Move vptr_{fieldno,basetype} out of main_type, and update everything accordingly.
[deliverable/binutils-gdb.git] / gdb / stabsread.c
1 /* Support routines for decoding "stabs" debugging information format.
2
3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* Support routines for reading and decoding debugging information in
21 the "stabs" format. This format is used with many systems that use
22 the a.out object file format, as well as some systems that use
23 COFF or ELF where the stabs data is placed in a special section.
24 Avoid placing any object file format specific code in this file. */
25
26 #include "defs.h"
27 #include "bfd.h"
28 #include "gdb_obstack.h"
29 #include "symtab.h"
30 #include "gdbtypes.h"
31 #include "expression.h"
32 #include "symfile.h"
33 #include "objfiles.h"
34 #include "aout/stab_gnu.h" /* We always use GNU stabs, not native. */
35 #include "libaout.h"
36 #include "aout/aout64.h"
37 #include "gdb-stabs.h"
38 #include "buildsym.h"
39 #include "complaints.h"
40 #include "demangle.h"
41 #include "gdb-demangle.h"
42 #include "language.h"
43 #include "doublest.h"
44 #include "cp-abi.h"
45 #include "cp-support.h"
46 #include <ctype.h>
47
48 /* Ask stabsread.h to define the vars it normally declares `extern'. */
49 #define EXTERN
50 /**/
51 #include "stabsread.h" /* Our own declarations */
52 #undef EXTERN
53
54 extern void _initialize_stabsread (void);
55
56 /* The routines that read and process a complete stabs for a C struct or
57 C++ class pass lists of data member fields and lists of member function
58 fields in an instance of a field_info structure, as defined below.
59 This is part of some reorganization of low level C++ support and is
60 expected to eventually go away... (FIXME) */
61
62 struct field_info
63 {
64 struct nextfield
65 {
66 struct nextfield *next;
67
68 /* This is the raw visibility from the stab. It is not checked
69 for being one of the visibilities we recognize, so code which
70 examines this field better be able to deal. */
71 int visibility;
72
73 struct field field;
74 }
75 *list;
76 struct next_fnfieldlist
77 {
78 struct next_fnfieldlist *next;
79 struct fn_fieldlist fn_fieldlist;
80 }
81 *fnlist;
82 };
83
84 static void
85 read_one_struct_field (struct field_info *, char **, char *,
86 struct type *, struct objfile *);
87
88 static struct type *dbx_alloc_type (int[2], struct objfile *);
89
90 static long read_huge_number (char **, int, int *, int);
91
92 static struct type *error_type (char **, struct objfile *);
93
94 static void
95 patch_block_stabs (struct pending *, struct pending_stabs *,
96 struct objfile *);
97
98 static void fix_common_block (struct symbol *, CORE_ADDR);
99
100 static int read_type_number (char **, int *);
101
102 static struct type *read_type (char **, struct objfile *);
103
104 static struct type *read_range_type (char **, int[2], int, struct objfile *);
105
106 static struct type *read_sun_builtin_type (char **, int[2], struct objfile *);
107
108 static struct type *read_sun_floating_type (char **, int[2],
109 struct objfile *);
110
111 static struct type *read_enum_type (char **, struct type *, struct objfile *);
112
113 static struct type *rs6000_builtin_type (int, struct objfile *);
114
115 static int
116 read_member_functions (struct field_info *, char **, struct type *,
117 struct objfile *);
118
119 static int
120 read_struct_fields (struct field_info *, char **, struct type *,
121 struct objfile *);
122
123 static int
124 read_baseclasses (struct field_info *, char **, struct type *,
125 struct objfile *);
126
127 static int
128 read_tilde_fields (struct field_info *, char **, struct type *,
129 struct objfile *);
130
131 static int attach_fn_fields_to_type (struct field_info *, struct type *);
132
133 static int attach_fields_to_type (struct field_info *, struct type *,
134 struct objfile *);
135
136 static struct type *read_struct_type (char **, struct type *,
137 enum type_code,
138 struct objfile *);
139
140 static struct type *read_array_type (char **, struct type *,
141 struct objfile *);
142
143 static struct field *read_args (char **, int, struct objfile *, int *, int *);
144
145 static void add_undefined_type (struct type *, int[2]);
146
147 static int
148 read_cpp_abbrev (struct field_info *, char **, struct type *,
149 struct objfile *);
150
151 static char *find_name_end (char *name);
152
153 static int process_reference (char **string);
154
155 void stabsread_clear_cache (void);
156
157 static const char vptr_name[] = "_vptr$";
158 static const char vb_name[] = "_vb$";
159
160 static void
161 invalid_cpp_abbrev_complaint (const char *arg1)
162 {
163 complaint (&symfile_complaints, _("invalid C++ abbreviation `%s'"), arg1);
164 }
165
166 static void
167 reg_value_complaint (int regnum, int num_regs, const char *sym)
168 {
169 complaint (&symfile_complaints,
170 _("register number %d too large (max %d) in symbol %s"),
171 regnum, num_regs - 1, sym);
172 }
173
174 static void
175 stabs_general_complaint (const char *arg1)
176 {
177 complaint (&symfile_complaints, "%s", arg1);
178 }
179
180 /* Make a list of forward references which haven't been defined. */
181
182 static struct type **undef_types;
183 static int undef_types_allocated;
184 static int undef_types_length;
185 static struct symbol *current_symbol = NULL;
186
187 /* Make a list of nameless types that are undefined.
188 This happens when another type is referenced by its number
189 before this type is actually defined. For instance "t(0,1)=k(0,2)"
190 and type (0,2) is defined only later. */
191
192 struct nat
193 {
194 int typenums[2];
195 struct type *type;
196 };
197 static struct nat *noname_undefs;
198 static int noname_undefs_allocated;
199 static int noname_undefs_length;
200
201 /* Check for and handle cretinous stabs symbol name continuation! */
202 #define STABS_CONTINUE(pp,objfile) \
203 do { \
204 if (**(pp) == '\\' || (**(pp) == '?' && (*(pp))[1] == '\0')) \
205 *(pp) = next_symbol_text (objfile); \
206 } while (0)
207
208 /* Vector of types defined so far, indexed by their type numbers.
209 (In newer sun systems, dbx uses a pair of numbers in parens,
210 as in "(SUBFILENUM,NUMWITHINSUBFILE)".
211 Then these numbers must be translated through the type_translations
212 hash table to get the index into the type vector.) */
213
214 static struct type **type_vector;
215
216 /* Number of elements allocated for type_vector currently. */
217
218 static int type_vector_length;
219
220 /* Initial size of type vector. Is realloc'd larger if needed, and
221 realloc'd down to the size actually used, when completed. */
222
223 #define INITIAL_TYPE_VECTOR_LENGTH 160
224 \f
225
226 /* Look up a dbx type-number pair. Return the address of the slot
227 where the type for that number-pair is stored.
228 The number-pair is in TYPENUMS.
229
230 This can be used for finding the type associated with that pair
231 or for associating a new type with the pair. */
232
233 static struct type **
234 dbx_lookup_type (int typenums[2], struct objfile *objfile)
235 {
236 int filenum = typenums[0];
237 int index = typenums[1];
238 unsigned old_len;
239 int real_filenum;
240 struct header_file *f;
241 int f_orig_length;
242
243 if (filenum == -1) /* -1,-1 is for temporary types. */
244 return 0;
245
246 if (filenum < 0 || filenum >= n_this_object_header_files)
247 {
248 complaint (&symfile_complaints,
249 _("Invalid symbol data: type number "
250 "(%d,%d) out of range at symtab pos %d."),
251 filenum, index, symnum);
252 goto error_return;
253 }
254
255 if (filenum == 0)
256 {
257 if (index < 0)
258 {
259 /* Caller wants address of address of type. We think
260 that negative (rs6k builtin) types will never appear as
261 "lvalues", (nor should they), so we stuff the real type
262 pointer into a temp, and return its address. If referenced,
263 this will do the right thing. */
264 static struct type *temp_type;
265
266 temp_type = rs6000_builtin_type (index, objfile);
267 return &temp_type;
268 }
269
270 /* Type is defined outside of header files.
271 Find it in this object file's type vector. */
272 if (index >= type_vector_length)
273 {
274 old_len = type_vector_length;
275 if (old_len == 0)
276 {
277 type_vector_length = INITIAL_TYPE_VECTOR_LENGTH;
278 type_vector = (struct type **)
279 xmalloc (type_vector_length * sizeof (struct type *));
280 }
281 while (index >= type_vector_length)
282 {
283 type_vector_length *= 2;
284 }
285 type_vector = (struct type **)
286 xrealloc ((char *) type_vector,
287 (type_vector_length * sizeof (struct type *)));
288 memset (&type_vector[old_len], 0,
289 (type_vector_length - old_len) * sizeof (struct type *));
290 }
291 return (&type_vector[index]);
292 }
293 else
294 {
295 real_filenum = this_object_header_files[filenum];
296
297 if (real_filenum >= N_HEADER_FILES (objfile))
298 {
299 static struct type *temp_type;
300
301 warning (_("GDB internal error: bad real_filenum"));
302
303 error_return:
304 temp_type = objfile_type (objfile)->builtin_error;
305 return &temp_type;
306 }
307
308 f = HEADER_FILES (objfile) + real_filenum;
309
310 f_orig_length = f->length;
311 if (index >= f_orig_length)
312 {
313 while (index >= f->length)
314 {
315 f->length *= 2;
316 }
317 f->vector = (struct type **)
318 xrealloc ((char *) f->vector, f->length * sizeof (struct type *));
319 memset (&f->vector[f_orig_length], 0,
320 (f->length - f_orig_length) * sizeof (struct type *));
321 }
322 return (&f->vector[index]);
323 }
324 }
325
326 /* Make sure there is a type allocated for type numbers TYPENUMS
327 and return the type object.
328 This can create an empty (zeroed) type object.
329 TYPENUMS may be (-1, -1) to return a new type object that is not
330 put into the type vector, and so may not be referred to by number. */
331
332 static struct type *
333 dbx_alloc_type (int typenums[2], struct objfile *objfile)
334 {
335 struct type **type_addr;
336
337 if (typenums[0] == -1)
338 {
339 return (alloc_type (objfile));
340 }
341
342 type_addr = dbx_lookup_type (typenums, objfile);
343
344 /* If we are referring to a type not known at all yet,
345 allocate an empty type for it.
346 We will fill it in later if we find out how. */
347 if (*type_addr == 0)
348 {
349 *type_addr = alloc_type (objfile);
350 }
351
352 return (*type_addr);
353 }
354
355 /* for all the stabs in a given stab vector, build appropriate types
356 and fix their symbols in given symbol vector. */
357
358 static void
359 patch_block_stabs (struct pending *symbols, struct pending_stabs *stabs,
360 struct objfile *objfile)
361 {
362 int ii;
363 char *name;
364 char *pp;
365 struct symbol *sym;
366
367 if (stabs)
368 {
369 /* for all the stab entries, find their corresponding symbols and
370 patch their types! */
371
372 for (ii = 0; ii < stabs->count; ++ii)
373 {
374 name = stabs->stab[ii];
375 pp = (char *) strchr (name, ':');
376 gdb_assert (pp); /* Must find a ':' or game's over. */
377 while (pp[1] == ':')
378 {
379 pp += 2;
380 pp = (char *) strchr (pp, ':');
381 }
382 sym = find_symbol_in_list (symbols, name, pp - name);
383 if (!sym)
384 {
385 /* FIXME-maybe: it would be nice if we noticed whether
386 the variable was defined *anywhere*, not just whether
387 it is defined in this compilation unit. But neither
388 xlc or GCC seem to need such a definition, and until
389 we do psymtabs (so that the minimal symbols from all
390 compilation units are available now), I'm not sure
391 how to get the information. */
392
393 /* On xcoff, if a global is defined and never referenced,
394 ld will remove it from the executable. There is then
395 a N_GSYM stab for it, but no regular (C_EXT) symbol. */
396 sym = allocate_symbol (objfile);
397 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
398 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
399 SYMBOL_SET_LINKAGE_NAME
400 (sym, obstack_copy0 (&objfile->objfile_obstack,
401 name, pp - name));
402 pp += 2;
403 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
404 {
405 /* I don't think the linker does this with functions,
406 so as far as I know this is never executed.
407 But it doesn't hurt to check. */
408 SYMBOL_TYPE (sym) =
409 lookup_function_type (read_type (&pp, objfile));
410 }
411 else
412 {
413 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
414 }
415 add_symbol_to_list (sym, &global_symbols);
416 }
417 else
418 {
419 pp += 2;
420 if (*(pp - 1) == 'F' || *(pp - 1) == 'f')
421 {
422 SYMBOL_TYPE (sym) =
423 lookup_function_type (read_type (&pp, objfile));
424 }
425 else
426 {
427 SYMBOL_TYPE (sym) = read_type (&pp, objfile);
428 }
429 }
430 }
431 }
432 }
433 \f
434
435 /* Read a number by which a type is referred to in dbx data,
436 or perhaps read a pair (FILENUM, TYPENUM) in parentheses.
437 Just a single number N is equivalent to (0,N).
438 Return the two numbers by storing them in the vector TYPENUMS.
439 TYPENUMS will then be used as an argument to dbx_lookup_type.
440
441 Returns 0 for success, -1 for error. */
442
443 static int
444 read_type_number (char **pp, int *typenums)
445 {
446 int nbits;
447
448 if (**pp == '(')
449 {
450 (*pp)++;
451 typenums[0] = read_huge_number (pp, ',', &nbits, 0);
452 if (nbits != 0)
453 return -1;
454 typenums[1] = read_huge_number (pp, ')', &nbits, 0);
455 if (nbits != 0)
456 return -1;
457 }
458 else
459 {
460 typenums[0] = 0;
461 typenums[1] = read_huge_number (pp, 0, &nbits, 0);
462 if (nbits != 0)
463 return -1;
464 }
465 return 0;
466 }
467 \f
468
469 #define VISIBILITY_PRIVATE '0' /* Stabs character for private field */
470 #define VISIBILITY_PROTECTED '1' /* Stabs character for protected fld */
471 #define VISIBILITY_PUBLIC '2' /* Stabs character for public field */
472 #define VISIBILITY_IGNORE '9' /* Optimized out or zero length */
473
474 /* Structure for storing pointers to reference definitions for fast lookup
475 during "process_later". */
476
477 struct ref_map
478 {
479 char *stabs;
480 CORE_ADDR value;
481 struct symbol *sym;
482 };
483
484 #define MAX_CHUNK_REFS 100
485 #define REF_CHUNK_SIZE (MAX_CHUNK_REFS * sizeof (struct ref_map))
486 #define REF_MAP_SIZE(ref_chunk) ((ref_chunk) * REF_CHUNK_SIZE)
487
488 static struct ref_map *ref_map;
489
490 /* Ptr to free cell in chunk's linked list. */
491 static int ref_count = 0;
492
493 /* Number of chunks malloced. */
494 static int ref_chunk = 0;
495
496 /* This file maintains a cache of stabs aliases found in the symbol
497 table. If the symbol table changes, this cache must be cleared
498 or we are left holding onto data in invalid obstacks. */
499 void
500 stabsread_clear_cache (void)
501 {
502 ref_count = 0;
503 ref_chunk = 0;
504 }
505
506 /* Create array of pointers mapping refids to symbols and stab strings.
507 Add pointers to reference definition symbols and/or their values as we
508 find them, using their reference numbers as our index.
509 These will be used later when we resolve references. */
510 void
511 ref_add (int refnum, struct symbol *sym, char *stabs, CORE_ADDR value)
512 {
513 if (ref_count == 0)
514 ref_chunk = 0;
515 if (refnum >= ref_count)
516 ref_count = refnum + 1;
517 if (ref_count > ref_chunk * MAX_CHUNK_REFS)
518 {
519 int new_slots = ref_count - ref_chunk * MAX_CHUNK_REFS;
520 int new_chunks = new_slots / MAX_CHUNK_REFS + 1;
521
522 ref_map = (struct ref_map *)
523 xrealloc (ref_map, REF_MAP_SIZE (ref_chunk + new_chunks));
524 memset (ref_map + ref_chunk * MAX_CHUNK_REFS, 0,
525 new_chunks * REF_CHUNK_SIZE);
526 ref_chunk += new_chunks;
527 }
528 ref_map[refnum].stabs = stabs;
529 ref_map[refnum].sym = sym;
530 ref_map[refnum].value = value;
531 }
532
533 /* Return defined sym for the reference REFNUM. */
534 struct symbol *
535 ref_search (int refnum)
536 {
537 if (refnum < 0 || refnum > ref_count)
538 return 0;
539 return ref_map[refnum].sym;
540 }
541
542 /* Parse a reference id in STRING and return the resulting
543 reference number. Move STRING beyond the reference id. */
544
545 static int
546 process_reference (char **string)
547 {
548 char *p;
549 int refnum = 0;
550
551 if (**string != '#')
552 return 0;
553
554 /* Advance beyond the initial '#'. */
555 p = *string + 1;
556
557 /* Read number as reference id. */
558 while (*p && isdigit (*p))
559 {
560 refnum = refnum * 10 + *p - '0';
561 p++;
562 }
563 *string = p;
564 return refnum;
565 }
566
567 /* If STRING defines a reference, store away a pointer to the reference
568 definition for later use. Return the reference number. */
569
570 int
571 symbol_reference_defined (char **string)
572 {
573 char *p = *string;
574 int refnum = 0;
575
576 refnum = process_reference (&p);
577
578 /* Defining symbols end in '='. */
579 if (*p == '=')
580 {
581 /* Symbol is being defined here. */
582 *string = p + 1;
583 return refnum;
584 }
585 else
586 {
587 /* Must be a reference. Either the symbol has already been defined,
588 or this is a forward reference to it. */
589 *string = p;
590 return -1;
591 }
592 }
593
594 static int
595 stab_reg_to_regnum (struct symbol *sym, struct gdbarch *gdbarch)
596 {
597 int regno = gdbarch_stab_reg_to_regnum (gdbarch, SYMBOL_VALUE (sym));
598
599 if (regno >= gdbarch_num_regs (gdbarch)
600 + gdbarch_num_pseudo_regs (gdbarch))
601 {
602 reg_value_complaint (regno,
603 gdbarch_num_regs (gdbarch)
604 + gdbarch_num_pseudo_regs (gdbarch),
605 SYMBOL_PRINT_NAME (sym));
606
607 regno = gdbarch_sp_regnum (gdbarch); /* Known safe, though useless. */
608 }
609
610 return regno;
611 }
612
613 static const struct symbol_register_ops stab_register_funcs = {
614 stab_reg_to_regnum
615 };
616
617 /* The "aclass" indices for computed symbols. */
618
619 static int stab_register_index;
620 static int stab_regparm_index;
621
622 struct symbol *
623 define_symbol (CORE_ADDR valu, char *string, int desc, int type,
624 struct objfile *objfile)
625 {
626 struct gdbarch *gdbarch = get_objfile_arch (objfile);
627 struct symbol *sym;
628 char *p = (char *) find_name_end (string);
629 int deftype;
630 int synonym = 0;
631 int i;
632 char *new_name = NULL;
633
634 /* We would like to eliminate nameless symbols, but keep their types.
635 E.g. stab entry ":t10=*2" should produce a type 10, which is a pointer
636 to type 2, but, should not create a symbol to address that type. Since
637 the symbol will be nameless, there is no way any user can refer to it. */
638
639 int nameless;
640
641 /* Ignore syms with empty names. */
642 if (string[0] == 0)
643 return 0;
644
645 /* Ignore old-style symbols from cc -go. */
646 if (p == 0)
647 return 0;
648
649 while (p[1] == ':')
650 {
651 p += 2;
652 p = strchr (p, ':');
653 if (p == NULL)
654 {
655 complaint (&symfile_complaints,
656 _("Bad stabs string '%s'"), string);
657 return NULL;
658 }
659 }
660
661 /* If a nameless stab entry, all we need is the type, not the symbol.
