Change section_offsets to a std::vector
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2020 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/tilde.h"
48 #include "block.h"
49 #include "observable.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59 #include "gdbsupport/byte-vector.h"
60 #include "gdbsupport/pathstuff.h"
61 #include "gdbsupport/selftest.h"
62 #include "cli/cli-style.h"
63 #include "gdbsupport/forward-scope-exit.h"
64
65 #include <sys/types.h>
66 #include <fcntl.h>
67 #include <sys/stat.h>
68 #include <ctype.h>
69 #include <chrono>
70 #include <algorithm>
71
72 #include "psymtab.h"
73
74 int (*deprecated_ui_load_progress_hook) (const char *section,
75 unsigned long num);
76 void (*deprecated_show_load_progress) (const char *section,
77 unsigned long section_sent,
78 unsigned long section_size,
79 unsigned long total_sent,
80 unsigned long total_size);
81 void (*deprecated_pre_add_symbol_hook) (const char *);
82 void (*deprecated_post_add_symbol_hook) (void);
83
84 using clear_symtab_users_cleanup
85 = FORWARD_SCOPE_EXIT (clear_symtab_users);
86
87 /* Global variables owned by this file. */
88 int readnow_symbol_files; /* Read full symbols immediately. */
89 int readnever_symbol_files; /* Never read full symbols. */
90
91 /* Functions this file defines. */
92
93 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
94 objfile_flags flags, CORE_ADDR reloff);
95
96 static const struct sym_fns *find_sym_fns (bfd *);
97
98 static void overlay_invalidate_all (void);
99
100 static void simple_free_overlay_table (void);
101
102 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
103 enum bfd_endian);
104
105 static int simple_read_overlay_table (void);
106
107 static int simple_overlay_update_1 (struct obj_section *);
108
109 static void symfile_find_segment_sections (struct objfile *objfile);
110
111 /* List of all available sym_fns. On gdb startup, each object file reader
112 calls add_symtab_fns() to register information on each format it is
113 prepared to read. */
114
115 struct registered_sym_fns
116 {
117 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
118 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
119 {}
120
121 /* BFD flavour that we handle. */
122 enum bfd_flavour sym_flavour;
123
124 /* The "vtable" of symbol functions. */
125 const struct sym_fns *sym_fns;
126 };
127
128 static std::vector<registered_sym_fns> symtab_fns;
129
130 /* Values for "set print symbol-loading". */
131
132 const char print_symbol_loading_off[] = "off";
133 const char print_symbol_loading_brief[] = "brief";
134 const char print_symbol_loading_full[] = "full";
135 static const char *print_symbol_loading_enums[] =
136 {
137 print_symbol_loading_off,
138 print_symbol_loading_brief,
139 print_symbol_loading_full,
140 NULL
141 };
142 static const char *print_symbol_loading = print_symbol_loading_full;
143
144 /* See symfile.h. */
145
146 bool auto_solib_add = true;
147 \f
148
149 /* Return non-zero if symbol-loading messages should be printed.
150 FROM_TTY is the standard from_tty argument to gdb commands.
151 If EXEC is non-zero the messages are for the executable.
152 Otherwise, messages are for shared libraries.
153 If FULL is non-zero then the caller is printing a detailed message.
154 E.g., the message includes the shared library name.
155 Otherwise, the caller is printing a brief "summary" message. */
156
157 int
158 print_symbol_loading_p (int from_tty, int exec, int full)
159 {
160 if (!from_tty && !info_verbose)
161 return 0;
162
163 if (exec)
164 {
165 /* We don't check FULL for executables, there are few such
166 messages, therefore brief == full. */
167 return print_symbol_loading != print_symbol_loading_off;
168 }
169 if (full)
170 return print_symbol_loading == print_symbol_loading_full;
171 return print_symbol_loading == print_symbol_loading_brief;
172 }
173
174 /* True if we are reading a symbol table. */
175
176 int currently_reading_symtab = 0;
177
178 /* Increment currently_reading_symtab and return a cleanup that can be
179 used to decrement it. */
180
181 scoped_restore_tmpl<int>
182 increment_reading_symtab (void)
183 {
184 gdb_assert (currently_reading_symtab >= 0);
185 return make_scoped_restore (&currently_reading_symtab,
186 currently_reading_symtab + 1);
187 }
188
189 /* Remember the lowest-addressed loadable section we've seen.
190 This function is called via bfd_map_over_sections.
191
192 In case of equal vmas, the section with the largest size becomes the
193 lowest-addressed loadable section.
194
195 If the vmas and sizes are equal, the last section is considered the
196 lowest-addressed loadable section. */
197
198 void
199 find_lowest_section (bfd *abfd, asection *sect, void *obj)
200 {
201 asection **lowest = (asection **) obj;
202
203 if (0 == (bfd_section_flags (sect) & (SEC_ALLOC | SEC_LOAD)))
204 return;
205 if (!*lowest)
206 *lowest = sect; /* First loadable section */
207 else if (bfd_section_vma (*lowest) > bfd_section_vma (sect))
208 *lowest = sect; /* A lower loadable section */
209 else if (bfd_section_vma (*lowest) == bfd_section_vma (sect)
210 && (bfd_section_size (*lowest) <= bfd_section_size (sect)))
211 *lowest = sect;
212 }
213
214 /* Build (allocate and populate) a section_addr_info struct from
215 an existing section table. */
216
217 section_addr_info
218 build_section_addr_info_from_section_table (const struct target_section *start,
219 const struct target_section *end)
220 {
221 const struct target_section *stp;
222
223 section_addr_info sap;
224
225 for (stp = start; stp != end; stp++)
226 {
227 struct bfd_section *asect = stp->the_bfd_section;
228 bfd *abfd = asect->owner;
229
230 if (bfd_section_flags (asect) & (SEC_ALLOC | SEC_LOAD)
231 && sap.size () < end - start)
232 sap.emplace_back (stp->addr,
233 bfd_section_name (asect),
234 gdb_bfd_section_index (abfd, asect));
235 }
236
237 return sap;
238 }
239
240 /* Create a section_addr_info from section offsets in ABFD. */
241
242 static section_addr_info
243 build_section_addr_info_from_bfd (bfd *abfd)
244 {
245 struct bfd_section *sec;
246
247 section_addr_info sap;
248 for (sec = abfd->sections; sec != NULL; sec = sec->next)
249 if (bfd_section_flags (sec) & (SEC_ALLOC | SEC_LOAD))
250 sap.emplace_back (bfd_section_vma (sec),
251 bfd_section_name (sec),
252 gdb_bfd_section_index (abfd, sec));
253
254 return sap;
255 }
256
257 /* Create a section_addr_info from section offsets in OBJFILE. */
258
259 section_addr_info
260 build_section_addr_info_from_objfile (const struct objfile *objfile)
261 {
262 int i;
263
264 /* Before reread_symbols gets rewritten it is not safe to call:
265 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
266 */
267 section_addr_info sap = build_section_addr_info_from_bfd (objfile->obfd);
268 for (i = 0; i < sap.size (); i++)
269 {
270 int sectindex = sap[i].sectindex;
271
272 sap[i].addr += objfile->section_offsets[sectindex];
273 }
274 return sap;
275 }
276
277 /* Initialize OBJFILE's sect_index_* members. */
278
279 static void
280 init_objfile_sect_indices (struct objfile *objfile)
281 {
282 asection *sect;
283 int i;
284
285 sect = bfd_get_section_by_name (objfile->obfd, ".text");
286 if (sect)
287 objfile->sect_index_text = sect->index;
288
289 sect = bfd_get_section_by_name (objfile->obfd, ".data");
290 if (sect)
291 objfile->sect_index_data = sect->index;
292
293 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
294 if (sect)
295 objfile->sect_index_bss = sect->index;
296
297 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
298 if (sect)
299 objfile->sect_index_rodata = sect->index;
300
301 /* This is where things get really weird... We MUST have valid
302 indices for the various sect_index_* members or gdb will abort.
303 So if for example, there is no ".text" section, we have to
304 accomodate that. First, check for a file with the standard
305 one or two segments. */
306
307 symfile_find_segment_sections (objfile);
308
309 /* Except when explicitly adding symbol files at some address,
310 section_offsets contains nothing but zeros, so it doesn't matter
311 which slot in section_offsets the individual sect_index_* members
312 index into. So if they are all zero, it is safe to just point
313 all the currently uninitialized indices to the first slot. But
314 beware: if this is the main executable, it may be relocated
315 later, e.g. by the remote qOffsets packet, and then this will
316 be wrong! That's why we try segments first. */
317
318 for (i = 0; i < objfile->section_offsets.size (); i++)
319 {
320 if (objfile->section_offsets[i] != 0)
321 {
322 break;
323 }
324 }
325 if (i == objfile->section_offsets.size ())
326 {
327 if (objfile->sect_index_text == -1)
328 objfile->sect_index_text = 0;
329 if (objfile->sect_index_data == -1)
330 objfile->sect_index_data = 0;
331 if (objfile->sect_index_bss == -1)
332 objfile->sect_index_bss = 0;
333 if (objfile->sect_index_rodata == -1)
334 objfile->sect_index_rodata = 0;
335 }
336 }
337
338 /* The arguments to place_section. */
339
340 struct place_section_arg
341 {
342 section_offsets *offsets;
343 CORE_ADDR lowest;
344 };
345
346 /* Find a unique offset to use for loadable section SECT if
347 the user did not provide an offset. */
348
349 static void
350 place_section (bfd *abfd, asection *sect, void *obj)
351 {
352 struct place_section_arg *arg = (struct place_section_arg *) obj;
353 section_offsets &offsets = *arg->offsets;
354 CORE_ADDR start_addr;
355 int done;
356 ULONGEST align = ((ULONGEST) 1) << bfd_section_alignment (sect);
357
358 /* We are only interested in allocated sections. */
359 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
360 return;
361
362 /* If the user specified an offset, honor it. */
363 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
364 return;
365
366 /* Otherwise, let's try to find a place for the section. */
367 start_addr = (arg->lowest + align - 1) & -align;
368
369 do {
370 asection *cur_sec;
371
372 done = 1;
373
374 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
375 {
376 int indx = cur_sec->index;
377
378 /* We don't need to compare against ourself. */
379 if (cur_sec == sect)
380 continue;
381
382 /* We can only conflict with allocated sections. */
383 if ((bfd_section_flags (cur_sec) & SEC_ALLOC) == 0)
384 continue;
385
386 /* If the section offset is 0, either the section has not been placed
387 yet, or it was the lowest section placed (in which case LOWEST
388 will be past its end). */
389 if (offsets[indx] == 0)
390 continue;
391
392 /* If this section would overlap us, then we must move up. */
393 if (start_addr + bfd_section_size (sect) > offsets[indx]
394 && start_addr < offsets[indx] + bfd_section_size (cur_sec))
395 {
396 start_addr = offsets[indx] + bfd_section_size (cur_sec);
397 start_addr = (start_addr + align - 1) & -align;
398 done = 0;
399 break;
400 }
401
402 /* Otherwise, we appear to be OK. So far. */
403 }
404 }
405 while (!done);
406
407 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
408 arg->lowest = start_addr + bfd_section_size (sect);
409 }
410
411 /* Store section_addr_info as prepared (made relative and with SECTINDEX
412 filled-in) by addr_info_make_relative into SECTION_OFFSETS. */
413
414 void
415 relative_addr_info_to_section_offsets (section_offsets &section_offsets,
416 const section_addr_info &addrs)
417 {
418 int i;
419
420 section_offsets.assign (section_offsets.size (), 0);
421
422 /* Now calculate offsets for section that were specified by the caller. */
423 for (i = 0; i < addrs.size (); i++)
424 {
425 const struct other_sections *osp;
426
427 osp = &addrs[i];
428 if (osp->sectindex == -1)
429 continue;
430
431 /* Record all sections in offsets. */
432 /* The section_offsets in the objfile are here filled in using
433 the BFD index. */
434 section_offsets[osp->sectindex] = osp->addr;
435 }
436 }
437
438 /* Transform section name S for a name comparison. prelink can split section
439 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
440 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
441 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
442 (`.sbss') section has invalid (increased) virtual address. */
443
444 static const char *
445 addr_section_name (const char *s)
446 {
447 if (strcmp (s, ".dynbss") == 0)
448 return ".bss";
449 if (strcmp (s, ".sdynbss") == 0)
450 return ".sbss";
451
452 return s;
453 }
454
455 /* std::sort comparator for addrs_section_sort. Sort entries in
456 ascending order by their (name, sectindex) pair. sectindex makes
457 the sort by name stable. */
458
459 static bool
460 addrs_section_compar (const struct other_sections *a,
461 const struct other_sections *b)
462 {
463 int retval;
464
465 retval = strcmp (addr_section_name (a->name.c_str ()),
466 addr_section_name (b->name.c_str ()));
467 if (retval != 0)
468 return retval < 0;
469
470 return a->sectindex < b->sectindex;
471 }
472
473 /* Provide sorted array of pointers to sections of ADDRS. */
474
475 static std::vector<const struct other_sections *>
476 addrs_section_sort (const section_addr_info &addrs)
477 {
478 int i;
479
480 std::vector<const struct other_sections *> array (addrs.size ());
481 for (i = 0; i < addrs.size (); i++)
482 array[i] = &addrs[i];
483
484 std::sort (array.begin (), array.end (), addrs_section_compar);
485
486 return array;
487 }
488
489 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
490 also SECTINDEXes specific to ABFD there. This function can be used to
491 rebase ADDRS to start referencing different BFD than before. */
492
493 void
494 addr_info_make_relative (section_addr_info *addrs, bfd *abfd)
495 {
496 asection *lower_sect;
497 CORE_ADDR lower_offset;
498 int i;
499
500 /* Find lowest loadable section to be used as starting point for
501 contiguous sections. */
502 lower_sect = NULL;
503 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
504 if (lower_sect == NULL)
505 {
506 warning (_("no loadable sections found in added symbol-file %s"),
507 bfd_get_filename (abfd));
508 lower_offset = 0;
509 }
510 else
511 lower_offset = bfd_section_vma (lower_sect);
512
513 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
514 in ABFD. Section names are not unique - there can be multiple sections of
515 the same name. Also the sections of the same name do not have to be
516 adjacent to each other. Some sections may be present only in one of the
517 files. Even sections present in both files do not have to be in the same
518 order.
519
520 Use stable sort by name for the sections in both files. Then linearly
521 scan both lists matching as most of the entries as possible. */
522
523 std::vector<const struct other_sections *> addrs_sorted
524 = addrs_section_sort (*addrs);
525
526 section_addr_info abfd_addrs = build_section_addr_info_from_bfd (abfd);
527 std::vector<const struct other_sections *> abfd_addrs_sorted
528 = addrs_section_sort (abfd_addrs);
529
530 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
531 ABFD_ADDRS_SORTED. */
532
533 std::vector<const struct other_sections *>
534 addrs_to_abfd_addrs (addrs->size (), nullptr);
535
536 std::vector<const struct other_sections *>::iterator abfd_sorted_iter
537 = abfd_addrs_sorted.begin ();
538 for (const other_sections *sect : addrs_sorted)
539 {
540 const char *sect_name = addr_section_name (sect->name.c_str ());
541
542 while (abfd_sorted_iter != abfd_addrs_sorted.end ()
543 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
544 sect_name) < 0)
545 abfd_sorted_iter++;
546
547 if (abfd_sorted_iter != abfd_addrs_sorted.end ()
548 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
549 sect_name) == 0)
550 {
551 int index_in_addrs;
552
553 /* Make the found item directly addressable from ADDRS. */
554 index_in_addrs = sect - addrs->data ();
555 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
556 addrs_to_abfd_addrs[index_in_addrs] = *abfd_sorted_iter;
557
558 /* Never use the same ABFD entry twice. */
559 abfd_sorted_iter++;
560 }
561 }
562
563 /* Calculate offsets for the loadable sections.
564 FIXME! Sections must be in order of increasing loadable section
565 so that contiguous sections can use the lower-offset!!!
566
567 Adjust offsets if the segments are not contiguous.
568 If the section is contiguous, its offset should be set to
569 the offset of the highest loadable section lower than it
570 (the loadable section directly below it in memory).
