gdb: add target_ops::supports_displaced_step
[deliverable/binutils-gdb.git] / gdb / symfile.c
1 /* Generic symbol file reading for the GNU debugger, GDB.
2
3 Copyright (C) 1990-2020 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "arch-utils.h"
24 #include "bfdlink.h"
25 #include "symtab.h"
26 #include "gdbtypes.h"
27 #include "gdbcore.h"
28 #include "frame.h"
29 #include "target.h"
30 #include "value.h"
31 #include "symfile.h"
32 #include "objfiles.h"
33 #include "source.h"
34 #include "gdbcmd.h"
35 #include "breakpoint.h"
36 #include "language.h"
37 #include "complaints.h"
38 #include "demangle.h"
39 #include "inferior.h"
40 #include "regcache.h"
41 #include "filenames.h" /* for DOSish file names */
42 #include "gdb-stabs.h"
43 #include "gdb_obstack.h"
44 #include "completer.h"
45 #include "bcache.h"
46 #include "hashtab.h"
47 #include "readline/tilde.h"
48 #include "block.h"
49 #include "observable.h"
50 #include "exec.h"
51 #include "parser-defs.h"
52 #include "varobj.h"
53 #include "elf-bfd.h"
54 #include "solib.h"
55 #include "remote.h"
56 #include "stack.h"
57 #include "gdb_bfd.h"
58 #include "cli/cli-utils.h"
59 #include "gdbsupport/byte-vector.h"
60 #include "gdbsupport/pathstuff.h"
61 #include "gdbsupport/selftest.h"
62 #include "cli/cli-style.h"
63 #include "gdbsupport/forward-scope-exit.h"
64
65 #include <sys/types.h>
66 #include <fcntl.h>
67 #include <sys/stat.h>
68 #include <ctype.h>
69 #include <chrono>
70 #include <algorithm>
71
72 #include "psymtab.h"
73
74 int (*deprecated_ui_load_progress_hook) (const char *section,
75 unsigned long num);
76 void (*deprecated_show_load_progress) (const char *section,
77 unsigned long section_sent,
78 unsigned long section_size,
79 unsigned long total_sent,
80 unsigned long total_size);
81 void (*deprecated_pre_add_symbol_hook) (const char *);
82 void (*deprecated_post_add_symbol_hook) (void);
83
84 using clear_symtab_users_cleanup
85 = FORWARD_SCOPE_EXIT (clear_symtab_users);
86
87 /* Global variables owned by this file. */
88 int readnow_symbol_files; /* Read full symbols immediately. */
89 int readnever_symbol_files; /* Never read full symbols. */
90
91 /* Functions this file defines. */
92
93 static void symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
94 objfile_flags flags, CORE_ADDR reloff);
95
96 static const struct sym_fns *find_sym_fns (bfd *);
97
98 static void overlay_invalidate_all (void);
99
100 static void simple_free_overlay_table (void);
101
102 static void read_target_long_array (CORE_ADDR, unsigned int *, int, int,
103 enum bfd_endian);
104
105 static int simple_read_overlay_table (void);
106
107 static int simple_overlay_update_1 (struct obj_section *);
108
109 static void symfile_find_segment_sections (struct objfile *objfile);
110
111 /* List of all available sym_fns. On gdb startup, each object file reader
112 calls add_symtab_fns() to register information on each format it is
113 prepared to read. */
114
115 struct registered_sym_fns
116 {
117 registered_sym_fns (bfd_flavour sym_flavour_, const struct sym_fns *sym_fns_)
118 : sym_flavour (sym_flavour_), sym_fns (sym_fns_)
119 {}
120
121 /* BFD flavour that we handle. */
122 enum bfd_flavour sym_flavour;
123
124 /* The "vtable" of symbol functions. */
125 const struct sym_fns *sym_fns;
126 };
127
128 static std::vector<registered_sym_fns> symtab_fns;
129
130 /* Values for "set print symbol-loading". */
131
132 const char print_symbol_loading_off[] = "off";
133 const char print_symbol_loading_brief[] = "brief";
134 const char print_symbol_loading_full[] = "full";
135 static const char *print_symbol_loading_enums[] =
136 {
137 print_symbol_loading_off,
138 print_symbol_loading_brief,
139 print_symbol_loading_full,
140 NULL
141 };
142 static const char *print_symbol_loading = print_symbol_loading_full;
143
144 /* See symfile.h. */
145
146 bool auto_solib_add = true;
147 \f
148
149 /* Return non-zero if symbol-loading messages should be printed.
150 FROM_TTY is the standard from_tty argument to gdb commands.
151 If EXEC is non-zero the messages are for the executable.
152 Otherwise, messages are for shared libraries.
153 If FULL is non-zero then the caller is printing a detailed message.
154 E.g., the message includes the shared library name.
155 Otherwise, the caller is printing a brief "summary" message. */
156
157 int
158 print_symbol_loading_p (int from_tty, int exec, int full)
159 {
160 if (!from_tty && !info_verbose)
161 return 0;
162
163 if (exec)
164 {
165 /* We don't check FULL for executables, there are few such
166 messages, therefore brief == full. */
167 return print_symbol_loading != print_symbol_loading_off;
168 }
169 if (full)
170 return print_symbol_loading == print_symbol_loading_full;
171 return print_symbol_loading == print_symbol_loading_brief;
172 }
173
174 /* True if we are reading a symbol table. */
175
176 int currently_reading_symtab = 0;
177
178 /* Increment currently_reading_symtab and return a cleanup that can be
179 used to decrement it. */
180
181 scoped_restore_tmpl<int>
182 increment_reading_symtab (void)
183 {
184 gdb_assert (currently_reading_symtab >= 0);
185 return make_scoped_restore (&currently_reading_symtab,
186 currently_reading_symtab + 1);
187 }
188
189 /* Remember the lowest-addressed loadable section we've seen.
190 This function is called via bfd_map_over_sections.
191
192 In case of equal vmas, the section with the largest size becomes the
193 lowest-addressed loadable section.
194
195 If the vmas and sizes are equal, the last section is considered the
196 lowest-addressed loadable section. */
197
198 void
199 find_lowest_section (bfd *abfd, asection *sect, void *obj)
200 {
201 asection **lowest = (asection **) obj;
202
203 if (0 == (bfd_section_flags (sect) & (SEC_ALLOC | SEC_LOAD)))
204 return;
205 if (!*lowest)
206 *lowest = sect; /* First loadable section */
207 else if (bfd_section_vma (*lowest) > bfd_section_vma (sect))
208 *lowest = sect; /* A lower loadable section */
209 else if (bfd_section_vma (*lowest) == bfd_section_vma (sect)
210 && (bfd_section_size (*lowest) <= bfd_section_size (sect)))
211 *lowest = sect;
212 }
213
214 /* Build (allocate and populate) a section_addr_info struct from
215 an existing section table. */
216
217 section_addr_info
218 build_section_addr_info_from_section_table (const struct target_section *start,
219 const struct target_section *end)
220 {
221 const struct target_section *stp;
222
223 section_addr_info sap;
224
225 for (stp = start; stp != end; stp++)
226 {
227 struct bfd_section *asect = stp->the_bfd_section;
228 bfd *abfd = asect->owner;
229
230 if (bfd_section_flags (asect) & (SEC_ALLOC | SEC_LOAD)
231 && sap.size () < end - start)
232 sap.emplace_back (stp->addr,
233 bfd_section_name (asect),
234 gdb_bfd_section_index (abfd, asect));
235 }
236
237 return sap;
238 }
239
240 /* Create a section_addr_info from section offsets in ABFD. */
241
242 static section_addr_info
243 build_section_addr_info_from_bfd (bfd *abfd)
244 {
245 struct bfd_section *sec;
246
247 section_addr_info sap;
248 for (sec = abfd->sections; sec != NULL; sec = sec->next)
249 if (bfd_section_flags (sec) & (SEC_ALLOC | SEC_LOAD))
250 sap.emplace_back (bfd_section_vma (sec),
251 bfd_section_name (sec),
252 gdb_bfd_section_index (abfd, sec));
253
254 return sap;
255 }
256
257 /* Create a section_addr_info from section offsets in OBJFILE. */
258
259 section_addr_info
260 build_section_addr_info_from_objfile (const struct objfile *objfile)
261 {
262 int i;
263
264 /* Before reread_symbols gets rewritten it is not safe to call:
265 gdb_assert (objfile->num_sections == bfd_count_sections (objfile->obfd));
266 */
267 section_addr_info sap = build_section_addr_info_from_bfd (objfile->obfd);
268 for (i = 0; i < sap.size (); i++)
269 {
270 int sectindex = sap[i].sectindex;
271
272 sap[i].addr += objfile->section_offsets[sectindex];
273 }
274 return sap;
275 }
276
277 /* Initialize OBJFILE's sect_index_* members. */
278
279 static void
280 init_objfile_sect_indices (struct objfile *objfile)
281 {
282 asection *sect;
283 int i;
284
285 sect = bfd_get_section_by_name (objfile->obfd, ".text");
286 if (sect)
287 objfile->sect_index_text = sect->index;
288
289 sect = bfd_get_section_by_name (objfile->obfd, ".data");
290 if (sect)
291 objfile->sect_index_data = sect->index;
292
293 sect = bfd_get_section_by_name (objfile->obfd, ".bss");
294 if (sect)
295 objfile->sect_index_bss = sect->index;
296
297 sect = bfd_get_section_by_name (objfile->obfd, ".rodata");
298 if (sect)
299 objfile->sect_index_rodata = sect->index;
300
301 /* This is where things get really weird... We MUST have valid
302 indices for the various sect_index_* members or gdb will abort.
