 }
4509 for (ppt = *get_file_symbols (); ppt; ppt = ppt->next)
4510 {
4511 for (i = 0; i < ppt->nsyms; i++)
4512 {
4513 struct symbol *sym = ppt->symbol[i];
4514
4515 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4516 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4517 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4518 TYPE_CODE (*type))
4519 && (TYPE_INSTANCE_FLAGS (*type) ==
4520 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4521 && strcmp (sym->linkage_name (), type_name) == 0)
4522 replace_type (*type, SYMBOL_TYPE (sym));
4523 }
4524 }
4525 }
4526 }
4527 break;
4528
4529 default:
4530 {
4531 complaint (_("forward-referenced types left unresolved, "
4532 "type code %d."),
4533 TYPE_CODE (*type));
4534 }
4535 break;
4536 }
4537 }
4538
4539 undef_types_length = 0;
4540 }
4541
4542 /* Try to fix all the undefined types we encountered while processing
4543 this unit. */
4544
4545 void
4546 cleanup_undefined_stabs_types (struct objfile *objfile)
4547 {
4548 cleanup_undefined_types_1 ();
4549 cleanup_undefined_types_noname (objfile);
4550 }
4551
4552 /* See stabsread.h. */
4553
4554 void
4555 scan_file_globals (struct objfile *objfile)
4556 {
4557 int hash;
4558 struct symbol *sym, *prev;
4559 struct objfile *resolve_objfile;
4560
4561 /* SVR4 based linkers copy referenced global symbols from shared
4562 libraries to the main executable.
4563 If we are scanning the symbols for a shared library, try to resolve
4564 them from the minimal symbols of the main executable first. */
4565
4566 if (symfile_objfile && objfile != symfile_objfile)
4567 resolve_objfile = symfile_objfile;
4568 else
4569 resolve_objfile = objfile;
4570
4571 while (1)
4572 {
4573 /* Avoid expensive loop through all minimal symbols if there are
4574 no unresolved symbols. */
4575 for (hash = 0; hash < HASHSIZE; hash++)
4576 {
4577 if (global_sym_chain[hash])
4578 break;
4579 }
4580 if (hash >= HASHSIZE)
4581 return;
4582
4583 for (minimal_symbol *msymbol : resolve_objfile->msymbols ())
4584 {
4585 QUIT;
4586
4587 /* Skip static symbols. */
4588 switch (MSYMBOL_TYPE (msymbol))
4589 {
4590 case mst_file_text:
4591 case mst_file_data:
4592 case mst_file_bss:
4593 continue;
4594 default:
4595 break;
4596 }
4597
4598 prev = NULL;
4599
4600 /* Get the hash index and check all the symbols
4601 under that hash index. */
4602
4603 hash = hashname (msymbol->linkage_name ());
4604
4605 for (sym = global_sym_chain[hash]; sym;)
4606 {
4607 if (strcmp (msymbol->linkage_name (), sym->linkage_name ()) == 0)
4608 {
4609 /* Splice this symbol out of the hash chain and
4610 assign the value we have to it. */
4611 if (prev)
4612 {
4613 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4614 }
4615 else
4616 {
4617 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4618 }
4619
4620 /* Check to see whether we need to fix up a common block. */
4621 /* Note: this code might be executed several times for
4622 the same symbol if there are multiple references. */
4623 if (sym)
4624 {
4625 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4626 {
4627 fix_common_block (sym,
4628 MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4629 msymbol));
4630 }
4631 else
4632 {
4633 SET_SYMBOL_VALUE_ADDRESS
4634 (sym, MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4635 msymbol));
4636 }
4637 SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
4638 }
4639
4640 if (prev)
4641 {
4642 sym = SYMBOL_VALUE_CHAIN (prev);
4643 }
4644 else
4645 {
4646 sym = global_sym_chain[hash];
4647 }
4648 }
4649 else
4650 {
4651 prev = sym;
4652 sym = SYMBOL_VALUE_CHAIN (sym);
4653 }
4654 }
4655 }
4656 if (resolve_objfile == objfile)
4657 break;
4658 resolve_objfile = objfile;
4659 }
4660