662 e.g. ":t10=*2" or a nameless enum like " :T16=ered:0,green:1,blue:2,;" */
663 nameless = (p == string || ((string[0] == ' ') && (string[1] == ':')));
664
665 current_symbol = sym = allocate_symbol (objfile);
666
667 if (processing_gcc_compilation)
668 {
669 /* GCC 2.x puts the line number in desc. SunOS apparently puts in the
670 number of bytes occupied by a type or object, which we ignore. */
671 SYMBOL_LINE (sym) = desc;
672 }
673 else
674 {
675 SYMBOL_LINE (sym) = 0; /* unknown */
676 }
677
678 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
679 &objfile->objfile_obstack);
680
681 if (is_cplus_marker (string[0]))
682 {
683 /* Special GNU C++ names. */
684 switch (string[1])
685 {
686 case 't':
687 SYMBOL_SET_LINKAGE_NAME (sym, "this");
688 break;
689
690 case 'v': /* $vtbl_ptr_type */
691 goto normal;
692
693 case 'e':
694 SYMBOL_SET_LINKAGE_NAME (sym, "eh_throw");
695 break;
696
697 case '_':
698 /* This was an anonymous type that was never fixed up. */
699 goto normal;
700
701 case 'X':
702 /* SunPRO (3.0 at least) static variable encoding. */
703 if (gdbarch_static_transform_name_p (gdbarch))
704 goto normal;
705 /* ... fall through ... */
706
707 default:
708 complaint (&symfile_complaints, _("Unknown C++ symbol name `%s'"),
709 string);
710 goto normal; /* Do *something* with it. */
711 }
712 }
713 else
714 {
715 normal:
716 if (SYMBOL_LANGUAGE (sym) == language_cplus)
717 {
718 char *name = alloca (p - string + 1);
719
720 memcpy (name, string, p - string);
721 name[p - string] = '\0';
722 new_name = cp_canonicalize_string (name);
723 }
724 if (new_name != NULL)
725 {
726 SYMBOL_SET_NAMES (sym, new_name, strlen (new_name), 1, objfile);
727 xfree (new_name);
728 }
729 else
730 SYMBOL_SET_NAMES (sym, string, p - string, 1, objfile);
731
732 if (SYMBOL_LANGUAGE (sym) == language_cplus)
733 cp_scan_for_anonymous_namespaces (sym, objfile);
734
735 }
736 p++;
737
738 /* Determine the type of name being defined. */
739 #if 0
740 /* Getting GDB to correctly skip the symbol on an undefined symbol
741 descriptor and not ever dump core is a very dodgy proposition if
742 we do things this way. I say the acorn RISC machine can just
743 fix their compiler. */
744 /* The Acorn RISC machine's compiler can put out locals that don't
745 start with "234=" or "(3,4)=", so assume anything other than the
746 deftypes we know how to handle is a local. */
747 if (!strchr ("cfFGpPrStTvVXCR", *p))
748 #else
749 if (isdigit (*p) || *p == '(' || *p == '-')
750 #endif
751 deftype = 'l';
752 else
753 deftype = *p++;
754
755 switch (deftype)
756 {
757 case 'c':
758 /* c is a special case, not followed by a type-number.
759 SYMBOL:c=iVALUE for an integer constant symbol.
760 SYMBOL:c=rVALUE for a floating constant symbol.
761 SYMBOL:c=eTYPE,INTVALUE for an enum constant symbol.
762 e.g. "b:c=e6,0" for "const b = blob1"
763 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
764 if (*p != '=')
765 {
766 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
767 SYMBOL_TYPE (sym) = error_type (&p, objfile);
768 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
769 add_symbol_to_list (sym, &file_symbols);
770 return sym;
771 }
772 ++p;
773 switch (*p++)
774 {
775 case 'r':
776 {
777 double d = atof (p);
778 gdb_byte *dbl_valu;
779 struct type *dbl_type;
780
781 /* FIXME-if-picky-about-floating-accuracy: Should be using
782 target arithmetic to get the value. real.c in GCC
783 probably has the necessary code. */
784
785 dbl_type = objfile_type (objfile)->builtin_double;
786 dbl_valu =
787 obstack_alloc (&objfile->objfile_obstack,
788 TYPE_LENGTH (dbl_type));
789 store_typed_floating (dbl_valu, dbl_type, d);
790
791 SYMBOL_TYPE (sym) = dbl_type;
792 SYMBOL_VALUE_BYTES (sym) = dbl_valu;
793 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
794 }
795 break;
796 case 'i':
797 {
798 /* Defining integer constants this way is kind of silly,
799 since 'e' constants allows the compiler to give not
800 only the value, but the type as well. C has at least
801 int, long, unsigned int, and long long as constant
802 types; other languages probably should have at least
803 unsigned as well as signed constants. */
804
805 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_long;
806 SYMBOL_VALUE (sym) = atoi (p);
807 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
808 }
809 break;
810
811 case 'c':
812 {
813 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_char;
814 SYMBOL_VALUE (sym) = atoi (p);
815 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
816 }
817 break;
818
819 case 's':
820 {
821 struct type *range_type;
822 int ind = 0;
823 char quote = *p++;
824 gdb_byte *string_local = (gdb_byte *) alloca (strlen (p));
825 gdb_byte *string_value;
826
827 if (quote != '\'' && quote != '"')
828 {
829 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
830 SYMBOL_TYPE (sym) = error_type (&p, objfile);
831 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
832 add_symbol_to_list (sym, &file_symbols);
833 return sym;
834 }
835
836 /* Find matching quote, rejecting escaped quotes. */
837 while (*p && *p != quote)
838 {
839 if (*p == '\\' && p[1] == quote)
840 {
841 string_local[ind] = (gdb_byte) quote;
842 ind++;
843 p += 2;
844 }
845 else if (*p)
846 {
847 string_local[ind] = (gdb_byte) (*p);
848 ind++;
849 p++;
850 }
851 }
852 if (*p != quote)
853 {
854 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
855 SYMBOL_TYPE (sym) = error_type (&p, objfile);
856 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
857 add_symbol_to_list (sym, &file_symbols);
858 return sym;
859 }
860
861 /* NULL terminate the string. */
862 string_local[ind] = 0;
863 range_type
864 = create_static_range_type (NULL,
865 objfile_type (objfile)->builtin_int,
866 0, ind);
867 SYMBOL_TYPE (sym) = create_array_type (NULL,
868 objfile_type (objfile)->builtin_char,
869 range_type);
870 string_value = obstack_alloc (&objfile->objfile_obstack, ind + 1);
871 memcpy (string_value, string_local, ind + 1);
872 p++;
873
874 SYMBOL_VALUE_BYTES (sym) = string_value;
875 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
876 }
877 break;
878
879 case 'e':
880 /* SYMBOL:c=eTYPE,INTVALUE for a constant symbol whose value
881 can be represented as integral.
882 e.g. "b:c=e6,0" for "const b = blob1"
883 (where type 6 is defined by "blobs:t6=eblob1:0,blob2:1,;"). */
884 {
885 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
886 SYMBOL_TYPE (sym) = read_type (&p, objfile);
887
888 if (*p != ',')
889 {
890 SYMBOL_TYPE (sym) = error_type (&p, objfile);
891 break;
892 }
893 ++p;
894
895 /* If the value is too big to fit in an int (perhaps because
896 it is unsigned), or something like that, we silently get
897 a bogus value. The type and everything else about it is
898 correct. Ideally, we should be using whatever we have
899 available for parsing unsigned and long long values,
900 however. */
901 SYMBOL_VALUE (sym) = atoi (p);
902 }
903 break;
904 default:
905 {
906 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
907 SYMBOL_TYPE (sym) = error_type (&p, objfile);
908 }
909 }
910 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
911 add_symbol_to_list (sym, &file_symbols);
912 return sym;
913
914 case 'C':
915 /* The name of a caught exception. */
916 SYMBOL_TYPE (sym) = read_type (&p, objfile);
917 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
918 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
919 SYMBOL_VALUE_ADDRESS (sym) = valu;
920 add_symbol_to_list (sym, &local_symbols);
921 break;
922
923 case 'f':
924 /* A static function definition. */
925 SYMBOL_TYPE (sym) = read_type (&p, objfile);
926 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
927 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
928 add_symbol_to_list (sym, &file_symbols);
929 /* fall into process_function_types. */
930
931 process_function_types:
932 /* Function result types are described as the result type in stabs.
933 We need to convert this to the function-returning-type-X type
934 in GDB. E.g. "int" is converted to "function returning int". */
935 if (TYPE_CODE (SYMBOL_TYPE (sym)) != TYPE_CODE_FUNC)
936 SYMBOL_TYPE (sym) = lookup_function_type (SYMBOL_TYPE (sym));
937
938 /* All functions in C++ have prototypes. Stabs does not offer an
939 explicit way to identify prototyped or unprototyped functions,
940 but both GCC and Sun CC emit stabs for the "call-as" type rather
941 than the "declared-as" type for unprototyped functions, so
942 we treat all functions as if they were prototyped. This is used
943 primarily for promotion when calling the function from GDB. */
944 TYPE_PROTOTYPED (SYMBOL_TYPE (sym)) = 1;
945
946 /* fall into process_prototype_types. */
947
948 process_prototype_types:
949 /* Sun acc puts declared types of arguments here. */
950 if (*p == ';')
951 {
952 struct type *ftype = SYMBOL_TYPE (sym);
953 int nsemi = 0;
954 int nparams = 0;
955 char *p1 = p;
956
957 /* Obtain a worst case guess for the number of arguments
958 by counting the semicolons. */
959 while (*p1)
960 {
961 if (*p1++ == ';')
962 nsemi++;
963 }
964
965 /* Allocate parameter information fields and fill them in. */
966 TYPE_FIELDS (ftype) = (struct field *)
967 TYPE_ALLOC (ftype, nsemi * sizeof (struct field));
968 while (*p++ == ';')
969 {
970 struct type *ptype;
971
972 /* A type number of zero indicates the start of varargs.
973 FIXME: GDB currently ignores vararg functions. */
974 if (p[0] == '0' && p[1] == '\0')
975 break;
976 ptype = read_type (&p, objfile);
977
978 /* The Sun compilers mark integer arguments, which should
979 be promoted to the width of the calling conventions, with
980 a type which references itself. This type is turned into
981 a TYPE_CODE_VOID type by read_type, and we have to turn
982 it back into builtin_int here.
983 FIXME: Do we need a new builtin_promoted_int_arg ? */
984 if (TYPE_CODE (ptype) == TYPE_CODE_VOID)
985 ptype = objfile_type (objfile)->builtin_int;
986 TYPE_FIELD_TYPE (ftype, nparams) = ptype;
987 TYPE_FIELD_ARTIFICIAL (ftype, nparams++) = 0;
988 }
989 TYPE_NFIELDS (ftype) = nparams;
990 TYPE_PROTOTYPED (ftype) = 1;
991 }
992 break;
993
994 case 'F':
995 /* A global function definition. */
996 SYMBOL_TYPE (sym) = read_type (&p, objfile);
997 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
998 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
999 add_symbol_to_list (sym, &global_symbols);
1000 goto process_function_types;
1001
1002 case 'G':
1003 /* For a class G (global) symbol, it appears that the
1004 value is not correct. It is necessary to search for the
1005 corresponding linker definition to find the value.
1006 These definitions appear at the end of the namelist. */
1007 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1008 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1009 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1010 /* Don't add symbol references to global_sym_chain.
1011 Symbol references don't have valid names and wont't match up with
1012 minimal symbols when the global_sym_chain is relocated.
1013 We'll fixup symbol references when we fixup the defining symbol. */
1014 if (SYMBOL_LINKAGE_NAME (sym) && SYMBOL_LINKAGE_NAME (sym)[0] != '#')
1015 {
1016 i = hashname (SYMBOL_LINKAGE_NAME (sym));
1017 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
1018 global_sym_chain[i] = sym;
1019 }
1020 add_symbol_to_list (sym, &global_symbols);
1021 break;
1022
1023 /* This case is faked by a conditional above,
1024 when there is no code letter in the dbx data.
1025 Dbx data never actually contains 'l'. */
1026 case 's':
1027 case 'l':
1028 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1029 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1030 SYMBOL_VALUE (sym) = valu;
1031 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1032 add_symbol_to_list (sym, &local_symbols);
1033 break;
1034
1035 case 'p':
1036 if (*p == 'F')
1037 /* pF is a two-letter code that means a function parameter in Fortran.
1038 The type-number specifies the type of the return value.
1039 Translate it into a pointer-to-function type. */
1040 {
1041 p++;
1042 SYMBOL_TYPE (sym)
1043 = lookup_pointer_type
1044 (lookup_function_type (read_type (&p, objfile)));
1045 }
1046 else
1047 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1048
1049 SYMBOL_ACLASS_INDEX (sym) = LOC_ARG;
1050 SYMBOL_VALUE (sym) = valu;
1051 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1052 SYMBOL_IS_ARGUMENT (sym) = 1;
1053 add_symbol_to_list (sym, &local_symbols);
1054
1055 if (gdbarch_byte_order (gdbarch) != BFD_ENDIAN_BIG)
1056 {
1057 /* On little-endian machines, this crud is never necessary,
1058 and, if the extra bytes contain garbage, is harmful. */
1059 break;
1060 }
1061
1062 /* If it's gcc-compiled, if it says `short', believe it. */
1063 if (processing_gcc_compilation
1064 || gdbarch_believe_pcc_promotion (gdbarch))
1065 break;
1066
1067 if (!gdbarch_believe_pcc_promotion (gdbarch))
1068 {
1069 /* If PCC says a parameter is a short or a char, it is
1070 really an int. */
1071 if (TYPE_LENGTH (SYMBOL_TYPE (sym))
1072 < gdbarch_int_bit (gdbarch) / TARGET_CHAR_BIT
1073 && TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_INT)
1074 {
1075 SYMBOL_TYPE (sym) =
1076 TYPE_UNSIGNED (SYMBOL_TYPE (sym))
1077 ? objfile_type (objfile)->builtin_unsigned_int
1078 : objfile_type (objfile)->builtin_int;
1079 }
1080 break;
1081 }
1082
1083 case 'P':
1084 /* acc seems to use P to declare the prototypes of functions that
1085 are referenced by this file. gdb is not prepared to deal
1086 with this extra information. FIXME, it ought to. */
1087 if (type == N_FUN)
1088 {
1089 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1090 goto process_prototype_types;
1091 }
1092 /*FALLTHROUGH */
1093
1094 case 'R':
1095 /* Parameter which is in a register. */
1096 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1097 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1098 SYMBOL_IS_ARGUMENT (sym) = 1;
1099 SYMBOL_VALUE (sym) = valu;
1100 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1101 add_symbol_to_list (sym, &local_symbols);
1102 break;
1103
1104 case 'r':
1105 /* Register variable (either global or local). */
1106 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1107 SYMBOL_ACLASS_INDEX (sym) = stab_register_index;
1108 SYMBOL_VALUE (sym) = valu;
1109 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1110 if (within_function)
1111 {
1112 /* Sun cc uses a pair of symbols, one 'p' and one 'r', with
1113 the same name to represent an argument passed in a
1114 register. GCC uses 'P' for the same case. So if we find
1115 such a symbol pair we combine it into one 'P' symbol.
1116 For Sun cc we need to do this regardless of
1117 stabs_argument_has_addr, because the compiler puts out
1118 the 'p' symbol even if it never saves the argument onto
1119 the stack.
1120
1121 On most machines, we want to preserve both symbols, so
1122 that we can still get information about what is going on
1123 with the stack (VAX for computing args_printed, using
1124 stack slots instead of saved registers in backtraces,
1125 etc.).
1126
1127 Note that this code illegally combines
1128 main(argc) struct foo argc; { register struct foo argc; }
1129 but this case is considered pathological and causes a warning
1130 from a decent compiler. */
1131
1132 if (local_symbols
1133 && local_symbols->nsyms > 0
1134 && gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym)))
1135 {
1136 struct symbol *prev_sym;
1137
1138 prev_sym = local_symbols->symbol[local_symbols->nsyms - 1];
1139 if ((SYMBOL_CLASS (prev_sym) == LOC_REF_ARG
1140 || SYMBOL_CLASS (prev_sym) == LOC_ARG)
1141 && strcmp (SYMBOL_LINKAGE_NAME (prev_sym),
1142 SYMBOL_LINKAGE_NAME (sym)) == 0)
1143 {
1144 SYMBOL_ACLASS_INDEX (prev_sym) = stab_register_index;
1145 /* Use the type from the LOC_REGISTER; that is the type
1146 that is actually in that register. */
1147 SYMBOL_TYPE (prev_sym) = SYMBOL_TYPE (sym);
1148 SYMBOL_VALUE (prev_sym) = SYMBOL_VALUE (sym);
1149 sym = prev_sym;
1150 break;
1151 }
1152 }
1153 add_symbol_to_list (sym, &local_symbols);
1154 }
1155 else
1156 add_symbol_to_list (sym, &file_symbols);
1157 break;
1158
1159 case 'S':
1160 /* Static symbol at top level of file. */
1161 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1162 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1163 SYMBOL_VALUE_ADDRESS (sym) = valu;
1164 if (gdbarch_static_transform_name_p (gdbarch)
1165 && gdbarch_static_transform_name (gdbarch,
1166 SYMBOL_LINKAGE_NAME (sym))
1167 != SYMBOL_LINKAGE_NAME (sym))
1168 {
1169 struct bound_minimal_symbol msym;
1170
1171 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1172 NULL, objfile);
1173 if (msym.minsym != NULL)
1174 {
1175 const char *new_name = gdbarch_static_transform_name
1176 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1177
1178 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1179 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1180 }
1181 }
1182 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1183 add_symbol_to_list (sym, &file_symbols);
1184 break;
1185
1186 case 't':
1187 /* In Ada, there is no distinction between typedef and non-typedef;
1188 any type declaration implicitly has the equivalent of a typedef,
1189 and thus 't' is in fact equivalent to 'Tt'.
1190
1191 Therefore, for Ada units, we check the character immediately
1192 before the 't', and if we do not find a 'T', then make sure to
1193 create the associated symbol in the STRUCT_DOMAIN ('t' definitions
1194 will be stored in the VAR_DOMAIN). If the symbol was indeed
1195 defined as 'Tt' then the STRUCT_DOMAIN symbol will be created
1196 elsewhere, so we don't need to take care of that.
1197
1198 This is important to do, because of forward references:
1199 The cleanup of undefined types stored in undef_types only uses
1200 STRUCT_DOMAIN symbols to perform the replacement. */
1201 synonym = (SYMBOL_LANGUAGE (sym) == language_ada && p[-2] != 'T');
1202
1203 /* Typedef */
1204 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1205
1206 /* For a nameless type, we don't want a create a symbol, thus we
1207 did not use `sym'. Return without further processing. */
1208 if (nameless)
1209 return NULL;
1210
1211 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1212 SYMBOL_VALUE (sym) = valu;
1213 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1214 /* C++ vagaries: we may have a type which is derived from
1215 a base type which did not have its name defined when the
1216 derived class was output. We fill in the derived class's
1217 base part member's name here in that case. */
1218 if (TYPE_NAME (SYMBOL_TYPE (sym)) != NULL)
1219 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_STRUCT
1220 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_UNION)
1221 && TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)))
1222 {
1223 int j;
1224
1225 for (j = TYPE_N_BASECLASSES (SYMBOL_TYPE (sym)) - 1; j >= 0; j--)
1226 if (TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) == 0)
1227 TYPE_BASECLASS_NAME (SYMBOL_TYPE (sym), j) =
1228 type_name_no_tag (TYPE_BASECLASS (SYMBOL_TYPE (sym), j));
1229 }
1230
1231 if (TYPE_NAME (SYMBOL_TYPE (sym)) == NULL)
1232 {
1233 /* gcc-2.6 or later (when using -fvtable-thunks)
1234 emits a unique named type for a vtable entry.
1235 Some gdb code depends on that specific name. */
1236 extern const char vtbl_ptr_name[];
1237
1238 if ((TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_PTR
1239 && strcmp (SYMBOL_LINKAGE_NAME (sym), vtbl_ptr_name))
1240 || TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_FUNC)
1241 {
1242 /* If we are giving a name to a type such as "pointer to
1243 foo" or "function returning foo", we better not set
1244 the TYPE_NAME. If the program contains "typedef char
1245 *caddr_t;", we don't want all variables of type char
1246 * to print as caddr_t. This is not just a
1247 consequence of GDB's type management; PCC and GCC (at
1248 least through version 2.4) both output variables of
1249 either type char * or caddr_t with the type number
1250 defined in the 't' symbol for caddr_t. If a future
1251 compiler cleans this up it GDB is not ready for it
1252 yet, but if it becomes ready we somehow need to
1253 disable this check (without breaking the PCC/GCC2.4
1254 case).
1255
1256 Sigh.
1257
1258 Fortunately, this check seems not to be necessary
1259 for anything except pointers or functions. */
1260 /* ezannoni: 2000-10-26. This seems to apply for
1261 versions of gcc older than 2.8. This was the original
1262 problem: with the following code gdb would tell that
1263 the type for name1 is caddr_t, and func is char().