303 So if for example, there is no ".text" section, we have to
304 accomodate that. First, check for a file with the standard
305 one or two segments. */
306
307 symfile_find_segment_sections (objfile);
308
309 /* Except when explicitly adding symbol files at some address,
310 section_offsets contains nothing but zeros, so it doesn't matter
311 which slot in section_offsets the individual sect_index_* members
312 index into. So if they are all zero, it is safe to just point
313 all the currently uninitialized indices to the first slot. But
314 beware: if this is the main executable, it may be relocated
315 later, e.g. by the remote qOffsets packet, and then this will
316 be wrong! That's why we try segments first. */
317
318 for (i = 0; i < objfile->section_offsets.size (); i++)
319 {
320 if (objfile->section_offsets[i] != 0)
321 {
322 break;
323 }
324 }
325 if (i == objfile->section_offsets.size ())
326 {
327 if (objfile->sect_index_text == -1)
328 objfile->sect_index_text = 0;
329 if (objfile->sect_index_data == -1)
330 objfile->sect_index_data = 0;
331 if (objfile->sect_index_bss == -1)
332 objfile->sect_index_bss = 0;
333 if (objfile->sect_index_rodata == -1)
334 objfile->sect_index_rodata = 0;
335 }
336 }
337
338 /* The arguments to place_section. */
339
340 struct place_section_arg
341 {
342 section_offsets *offsets;
343 CORE_ADDR lowest;
344 };
345
346 /* Find a unique offset to use for loadable section SECT if
347 the user did not provide an offset. */
348
349 static void
350 place_section (bfd *abfd, asection *sect, void *obj)
351 {
352 struct place_section_arg *arg = (struct place_section_arg *) obj;
353 section_offsets &offsets = *arg->offsets;
354 CORE_ADDR start_addr;
355 int done;
356 ULONGEST align = ((ULONGEST) 1) << bfd_section_alignment (sect);
357
358 /* We are only interested in allocated sections. */
359 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
360 return;
361
362 /* If the user specified an offset, honor it. */
363 if (offsets[gdb_bfd_section_index (abfd, sect)] != 0)
364 return;
365
366 /* Otherwise, let's try to find a place for the section. */
367 start_addr = (arg->lowest + align - 1) & -align;
368
369 do {
370 asection *cur_sec;
371
372 done = 1;
373
374 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
375 {
376 int indx = cur_sec->index;
377
378 /* We don't need to compare against ourself. */
379 if (cur_sec == sect)
380 continue;
381
382 /* We can only conflict with allocated sections. */
383 if ((bfd_section_flags (cur_sec) & SEC_ALLOC) == 0)
384 continue;
385
386 /* If the section offset is 0, either the section has not been placed
387 yet, or it was the lowest section placed (in which case LOWEST
388 will be past its end). */
389 if (offsets[indx] == 0)
390 continue;
391
392 /* If this section would overlap us, then we must move up. */
393 if (start_addr + bfd_section_size (sect) > offsets[indx]
394 && start_addr < offsets[indx] + bfd_section_size (cur_sec))
395 {
396 start_addr = offsets[indx] + bfd_section_size (cur_sec);
397 start_addr = (start_addr + align - 1) & -align;
398 done = 0;
399 break;
400 }
401
402 /* Otherwise, we appear to be OK. So far. */
403 }
404 }
405 while (!done);
406
407 offsets[gdb_bfd_section_index (abfd, sect)] = start_addr;
408 arg->lowest = start_addr + bfd_section_size (sect);
409 }
410
411 /* Store section_addr_info as prepared (made relative and with SECTINDEX
412 filled-in) by addr_info_make_relative into SECTION_OFFSETS. */
413
414 void
415 relative_addr_info_to_section_offsets (section_offsets &section_offsets,
416 const section_addr_info &addrs)
417 {
418 int i;
419
420 section_offsets.assign (section_offsets.size (), 0);
421
422 /* Now calculate offsets for section that were specified by the caller. */
423 for (i = 0; i < addrs.size (); i++)
424 {
425 const struct other_sections *osp;
426
427 osp = &addrs[i];
428 if (osp->sectindex == -1)
429 continue;
430
431 /* Record all sections in offsets. */
432 /* The section_offsets in the objfile are here filled in using
433 the BFD index. */
434 section_offsets[osp->sectindex] = osp->addr;
435 }
436 }
437
438 /* Transform section name S for a name comparison. prelink can split section
439 `.bss' into two sections `.dynbss' and `.bss' (in this order). Similarly
440 prelink can split `.sbss' into `.sdynbss' and `.sbss'. Use virtual address
441 of the new `.dynbss' (`.sdynbss') section as the adjacent new `.bss'
442 (`.sbss') section has invalid (increased) virtual address. */
443
444 static const char *
445 addr_section_name (const char *s)
446 {
447 if (strcmp (s, ".dynbss") == 0)
448 return ".bss";
449 if (strcmp (s, ".sdynbss") == 0)
450 return ".sbss";
451
452 return s;
453 }
454
455 /* std::sort comparator for addrs_section_sort. Sort entries in
456 ascending order by their (name, sectindex) pair. sectindex makes
457 the sort by name stable. */
458
459 static bool
460 addrs_section_compar (const struct other_sections *a,
461 const struct other_sections *b)
462 {
463 int retval;
464
465 retval = strcmp (addr_section_name (a->name.c_str ()),
466 addr_section_name (b->name.c_str ()));
467 if (retval != 0)
468 return retval < 0;
469
470 return a->sectindex < b->sectindex;
471 }
472
473 /* Provide sorted array of pointers to sections of ADDRS. */
474
475 static std::vector<const struct other_sections *>
476 addrs_section_sort (const section_addr_info &addrs)
477 {
478 int i;
479
480 std::vector<const struct other_sections *> array (addrs.size ());
481 for (i = 0; i < addrs.size (); i++)
482 array[i] = &addrs[i];
483
484 std::sort (array.begin (), array.end (), addrs_section_compar);
485
486 return array;
487 }
488
489 /* Relativize absolute addresses in ADDRS into offsets based on ABFD. Fill-in
490 also SECTINDEXes specific to ABFD there. This function can be used to
491 rebase ADDRS to start referencing different BFD than before. */
492
493 void
494 addr_info_make_relative (section_addr_info *addrs, bfd *abfd)
495 {
496 asection *lower_sect;
497 CORE_ADDR lower_offset;
498 int i;
499
500 /* Find lowest loadable section to be used as starting point for
501 contiguous sections. */
502 lower_sect = NULL;
503 bfd_map_over_sections (abfd, find_lowest_section, &lower_sect);
504 if (lower_sect == NULL)
505 {
506 warning (_("no loadable sections found in added symbol-file %s"),
507 bfd_get_filename (abfd));
508 lower_offset = 0;
509 }
510 else
511 lower_offset = bfd_section_vma (lower_sect);
512
513 /* Create ADDRS_TO_ABFD_ADDRS array to map the sections in ADDRS to sections
514 in ABFD. Section names are not unique - there can be multiple sections of
515 the same name. Also the sections of the same name do not have to be
516 adjacent to each other. Some sections may be present only in one of the
517 files. Even sections present in both files do not have to be in the same
518 order.
519
520 Use stable sort by name for the sections in both files. Then linearly
521 scan both lists matching as most of the entries as possible. */
522
523 std::vector<const struct other_sections *> addrs_sorted
524 = addrs_section_sort (*addrs);
525
526 section_addr_info abfd_addrs = build_section_addr_info_from_bfd (abfd);
527 std::vector<const struct other_sections *> abfd_addrs_sorted
528 = addrs_section_sort (abfd_addrs);
529
530 /* Now create ADDRS_TO_ABFD_ADDRS from ADDRS_SORTED and
531 ABFD_ADDRS_SORTED. */
532
533 std::vector<const struct other_sections *>
534 addrs_to_abfd_addrs (addrs->size (), nullptr);
535
536 std::vector<const struct other_sections *>::iterator abfd_sorted_iter
537 = abfd_addrs_sorted.begin ();
538 for (const other_sections *sect : addrs_sorted)
539 {
540 const char *sect_name = addr_section_name (sect->name.c_str ());
541
542 while (abfd_sorted_iter != abfd_addrs_sorted.end ()
543 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
544 sect_name) < 0)
545 abfd_sorted_iter++;
546
547 if (abfd_sorted_iter != abfd_addrs_sorted.end ()
548 && strcmp (addr_section_name ((*abfd_sorted_iter)->name.c_str ()),
549 sect_name) == 0)
550 {
551 int index_in_addrs;
552
553 /* Make the found item directly addressable from ADDRS. */
554 index_in_addrs = sect - addrs->data ();
555 gdb_assert (addrs_to_abfd_addrs[index_in_addrs] == NULL);
556 addrs_to_abfd_addrs[index_in_addrs] = *abfd_sorted_iter;
557
558 /* Never use the same ABFD entry twice. */
559 abfd_sorted_iter++;
560 }
561 }
562
563 /* Calculate offsets for the loadable sections.