571 this_offset = lower_offset = lower_addr - lower_orig_addr */
572
573 for (i = 0; i < addrs->size (); i++)
574 {
575 const struct other_sections *sect = addrs_to_abfd_addrs[i];
576
577 if (sect)
578 {
579 /* This is the index used by BFD. */
580 (*addrs)[i].sectindex = sect->sectindex;
581
582 if ((*addrs)[i].addr != 0)
583 {
584 (*addrs)[i].addr -= sect->addr;
585 lower_offset = (*addrs)[i].addr;
586 }
587 else
588 (*addrs)[i].addr = lower_offset;
589 }
590 else
591 {
592 /* addr_section_name transformation is not used for SECT_NAME. */
593 const std::string &sect_name = (*addrs)[i].name;
594
595 /* This section does not exist in ABFD, which is normally
596 unexpected and we want to issue a warning.
597
598 However, the ELF prelinker does create a few sections which are
599 marked in the main executable as loadable (they are loaded in
600 memory from the DYNAMIC segment) and yet are not present in
601 separate debug info files. This is fine, and should not cause
602 a warning. Shared libraries contain just the section
603 ".gnu.liblist" but it is not marked as loadable there. There is
604 no other way to identify them than by their name as the sections
605 created by prelink have no special flags.
606
607 For the sections `.bss' and `.sbss' see addr_section_name. */
608
609 if (!(sect_name == ".gnu.liblist"
610 || sect_name == ".gnu.conflict"
611 || (sect_name == ".bss"
612 && i > 0
613 && (*addrs)[i - 1].name == ".dynbss"
614 && addrs_to_abfd_addrs[i - 1] != NULL)
615 || (sect_name == ".sbss"
616 && i > 0
617 && (*addrs)[i - 1].name == ".sdynbss"
618 && addrs_to_abfd_addrs[i - 1] != NULL)))
619 warning (_("section %s not found in %s"), sect_name.c_str (),
620 bfd_get_filename (abfd));
621
622 (*addrs)[i].addr = 0;
623 (*addrs)[i].sectindex = -1;
624 }
625 }
626 }
627
628 /* Parse the user's idea of an offset for dynamic linking, into our idea
629 of how to represent it for fast symbol reading. This is the default
630 version of the sym_fns.sym_offsets function for symbol readers that
631 don't need to do anything special. It allocates a section_offsets table
632 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
633
634 void
635 default_symfile_offsets (struct objfile *objfile,
636 const section_addr_info &addrs)
637 {
638 objfile->section_offsets.resize (gdb_bfd_count_sections (objfile->obfd));
639 relative_addr_info_to_section_offsets (objfile->section_offsets, addrs);
640
641 /* For relocatable files, all loadable sections will start at zero.
642 The zero is meaningless, so try to pick arbitrary addresses such
643 that no loadable sections overlap. This algorithm is quadratic,
644 but the number of sections in a single object file is generally
645 small. */
646 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
647 {
648 struct place_section_arg arg;
649 bfd *abfd = objfile->obfd;
650 asection *cur_sec;
651
652 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
653 /* We do not expect this to happen; just skip this step if the
654 relocatable file has a section with an assigned VMA. */
655 if (bfd_section_vma (cur_sec) != 0)
656 break;
657
658 if (cur_sec == NULL)
659 {
660 section_offsets &offsets = objfile->section_offsets;
661
662 /* Pick non-overlapping offsets for sections the user did not
663 place explicitly. */
664 arg.offsets = &objfile->section_offsets;
665 arg.lowest = 0;
666 bfd_map_over_sections (objfile->obfd, place_section, &arg);
667
668 /* Correctly filling in the section offsets is not quite
669 enough. Relocatable files have two properties that
670 (most) shared objects do not:
671
672 - Their debug information will contain relocations. Some
673 shared libraries do also, but many do not, so this can not
674 be assumed.
675
676 - If there are multiple code sections they will be loaded
677 at different relative addresses in memory than they are
678 in the objfile, since all sections in the file will start
679 at address zero.
680
681 Because GDB has very limited ability to map from an
682 address in debug info to the correct code section,
683 it relies on adding SECT_OFF_TEXT to things which might be
684 code. If we clear all the section offsets, and set the
685 section VMAs instead, then symfile_relocate_debug_section
686 will return meaningful debug information pointing at the
687 correct sections.
688
689 GDB has too many different data structures for section
690 addresses - a bfd, objfile, and so_list all have section
691 tables, as does exec_ops. Some of these could probably
692 be eliminated. */
693
694 for (cur_sec = abfd->sections; cur_sec != NULL;
695 cur_sec = cur_sec->next)
696 {
697 if ((bfd_section_flags (cur_sec) & SEC_ALLOC) == 0)
698 continue;
699
700 bfd_set_section_vma (cur_sec, offsets[cur_sec->index]);
701 exec_set_section_address (bfd_get_filename (abfd),
702 cur_sec->index,
703 offsets[cur_sec->index]);
704 offsets[cur_sec->index] = 0;
705 }
706 }
707 }
708
709 /* Remember the bfd indexes for the .text, .data, .bss and
710 .rodata sections. */
711 init_objfile_sect_indices (objfile);
712 }
713
714 /* Divide the file into segments, which are individual relocatable units.
715 This is the default version of the sym_fns.sym_segments function for
716 symbol readers that do not have an explicit representation of segments.
717 It assumes that object files do not have segments, and fully linked
718 files have a single segment. */
719
720 struct symfile_segment_data *
721 default_symfile_segments (bfd *abfd)
722 {
723 int num_sections, i;
724 asection *sect;
725 struct symfile_segment_data *data;
726 CORE_ADDR low, high;
727
728 /* Relocatable files contain enough information to position each
729 loadable section independently; they should not be relocated
730 in segments. */
731 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
732 return NULL;
733
734 /* Make sure there is at least one loadable section in the file. */
735 for (sect = abfd->sections; sect != NULL; sect = sect->next)
736 {
737 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
738 continue;
739
740 break;
741 }
742 if (sect == NULL)
743 return NULL;
744
745 low = bfd_section_vma (sect);
746 high = low + bfd_section_size (sect);
747
748 data = XCNEW (struct symfile_segment_data);
749 data->num_segments = 1;
750 data->segment_bases = XCNEW (CORE_ADDR);
751 data->segment_sizes = XCNEW (CORE_ADDR);
752
753 num_sections = bfd_count_sections (abfd);
754 data->segment_info = XCNEWVEC (int, num_sections);
755
756 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
757 {
758 CORE_ADDR vma;
759
760 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
761 continue;
762
763 vma = bfd_section_vma (sect);
764 if (vma < low)
765 low = vma;
766 if (vma + bfd_section_size (sect) > high)
767 high = vma + bfd_section_size (sect);
768
769 data->segment_info[i] = 1;
770 }
771
772 data->segment_bases[0] = low;
773 data->segment_sizes[0] = high - low;
774
775 return data;
776 }
777
778 /* This is a convenience function to call sym_read for OBJFILE and
779 possibly force the partial symbols to be read. */
780
781 static void
782 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
783 {
784 (*objfile->sf->sym_read) (objfile, add_flags);
785 objfile->per_bfd->minsyms_read = true;
786
787 /* find_separate_debug_file_in_section should be called only if there is
788 single binary with no existing separate debug info file. */
789 if (!objfile_has_partial_symbols (objfile)
790 && objfile->separate_debug_objfile == NULL
791 && objfile->separate_debug_objfile_backlink == NULL)
792 {
793 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
794
795 if (abfd != NULL)
796 {
797 /* find_separate_debug_file_in_section uses the same filename for the
798 virtual section-as-bfd like the bfd filename containing the
799 section. Therefore use also non-canonical name form for the same
800 file containing the section. */
801 symbol_file_add_separate (abfd.get (),
802 bfd_get_filename (abfd.get ()),
803 add_flags | SYMFILE_NOT_FILENAME, objfile);
804 }
805 }
806 if ((add_flags & SYMFILE_NO_READ) == 0)
807 require_partial_symbols (objfile, false);
808 }
809
810 /* Initialize entry point information for this objfile. */
811
812 static void
813 init_entry_point_info (struct objfile *objfile)
814 {
815 struct entry_info *ei = &objfile->per_bfd->ei;
816
817 if (ei->initialized)
818 return;
819 ei->initialized = 1;
820
821 /* Save startup file's range of PC addresses to help blockframe.c
822 decide where the bottom of the stack is. */
823
824 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
825 {
826 /* Executable file -- record its entry point so we'll recognize
827 the startup file because it contains the entry point. */
828 ei->entry_point = bfd_get_start_address (objfile->obfd);
829 ei->entry_point_p = 1;
830 }
831 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
832 && bfd_get_start_address (objfile->obfd) != 0)
833 {
834 /* Some shared libraries may have entry points set and be
835 runnable. There's no clear way to indicate this, so just check
836 for values other than zero. */
837 ei->entry_point = bfd_get_start_address (objfile->obfd);
838 ei->entry_point_p = 1;
839 }
840 else
841 {
842 /* Examination of non-executable.o files. Short-circuit this stuff. */
843 ei->entry_point_p = 0;
844 }
845
846 if (ei->entry_point_p)
847 {
848 struct obj_section *osect;
849 CORE_ADDR entry_point = ei->entry_point;
850 int found;
851
852 /* Make certain that the address points at real code, and not a
853 function descriptor. */
854 entry_point
855 = gdbarch_convert_from_func_ptr_addr (get_objfile_arch (objfile),
856 entry_point,
857 current_top_target ());
858
859 /* Remove any ISA markers, so that this matches entries in the
860 symbol table. */
861 ei->entry_point
862 = gdbarch_addr_bits_remove (get_objfile_arch (objfile), entry_point);
863
864 found = 0;
865 ALL_OBJFILE_OSECTIONS (objfile, osect)
866 {
867 struct bfd_section *sect = osect->the_bfd_section;
868
869 if (entry_point >= bfd_section_vma (sect)
870 && entry_point < (bfd_section_vma (sect)
871 + bfd_section_size (sect)))
872 {
873 ei->the_bfd_section_index
874 = gdb_bfd_section_index (objfile->obfd, sect);
875 found = 1;
876 break;
877 }
878 }
879
880 if (!found)
881 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
882 }
883 }
884
885 /* Process a symbol file, as either the main file or as a dynamically
886 loaded file.
887
888 This function does not set the OBJFILE's entry-point info.
889
890 OBJFILE is where the symbols are to be read from.
891
892 ADDRS is the list of section load addresses. If the user has given
893 an 'add-symbol-file' command, then this is the list of offsets and
894 addresses he or she provided as arguments to the command; or, if
895 we're handling a shared library, these are the actual addresses the
896 sections are loaded at, according to the inferior's dynamic linker
897 (as gleaned by GDB's shared library code). We convert each address
898 into an offset from the section VMA's as it appears in the object
899 file, and then call the file's sym_offsets function to convert this
900 into a format-specific offset table --- a `section_offsets'.
901 The sectindex field is used to control the ordering of sections
902 with the same name. Upon return, it is updated to contain the
903 corresponding BFD section index, or -1 if the section was not found.
904
905 ADD_FLAGS encodes verbosity level, whether this is main symbol or
906 an extra symbol file such as dynamically loaded code, and whether
907 breakpoint reset should be deferred. */
908
909 static void
910 syms_from_objfile_1 (struct objfile *objfile,
911 section_addr_info *addrs,
912 symfile_add_flags add_flags)
913 {
914 section_addr_info local_addr;
915 const int mainline = add_flags & SYMFILE_MAINLINE;
916
917 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
918
919 if (objfile->sf == NULL)
920 {
921 /* No symbols to load, but we still need to make sure
922 that the section_offsets table is allocated. */
923 int num_sections = gdb_bfd_count_sections (objfile->obfd);
924
925 objfile->section_offsets.assign (num_sections, 0);
926 return;
927 }
928
929 /* Make sure that partially constructed symbol tables will be cleaned up
930 if an error occurs during symbol reading. */
931 gdb::optional<clear_symtab_users_cleanup> defer_clear_users;
932
933 objfile_up objfile_holder (objfile);
934
935 /* If ADDRS is NULL, put together a dummy address list.
936 We now establish the convention that an addr of zero means
937 no load address was specified. */
938 if (! addrs)
939 addrs = &local_addr;
940
941 if (mainline)
942 {
943 /* We will modify the main symbol table, make sure that all its users
944 will be cleaned up if an error occurs during symbol reading. */
945 defer_clear_users.emplace ((symfile_add_flag) 0);
946
947 /* Since no error yet, throw away the old symbol table. */
948
949 if (symfile_objfile != NULL)
950 {
951 symfile_objfile->unlink ();
952 gdb_assert (symfile_objfile == NULL);
953 }
954
955 /* Currently we keep symbols from the add-symbol-file command.
956 If the user wants to get rid of them, they should do "symbol-file"
957 without arguments first. Not sure this is the best behavior
958 (PR 2207). */
959
960 (*objfile->sf->sym_new_init) (objfile);
961 }
962
963 /* Convert addr into an offset rather than an absolute address.
964 We find the lowest address of a loaded segment in the objfile,
965 and assume that <addr> is where that got loaded.
966
967 We no longer warn if the lowest section is not a text segment (as
968 happens for the PA64 port. */
969 if (addrs->size () > 0)
970 addr_info_make_relative (addrs, objfile->obfd);
971
972 /* Initialize symbol reading routines for this objfile, allow complaints to
973 appear for this new file, and record how verbose to be, then do the
974 initial symbol reading for this file. */
975
976 (*objfile->sf->sym_init) (objfile);
977 clear_complaints ();
978
979 (*objfile->sf->sym_offsets) (objfile, *addrs);
980
981 read_symbols (objfile, add_flags);
982
983 /* Discard cleanups as symbol reading was successful. */
984
985 objfile_holder.release ();
986 if (defer_clear_users)
987 defer_clear_users->release ();
988 }
989
990 /* Same as syms_from_objfile_1, but also initializes the objfile
991 entry-point info. */
992
993 static void
994 syms_from_objfile (struct objfile *objfile,
995 section_addr_info *addrs,
996 symfile_add_flags add_flags)
997 {
998 syms_from_objfile_1 (objfile, addrs, add_flags);
999 init_entry_point_info (objfile);
1000 }
1001
1002 /* Perform required actions after either reading in the initial
1003 symbols for a new objfile, or mapping in the symbols from a reusable
1004 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1005
1006 static void
1007 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
1008 {
1009 /* If this is the main symbol file we have to clean up all users of the
1010 old main symbol file. Otherwise it is sufficient to fixup all the
1011 breakpoints that may have been redefined by this symbol file. */
1012 if (add_flags & SYMFILE_MAINLINE)
1013 {
1014 /* OK, make it the "real" symbol file. */
1015 symfile_objfile = objfile;
1016
1017 clear_symtab_users (add_flags);
1018 }
1019 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1020 {
1021 breakpoint_re_set ();
1022 }
1023
1024 /* We're done reading the symbol file; finish off complaints. */
1025 clear_complaints ();
1026 }
1027
1028 /* Process a symbol file, as either the main file or as a dynamically
1029 loaded file.
1030
1031 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1032 A new reference is acquired by this function.
1033
1034 For NAME description see the objfile constructor.
1035
1036 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1037 extra, such as dynamically loaded code, and what to do with breakpoints.