1264
1265 typedef char *caddr_t;
1266 char *name2;
1267 struct x
1268 {
1269 char *name1;
1270 } xx;
1271 char *func()
1272 {
1273 }
1274 main () {}
1275 */
1276
1277 /* Pascal accepts names for pointer types. */
1278 if (current_subfile->language == language_pascal)
1279 {
1280 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1281 }
1282 }
1283 else
1284 TYPE_NAME (SYMBOL_TYPE (sym)) = SYMBOL_LINKAGE_NAME (sym);
1285 }
1286
1287 add_symbol_to_list (sym, &file_symbols);
1288
1289 if (synonym)
1290 {
1291 /* Create the STRUCT_DOMAIN clone. */
1292 struct symbol *struct_sym = allocate_symbol (objfile);
1293
1294 *struct_sym = *sym;
1295 SYMBOL_ACLASS_INDEX (struct_sym) = LOC_TYPEDEF;
1296 SYMBOL_VALUE (struct_sym) = valu;
1297 SYMBOL_DOMAIN (struct_sym) = STRUCT_DOMAIN;
1298 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1299 TYPE_NAME (SYMBOL_TYPE (sym))
1300 = obconcat (&objfile->objfile_obstack,
1301 SYMBOL_LINKAGE_NAME (sym),
1302 (char *) NULL);
1303 add_symbol_to_list (struct_sym, &file_symbols);
1304 }
1305
1306 break;
1307
1308 case 'T':
1309 /* Struct, union, or enum tag. For GNU C++, this can be be followed
1310 by 't' which means we are typedef'ing it as well. */
1311 synonym = *p == 't';
1312
1313 if (synonym)
1314 p++;
1315
1316 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1317
1318 /* For a nameless type, we don't want a create a symbol, thus we
1319 did not use `sym'. Return without further processing. */
1320 if (nameless)
1321 return NULL;
1322
1323 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
1324 SYMBOL_VALUE (sym) = valu;
1325 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
1326 if (TYPE_TAG_NAME (SYMBOL_TYPE (sym)) == 0)
1327 TYPE_TAG_NAME (SYMBOL_TYPE (sym))
1328 = obconcat (&objfile->objfile_obstack,
1329 SYMBOL_LINKAGE_NAME (sym),
1330 (char *) NULL);
1331 add_symbol_to_list (sym, &file_symbols);
1332
1333 if (synonym)
1334 {
1335 /* Clone the sym and then modify it. */
1336 struct symbol *typedef_sym = allocate_symbol (objfile);
1337
1338 *typedef_sym = *sym;
1339 SYMBOL_ACLASS_INDEX (typedef_sym) = LOC_TYPEDEF;
1340 SYMBOL_VALUE (typedef_sym) = valu;
1341 SYMBOL_DOMAIN (typedef_sym) = VAR_DOMAIN;
1342 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
1343 TYPE_NAME (SYMBOL_TYPE (sym))
1344 = obconcat (&objfile->objfile_obstack,
1345 SYMBOL_LINKAGE_NAME (sym),
1346 (char *) NULL);
1347 add_symbol_to_list (typedef_sym, &file_symbols);
1348 }
1349 break;
1350
1351 case 'V':
1352 /* Static symbol of local scope. */
1353 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1354 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
1355 SYMBOL_VALUE_ADDRESS (sym) = valu;
1356 if (gdbarch_static_transform_name_p (gdbarch)
1357 && gdbarch_static_transform_name (gdbarch,
1358 SYMBOL_LINKAGE_NAME (sym))
1359 != SYMBOL_LINKAGE_NAME (sym))
1360 {
1361 struct bound_minimal_symbol msym;
1362
1363 msym = lookup_minimal_symbol (SYMBOL_LINKAGE_NAME (sym),
1364 NULL, objfile);
1365 if (msym.minsym != NULL)
1366 {
1367 const char *new_name = gdbarch_static_transform_name
1368 (gdbarch, SYMBOL_LINKAGE_NAME (sym));
1369
1370 SYMBOL_SET_LINKAGE_NAME (sym, new_name);
1371 SYMBOL_VALUE_ADDRESS (sym) = BMSYMBOL_VALUE_ADDRESS (msym);
1372 }
1373 }
1374 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1375 add_symbol_to_list (sym, &local_symbols);
1376 break;
1377
1378 case 'v':
1379 /* Reference parameter */
1380 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1381 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1382 SYMBOL_IS_ARGUMENT (sym) = 1;
1383 SYMBOL_VALUE (sym) = valu;
1384 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1385 add_symbol_to_list (sym, &local_symbols);
1386 break;
1387
1388 case 'a':
1389 /* Reference parameter which is in a register. */
1390 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1391 SYMBOL_ACLASS_INDEX (sym) = stab_regparm_index;
1392 SYMBOL_IS_ARGUMENT (sym) = 1;
1393 SYMBOL_VALUE (sym) = valu;
1394 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1395 add_symbol_to_list (sym, &local_symbols);
1396 break;
1397
1398 case 'X':
1399 /* This is used by Sun FORTRAN for "function result value".
1400 Sun claims ("dbx and dbxtool interfaces", 2nd ed)
1401 that Pascal uses it too, but when I tried it Pascal used
1402 "x:3" (local symbol) instead. */
1403 SYMBOL_TYPE (sym) = read_type (&p, objfile);
1404 SYMBOL_ACLASS_INDEX (sym) = LOC_LOCAL;
1405 SYMBOL_VALUE (sym) = valu;
1406 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1407 add_symbol_to_list (sym, &local_symbols);
1408 break;
1409
1410 default:
1411 SYMBOL_TYPE (sym) = error_type (&p, objfile);
1412 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
1413 SYMBOL_VALUE (sym) = 0;
1414 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
1415 add_symbol_to_list (sym, &file_symbols);
1416 break;
1417 }
1418
1419 /* Some systems pass variables of certain types by reference instead
1420 of by value, i.e. they will pass the address of a structure (in a
1421 register or on the stack) instead of the structure itself. */
1422
1423 if (gdbarch_stabs_argument_has_addr (gdbarch, SYMBOL_TYPE (sym))
1424 && SYMBOL_IS_ARGUMENT (sym))
1425 {
1426 /* We have to convert LOC_REGISTER to LOC_REGPARM_ADDR (for
1427 variables passed in a register). */
1428 if (SYMBOL_CLASS (sym) == LOC_REGISTER)
1429 SYMBOL_ACLASS_INDEX (sym) = LOC_REGPARM_ADDR;
1430 /* Likewise for converting LOC_ARG to LOC_REF_ARG (for the 7th
1431 and subsequent arguments on SPARC, for example). */
1432 else if (SYMBOL_CLASS (sym) == LOC_ARG)
1433 SYMBOL_ACLASS_INDEX (sym) = LOC_REF_ARG;
1434 }
1435
1436 return sym;
1437 }
1438
1439 /* Skip rest of this symbol and return an error type.
1440
1441 General notes on error recovery: error_type always skips to the
1442 end of the symbol (modulo cretinous dbx symbol name continuation).
1443 Thus code like this:
1444
1445 if (*(*pp)++ != ';')
1446 return error_type (pp, objfile);
1447
1448 is wrong because if *pp starts out pointing at '\0' (typically as the
1449 result of an earlier error), it will be incremented to point to the
1450 start of the next symbol, which might produce strange results, at least
1451 if you run off the end of the string table. Instead use
1452
1453 if (**pp != ';')
1454 return error_type (pp, objfile);
1455 ++*pp;
1456
1457 or
1458
1459 if (**pp != ';')
1460 foo = error_type (pp, objfile);
1461 else
1462 ++*pp;
1463
1464 And in case it isn't obvious, the point of all this hair is so the compiler
1465 can define new types and new syntaxes, and old versions of the
1466 debugger will be able to read the new symbol tables. */
1467
1468 static struct type *
1469 error_type (char **pp, struct objfile *objfile)
1470 {
1471 complaint (&symfile_complaints,
1472 _("couldn't parse type; debugger out of date?"));
1473 while (1)
1474 {
1475 /* Skip to end of symbol. */
1476 while (**pp != '\0')
1477 {
1478 (*pp)++;
1479 }
1480
1481 /* Check for and handle cretinous dbx symbol name continuation! */
1482 if ((*pp)[-1] == '\\' || (*pp)[-1] == '?')
1483 {
1484 *pp = next_symbol_text (objfile);
1485 }
1486 else
1487 {
1488 break;
1489 }
1490 }
1491 return objfile_type (objfile)->builtin_error;
1492 }
1493 \f
1494
1495 /* Read type information or a type definition; return the type. Even
1496 though this routine accepts either type information or a type
1497 definition, the distinction is relevant--some parts of stabsread.c
1498 assume that type information starts with a digit, '-', or '(' in
1499 deciding whether to call read_type. */
1500
1501 static struct type *
1502 read_type (char **pp, struct objfile *objfile)
1503 {
1504 struct type *type = 0;
1505 struct type *type1;
1506 int typenums[2];
1507 char type_descriptor;
1508
1509 /* Size in bits of type if specified by a type attribute, or -1 if
1510 there is no size attribute. */
1511 int type_size = -1;
1512
1513 /* Used to distinguish string and bitstring from char-array and set. */
1514 int is_string = 0;
1515
1516 /* Used to distinguish vector from array. */
1517 int is_vector = 0;
1518
1519 /* Read type number if present. The type number may be omitted.
1520 for instance in a two-dimensional array declared with type
1521 "ar1;1;10;ar1;1;10;4". */
1522 if ((**pp >= '0' && **pp <= '9')
1523 || **pp == '('
1524 || **pp == '-')
1525 {
1526 if (read_type_number (pp, typenums) != 0)
1527 return error_type (pp, objfile);
1528
1529 if (**pp != '=')
1530 {
1531 /* Type is not being defined here. Either it already
1532 exists, or this is a forward reference to it.
1533 dbx_alloc_type handles both cases. */
1534 type = dbx_alloc_type (typenums, objfile);
1535
1536 /* If this is a forward reference, arrange to complain if it
1537 doesn't get patched up by the time we're done
1538 reading. */
1539 if (TYPE_CODE (type) == TYPE_CODE_UNDEF)
1540 add_undefined_type (type, typenums);
1541
1542 return type;
1543 }
1544
1545 /* Type is being defined here. */
1546 /* Skip the '='.
1547 Also skip the type descriptor - we get it below with (*pp)[-1]. */
1548 (*pp) += 2;
1549 }
1550 else
1551 {
1552 /* 'typenums=' not present, type is anonymous. Read and return
1553 the definition, but don't put it in the type vector. */
1554 typenums[0] = typenums[1] = -1;
1555 (*pp)++;
1556 }
1557
1558 again:
1559 type_descriptor = (*pp)[-1];
1560 switch (type_descriptor)
1561 {
1562 case 'x':
1563 {
1564 enum type_code code;
1565
1566 /* Used to index through file_symbols. */
1567 struct pending *ppt;
1568 int i;
1569
1570 /* Name including "struct", etc. */
1571 char *type_name;
1572
1573 {
1574 char *from, *to, *p, *q1, *q2;
1575
1576 /* Set the type code according to the following letter. */
1577 switch ((*pp)[0])
1578 {
1579 case 's':
1580 code = TYPE_CODE_STRUCT;
1581 break;
1582 case 'u':
1583 code = TYPE_CODE_UNION;
1584 break;
1585 case 'e':
1586 code = TYPE_CODE_ENUM;
1587 break;
1588 default:
1589 {
1590 /* Complain and keep going, so compilers can invent new
1591 cross-reference types. */
1592 complaint (&symfile_complaints,
1593 _("Unrecognized cross-reference type `%c'"),
1594 (*pp)[0]);
1595 code = TYPE_CODE_STRUCT;
1596 break;
1597 }
1598 }
1599
1600 q1 = strchr (*pp, '<');
1601 p = strchr (*pp, ':');
1602 if (p == NULL)
1603 return error_type (pp, objfile);
1604 if (q1 && p > q1 && p[1] == ':')
1605 {
1606 int nesting_level = 0;
1607
1608 for (q2 = q1; *q2; q2++)
1609 {
1610 if (*q2 == '<')
1611 nesting_level++;
1612 else if (*q2 == '>')
1613 nesting_level--;
1614 else if (*q2 == ':' && nesting_level == 0)
1615 break;
1616 }
1617 p = q2;
1618 if (*p != ':')
1619 return error_type (pp, objfile);
1620 }
1621 type_name = NULL;
1622 if (current_subfile->language == language_cplus)
1623 {
1624 char *new_name, *name = alloca (p - *pp + 1);
1625
1626 memcpy (name, *pp, p - *pp);
1627 name[p - *pp] = '\0';
1628 new_name = cp_canonicalize_string (name);
1629 if (new_name != NULL)
1630 {
1631 type_name = obstack_copy0 (&objfile->objfile_obstack,
1632 new_name, strlen (new_name));
1633 xfree (new_name);
1634 }
1635 }
1636 if (type_name == NULL)
1637 {
1638 to = type_name = (char *)
1639 obstack_alloc (&objfile->objfile_obstack, p - *pp + 1);
1640
1641 /* Copy the name. */
1642 from = *pp + 1;
1643 while (from < p)
1644 *to++ = *from++;
1645 *to = '\0';
1646 }
1647
1648 /* Set the pointer ahead of the name which we just read, and
1649 the colon. */
1650 *pp = p + 1;
1651 }
1652
1653 /* If this type has already been declared, then reuse the same
1654 type, rather than allocating a new one. This saves some
1655 memory. */
1656
1657 for (ppt = file_symbols; ppt; ppt = ppt->next)
1658 for (i = 0; i < ppt->nsyms; i++)
1659 {
1660 struct symbol *sym = ppt->symbol[i];
1661
1662 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
1663 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
1664 && (TYPE_CODE (SYMBOL_TYPE (sym)) == code)
1665 && strcmp (SYMBOL_LINKAGE_NAME (sym), type_name) == 0)
1666 {
1667 obstack_free (&objfile->objfile_obstack, type_name);
1668 type = SYMBOL_TYPE (sym);
1669 if (typenums[0] != -1)
1670 *dbx_lookup_type (typenums, objfile) = type;
1671 return type;
1672 }
1673 }
1674
1675 /* Didn't find the type to which this refers, so we must
1676 be dealing with a forward reference. Allocate a type
1677 structure for it, and keep track of it so we can
1678 fill in the rest of the fields when we get the full
1679 type. */
1680 type = dbx_alloc_type (typenums, objfile);
1681 TYPE_CODE (type) = code;
1682 TYPE_TAG_NAME (type) = type_name;
1683 INIT_CPLUS_SPECIFIC (type);
1684 TYPE_STUB (type) = 1;
1685
1686 add_undefined_type (type, typenums);
1687 return type;
1688 }
1689
1690 case '-': /* RS/6000 built-in type */
1691 case '0':
1692 case '1':
1693 case '2':
1694 case '3':
1695 case '4':
1696 case '5':
1697 case '6':
1698 case '7':
1699 case '8':
1700 case '9':
1701 case '(':
1702 (*pp)--;
1703
1704 /* We deal with something like t(1,2)=(3,4)=... which
1705 the Lucid compiler and recent gcc versions (post 2.7.3) use. */
1706
1707 /* Allocate and enter the typedef type first.
1708 This handles recursive types. */
1709 type = dbx_alloc_type (typenums, objfile);
1710 TYPE_CODE (type) = TYPE_CODE_TYPEDEF;
1711 {
1712 struct type *xtype = read_type (pp, objfile);
1713
1714 if (type == xtype)
1715 {
1716 /* It's being defined as itself. That means it is "void". */
1717 TYPE_CODE (type) = TYPE_CODE_VOID;
1718 TYPE_LENGTH (type) = 1;
1719 }
1720 else if (type_size >= 0 || is_string)
1721 {
1722 /* This is the absolute wrong way to construct types. Every
1723 other debug format has found a way around this problem and
1724 the related problems with unnecessarily stubbed types;
1725 someone motivated should attempt to clean up the issue
1726 here as well. Once a type pointed to has been created it
1727 should not be modified.
1728
1729 Well, it's not *absolutely* wrong. Constructing recursive
1730 types (trees, linked lists) necessarily entails modifying
1731 types after creating them. Constructing any loop structure
1732 entails side effects. The Dwarf 2 reader does handle this
1733 more gracefully (it never constructs more than once
1734 instance of a type object, so it doesn't have to copy type
1735 objects wholesale), but it still mutates type objects after
1736 other folks have references to them.
1737
1738 Keep in mind that this circularity/mutation issue shows up
1739 at the source language level, too: C's "incomplete types",
1740 for example. So the proper cleanup, I think, would be to
1741 limit GDB's type smashing to match exactly those required
1742 by the source language. So GDB could have a
1743 "complete_this_type" function, but never create unnecessary
1744 copies of a type otherwise. */
1745 replace_type (type, xtype);
1746 TYPE_NAME (type) = NULL;
1747 TYPE_TAG_NAME (type) = NULL;
1748 }
1749 else
1750 {
1751 TYPE_TARGET_STUB (type) = 1;
1752 TYPE_TARGET_TYPE (type) = xtype;
1753 }
1754 }
1755 break;
1756
1757 /* In the following types, we must be sure to overwrite any existing
1758 type that the typenums refer to, rather than allocating a new one
1759 and making the typenums point to the new one. This is because there
1760 may already be pointers to the existing type (if it had been
1761 forward-referenced), and we must change it to a pointer, function,
1762 reference, or whatever, *in-place*. */
1763
1764 case '*': /* Pointer to another type */
1765 type1 = read_type (pp, objfile);
1766 type = make_pointer_type (type1, dbx_lookup_type (typenums, objfile));
1767 break;
1768
1769 case '&': /* Reference to another type */
1770 type1 = read_type (pp, objfile);
1771 type = make_reference_type (type1, dbx_lookup_type (typenums, objfile));
1772 break;
1773
1774 case 'f': /* Function returning another type */
1775 type1 = read_type (pp, objfile);
1776 type = make_function_type (type1, dbx_lookup_type (typenums, objfile));
1777 break;
1778
1779 case 'g': /* Prototyped function. (Sun) */
1780 {
1781 /* Unresolved questions:
1782
1783 - According to Sun's ``STABS Interface Manual'', for 'f'
1784 and 'F' symbol descriptors, a `0' in the argument type list
1785 indicates a varargs function. But it doesn't say how 'g'
1786 type descriptors represent that info. Someone with access
1787 to Sun's toolchain should try it out.