564 FIXME! Sections must be in order of increasing loadable section
565 so that contiguous sections can use the lower-offset!!!
566
567 Adjust offsets if the segments are not contiguous.
568 If the section is contiguous, its offset should be set to
569 the offset of the highest loadable section lower than it
570 (the loadable section directly below it in memory).
571 this_offset = lower_offset = lower_addr - lower_orig_addr */
572
573 for (i = 0; i < addrs->size (); i++)
574 {
575 const struct other_sections *sect = addrs_to_abfd_addrs[i];
576
577 if (sect)
578 {
579 /* This is the index used by BFD. */
580 (*addrs)[i].sectindex = sect->sectindex;
581
582 if ((*addrs)[i].addr != 0)
583 {
584 (*addrs)[i].addr -= sect->addr;
585 lower_offset = (*addrs)[i].addr;
586 }
587 else
588 (*addrs)[i].addr = lower_offset;
589 }
590 else
591 {
592 /* addr_section_name transformation is not used for SECT_NAME. */
593 const std::string &sect_name = (*addrs)[i].name;
594
595 /* This section does not exist in ABFD, which is normally
596 unexpected and we want to issue a warning.
597
598 However, the ELF prelinker does create a few sections which are
599 marked in the main executable as loadable (they are loaded in
600 memory from the DYNAMIC segment) and yet are not present in
601 separate debug info files. This is fine, and should not cause
602 a warning. Shared libraries contain just the section
603 ".gnu.liblist" but it is not marked as loadable there. There is
604 no other way to identify them than by their name as the sections
605 created by prelink have no special flags.
606
607 For the sections `.bss' and `.sbss' see addr_section_name. */
608
609 if (!(sect_name == ".gnu.liblist"
610 || sect_name == ".gnu.conflict"
611 || (sect_name == ".bss"
612 && i > 0
613 && (*addrs)[i - 1].name == ".dynbss"
614 && addrs_to_abfd_addrs[i - 1] != NULL)
615 || (sect_name == ".sbss"
616 && i > 0
617 && (*addrs)[i - 1].name == ".sdynbss"
618 && addrs_to_abfd_addrs[i - 1] != NULL)))
619 warning (_("section %s not found in %s"), sect_name.c_str (),
620 bfd_get_filename (abfd));
621
622 (*addrs)[i].addr = 0;
623 (*addrs)[i].sectindex = -1;
624 }
625 }
626 }
627
628 /* Parse the user's idea of an offset for dynamic linking, into our idea
629 of how to represent it for fast symbol reading. This is the default
630 version of the sym_fns.sym_offsets function for symbol readers that
631 don't need to do anything special. It allocates a section_offsets table
632 for the objectfile OBJFILE and stuffs ADDR into all of the offsets. */
633
634 void
635 default_symfile_offsets (struct objfile *objfile,
636 const section_addr_info &addrs)
637 {
638 objfile->section_offsets.resize (gdb_bfd_count_sections (objfile->obfd));
639 relative_addr_info_to_section_offsets (objfile->section_offsets, addrs);
640
641 /* For relocatable files, all loadable sections will start at zero.
642 The zero is meaningless, so try to pick arbitrary addresses such
643 that no loadable sections overlap. This algorithm is quadratic,
644 but the number of sections in a single object file is generally
645 small. */
646 if ((bfd_get_file_flags (objfile->obfd) & (EXEC_P | DYNAMIC)) == 0)
647 {
648 struct place_section_arg arg;
649 bfd *abfd = objfile->obfd;
650 asection *cur_sec;
651
652 for (cur_sec = abfd->sections; cur_sec != NULL; cur_sec = cur_sec->next)
653 /* We do not expect this to happen; just skip this step if the
654 relocatable file has a section with an assigned VMA. */
655 if (bfd_section_vma (cur_sec) != 0)
656 break;
657
658 if (cur_sec == NULL)
659 {
660 section_offsets &offsets = objfile->section_offsets;
661
662 /* Pick non-overlapping offsets for sections the user did not
663 place explicitly. */
664 arg.offsets = &objfile->section_offsets;
665 arg.lowest = 0;
666 bfd_map_over_sections (objfile->obfd, place_section, &arg);
667
668 /* Correctly filling in the section offsets is not quite
669 enough. Relocatable files have two properties that
670 (most) shared objects do not:
671
672 - Their debug information will contain relocations. Some
673 shared libraries do also, but many do not, so this can not
674 be assumed.
675
676 - If there are multiple code sections they will be loaded
677 at different relative addresses in memory than they are
678 in the objfile, since all sections in the file will start
679 at address zero.
680
681 Because GDB has very limited ability to map from an
682 address in debug info to the correct code section,
683 it relies on adding SECT_OFF_TEXT to things which might be
684 code. If we clear all the section offsets, and set the
685 section VMAs instead, then symfile_relocate_debug_section
686 will return meaningful debug information pointing at the
687 correct sections.
688
689 GDB has too many different data structures for section
690 addresses - a bfd, objfile, and so_list all have section
691 tables, as does exec_ops. Some of these could probably
692 be eliminated. */
693
694 for (cur_sec = abfd->sections; cur_sec != NULL;
695 cur_sec = cur_sec->next)
696 {
697 if ((bfd_section_flags (cur_sec) & SEC_ALLOC) == 0)
698 continue;
699
700 bfd_set_section_vma (cur_sec, offsets[cur_sec->index]);
701 exec_set_section_address (bfd_get_filename (abfd),
702 cur_sec->index,
703 offsets[cur_sec->index]);
704 offsets[cur_sec->index] = 0;
705 }
706 }
707 }
708
709 /* Remember the bfd indexes for the .text, .data, .bss and
710 .rodata sections. */
711 init_objfile_sect_indices (objfile);
712 }
713
714 /* Divide the file into segments, which are individual relocatable units.
715 This is the default version of the sym_fns.sym_segments function for
716 symbol readers that do not have an explicit representation of segments.