1038
1039 ADDRS is as described for syms_from_objfile_1, above.
1040 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1041
1042 PARENT is the original objfile if ABFD is a separate debug info file.
1043 Otherwise PARENT is NULL.
1044
1045 Upon success, returns a pointer to the objfile that was added.
1046 Upon failure, jumps back to command level (never returns). */
1047
1048 static struct objfile *
1049 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1050 symfile_add_flags add_flags,
1051 section_addr_info *addrs,
1052 objfile_flags flags, struct objfile *parent)
1053 {
1054 struct objfile *objfile;
1055 const int from_tty = add_flags & SYMFILE_VERBOSE;
1056 const int mainline = add_flags & SYMFILE_MAINLINE;
1057 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1058 && (readnow_symbol_files
1059 || (add_flags & SYMFILE_NO_READ) == 0));
1060
1061 if (readnow_symbol_files)
1062 {
1063 flags |= OBJF_READNOW;
1064 add_flags &= ~SYMFILE_NO_READ;
1065 }
1066 else if (readnever_symbol_files
1067 || (parent != NULL && (parent->flags & OBJF_READNEVER)))
1068 {
1069 flags |= OBJF_READNEVER;
1070 add_flags |= SYMFILE_NO_READ;
1071 }
1072 if ((add_flags & SYMFILE_NOT_FILENAME) != 0)
1073 flags |= OBJF_NOT_FILENAME;
1074
1075 /* Give user a chance to burp if we'd be
1076 interactively wiping out any existing symbols. */
1077
1078 if ((have_full_symbols () || have_partial_symbols ())
1079 && mainline
1080 && from_tty
1081 && !query (_("Load new symbol table from \"%s\"? "), name))
1082 error (_("Not confirmed."));
1083
1084 if (mainline)
1085 flags |= OBJF_MAINLINE;
1086 objfile = objfile::make (abfd, name, flags, parent);
1087
1088 /* We either created a new mapped symbol table, mapped an existing
1089 symbol table file which has not had initial symbol reading
1090 performed, or need to read an unmapped symbol table. */
1091 if (should_print)
1092 {
1093 if (deprecated_pre_add_symbol_hook)
1094 deprecated_pre_add_symbol_hook (name);
1095 else
1096 printf_filtered (_("Reading symbols from %ps...\n"),
1097 styled_string (file_name_style.style (), name));
1098 }
1099 syms_from_objfile (objfile, addrs, add_flags);
1100
1101 /* We now have at least a partial symbol table. Check to see if the
1102 user requested that all symbols be read on initial access via either
1103 the gdb startup command line or on a per symbol file basis. Expand
1104 all partial symbol tables for this objfile if so. */
1105
1106 if ((flags & OBJF_READNOW))
1107 {
1108 if (should_print)
1109 printf_filtered (_("Expanding full symbols from %ps...\n"),
1110 styled_string (file_name_style.style (), name));
1111
1112 if (objfile->sf)
1113 objfile->sf->qf->expand_all_symtabs (objfile);
1114 }
1115
1116 /* Note that we only print a message if we have no symbols and have
1117 no separate debug file. If there is a separate debug file which
1118 does not have symbols, we'll have emitted this message for that
1119 file, and so printing it twice is just redundant. */
1120 if (should_print && !objfile_has_symbols (objfile)
1121 && objfile->separate_debug_objfile == nullptr)
1122 printf_filtered (_("(No debugging symbols found in %ps)\n"),
1123 styled_string (file_name_style.style (), name));
1124
1125 if (should_print)
1126 {
1127 if (deprecated_post_add_symbol_hook)
1128 deprecated_post_add_symbol_hook ();
1129 }
1130
1131 /* We print some messages regardless of whether 'from_tty ||
1132 info_verbose' is true, so make sure they go out at the right
1133 time. */
1134 gdb_flush (gdb_stdout);
1135
1136 if (objfile->sf == NULL)
1137 {
1138 gdb::observers::new_objfile.notify (objfile);
1139 return objfile; /* No symbols. */
1140 }
1141
1142 finish_new_objfile (objfile, add_flags);
1143
1144 gdb::observers::new_objfile.notify (objfile);
1145
1146 bfd_cache_close_all ();
1147 return (objfile);
1148 }
1149
1150 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1151 see the objfile constructor. */
1152
1153 void
1154 symbol_file_add_separate (bfd *bfd, const char *name,
1155 symfile_add_flags symfile_flags,
1156 struct objfile *objfile)
1157 {
1158 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1159 because sections of BFD may not match sections of OBJFILE and because
1160 vma may have been modified by tools such as prelink. */
1161 section_addr_info sap = build_section_addr_info_from_objfile (objfile);
1162
1163 symbol_file_add_with_addrs
1164 (bfd, name, symfile_flags, &sap,
1165 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1166 | OBJF_USERLOADED),
1167 objfile);
1168 }
1169
1170 /* Process the symbol file ABFD, as either the main file or as a
1171 dynamically loaded file.
1172 See symbol_file_add_with_addrs's comments for details. */
1173
1174 struct objfile *
1175 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1176 symfile_add_flags add_flags,
1177 section_addr_info *addrs,
1178 objfile_flags flags, struct objfile *parent)
1179 {
1180 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1181 parent);
1182 }
1183
1184 /* Process a symbol file, as either the main file or as a dynamically
1185 loaded file. See symbol_file_add_with_addrs's comments for details. */
1186
1187 struct objfile *
1188 symbol_file_add (const char *name, symfile_add_flags add_flags,
1189 section_addr_info *addrs, objfile_flags flags)
1190 {
1191 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1192
1193 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1194 flags, NULL);
1195 }
1196
1197 /* Call symbol_file_add() with default values and update whatever is
1198 affected by the loading of a new main().
1199 Used when the file is supplied in the gdb command line
1200 and by some targets with special loading requirements.
1201 The auxiliary function, symbol_file_add_main_1(), has the flags
1202 argument for the switches that can only be specified in the symbol_file
1203 command itself. */
1204
1205 void
1206 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1207 {
1208 symbol_file_add_main_1 (args, add_flags, 0, 0);
1209 }
1210
1211 static void
1212 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1213 objfile_flags flags, CORE_ADDR reloff)
1214 {
1215 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1216
1217 struct objfile *objfile = symbol_file_add (args, add_flags, NULL, flags);
1218 if (reloff != 0)
1219 objfile_rebase (objfile, reloff);
1220
1221 /* Getting new symbols may change our opinion about
1222 what is frameless. */
1223 reinit_frame_cache ();
1224
1225 if ((add_flags & SYMFILE_NO_READ) == 0)
1226 set_initial_language ();
1227 }
1228
1229 void
1230 symbol_file_clear (int from_tty)
1231 {
1232 if ((have_full_symbols () || have_partial_symbols ())
1233 && from_tty
1234 && (symfile_objfile
1235 ? !query (_("Discard symbol table from `%s'? "),
1236 objfile_name (symfile_objfile))
1237 : !query (_("Discard symbol table? "))))
1238 error (_("Not confirmed."));
1239
1240 /* solib descriptors may have handles to objfiles. Wipe them before their
1241 objfiles get stale by free_all_objfiles. */
1242 no_shared_libraries (NULL, from_tty);
1243
1244 current_program_space->free_all_objfiles ();
1245
1246 gdb_assert (symfile_objfile == NULL);
1247 if (from_tty)
1248 printf_filtered (_("No symbol file now.\n"));
1249 }
1250
1251 /* See symfile.h. */
1252
1253 bool separate_debug_file_debug = false;
1254
1255 static int
1256 separate_debug_file_exists (const std::string &name, unsigned long crc,
1257 struct objfile *parent_objfile)
1258 {
1259 unsigned long file_crc;
1260 int file_crc_p;
1261 struct stat parent_stat, abfd_stat;
1262 int verified_as_different;
1263
1264 /* Find a separate debug info file as if symbols would be present in
1265 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1266 section can contain just the basename of PARENT_OBJFILE without any
1267 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1268 the separate debug infos with the same basename can exist. */
1269
1270 if (filename_cmp (name.c_str (), objfile_name (parent_objfile)) == 0)
1271 return 0;
1272
1273 if (separate_debug_file_debug)
1274 {
1275 printf_filtered (_(" Trying %s..."), name.c_str ());
1276 gdb_flush (gdb_stdout);
1277 }
1278
1279 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name.c_str (), gnutarget, -1));
1280
1281 if (abfd == NULL)
1282 {
1283 if (separate_debug_file_debug)
1284 printf_filtered (_(" no, unable to open.\n"));
1285
1286 return 0;
1287 }
1288
1289 /* Verify symlinks were not the cause of filename_cmp name difference above.
1290
1291 Some operating systems, e.g. Windows, do not provide a meaningful
1292 st_ino; they always set it to zero. (Windows does provide a
1293 meaningful st_dev.) Files accessed from gdbservers that do not
1294 support the vFile:fstat packet will also have st_ino set to zero.
1295 Do not indicate a duplicate library in either case. While there
1296 is no guarantee that a system that provides meaningful inode
1297 numbers will never set st_ino to zero, this is merely an
1298 optimization, so we do not need to worry about false negatives. */
1299
1300 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1301 && abfd_stat.st_ino != 0
1302 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1303 {
1304 if (abfd_stat.st_dev == parent_stat.st_dev
1305 && abfd_stat.st_ino == parent_stat.st_ino)
1306 {
1307 if (separate_debug_file_debug)
1308 printf_filtered (_(" no, same file as the objfile.\n"));
1309
1310 return 0;
1311 }
1312 verified_as_different = 1;
1313 }
1314 else
1315 verified_as_different = 0;
1316
1317 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1318
1319 if (!file_crc_p)
1320 {
1321 if (separate_debug_file_debug)
1322 printf_filtered (_(" no, error computing CRC.\n"));
1323
1324 return 0;
1325 }
1326
1327 if (crc != file_crc)
1328 {
1329 unsigned long parent_crc;
1330
1331 /* If the files could not be verified as different with
1332 bfd_stat then we need to calculate the parent's CRC
1333 to verify whether the files are different or not. */
1334
1335 if (!verified_as_different)
1336 {
1337 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1338 {
1339 if (separate_debug_file_debug)
1340 printf_filtered (_(" no, error computing CRC.\n"));
1341
1342 return 0;
1343 }
1344 }
1345
1346 if (verified_as_different || parent_crc != file_crc)
1347 warning (_("the debug information found in \"%s\""
1348 " does not match \"%s\" (CRC mismatch).\n"),
1349 name.c_str (), objfile_name (parent_objfile));
1350
1351 if (separate_debug_file_debug)
1352 printf_filtered (_(" no, CRC doesn't match.\n"));
1353
1354 return 0;
1355 }
1356
1357 if (separate_debug_file_debug)
1358 printf_filtered (_(" yes!\n"));
1359
1360 return 1;
1361 }
1362
1363 char *debug_file_directory = NULL;
1364 static void
1365 show_debug_file_directory (struct ui_file *file, int from_tty,
1366 struct cmd_list_element *c, const char *value)
1367 {
1368 fprintf_filtered (file,
1369 _("The directory where separate debug "
1370 "symbols are searched for is \"%s\".\n"),
1371 value);
1372 }
1373
1374 #if ! defined (DEBUG_SUBDIRECTORY)
1375 #define DEBUG_SUBDIRECTORY ".debug"
1376 #endif
1377
1378 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1379 where the original file resides (may not be the same as
1380 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1381 looking for. CANON_DIR is the "realpath" form of DIR.
1382 DIR must contain a trailing '/'.
1383 Returns the path of the file with separate debug info, or an empty
1384 string. */
1385
1386 static std::string
1387 find_separate_debug_file (const char *dir,
1388 const char *canon_dir,
1389 const char *debuglink,
1390 unsigned long crc32, struct objfile *objfile)
1391 {
1392 if (separate_debug_file_debug)
1393 printf_filtered (_("\nLooking for separate debug info (debug link) for "
1394 "%s\n"), objfile_name (objfile));
1395
1396 /* First try in the same directory as the original file. */
1397 std::string debugfile = dir;
1398 debugfile += debuglink;
1399
1400 if (separate_debug_file_exists (debugfile, crc32, objfile))
1401 return debugfile;
1402
1403 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1404 debugfile = dir;
1405 debugfile += DEBUG_SUBDIRECTORY;
1406 debugfile += "/";
1407 debugfile += debuglink;
1408
1409 if (separate_debug_file_exists (debugfile, crc32, objfile))
1410 return debugfile;
1411
1412 /* Then try in the global debugfile directories.
1413
1414 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1415 cause "/..." lookups. */
1416
1417 bool target_prefix = startswith (dir, "target:");
1418 const char *dir_notarget = target_prefix ? dir + strlen ("target:") : dir;
1419 std::vector<gdb::unique_xmalloc_ptr<char>> debugdir_vec
1420 = dirnames_to_char_ptr_vec (debug_file_directory);
1421 gdb::unique_xmalloc_ptr<char> canon_sysroot = gdb_realpath (gdb_sysroot);
1422
1423 /* MS-Windows/MS-DOS don't allow colons in file names; we must
1424 convert the drive letter into a one-letter directory, so that the
1425 file name resulting from splicing below will be valid.
1426
1427 FIXME: The below only works when GDB runs on MS-Windows/MS-DOS.
1428 There are various remote-debugging scenarios where such a
1429 transformation of the drive letter might be required when GDB runs
1430 on a Posix host, see
1431
1432 https://sourceware.org/ml/gdb-patches/2019-04/msg00605.html
1433
1434 If some of those scenarios need to be supported, we will need to
1435 use a different condition for HAS_DRIVE_SPEC and a different macro
1436 instead of STRIP_DRIVE_SPEC, which work on Posix systems as well. */
1437 std::string drive;
1438 if (HAS_DRIVE_SPEC (dir_notarget))
1439 {
1440 drive = dir_notarget[0];
1441 dir_notarget = STRIP_DRIVE_SPEC (dir_notarget);
1442 }
1443
1444 for (const gdb::unique_xmalloc_ptr<char> &debugdir : debugdir_vec)
1445 {
1446 debugfile = target_prefix ? "target:" : "";
1447 debugfile += debugdir.get ();
1448 debugfile += "/";
1449 debugfile += drive;
1450 debugfile += dir_notarget;
1451 debugfile += debuglink;
1452
1453 if (separate_debug_file_exists (debugfile, crc32, objfile))
1454 return debugfile;
1455
1456 const char *base_path = NULL;
1457 if (canon_dir != NULL)
1458 {
1459 if (canon_sysroot.get () != NULL)
1460 base_path = child_path (canon_sysroot.get (), canon_dir);
1461 else
1462 base_path = child_path (gdb_sysroot, canon_dir);
1463 }
1464 if (base_path != NULL)
1465 {
1466 /* If the file is in the sysroot, try using its base path in
1467 the global debugfile directory. */
1468 debugfile = target_prefix ? "target:" : "";
1469 debugfile += debugdir.get ();
1470 debugfile += "/";
1471 debugfile += base_path;
1472 debugfile += "/";
1473 debugfile += debuglink;
1474
1475 if (separate_debug_file_exists (debugfile, crc32, objfile))
1476 return debugfile;
1477
1478 /* If the file is in the sysroot, try using its base path in
1479 the sysroot's global debugfile directory. */
1480 debugfile = target_prefix ? "target:" : "";
1481 debugfile += gdb_sysroot;
1482 debugfile += debugdir.get ();
1483 debugfile += "/";
1484 debugfile += base_path;
1485 debugfile += "/";
1486 debugfile += debuglink;
1487
1488 if (separate_debug_file_exists (debugfile, crc32, objfile))
1489 return debugfile;
1490 }
1491
1492 }
1493
1494 return std::string ();
1495 }
1496
1497 /* Modify PATH to contain only "[/]directory/" part of PATH.
1498 If there were no directory separators in PATH, PATH will be empty
1499 string on return. */
1500
1501 static void
1502 terminate_after_last_dir_separator (char *path)
1503 {
1504 int i;
1505
1506 /* Strip off the final filename part, leaving the directory name,
1507 followed by a slash. The directory can be relative or absolute. */
1508 for (i = strlen(path) - 1; i >= 0; i--)
1509 if (IS_DIR_SEPARATOR (path[i]))
1510 break;
1511
1512 /* If I is -1 then no directory is present there and DIR will be "". */
1513 path[i + 1] = '\0';
1514 }
1515
1516 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1517 Returns pathname, or an empty string. */
1518
1519 std::string
1520 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1521 {
1522 unsigned long crc32;
1523
1524 gdb::unique_xmalloc_ptr<char> debuglink
1525 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1526
1527 if (debuglink == NULL)
1528 {
1529 /* There's no separate debug info, hence there's no way we could
1530 load it => no warning. */
1531 return std::string ();
1532 }
1533
1534 std::string dir = objfile_name (objfile);
1535 terminate_after_last_dir_separator (&dir[0]);
1536 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1537
1538 std::string debugfile
1539 = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1540 debuglink.get (), crc32, objfile);
1541
1542 if (debugfile.empty ())
1543 {
1544 /* For PR gdb/9538, try again with realpath (if different from the
1545 original). */
1546
1547 struct stat st_buf;
1548
1549 if (lstat (objfile_name (objfile), &st_buf) == 0
1550 && S_ISLNK (st_buf.st_mode))
1551 {
1552 gdb::unique_xmalloc_ptr<char> symlink_dir
1553 (lrealpath (objfile_name (objfile)));
1554 if (symlink_dir != NULL)
1555 {
1556 terminate_after_last_dir_separator (symlink_dir.get ());
1557 if (dir != symlink_dir.get ())
1558 {
1559 /* Different directory, so try using it. */
1560 debugfile = find_separate_debug_file (symlink_dir.get (),
1561 symlink_dir.get (),
1562 debuglink.get (),
1563 crc32,
1564 objfile);
1565 }
1566 }
1567 }
1568 }
1569
1570 return debugfile;
1571 }
1572
1573 /* Make sure that OBJF_{READNOW,READNEVER} are not set
1574 simultaneously. */
1575
1576 static void
1577 validate_readnow_readnever (objfile_flags flags)
1578 {
1579 if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER))
1580 error (_("-readnow and -readnever cannot be used simultaneously"));
1581 }
1582
1583 /* This is the symbol-file command. Read the file, analyze its
1584 symbols, and add a struct symtab to a symtab list. The syntax of
1585 the command is rather bizarre:
1586
1587 1. The function buildargv implements various quoting conventions
1588 which are undocumented and have little or nothing in common with
1589 the way things are quoted (or not quoted) elsewhere in GDB.