1788
1789 - According to the comment in define_symbol (search for
1790 `process_prototype_types:'), Sun emits integer arguments as
1791 types which ref themselves --- like `void' types. Do we
1792 have to deal with that here, too? Again, someone with
1793 access to Sun's toolchain should try it out and let us
1794 know. */
1795
1796 const char *type_start = (*pp) - 1;
1797 struct type *return_type = read_type (pp, objfile);
1798 struct type *func_type
1799 = make_function_type (return_type,
1800 dbx_lookup_type (typenums, objfile));
1801 struct type_list {
1802 struct type *type;
1803 struct type_list *next;
1804 } *arg_types = 0;
1805 int num_args = 0;
1806
1807 while (**pp && **pp != '#')
1808 {
1809 struct type *arg_type = read_type (pp, objfile);
1810 struct type_list *new = alloca (sizeof (*new));
1811 new->type = arg_type;
1812 new->next = arg_types;
1813 arg_types = new;
1814 num_args++;
1815 }
1816 if (**pp == '#')
1817 ++*pp;
1818 else
1819 {
1820 complaint (&symfile_complaints,
1821 _("Prototyped function type didn't "
1822 "end arguments with `#':\n%s"),
1823 type_start);
1824 }
1825
1826 /* If there is just one argument whose type is `void', then
1827 that's just an empty argument list. */
1828 if (arg_types
1829 && ! arg_types->next
1830 && TYPE_CODE (arg_types->type) == TYPE_CODE_VOID)
1831 num_args = 0;
1832
1833 TYPE_FIELDS (func_type)
1834 = (struct field *) TYPE_ALLOC (func_type,
1835 num_args * sizeof (struct field));
1836 memset (TYPE_FIELDS (func_type), 0, num_args * sizeof (struct field));
1837 {
1838 int i;
1839 struct type_list *t;
1840
1841 /* We stuck each argument type onto the front of the list
1842 when we read it, so the list is reversed. Build the
1843 fields array right-to-left. */
1844 for (t = arg_types, i = num_args - 1; t; t = t->next, i--)
1845 TYPE_FIELD_TYPE (func_type, i) = t->type;
1846 }
1847 TYPE_NFIELDS (func_type) = num_args;
1848 TYPE_PROTOTYPED (func_type) = 1;
1849
1850 type = func_type;
1851 break;
1852 }
1853
1854 case 'k': /* Const qualifier on some type (Sun) */
1855 type = read_type (pp, objfile);
1856 type = make_cv_type (1, TYPE_VOLATILE (type), type,
1857 dbx_lookup_type (typenums, objfile));
1858 break;
1859
1860 case 'B': /* Volatile qual on some type (Sun) */
1861 type = read_type (pp, objfile);
1862 type = make_cv_type (TYPE_CONST (type), 1, type,
1863 dbx_lookup_type (typenums, objfile));
1864 break;
1865
1866 case '@':
1867 if (isdigit (**pp) || **pp == '(' || **pp == '-')
1868 { /* Member (class & variable) type */
1869 /* FIXME -- we should be doing smash_to_XXX types here. */
1870
1871 struct type *domain = read_type (pp, objfile);
1872 struct type *memtype;
1873
1874 if (**pp != ',')
1875 /* Invalid member type data format. */
1876 return error_type (pp, objfile);
1877 ++*pp;
1878
1879 memtype = read_type (pp, objfile);
1880 type = dbx_alloc_type (typenums, objfile);
1881 smash_to_memberptr_type (type, domain, memtype);
1882 }
1883 else
1884 /* type attribute */
1885 {
1886 char *attr = *pp;
1887
1888 /* Skip to the semicolon. */
1889 while (**pp != ';' && **pp != '\0')
1890 ++(*pp);
1891 if (**pp == '\0')
1892 return error_type (pp, objfile);
1893 else
1894 ++ * pp; /* Skip the semicolon. */
1895
1896 switch (*attr)
1897 {
1898 case 's': /* Size attribute */
1899 type_size = atoi (attr + 1);
1900 if (type_size <= 0)
1901 type_size = -1;
1902 break;
1903
1904 case 'S': /* String attribute */
1905 /* FIXME: check to see if following type is array? */
1906 is_string = 1;
1907 break;
1908
1909 case 'V': /* Vector attribute */
1910 /* FIXME: check to see if following type is array? */
1911 is_vector = 1;
1912 break;
1913
1914 default:
1915 /* Ignore unrecognized type attributes, so future compilers
1916 can invent new ones. */
1917 break;
1918 }
1919 ++*pp;
1920 goto again;
1921 }
1922 break;
1923
1924 case '#': /* Method (class & fn) type */
1925 if ((*pp)[0] == '#')
1926 {
1927 /* We'll get the parameter types from the name. */
1928 struct type *return_type;
1929
1930 (*pp)++;
1931 return_type = read_type (pp, objfile);
1932 if (*(*pp)++ != ';')
1933 complaint (&symfile_complaints,
1934 _("invalid (minimal) member type "
1935 "data format at symtab pos %d."),
1936 symnum);
1937 type = allocate_stub_method (return_type);
1938 if (typenums[0] != -1)
1939 *dbx_lookup_type (typenums, objfile) = type;
1940 }
1941 else
1942 {
1943 struct type *domain = read_type (pp, objfile);
1944 struct type *return_type;
1945 struct field *args;
1946 int nargs, varargs;
1947
1948 if (**pp != ',')
1949 /* Invalid member type data format. */
1950 return error_type (pp, objfile);
1951 else
1952 ++(*pp);
1953
1954 return_type = read_type (pp, objfile);
1955 args = read_args (pp, ';', objfile, &nargs, &varargs);
1956 if (args == NULL)
1957 return error_type (pp, objfile);
1958 type = dbx_alloc_type (typenums, objfile);
1959 smash_to_method_type (type, domain, return_type, args,
1960 nargs, varargs);
1961 }
1962 break;
1963
1964 case 'r': /* Range type */
1965 type = read_range_type (pp, typenums, type_size, objfile);
1966 if (typenums[0] != -1)
1967 *dbx_lookup_type (typenums, objfile) = type;
1968 break;
1969
1970 case 'b':
1971 {
1972 /* Sun ACC builtin int type */
1973 type = read_sun_builtin_type (pp, typenums, objfile);
1974 if (typenums[0] != -1)
1975 *dbx_lookup_type (typenums, objfile) = type;
1976 }
1977 break;
1978
1979 case 'R': /* Sun ACC builtin float type */
1980 type = read_sun_floating_type (pp, typenums, objfile);
1981 if (typenums[0] != -1)
1982 *dbx_lookup_type (typenums, objfile) = type;
1983 break;
1984
1985 case 'e': /* Enumeration type */
1986 type = dbx_alloc_type (typenums, objfile);
1987 type = read_enum_type (pp, type, objfile);
1988 if (typenums[0] != -1)
1989 *dbx_lookup_type (typenums, objfile) = type;
1990 break;
1991
1992 case 's': /* Struct type */
1993 case 'u': /* Union type */
1994 {
1995 enum type_code type_code = TYPE_CODE_UNDEF;
1996 type = dbx_alloc_type (typenums, objfile);
1997 switch (type_descriptor)
1998 {
1999 case 's':
2000 type_code = TYPE_CODE_STRUCT;
2001 break;
2002 case 'u':
2003 type_code = TYPE_CODE_UNION;
2004 break;
2005 }
2006 type = read_struct_type (pp, type, type_code, objfile);
2007 break;
2008 }
2009
2010 case 'a': /* Array type */
2011 if (**pp != 'r')
2012 return error_type (pp, objfile);
2013 ++*pp;
2014
2015 type = dbx_alloc_type (typenums, objfile);
2016 type = read_array_type (pp, type, objfile);
2017 if (is_string)
2018 TYPE_CODE (type) = TYPE_CODE_STRING;
2019 if (is_vector)
2020 make_vector_type (type);
2021 break;
2022
2023 case 'S': /* Set type */
2024 type1 = read_type (pp, objfile);
2025 type = create_set_type ((struct type *) NULL, type1);
2026 if (typenums[0] != -1)
2027 *dbx_lookup_type (typenums, objfile) = type;
2028 break;
2029
2030 default:
2031 --*pp; /* Go back to the symbol in error. */
2032 /* Particularly important if it was \0! */
2033 return error_type (pp, objfile);
2034 }
2035
2036 if (type == 0)
2037 {
2038 warning (_("GDB internal error, type is NULL in stabsread.c."));
2039 return error_type (pp, objfile);
2040 }
2041
2042 /* Size specified in a type attribute overrides any other size. */
2043 if (type_size != -1)
2044 TYPE_LENGTH (type) = (type_size + TARGET_CHAR_BIT - 1) / TARGET_CHAR_BIT;
2045
2046 return type;
2047 }
2048 \f
2049 /* RS/6000 xlc/dbx combination uses a set of builtin types, starting from -1.
2050 Return the proper type node for a given builtin type number. */
2051
2052 static const struct objfile_data *rs6000_builtin_type_data;
2053
2054 static struct type *
2055 rs6000_builtin_type (int typenum, struct objfile *objfile)
2056 {
2057 struct type **negative_types = objfile_data (objfile,
2058 rs6000_builtin_type_data);
2059
2060 /* We recognize types numbered from -NUMBER_RECOGNIZED to -1. */
2061 #define NUMBER_RECOGNIZED 34
2062 struct type *rettype = NULL;
2063
2064 if (typenum >= 0 || typenum < -NUMBER_RECOGNIZED)
2065 {
2066 complaint (&symfile_complaints, _("Unknown builtin type %d"), typenum);
2067 return objfile_type (objfile)->builtin_error;
2068 }
2069
2070 if (!negative_types)
2071 {
2072 /* This includes an empty slot for type number -0. */
2073 negative_types = OBSTACK_CALLOC (&objfile->objfile_obstack,
2074 NUMBER_RECOGNIZED + 1, struct type *);
2075 set_objfile_data (objfile, rs6000_builtin_type_data, negative_types);
2076 }
2077
2078 if (negative_types[-typenum] != NULL)
2079 return negative_types[-typenum];
2080
2081 #if TARGET_CHAR_BIT != 8
2082 #error This code wrong for TARGET_CHAR_BIT not 8
2083 /* These definitions all assume that TARGET_CHAR_BIT is 8. I think
2084 that if that ever becomes not true, the correct fix will be to
2085 make the size in the struct type to be in bits, not in units of
2086 TARGET_CHAR_BIT. */
2087 #endif
2088
2089 switch (-typenum)
2090 {
2091 case 1:
2092 /* The size of this and all the other types are fixed, defined
2093 by the debugging format. If there is a type called "int" which
2094 is other than 32 bits, then it should use a new negative type
2095 number (or avoid negative type numbers for that case).
2096 See stabs.texinfo. */
2097 rettype = init_type (TYPE_CODE_INT, 4, 0, "int", objfile);
2098 break;
2099 case 2:
2100 rettype = init_type (TYPE_CODE_INT, 1, 0, "char", objfile);
2101 break;
2102 case 3:
2103 rettype = init_type (TYPE_CODE_INT, 2, 0, "short", objfile);
2104 break;
2105 case 4:
2106 rettype = init_type (TYPE_CODE_INT, 4, 0, "long", objfile);
2107 break;
2108 case 5:
2109 rettype = init_type (TYPE_CODE_INT, 1, TYPE_FLAG_UNSIGNED,
2110 "unsigned char", objfile);
2111 break;
2112 case 6:
2113 rettype = init_type (TYPE_CODE_INT, 1, 0, "signed char", objfile);
2114 break;
2115 case 7:
2116 rettype = init_type (TYPE_CODE_INT, 2, TYPE_FLAG_UNSIGNED,
2117 "unsigned short", objfile);
2118 break;
2119 case 8:
2120 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2121 "unsigned int", objfile);
2122 break;
2123 case 9:
2124 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2125 "unsigned", objfile);
2126 break;
2127 case 10:
2128 rettype = init_type (TYPE_CODE_INT, 4, TYPE_FLAG_UNSIGNED,
2129 "unsigned long", objfile);
2130 break;
2131 case 11:
2132 rettype = init_type (TYPE_CODE_VOID, 1, 0, "void", objfile);
2133 break;
2134 case 12:
2135 /* IEEE single precision (32 bit). */
2136 rettype = init_type (TYPE_CODE_FLT, 4, 0, "float", objfile);
2137 break;
2138 case 13:
2139 /* IEEE double precision (64 bit). */
2140 rettype = init_type (TYPE_CODE_FLT, 8, 0, "double", objfile);
2141 break;
2142 case 14:
2143 /* This is an IEEE double on the RS/6000, and different machines with
2144 different sizes for "long double" should use different negative
2145 type numbers. See stabs.texinfo. */
2146 rettype = init_type (TYPE_CODE_FLT, 8, 0, "long double", objfile);
2147 break;
2148 case 15:
2149 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer", objfile);
2150 break;
2151 case 16:
2152 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2153 "boolean", objfile);
2154 break;
2155 case 17:
2156 rettype = init_type (TYPE_CODE_FLT, 4, 0, "short real", objfile);
2157 break;
2158 case 18:
2159 rettype = init_type (TYPE_CODE_FLT, 8, 0, "real", objfile);
2160 break;
2161 case 19:
2162 rettype = init_type (TYPE_CODE_ERROR, 0, 0, "stringptr", objfile);
2163 break;
2164 case 20:
2165 rettype = init_type (TYPE_CODE_CHAR, 1, TYPE_FLAG_UNSIGNED,
2166 "character", objfile);
2167 break;
2168 case 21:
2169 rettype = init_type (TYPE_CODE_BOOL, 1, TYPE_FLAG_UNSIGNED,
2170 "logical*1", objfile);
2171 break;
2172 case 22:
2173 rettype = init_type (TYPE_CODE_BOOL, 2, TYPE_FLAG_UNSIGNED,
2174 "logical*2", objfile);
2175 break;
2176 case 23:
2177 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2178 "logical*4", objfile);
2179 break;
2180 case 24:
2181 rettype = init_type (TYPE_CODE_BOOL, 4, TYPE_FLAG_UNSIGNED,
2182 "logical", objfile);
2183 break;
2184 case 25:
2185 /* Complex type consisting of two IEEE single precision values. */
2186 rettype = init_type (TYPE_CODE_COMPLEX, 8, 0, "complex", objfile);
2187 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 4, 0, "float",
2188 objfile);
2189 break;
2190 case 26:
2191 /* Complex type consisting of two IEEE double precision values. */
2192 rettype = init_type (TYPE_CODE_COMPLEX, 16, 0, "double complex", NULL);
2193 TYPE_TARGET_TYPE (rettype) = init_type (TYPE_CODE_FLT, 8, 0, "double",
2194 objfile);
2195 break;
2196 case 27:
2197 rettype = init_type (TYPE_CODE_INT, 1, 0, "integer*1", objfile);
2198 break;
2199 case 28:
2200 rettype = init_type (TYPE_CODE_INT, 2, 0, "integer*2", objfile);
2201 break;
2202 case 29:
2203 rettype = init_type (TYPE_CODE_INT, 4, 0, "integer*4", objfile);
2204 break;
2205 case 30:
2206 rettype = init_type (TYPE_CODE_CHAR, 2, 0, "wchar", objfile);
2207 break;
2208 case 31:
2209 rettype = init_type (TYPE_CODE_INT, 8, 0, "long long", objfile);
2210 break;
2211 case 32:
2212 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2213 "unsigned long long", objfile);
2214 break;
2215 case 33:
2216 rettype = init_type (TYPE_CODE_INT, 8, TYPE_FLAG_UNSIGNED,
2217 "logical*8", objfile);
2218 break;
2219 case 34:
2220 rettype = init_type (TYPE_CODE_INT, 8, 0, "integer*8", objfile);
2221 break;
2222 }
2223 negative_types[-typenum] = rettype;
2224 return rettype;
2225 }
2226 \f
2227 /* This page contains subroutines of read_type. */
2228
2229 /* Wrapper around method_name_from_physname to flag a complaint
2230 if there is an error. */
2231
2232 static char *
2233 stabs_method_name_from_physname (const char *physname)
2234 {
2235 char *method_name;
2236
2237 method_name = method_name_from_physname (physname);
2238
2239 if (method_name == NULL)
2240 {
2241 complaint (&symfile_complaints,
2242 _("Method has bad physname %s\n"), physname);
2243 return NULL;
2244 }
2245
2246 return method_name;
2247 }
2248
2249 /* Read member function stabs info for C++ classes. The form of each member
2250 function data is:
2251
2252 NAME :: TYPENUM[=type definition] ARGS : PHYSNAME ;
2253
2254 An example with two member functions is:
2255
2256 afunc1::20=##15;:i;2A.;afunc2::20:i;2A.;
2257
2258 For the case of overloaded operators, the format is op$::*.funcs, where
2259 $ is the CPLUS_MARKER (usually '$'), `*' holds the place for an operator
2260 name (such as `+=') and `.' marks the end of the operator name.
2261
2262 Returns 1 for success, 0 for failure. */
2263
2264 static int
2265 read_member_functions (struct field_info *fip, char **pp, struct type *type,
2266 struct objfile *objfile)
2267 {
2268 int nfn_fields = 0;
2269 int length = 0;
2270 int i;
2271 struct next_fnfield
2272 {
2273 struct next_fnfield *next;
2274 struct fn_field fn_field;
2275 }
2276 *sublist;
2277 struct type *look_ahead_type;
2278 struct next_fnfieldlist *new_fnlist;
2279 struct next_fnfield *new_sublist;
2280 char *main_fn_name;
2281 char *p;
2282
2283 /* Process each list until we find something that is not a member function
2284 or find the end of the functions. */
2285
2286 while (**pp != ';')
2287 {
2288 /* We should be positioned at the start of the function name.
2289 Scan forward to find the first ':' and if it is not the
2290 first of a "::" delimiter, then this is not a member function. */
2291 p = *pp;
2292 while (*p != ':')
2293 {
2294 p++;
2295 }
2296 if (p[1] != ':')
2297 {
2298 break;
2299 }
2300
2301 sublist = NULL;
2302 look_ahead_type = NULL;
2303 length = 0;
2304
2305 new_fnlist = (struct next_fnfieldlist *)
2306 xmalloc (sizeof (struct next_fnfieldlist));
2307 make_cleanup (xfree, new_fnlist);
2308 memset (new_fnlist, 0, sizeof (struct next_fnfieldlist));
2309
2310 if ((*pp)[0] == 'o' && (*pp)[1] == 'p' && is_cplus_marker ((*pp)[2]))
2311 {
2312 /* This is a completely wierd case. In order to stuff in the
2313 names that might contain colons (the usual name delimiter),
2314 Mike Tiemann defined a different name format which is
2315 signalled if the identifier is "op$". In that case, the
2316 format is "op$::XXXX." where XXXX is the name. This is
2317 used for names like "+" or "=". YUUUUUUUK! FIXME! */
2318 /* This lets the user type "break operator+".
2319 We could just put in "+" as the name, but that wouldn't
2320 work for "*". */
2321 static char opname[32] = "op$";
2322 char *o = opname + 3;
2323
2324 /* Skip past '::'. */
2325 *pp = p + 2;
2326
2327 STABS_CONTINUE (pp, objfile);
2328 p = *pp;
2329 while (*p != '.')
2330 {
2331 *o++ = *p++;
2332 }
2333 main_fn_name = savestring (opname, o - opname);
2334 /* Skip past '.' */
2335 *pp = p + 1;
2336 }
2337 else
2338 {
2339 main_fn_name = savestring (*pp, p - *pp);
2340 /* Skip past '::'. */
2341 *pp = p + 2;
2342 }
2343 new_fnlist->fn_fieldlist.name = main_fn_name;
2344
2345 do
2346 {
2347 new_sublist =
2348 (struct next_fnfield *) xmalloc (sizeof (struct next_fnfield));
2349 make_cleanup (xfree, new_sublist);
2350 memset (new_sublist, 0, sizeof (struct next_fnfield));
2351
2352 /* Check for and handle cretinous dbx symbol name continuation! */
2353 if (look_ahead_type == NULL)
2354 {
2355 /* Normal case. */
2356 STABS_CONTINUE (pp, objfile);
2357
2358 new_sublist->fn_field.type = read_type (pp, objfile);
2359 if (**pp != ':')
2360 {
2361 /* Invalid symtab info for member function. */
2362 return 0;
2363 }
2364 }
2365 else
2366 {
2367 /* g++ version 1 kludge */
2368 new_sublist->fn_field.type = look_ahead_type;
2369 look_ahead_type = NULL;
2370 }
2371
2372 (*pp)++;
2373 p = *pp;
2374 while (*p != ';')
2375 {
2376 p++;
2377 }
2378
2379 /* These are methods, not functions. */
2380 if (TYPE_CODE (new_sublist->fn_field.type) == TYPE_CODE_FUNC)
2381 TYPE_CODE (new_sublist->fn_field.type) = TYPE_CODE_METHOD;
2382 else
2383 gdb_assert (TYPE_CODE (new_sublist->fn_field.type)
2384 == TYPE_CODE_METHOD);
2385
2386 /* If this is just a stub, then we don't have the real name here. */
2387 if (TYPE_STUB (new_sublist->fn_field.type))
2388 {
2389 if (!TYPE_SELF_TYPE (new_sublist->fn_field.type))
2390 set_type_self_type (new_sublist->fn_field.type, type);
2391 new_sublist->fn_field.is_stub = 1;
2392 }
2393
2394 new_sublist->fn_field.physname = savestring (*pp, p - *pp);
2395 *pp = p + 1;
2396
2397 /* Set this member function's visibility fields. */
2398 switch (*(*pp)++)
2399 {
2400 case VISIBILITY_PRIVATE:
2401 new_sublist->fn_field.is_private = 1;
2402 break;
2403 case VISIBILITY_PROTECTED:
2404 new_sublist->fn_field.is_protected = 1;
2405 break;
2406 }
2407
2408 STABS_CONTINUE (pp, objfile);
2409 switch (**pp)
2410 {
2411 case 'A': /* Normal functions. */
2412 new_sublist->fn_field.is_const = 0;
2413 new_sublist->fn_field.is_volatile = 0;
2414 (*pp)++;
2415 break;
2416 case 'B': /* `const' member functions. */
2417 new_sublist->fn_field.is_const = 1;
2418 new_sublist->fn_field.is_volatile = 0;
2419 (*pp)++;
2420 break;
2421 case 'C': /* `volatile' member function. */
2422 new_sublist->fn_field.is_const = 0;
2423 new_sublist->fn_field.is_volatile = 1;
2424 (*pp)++;
2425 break;
2426 case 'D': /* `const volatile' member function. */
2427 new_sublist->fn_field.is_const = 1;
2428 new_sublist->fn_field.is_volatile = 1;
2429 (*pp)++;
2430 break;
2431 case '*': /* File compiled with g++ version 1 --
2432 no info. */
2433 case '?':
2434 case '.':
2435 break;
2436 default:
2437 complaint (&symfile_complaints,
2438 _("const/volatile indicator missing, got '%c'"),
2439 **pp);
2440 break;
2441 }
2442
2443 switch (*(*pp)++)
2444 {
2445 case '*':
2446 {
2447 int nbits;
2448 /* virtual member function, followed by index.