4661 /* Change the storage class of any remaining unresolved globals to
4662 LOC_UNRESOLVED and remove them from the chain. */
4663 for (hash = 0; hash < HASHSIZE; hash++)
4664 {
4665 sym = global_sym_chain[hash];
4666 while (sym)
4667 {
4668 prev = sym;
4669 sym = SYMBOL_VALUE_CHAIN (sym);
4670
4671 /* Change the symbol address from the misleading chain value
4672 to address zero. */
4673 SET_SYMBOL_VALUE_ADDRESS (prev, 0);
4674
4675 /* Complain about unresolved common block symbols. */
4676 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4677 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
4678 else
4679 complaint (_("%s: common block `%s' from "
4680 "global_sym_chain unresolved"),
4681 objfile_name (objfile), prev->print_name ());
4682 }
4683 }
4684 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4685 }
4686
4687 /* Initialize anything that needs initializing when starting to read
4688 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4689 to a psymtab. */
4690
4691 void
4692 stabsread_init (void)
4693 {
4694 }
4695
4696 /* Initialize anything that needs initializing when a completely new
4697 symbol file is specified (not just adding some symbols from another
4698 file, e.g. a shared library). */
4699
4700 void
4701 stabsread_new_init (void)
4702 {
4703 /* Empty the hash table of global syms looking for values. */
4704 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4705 }
4706
4707 /* Initialize anything that needs initializing at the same time as
4708 start_symtab() is called. */
4709
4710 void
4711 start_stabs (void)
4712 {
4713 global_stabs = NULL; /* AIX COFF */
4714 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4715 n_this_object_header_files = 1;
4716 type_vector_length = 0;
4717 type_vector = (struct type **) 0;
4718 within_function = 0;
4719
4720 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4721 common_block_name = NULL;
4722 }
4723
4724 /* Call after end_symtab(). */
4725
4726 void
4727 end_stabs (void)
4728 {
4729 if (type_vector)
4730 {
4731 xfree (type_vector);
4732 }
4733 type_vector = 0;
4734 type_vector_length = 0;
4735 previous_stab_code = 0;
4736 }
4737
4738 void
4739 finish_global_stabs (struct objfile *objfile)
4740 {
4741 if (global_stabs)
4742 {
4743 patch_block_stabs (*get_global_symbols (), global_stabs, objfile);
4744 xfree (global_stabs);
4745 global_stabs = NULL;
4746 }
4747 }
4748
4749 /* Find the end of the name, delimited by a ':', but don't match
4750 ObjC symbols which look like -[Foo bar::]:bla. */
4751 static const char *
4752 find_name_end (const char *name)
4753 {
4754 const char *s = name;
4755
4756 if (s[0] == '-' || *s == '+')
4757 {
4758 /* Must be an ObjC method symbol. */
4759 if (s[1] != '[')
4760 {
4761 error (_("invalid symbol name \"%s\""), name);
4762 }
4763 s = strchr (s, ']');
4764 if (s == NULL)
4765 {
4766 error (_("invalid symbol name \"%s\""), name);
4767 }
4768 return strchr (s, ':');
4769 }
4770 else
4771 {
4772 return strchr (s, ':');
4773 }
4774 }
4775
4776 /* See stabsread.h. */
4777
4778 int
4779 hashname (const char *name)
4780 {
4781 return fast_hash (name, strlen (name)) % HASHSIZE;
4782 }
4783
4784 /* Initializer for this module. */
4785
4786 void
4787 _initialize_stabsread (void)
4788 {
4789 undef_types_allocated = 20;
4790 undef_types_length = 0;
4791 undef_types = XNEWVEC (struct type *, undef_types_allocated);
4792
4793 noname_undefs_allocated = 20;
4794 noname_undefs_length = 0;
4795 noname_undefs = XNEWVEC (struct nat, noname_undefs_allocated);
4796
4797 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4798 &stab_register_funcs);
4799 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4800 &stab_register_funcs);
4801 }
This page took 0.165731 seconds and 4 git commands to generate.