1590
1591 2. Options are used, which are not generally used in GDB (perhaps
1592 "set mapped on", "set readnow on" would be better)
1593
1594 3. The order of options matters, which is contrary to GNU
1595 conventions (because it is confusing and inconvenient). */
1596
1597 void
1598 symbol_file_command (const char *args, int from_tty)
1599 {
1600 dont_repeat ();
1601
1602 if (args == NULL)
1603 {
1604 symbol_file_clear (from_tty);
1605 }
1606 else
1607 {
1608 objfile_flags flags = OBJF_USERLOADED;
1609 symfile_add_flags add_flags = 0;
1610 char *name = NULL;
1611 bool stop_processing_options = false;
1612 CORE_ADDR offset = 0;
1613 int idx;
1614 char *arg;
1615
1616 if (from_tty)
1617 add_flags |= SYMFILE_VERBOSE;
1618
1619 gdb_argv built_argv (args);
1620 for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx])
1621 {
1622 if (stop_processing_options || *arg != '-')
1623 {
1624 if (name == NULL)
1625 name = arg;
1626 else
1627 error (_("Unrecognized argument \"%s\""), arg);
1628 }
1629 else if (strcmp (arg, "-readnow") == 0)
1630 flags |= OBJF_READNOW;
1631 else if (strcmp (arg, "-readnever") == 0)
1632 flags |= OBJF_READNEVER;
1633 else if (strcmp (arg, "-o") == 0)
1634 {
1635 arg = built_argv[++idx];
1636 if (arg == NULL)
1637 error (_("Missing argument to -o"));
1638
1639 offset = parse_and_eval_address (arg);
1640 }
1641 else if (strcmp (arg, "--") == 0)
1642 stop_processing_options = true;
1643 else
1644 error (_("Unrecognized argument \"%s\""), arg);
1645 }
1646
1647 if (name == NULL)
1648 error (_("no symbol file name was specified"));
1649
1650 validate_readnow_readnever (flags);
1651
1652 /* Set SYMFILE_DEFER_BP_RESET because the proper displacement for a PIE
1653 (Position Independent Executable) main symbol file will only be
1654 computed by the solib_create_inferior_hook below. Without it,
1655 breakpoint_re_set would fail to insert the breakpoints with the zero
1656 displacement. */
1657 add_flags |= SYMFILE_DEFER_BP_RESET;
1658
1659 symbol_file_add_main_1 (name, add_flags, flags, offset);
1660
1661 solib_create_inferior_hook (from_tty);
1662
1663 /* Now it's safe to re-add the breakpoints. */
1664 breakpoint_re_set ();
1665 }
1666 }
1667
1668 /* Set the initial language.
1669
1670 FIXME: A better solution would be to record the language in the
1671 psymtab when reading partial symbols, and then use it (if known) to
1672 set the language. This would be a win for formats that encode the
1673 language in an easily discoverable place, such as DWARF. For
1674 stabs, we can jump through hoops looking for specially named
1675 symbols or try to intuit the language from the specific type of
1676 stabs we find, but we can't do that until later when we read in
1677 full symbols. */
1678
1679 void
1680 set_initial_language (void)
1681 {
1682 enum language lang = main_language ();
1683
1684 if (lang == language_unknown)
1685 {
1686 const char *name = main_name ();
1687 struct symbol *sym = lookup_symbol (name, NULL, VAR_DOMAIN, NULL).symbol;
1688
1689 if (sym != NULL)
1690 lang = sym->language ();
1691 }
1692
1693 if (lang == language_unknown)
1694 {
1695 /* Make C the default language */
1696 lang = language_c;
1697 }
1698
1699 set_language (lang);
1700 expected_language = current_language; /* Don't warn the user. */
1701 }
1702
1703 /* Open the file specified by NAME and hand it off to BFD for
1704 preliminary analysis. Return a newly initialized bfd *, which
1705 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1706 absolute). In case of trouble, error() is called. */
1707
1708 gdb_bfd_ref_ptr
1709 symfile_bfd_open (const char *name)
1710 {
1711 int desc = -1;
1712
1713 gdb::unique_xmalloc_ptr<char> absolute_name;
1714 if (!is_target_filename (name))
1715 {
1716 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
1717
1718 /* Look down path for it, allocate 2nd new malloc'd copy. */
1719 desc = openp (getenv ("PATH"),
1720 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1721 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
1722 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1723 if (desc < 0)
1724 {
1725 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
1726
1727 strcat (strcpy (exename, expanded_name.get ()), ".exe");
1728 desc = openp (getenv ("PATH"),
1729 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1730 exename, O_RDONLY | O_BINARY, &absolute_name);
1731 }
1732 #endif
1733 if (desc < 0)
1734 perror_with_name (expanded_name.get ());
1735
1736 name = absolute_name.get ();
1737 }
1738
1739 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1740 if (sym_bfd == NULL)
1741 error (_("`%s': can't open to read symbols: %s."), name,
1742 bfd_errmsg (bfd_get_error ()));
1743
1744 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1745 bfd_set_cacheable (sym_bfd.get (), 1);
1746
1747 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1748 error (_("`%s': can't read symbols: %s."), name,
1749 bfd_errmsg (bfd_get_error ()));
1750
1751 return sym_bfd;
1752 }
1753
1754 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1755 the section was not found. */
1756
1757 int
1758 get_section_index (struct objfile *objfile, const char *section_name)
1759 {
1760 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1761
1762 if (sect)
1763 return sect->index;
1764 else
1765 return -1;
1766 }
1767
1768 /* Link SF into the global symtab_fns list.
1769 FLAVOUR is the file format that SF handles.
1770 Called on startup by the _initialize routine in each object file format
1771 reader, to register information about each format the reader is prepared
1772 to handle. */
1773
1774 void
1775 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1776 {
1777 symtab_fns.emplace_back (flavour, sf);
1778 }
1779
1780 /* Initialize OBJFILE to read symbols from its associated BFD. It
1781 either returns or calls error(). The result is an initialized
1782 struct sym_fns in the objfile structure, that contains cached
1783 information about the symbol file. */
1784
1785 static const struct sym_fns *
1786 find_sym_fns (bfd *abfd)
1787 {
1788 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1789
1790 if (our_flavour == bfd_target_srec_flavour
1791 || our_flavour == bfd_target_ihex_flavour
1792 || our_flavour == bfd_target_tekhex_flavour)
1793 return NULL; /* No symbols. */
1794
1795 for (const registered_sym_fns &rsf : symtab_fns)
1796 if (our_flavour == rsf.sym_flavour)
1797 return rsf.sym_fns;
1798
1799 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1800 bfd_get_target (abfd));
1801 }
1802 \f
1803
1804 /* This function runs the load command of our current target. */
1805
1806 static void
1807 load_command (const char *arg, int from_tty)
1808 {
1809 dont_repeat ();
1810
1811 /* The user might be reloading because the binary has changed. Take
1812 this opportunity to check. */
1813 reopen_exec_file ();
1814 reread_symbols ();
1815
1816 std::string temp;
1817 if (arg == NULL)
1818 {
1819 const char *parg, *prev;
1820
1821 arg = get_exec_file (1);
1822
1823 /* We may need to quote this string so buildargv can pull it
1824 apart. */
1825 prev = parg = arg;
1826 while ((parg = strpbrk (parg, "\\\"'\t ")))
1827 {
1828 temp.append (prev, parg - prev);
1829 prev = parg++;
1830 temp.push_back ('\\');
1831 }
1832 /* If we have not copied anything yet, then we didn't see a
1833 character to quote, and we can just leave ARG unchanged. */
1834 if (!temp.empty ())
1835 {
1836 temp.append (prev);
1837 arg = temp.c_str ();
1838 }
1839 }
1840
1841 target_load (arg, from_tty);
1842
1843 /* After re-loading the executable, we don't really know which
1844 overlays are mapped any more. */
1845 overlay_cache_invalid = 1;
1846 }
1847
1848 /* This version of "load" should be usable for any target. Currently
1849 it is just used for remote targets, not inftarg.c or core files,
1850 on the theory that only in that case is it useful.
1851
1852 Avoiding xmodem and the like seems like a win (a) because we don't have
1853 to worry about finding it, and (b) On VMS, fork() is very slow and so
1854 we don't want to run a subprocess. On the other hand, I'm not sure how
1855 performance compares. */
1856
1857 static int validate_download = 0;
1858
1859 /* Callback service function for generic_load (bfd_map_over_sections). */
1860
1861 static void
1862 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1863 {
1864 bfd_size_type *sum = (bfd_size_type *) data;
1865
1866 *sum += bfd_section_size (asec);
1867 }
1868
1869 /* Opaque data for load_progress. */
1870 struct load_progress_data
1871 {
1872 /* Cumulative data. */
1873 unsigned long write_count = 0;
1874 unsigned long data_count = 0;
1875 bfd_size_type total_size = 0;
1876 };
1877
1878 /* Opaque data for load_progress for a single section. */
1879 struct load_progress_section_data
1880 {
1881 load_progress_section_data (load_progress_data *cumulative_,
1882 const char *section_name_, ULONGEST section_size_,
1883 CORE_ADDR lma_, gdb_byte *buffer_)
1884 : cumulative (cumulative_), section_name (section_name_),
1885 section_size (section_size_), lma (lma_), buffer (buffer_)
1886 {}
1887
1888 struct load_progress_data *cumulative;
1889
1890 /* Per-section data. */
1891 const char *section_name;
1892 ULONGEST section_sent = 0;
1893 ULONGEST section_size;
1894 CORE_ADDR lma;
1895 gdb_byte *buffer;
1896 };
1897
1898 /* Opaque data for load_section_callback. */
1899 struct load_section_data
1900 {
1901 load_section_data (load_progress_data *progress_data_)
1902 : progress_data (progress_data_)
1903 {}
1904
1905 ~load_section_data ()
1906 {
1907 for (auto &&request : requests)
1908 {
1909 xfree (request.data);
1910 delete ((load_progress_section_data *) request.baton);
1911 }
1912 }
1913
1914 CORE_ADDR load_offset = 0;
1915 struct load_progress_data *progress_data;
1916 std::vector<struct memory_write_request> requests;
1917 };
1918
1919 /* Target write callback routine for progress reporting. */
1920
1921 static void
1922 load_progress (ULONGEST bytes, void *untyped_arg)
1923 {
1924 struct load_progress_section_data *args
1925 = (struct load_progress_section_data *) untyped_arg;
1926 struct load_progress_data *totals;
1927
1928 if (args == NULL)
1929 /* Writing padding data. No easy way to get at the cumulative
1930 stats, so just ignore this. */
1931 return;
1932
1933 totals = args->cumulative;
1934
1935 if (bytes == 0 && args->section_sent == 0)
1936 {
1937 /* The write is just starting. Let the user know we've started
1938 this section. */
1939 current_uiout->message ("Loading section %s, size %s lma %s\n",
1940 args->section_name,
1941 hex_string (args->section_size),
1942 paddress (target_gdbarch (), args->lma));
1943 return;
1944 }
1945
1946 if (validate_download)
1947 {
1948 /* Broken memories and broken monitors manifest themselves here
1949 when bring new computers to life. This doubles already slow
1950 downloads. */
1951 /* NOTE: cagney/1999-10-18: A more efficient implementation
1952 might add a verify_memory() method to the target vector and
1953 then use that. remote.c could implement that method using
1954 the ``qCRC'' packet. */
1955 gdb::byte_vector check (bytes);
1956
1957 if (target_read_memory (args->lma, check.data (), bytes) != 0)
1958 error (_("Download verify read failed at %s"),
1959 paddress (target_gdbarch (), args->lma));
1960 if (memcmp (args->buffer, check.data (), bytes) != 0)
1961 error (_("Download verify compare failed at %s"),
1962 paddress (target_gdbarch (), args->lma));
1963 }
1964 totals->data_count += bytes;
1965 args->lma += bytes;
1966 args->buffer += bytes;
1967 totals->write_count += 1;
1968 args->section_sent += bytes;
1969 if (check_quit_flag ()
1970 || (deprecated_ui_load_progress_hook != NULL
1971 && deprecated_ui_load_progress_hook (args->section_name,
1972 args->section_sent)))
1973 error (_("Canceled the download"));
1974
1975 if (deprecated_show_load_progress != NULL)
1976 deprecated_show_load_progress (args->section_name,
1977 args->section_sent,
1978 args->section_size,
1979 totals->data_count,
1980 totals->total_size);
1981 }
1982
1983 /* Callback service function for generic_load (bfd_map_over_sections). */
1984
1985 static void
1986 load_section_callback (bfd *abfd, asection *asec, void *data)
1987 {
1988 struct load_section_data *args = (struct load_section_data *) data;
1989 bfd_size_type size = bfd_section_size (asec);
1990 const char *sect_name = bfd_section_name (asec);
1991
1992 if ((bfd_section_flags (asec) & SEC_LOAD) == 0)
1993 return;
1994
1995 if (size == 0)
1996 return;
1997
1998 ULONGEST begin = bfd_section_lma (asec) + args->load_offset;
1999 ULONGEST end = begin + size;
2000 gdb_byte *buffer = (gdb_byte *) xmalloc (size);
2001 bfd_get_section_contents (abfd, asec, buffer, 0, size);
2002
2003 load_progress_section_data *section_data
2004 = new load_progress_section_data (args->progress_data, sect_name, size,
2005 begin, buffer);
2006
2007 args->requests.emplace_back (begin, end, buffer, section_data);
2008 }
2009
2010 static void print_transfer_performance (struct ui_file *stream,
2011 unsigned long data_count,
2012 unsigned long write_count,
2013 std::chrono::steady_clock::duration d);
2014
2015 /* See symfile.h. */
2016
2017 void
2018 generic_load (const char *args, int from_tty)
2019 {
2020 struct load_progress_data total_progress;
2021 struct load_section_data cbdata (&total_progress);
2022 struct ui_out *uiout = current_uiout;
2023
2024 if (args == NULL)
2025 error_no_arg (_("file to load"));
2026
2027 gdb_argv argv (args);
2028
2029 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2030
2031 if (argv[1] != NULL)
2032 {
2033 const char *endptr;
2034
2035 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2036
2037 /* If the last word was not a valid number then
2038 treat it as a file name with spaces in. */
2039 if (argv[1] == endptr)
2040 error (_("Invalid download offset:%s."), argv[1]);
2041
2042 if (argv[2] != NULL)
2043 error (_("Too many parameters."));
2044 }
2045
2046 /* Open the file for loading. */
2047 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget, -1));
2048 if (loadfile_bfd == NULL)
2049 perror_with_name (filename.get ());
2050
2051 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
2052 {
2053 error (_("\"%s\" is not an object file: %s"), filename.get (),
2054 bfd_errmsg (bfd_get_error ()));
2055 }
2056
2057 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
2058 (void *) &total_progress.total_size);
2059
2060 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
2061
2062 using namespace std::chrono;
2063
2064 steady_clock::time_point start_time = steady_clock::now ();
2065
2066 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2067 load_progress) != 0)
2068 error (_("Load failed"));
2069
2070 steady_clock::time_point end_time = steady_clock::now ();
2071
2072 CORE_ADDR entry = bfd_get_start_address (loadfile_bfd.get ());
2073 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2074 uiout->text ("Start address ");
2075 uiout->field_core_addr ("address", target_gdbarch (), entry);
2076 uiout->text (", load size ");
2077 uiout->field_unsigned ("load-size", total_progress.data_count);
2078 uiout->text ("\n");
2079 regcache_write_pc (get_current_regcache (), entry);
2080
2081 /* Reset breakpoints, now that we have changed the load image. For
2082 instance, breakpoints may have been set (or reset, by
2083 post_create_inferior) while connected to the target but before we
2084 loaded the program. In that case, the prologue analyzer could
2085 have read instructions from the target to find the right
2086 breakpoint locations. Loading has changed the contents of that
2087 memory. */
2088
2089 breakpoint_re_set ();
2090
2091 print_transfer_performance (gdb_stdout, total_progress.data_count,
2092 total_progress.write_count,
2093 end_time - start_time);
2094 }
2095
2096 /* Report on STREAM the performance of a memory transfer operation,
2097 such as 'load'. DATA_COUNT is the number of bytes transferred.