2449 The sign bit is set to distinguish pointers-to-methods
2450 from virtual function indicies. Since the array is
2451 in words, the quantity must be shifted left by 1
2452 on 16 bit machine, and by 2 on 32 bit machine, forcing
2453 the sign bit out, and usable as a valid index into
2454 the array. Remove the sign bit here. */
2455 new_sublist->fn_field.voffset =
2456 (0x7fffffff & read_huge_number (pp, ';', &nbits, 0)) + 2;
2457 if (nbits != 0)
2458 return 0;
2459
2460 STABS_CONTINUE (pp, objfile);
2461 if (**pp == ';' || **pp == '\0')
2462 {
2463 /* Must be g++ version 1. */
2464 new_sublist->fn_field.fcontext = 0;
2465 }
2466 else
2467 {
2468 /* Figure out from whence this virtual function came.
2469 It may belong to virtual function table of
2470 one of its baseclasses. */
2471 look_ahead_type = read_type (pp, objfile);
2472 if (**pp == ':')
2473 {
2474 /* g++ version 1 overloaded methods. */
2475 }
2476 else
2477 {
2478 new_sublist->fn_field.fcontext = look_ahead_type;
2479 if (**pp != ';')
2480 {
2481 return 0;
2482 }
2483 else
2484 {
2485 ++*pp;
2486 }
2487 look_ahead_type = NULL;
2488 }
2489 }
2490 break;
2491 }
2492 case '?':
2493 /* static member function. */
2494 {
2495 int slen = strlen (main_fn_name);
2496
2497 new_sublist->fn_field.voffset = VOFFSET_STATIC;
2498
2499 /* For static member functions, we can't tell if they
2500 are stubbed, as they are put out as functions, and not as
2501 methods.
2502 GCC v2 emits the fully mangled name if
2503 dbxout.c:flag_minimal_debug is not set, so we have to
2504 detect a fully mangled physname here and set is_stub
2505 accordingly. Fully mangled physnames in v2 start with
2506 the member function name, followed by two underscores.
2507 GCC v3 currently always emits stubbed member functions,
2508 but with fully mangled physnames, which start with _Z. */
2509 if (!(strncmp (new_sublist->fn_field.physname,
2510 main_fn_name, slen) == 0
2511 && new_sublist->fn_field.physname[slen] == '_'
2512 && new_sublist->fn_field.physname[slen + 1] == '_'))
2513 {
2514 new_sublist->fn_field.is_stub = 1;
2515 }
2516 break;
2517 }
2518
2519 default:
2520 /* error */
2521 complaint (&symfile_complaints,
2522 _("member function type missing, got '%c'"),
2523 (*pp)[-1]);
2524 /* Fall through into normal member function. */
2525
2526 case '.':
2527 /* normal member function. */
2528 new_sublist->fn_field.voffset = 0;
2529 new_sublist->fn_field.fcontext = 0;
2530 break;
2531 }
2532
2533 new_sublist->next = sublist;
2534 sublist = new_sublist;
2535 length++;
2536 STABS_CONTINUE (pp, objfile);
2537 }
2538 while (**pp != ';' && **pp != '\0');
2539
2540 (*pp)++;
2541 STABS_CONTINUE (pp, objfile);
2542
2543 /* Skip GCC 3.X member functions which are duplicates of the callable
2544 constructor/destructor. */
2545 if (strcmp_iw (main_fn_name, "__base_ctor ") == 0
2546 || strcmp_iw (main_fn_name, "__base_dtor ") == 0
2547 || strcmp (main_fn_name, "__deleting_dtor") == 0)
2548 {
2549 xfree (main_fn_name);
2550 }
2551 else
2552 {
2553 int has_stub = 0;
2554 int has_destructor = 0, has_other = 0;
2555 int is_v3 = 0;
2556 struct next_fnfield *tmp_sublist;
2557
2558 /* Various versions of GCC emit various mostly-useless
2559 strings in the name field for special member functions.
2560
2561 For stub methods, we need to defer correcting the name
2562 until we are ready to unstub the method, because the current
2563 name string is used by gdb_mangle_name. The only stub methods
2564 of concern here are GNU v2 operators; other methods have their
2565 names correct (see caveat below).
2566
2567 For non-stub methods, in GNU v3, we have a complete physname.
2568 Therefore we can safely correct the name now. This primarily
2569 affects constructors and destructors, whose name will be
2570 __comp_ctor or __comp_dtor instead of Foo or ~Foo. Cast
2571 operators will also have incorrect names; for instance,
2572 "operator int" will be named "operator i" (i.e. the type is
2573 mangled).
2574
2575 For non-stub methods in GNU v2, we have no easy way to
2576 know if we have a complete physname or not. For most
2577 methods the result depends on the platform (if CPLUS_MARKER
2578 can be `$' or `.', it will use minimal debug information, or
2579 otherwise the full physname will be included).
2580
2581 Rather than dealing with this, we take a different approach.
2582 For v3 mangled names, we can use the full physname; for v2,
2583 we use cplus_demangle_opname (which is actually v2 specific),
2584 because the only interesting names are all operators - once again
2585 barring the caveat below. Skip this process if any method in the
2586 group is a stub, to prevent our fouling up the workings of
2587 gdb_mangle_name.
2588
2589 The caveat: GCC 2.95.x (and earlier?) put constructors and
2590 destructors in the same method group. We need to split this
2591 into two groups, because they should have different names.
2592 So for each method group we check whether it contains both
2593 routines whose physname appears to be a destructor (the physnames
2594 for and destructors are always provided, due to quirks in v2
2595 mangling) and routines whose physname does not appear to be a
2596 destructor. If so then we break up the list into two halves.
2597 Even if the constructors and destructors aren't in the same group
2598 the destructor will still lack the leading tilde, so that also
2599 needs to be fixed.
2600
2601 So, to summarize what we expect and handle here:
2602
2603 Given Given Real Real Action
2604 method name physname physname method name
2605
2606 __opi [none] __opi__3Foo operator int opname
2607 [now or later]
2608 Foo _._3Foo _._3Foo ~Foo separate and
2609 rename
2610 operator i _ZN3FoocviEv _ZN3FoocviEv operator int demangle
2611 __comp_ctor _ZN3FooC1ERKS_ _ZN3FooC1ERKS_ Foo demangle
2612 */
2613
2614 tmp_sublist = sublist;
2615 while (tmp_sublist != NULL)
2616 {
2617 if (tmp_sublist->fn_field.is_stub)
2618 has_stub = 1;
2619 if (tmp_sublist->fn_field.physname[0] == '_'
2620 && tmp_sublist->fn_field.physname[1] == 'Z')
2621 is_v3 = 1;
2622
2623 if (is_destructor_name (tmp_sublist->fn_field.physname))
2624 has_destructor++;
2625 else
2626 has_other++;
2627
2628 tmp_sublist = tmp_sublist->next;
2629 }
2630
2631 if (has_destructor && has_other)
2632 {
2633 struct next_fnfieldlist *destr_fnlist;
2634 struct next_fnfield *last_sublist;
2635
2636 /* Create a new fn_fieldlist for the destructors. */
2637
2638 destr_fnlist = (struct next_fnfieldlist *)
2639 xmalloc (sizeof (struct next_fnfieldlist));
2640 make_cleanup (xfree, destr_fnlist);
2641 memset (destr_fnlist, 0, sizeof (struct next_fnfieldlist));
2642 destr_fnlist->fn_fieldlist.name
2643 = obconcat (&objfile->objfile_obstack, "~",
2644 new_fnlist->fn_fieldlist.name, (char *) NULL);
2645
2646 destr_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2647 obstack_alloc (&objfile->objfile_obstack,
2648 sizeof (struct fn_field) * has_destructor);
2649 memset (destr_fnlist->fn_fieldlist.fn_fields, 0,
2650 sizeof (struct fn_field) * has_destructor);
2651 tmp_sublist = sublist;
2652 last_sublist = NULL;
2653 i = 0;
2654 while (tmp_sublist != NULL)
2655 {
2656 if (!is_destructor_name (tmp_sublist->fn_field.physname))
2657 {
2658 tmp_sublist = tmp_sublist->next;
2659 continue;
2660 }
2661
2662 destr_fnlist->fn_fieldlist.fn_fields[i++]
2663 = tmp_sublist->fn_field;
2664 if (last_sublist)
2665 last_sublist->next = tmp_sublist->next;
2666 else
2667 sublist = tmp_sublist->next;
2668 last_sublist = tmp_sublist;
2669 tmp_sublist = tmp_sublist->next;
2670 }
2671
2672 destr_fnlist->fn_fieldlist.length = has_destructor;
2673 destr_fnlist->next = fip->fnlist;
2674 fip->fnlist = destr_fnlist;
2675 nfn_fields++;
2676 length -= has_destructor;
2677 }
2678 else if (is_v3)
2679 {
2680 /* v3 mangling prevents the use of abbreviated physnames,
2681 so we can do this here. There are stubbed methods in v3
2682 only:
2683 - in -gstabs instead of -gstabs+
2684 - or for static methods, which are output as a function type
2685 instead of a method type. */
2686 char *new_method_name =
2687 stabs_method_name_from_physname (sublist->fn_field.physname);
2688
2689 if (new_method_name != NULL
2690 && strcmp (new_method_name,
2691 new_fnlist->fn_fieldlist.name) != 0)
2692 {
2693 new_fnlist->fn_fieldlist.name = new_method_name;
2694 xfree (main_fn_name);
2695 }
2696 else
2697 xfree (new_method_name);
2698 }
2699 else if (has_destructor && new_fnlist->fn_fieldlist.name[0] != '~')
2700 {
2701 new_fnlist->fn_fieldlist.name =
2702 obconcat (&objfile->objfile_obstack,
2703 "~", main_fn_name, (char *)NULL);
2704 xfree (main_fn_name);
2705 }
2706 else if (!has_stub)
2707 {
2708 char dem_opname[256];
2709 int ret;
2710
2711 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2712 dem_opname, DMGL_ANSI);
2713 if (!ret)
2714 ret = cplus_demangle_opname (new_fnlist->fn_fieldlist.name,
2715 dem_opname, 0);
2716 if (ret)
2717 new_fnlist->fn_fieldlist.name
2718 = obstack_copy0 (&objfile->objfile_obstack,
2719 dem_opname, strlen (dem_opname));
2720 xfree (main_fn_name);
2721 }
2722
2723 new_fnlist->fn_fieldlist.fn_fields = (struct fn_field *)
2724 obstack_alloc (&objfile->objfile_obstack,
2725 sizeof (struct fn_field) * length);
2726 memset (new_fnlist->fn_fieldlist.fn_fields, 0,
2727 sizeof (struct fn_field) * length);
2728 for (i = length; (i--, sublist); sublist = sublist->next)
2729 {
2730 new_fnlist->fn_fieldlist.fn_fields[i] = sublist->fn_field;
2731 }
2732
2733 new_fnlist->fn_fieldlist.length = length;
2734 new_fnlist->next = fip->fnlist;
2735 fip->fnlist = new_fnlist;
2736 nfn_fields++;
2737 }
2738 }
2739
2740 if (nfn_fields)
2741 {
2742 ALLOCATE_CPLUS_STRUCT_TYPE (type);
2743 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
2744 TYPE_ALLOC (type, sizeof (struct fn_fieldlist) * nfn_fields);
2745 memset (TYPE_FN_FIELDLISTS (type), 0,
2746 sizeof (struct fn_fieldlist) * nfn_fields);
2747 TYPE_NFN_FIELDS (type) = nfn_fields;
2748 }
2749
2750 return 1;
2751 }
2752
2753 /* Special GNU C++ name.
2754
2755 Returns 1 for success, 0 for failure. "failure" means that we can't
2756 keep parsing and it's time for error_type(). */
2757
2758 static int
2759 read_cpp_abbrev (struct field_info *fip, char **pp, struct type *type,
2760 struct objfile *objfile)
2761 {
2762 char *p;
2763 const char *name;
2764 char cpp_abbrev;
2765 struct type *context;
2766
2767 p = *pp;
2768 if (*++p == 'v')
2769 {
2770 name = NULL;
2771 cpp_abbrev = *++p;
2772
2773 *pp = p + 1;
2774
2775 /* At this point, *pp points to something like "22:23=*22...",
2776 where the type number before the ':' is the "context" and
2777 everything after is a regular type definition. Lookup the
2778 type, find it's name, and construct the field name. */
2779
2780 context = read_type (pp, objfile);
2781
2782 switch (cpp_abbrev)
2783 {
2784 case 'f': /* $vf -- a virtual function table pointer */
2785 name = type_name_no_tag (context);
2786 if (name == NULL)
2787 {
2788 name = "";
2789 }
2790 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2791 vptr_name, name, (char *) NULL);
2792 break;
2793
2794 case 'b': /* $vb -- a virtual bsomethingorother */
2795 name = type_name_no_tag (context);
2796 if (name == NULL)
2797 {
2798 complaint (&symfile_complaints,
2799 _("C++ abbreviated type name "
2800 "unknown at symtab pos %d"),
2801 symnum);
2802 name = "FOO";
2803 }
2804 fip->list->field.name = obconcat (&objfile->objfile_obstack, vb_name,
2805 name, (char *) NULL);
2806 break;
2807
2808 default:
2809 invalid_cpp_abbrev_complaint (*pp);
2810 fip->list->field.name = obconcat (&objfile->objfile_obstack,
2811 "INVALID_CPLUSPLUS_ABBREV",
2812 (char *) NULL);
2813 break;
2814 }
2815
2816 /* At this point, *pp points to the ':'. Skip it and read the
2817 field type. */
2818
2819 p = ++(*pp);
2820 if (p[-1] != ':')
2821 {
2822 invalid_cpp_abbrev_complaint (*pp);
2823 return 0;
2824 }
2825 fip->list->field.type = read_type (pp, objfile);
2826 if (**pp == ',')
2827 (*pp)++; /* Skip the comma. */
2828 else
2829 return 0;
2830
2831 {
2832 int nbits;
2833
2834 SET_FIELD_BITPOS (fip->list->field,
2835 read_huge_number (pp, ';', &nbits, 0));
2836 if (nbits != 0)
2837 return 0;
2838 }
2839 /* This field is unpacked. */
2840 FIELD_BITSIZE (fip->list->field) = 0;
2841 fip->list->visibility = VISIBILITY_PRIVATE;
2842 }
2843 else
2844 {
2845 invalid_cpp_abbrev_complaint (*pp);
2846 /* We have no idea what syntax an unrecognized abbrev would have, so
2847 better return 0. If we returned 1, we would need to at least advance
2848 *pp to avoid an infinite loop. */
2849 return 0;
2850 }
2851 return 1;
2852 }
2853
2854 static void
2855 read_one_struct_field (struct field_info *fip, char **pp, char *p,
2856 struct type *type, struct objfile *objfile)
2857 {
2858 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2859
2860 fip->list->field.name =
2861 obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
2862 *pp = p + 1;
2863
2864 /* This means we have a visibility for a field coming. */
2865 if (**pp == '/')
2866 {
2867 (*pp)++;
2868 fip->list->visibility = *(*pp)++;
2869 }
2870 else
2871 {
2872 /* normal dbx-style format, no explicit visibility */
2873 fip->list->visibility = VISIBILITY_PUBLIC;
2874 }
2875
2876 fip->list->field.type = read_type (pp, objfile);
2877 if (**pp == ':')
2878 {
2879 p = ++(*pp);
2880 #if 0
2881 /* Possible future hook for nested types. */
2882 if (**pp == '!')
2883 {
2884 fip->list->field.bitpos = (long) -2; /* nested type */
2885 p = ++(*pp);
2886 }
2887 else
2888 ...;
2889 #endif
2890 while (*p != ';')
2891 {
2892 p++;
2893 }
2894 /* Static class member. */
2895 SET_FIELD_PHYSNAME (fip->list->field, savestring (*pp, p - *pp));
2896 *pp = p + 1;
2897 return;
2898 }
2899 else if (**pp != ',')
2900 {
2901 /* Bad structure-type format. */
2902 stabs_general_complaint ("bad structure-type format");
2903 return;
2904 }
2905
2906 (*pp)++; /* Skip the comma. */
2907
2908 {
2909 int nbits;
2910
2911 SET_FIELD_BITPOS (fip->list->field,
2912 read_huge_number (pp, ',', &nbits, 0));
2913 if (nbits != 0)
2914 {
2915 stabs_general_complaint ("bad structure-type format");
2916 return;
2917 }
2918 FIELD_BITSIZE (fip->list->field) = read_huge_number (pp, ';', &nbits, 0);
2919 if (nbits != 0)
2920 {
2921 stabs_general_complaint ("bad structure-type format");
2922 return;
2923 }
2924 }
2925
2926 if (FIELD_BITPOS (fip->list->field) == 0
2927 && FIELD_BITSIZE (fip->list->field) == 0)
2928 {
2929 /* This can happen in two cases: (1) at least for gcc 2.4.5 or so,
2930 it is a field which has been optimized out. The correct stab for
2931 this case is to use VISIBILITY_IGNORE, but that is a recent
2932 invention. (2) It is a 0-size array. For example
2933 union { int num; char str[0]; } foo. Printing _("<no value>" for
2934 str in "p foo" is OK, since foo.str (and thus foo.str[3])
2935 will continue to work, and a 0-size array as a whole doesn't
2936 have any contents to print.
2937
2938 I suspect this probably could also happen with gcc -gstabs (not
2939 -gstabs+) for static fields, and perhaps other C++ extensions.
2940 Hopefully few people use -gstabs with gdb, since it is intended
2941 for dbx compatibility. */
2942
2943 /* Ignore this field. */
2944 fip->list->visibility = VISIBILITY_IGNORE;
2945 }
2946 else
2947 {
2948 /* Detect an unpacked field and mark it as such.
2949 dbx gives a bit size for all fields.
2950 Note that forward refs cannot be packed,
2951 and treat enums as if they had the width of ints. */
2952
2953 struct type *field_type = check_typedef (FIELD_TYPE (fip->list->field));
2954
2955 if (TYPE_CODE (field_type) != TYPE_CODE_INT
2956 && TYPE_CODE (field_type) != TYPE_CODE_RANGE
2957 && TYPE_CODE (field_type) != TYPE_CODE_BOOL
2958 && TYPE_CODE (field_type) != TYPE_CODE_ENUM)
2959 {
2960 FIELD_BITSIZE (fip->list->field) = 0;
2961 }
2962 if ((FIELD_BITSIZE (fip->list->field)
2963 == TARGET_CHAR_BIT * TYPE_LENGTH (field_type)
2964 || (TYPE_CODE (field_type) == TYPE_CODE_ENUM
2965 && FIELD_BITSIZE (fip->list->field)
2966 == gdbarch_int_bit (gdbarch))
2967 )
2968 &&
2969 FIELD_BITPOS (fip->list->field) % 8 == 0)
2970 {
2971 FIELD_BITSIZE (fip->list->field) = 0;
2972 }
2973 }
2974 }
2975
2976
2977 /* Read struct or class data fields. They have the form:
2978
2979 NAME : [VISIBILITY] TYPENUM , BITPOS , BITSIZE ;
2980
2981 At the end, we see a semicolon instead of a field.
2982
2983 In C++, this may wind up being NAME:?TYPENUM:PHYSNAME; for
2984 a static field.
2985
2986 The optional VISIBILITY is one of:
2987
2988 '/0' (VISIBILITY_PRIVATE)
2989 '/1' (VISIBILITY_PROTECTED)
2990 '/2' (VISIBILITY_PUBLIC)
2991 '/9' (VISIBILITY_IGNORE)
2992
2993 or nothing, for C style fields with public visibility.