717 It assumes that object files do not have segments, and fully linked
718 files have a single segment. */
719
720 symfile_segment_data_up
721 default_symfile_segments (bfd *abfd)
722 {
723 int num_sections, i;
724 asection *sect;
725 CORE_ADDR low, high;
726
727 /* Relocatable files contain enough information to position each
728 loadable section independently; they should not be relocated
729 in segments. */
730 if ((bfd_get_file_flags (abfd) & (EXEC_P | DYNAMIC)) == 0)
731 return NULL;
732
733 /* Make sure there is at least one loadable section in the file. */
734 for (sect = abfd->sections; sect != NULL; sect = sect->next)
735 {
736 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
737 continue;
738
739 break;
740 }
741 if (sect == NULL)
742 return NULL;
743
744 low = bfd_section_vma (sect);
745 high = low + bfd_section_size (sect);
746
747 symfile_segment_data_up data (new symfile_segment_data);
748
749 num_sections = bfd_count_sections (abfd);
750
751 /* All elements are initialized to 0 (map to no segment). */
752 data->segment_info.resize (num_sections);
753
754 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
755 {
756 CORE_ADDR vma;
757
758 if ((bfd_section_flags (sect) & SEC_ALLOC) == 0)
759 continue;
760
761 vma = bfd_section_vma (sect);
762 if (vma < low)
763 low = vma;
764 if (vma + bfd_section_size (sect) > high)
765 high = vma + bfd_section_size (sect);
766
767 data->segment_info[i] = 1;
768 }
769
770 data->segments.emplace_back (low, high - low);
771
772 return data;
773 }
774
775 /* This is a convenience function to call sym_read for OBJFILE and
776 possibly force the partial symbols to be read. */
777
778 static void
779 read_symbols (struct objfile *objfile, symfile_add_flags add_flags)
780 {
781 (*objfile->sf->sym_read) (objfile, add_flags);
782 objfile->per_bfd->minsyms_read = true;
783
784 /* find_separate_debug_file_in_section should be called only if there is
785 single binary with no existing separate debug info file. */
786 if (!objfile_has_partial_symbols (objfile)
787 && objfile->separate_debug_objfile == NULL
788 && objfile->separate_debug_objfile_backlink == NULL)
789 {
790 gdb_bfd_ref_ptr abfd (find_separate_debug_file_in_section (objfile));
791
792 if (abfd != NULL)
793 {
794 /* find_separate_debug_file_in_section uses the same filename for the
795 virtual section-as-bfd like the bfd filename containing the
796 section. Therefore use also non-canonical name form for the same
797 file containing the section. */
798 symbol_file_add_separate (abfd.get (),
799 bfd_get_filename (abfd.get ()),
800 add_flags | SYMFILE_NOT_FILENAME, objfile);
801 }
802 }
803 if ((add_flags & SYMFILE_NO_READ) == 0)
804 require_partial_symbols (objfile, false);
805 }
806
807 /* Initialize entry point information for this objfile. */
808
809 static void
810 init_entry_point_info (struct objfile *objfile)
811 {
812 struct entry_info *ei = &objfile->per_bfd->ei;
813
814 if (ei->initialized)
815 return;
816 ei->initialized = 1;
817
818 /* Save startup file's range of PC addresses to help blockframe.c
819 decide where the bottom of the stack is. */
820
821 if (bfd_get_file_flags (objfile->obfd) & EXEC_P)
822 {
823 /* Executable file -- record its entry point so we'll recognize
824 the startup file because it contains the entry point. */
825 ei->entry_point = bfd_get_start_address (objfile->obfd);
826 ei->entry_point_p = 1;
827 }
828 else if (bfd_get_file_flags (objfile->obfd) & DYNAMIC
829 && bfd_get_start_address (objfile->obfd) != 0)
830 {
831 /* Some shared libraries may have entry points set and be
832 runnable. There's no clear way to indicate this, so just check
833 for values other than zero. */
834 ei->entry_point = bfd_get_start_address (objfile->obfd);
835 ei->entry_point_p = 1;
836 }
837 else
838 {
839 /* Examination of non-executable.o files. Short-circuit this stuff. */
840 ei->entry_point_p = 0;
841 }
842
843 if (ei->entry_point_p)
844 {
845 struct obj_section *osect;
846 CORE_ADDR entry_point = ei->entry_point;
847 int found;
848
849 /* Make certain that the address points at real code, and not a
850 function descriptor. */
851 entry_point
852 = gdbarch_convert_from_func_ptr_addr (objfile->arch (),
853 entry_point,
854 current_top_target ());
855
856 /* Remove any ISA markers, so that this matches entries in the
857 symbol table. */
858 ei->entry_point
859 = gdbarch_addr_bits_remove (objfile->arch (), entry_point);
860
861 found = 0;
862 ALL_OBJFILE_OSECTIONS (objfile, osect)
863 {
864 struct bfd_section *sect = osect->the_bfd_section;
865
866 if (entry_point >= bfd_section_vma (sect)
867 && entry_point < (bfd_section_vma (sect)
868 + bfd_section_size (sect)))
869 {
870 ei->the_bfd_section_index
871 = gdb_bfd_section_index (objfile->obfd, sect);
872 found = 1;
873 break;
874 }
875 }
876
877 if (!found)
878 ei->the_bfd_section_index = SECT_OFF_TEXT (objfile);
879 }
880 }
881
882 /* Process a symbol file, as either the main file or as a dynamically
883 loaded file.
884
885 This function does not set the OBJFILE's entry-point info.
886
887 OBJFILE is where the symbols are to be read from.
888
889 ADDRS is the list of section load addresses. If the user has given
890 an 'add-symbol-file' command, then this is the list of offsets and
891 addresses he or she provided as arguments to the command; or, if
892 we're handling a shared library, these are the actual addresses the
893 sections are loaded at, according to the inferior's dynamic linker
894 (as gleaned by GDB's shared library code). We convert each address
895 into an offset from the section VMA's as it appears in the object
896 file, and then call the file's sym_offsets function to convert this
897 into a format-specific offset table --- a `section_offsets'.
898 The sectindex field is used to control the ordering of sections
899 with the same name. Upon return, it is updated to contain the
900 corresponding BFD section index, or -1 if the section was not found.
901
902 ADD_FLAGS encodes verbosity level, whether this is main symbol or
903 an extra symbol file such as dynamically loaded code, and whether
904 breakpoint reset should be deferred. */
905
906 static void
907 syms_from_objfile_1 (struct objfile *objfile,
908 section_addr_info *addrs,
909 symfile_add_flags add_flags)
910 {
911 section_addr_info local_addr;
912 const int mainline = add_flags & SYMFILE_MAINLINE;
913
914 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
915
916 if (objfile->sf == NULL)
917 {
918 /* No symbols to load, but we still need to make sure
919 that the section_offsets table is allocated. */
920 int num_sections = gdb_bfd_count_sections (objfile->obfd);
921
922 objfile->section_offsets.assign (num_sections, 0);
923 return;
924 }
925
926 /* Make sure that partially constructed symbol tables will be cleaned up
927 if an error occurs during symbol reading. */
928 gdb::optional<clear_symtab_users_cleanup> defer_clear_users;
929
930 objfile_up objfile_holder (objfile);
931
932 /* If ADDRS is NULL, put together a dummy address list.
933 We now establish the convention that an addr of zero means
934 no load address was specified. */
935 if (! addrs)
936 addrs = &local_addr;
937
938 if (mainline)
939 {
940 /* We will modify the main symbol table, make sure that all its users
941 will be cleaned up if an error occurs during symbol reading. */
942 defer_clear_users.emplace ((symfile_add_flag) 0);
943
944 /* Since no error yet, throw away the old symbol table. */
945
946 if (symfile_objfile != NULL)
947 {
948 symfile_objfile->unlink ();
949 gdb_assert (symfile_objfile == NULL);
950 }
951
952 /* Currently we keep symbols from the add-symbol-file command.
953 If the user wants to get rid of them, they should do "symbol-file"
954 without arguments first. Not sure this is the best behavior
955 (PR 2207). */
956
957 (*objfile->sf->sym_new_init) (objfile);
958 }
959
960 /* Convert addr into an offset rather than an absolute address.
961 We find the lowest address of a loaded segment in the objfile,
962 and assume that <addr> is where that got loaded.
963
964 We no longer warn if the lowest section is not a text segment (as
965 happens for the PA64 port. */
966 if (addrs->size () > 0)
967 addr_info_make_relative (addrs, objfile->obfd);
968
969 /* Initialize symbol reading routines for this objfile, allow complaints to
970 appear for this new file, and record how verbose to be, then do the
971 initial symbol reading for this file. */
972
973 (*objfile->sf->sym_init) (objfile);
974 clear_complaints ();
975
976 (*objfile->sf->sym_offsets) (objfile, *addrs);
977
978 read_symbols (objfile, add_flags);
979
980 /* Discard cleanups as symbol reading was successful. */
981
982 objfile_holder.release ();
983 if (defer_clear_users)
984 defer_clear_users->release ();
985 }
986
987 /* Same as syms_from_objfile_1, but also initializes the objfile
988 entry-point info. */
989
990 static void
991 syms_from_objfile (struct objfile *objfile,
992 section_addr_info *addrs,
993 symfile_add_flags add_flags)
994 {
995 syms_from_objfile_1 (objfile, addrs, add_flags);
996 init_entry_point_info (objfile);
997 }
998
999 /* Perform required actions after either reading in the initial
1000 symbols for a new objfile, or mapping in the symbols from a reusable
1001 objfile. ADD_FLAGS is a bitmask of enum symfile_add_flags. */
1002
1003 static void
1004 finish_new_objfile (struct objfile *objfile, symfile_add_flags add_flags)
1005 {
1006 /* If this is the main symbol file we have to clean up all users of the
1007 old main symbol file. Otherwise it is sufficient to fixup all the
1008 breakpoints that may have been redefined by this symbol file. */
1009 if (add_flags & SYMFILE_MAINLINE)
1010 {
1011 /* OK, make it the "real" symbol file. */
1012 symfile_objfile = objfile;
1013
1014 clear_symtab_users (add_flags);
1015 }
1016 else if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
1017 {
1018 breakpoint_re_set ();
1019 }
1020
1021 /* We're done reading the symbol file; finish off complaints. */
1022 clear_complaints ();
1023 }
1024
1025 /* Process a symbol file, as either the main file or as a dynamically
1026 loaded file.
1027
1028 ABFD is a BFD already open on the file, as from symfile_bfd_open.
1029 A new reference is acquired by this function.
1030
1031 For NAME description see the objfile constructor.
1032
1033 ADD_FLAGS encodes verbosity, whether this is main symbol file or
1034 extra, such as dynamically loaded code, and what to do with breakpoints.