2098 WRITE_COUNT is the number of separate write operations, or 0, if
2099 that information is not available. TIME is how long the operation
2100 lasted. */
2101
2102 static void
2103 print_transfer_performance (struct ui_file *stream,
2104 unsigned long data_count,
2105 unsigned long write_count,
2106 std::chrono::steady_clock::duration time)
2107 {
2108 using namespace std::chrono;
2109 struct ui_out *uiout = current_uiout;
2110
2111 milliseconds ms = duration_cast<milliseconds> (time);
2112
2113 uiout->text ("Transfer rate: ");
2114 if (ms.count () > 0)
2115 {
2116 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2117
2118 if (uiout->is_mi_like_p ())
2119 {
2120 uiout->field_unsigned ("transfer-rate", rate * 8);
2121 uiout->text (" bits/sec");
2122 }
2123 else if (rate < 1024)
2124 {
2125 uiout->field_unsigned ("transfer-rate", rate);
2126 uiout->text (" bytes/sec");
2127 }
2128 else
2129 {
2130 uiout->field_unsigned ("transfer-rate", rate / 1024);
2131 uiout->text (" KB/sec");
2132 }
2133 }
2134 else
2135 {
2136 uiout->field_unsigned ("transferred-bits", (data_count * 8));
2137 uiout->text (" bits in <1 sec");
2138 }
2139 if (write_count > 0)
2140 {
2141 uiout->text (", ");
2142 uiout->field_unsigned ("write-rate", data_count / write_count);
2143 uiout->text (" bytes/write");
2144 }
2145 uiout->text (".\n");
2146 }
2147
2148 /* Add an OFFSET to the start address of each section in OBJF, except
2149 sections that were specified in ADDRS. */
2150
2151 static void
2152 set_objfile_default_section_offset (struct objfile *objf,
2153 const section_addr_info &addrs,
2154 CORE_ADDR offset)
2155 {
2156 /* Add OFFSET to all sections by default. */
2157 section_offsets offsets (objf->section_offsets.size (), offset);
2158
2159 /* Create sorted lists of all sections in ADDRS as well as all
2160 sections in OBJF. */
2161
2162 std::vector<const struct other_sections *> addrs_sorted
2163 = addrs_section_sort (addrs);
2164
2165 section_addr_info objf_addrs
2166 = build_section_addr_info_from_objfile (objf);
2167 std::vector<const struct other_sections *> objf_addrs_sorted
2168 = addrs_section_sort (objf_addrs);
2169
2170 /* Walk the BFD section list, and if a matching section is found in
2171 ADDRS_SORTED_LIST, set its offset to zero to keep its address
2172 unchanged.
2173
2174 Note that both lists may contain multiple sections with the same
2175 name, and then the sections from ADDRS are matched in BFD order
2176 (thanks to sectindex). */
2177
2178 std::vector<const struct other_sections *>::iterator addrs_sorted_iter
2179 = addrs_sorted.begin ();
2180 for (const other_sections *objf_sect : objf_addrs_sorted)
2181 {
2182 const char *objf_name = addr_section_name (objf_sect->name.c_str ());
2183 int cmp = -1;
2184
2185 while (cmp < 0 && addrs_sorted_iter != addrs_sorted.end ())
2186 {
2187 const struct other_sections *sect = *addrs_sorted_iter;
2188 const char *sect_name = addr_section_name (sect->name.c_str ());
2189 cmp = strcmp (sect_name, objf_name);
2190 if (cmp <= 0)
2191 ++addrs_sorted_iter;
2192 }
2193
2194 if (cmp == 0)
2195 offsets[objf_sect->sectindex] = 0;
2196 }
2197
2198 /* Apply the new section offsets. */
2199 objfile_relocate (objf, offsets);
2200 }
2201
2202 /* This function allows the addition of incrementally linked object files.
2203 It does not modify any state in the target, only in the debugger. */
2204
2205 static void
2206 add_symbol_file_command (const char *args, int from_tty)
2207 {
2208 struct gdbarch *gdbarch = get_current_arch ();
2209 gdb::unique_xmalloc_ptr<char> filename;
2210 char *arg;
2211 int argcnt = 0;
2212 struct objfile *objf;
2213 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2214 symfile_add_flags add_flags = 0;
2215
2216 if (from_tty)
2217 add_flags |= SYMFILE_VERBOSE;
2218
2219 struct sect_opt
2220 {
2221 const char *name;
2222 const char *value;
2223 };
2224
2225 std::vector<sect_opt> sect_opts = { { ".text", NULL } };
2226 bool stop_processing_options = false;
2227 CORE_ADDR offset = 0;
2228
2229 dont_repeat ();
2230
2231 if (args == NULL)
2232 error (_("add-symbol-file takes a file name and an address"));
2233
2234 bool seen_addr = false;
2235 bool seen_offset = false;
2236 gdb_argv argv (args);
2237
2238 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2239 {
2240 if (stop_processing_options || *arg != '-')
2241 {
2242 if (filename == NULL)
2243 {
2244 /* First non-option argument is always the filename. */
2245 filename.reset (tilde_expand (arg));
2246 }
2247 else if (!seen_addr)
2248 {
2249 /* The second non-option argument is always the text
2250 address at which to load the program. */
2251 sect_opts[0].value = arg;
2252 seen_addr = true;
2253 }
2254 else
2255 error (_("Unrecognized argument \"%s\""), arg);
2256 }
2257 else if (strcmp (arg, "-readnow") == 0)
2258 flags |= OBJF_READNOW;
2259 else if (strcmp (arg, "-readnever") == 0)
2260 flags |= OBJF_READNEVER;
2261 else if (strcmp (arg, "-s") == 0)
2262 {
2263 if (argv[argcnt + 1] == NULL)
2264 error (_("Missing section name after \"-s\""));
2265 else if (argv[argcnt + 2] == NULL)
2266 error (_("Missing section address after \"-s\""));
2267
2268 sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] };
2269
2270 sect_opts.push_back (sect);
2271 argcnt += 2;
2272 }
2273 else if (strcmp (arg, "-o") == 0)
2274 {
2275 arg = argv[++argcnt];
2276 if (arg == NULL)
2277 error (_("Missing argument to -o"));
2278
2279 offset = parse_and_eval_address (arg);
2280 seen_offset = true;
2281 }
2282 else if (strcmp (arg, "--") == 0)
2283 stop_processing_options = true;
2284 else
2285 error (_("Unrecognized argument \"%s\""), arg);
2286 }
2287
2288 if (filename == NULL)
2289 error (_("You must provide a filename to be loaded."));
2290
2291 validate_readnow_readnever (flags);
2292
2293 /* Print the prompt for the query below. And save the arguments into
2294 a sect_addr_info structure to be passed around to other
2295 functions. We have to split this up into separate print
2296 statements because hex_string returns a local static
2297 string. */
2298
2299 printf_unfiltered (_("add symbol table from file \"%s\""),
2300 filename.get ());
2301 section_addr_info section_addrs;
2302 std::vector<sect_opt>::const_iterator it = sect_opts.begin ();
2303 if (!seen_addr)
2304 ++it;
2305 for (; it != sect_opts.end (); ++it)
2306 {
2307 CORE_ADDR addr;
2308 const char *val = it->value;
2309 const char *sec = it->name;
2310
2311 if (section_addrs.empty ())
2312 printf_unfiltered (_(" at\n"));
2313 addr = parse_and_eval_address (val);
2314
2315 /* Here we store the section offsets in the order they were
2316 entered on the command line. Every array element is
2317 assigned an ascending section index to preserve the above
2318 order over an unstable sorting algorithm. This dummy
2319 index is not used for any other purpose.
2320 */
2321 section_addrs.emplace_back (addr, sec, section_addrs.size ());
2322 printf_filtered ("\t%s_addr = %s\n", sec,
2323 paddress (gdbarch, addr));
2324
2325 /* The object's sections are initialized when a
2326 call is made to build_objfile_section_table (objfile).
2327 This happens in reread_symbols.
2328 At this point, we don't know what file type this is,
2329 so we can't determine what section names are valid. */
2330 }
2331 if (seen_offset)
2332 printf_unfiltered (_("%s offset by %s\n"),
2333 (section_addrs.empty ()
2334 ? _(" with all sections")
2335 : _("with other sections")),
2336 paddress (gdbarch, offset));
2337 else if (section_addrs.empty ())
2338 printf_unfiltered ("\n");
2339
2340 if (from_tty && (!query ("%s", "")))
2341 error (_("Not confirmed."));
2342
2343 objf = symbol_file_add (filename.get (), add_flags, &section_addrs,
2344 flags);
2345 if (!objfile_has_symbols (objf) && objf->per_bfd->minimal_symbol_count <= 0)
2346 warning (_("newly-added symbol file \"%s\" does not provide any symbols"),
2347 filename.get ());
2348
2349 if (seen_offset)
2350 set_objfile_default_section_offset (objf, section_addrs, offset);
2351
2352 add_target_sections_of_objfile (objf);
2353
2354 /* Getting new symbols may change our opinion about what is
2355 frameless. */
2356 reinit_frame_cache ();
2357 }
2358 \f
2359
2360 /* This function removes a symbol file that was added via add-symbol-file. */
2361
2362 static void
2363 remove_symbol_file_command (const char *args, int from_tty)
2364 {
2365 struct objfile *objf = NULL;
2366 struct program_space *pspace = current_program_space;
2367
2368 dont_repeat ();
2369
2370 if (args == NULL)
2371 error (_("remove-symbol-file: no symbol file provided"));
2372
2373 gdb_argv argv (args);
2374
2375 if (strcmp (argv[0], "-a") == 0)
2376 {
2377 /* Interpret the next argument as an address. */
2378 CORE_ADDR addr;
2379
2380 if (argv[1] == NULL)
2381 error (_("Missing address argument"));
2382
2383 if (argv[2] != NULL)
2384 error (_("Junk after %s"), argv[1]);
2385
2386 addr = parse_and_eval_address (argv[1]);
2387
2388 for (objfile *objfile : current_program_space->objfiles ())
2389 {
2390 if ((objfile->flags & OBJF_USERLOADED) != 0
2391 && (objfile->flags & OBJF_SHARED) != 0
2392 && objfile->pspace == pspace
2393 && is_addr_in_objfile (addr, objfile))
2394 {
2395 objf = objfile;
2396 break;
2397 }
2398 }
2399 }
2400 else if (argv[0] != NULL)
2401 {
2402 /* Interpret the current argument as a file name. */
2403
2404 if (argv[1] != NULL)
2405 error (_("Junk after %s"), argv[0]);
2406
2407 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2408
2409 for (objfile *objfile : current_program_space->objfiles ())
2410 {
2411 if ((objfile->flags & OBJF_USERLOADED) != 0
2412 && (objfile->flags & OBJF_SHARED) != 0
2413 && objfile->pspace == pspace
2414 && filename_cmp (filename.get (), objfile_name (objfile)) == 0)
2415 {
2416 objf = objfile;
2417 break;
2418 }
2419 }
2420 }
2421
2422 if (objf == NULL)
2423 error (_("No symbol file found"));
2424
2425 if (from_tty
2426 && !query (_("Remove symbol table from file \"%s\"? "),
2427 objfile_name (objf)))
2428 error (_("Not confirmed."));
2429
2430 objf->unlink ();
2431 clear_symtab_users (0);
2432 }
2433
2434 /* Re-read symbols if a symbol-file has changed. */
2435
2436 void
2437 reread_symbols (void)
2438 {
2439 long new_modtime;
2440 struct stat new_statbuf;
2441 int res;
2442 std::vector<struct objfile *> new_objfiles;
2443
2444 for (objfile *objfile : current_program_space->objfiles ())
2445 {
2446 if (objfile->obfd == NULL)
2447 continue;
2448
2449 /* Separate debug objfiles are handled in the main objfile. */
2450 if (objfile->separate_debug_objfile_backlink)
2451 continue;
2452
2453 /* If this object is from an archive (what you usually create with
2454 `ar', often called a `static library' on most systems, though
2455 a `shared library' on AIX is also an archive), then you should
2456 stat on the archive name, not member name. */
2457 if (objfile->obfd->my_archive)
2458 res = stat (objfile->obfd->my_archive->filename, &new_statbuf);
2459 else
2460 res = stat (objfile_name (objfile), &new_statbuf);
2461 if (res != 0)
2462 {
2463 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2464 printf_filtered (_("`%s' has disappeared; keeping its symbols.\n"),
2465 objfile_name (objfile));
2466 continue;
2467 }
2468 new_modtime = new_statbuf.st_mtime;
2469 if (new_modtime != objfile->mtime)
2470 {
2471 printf_filtered (_("`%s' has changed; re-reading symbols.\n"),
2472 objfile_name (objfile));
2473
2474 /* There are various functions like symbol_file_add,
2475 symfile_bfd_open, syms_from_objfile, etc., which might
2476 appear to do what we want. But they have various other
2477 effects which we *don't* want. So we just do stuff
2478 ourselves. We don't worry about mapped files (for one thing,
2479 any mapped file will be out of date). */
2480
2481 /* If we get an error, blow away this objfile (not sure if
2482 that is the correct response for things like shared
2483 libraries). */
2484 objfile_up objfile_holder (objfile);
2485
2486 /* We need to do this whenever any symbols go away. */
2487 clear_symtab_users_cleanup defer_clear_users (0);
2488
2489 if (exec_bfd != NULL
2490 && filename_cmp (bfd_get_filename (objfile->obfd),
2491 bfd_get_filename (exec_bfd)) == 0)
2492 {
2493 /* Reload EXEC_BFD without asking anything. */
2494
2495 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2496 }
2497
2498 /* Keep the calls order approx. the same as in free_objfile. */
2499
2500 /* Free the separate debug objfiles. It will be
2501 automatically recreated by sym_read. */
2502 free_objfile_separate_debug (objfile);
2503
2504 /* Clear the stale source cache. */
2505 forget_cached_source_info ();
2506
2507 /* Remove any references to this objfile in the global
2508 value lists. */
2509 preserve_values (objfile);
2510
2511 /* Nuke all the state that we will re-read. Much of the following
2512 code which sets things to NULL really is necessary to tell
2513 other parts of GDB that there is nothing currently there.