2994
2995 Returns 1 for success, 0 for failure. */
2996
2997 static int
2998 read_struct_fields (struct field_info *fip, char **pp, struct type *type,
2999 struct objfile *objfile)
3000 {
3001 char *p;
3002 struct nextfield *new;
3003
3004 /* We better set p right now, in case there are no fields at all... */
3005
3006 p = *pp;
3007
3008 /* Read each data member type until we find the terminating ';' at the end of
3009 the data member list, or break for some other reason such as finding the
3010 start of the member function list. */
3011 /* Stab string for structure/union does not end with two ';' in
3012 SUN C compiler 5.3 i.e. F6U2, hence check for end of string. */
3013
3014 while (**pp != ';' && **pp != '\0')
3015 {
3016 STABS_CONTINUE (pp, objfile);
3017 /* Get space to record the next field's data. */
3018 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3019 make_cleanup (xfree, new);
3020 memset (new, 0, sizeof (struct nextfield));
3021 new->next = fip->list;
3022 fip->list = new;
3023
3024 /* Get the field name. */
3025 p = *pp;
3026
3027 /* If is starts with CPLUS_MARKER it is a special abbreviation,
3028 unless the CPLUS_MARKER is followed by an underscore, in
3029 which case it is just the name of an anonymous type, which we
3030 should handle like any other type name. */
3031
3032 if (is_cplus_marker (p[0]) && p[1] != '_')
3033 {
3034 if (!read_cpp_abbrev (fip, pp, type, objfile))
3035 return 0;
3036 continue;
3037 }
3038
3039 /* Look for the ':' that separates the field name from the field
3040 values. Data members are delimited by a single ':', while member
3041 functions are delimited by a pair of ':'s. When we hit the member
3042 functions (if any), terminate scan loop and return. */
3043
3044 while (*p != ':' && *p != '\0')
3045 {
3046 p++;
3047 }
3048 if (*p == '\0')
3049 return 0;
3050
3051 /* Check to see if we have hit the member functions yet. */
3052 if (p[1] == ':')
3053 {
3054 break;
3055 }
3056 read_one_struct_field (fip, pp, p, type, objfile);
3057 }
3058 if (p[0] == ':' && p[1] == ':')
3059 {
3060 /* (the deleted) chill the list of fields: the last entry (at
3061 the head) is a partially constructed entry which we now
3062 scrub. */
3063 fip->list = fip->list->next;
3064 }
3065 return 1;
3066 }
3067 /* *INDENT-OFF* */
3068 /* The stabs for C++ derived classes contain baseclass information which
3069 is marked by a '!' character after the total size. This function is
3070 called when we encounter the baseclass marker, and slurps up all the
3071 baseclass information.
3072
3073 Immediately following the '!' marker is the number of base classes that
3074 the class is derived from, followed by information for each base class.
3075 For each base class, there are two visibility specifiers, a bit offset
3076 to the base class information within the derived class, a reference to
3077 the type for the base class, and a terminating semicolon.
3078
3079 A typical example, with two base classes, would be "!2,020,19;0264,21;".
3080 ^^ ^ ^ ^ ^ ^ ^
3081 Baseclass information marker __________________|| | | | | | |
3082 Number of baseclasses __________________________| | | | | | |
3083 Visibility specifiers (2) ________________________| | | | | |
3084 Offset in bits from start of class _________________| | | | |
3085 Type number for base class ___________________________| | | |
3086 Visibility specifiers (2) _______________________________| | |
3087 Offset in bits from start of class ________________________| |
3088 Type number of base class ____________________________________|
3089
3090 Return 1 for success, 0 for (error-type-inducing) failure. */
3091 /* *INDENT-ON* */
3092
3093
3094
3095 static int
3096 read_baseclasses (struct field_info *fip, char **pp, struct type *type,
3097 struct objfile *objfile)
3098 {
3099 int i;
3100 struct nextfield *new;
3101
3102 if (**pp != '!')
3103 {
3104 return 1;
3105 }
3106 else
3107 {
3108 /* Skip the '!' baseclass information marker. */
3109 (*pp)++;
3110 }
3111
3112 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3113 {
3114 int nbits;
3115
3116 TYPE_N_BASECLASSES (type) = read_huge_number (pp, ',', &nbits, 0);
3117 if (nbits != 0)
3118 return 0;
3119 }
3120
3121 #if 0
3122 /* Some stupid compilers have trouble with the following, so break
3123 it up into simpler expressions. */
3124 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *)
3125 TYPE_ALLOC (type, B_BYTES (TYPE_N_BASECLASSES (type)));
3126 #else
3127 {
3128 int num_bytes = B_BYTES (TYPE_N_BASECLASSES (type));
3129 char *pointer;
3130
3131 pointer = (char *) TYPE_ALLOC (type, num_bytes);
3132 TYPE_FIELD_VIRTUAL_BITS (type) = (B_TYPE *) pointer;
3133 }
3134 #endif /* 0 */
3135
3136 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), TYPE_N_BASECLASSES (type));
3137
3138 for (i = 0; i < TYPE_N_BASECLASSES (type); i++)
3139 {
3140 new = (struct nextfield *) xmalloc (sizeof (struct nextfield));
3141 make_cleanup (xfree, new);
3142 memset (new, 0, sizeof (struct nextfield));
3143 new->next = fip->list;
3144 fip->list = new;
3145 FIELD_BITSIZE (new->field) = 0; /* This should be an unpacked
3146 field! */
3147
3148 STABS_CONTINUE (pp, objfile);
3149 switch (**pp)
3150 {
3151 case '0':
3152 /* Nothing to do. */
3153 break;
3154 case '1':
3155 SET_TYPE_FIELD_VIRTUAL (type, i);
3156 break;
3157 default:
3158 /* Unknown character. Complain and treat it as non-virtual. */
3159 {
3160 complaint (&symfile_complaints,
3161 _("Unknown virtual character `%c' for baseclass"),
3162 **pp);
3163 }
3164 }
3165 ++(*pp);
3166
3167 new->visibility = *(*pp)++;
3168 switch (new->visibility)
3169 {
3170 case VISIBILITY_PRIVATE:
3171 case VISIBILITY_PROTECTED:
3172 case VISIBILITY_PUBLIC:
3173 break;
3174 default:
3175 /* Bad visibility format. Complain and treat it as
3176 public. */
3177 {
3178 complaint (&symfile_complaints,
3179 _("Unknown visibility `%c' for baseclass"),
3180 new->visibility);
3181 new->visibility = VISIBILITY_PUBLIC;
3182 }
3183 }
3184
3185 {
3186 int nbits;
3187
3188 /* The remaining value is the bit offset of the portion of the object
3189 corresponding to this baseclass. Always zero in the absence of
3190 multiple inheritance. */
3191
3192 SET_FIELD_BITPOS (new->field, read_huge_number (pp, ',', &nbits, 0));
3193 if (nbits != 0)
3194 return 0;
3195 }
3196
3197 /* The last piece of baseclass information is the type of the
3198 base class. Read it, and remember it's type name as this
3199 field's name. */
3200
3201 new->field.type = read_type (pp, objfile);
3202 new->field.name = type_name_no_tag (new->field.type);
3203
3204 /* Skip trailing ';' and bump count of number of fields seen. */
3205 if (**pp == ';')
3206 (*pp)++;
3207 else
3208 return 0;
3209 }
3210 return 1;
3211 }
3212
3213 /* The tail end of stabs for C++ classes that contain a virtual function
3214 pointer contains a tilde, a %, and a type number.
3215 The type number refers to the base class (possibly this class itself) which
3216 contains the vtable pointer for the current class.
3217
3218 This function is called when we have parsed all the method declarations,
3219 so we can look for the vptr base class info. */
3220
3221 static int
3222 read_tilde_fields (struct field_info *fip, char **pp, struct type *type,
3223 struct objfile *objfile)
3224 {
3225 char *p;
3226
3227 STABS_CONTINUE (pp, objfile);
3228
3229 /* If we are positioned at a ';', then skip it. */
3230 if (**pp == ';')
3231 {
3232 (*pp)++;
3233 }
3234
3235 if (**pp == '~')
3236 {
3237 (*pp)++;
3238
3239 if (**pp == '=' || **pp == '+' || **pp == '-')
3240 {
3241 /* Obsolete flags that used to indicate the presence
3242 of constructors and/or destructors. */
3243 (*pp)++;
3244 }
3245
3246 /* Read either a '%' or the final ';'. */
3247 if (*(*pp)++ == '%')
3248 {
3249 /* The next number is the type number of the base class
3250 (possibly our own class) which supplies the vtable for
3251 this class. Parse it out, and search that class to find
3252 its vtable pointer, and install those into TYPE_VPTR_BASETYPE
3253 and TYPE_VPTR_FIELDNO. */
3254
3255 struct type *t;
3256 int i;
3257
3258 t = read_type (pp, objfile);
3259 p = (*pp)++;
3260 while (*p != '\0' && *p != ';')
3261 {
3262 p++;
3263 }
3264 if (*p == '\0')
3265 {
3266 /* Premature end of symbol. */
3267 return 0;
3268 }
3269
3270 set_type_vptr_basetype (type, t);
3271 if (type == t) /* Our own class provides vtbl ptr. */
3272 {
3273 for (i = TYPE_NFIELDS (t) - 1;
3274 i >= TYPE_N_BASECLASSES (t);
3275 --i)
3276 {
3277 const char *name = TYPE_FIELD_NAME (t, i);
3278
3279 if (!strncmp (name, vptr_name, sizeof (vptr_name) - 2)
3280 && is_cplus_marker (name[sizeof (vptr_name) - 2]))
3281 {
3282 set_type_vptr_fieldno (type, i);
3283 goto gotit;
3284 }
3285 }
3286 /* Virtual function table field not found. */
3287 complaint (&symfile_complaints,
3288 _("virtual function table pointer "
3289 "not found when defining class `%s'"),
3290 TYPE_NAME (type));
3291 return 0;
3292 }
3293 else
3294 {
3295 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
3296 }
3297
3298 gotit:
3299 *pp = p + 1;
3300 }
3301 }
3302 return 1;
3303 }
3304
3305 static int
3306 attach_fn_fields_to_type (struct field_info *fip, struct type *type)
3307 {
3308 int n;
3309
3310 for (n = TYPE_NFN_FIELDS (type);
3311 fip->fnlist != NULL;
3312 fip->fnlist = fip->fnlist->next)
3313 {
3314 --n; /* Circumvent Sun3 compiler bug. */
3315 TYPE_FN_FIELDLISTS (type)[n] = fip->fnlist->fn_fieldlist;
3316 }
3317 return 1;
3318 }
3319
3320 /* Create the vector of fields, and record how big it is.
3321 We need this info to record proper virtual function table information
3322 for this class's virtual functions. */
3323
3324 static int
3325 attach_fields_to_type (struct field_info *fip, struct type *type,
3326 struct objfile *objfile)
3327 {
3328 int nfields = 0;
3329 int non_public_fields = 0;
3330 struct nextfield *scan;
3331
3332 /* Count up the number of fields that we have, as well as taking note of
3333 whether or not there are any non-public fields, which requires us to
3334 allocate and build the private_field_bits and protected_field_bits
3335 bitfields. */
3336
3337 for (scan = fip->list; scan != NULL; scan = scan->next)
3338 {
3339 nfields++;
3340 if (scan->visibility != VISIBILITY_PUBLIC)
3341 {
3342 non_public_fields++;
3343 }
3344 }
3345
3346 /* Now we know how many fields there are, and whether or not there are any
3347 non-public fields. Record the field count, allocate space for the
3348 array of fields, and create blank visibility bitfields if necessary. */
3349
3350 TYPE_NFIELDS (type) = nfields;
3351 TYPE_FIELDS (type) = (struct field *)
3352 TYPE_ALLOC (type, sizeof (struct field) * nfields);
3353 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nfields);
3354
3355 if (non_public_fields)
3356 {
3357 ALLOCATE_CPLUS_STRUCT_TYPE (type);
3358
3359 TYPE_FIELD_PRIVATE_BITS (type) =
3360 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3361 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
3362
3363 TYPE_FIELD_PROTECTED_BITS (type) =
3364 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3365 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
3366
3367 TYPE_FIELD_IGNORE_BITS (type) =
3368 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
3369 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
3370 }
3371
3372 /* Copy the saved-up fields into the field vector. Start from the
3373 head of the list, adding to the tail of the field array, so that
3374 they end up in the same order in the array in which they were
3375 added to the list. */
3376
3377 while (nfields-- > 0)
3378 {
3379 TYPE_FIELD (type, nfields) = fip->list->field;
3380 switch (fip->list->visibility)
3381 {
3382 case VISIBILITY_PRIVATE:
3383 SET_TYPE_FIELD_PRIVATE (type, nfields);
3384 break;
3385
3386 case VISIBILITY_PROTECTED:
3387 SET_TYPE_FIELD_PROTECTED (type, nfields);
3388 break;
3389
3390 case VISIBILITY_IGNORE:
3391 SET_TYPE_FIELD_IGNORE (type, nfields);
3392 break;
3393
3394 case VISIBILITY_PUBLIC:
3395 break;
3396
3397 default:
3398 /* Unknown visibility. Complain and treat it as public. */
3399 {
3400 complaint (&symfile_complaints,
3401 _("Unknown visibility `%c' for field"),
3402 fip->list->visibility);
3403 }
3404 break;
3405 }
3406 fip->list = fip->list->next;
3407 }
3408 return 1;
3409 }
3410
3411
3412 /* Complain that the compiler has emitted more than one definition for the
3413 structure type TYPE. */
3414 static void
3415 complain_about_struct_wipeout (struct type *type)
3416 {
3417 const char *name = "";
3418 const char *kind = "";
3419
3420 if (TYPE_TAG_NAME (type))
3421 {
3422 name = TYPE_TAG_NAME (type);
3423 switch (TYPE_CODE (type))
3424 {
3425 case TYPE_CODE_STRUCT: kind = "struct "; break;
3426 case TYPE_CODE_UNION: kind = "union "; break;
3427 case TYPE_CODE_ENUM: kind = "enum "; break;
3428 default: kind = "";
3429 }
3430 }
3431 else if (TYPE_NAME (type))
3432 {
3433 name = TYPE_NAME (type);
3434 kind = "";
3435 }
3436 else
3437 {
3438 name = "<unknown>";
3439 kind = "";
3440 }
3441
3442 complaint (&symfile_complaints,
3443 _("struct/union type gets multiply defined: %s%s"), kind, name);
3444 }
3445
3446 /* Set the length for all variants of a same main_type, which are
3447 connected in the closed chain.
3448
3449 This is something that needs to be done when a type is defined *after*
3450 some cross references to this type have already been read. Consider
3451 for instance the following scenario where we have the following two
3452 stabs entries:
3453
3454 .stabs "t:p(0,21)=*(0,22)=k(0,23)=xsdummy:",160,0,28,-24
3455 .stabs "dummy:T(0,23)=s16x:(0,1),0,3[...]"
3456
3457 A stubbed version of type dummy is created while processing the first
3458 stabs entry. The length of that type is initially set to zero, since
3459 it is unknown at this point. Also, a "constant" variation of type
3460 "dummy" is created as well (this is the "(0,22)=k(0,23)" section of
3461 the stabs line).
3462
3463 The second stabs entry allows us to replace the stubbed definition
3464 with the real definition. However, we still need to adjust the length
3465 of the "constant" variation of that type, as its length was left
3466 untouched during the main type replacement... */
3467
3468 static void
3469 set_length_in_type_chain (struct type *type)
3470 {
3471 struct type *ntype = TYPE_CHAIN (type);
3472
3473 while (ntype != type)
3474 {
3475 if (TYPE_LENGTH(ntype) == 0)
3476 TYPE_LENGTH (ntype) = TYPE_LENGTH (type);
3477 else
3478 complain_about_struct_wipeout (ntype);
3479 ntype = TYPE_CHAIN (ntype);
3480 }
3481 }
3482
3483 /* Read the description of a structure (or union type) and return an object
3484 describing the type.
3485
3486 PP points to a character pointer that points to the next unconsumed token
3487 in the stabs string. For example, given stabs "A:T4=s4a:1,0,32;;",
3488 *PP will point to "4a:1,0,32;;".
3489
3490 TYPE points to an incomplete type that needs to be filled in.
3491
3492 OBJFILE points to the current objfile from which the stabs information is
3493 being read. (Note that it is redundant in that TYPE also contains a pointer
3494 to this same objfile, so it might be a good idea to eliminate it. FIXME).
3495 */
3496
3497 static struct type *
3498 read_struct_type (char **pp, struct type *type, enum type_code type_code,
3499 struct objfile *objfile)
3500 {
3501 struct cleanup *back_to;
3502 struct field_info fi;
3503
3504 fi.list = NULL;
3505 fi.fnlist = NULL;
3506
3507 /* When describing struct/union/class types in stabs, G++ always drops
3508 all qualifications from the name. So if you've got:
3509 struct A { ... struct B { ... }; ... };
3510 then G++ will emit stabs for `struct A::B' that call it simply
3511 `struct B'. Obviously, if you've got a real top-level definition for
3512 `struct B', or other nested definitions, this is going to cause
3513 problems.
3514
3515 Obviously, GDB can't fix this by itself, but it can at least avoid
3516 scribbling on existing structure type objects when new definitions
3517 appear. */
3518 if (! (TYPE_CODE (type) == TYPE_CODE_UNDEF
3519 || TYPE_STUB (type)))
3520 {
3521 complain_about_struct_wipeout (type);
3522
3523 /* It's probably best to return the type unchanged. */
3524 return type;
3525 }
3526
3527 back_to = make_cleanup (null_cleanup, 0);
3528
3529 INIT_CPLUS_SPECIFIC (type);
3530 TYPE_CODE (type) = type_code;
3531 TYPE_STUB (type) = 0;
3532
3533 /* First comes the total size in bytes. */
3534
3535 {
3536 int nbits;
3537
3538 TYPE_LENGTH (type) = read_huge_number (pp, 0, &nbits, 0);
3539 if (nbits != 0)
3540 {
3541 do_cleanups (back_to);
3542 return error_type (pp, objfile);
3543 }
3544 set_length_in_type_chain (type);
3545 }
3546
3547 /* Now read the baseclasses, if any, read the regular C struct or C++
3548 class member fields, attach the fields to the type, read the C++
3549 member functions, attach them to the type, and then read any tilde
3550 field (baseclass specifier for the class holding the main vtable). */
3551
3552 if (!read_baseclasses (&fi, pp, type, objfile)
3553 || !read_struct_fields (&fi, pp, type, objfile)
3554 || !attach_fields_to_type (&fi, type, objfile)
3555 || !read_member_functions (&fi, pp, type, objfile)
3556 || !attach_fn_fields_to_type (&fi, type)
3557 || !read_tilde_fields (&fi, pp, type, objfile))
3558 {
3559 type = error_type (pp, objfile);
3560 }
3561
3562 do_cleanups (back_to);
3563 return (type);
3564 }
3565
3566 /* Read a definition of an array type,
3567 and create and return a suitable type object.
3568 Also creates a range type which represents the bounds of that
3569 array. */
3570
3571 static struct type *
3572 read_array_type (char **pp, struct type *type,
3573 struct objfile *objfile)
3574 {
3575 struct type *index_type, *element_type, *range_type;
3576 int lower, upper;
3577 int adjustable = 0;
3578 int nbits;
3579
3580 /* Format of an array type:
3581 "ar<index type>;lower;upper;<array_contents_type>".
3582 OS9000: "arlower,upper;<array_contents_type>".
3583
3584 Fortran adjustable arrays use Adigits or Tdigits for lower or upper;
3585 for these, produce a type like float[][]. */
3586
3587 {
3588 index_type = read_type (pp, objfile);
3589 if (**pp != ';')
3590 /* Improper format of array type decl. */
3591 return error_type (pp, objfile);
3592 ++*pp;
3593 }
3594
3595 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3596 {
3597 (*pp)++;
3598 adjustable = 1;
3599 }
3600 lower = read_huge_number (pp, ';', &nbits, 0);
3601
3602 if (nbits != 0)
3603 return error_type (pp, objfile);
3604
3605 if (!(**pp >= '0' && **pp <= '9') && **pp != '-')
3606 {
3607 (*pp)++;
3608 adjustable = 1;
3609 }
3610 upper = read_huge_number (pp, ';', &nbits, 0);
3611 if (nbits != 0)
3612 return error_type (pp, objfile);
3613
3614 element_type = read_type (pp, objfile);
3615
3616 if (adjustable)
3617 {
3618 lower = 0;
3619 upper = -1;
3620 }
3621
3622 range_type =
3623 create_static_range_type ((struct type *) NULL, index_type, lower, upper);
3624 type = create_array_type (type, element_type, range_type);
3625
3626 return type;
3627 }
3628
3629
3630 /* Read a definition of an enumeration type,
3631 and create and return a suitable type object.
3632 Also defines the symbols that represent the values of the type. */
3633
3634 static struct type *
3635 read_enum_type (char **pp, struct type *type,
3636 struct objfile *objfile)
3637 {
3638 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3639 char *p;
3640 char *name;
3641 long n;
3642 struct symbol *sym;
3643 int nsyms = 0;
3644 struct pending **symlist;
3645 struct pending *osyms, *syms;
3646 int o_nsyms;
3647 int nbits;
3648 int unsigned_enum = 1;
3649
3650 #if 0
3651 /* FIXME! The stabs produced by Sun CC merrily define things that ought
3652 to be file-scope, between N_FN entries, using N_LSYM. What's a mother
3653 to do? For now, force all enum values to file scope. */
3654 if (within_function)
3655 symlist = &local_symbols;
3656 else
3657 #endif
3658 symlist = &file_symbols;
3659 osyms = *symlist;
3660 o_nsyms = osyms ? osyms->nsyms : 0;
3661
3662 /* The aix4 compiler emits an extra field before the enum members;
3663 my guess is it's a type of some sort. Just ignore it. */
3664 if (**pp == '-')
3665 {
3666 /* Skip over the type. */
3667 while (**pp != ':')
3668 (*pp)++;
3669
3670 /* Skip over the colon. */
3671 (*pp)++;
3672 }
3673
3674 /* Read the value-names and their values.