1035
1036 ADDRS is as described for syms_from_objfile_1, above.
1037 ADDRS is ignored when SYMFILE_MAINLINE bit is set in ADD_FLAGS.
1038
1039 PARENT is the original objfile if ABFD is a separate debug info file.
1040 Otherwise PARENT is NULL.
1041
1042 Upon success, returns a pointer to the objfile that was added.
1043 Upon failure, jumps back to command level (never returns). */
1044
1045 static struct objfile *
1046 symbol_file_add_with_addrs (bfd *abfd, const char *name,
1047 symfile_add_flags add_flags,
1048 section_addr_info *addrs,
1049 objfile_flags flags, struct objfile *parent)
1050 {
1051 struct objfile *objfile;
1052 const int from_tty = add_flags & SYMFILE_VERBOSE;
1053 const int mainline = add_flags & SYMFILE_MAINLINE;
1054 const int should_print = (print_symbol_loading_p (from_tty, mainline, 1)
1055 && (readnow_symbol_files
1056 || (add_flags & SYMFILE_NO_READ) == 0));
1057
1058 if (readnow_symbol_files)
1059 {
1060 flags |= OBJF_READNOW;
1061 add_flags &= ~SYMFILE_NO_READ;
1062 }
1063 else if (readnever_symbol_files
1064 || (parent != NULL && (parent->flags & OBJF_READNEVER)))
1065 {
1066 flags |= OBJF_READNEVER;
1067 add_flags |= SYMFILE_NO_READ;
1068 }
1069 if ((add_flags & SYMFILE_NOT_FILENAME) != 0)
1070 flags |= OBJF_NOT_FILENAME;
1071
1072 /* Give user a chance to burp if we'd be
1073 interactively wiping out any existing symbols. */
1074
1075 if ((have_full_symbols () || have_partial_symbols ())
1076 && mainline
1077 && from_tty
1078 && !query (_("Load new symbol table from \"%s\"? "), name))
1079 error (_("Not confirmed."));
1080
1081 if (mainline)
1082 flags |= OBJF_MAINLINE;
1083 objfile = objfile::make (abfd, name, flags, parent);
1084
1085 /* We either created a new mapped symbol table, mapped an existing
1086 symbol table file which has not had initial symbol reading
1087 performed, or need to read an unmapped symbol table. */
1088 if (should_print)
1089 {
1090 if (deprecated_pre_add_symbol_hook)
1091 deprecated_pre_add_symbol_hook (name);
1092 else
1093 printf_filtered (_("Reading symbols from %ps...\n"),
1094 styled_string (file_name_style.style (), name));
1095 }
1096 syms_from_objfile (objfile, addrs, add_flags);
1097
1098 /* We now have at least a partial symbol table. Check to see if the
1099 user requested that all symbols be read on initial access via either
1100 the gdb startup command line or on a per symbol file basis. Expand
1101 all partial symbol tables for this objfile if so. */
1102
1103 if ((flags & OBJF_READNOW))
1104 {
1105 if (should_print)
1106 printf_filtered (_("Expanding full symbols from %ps...\n"),
1107 styled_string (file_name_style.style (), name));
1108
1109 if (objfile->sf)
1110 objfile->sf->qf->expand_all_symtabs (objfile);
1111 }
1112
1113 /* Note that we only print a message if we have no symbols and have
1114 no separate debug file. If there is a separate debug file which
1115 does not have symbols, we'll have emitted this message for that
1116 file, and so printing it twice is just redundant. */
1117 if (should_print && !objfile_has_symbols (objfile)
1118 && objfile->separate_debug_objfile == nullptr)
1119 printf_filtered (_("(No debugging symbols found in %ps)\n"),
1120 styled_string (file_name_style.style (), name));
1121
1122 if (should_print)
1123 {
1124 if (deprecated_post_add_symbol_hook)
1125 deprecated_post_add_symbol_hook ();
1126 }
1127
1128 /* We print some messages regardless of whether 'from_tty ||
1129 info_verbose' is true, so make sure they go out at the right
1130 time. */
1131 gdb_flush (gdb_stdout);
1132
1133 if (objfile->sf == NULL)
1134 {
1135 gdb::observers::new_objfile.notify (objfile);
1136 return objfile; /* No symbols. */
1137 }
1138
1139 finish_new_objfile (objfile, add_flags);
1140
1141 gdb::observers::new_objfile.notify (objfile);
1142
1143 bfd_cache_close_all ();
1144 return (objfile);
1145 }
1146
1147 /* Add BFD as a separate debug file for OBJFILE. For NAME description
1148 see the objfile constructor. */
1149
1150 void
1151 symbol_file_add_separate (bfd *bfd, const char *name,
1152 symfile_add_flags symfile_flags,
1153 struct objfile *objfile)
1154 {
1155 /* Create section_addr_info. We can't directly use offsets from OBJFILE
1156 because sections of BFD may not match sections of OBJFILE and because
1157 vma may have been modified by tools such as prelink. */
1158 section_addr_info sap = build_section_addr_info_from_objfile (objfile);
1159
1160 symbol_file_add_with_addrs
1161 (bfd, name, symfile_flags, &sap,
1162 objfile->flags & (OBJF_REORDERED | OBJF_SHARED | OBJF_READNOW
1163 | OBJF_USERLOADED | OBJF_MAINLINE),
1164 objfile);
1165 }
1166
1167 /* Process the symbol file ABFD, as either the main file or as a
1168 dynamically loaded file.
1169 See symbol_file_add_with_addrs's comments for details. */
1170
1171 struct objfile *
1172 symbol_file_add_from_bfd (bfd *abfd, const char *name,
1173 symfile_add_flags add_flags,
1174 section_addr_info *addrs,
1175 objfile_flags flags, struct objfile *parent)
1176 {
1177 return symbol_file_add_with_addrs (abfd, name, add_flags, addrs, flags,
1178 parent);
1179 }
1180
1181 /* Process a symbol file, as either the main file or as a dynamically
1182 loaded file. See symbol_file_add_with_addrs's comments for details. */
1183
1184 struct objfile *
1185 symbol_file_add (const char *name, symfile_add_flags add_flags,
1186 section_addr_info *addrs, objfile_flags flags)
1187 {
1188 gdb_bfd_ref_ptr bfd (symfile_bfd_open (name));
1189
1190 return symbol_file_add_from_bfd (bfd.get (), name, add_flags, addrs,
1191 flags, NULL);
1192 }
1193
1194 /* Call symbol_file_add() with default values and update whatever is
1195 affected by the loading of a new main().
1196 Used when the file is supplied in the gdb command line
1197 and by some targets with special loading requirements.
1198 The auxiliary function, symbol_file_add_main_1(), has the flags
1199 argument for the switches that can only be specified in the symbol_file
1200 command itself. */
1201
1202 void
1203 symbol_file_add_main (const char *args, symfile_add_flags add_flags)
1204 {
1205 symbol_file_add_main_1 (args, add_flags, 0, 0);
1206 }
1207
1208 static void
1209 symbol_file_add_main_1 (const char *args, symfile_add_flags add_flags,
1210 objfile_flags flags, CORE_ADDR reloff)
1211 {
1212 add_flags |= current_inferior ()->symfile_flags | SYMFILE_MAINLINE;
1213
1214 struct objfile *objfile = symbol_file_add (args, add_flags, NULL, flags);
1215 if (reloff != 0)
1216 objfile_rebase (objfile, reloff);
1217
1218 /* Getting new symbols may change our opinion about
1219 what is frameless. */
1220 reinit_frame_cache ();
1221
1222 if ((add_flags & SYMFILE_NO_READ) == 0)
1223 set_initial_language ();
1224 }
1225
1226 void
1227 symbol_file_clear (int from_tty)
1228 {
1229 if ((have_full_symbols () || have_partial_symbols ())
1230 && from_tty
1231 && (symfile_objfile
1232 ? !query (_("Discard symbol table from `%s'? "),
1233 objfile_name (symfile_objfile))
1234 : !query (_("Discard symbol table? "))))
1235 error (_("Not confirmed."));
1236
1237 /* solib descriptors may have handles to objfiles. Wipe them before their
1238 objfiles get stale by free_all_objfiles. */
1239 no_shared_libraries (NULL, from_tty);
1240
1241 current_program_space->free_all_objfiles ();
1242
1243 clear_symtab_users (0);
1244
1245 gdb_assert (symfile_objfile == NULL);
1246 if (from_tty)
1247 printf_filtered (_("No symbol file now.\n"));
1248 }
1249
1250 /* See symfile.h. */
1251
1252 bool separate_debug_file_debug = false;
1253
1254 static int
1255 separate_debug_file_exists (const std::string &name, unsigned long crc,
1256 struct objfile *parent_objfile)
1257 {
1258 unsigned long file_crc;
1259 int file_crc_p;
1260 struct stat parent_stat, abfd_stat;
1261 int verified_as_different;
1262
1263 /* Find a separate debug info file as if symbols would be present in
1264 PARENT_OBJFILE itself this function would not be called. .gnu_debuglink
1265 section can contain just the basename of PARENT_OBJFILE without any
1266 ".debug" suffix as "/usr/lib/debug/path/to/file" is a separate tree where
1267 the separate debug infos with the same basename can exist. */
1268
1269 if (filename_cmp (name.c_str (), objfile_name (parent_objfile)) == 0)
1270 return 0;
1271
1272 if (separate_debug_file_debug)
1273 {
1274 printf_filtered (_(" Trying %s..."), name.c_str ());
1275 gdb_flush (gdb_stdout);
1276 }
1277
1278 gdb_bfd_ref_ptr abfd (gdb_bfd_open (name.c_str (), gnutarget));
1279
1280 if (abfd == NULL)
1281 {
1282 if (separate_debug_file_debug)
1283 printf_filtered (_(" no, unable to open.\n"));
1284
1285 return 0;
1286 }
1287
1288 /* Verify symlinks were not the cause of filename_cmp name difference above.