2514
2515 Try to keep the freeing order compatible with free_objfile. */
2516
2517 if (objfile->sf != NULL)
2518 {
2519 (*objfile->sf->sym_finish) (objfile);
2520 }
2521
2522 clear_objfile_data (objfile);
2523
2524 /* Clean up any state BFD has sitting around. */
2525 {
2526 gdb_bfd_ref_ptr obfd (objfile->obfd);
2527 const char *obfd_filename;
2528
2529 obfd_filename = bfd_get_filename (objfile->obfd);
2530 /* Open the new BFD before freeing the old one, so that
2531 the filename remains live. */
2532 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget, -1));
2533 objfile->obfd = temp.release ();
2534 if (objfile->obfd == NULL)
2535 error (_("Can't open %s to read symbols."), obfd_filename);
2536 }
2537
2538 std::string original_name = objfile->original_name;
2539
2540 /* bfd_openr sets cacheable to true, which is what we want. */
2541 if (!bfd_check_format (objfile->obfd, bfd_object))
2542 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2543 bfd_errmsg (bfd_get_error ()));
2544
2545 objfile->reset_psymtabs ();
2546
2547 /* NB: after this call to obstack_free, objfiles_changed
2548 will need to be called (see discussion below). */
2549 obstack_free (&objfile->objfile_obstack, 0);
2550 objfile->sections = NULL;
2551 objfile->compunit_symtabs = NULL;
2552 objfile->template_symbols = NULL;
2553 objfile->static_links.reset (nullptr);
2554
2555 /* obstack_init also initializes the obstack so it is
2556 empty. We could use obstack_specify_allocation but
2557 gdb_obstack.h specifies the alloc/dealloc functions. */
2558 obstack_init (&objfile->objfile_obstack);
2559
2560 /* set_objfile_per_bfd potentially allocates the per-bfd
2561 data on the objfile's obstack (if sharing data across
2562 multiple users is not possible), so it's important to
2563 do it *after* the obstack has been initialized. */
2564 set_objfile_per_bfd (objfile);
2565
2566 objfile->original_name
2567 = obstack_strdup (&objfile->objfile_obstack, original_name);
2568
2569 /* Reset the sym_fns pointer. The ELF reader can change it
2570 based on whether .gdb_index is present, and we need it to
2571 start over. PR symtab/15885 */
2572 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2573
2574 build_objfile_section_table (objfile);
2575
2576 /* What the hell is sym_new_init for, anyway? The concept of
2577 distinguishing between the main file and additional files
2578 in this way seems rather dubious. */
2579 if (objfile == symfile_objfile)
2580 {
2581 (*objfile->sf->sym_new_init) (objfile);
2582 }
2583
2584 (*objfile->sf->sym_init) (objfile);
2585 clear_complaints ();
2586
2587 objfile->flags &= ~OBJF_PSYMTABS_READ;
2588
2589 /* We are about to read new symbols and potentially also
2590 DWARF information. Some targets may want to pass addresses
2591 read from DWARF DIE's through an adjustment function before
2592 saving them, like MIPS, which may call into
2593 "find_pc_section". When called, that function will make
2594 use of per-objfile program space data.
2595
2596 Since we discarded our section information above, we have
2597 dangling pointers in the per-objfile program space data
2598 structure. Force GDB to update the section mapping
2599 information by letting it know the objfile has changed,
2600 making the dangling pointers point to correct data
2601 again. */
2602
2603 objfiles_changed ();
2604
2605 read_symbols (objfile, 0);
2606
2607 if (!objfile_has_symbols (objfile))
2608 {
2609 wrap_here ("");
2610 printf_filtered (_("(no debugging symbols found)\n"));
2611 wrap_here ("");
2612 }
2613
2614 /* We're done reading the symbol file; finish off complaints. */
2615 clear_complaints ();
2616
2617 /* Getting new symbols may change our opinion about what is
2618 frameless. */
2619
2620 reinit_frame_cache ();
2621
2622 /* Discard cleanups as symbol reading was successful. */
2623 objfile_holder.release ();
2624 defer_clear_users.release ();
2625
2626 /* If the mtime has changed between the time we set new_modtime
2627 and now, we *want* this to be out of date, so don't call stat
2628 again now. */
2629 objfile->mtime = new_modtime;
2630 init_entry_point_info (objfile);
2631
2632 new_objfiles.push_back (objfile);
2633 }
2634 }
2635
2636 if (!new_objfiles.empty ())
2637 {
2638 clear_symtab_users (0);
2639
2640 /* clear_objfile_data for each objfile was called before freeing it and
2641 gdb::observers::new_objfile.notify (NULL) has been called by
2642 clear_symtab_users above. Notify the new files now. */
2643 for (auto iter : new_objfiles)
2644 gdb::observers::new_objfile.notify (iter);
2645
2646 /* At least one objfile has changed, so we can consider that
2647 the executable we're debugging has changed too. */
2648 gdb::observers::executable_changed.notify ();
2649 }
2650 }
2651 \f
2652
2653 struct filename_language
2654 {
2655 filename_language (const std::string &ext_, enum language lang_)
2656 : ext (ext_), lang (lang_)
2657 {}
2658
2659 std::string ext;
2660 enum language lang;
2661 };
2662
2663 static std::vector<filename_language> filename_language_table;
2664
2665 /* See symfile.h. */
2666
2667 void
2668 add_filename_language (const char *ext, enum language lang)
2669 {
2670 filename_language_table.emplace_back (ext, lang);
2671 }
2672
2673 static char *ext_args;
2674 static void
2675 show_ext_args (struct ui_file *file, int from_tty,
2676 struct cmd_list_element *c, const char *value)
2677 {
2678 fprintf_filtered (file,
2679 _("Mapping between filename extension "
2680 "and source language is \"%s\".\n"),
2681 value);
2682 }
2683
2684 static void
2685 set_ext_lang_command (const char *args,
2686 int from_tty, struct cmd_list_element *e)
2687 {
2688 char *cp = ext_args;
2689 enum language lang;
2690
2691 /* First arg is filename extension, starting with '.' */
2692 if (*cp != '.')
2693 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2694
2695 /* Find end of first arg. */
2696 while (*cp && !isspace (*cp))
2697 cp++;
2698
2699 if (*cp == '\0')
2700 error (_("'%s': two arguments required -- "
2701 "filename extension and language"),
2702 ext_args);
2703
2704 /* Null-terminate first arg. */
2705 *cp++ = '\0';
2706
2707 /* Find beginning of second arg, which should be a source language. */
2708 cp = skip_spaces (cp);
2709
2710 if (*cp == '\0')
2711 error (_("'%s': two arguments required -- "
2712 "filename extension and language"),
2713 ext_args);
2714
2715 /* Lookup the language from among those we know. */
2716 lang = language_enum (cp);
2717
2718 auto it = filename_language_table.begin ();
2719 /* Now lookup the filename extension: do we already know it? */
2720 for (; it != filename_language_table.end (); it++)
2721 {
2722 if (it->ext == ext_args)
2723 break;
2724 }
2725
2726 if (it == filename_language_table.end ())
2727 {
2728 /* New file extension. */
2729 add_filename_language (ext_args, lang);
2730 }
2731 else
2732 {
2733 /* Redefining a previously known filename extension. */
2734
2735 /* if (from_tty) */
2736 /* query ("Really make files of type %s '%s'?", */
2737 /* ext_args, language_str (lang)); */
2738
2739 it->lang = lang;
2740 }
2741 }
2742
2743 static void
2744 info_ext_lang_command (const char *args, int from_tty)
2745 {
2746 printf_filtered (_("Filename extensions and the languages they represent:"));
2747 printf_filtered ("\n\n");
2748 for (const filename_language &entry : filename_language_table)
2749 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2750 language_str (entry.lang));
2751 }
2752
2753 enum language
2754 deduce_language_from_filename (const char *filename)
2755 {
2756 const char *cp;
2757
2758 if (filename != NULL)
2759 if ((cp = strrchr (filename, '.')) != NULL)
2760 {
2761 for (const filename_language &entry : filename_language_table)
2762 if (entry.ext == cp)
2763 return entry.lang;
2764 }
2765
2766 return language_unknown;
2767 }
2768 \f
2769 /* Allocate and initialize a new symbol table.
2770 CUST is from the result of allocate_compunit_symtab. */
2771
2772 struct symtab *
2773 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2774 {
2775 struct objfile *objfile = cust->objfile;
2776 struct symtab *symtab
2777 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2778
2779 symtab->filename
2780 = ((const char *) objfile->per_bfd->filename_cache.insert
2781 (filename, strlen (filename) + 1));
2782 symtab->fullname = NULL;
2783 symtab->language = deduce_language_from_filename (filename);
2784
2785 /* This can be very verbose with lots of headers.
2786 Only print at higher debug levels. */
2787 if (symtab_create_debug >= 2)
2788 {
2789 /* Be a bit clever with debugging messages, and don't print objfile
2790 every time, only when it changes. */
2791 static char *last_objfile_name = NULL;
2792
2793 if (last_objfile_name == NULL
2794 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2795 {
2796 xfree (last_objfile_name);
2797 last_objfile_name = xstrdup (objfile_name (objfile));
2798 fprintf_filtered (gdb_stdlog,
2799 "Creating one or more symtabs for objfile %s ...\n",
2800 last_objfile_name);
2801 }
2802 fprintf_filtered (gdb_stdlog,
2803 "Created symtab %s for module %s.\n",
2804 host_address_to_string (symtab), filename);
2805 }
2806
2807 /* Add it to CUST's list of symtabs. */
2808 if (cust->filetabs == NULL)
2809 {
2810 cust->filetabs = symtab;
2811 cust->last_filetab = symtab;
2812 }
2813 else
2814 {
2815 cust->last_filetab->next = symtab;
2816 cust->last_filetab = symtab;
2817 }
2818
2819 /* Backlink to the containing compunit symtab. */
2820 symtab->compunit_symtab = cust;
2821
2822 return symtab;
2823 }
2824
2825 /* Allocate and initialize a new compunit.
2826 NAME is the name of the main source file, if there is one, or some
2827 descriptive text if there are no source files. */
2828
2829 struct compunit_symtab *
2830 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2831 {
2832 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2833 struct compunit_symtab);
2834 const char *saved_name;
2835
2836 cu->objfile = objfile;
2837
2838 /* The name we record here is only for display/debugging purposes.
2839 Just save the basename to avoid path issues (too long for display,
2840 relative vs absolute, etc.). */
2841 saved_name = lbasename (name);
2842 cu->name = obstack_strdup (&objfile->objfile_obstack, saved_name);
2843
2844 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2845
2846 if (symtab_create_debug)
2847 {
2848 fprintf_filtered (gdb_stdlog,
2849 "Created compunit symtab %s for %s.\n",
2850 host_address_to_string (cu),
2851 cu->name);
2852 }
2853
2854 return cu;
2855 }
2856
2857 /* Hook CU to the objfile it comes from. */
2858
2859 void
2860 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2861 {
2862 cu->next = cu->objfile->compunit_symtabs;
2863 cu->objfile->compunit_symtabs = cu;
2864 }
2865 \f
2866
2867 /* Reset all data structures in gdb which may contain references to
2868 symbol table data. */
2869
2870 void
2871 clear_symtab_users (symfile_add_flags add_flags)
2872 {
2873 /* Someday, we should do better than this, by only blowing away
2874 the things that really need to be blown. */
2875
2876 /* Clear the "current" symtab first, because it is no longer valid.
2877 breakpoint_re_set may try to access the current symtab. */
2878 clear_current_source_symtab_and_line ();
2879
2880 clear_displays ();
2881 clear_last_displayed_sal ();
2882 clear_pc_function_cache ();
2883 gdb::observers::new_objfile.notify (NULL);
2884
2885 /* Varobj may refer to old symbols, perform a cleanup. */
2886 varobj_invalidate ();
2887
2888 /* Now that the various caches have been cleared, we can re_set
2889 our breakpoints without risking it using stale data. */
2890 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2891 breakpoint_re_set ();
2892 }
2893 \f
2894 /* OVERLAYS:
2895 The following code implements an abstraction for debugging overlay sections.
2896
2897 The target model is as follows:
2898 1) The gnu linker will permit multiple sections to be mapped into the
2899 same VMA, each with its own unique LMA (or load address).
2900 2) It is assumed that some runtime mechanism exists for mapping the
2901 sections, one by one, from the load address into the VMA address.
2902 3) This code provides a mechanism for gdb to keep track of which
2903 sections should be considered to be mapped from the VMA to the LMA.
2904 This information is used for symbol lookup, and memory read/write.
2905 For instance, if a section has been mapped then its contents
2906 should be read from the VMA, otherwise from the LMA.
2907
2908 Two levels of debugger support for overlays are available. One is
2909 "manual", in which the debugger relies on the user to tell it which
2910 overlays are currently mapped. This level of support is
2911 implemented entirely in the core debugger, and the information about
2912 whether a section is mapped is kept in the objfile->obj_section table.
2913
2914 The second level of support is "automatic", and is only available if
2915 the target-specific code provides functionality to read the target's
2916 overlay mapping table, and translate its contents for the debugger
2917 (by updating the mapped state information in the obj_section tables).
2918
2919 The interface is as follows:
2920 User commands:
2921 overlay map <name> -- tell gdb to consider this section mapped
2922 overlay unmap <name> -- tell gdb to consider this section unmapped
2923 overlay list -- list the sections that GDB thinks are mapped
2924 overlay read-target -- get the target's state of what's mapped
2925 overlay off/manual/auto -- set overlay debugging state
2926 Functional interface:
2927 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2928 section, return that section.
2929 find_pc_overlay(pc): find any overlay section that contains
2930 the pc, either in its VMA or its LMA
2931 section_is_mapped(sect): true if overlay is marked as mapped
2932 section_is_overlay(sect): true if section's VMA != LMA
2933 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2934 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2935 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2936 overlay_mapped_address(...): map an address from section's LMA to VMA
2937 overlay_unmapped_address(...): map an address from section's VMA to LMA
2938 symbol_overlayed_address(...): Return a "current" address for symbol:
2939 either in VMA or LMA depending on whether
2940 the symbol's section is currently mapped. */
2941
2942 /* Overlay debugging state: */
2943
2944 enum overlay_debugging_state overlay_debugging = ovly_off;
2945 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2946
2947 /* Function: section_is_overlay (SECTION)
2948 Returns true if SECTION has VMA not equal to LMA, ie.
2949 SECTION is loaded at an address different from where it will "run". */
2950
2951 int
2952 section_is_overlay (struct obj_section *section)
2953 {
2954 if (overlay_debugging && section)
2955 {
2956 asection *bfd_section = section->the_bfd_section;
2957
2958 if (bfd_section_lma (bfd_section) != 0
2959 && bfd_section_lma (bfd_section) != bfd_section_vma (bfd_section))
2960 return 1;
2961 }
2962
2963 return 0;
2964 }
2965
2966 /* Function: overlay_invalidate_all (void)
2967 Invalidate the mapped state of all overlay sections (mark it as stale). */
2968
2969 static void
2970 overlay_invalidate_all (void)
2971 {
2972 struct obj_section *sect;
2973
2974 for (objfile *objfile : current_program_space->objfiles ())
2975 ALL_OBJFILE_OSECTIONS (objfile, sect)
2976 if (section_is_overlay (sect))
2977 sect->ovly_mapped = -1;
2978 }
2979
2980 /* Function: section_is_mapped (SECTION)
2981 Returns true if section is an overlay, and is currently mapped.
2982
2983 Access to the ovly_mapped flag is restricted to this function, so
2984 that we can do automatic update. If the global flag
2985 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2986 overlay_invalidate_all. If the mapped state of the particular
2987 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2988
2989 int
2990 section_is_mapped (struct obj_section *osect)
2991 {
2992 struct gdbarch *gdbarch;
2993
2994 if (osect == 0 || !section_is_overlay (osect))
2995 return 0;
2996
2997 switch (overlay_debugging)
2998 {
2999 default:
3000 case ovly_off:
3001 return 0; /* overlay debugging off */
3002 case ovly_auto: /* overlay debugging automatic */
3003 /* Unles there is a gdbarch_overlay_update function,
3004 there's really nothing useful to do here (can't really go auto). */
3005 gdbarch = get_objfile_arch (osect->objfile);
3006 if (gdbarch_overlay_update_p (gdbarch))
3007 {
3008 if (overlay_cache_invalid)
3009 {
3010 overlay_invalidate_all ();
3011 overlay_cache_invalid = 0;
3012 }
3013 if (osect->ovly_mapped == -1)
3014 gdbarch_overlay_update (gdbarch, osect);
3015 }
3016 /* fall thru */
3017 case ovly_on: /* overlay debugging manual */
3018 return osect->ovly_mapped == 1;
3019 }
3020 }
3021
3022 /* Function: pc_in_unmapped_range
3023 If PC falls into the lma range of SECTION, return true, else false. */
3024
3025 CORE_ADDR
3026 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3027 {
3028 if (section_is_overlay (section))
3029 {
3030 asection *bfd_section = section->the_bfd_section;
3031
3032 /* We assume the LMA is relocated by the same offset as the VMA. */
3033 bfd_vma size = bfd_section_size (bfd_section);
3034 CORE_ADDR offset = obj_section_offset (section);
3035
3036 if (bfd_section_lma (bfd_section) + offset <= pc
3037 && pc < bfd_section_lma (bfd_section) + offset + size)
3038 return 1;
3039 }
3040
3041 return 0;
3042 }
3043
3044 /* Function: pc_in_mapped_range
3045 If PC falls into the vma range of SECTION, return true, else false. */
3046
3047 CORE_ADDR
3048 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3049 {
3050 if (section_is_overlay (section))
3051 {
3052 if (obj_section_addr (section) <= pc
3053 && pc < obj_section_endaddr (section))
3054 return 1;
3055 }
3056
3057 return 0;
3058 }
3059
3060 /* Return true if the mapped ranges of sections A and B overlap, false
3061 otherwise. */
3062
3063 static int
3064 sections_overlap (struct obj_section *a, struct obj_section *b)
3065 {
3066 CORE_ADDR a_start = obj_section_addr (a);
3067 CORE_ADDR a_end = obj_section_endaddr (a);
3068 CORE_ADDR b_start = obj_section_addr (b);
3069 CORE_ADDR b_end = obj_section_endaddr (b);
3070
3071 return (a_start < b_end && b_start < a_end);
3072 }
3073
3074 /* Function: overlay_unmapped_address (PC, SECTION)