3675 The input syntax is NAME:VALUE,NAME:VALUE, and so on.
3676 A semicolon or comma instead of a NAME means the end. */
3677 while (**pp && **pp != ';' && **pp != ',')
3678 {
3679 STABS_CONTINUE (pp, objfile);
3680 p = *pp;
3681 while (*p != ':')
3682 p++;
3683 name = obstack_copy0 (&objfile->objfile_obstack, *pp, p - *pp);
3684 *pp = p + 1;
3685 n = read_huge_number (pp, ',', &nbits, 0);
3686 if (nbits != 0)
3687 return error_type (pp, objfile);
3688
3689 sym = allocate_symbol (objfile);
3690 SYMBOL_SET_LINKAGE_NAME (sym, name);
3691 SYMBOL_SET_LANGUAGE (sym, current_subfile->language,
3692 &objfile->objfile_obstack);
3693 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
3694 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
3695 SYMBOL_VALUE (sym) = n;
3696 if (n < 0)
3697 unsigned_enum = 0;
3698 add_symbol_to_list (sym, symlist);
3699 nsyms++;
3700 }
3701
3702 if (**pp == ';')
3703 (*pp)++; /* Skip the semicolon. */
3704
3705 /* Now fill in the fields of the type-structure. */
3706
3707 TYPE_LENGTH (type) = gdbarch_int_bit (gdbarch) / HOST_CHAR_BIT;
3708 set_length_in_type_chain (type);
3709 TYPE_CODE (type) = TYPE_CODE_ENUM;
3710 TYPE_STUB (type) = 0;
3711 if (unsigned_enum)
3712 TYPE_UNSIGNED (type) = 1;
3713 TYPE_NFIELDS (type) = nsyms;
3714 TYPE_FIELDS (type) = (struct field *)
3715 TYPE_ALLOC (type, sizeof (struct field) * nsyms);
3716 memset (TYPE_FIELDS (type), 0, sizeof (struct field) * nsyms);
3717
3718 /* Find the symbols for the values and put them into the type.
3719 The symbols can be found in the symlist that we put them on
3720 to cause them to be defined. osyms contains the old value
3721 of that symlist; everything up to there was defined by us. */
3722 /* Note that we preserve the order of the enum constants, so
3723 that in something like "enum {FOO, LAST_THING=FOO}" we print
3724 FOO, not LAST_THING. */
3725
3726 for (syms = *symlist, n = nsyms - 1; syms; syms = syms->next)
3727 {
3728 int last = syms == osyms ? o_nsyms : 0;
3729 int j = syms->nsyms;
3730
3731 for (; --j >= last; --n)
3732 {
3733 struct symbol *xsym = syms->symbol[j];
3734
3735 SYMBOL_TYPE (xsym) = type;
3736 TYPE_FIELD_NAME (type, n) = SYMBOL_LINKAGE_NAME (xsym);
3737 SET_FIELD_ENUMVAL (TYPE_FIELD (type, n), SYMBOL_VALUE (xsym));
3738 TYPE_FIELD_BITSIZE (type, n) = 0;
3739 }
3740 if (syms == osyms)
3741 break;
3742 }
3743
3744 return type;
3745 }
3746
3747 /* Sun's ACC uses a somewhat saner method for specifying the builtin
3748 typedefs in every file (for int, long, etc):
3749
3750 type = b <signed> <width> <format type>; <offset>; <nbits>
3751 signed = u or s.
3752 optional format type = c or b for char or boolean.
3753 offset = offset from high order bit to start bit of type.
3754 width is # bytes in object of this type, nbits is # bits in type.
3755
3756 The width/offset stuff appears to be for small objects stored in
3757 larger ones (e.g. `shorts' in `int' registers). We ignore it for now,
3758 FIXME. */
3759
3760 static struct type *
3761 read_sun_builtin_type (char **pp, int typenums[2], struct objfile *objfile)
3762 {
3763 int type_bits;
3764 int nbits;
3765 int signed_type;
3766 enum type_code code = TYPE_CODE_INT;
3767
3768 switch (**pp)
3769 {
3770 case 's':
3771 signed_type = 1;
3772 break;
3773 case 'u':
3774 signed_type = 0;
3775 break;
3776 default:
3777 return error_type (pp, objfile);
3778 }
3779 (*pp)++;
3780
3781 /* For some odd reason, all forms of char put a c here. This is strange
3782 because no other type has this honor. We can safely ignore this because
3783 we actually determine 'char'acterness by the number of bits specified in
3784 the descriptor.
3785 Boolean forms, e.g Fortran logical*X, put a b here. */
3786
3787 if (**pp == 'c')
3788 (*pp)++;
3789 else if (**pp == 'b')
3790 {
3791 code = TYPE_CODE_BOOL;
3792 (*pp)++;
3793 }
3794
3795 /* The first number appears to be the number of bytes occupied
3796 by this type, except that unsigned short is 4 instead of 2.
3797 Since this information is redundant with the third number,
3798 we will ignore it. */
3799 read_huge_number (pp, ';', &nbits, 0);
3800 if (nbits != 0)
3801 return error_type (pp, objfile);
3802
3803 /* The second number is always 0, so ignore it too. */
3804 read_huge_number (pp, ';', &nbits, 0);
3805 if (nbits != 0)
3806 return error_type (pp, objfile);
3807
3808 /* The third number is the number of bits for this type. */
3809 type_bits = read_huge_number (pp, 0, &nbits, 0);
3810 if (nbits != 0)
3811 return error_type (pp, objfile);
3812 /* The type *should* end with a semicolon. If it are embedded
3813 in a larger type the semicolon may be the only way to know where
3814 the type ends. If this type is at the end of the stabstring we
3815 can deal with the omitted semicolon (but we don't have to like
3816 it). Don't bother to complain(), Sun's compiler omits the semicolon
3817 for "void". */
3818 if (**pp == ';')
3819 ++(*pp);
3820
3821 if (type_bits == 0)
3822 return init_type (TYPE_CODE_VOID, 1,
3823 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3824 objfile);
3825 else
3826 return init_type (code,
3827 type_bits / TARGET_CHAR_BIT,
3828 signed_type ? 0 : TYPE_FLAG_UNSIGNED, (char *) NULL,
3829 objfile);
3830 }
3831
3832 static struct type *
3833 read_sun_floating_type (char **pp, int typenums[2], struct objfile *objfile)
3834 {
3835 int nbits;
3836 int details;
3837 int nbytes;
3838 struct type *rettype;
3839
3840 /* The first number has more details about the type, for example
3841 FN_COMPLEX. */
3842 details = read_huge_number (pp, ';', &nbits, 0);
3843 if (nbits != 0)
3844 return error_type (pp, objfile);
3845
3846 /* The second number is the number of bytes occupied by this type. */
3847 nbytes = read_huge_number (pp, ';', &nbits, 0);
3848 if (nbits != 0)
3849 return error_type (pp, objfile);
3850
3851 if (details == NF_COMPLEX || details == NF_COMPLEX16
3852 || details == NF_COMPLEX32)
3853 {
3854 rettype = init_type (TYPE_CODE_COMPLEX, nbytes, 0, NULL, objfile);
3855 TYPE_TARGET_TYPE (rettype)
3856 = init_type (TYPE_CODE_FLT, nbytes / 2, 0, NULL, objfile);
3857 return rettype;
3858 }
3859
3860 return init_type (TYPE_CODE_FLT, nbytes, 0, NULL, objfile);
3861 }
3862
3863 /* Read a number from the string pointed to by *PP.
3864 The value of *PP is advanced over the number.
3865 If END is nonzero, the character that ends the
3866 number must match END, or an error happens;
3867 and that character is skipped if it does match.
3868 If END is zero, *PP is left pointing to that character.
3869
3870 If TWOS_COMPLEMENT_BITS is set to a strictly positive value and if
3871 the number is represented in an octal representation, assume that
3872 it is represented in a 2's complement representation with a size of
3873 TWOS_COMPLEMENT_BITS.
3874
3875 If the number fits in a long, set *BITS to 0 and return the value.
3876 If not, set *BITS to be the number of bits in the number and return 0.
3877
3878 If encounter garbage, set *BITS to -1 and return 0. */
3879
3880 static long
3881 read_huge_number (char **pp, int end, int *bits, int twos_complement_bits)
3882 {
3883 char *p = *pp;
3884 int sign = 1;
3885 int sign_bit = 0;
3886 long n = 0;
3887 int radix = 10;
3888 char overflow = 0;
3889 int nbits = 0;
3890 int c;
3891 long upper_limit;
3892 int twos_complement_representation = 0;
3893
3894 if (*p == '-')
3895 {
3896 sign = -1;
3897 p++;
3898 }
3899
3900 /* Leading zero means octal. GCC uses this to output values larger
3901 than an int (because that would be hard in decimal). */
3902 if (*p == '0')
3903 {
3904 radix = 8;
3905 p++;
3906 }
3907
3908 /* Skip extra zeros. */
3909 while (*p == '0')
3910 p++;
3911
3912 if (sign > 0 && radix == 8 && twos_complement_bits > 0)
3913 {
3914 /* Octal, possibly signed. Check if we have enough chars for a
3915 negative number. */
3916
3917 size_t len;
3918 char *p1 = p;
3919
3920 while ((c = *p1) >= '0' && c < '8')
3921 p1++;
3922
3923 len = p1 - p;
3924 if (len > twos_complement_bits / 3
3925 || (twos_complement_bits % 3 == 0
3926 && len == twos_complement_bits / 3))
3927 {
3928 /* Ok, we have enough characters for a signed value, check
3929 for signness by testing if the sign bit is set. */
3930 sign_bit = (twos_complement_bits % 3 + 2) % 3;
3931 c = *p - '0';
3932 if (c & (1 << sign_bit))
3933 {
3934 /* Definitely signed. */
3935 twos_complement_representation = 1;
3936 sign = -1;
3937 }
3938 }
3939 }
3940
3941 upper_limit = LONG_MAX / radix;
3942
3943 while ((c = *p++) >= '0' && c < ('0' + radix))
3944 {
3945 if (n <= upper_limit)
3946 {
3947 if (twos_complement_representation)
3948 {
3949 /* Octal, signed, twos complement representation. In
3950 this case, n is the corresponding absolute value. */
3951 if (n == 0)
3952 {
3953 long sn = c - '0' - ((2 * (c - '0')) | (2 << sign_bit));
3954
3955 n = -sn;
3956 }
3957 else
3958 {
3959 n *= radix;
3960 n -= c - '0';
3961 }
3962 }
3963 else
3964 {
3965 /* unsigned representation */
3966 n *= radix;
3967 n += c - '0'; /* FIXME this overflows anyway. */
3968 }
3969 }
3970 else
3971 overflow = 1;
3972
3973 /* This depends on large values being output in octal, which is
3974 what GCC does. */
3975 if (radix == 8)
3976 {
3977 if (nbits == 0)
3978 {
3979 if (c == '0')
3980 /* Ignore leading zeroes. */
3981 ;
3982 else if (c == '1')
3983 nbits = 1;
3984 else if (c == '2' || c == '3')
3985 nbits = 2;
3986 else
3987 nbits = 3;
3988 }
3989 else
3990 nbits += 3;
3991 }
3992 }
3993 if (end)
3994 {
3995 if (c && c != end)
3996 {
3997 if (bits != NULL)
3998 *bits = -1;
3999 return 0;
4000 }
4001 }
4002 else
4003 --p;
4004
4005 if (radix == 8 && twos_complement_bits > 0 && nbits > twos_complement_bits)
4006 {
4007 /* We were supposed to parse a number with maximum
4008 TWOS_COMPLEMENT_BITS bits, but something went wrong. */
4009 if (bits != NULL)
4010 *bits = -1;
4011 return 0;
4012 }
4013
4014 *pp = p;
4015 if (overflow)
4016 {
4017 if (nbits == 0)
4018 {
4019 /* Large decimal constants are an error (because it is hard to
4020 count how many bits are in them). */
4021 if (bits != NULL)
4022 *bits = -1;
4023 return 0;
4024 }
4025
4026 /* -0x7f is the same as 0x80. So deal with it by adding one to
4027 the number of bits. Two's complement represention octals
4028 can't have a '-' in front. */
4029 if (sign == -1 && !twos_complement_representation)
4030 ++nbits;
4031 if (bits)
4032 *bits = nbits;
4033 }
4034 else
4035 {
4036 if (bits)
4037 *bits = 0;
4038 return n * sign;
4039 }
4040 /* It's *BITS which has the interesting information. */
4041 return 0;
4042 }
4043
4044 static struct type *
4045 read_range_type (char **pp, int typenums[2], int type_size,
4046 struct objfile *objfile)
4047 {
4048 struct gdbarch *gdbarch = get_objfile_arch (objfile);
4049 char *orig_pp = *pp;
4050 int rangenums[2];
4051 long n2, n3;
4052 int n2bits, n3bits;
4053 int self_subrange;
4054 struct type *result_type;
4055 struct type *index_type = NULL;
4056
4057 /* First comes a type we are a subrange of.
4058 In C it is usually 0, 1 or the type being defined. */
4059 if (read_type_number (pp, rangenums) != 0)
4060 return error_type (pp, objfile);
4061 self_subrange = (rangenums[0] == typenums[0] &&
4062 rangenums[1] == typenums[1]);
4063
4064 if (**pp == '=')
4065 {
4066 *pp = orig_pp;
4067 index_type = read_type (pp, objfile);
4068 }
4069
4070 /* A semicolon should now follow; skip it. */
4071 if (**pp == ';')
4072 (*pp)++;
4073
4074 /* The remaining two operands are usually lower and upper bounds
4075 of the range. But in some special cases they mean something else. */
4076 n2 = read_huge_number (pp, ';', &n2bits, type_size);
4077 n3 = read_huge_number (pp, ';', &n3bits, type_size);
4078
4079 if (n2bits == -1 || n3bits == -1)
4080 return error_type (pp, objfile);
4081
4082 if (index_type)
4083 goto handle_true_range;
4084
4085 /* If limits are huge, must be large integral type. */
4086 if (n2bits != 0 || n3bits != 0)
4087 {
4088 char got_signed = 0;
4089 char got_unsigned = 0;
4090 /* Number of bits in the type. */
4091 int nbits = 0;
4092
4093 /* If a type size attribute has been specified, the bounds of
4094 the range should fit in this size. If the lower bounds needs
4095 more bits than the upper bound, then the type is signed. */
4096 if (n2bits <= type_size && n3bits <= type_size)
4097 {
4098 if (n2bits == type_size && n2bits > n3bits)
4099 got_signed = 1;
4100 else
4101 got_unsigned = 1;
4102 nbits = type_size;
4103 }
4104 /* Range from 0 to <large number> is an unsigned large integral type. */
4105 else if ((n2bits == 0 && n2 == 0) && n3bits != 0)
4106 {
4107 got_unsigned = 1;
4108 nbits = n3bits;
4109 }
4110 /* Range from <large number> to <large number>-1 is a large signed
4111 integral type. Take care of the case where <large number> doesn't
4112 fit in a long but <large number>-1 does. */
4113 else if ((n2bits != 0 && n3bits != 0 && n2bits == n3bits + 1)
4114 || (n2bits != 0 && n3bits == 0
4115 && (n2bits == sizeof (long) * HOST_CHAR_BIT)
4116 && n3 == LONG_MAX))
4117 {
4118 got_signed = 1;
4119 nbits = n2bits;
4120 }
4121
4122 if (got_signed || got_unsigned)
4123 {
4124 return init_type (TYPE_CODE_INT, nbits / TARGET_CHAR_BIT,
4125 got_unsigned ? TYPE_FLAG_UNSIGNED : 0, NULL,
4126 objfile);
4127 }
4128 else
4129 return error_type (pp, objfile);
4130 }
4131
4132 /* A type defined as a subrange of itself, with bounds both 0, is void. */
4133 if (self_subrange && n2 == 0 && n3 == 0)
4134 return init_type (TYPE_CODE_VOID, 1, 0, NULL, objfile);
4135
4136 /* If n3 is zero and n2 is positive, we want a floating type, and n2
4137 is the width in bytes.
4138
4139 Fortran programs appear to use this for complex types also. To
4140 distinguish between floats and complex, g77 (and others?) seem
4141 to use self-subranges for the complexes, and subranges of int for
4142 the floats.