1289
1290 Some operating systems, e.g. Windows, do not provide a meaningful
1291 st_ino; they always set it to zero. (Windows does provide a
1292 meaningful st_dev.) Files accessed from gdbservers that do not
1293 support the vFile:fstat packet will also have st_ino set to zero.
1294 Do not indicate a duplicate library in either case. While there
1295 is no guarantee that a system that provides meaningful inode
1296 numbers will never set st_ino to zero, this is merely an
1297 optimization, so we do not need to worry about false negatives. */
1298
1299 if (bfd_stat (abfd.get (), &abfd_stat) == 0
1300 && abfd_stat.st_ino != 0
1301 && bfd_stat (parent_objfile->obfd, &parent_stat) == 0)
1302 {
1303 if (abfd_stat.st_dev == parent_stat.st_dev
1304 && abfd_stat.st_ino == parent_stat.st_ino)
1305 {
1306 if (separate_debug_file_debug)
1307 printf_filtered (_(" no, same file as the objfile.\n"));
1308
1309 return 0;
1310 }
1311 verified_as_different = 1;
1312 }
1313 else
1314 verified_as_different = 0;
1315
1316 file_crc_p = gdb_bfd_crc (abfd.get (), &file_crc);
1317
1318 if (!file_crc_p)
1319 {
1320 if (separate_debug_file_debug)
1321 printf_filtered (_(" no, error computing CRC.\n"));
1322
1323 return 0;
1324 }
1325
1326 if (crc != file_crc)
1327 {
1328 unsigned long parent_crc;
1329
1330 /* If the files could not be verified as different with
1331 bfd_stat then we need to calculate the parent's CRC
1332 to verify whether the files are different or not. */
1333
1334 if (!verified_as_different)
1335 {
1336 if (!gdb_bfd_crc (parent_objfile->obfd, &parent_crc))
1337 {
1338 if (separate_debug_file_debug)
1339 printf_filtered (_(" no, error computing CRC.\n"));
1340
1341 return 0;
1342 }
1343 }
1344
1345 if (verified_as_different || parent_crc != file_crc)
1346 warning (_("the debug information found in \"%s\""
1347 " does not match \"%s\" (CRC mismatch).\n"),
1348 name.c_str (), objfile_name (parent_objfile));
1349
1350 if (separate_debug_file_debug)
1351 printf_filtered (_(" no, CRC doesn't match.\n"));
1352
1353 return 0;
1354 }
1355
1356 if (separate_debug_file_debug)
1357 printf_filtered (_(" yes!\n"));
1358
1359 return 1;
1360 }
1361
1362 char *debug_file_directory = NULL;
1363 static void
1364 show_debug_file_directory (struct ui_file *file, int from_tty,
1365 struct cmd_list_element *c, const char *value)
1366 {
1367 fprintf_filtered (file,
1368 _("The directory where separate debug "
1369 "symbols are searched for is \"%s\".\n"),
1370 value);
1371 }
1372
1373 #if ! defined (DEBUG_SUBDIRECTORY)
1374 #define DEBUG_SUBDIRECTORY ".debug"
1375 #endif
1376
1377 /* Find a separate debuginfo file for OBJFILE, using DIR as the directory
1378 where the original file resides (may not be the same as
1379 dirname(objfile->name) due to symlinks), and DEBUGLINK as the file we are
1380 looking for. CANON_DIR is the "realpath" form of DIR.
1381 DIR must contain a trailing '/'.
1382 Returns the path of the file with separate debug info, or an empty
1383 string. */
1384
1385 static std::string
1386 find_separate_debug_file (const char *dir,
1387 const char *canon_dir,
1388 const char *debuglink,
1389 unsigned long crc32, struct objfile *objfile)
1390 {
1391 if (separate_debug_file_debug)
1392 printf_filtered (_("\nLooking for separate debug info (debug link) for "
1393 "%s\n"), objfile_name (objfile));
1394
1395 /* First try in the same directory as the original file. */
1396 std::string debugfile = dir;
1397 debugfile += debuglink;
1398
1399 if (separate_debug_file_exists (debugfile, crc32, objfile))
1400 return debugfile;
1401
1402 /* Then try in the subdirectory named DEBUG_SUBDIRECTORY. */
1403 debugfile = dir;
1404 debugfile += DEBUG_SUBDIRECTORY;
1405 debugfile += "/";
1406 debugfile += debuglink;
1407
1408 if (separate_debug_file_exists (debugfile, crc32, objfile))
1409 return debugfile;
1410
1411 /* Then try in the global debugfile directories.
1412
1413 Keep backward compatibility so that DEBUG_FILE_DIRECTORY being "" will
1414 cause "/..." lookups. */
1415
1416 bool target_prefix = startswith (dir, "target:");
1417 const char *dir_notarget = target_prefix ? dir + strlen ("target:") : dir;
1418 std::vector<gdb::unique_xmalloc_ptr<char>> debugdir_vec
1419 = dirnames_to_char_ptr_vec (debug_file_directory);
1420 gdb::unique_xmalloc_ptr<char> canon_sysroot = gdb_realpath (gdb_sysroot);
1421
1422 /* MS-Windows/MS-DOS don't allow colons in file names; we must
1423 convert the drive letter into a one-letter directory, so that the
1424 file name resulting from splicing below will be valid.
1425
1426 FIXME: The below only works when GDB runs on MS-Windows/MS-DOS.
1427 There are various remote-debugging scenarios where such a
1428 transformation of the drive letter might be required when GDB runs
1429 on a Posix host, see
1430
1431 https://sourceware.org/ml/gdb-patches/2019-04/msg00605.html
1432
1433 If some of those scenarios need to be supported, we will need to
1434 use a different condition for HAS_DRIVE_SPEC and a different macro
1435 instead of STRIP_DRIVE_SPEC, which work on Posix systems as well. */
1436 std::string drive;
1437 if (HAS_DRIVE_SPEC (dir_notarget))
1438 {
1439 drive = dir_notarget[0];
1440 dir_notarget = STRIP_DRIVE_SPEC (dir_notarget);
1441 }
1442
1443 for (const gdb::unique_xmalloc_ptr<char> &debugdir : debugdir_vec)
1444 {
1445 debugfile = target_prefix ? "target:" : "";
1446 debugfile += debugdir.get ();
1447 debugfile += "/";
1448 debugfile += drive;
1449 debugfile += dir_notarget;
1450 debugfile += debuglink;
1451
1452 if (separate_debug_file_exists (debugfile, crc32, objfile))
1453 return debugfile;
1454
1455 const char *base_path = NULL;
1456 if (canon_dir != NULL)
1457 {
1458 if (canon_sysroot.get () != NULL)
1459 base_path = child_path (canon_sysroot.get (), canon_dir);
1460 else
1461 base_path = child_path (gdb_sysroot, canon_dir);
1462 }
1463 if (base_path != NULL)
1464 {
1465 /* If the file is in the sysroot, try using its base path in
1466 the global debugfile directory. */
1467 debugfile = target_prefix ? "target:" : "";
1468 debugfile += debugdir.get ();
1469 debugfile += "/";
1470 debugfile += base_path;
1471 debugfile += "/";
1472 debugfile += debuglink;
1473
1474 if (separate_debug_file_exists (debugfile, crc32, objfile))
1475 return debugfile;
1476
1477 /* If the file is in the sysroot, try using its base path in
1478 the sysroot's global debugfile directory. */
1479 debugfile = target_prefix ? "target:" : "";
1480 debugfile += gdb_sysroot;
1481 debugfile += debugdir.get ();
1482 debugfile += "/";
1483 debugfile += base_path;
1484 debugfile += "/";
1485 debugfile += debuglink;
1486
1487 if (separate_debug_file_exists (debugfile, crc32, objfile))
1488 return debugfile;
1489 }
1490
1491 }
1492
1493 return std::string ();
1494 }
1495
1496 /* Modify PATH to contain only "[/]directory/" part of PATH.