3075 Returns the address corresponding to PC in the unmapped (load) range.
3076 May be the same as PC. */
3077
3078 CORE_ADDR
3079 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3080 {
3081 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3082 {
3083 asection *bfd_section = section->the_bfd_section;
3084
3085 return (pc + bfd_section_lma (bfd_section)
3086 - bfd_section_vma (bfd_section));
3087 }
3088
3089 return pc;
3090 }
3091
3092 /* Function: overlay_mapped_address (PC, SECTION)
3093 Returns the address corresponding to PC in the mapped (runtime) range.
3094 May be the same as PC. */
3095
3096 CORE_ADDR
3097 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3098 {
3099 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3100 {
3101 asection *bfd_section = section->the_bfd_section;
3102
3103 return (pc + bfd_section_vma (bfd_section)
3104 - bfd_section_lma (bfd_section));
3105 }
3106
3107 return pc;
3108 }
3109
3110 /* Function: symbol_overlayed_address
3111 Return one of two addresses (relative to the VMA or to the LMA),
3112 depending on whether the section is mapped or not. */
3113
3114 CORE_ADDR
3115 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3116 {
3117 if (overlay_debugging)
3118 {
3119 /* If the symbol has no section, just return its regular address. */
3120 if (section == 0)
3121 return address;
3122 /* If the symbol's section is not an overlay, just return its
3123 address. */
3124 if (!section_is_overlay (section))
3125 return address;
3126 /* If the symbol's section is mapped, just return its address. */
3127 if (section_is_mapped (section))
3128 return address;
3129 /*
3130 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3131 * then return its LOADED address rather than its vma address!!
3132 */
3133 return overlay_unmapped_address (address, section);
3134 }
3135 return address;
3136 }
3137
3138 /* Function: find_pc_overlay (PC)
3139 Return the best-match overlay section for PC:
3140 If PC matches a mapped overlay section's VMA, return that section.
3141 Else if PC matches an unmapped section's VMA, return that section.
3142 Else if PC matches an unmapped section's LMA, return that section. */
3143
3144 struct obj_section *
3145 find_pc_overlay (CORE_ADDR pc)
3146 {
3147 struct obj_section *osect, *best_match = NULL;
3148
3149 if (overlay_debugging)
3150 {
3151 for (objfile *objfile : current_program_space->objfiles ())
3152 ALL_OBJFILE_OSECTIONS (objfile, osect)
3153 if (section_is_overlay (osect))
3154 {
3155 if (pc_in_mapped_range (pc, osect))
3156 {
3157 if (section_is_mapped (osect))
3158 return osect;
3159 else
3160 best_match = osect;
3161 }
3162 else if (pc_in_unmapped_range (pc, osect))
3163 best_match = osect;
3164 }
3165 }
3166 return best_match;
3167 }
3168
3169 /* Function: find_pc_mapped_section (PC)
3170 If PC falls into the VMA address range of an overlay section that is
3171 currently marked as MAPPED, return that section. Else return NULL. */
3172
3173 struct obj_section *
3174 find_pc_mapped_section (CORE_ADDR pc)
3175 {
3176 struct obj_section *osect;
3177
3178 if (overlay_debugging)
3179 {
3180 for (objfile *objfile : current_program_space->objfiles ())
3181 ALL_OBJFILE_OSECTIONS (objfile, osect)
3182 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3183 return osect;
3184 }
3185
3186 return NULL;
3187 }
3188
3189 /* Function: list_overlays_command
3190 Print a list of mapped sections and their PC ranges. */
3191
3192 static void
3193 list_overlays_command (const char *args, int from_tty)
3194 {
3195 int nmapped = 0;
3196 struct obj_section *osect;
3197
3198 if (overlay_debugging)
3199 {
3200 for (objfile *objfile : current_program_space->objfiles ())
3201 ALL_OBJFILE_OSECTIONS (objfile, osect)
3202 if (section_is_mapped (osect))
3203 {
3204 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3205 const char *name;
3206 bfd_vma lma, vma;
3207 int size;
3208
3209 vma = bfd_section_vma (osect->the_bfd_section);
3210 lma = bfd_section_lma (osect->the_bfd_section);
3211 size = bfd_section_size (osect->the_bfd_section);
3212 name = bfd_section_name (osect->the_bfd_section);
3213
3214 printf_filtered ("Section %s, loaded at ", name);
3215 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3216 puts_filtered (" - ");
3217 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3218 printf_filtered (", mapped at ");
3219 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3220 puts_filtered (" - ");
3221 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3222 puts_filtered ("\n");
3223
3224 nmapped++;
3225 }
3226 }
3227 if (nmapped == 0)
3228 printf_filtered (_("No sections are mapped.\n"));
3229 }
3230
3231 /* Function: map_overlay_command
3232 Mark the named section as mapped (ie. residing at its VMA address). */
3233
3234 static void
3235 map_overlay_command (const char *args, int from_tty)
3236 {
3237 struct obj_section *sec, *sec2;
3238
3239 if (!overlay_debugging)
3240 error (_("Overlay debugging not enabled. Use "
3241 "either the 'overlay auto' or\n"
3242 "the 'overlay manual' command."));
3243
3244 if (args == 0 || *args == 0)
3245 error (_("Argument required: name of an overlay section"));
3246
3247 /* First, find a section matching the user supplied argument. */
3248 for (objfile *obj_file : current_program_space->objfiles ())
3249 ALL_OBJFILE_OSECTIONS (obj_file, sec)
3250 if (!strcmp (bfd_section_name (sec->the_bfd_section), args))
3251 {
3252 /* Now, check to see if the section is an overlay. */
3253 if (!section_is_overlay (sec))
3254 continue; /* not an overlay section */
3255
3256 /* Mark the overlay as "mapped". */
3257 sec->ovly_mapped = 1;
3258
3259 /* Next, make a pass and unmap any sections that are
3260 overlapped by this new section: */
3261 for (objfile *objfile2 : current_program_space->objfiles ())
3262 ALL_OBJFILE_OSECTIONS (objfile2, sec2)
3263 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec,
3264 sec2))
3265 {
3266 if (info_verbose)
3267 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3268 bfd_section_name (sec2->the_bfd_section));
3269 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3270 }
3271 return;
3272 }
3273 error (_("No overlay section called %s"), args);
3274 }
3275
3276 /* Function: unmap_overlay_command
3277 Mark the overlay section as unmapped
3278 (ie. resident in its LMA address range, rather than the VMA range). */
3279
3280 static void
3281 unmap_overlay_command (const char *args, int from_tty)
3282 {
3283 struct obj_section *sec = NULL;
3284
3285 if (!overlay_debugging)
3286 error (_("Overlay debugging not enabled. "
3287 "Use either the 'overlay auto' or\n"
3288 "the 'overlay manual' command."));
3289
3290 if (args == 0 || *args == 0)
3291 error (_("Argument required: name of an overlay section"));
3292
3293 /* First, find a section matching the user supplied argument. */
3294 for (objfile *objfile : current_program_space->objfiles ())
3295 ALL_OBJFILE_OSECTIONS (objfile, sec)
3296 if (!strcmp (bfd_section_name (sec->the_bfd_section), args))
3297 {
3298 if (!sec->ovly_mapped)
3299 error (_("Section %s is not mapped"), args);
3300 sec->ovly_mapped = 0;
3301 return;
3302 }
3303 error (_("No overlay section called %s"), args);
3304 }
3305
3306 /* Function: overlay_auto_command
3307 A utility command to turn on overlay debugging.
3308 Possibly this should be done via a set/show command. */
3309
3310 static void
3311 overlay_auto_command (const char *args, int from_tty)
3312 {
3313 overlay_debugging = ovly_auto;
3314 enable_overlay_breakpoints ();
3315 if (info_verbose)
3316 printf_unfiltered (_("Automatic overlay debugging enabled."));
3317 }
3318
3319 /* Function: overlay_manual_command
3320 A utility command to turn on overlay debugging.
3321 Possibly this should be done via a set/show command. */
3322
3323 static void
3324 overlay_manual_command (const char *args, int from_tty)
3325 {
3326 overlay_debugging = ovly_on;
3327 disable_overlay_breakpoints ();
3328 if (info_verbose)
3329 printf_unfiltered (_("Overlay debugging enabled."));
3330 }
3331
3332 /* Function: overlay_off_command
3333 A utility command to turn on overlay debugging.
3334 Possibly this should be done via a set/show command. */
3335
3336 static void
3337 overlay_off_command (const char *args, int from_tty)
3338 {
3339 overlay_debugging = ovly_off;
3340 disable_overlay_breakpoints ();
3341 if (info_verbose)
3342 printf_unfiltered (_("Overlay debugging disabled."));
3343 }
3344
3345 static void
3346 overlay_load_command (const char *args, int from_tty)
3347 {
3348 struct gdbarch *gdbarch = get_current_arch ();
3349
3350 if (gdbarch_overlay_update_p (gdbarch))
3351 gdbarch_overlay_update (gdbarch, NULL);
3352 else
3353 error (_("This target does not know how to read its overlay state."));
3354 }
3355
3356 /* Function: overlay_command
3357 A place-holder for a mis-typed command. */
3358
3359 /* Command list chain containing all defined "overlay" subcommands. */
3360 static struct cmd_list_element *overlaylist;
3361
3362 static void
3363 overlay_command (const char *args, int from_tty)
3364 {
3365 printf_unfiltered
3366 ("\"overlay\" must be followed by the name of an overlay command.\n");
3367 help_list (overlaylist, "overlay ", all_commands, gdb_stdout);
3368 }
3369
3370 /* Target Overlays for the "Simplest" overlay manager:
3371
3372 This is GDB's default target overlay layer. It works with the
3373 minimal overlay manager supplied as an example by Cygnus. The
3374 entry point is via a function pointer "gdbarch_overlay_update",
3375 so targets that use a different runtime overlay manager can
3376 substitute their own overlay_update function and take over the
3377 function pointer.
3378
3379 The overlay_update function pokes around in the target's data structures
3380 to see what overlays are mapped, and updates GDB's overlay mapping with
3381 this information.
3382
3383 In this simple implementation, the target data structures are as follows:
3384 unsigned _novlys; /# number of overlay sections #/
3385 unsigned _ovly_table[_novlys][4] = {
3386 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3387 {..., ..., ..., ...},
3388 }
3389 unsigned _novly_regions; /# number of overlay regions #/
3390 unsigned _ovly_region_table[_novly_regions][3] = {
3391 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3392 {..., ..., ...},
3393 }
3394 These functions will attempt to update GDB's mappedness state in the
3395 symbol section table, based on the target's mappedness state.
3396
3397 To do this, we keep a cached copy of the target's _ovly_table, and
3398 attempt to detect when the cached copy is invalidated. The main
3399 entry point is "simple_overlay_update(SECT), which looks up SECT in
3400 the cached table and re-reads only the entry for that section from
3401 the target (whenever possible). */
3402
3403 /* Cached, dynamically allocated copies of the target data structures: */
3404 static unsigned (*cache_ovly_table)[4] = 0;
3405 static unsigned cache_novlys = 0;
3406 static CORE_ADDR cache_ovly_table_base = 0;
3407 enum ovly_index
3408 {
3409 VMA, OSIZE, LMA, MAPPED
3410 };
3411
3412 /* Throw away the cached copy of _ovly_table. */
3413
3414 static void
3415 simple_free_overlay_table (void)
3416 {
3417 if (cache_ovly_table)
3418 xfree (cache_ovly_table);
3419 cache_novlys = 0;
3420 cache_ovly_table = NULL;
3421 cache_ovly_table_base = 0;
3422 }
3423
3424 /* Read an array of ints of size SIZE from the target into a local buffer.
3425 Convert to host order. int LEN is number of ints. */
3426
3427 static void
3428 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3429 int len, int size, enum bfd_endian byte_order)
3430 {
3431 /* FIXME (alloca): Not safe if array is very large. */
3432 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3433 int i;
3434
3435 read_memory (memaddr, buf, len * size);
3436 for (i = 0; i < len; i++)
3437 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3438 }
3439
3440 /* Find and grab a copy of the target _ovly_table
3441 (and _novlys, which is needed for the table's size). */
3442
3443 static int
3444 simple_read_overlay_table (void)
3445 {
3446 struct bound_minimal_symbol novlys_msym;
3447 struct bound_minimal_symbol ovly_table_msym;
3448 struct gdbarch *gdbarch;
3449 int word_size;
3450 enum bfd_endian byte_order;
3451
3452 simple_free_overlay_table ();
3453 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3454 if (! novlys_msym.minsym)
3455 {
3456 error (_("Error reading inferior's overlay table: "
3457 "couldn't find `_novlys' variable\n"
3458 "in inferior. Use `overlay manual' mode."));
3459 return 0;
3460 }
3461
3462 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3463 if (! ovly_table_msym.minsym)
3464 {
3465 error (_("Error reading inferior's overlay table: couldn't find "
3466 "`_ovly_table' array\n"
3467 "in inferior. Use `overlay manual' mode."));
3468 return 0;
3469 }
3470
3471 gdbarch = get_objfile_arch (ovly_table_msym.objfile);
3472 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3473 byte_order = gdbarch_byte_order (gdbarch);
3474
3475 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3476 4, byte_order);
3477 cache_ovly_table
3478 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3479 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3480 read_target_long_array (cache_ovly_table_base,
3481 (unsigned int *) cache_ovly_table,
3482 cache_novlys * 4, word_size, byte_order);
3483
3484 return 1; /* SUCCESS */
3485 }
3486
3487 /* Function: simple_overlay_update_1
3488 A helper function for simple_overlay_update. Assuming a cached copy
3489 of _ovly_table exists, look through it to find an entry whose vma,
3490 lma and size match those of OSECT. Re-read the entry and make sure
3491 it still matches OSECT (else the table may no longer be valid).
3492 Set OSECT's mapped state to match the entry. Return: 1 for
3493 success, 0 for failure. */
3494
3495 static int
3496 simple_overlay_update_1 (struct obj_section *osect)
3497 {
3498 int i;
3499 asection *bsect = osect->the_bfd_section;
3500 struct gdbarch *gdbarch = get_objfile_arch (osect->objfile);
3501 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3502 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3503
3504 for (i = 0; i < cache_novlys; i++)
3505 if (cache_ovly_table[i][VMA] == bfd_section_vma (bsect)
3506 && cache_ovly_table[i][LMA] == bfd_section_lma (bsect))
3507 {
3508 read_target_long_array (cache_ovly_table_base + i * word_size,
3509 (unsigned int *) cache_ovly_table[i],
3510 4, word_size, byte_order);
3511 if (cache_ovly_table[i][VMA] == bfd_section_vma (bsect)
3512 && cache_ovly_table[i][LMA] == bfd_section_lma (bsect))
3513 {
3514 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3515 return 1;
3516 }
3517 else /* Warning! Warning! Target's ovly table has changed! */
3518 return 0;
3519 }
3520 return 0;
3521 }
3522
3523 /* Function: simple_overlay_update
3524 If OSECT is NULL, then update all sections' mapped state
3525 (after re-reading the entire target _ovly_table).
3526 If OSECT is non-NULL, then try to find a matching entry in the
3527 cached ovly_table and update only OSECT's mapped state.