4143
4144 Also note that for complexes, g77 sets n2 to the size of one of
4145 the member floats, not the whole complex beast. My guess is that
4146 this was to work well with pre-COMPLEX versions of gdb. */
4147
4148 if (n3 == 0 && n2 > 0)
4149 {
4150 struct type *float_type
4151 = init_type (TYPE_CODE_FLT, n2, 0, NULL, objfile);
4152
4153 if (self_subrange)
4154 {
4155 struct type *complex_type =
4156 init_type (TYPE_CODE_COMPLEX, 2 * n2, 0, NULL, objfile);
4157
4158 TYPE_TARGET_TYPE (complex_type) = float_type;
4159 return complex_type;
4160 }
4161 else
4162 return float_type;
4163 }
4164
4165 /* If the upper bound is -1, it must really be an unsigned integral. */
4166
4167 else if (n2 == 0 && n3 == -1)
4168 {
4169 int bits = type_size;
4170
4171 if (bits <= 0)
4172 {
4173 /* We don't know its size. It is unsigned int or unsigned
4174 long. GCC 2.3.3 uses this for long long too, but that is
4175 just a GDB 3.5 compatibility hack. */
4176 bits = gdbarch_int_bit (gdbarch);
4177 }
4178
4179 return init_type (TYPE_CODE_INT, bits / TARGET_CHAR_BIT,
4180 TYPE_FLAG_UNSIGNED, NULL, objfile);
4181 }
4182
4183 /* Special case: char is defined (Who knows why) as a subrange of
4184 itself with range 0-127. */
4185 else if (self_subrange && n2 == 0 && n3 == 127)
4186 return init_type (TYPE_CODE_INT, 1, TYPE_FLAG_NOSIGN, NULL, objfile);
4187
4188 /* We used to do this only for subrange of self or subrange of int. */
4189 else if (n2 == 0)
4190 {
4191 /* -1 is used for the upper bound of (4 byte) "unsigned int" and
4192 "unsigned long", and we already checked for that,
4193 so don't need to test for it here. */
4194
4195 if (n3 < 0)
4196 /* n3 actually gives the size. */
4197 return init_type (TYPE_CODE_INT, -n3, TYPE_FLAG_UNSIGNED,
4198 NULL, objfile);
4199
4200 /* Is n3 == 2**(8n)-1 for some integer n? Then it's an
4201 unsigned n-byte integer. But do require n to be a power of
4202 two; we don't want 3- and 5-byte integers flying around. */
4203 {
4204 int bytes;
4205 unsigned long bits;
4206
4207 bits = n3;
4208 for (bytes = 0; (bits & 0xff) == 0xff; bytes++)
4209 bits >>= 8;
4210 if (bits == 0
4211 && ((bytes - 1) & bytes) == 0) /* "bytes is a power of two" */
4212 return init_type (TYPE_CODE_INT, bytes, TYPE_FLAG_UNSIGNED, NULL,
4213 objfile);
4214 }
4215 }
4216 /* I think this is for Convex "long long". Since I don't know whether
4217 Convex sets self_subrange, I also accept that particular size regardless
4218 of self_subrange. */
4219 else if (n3 == 0 && n2 < 0
4220 && (self_subrange
4221 || n2 == -gdbarch_long_long_bit
4222 (gdbarch) / TARGET_CHAR_BIT))
4223 return init_type (TYPE_CODE_INT, -n2, 0, NULL, objfile);
4224 else if (n2 == -n3 - 1)
4225 {
4226 if (n3 == 0x7f)
4227 return init_type (TYPE_CODE_INT, 1, 0, NULL, objfile);
4228 if (n3 == 0x7fff)
4229 return init_type (TYPE_CODE_INT, 2, 0, NULL, objfile);
4230 if (n3 == 0x7fffffff)
4231 return init_type (TYPE_CODE_INT, 4, 0, NULL, objfile);
4232 }
4233
4234 /* We have a real range type on our hands. Allocate space and
4235 return a real pointer. */
4236 handle_true_range:
4237
4238 if (self_subrange)
4239 index_type = objfile_type (objfile)->builtin_int;
4240 else
4241 index_type = *dbx_lookup_type (rangenums, objfile);
4242 if (index_type == NULL)
4243 {
4244 /* Does this actually ever happen? Is that why we are worrying
4245 about dealing with it rather than just calling error_type? */
4246
4247 complaint (&symfile_complaints,
4248 _("base type %d of range type is not defined"), rangenums[1]);
4249
4250 index_type = objfile_type (objfile)->builtin_int;
4251 }
4252
4253 result_type
4254 = create_static_range_type ((struct type *) NULL, index_type, n2, n3);
4255 return (result_type);
4256 }
4257
4258 /* Read in an argument list. This is a list of types, separated by commas
4259 and terminated with END. Return the list of types read in, or NULL
4260 if there is an error. */
4261
4262 static struct field *
4263 read_args (char **pp, int end, struct objfile *objfile, int *nargsp,
4264 int *varargsp)
4265 {
4266 /* FIXME! Remove this arbitrary limit! */
4267 struct type *types[1024]; /* Allow for fns of 1023 parameters. */
4268 int n = 0, i;
4269 struct field *rval;
4270
4271 while (**pp != end)
4272 {
4273 if (**pp != ',')
4274 /* Invalid argument list: no ','. */
4275 return NULL;
4276 (*pp)++;
4277 STABS_CONTINUE (pp, objfile);
4278 types[n++] = read_type (pp, objfile);
4279 }
4280 (*pp)++; /* get past `end' (the ':' character). */
4281
4282 if (n == 0)
4283 {
4284 /* We should read at least the THIS parameter here. Some broken stabs
4285 output contained `(0,41),(0,42)=@s8;-16;,(0,43),(0,1);' where should
4286 have been present ";-16,(0,43)" reference instead. This way the
4287 excessive ";" marker prematurely stops the parameters parsing. */
4288
4289 complaint (&symfile_complaints, _("Invalid (empty) method arguments"));
4290 *varargsp = 0;
4291 }
4292 else if (TYPE_CODE (types[n - 1]) != TYPE_CODE_VOID)
4293 *varargsp = 1;
4294 else
4295 {
4296 n--;
4297 *varargsp = 0;
4298 }
4299
4300 rval = (struct field *) xmalloc (n * sizeof (struct field));
4301 memset (rval, 0, n * sizeof (struct field));
4302 for (i = 0; i < n; i++)
4303 rval[i].type = types[i];
4304 *nargsp = n;
4305 return rval;
4306 }
4307 \f
4308 /* Common block handling. */
4309
4310 /* List of symbols declared since the last BCOMM. This list is a tail
4311 of local_symbols. When ECOMM is seen, the symbols on the list
4312 are noted so their proper addresses can be filled in later,
4313 using the common block base address gotten from the assembler
4314 stabs. */
4315
4316 static struct pending *common_block;
4317 static int common_block_i;
4318
4319 /* Name of the current common block. We get it from the BCOMM instead of the
4320 ECOMM to match IBM documentation (even though IBM puts the name both places
4321 like everyone else). */
4322 static char *common_block_name;
4323
4324 /* Process a N_BCOMM symbol. The storage for NAME is not guaranteed
4325 to remain after this function returns. */
4326
4327 void
4328 common_block_start (char *name, struct objfile *objfile)
4329 {
4330 if (common_block_name != NULL)
4331 {
4332 complaint (&symfile_complaints,
4333 _("Invalid symbol data: common block within common block"));
4334 }
4335 common_block = local_symbols;
4336 common_block_i = local_symbols ? local_symbols->nsyms : 0;
4337 common_block_name = obstack_copy0 (&objfile->objfile_obstack,
4338 name, strlen (name));
4339 }
4340
4341 /* Process a N_ECOMM symbol. */
4342
4343 void
4344 common_block_end (struct objfile *objfile)
4345 {
4346 /* Symbols declared since the BCOMM are to have the common block
4347 start address added in when we know it. common_block and
4348 common_block_i point to the first symbol after the BCOMM in
4349 the local_symbols list; copy the list and hang it off the
4350 symbol for the common block name for later fixup. */
4351 int i;
4352 struct symbol *sym;
4353 struct pending *new = 0;
4354 struct pending *next;
4355 int j;
4356
4357 if (common_block_name == NULL)
4358 {
4359 complaint (&symfile_complaints, _("ECOMM symbol unmatched by BCOMM"));
4360 return;
4361 }
4362
4363 sym = allocate_symbol (objfile);
4364 /* Note: common_block_name already saved on objfile_obstack. */
4365 SYMBOL_SET_LINKAGE_NAME (sym, common_block_name);
4366 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
4367
4368 /* Now we copy all the symbols which have been defined since the BCOMM. */
4369
4370 /* Copy all the struct pendings before common_block. */
4371 for (next = local_symbols;
4372 next != NULL && next != common_block;
4373 next = next->next)
4374 {
4375 for (j = 0; j < next->nsyms; j++)
4376 add_symbol_to_list (next->symbol[j], &new);
4377 }
4378
4379 /* Copy however much of COMMON_BLOCK we need. If COMMON_BLOCK is
4380 NULL, it means copy all the local symbols (which we already did
4381 above). */
4382
4383 if (common_block != NULL)
4384 for (j = common_block_i; j < common_block->nsyms; j++)
4385 add_symbol_to_list (common_block->symbol[j], &new);
4386
4387 SYMBOL_TYPE (sym) = (struct type *) new;
4388
4389 /* Should we be putting local_symbols back to what it was?
4390 Does it matter? */
4391
4392 i = hashname (SYMBOL_LINKAGE_NAME (sym));
4393 SYMBOL_VALUE_CHAIN (sym) = global_sym_chain[i];
4394 global_sym_chain[i] = sym;
4395 common_block_name = NULL;
4396 }
4397
4398 /* Add a common block's start address to the offset of each symbol
4399 declared to be in it (by being between a BCOMM/ECOMM pair that uses
4400 the common block name). */
4401
4402 static void
4403 fix_common_block (struct symbol *sym, CORE_ADDR valu)
4404 {
4405 struct pending *next = (struct pending *) SYMBOL_TYPE (sym);
4406
4407 for (; next; next = next->next)
4408 {
4409 int j;
4410
4411 for (j = next->nsyms - 1; j >= 0; j--)
4412 SYMBOL_VALUE_ADDRESS (next->symbol[j]) += valu;
4413 }
4414 }
4415 \f
4416
4417
4418 /* Add {TYPE, TYPENUMS} to the NONAME_UNDEFS vector.
4419 See add_undefined_type for more details. */
4420
4421 static void
4422 add_undefined_type_noname (struct type *type, int typenums[2])
4423 {
4424 struct nat nat;
4425
4426 nat.typenums[0] = typenums [0];
4427 nat.typenums[1] = typenums [1];
4428 nat.type = type;
4429
4430 if (noname_undefs_length == noname_undefs_allocated)
4431 {
4432 noname_undefs_allocated *= 2;
4433 noname_undefs = (struct nat *)
4434 xrealloc ((char *) noname_undefs,
4435 noname_undefs_allocated * sizeof (struct nat));
4436 }
4437 noname_undefs[noname_undefs_length++] = nat;
4438 }
4439
4440 /* Add TYPE to the UNDEF_TYPES vector.
4441 See add_undefined_type for more details. */
4442
4443 static void
4444 add_undefined_type_1 (struct type *type)
4445 {
4446 if (undef_types_length == undef_types_allocated)
4447 {
4448 undef_types_allocated *= 2;
4449 undef_types = (struct type **)
4450 xrealloc ((char *) undef_types,
4451 undef_types_allocated * sizeof (struct type *));
4452 }
4453 undef_types[undef_types_length++] = type;
4454 }
4455
4456 /* What about types defined as forward references inside of a small lexical
4457 scope? */
4458 /* Add a type to the list of undefined types to be checked through
4459 once this file has been read in.
4460
4461 In practice, we actually maintain two such lists: The first list
4462 (UNDEF_TYPES) is used for types whose name has been provided, and
4463 concerns forward references (eg 'xs' or 'xu' forward references);
4464 the second list (NONAME_UNDEFS) is used for types whose name is
4465 unknown at creation time, because they were referenced through
4466 their type number before the actual type was declared.
4467 This function actually adds the given type to the proper list. */
4468
4469 static void
4470 add_undefined_type (struct type *type, int typenums[2])
4471 {
4472 if (TYPE_TAG_NAME (type) == NULL)
4473 add_undefined_type_noname (type, typenums);
4474 else
4475 add_undefined_type_1 (type);
4476 }
4477
4478 /* Try to fix all undefined types pushed on the UNDEF_TYPES vector. */
4479
4480 static void
4481 cleanup_undefined_types_noname (struct objfile *objfile)
4482 {
4483 int i;
4484
4485 for (i = 0; i < noname_undefs_length; i++)
4486 {
4487 struct nat nat = noname_undefs[i];
4488 struct type **type;
4489
4490 type = dbx_lookup_type (nat.typenums, objfile);
4491 if (nat.type != *type && TYPE_CODE (*type) != TYPE_CODE_UNDEF)
4492 {
4493 /* The instance flags of the undefined type are still unset,
4494 and needs to be copied over from the reference type.
4495 Since replace_type expects them to be identical, we need
4496 to set these flags manually before hand. */
4497 TYPE_INSTANCE_FLAGS (nat.type) = TYPE_INSTANCE_FLAGS (*type);
4498 replace_type (nat.type, *type);
4499 }
4500 }
4501
4502 noname_undefs_length = 0;
4503 }
4504
4505 /* Go through each undefined type, see if it's still undefined, and fix it
4506 up if possible. We have two kinds of undefined types:
4507
4508 TYPE_CODE_ARRAY: Array whose target type wasn't defined yet.
4509 Fix: update array length using the element bounds
4510 and the target type's length.
4511 TYPE_CODE_STRUCT, TYPE_CODE_UNION: Structure whose fields were not
4512 yet defined at the time a pointer to it was made.
4513 Fix: Do a full lookup on the struct/union tag. */
4514
4515 static void
4516 cleanup_undefined_types_1 (void)
4517 {
4518 struct type **type;
4519
4520 /* Iterate over every undefined type, and look for a symbol whose type
4521 matches our undefined type. The symbol matches if:
4522 1. It is a typedef in the STRUCT domain;
4523 2. It has the same name, and same type code;
4524 3. The instance flags are identical.
4525
4526 It is important to check the instance flags, because we have seen
4527 examples where the debug info contained definitions such as:
4528
4529 "foo_t:t30=B31=xefoo_t:"
4530
4531 In this case, we have created an undefined type named "foo_t" whose
4532 instance flags is null (when processing "xefoo_t"), and then created
4533 another type with the same name, but with different instance flags
4534 ('B' means volatile). I think that the definition above is wrong,
4535 since the same type cannot be volatile and non-volatile at the same
4536 time, but we need to be able to cope with it when it happens. The
4537 approach taken here is to treat these two types as different. */
4538
4539 for (type = undef_types; type < undef_types + undef_types_length; type++)
4540 {
4541 switch (TYPE_CODE (*type))
4542 {
4543
4544 case TYPE_CODE_STRUCT:
4545 case TYPE_CODE_UNION:
4546 case TYPE_CODE_ENUM:
4547 {
4548 /* Check if it has been defined since. Need to do this here
4549 as well as in check_typedef to deal with the (legitimate in
4550 C though not C++) case of several types with the same name
4551 in different source files. */
4552 if (TYPE_STUB (*type))
4553 {
4554 struct pending *ppt;
4555 int i;
4556 /* Name of the type, without "struct" or "union". */
4557 const char *typename = TYPE_TAG_NAME (*type);
4558
4559 if (typename == NULL)
4560 {
4561 complaint (&symfile_complaints, _("need a type name"));
4562 break;
4563 }
4564 for (ppt = file_symbols; ppt; ppt = ppt->next)
4565 {
4566 for (i = 0; i < ppt->nsyms; i++)
4567 {
4568 struct symbol *sym = ppt->symbol[i];
4569
4570 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4571 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
4572 && (TYPE_CODE (SYMBOL_TYPE (sym)) ==
4573 TYPE_CODE (*type))
4574 && (TYPE_INSTANCE_FLAGS (*type) ==
4575 TYPE_INSTANCE_FLAGS (SYMBOL_TYPE (sym)))
4576 && strcmp (SYMBOL_LINKAGE_NAME (sym),
4577 typename) == 0)
4578 replace_type (*type, SYMBOL_TYPE (sym));
4579 }
4580 }
4581 }
4582 }
4583 break;
4584
4585 default:
4586 {
4587 complaint (&symfile_complaints,
4588 _("forward-referenced types left unresolved, "
4589 "type code %d."),
4590 TYPE_CODE (*type));
4591 }
4592 break;
4593 }
4594 }
4595
4596 undef_types_length = 0;
4597 }
4598
4599 /* Try to fix all the undefined types we ecountered while processing
4600 this unit. */
4601
4602 void
4603 cleanup_undefined_stabs_types (struct objfile *objfile)
4604 {
4605 cleanup_undefined_types_1 ();
4606 cleanup_undefined_types_noname (objfile);
4607 }
4608
4609 /* Scan through all of the global symbols defined in the object file,
4610 assigning values to the debugging symbols that need to be assigned
4611 to. Get these symbols from the minimal symbol table. */
4612
4613 void
4614 scan_file_globals (struct objfile *objfile)
4615 {
4616 int hash;
4617 struct minimal_symbol *msymbol;
4618 struct symbol *sym, *prev;
4619 struct objfile *resolve_objfile;
4620
4621 /* SVR4 based linkers copy referenced global symbols from shared
4622 libraries to the main executable.
4623 If we are scanning the symbols for a shared library, try to resolve
4624 them from the minimal symbols of the main executable first. */
4625
4626 if (symfile_objfile && objfile != symfile_objfile)
4627 resolve_objfile = symfile_objfile;
4628 else
4629 resolve_objfile = objfile;
4630
4631 while (1)
4632 {
4633 /* Avoid expensive loop through all minimal symbols if there are
4634 no unresolved symbols. */
4635 for (hash = 0; hash < HASHSIZE; hash++)
4636 {
4637 if (global_sym_chain[hash])
4638 break;
4639 }
4640 if (hash >= HASHSIZE)
4641 return;
4642
4643 ALL_OBJFILE_MSYMBOLS (resolve_objfile, msymbol)
4644 {
4645 QUIT;
4646
4647 /* Skip static symbols. */
4648 switch (MSYMBOL_TYPE (msymbol))
4649 {
4650 case mst_file_text:
4651 case mst_file_data:
4652 case mst_file_bss:
4653 continue;
4654 default:
4655 break;
4656 }
4657
4658 prev = NULL;
4659
4660 /* Get the hash index and check all the symbols
4661 under that hash index. */
4662
4663 hash = hashname (MSYMBOL_LINKAGE_NAME (msymbol));
4664
4665 for (sym = global_sym_chain[hash]; sym;)
4666 {
4667 if (strcmp (MSYMBOL_LINKAGE_NAME (msymbol),
4668 SYMBOL_LINKAGE_NAME (sym)) == 0)
4669 {
4670 /* Splice this symbol out of the hash chain and
4671 assign the value we have to it. */
4672 if (prev)
4673 {
4674 SYMBOL_VALUE_CHAIN (prev) = SYMBOL_VALUE_CHAIN (sym);
4675 }
4676 else
4677 {
4678 global_sym_chain[hash] = SYMBOL_VALUE_CHAIN (sym);
4679 }
4680
4681 /* Check to see whether we need to fix up a common block. */
4682 /* Note: this code might be executed several times for
4683 the same symbol if there are multiple references. */
4684 if (sym)
4685 {
4686 if (SYMBOL_CLASS (sym) == LOC_BLOCK)
4687 {
4688 fix_common_block (sym,
4689 MSYMBOL_VALUE_ADDRESS (resolve_objfile,
4690 msymbol));
4691 }
4692 else
4693 {
4694 SYMBOL_VALUE_ADDRESS (sym)
4695 = MSYMBOL_VALUE_ADDRESS (resolve_objfile, msymbol);
4696 }
4697 SYMBOL_SECTION (sym) = MSYMBOL_SECTION (msymbol);
4698 }
4699
4700 if (prev)
4701 {
4702 sym = SYMBOL_VALUE_CHAIN (prev);
4703 }
4704 else
4705 {
4706 sym = global_sym_chain[hash];
4707 }
4708 }
4709 else
4710 {
4711 prev = sym;
4712 sym = SYMBOL_VALUE_CHAIN (sym);
4713 }
4714 }
4715 }
4716 if (resolve_objfile == objfile)
4717 break;
4718 resolve_objfile = objfile;
4719 }
4720
4721 /* Change the storage class of any remaining unresolved globals to
4722 LOC_UNRESOLVED and remove them from the chain. */
4723 for (hash = 0; hash < HASHSIZE; hash++)
4724 {
4725 sym = global_sym_chain[hash];
4726 while (sym)
4727 {
4728 prev = sym;
4729 sym = SYMBOL_VALUE_CHAIN (sym);
4730
4731 /* Change the symbol address from the misleading chain value
4732 to address zero. */
4733 SYMBOL_VALUE_ADDRESS (prev) = 0;
4734
4735 /* Complain about unresolved common block symbols. */
4736 if (SYMBOL_CLASS (prev) == LOC_STATIC)
4737 SYMBOL_ACLASS_INDEX (prev) = LOC_UNRESOLVED;
4738 else
4739 complaint (&symfile_complaints,
4740 _("%s: common block `%s' from "
4741 "global_sym_chain unresolved"),
4742 objfile_name (objfile), SYMBOL_PRINT_NAME (prev));
4743 }
4744 }
4745 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4746 }
4747
4748 /* Initialize anything that needs initializing when starting to read
4749 a fresh piece of a symbol file, e.g. reading in the stuff corresponding
4750 to a psymtab. */
4751
4752 void
4753 stabsread_init (void)
4754 {
4755 }
4756
4757 /* Initialize anything that needs initializing when a completely new
4758 symbol file is specified (not just adding some symbols from another
4759 file, e.g. a shared library). */
4760
4761 void
4762 stabsread_new_init (void)
4763 {
4764 /* Empty the hash table of global syms looking for values. */
4765 memset (global_sym_chain, 0, sizeof (global_sym_chain));
4766 }
4767
4768 /* Initialize anything that needs initializing at the same time as
4769 start_symtab() is called. */
4770
4771 void
4772 start_stabs (void)
4773 {
4774 global_stabs = NULL; /* AIX COFF */
4775 /* Leave FILENUM of 0 free for builtin types and this file's types. */
4776 n_this_object_header_files = 1;
4777 type_vector_length = 0;
4778 type_vector = (struct type **) 0;
4779
4780 /* FIXME: If common_block_name is not already NULL, we should complain(). */
4781 common_block_name = NULL;
4782 }
4783
4784 /* Call after end_symtab(). */
4785
4786 void
4787 end_stabs (void)
4788 {
4789 if (type_vector)
4790 {
4791 xfree (type_vector);
4792 }
4793 type_vector = 0;
4794 type_vector_length = 0;
4795 previous_stab_code = 0;
4796 }
4797
4798 void
4799 finish_global_stabs (struct objfile *objfile)
4800 {
4801 if (global_stabs)
4802 {
4803 patch_block_stabs (global_symbols, global_stabs, objfile);
4804 xfree (global_stabs);
4805 global_stabs = NULL;
4806 }
4807 }
4808
4809 /* Find the end of the name, delimited by a ':', but don't match
4810 ObjC symbols which look like -[Foo bar::]:bla. */
4811 static char *
4812 find_name_end (char *name)
4813 {
4814 char *s = name;
4815
4816 if (s[0] == '-' || *s == '+')
4817 {
4818 /* Must be an ObjC method symbol. */
4819 if (s[1] != '[')
4820 {
4821 error (_("invalid symbol name \"%s\""), name);
4822 }
4823 s = strchr (s, ']');
4824 if (s == NULL)
4825 {
4826 error (_("invalid symbol name \"%s\""), name);
4827 }
4828 return strchr (s, ':');
4829 }
4830 else
4831 {
4832 return strchr (s, ':');
4833 }
4834 }
4835
4836 /* Initializer for this module. */
4837
4838 void
4839 _initialize_stabsread (void)
4840 {
4841 rs6000_builtin_type_data = register_objfile_data ();
4842
4843 undef_types_allocated = 20;
4844 undef_types_length = 0;
4845 undef_types = (struct type **)
4846 xmalloc (undef_types_allocated * sizeof (struct type *));
4847
4848 noname_undefs_allocated = 20;
4849 noname_undefs_length = 0;
4850 noname_undefs = (struct nat *)
4851 xmalloc (noname_undefs_allocated * sizeof (struct nat));
4852
4853 stab_register_index = register_symbol_register_impl (LOC_REGISTER,
4854 &stab_register_funcs);
4855 stab_regparm_index = register_symbol_register_impl (LOC_REGPARM_ADDR,
4856 &stab_register_funcs);
4857 }
This page took 0.125565 seconds and 5 git commands to generate.