1497 If there were no directory separators in PATH, PATH will be empty
1498 string on return. */
1499
1500 static void
1501 terminate_after_last_dir_separator (char *path)
1502 {
1503 int i;
1504
1505 /* Strip off the final filename part, leaving the directory name,
1506 followed by a slash. The directory can be relative or absolute. */
1507 for (i = strlen(path) - 1; i >= 0; i--)
1508 if (IS_DIR_SEPARATOR (path[i]))
1509 break;
1510
1511 /* If I is -1 then no directory is present there and DIR will be "". */
1512 path[i + 1] = '\0';
1513 }
1514
1515 /* Find separate debuginfo for OBJFILE (using .gnu_debuglink section).
1516 Returns pathname, or an empty string. */
1517
1518 std::string
1519 find_separate_debug_file_by_debuglink (struct objfile *objfile)
1520 {
1521 unsigned long crc32;
1522
1523 gdb::unique_xmalloc_ptr<char> debuglink
1524 (bfd_get_debug_link_info (objfile->obfd, &crc32));
1525
1526 if (debuglink == NULL)
1527 {
1528 /* There's no separate debug info, hence there's no way we could
1529 load it => no warning. */
1530 return std::string ();
1531 }
1532
1533 std::string dir = objfile_name (objfile);
1534 terminate_after_last_dir_separator (&dir[0]);
1535 gdb::unique_xmalloc_ptr<char> canon_dir (lrealpath (dir.c_str ()));
1536
1537 std::string debugfile
1538 = find_separate_debug_file (dir.c_str (), canon_dir.get (),
1539 debuglink.get (), crc32, objfile);
1540
1541 if (debugfile.empty ())
1542 {
1543 /* For PR gdb/9538, try again with realpath (if different from the
1544 original). */
1545
1546 struct stat st_buf;
1547
1548 if (lstat (objfile_name (objfile), &st_buf) == 0
1549 && S_ISLNK (st_buf.st_mode))
1550 {
1551 gdb::unique_xmalloc_ptr<char> symlink_dir
1552 (lrealpath (objfile_name (objfile)));
1553 if (symlink_dir != NULL)
1554 {
1555 terminate_after_last_dir_separator (symlink_dir.get ());
1556 if (dir != symlink_dir.get ())
1557 {
1558 /* Different directory, so try using it. */
1559 debugfile = find_separate_debug_file (symlink_dir.get (),
1560 symlink_dir.get (),
1561 debuglink.get (),
1562 crc32,
1563 objfile);
1564 }
1565 }
1566 }
1567 }
1568
1569 return debugfile;
1570 }
1571
1572 /* Make sure that OBJF_{READNOW,READNEVER} are not set
1573 simultaneously. */
1574
1575 static void
1576 validate_readnow_readnever (objfile_flags flags)
1577 {
1578 if ((flags & OBJF_READNOW) && (flags & OBJF_READNEVER))
1579 error (_("-readnow and -readnever cannot be used simultaneously"));
1580 }
1581
1582 /* This is the symbol-file command. Read the file, analyze its
1583 symbols, and add a struct symtab to a symtab list. The syntax of
1584 the command is rather bizarre:
1585
1586 1. The function buildargv implements various quoting conventions
1587 which are undocumented and have little or nothing in common with
1588 the way things are quoted (or not quoted) elsewhere in GDB.
1589
1590 2. Options are used, which are not generally used in GDB (perhaps
1591 "set mapped on", "set readnow on" would be better)
1592
1593 3. The order of options matters, which is contrary to GNU
1594 conventions (because it is confusing and inconvenient). */
1595
1596 void
1597 symbol_file_command (const char *args, int from_tty)
1598 {
1599 dont_repeat ();
1600
1601 if (args == NULL)
1602 {
1603 symbol_file_clear (from_tty);
1604 }
1605 else
1606 {
1607 objfile_flags flags = OBJF_USERLOADED;
1608 symfile_add_flags add_flags = 0;
1609 char *name = NULL;
1610 bool stop_processing_options = false;
1611 CORE_ADDR offset = 0;
1612 int idx;
1613 char *arg;
1614
1615 if (from_tty)
1616 add_flags |= SYMFILE_VERBOSE;
1617
1618 gdb_argv built_argv (args);
1619 for (arg = built_argv[0], idx = 0; arg != NULL; arg = built_argv[++idx])
1620 {
1621 if (stop_processing_options || *arg != '-')
1622 {
1623 if (name == NULL)
1624 name = arg;
1625 else
1626 error (_("Unrecognized argument \"%s\""), arg);
1627 }
1628 else if (strcmp (arg, "-readnow") == 0)
1629 flags |= OBJF_READNOW;
1630 else if (strcmp (arg, "-readnever") == 0)
1631 flags |= OBJF_READNEVER;
1632 else if (strcmp (arg, "-o") == 0)
1633 {
1634 arg = built_argv[++idx];
1635 if (arg == NULL)
1636 error (_("Missing argument to -o"));
1637
1638 offset = parse_and_eval_address (arg);
1639 }
1640 else if (strcmp (arg, "--") == 0)
1641 stop_processing_options = true;
1642 else
1643 error (_("Unrecognized argument \"%s\""), arg);
1644 }
1645
1646 if (name == NULL)
1647 error (_("no symbol file name was specified"));
1648
1649 validate_readnow_readnever (flags);
1650
1651 /* Set SYMFILE_DEFER_BP_RESET because the proper displacement for a PIE
1652 (Position Independent Executable) main symbol file will only be
1653 computed by the solib_create_inferior_hook below. Without it,
1654 breakpoint_re_set would fail to insert the breakpoints with the zero
1655 displacement. */
1656 add_flags |= SYMFILE_DEFER_BP_RESET;
1657
1658 symbol_file_add_main_1 (name, add_flags, flags, offset);
1659
1660 solib_create_inferior_hook (from_tty);
1661
1662 /* Now it's safe to re-add the breakpoints. */
1663 breakpoint_re_set ();
1664 }
1665 }
1666
1667 /* Set the initial language. */
1668
1669 void
1670 set_initial_language (void)
1671 {
1672 if (language_mode == language_mode_manual)
1673 return;
1674 enum language lang = main_language ();
1675 /* Make C the default language. */
1676 enum language default_lang = language_c;
1677
1678 if (lang == language_unknown)
1679 {
1680 const char *name = main_name ();
1681 struct symbol *sym
1682 = lookup_symbol_in_language (name, NULL, VAR_DOMAIN, default_lang,
1683 NULL).symbol;
1684
1685 if (sym != NULL)
1686 lang = sym->language ();
1687 }
1688
1689 if (lang == language_unknown)
1690 {
1691 lang = default_lang;
1692 }
1693
1694 set_language (lang);
1695 expected_language = current_language; /* Don't warn the user. */
1696 }
1697
1698 /* Open the file specified by NAME and hand it off to BFD for
1699 preliminary analysis. Return a newly initialized bfd *, which
1700 includes a newly malloc'd` copy of NAME (tilde-expanded and made
1701 absolute). In case of trouble, error() is called. */
1702
1703 gdb_bfd_ref_ptr
1704 symfile_bfd_open (const char *name)
1705 {
1706 int desc = -1;
1707
1708 gdb::unique_xmalloc_ptr<char> absolute_name;
1709 if (!is_target_filename (name))
1710 {
1711 gdb::unique_xmalloc_ptr<char> expanded_name (tilde_expand (name));
1712
1713 /* Look down path for it, allocate 2nd new malloc'd copy. */
1714 desc = openp (getenv ("PATH"),
1715 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1716 expanded_name.get (), O_RDONLY | O_BINARY, &absolute_name);
1717 #if defined(__GO32__) || defined(_WIN32) || defined (__CYGWIN__)
1718 if (desc < 0)
1719 {
1720 char *exename = (char *) alloca (strlen (expanded_name.get ()) + 5);
1721
1722 strcat (strcpy (exename, expanded_name.get ()), ".exe");
1723 desc = openp (getenv ("PATH"),
1724 OPF_TRY_CWD_FIRST | OPF_RETURN_REALPATH,
1725 exename, O_RDONLY | O_BINARY, &absolute_name);
1726 }
1727 #endif
1728 if (desc < 0)
1729 perror_with_name (expanded_name.get ());
1730
1731 name = absolute_name.get ();
1732 }
1733
1734 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (name, gnutarget, desc));
1735 if (sym_bfd == NULL)
1736 error (_("`%s': can't open to read symbols: %s."), name,
1737 bfd_errmsg (bfd_get_error ()));
1738
1739 if (!gdb_bfd_has_target_filename (sym_bfd.get ()))
1740 bfd_set_cacheable (sym_bfd.get (), 1);
1741
1742 if (!bfd_check_format (sym_bfd.get (), bfd_object))
1743 error (_("`%s': can't read symbols: %s."), name,
1744 bfd_errmsg (bfd_get_error ()));
1745
1746 return sym_bfd;
1747 }
1748
1749 /* Return the section index for SECTION_NAME on OBJFILE. Return -1 if
1750 the section was not found. */
1751
1752 int
1753 get_section_index (struct objfile *objfile, const char *section_name)
1754 {
1755 asection *sect = bfd_get_section_by_name (objfile->obfd, section_name);
1756
1757 if (sect)
1758 return sect->index;
1759 else
1760 return -1;
1761 }
1762
1763 /* Link SF into the global symtab_fns list.