3528 If a cached entry can't be found or the cache isn't valid, then
3529 re-read the entire cache, and go ahead and update all sections. */
3530
3531 void
3532 simple_overlay_update (struct obj_section *osect)
3533 {
3534 /* Were we given an osect to look up? NULL means do all of them. */
3535 if (osect)
3536 /* Have we got a cached copy of the target's overlay table? */
3537 if (cache_ovly_table != NULL)
3538 {
3539 /* Does its cached location match what's currently in the
3540 symtab? */
3541 struct bound_minimal_symbol minsym
3542 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3543
3544 if (minsym.minsym == NULL)
3545 error (_("Error reading inferior's overlay table: couldn't "
3546 "find `_ovly_table' array\n"
3547 "in inferior. Use `overlay manual' mode."));
3548
3549 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3550 /* Then go ahead and try to look up this single section in
3551 the cache. */
3552 if (simple_overlay_update_1 (osect))
3553 /* Found it! We're done. */
3554 return;
3555 }
3556
3557 /* Cached table no good: need to read the entire table anew.
3558 Or else we want all the sections, in which case it's actually
3559 more efficient to read the whole table in one block anyway. */
3560
3561 if (! simple_read_overlay_table ())
3562 return;
3563
3564 /* Now may as well update all sections, even if only one was requested. */
3565 for (objfile *objfile : current_program_space->objfiles ())
3566 ALL_OBJFILE_OSECTIONS (objfile, osect)
3567 if (section_is_overlay (osect))
3568 {
3569 int i;
3570 asection *bsect = osect->the_bfd_section;
3571
3572 for (i = 0; i < cache_novlys; i++)
3573 if (cache_ovly_table[i][VMA] == bfd_section_vma (bsect)
3574 && cache_ovly_table[i][LMA] == bfd_section_lma (bsect))
3575 { /* obj_section matches i'th entry in ovly_table. */
3576 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3577 break; /* finished with inner for loop: break out. */
3578 }
3579 }
3580 }
3581
3582 /* Set the output sections and output offsets for section SECTP in
3583 ABFD. The relocation code in BFD will read these offsets, so we
3584 need to be sure they're initialized. We map each section to itself,
3585 with no offset; this means that SECTP->vma will be honored. */
3586
3587 static void
3588 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3589 {
3590 sectp->output_section = sectp;
3591 sectp->output_offset = 0;
3592 }
3593
3594 /* Default implementation for sym_relocate. */
3595
3596 bfd_byte *
3597 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3598 bfd_byte *buf)
3599 {
3600 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3601 DWO file. */
3602 bfd *abfd = sectp->owner;
3603
3604 /* We're only interested in sections with relocation
3605 information. */
3606 if ((sectp->flags & SEC_RELOC) == 0)
3607 return NULL;
3608
3609 /* We will handle section offsets properly elsewhere, so relocate as if
3610 all sections begin at 0. */
3611 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3612
3613 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3614 }
3615
3616 /* Relocate the contents of a debug section SECTP in ABFD. The
3617 contents are stored in BUF if it is non-NULL, or returned in a
3618 malloc'd buffer otherwise.
3619
3620 For some platforms and debug info formats, shared libraries contain
3621 relocations against the debug sections (particularly for DWARF-2;
3622 one affected platform is PowerPC GNU/Linux, although it depends on
3623 the version of the linker in use). Also, ELF object files naturally
3624 have unresolved relocations for their debug sections. We need to apply
3625 the relocations in order to get the locations of symbols correct.
3626 Another example that may require relocation processing, is the
3627 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3628 debug section. */
3629
3630 bfd_byte *
3631 symfile_relocate_debug_section (struct objfile *objfile,
3632 asection *sectp, bfd_byte *buf)
3633 {
3634 gdb_assert (objfile->sf->sym_relocate);
3635
3636 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3637 }
3638
3639 struct symfile_segment_data *
3640 get_symfile_segment_data (bfd *abfd)
3641 {
3642 const struct sym_fns *sf = find_sym_fns (abfd);
3643
3644 if (sf == NULL)
3645 return NULL;
3646
3647 return sf->sym_segments (abfd);
3648 }
3649
3650 void
3651 free_symfile_segment_data (struct symfile_segment_data *data)
3652 {
3653 xfree (data->segment_bases);
3654 xfree (data->segment_sizes);
3655 xfree (data->segment_info);
3656 xfree (data);
3657 }
3658
3659 /* Given:
3660 - DATA, containing segment addresses from the object file ABFD, and
3661 the mapping from ABFD's sections onto the segments that own them,
3662 and
3663 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3664 segment addresses reported by the target,
3665 store the appropriate offsets for each section in OFFSETS.
3666
3667 If there are fewer entries in SEGMENT_BASES than there are segments
3668 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3669
3670 If there are more entries, then ignore the extra. The target may
3671 not be able to distinguish between an empty data segment and a
3672 missing data segment; a missing text segment is less plausible. */
3673
3674 int
3675 symfile_map_offsets_to_segments (bfd *abfd,
3676 const struct symfile_segment_data *data,
3677 section_offsets &offsets,
3678 int num_segment_bases,
3679 const CORE_ADDR *segment_bases)
3680 {
3681 int i;
3682 asection *sect;
3683
3684 /* It doesn't make sense to call this function unless you have some
3685 segment base addresses. */
3686 gdb_assert (num_segment_bases > 0);
3687
3688 /* If we do not have segment mappings for the object file, we
3689 can not relocate it by segments. */
3690 gdb_assert (data != NULL);
3691 gdb_assert (data->num_segments > 0);
3692
3693 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3694 {
3695 int which = data->segment_info[i];
3696
3697 gdb_assert (0 <= which && which <= data->num_segments);
3698
3699 /* Don't bother computing offsets for sections that aren't
3700 loaded as part of any segment. */
3701 if (! which)
3702 continue;
3703
3704 /* Use the last SEGMENT_BASES entry as the address of any extra
3705 segments mentioned in DATA->segment_info. */
3706 if (which > num_segment_bases)
3707 which = num_segment_bases;
3708
3709 offsets[i] = segment_bases[which - 1] - data->segment_bases[which - 1];
3710 }
3711
3712 return 1;
3713 }
3714
3715 static void
3716 symfile_find_segment_sections (struct objfile *objfile)
3717 {
3718 bfd *abfd = objfile->obfd;
3719 int i;
3720 asection *sect;
3721 struct symfile_segment_data *data;
3722
3723 data = get_symfile_segment_data (objfile->obfd);
3724 if (data == NULL)
3725 return;
3726
3727 if (data->num_segments != 1 && data->num_segments != 2)
3728 {
3729 free_symfile_segment_data (data);
3730 return;
3731 }
3732
3733 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3734 {
3735 int which = data->segment_info[i];
3736
3737 if (which == 1)
3738 {
3739 if (objfile->sect_index_text == -1)
3740 objfile->sect_index_text = sect->index;
3741
3742 if (objfile->sect_index_rodata == -1)
3743 objfile->sect_index_rodata = sect->index;
3744 }
3745 else if (which == 2)
3746 {
3747 if (objfile->sect_index_data == -1)
3748 objfile->sect_index_data = sect->index;
3749
3750 if (objfile->sect_index_bss == -1)
3751 objfile->sect_index_bss = sect->index;
3752 }
3753 }
3754
3755 free_symfile_segment_data (data);
3756 }
3757
3758 /* Listen for free_objfile events. */
3759
3760 static void
3761 symfile_free_objfile (struct objfile *objfile)
3762 {
3763 /* Remove the target sections owned by this objfile. */
3764 if (objfile != NULL)
3765 remove_target_sections ((void *) objfile);
3766 }
3767
3768 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3769 Expand all symtabs that match the specified criteria.
3770 See quick_symbol_functions.expand_symtabs_matching for details. */
3771
3772 void
3773 expand_symtabs_matching
3774 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3775 const lookup_name_info &lookup_name,
3776 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3777 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3778 enum search_domain kind)
3779 {
3780 for (objfile *objfile : current_program_space->objfiles ())
3781 {
3782 if (objfile->sf)
3783 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3784 lookup_name,
3785 symbol_matcher,
3786 expansion_notify, kind);
3787 }
3788 }
3789
3790 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3791 Map function FUN over every file.
3792 See quick_symbol_functions.map_symbol_filenames for details. */
3793
3794 void
3795 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3796 int need_fullname)
3797 {
3798 for (objfile *objfile : current_program_space->objfiles ())
3799 {
3800 if (objfile->sf)
3801 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3802 need_fullname);
3803 }
3804 }
3805
3806 #if GDB_SELF_TEST
3807
3808 namespace selftests {
3809 namespace filename_language {
3810
3811 static void test_filename_language ()
3812 {
3813 /* This test messes up the filename_language_table global. */
3814 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3815
3816 /* Test deducing an unknown extension. */
3817 language lang = deduce_language_from_filename ("myfile.blah");
3818 SELF_CHECK (lang == language_unknown);
3819
3820 /* Test deducing a known extension. */
3821 lang = deduce_language_from_filename ("myfile.c");
3822 SELF_CHECK (lang == language_c);
3823
3824 /* Test adding a new extension using the internal API. */
3825 add_filename_language (".blah", language_pascal);
3826 lang = deduce_language_from_filename ("myfile.blah");
3827 SELF_CHECK (lang == language_pascal);
3828 }
3829
3830 static void
3831 test_set_ext_lang_command ()
3832 {
3833 /* This test messes up the filename_language_table global. */
3834 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3835
3836 /* Confirm that the .hello extension is not known. */
3837 language lang = deduce_language_from_filename ("cake.hello");
3838 SELF_CHECK (lang == language_unknown);
3839
3840 /* Test adding a new extension using the CLI command. */
3841 auto args_holder = make_unique_xstrdup (".hello rust");
3842 ext_args = args_holder.get ();
3843 set_ext_lang_command (NULL, 1, NULL);
3844
3845 lang = deduce_language_from_filename ("cake.hello");
3846 SELF_CHECK (lang == language_rust);
3847
3848 /* Test overriding an existing extension using the CLI command. */
3849 int size_before = filename_language_table.size ();
3850 args_holder.reset (xstrdup (".hello pascal"));
3851 ext_args = args_holder.get ();
3852 set_ext_lang_command (NULL, 1, NULL);
3853 int size_after = filename_language_table.size ();
3854
3855 lang = deduce_language_from_filename ("cake.hello");
3856 SELF_CHECK (lang == language_pascal);
3857 SELF_CHECK (size_before == size_after);
3858 }
3859
3860 } /* namespace filename_language */
3861 } /* namespace selftests */
3862
3863 #endif /* GDB_SELF_TEST */
3864
3865 void
3866 _initialize_symfile (void)
3867 {
3868 struct cmd_list_element *c;
3869
3870 gdb::observers::free_objfile.attach (symfile_free_objfile);
3871
3872 #define READNOW_READNEVER_HELP \
3873 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3874 immediately. This makes the command slower, but may make future operations\n\
3875 faster.\n\
3876 The '-readnever' option will prevent GDB from reading the symbol file's\n\
3877 symbolic debug information."
3878
3879 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3880 Load symbol table from executable file FILE.\n\
3881 Usage: symbol-file [-readnow | -readnever] [-o OFF] FILE\n\
3882 OFF is an optional offset which is added to each section address.\n\
3883 The `file' command can also load symbol tables, as well as setting the file\n\
3884 to execute.\n" READNOW_READNEVER_HELP), &cmdlist);
3885 set_cmd_completer (c, filename_completer);
3886
3887 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3888 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3889 Usage: add-symbol-file FILE [-readnow | -readnever] [-o OFF] [ADDR] \
3890 [-s SECT-NAME SECT-ADDR]...\n\
3891 ADDR is the starting address of the file's text.\n\
3892 Each '-s' argument provides a section name and address, and\n\
3893 should be specified if the data and bss segments are not contiguous\n\
3894 with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n\
3895 OFF is an optional offset which is added to the default load addresses\n\
3896 of all sections for which no other address was specified.\n"
3897 READNOW_READNEVER_HELP),
3898 &cmdlist);
3899 set_cmd_completer (c, filename_completer);
3900
3901 c = add_cmd ("remove-symbol-file", class_files,
3902 remove_symbol_file_command, _("\
3903 Remove a symbol file added via the add-symbol-file command.\n\
3904 Usage: remove-symbol-file FILENAME\n\
3905 remove-symbol-file -a ADDRESS\n\
3906 The file to remove can be identified by its filename or by an address\n\
3907 that lies within the boundaries of this symbol file in memory."),
3908 &cmdlist);
3909
3910 c = add_cmd ("load", class_files, load_command, _("\
3911 Dynamically load FILE into the running program.\n\
3912 FILE symbols are recorded for access from GDB.\n\
3913 Usage: load [FILE] [OFFSET]\n\
3914 An optional load OFFSET may also be given as a literal address.\n\
3915 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3916 on its own."), &cmdlist);
3917 set_cmd_completer (c, filename_completer);
3918
3919 add_prefix_cmd ("overlay", class_support, overlay_command,
3920 _("Commands for debugging overlays."), &overlaylist,
3921 "overlay ", 0, &cmdlist);
3922
3923 add_com_alias ("ovly", "overlay", class_alias, 1);
3924 add_com_alias ("ov", "overlay", class_alias, 1);
3925
3926 add_cmd ("map-overlay", class_support, map_overlay_command,
3927 _("Assert that an overlay section is mapped."), &overlaylist);
3928
3929 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3930 _("Assert that an overlay section is unmapped."), &overlaylist);
3931
3932 add_cmd ("list-overlays", class_support, list_overlays_command,
3933 _("List mappings of overlay sections."), &overlaylist);
3934
3935 add_cmd ("manual", class_support, overlay_manual_command,
3936 _("Enable overlay debugging."), &overlaylist);
3937 add_cmd ("off", class_support, overlay_off_command,
3938 _("Disable overlay debugging."), &overlaylist);
3939 add_cmd ("auto", class_support, overlay_auto_command,
3940 _("Enable automatic overlay debugging."), &overlaylist);
3941 add_cmd ("load-target", class_support, overlay_load_command,
3942 _("Read the overlay mapping state from the target."), &overlaylist);
3943
3944 /* Filename extension to source language lookup table: */
3945 add_setshow_string_noescape_cmd ("extension-language", class_files,
3946 &ext_args, _("\
3947 Set mapping between filename extension and source language."), _("\
3948 Show mapping between filename extension and source language."), _("\
3949 Usage: set extension-language .foo bar"),
3950 set_ext_lang_command,
3951 show_ext_args,
3952 &setlist, &showlist);
3953
3954 add_info ("extensions", info_ext_lang_command,
3955 _("All filename extensions associated with a source language."));
3956
3957 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3958 &debug_file_directory, _("\
3959 Set the directories where separate debug symbols are searched for."), _("\
3960 Show the directories where separate debug symbols are searched for."), _("\
3961 Separate debug symbols are first searched for in the same\n\
3962 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3963 and lastly at the path of the directory of the binary with\n\
3964 each global debug-file-directory component prepended."),
3965 NULL,
3966 show_debug_file_directory,
3967 &setlist, &showlist);
3968
3969 add_setshow_enum_cmd ("symbol-loading", no_class,
3970 print_symbol_loading_enums, &print_symbol_loading,
3971 _("\
3972 Set printing of symbol loading messages."), _("\
3973 Show printing of symbol loading messages."), _("\
3974 off == turn all messages off\n\
3975 brief == print messages for the executable,\n\
3976 and brief messages for shared libraries\n\
3977 full == print messages for the executable,\n\
3978 and messages for each shared library."),
3979 NULL,
3980 NULL,
3981 &setprintlist, &showprintlist);
3982
3983 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3984 &separate_debug_file_debug, _("\
3985 Set printing of separate debug info file search debug."), _("\
3986 Show printing of separate debug info file search debug."), _("\
3987 When on, GDB prints the searched locations while looking for separate debug \
3988 info files."), NULL, NULL, &setdebuglist, &showdebuglist);
3989
3990 #if GDB_SELF_TEST
3991 selftests::register_test
3992 ("filename_language", selftests::filename_language::test_filename_language);
3993 selftests::register_test
3994 ("set_ext_lang_command",
3995 selftests::filename_language::test_set_ext_lang_command);
3996 #endif
3997 }
This page took 0.159382 seconds and 4 git commands to generate.