1764 FLAVOUR is the file format that SF handles.
1765 Called on startup by the _initialize routine in each object file format
1766 reader, to register information about each format the reader is prepared
1767 to handle. */
1768
1769 void
1770 add_symtab_fns (enum bfd_flavour flavour, const struct sym_fns *sf)
1771 {
1772 symtab_fns.emplace_back (flavour, sf);
1773 }
1774
1775 /* Initialize OBJFILE to read symbols from its associated BFD. It
1776 either returns or calls error(). The result is an initialized
1777 struct sym_fns in the objfile structure, that contains cached
1778 information about the symbol file. */
1779
1780 static const struct sym_fns *
1781 find_sym_fns (bfd *abfd)
1782 {
1783 enum bfd_flavour our_flavour = bfd_get_flavour (abfd);
1784
1785 if (our_flavour == bfd_target_srec_flavour
1786 || our_flavour == bfd_target_ihex_flavour
1787 || our_flavour == bfd_target_tekhex_flavour)
1788 return NULL; /* No symbols. */
1789
1790 for (const registered_sym_fns &rsf : symtab_fns)
1791 if (our_flavour == rsf.sym_flavour)
1792 return rsf.sym_fns;
1793
1794 error (_("I'm sorry, Dave, I can't do that. Symbol format `%s' unknown."),
1795 bfd_get_target (abfd));
1796 }
1797 \f
1798
1799 /* This function runs the load command of our current target. */
1800
1801 static void
1802 load_command (const char *arg, int from_tty)
1803 {
1804 dont_repeat ();
1805
1806 /* The user might be reloading because the binary has changed. Take
1807 this opportunity to check. */
1808 reopen_exec_file ();
1809 reread_symbols ();
1810
1811 std::string temp;
1812 if (arg == NULL)
1813 {
1814 const char *parg, *prev;
1815
1816 arg = get_exec_file (1);
1817
1818 /* We may need to quote this string so buildargv can pull it
1819 apart. */
1820 prev = parg = arg;
1821 while ((parg = strpbrk (parg, "\\\"'\t ")))
1822 {
1823 temp.append (prev, parg - prev);
1824 prev = parg++;
1825 temp.push_back ('\\');
1826 }
1827 /* If we have not copied anything yet, then we didn't see a
1828 character to quote, and we can just leave ARG unchanged. */
1829 if (!temp.empty ())
1830 {
1831 temp.append (prev);
1832 arg = temp.c_str ();
1833 }
1834 }
1835
1836 target_load (arg, from_tty);
1837
1838 /* After re-loading the executable, we don't really know which
1839 overlays are mapped any more. */
1840 overlay_cache_invalid = 1;
1841 }
1842
1843 /* This version of "load" should be usable for any target. Currently
1844 it is just used for remote targets, not inftarg.c or core files,
1845 on the theory that only in that case is it useful.
1846
1847 Avoiding xmodem and the like seems like a win (a) because we don't have
1848 to worry about finding it, and (b) On VMS, fork() is very slow and so
1849 we don't want to run a subprocess. On the other hand, I'm not sure how
1850 performance compares. */
1851
1852 static int validate_download = 0;
1853
1854 /* Callback service function for generic_load (bfd_map_over_sections). */
1855
1856 static void
1857 add_section_size_callback (bfd *abfd, asection *asec, void *data)
1858 {
1859 bfd_size_type *sum = (bfd_size_type *) data;
1860
1861 *sum += bfd_section_size (asec);
1862 }
1863
1864 /* Opaque data for load_progress. */
1865 struct load_progress_data
1866 {
1867 /* Cumulative data. */
1868 unsigned long write_count = 0;
1869 unsigned long data_count = 0;
1870 bfd_size_type total_size = 0;
1871 };
1872
1873 /* Opaque data for load_progress for a single section. */
1874 struct load_progress_section_data
1875 {
1876 load_progress_section_data (load_progress_data *cumulative_,
1877 const char *section_name_, ULONGEST section_size_,
1878 CORE_ADDR lma_, gdb_byte *buffer_)
1879 : cumulative (cumulative_), section_name (section_name_),
1880 section_size (section_size_), lma (lma_), buffer (buffer_)
1881 {}
1882
1883 struct load_progress_data *cumulative;
1884
1885 /* Per-section data. */
1886 const char *section_name;
1887 ULONGEST section_sent = 0;
1888 ULONGEST section_size;
1889 CORE_ADDR lma;
1890 gdb_byte *buffer;
1891 };
1892
1893 /* Opaque data for load_section_callback. */
1894 struct load_section_data
1895 {
1896 load_section_data (load_progress_data *progress_data_)
1897 : progress_data (progress_data_)
1898 {}
1899
1900 ~load_section_data ()
1901 {
1902 for (auto &&request : requests)
1903 {
1904 xfree (request.data);
1905 delete ((load_progress_section_data *) request.baton);
1906 }
1907 }
1908
1909 CORE_ADDR load_offset = 0;
1910 struct load_progress_data *progress_data;
1911 std::vector<struct memory_write_request> requests;
1912 };
1913
1914 /* Target write callback routine for progress reporting. */
1915
1916 static void
1917 load_progress (ULONGEST bytes, void *untyped_arg)
1918 {
1919 struct load_progress_section_data *args
1920 = (struct load_progress_section_data *) untyped_arg;
1921 struct load_progress_data *totals;
1922
1923 if (args == NULL)
1924 /* Writing padding data. No easy way to get at the cumulative
1925 stats, so just ignore this. */
1926 return;
1927
1928 totals = args->cumulative;
1929
1930 if (bytes == 0 && args->section_sent == 0)
1931 {
1932 /* The write is just starting. Let the user know we've started
1933 this section. */
1934 current_uiout->message ("Loading section %s, size %s lma %s\n",
1935 args->section_name,
1936 hex_string (args->section_size),
1937 paddress (target_gdbarch (), args->lma));
1938 return;
1939 }
1940
1941 if (validate_download)
1942 {
1943 /* Broken memories and broken monitors manifest themselves here
1944 when bring new computers to life. This doubles already slow
1945 downloads. */
1946 /* NOTE: cagney/1999-10-18: A more efficient implementation
1947 might add a verify_memory() method to the target vector and
1948 then use that. remote.c could implement that method using
1949 the ``qCRC'' packet. */
1950 gdb::byte_vector check (bytes);
1951
1952 if (target_read_memory (args->lma, check.data (), bytes) != 0)
1953 error (_("Download verify read failed at %s"),
1954 paddress (target_gdbarch (), args->lma));
1955 if (memcmp (args->buffer, check.data (), bytes) != 0)
1956 error (_("Download verify compare failed at %s"),
1957 paddress (target_gdbarch (), args->lma));
1958 }
1959 totals->data_count += bytes;
1960 args->lma += bytes;
1961 args->buffer += bytes;
1962 totals->write_count += 1;
1963 args->section_sent += bytes;
1964 if (check_quit_flag ()
1965 || (deprecated_ui_load_progress_hook != NULL
1966 && deprecated_ui_load_progress_hook (args->section_name,
1967 args->section_sent)))
1968 error (_("Canceled the download"));
1969
1970 if (deprecated_show_load_progress != NULL)
1971 deprecated_show_load_progress (args->section_name,
1972 args->section_sent,
1973 args->section_size,
1974 totals->data_count,
1975 totals->total_size);
1976 }
1977
1978 /* Callback service function for generic_load (bfd_map_over_sections). */
1979
1980 static void
1981 load_section_callback (bfd *abfd, asection *asec, void *data)
1982 {
1983 struct load_section_data *args = (struct load_section_data *) data;
1984 bfd_size_type size = bfd_section_size (asec);
1985 const char *sect_name = bfd_section_name (asec);
1986
1987 if ((bfd_section_flags (asec) & SEC_LOAD) == 0)
1988 return;
1989
1990 if (size == 0)
1991 return;
1992
1993 ULONGEST begin = bfd_section_lma (asec) + args->load_offset;
1994 ULONGEST end = begin + size;
1995 gdb_byte *buffer = (gdb_byte *) xmalloc (size);
1996 bfd_get_section_contents (abfd, asec, buffer, 0, size);
1997
1998 load_progress_section_data *section_data
1999 = new load_progress_section_data (args->progress_data, sect_name, size,
2000 begin, buffer);
2001
2002 args->requests.emplace_back (begin, end, buffer, section_data);
2003 }
2004
2005 static void print_transfer_performance (struct ui_file *stream,
2006 unsigned long data_count,
2007 unsigned long write_count,
2008 std::chrono::steady_clock::duration d);
2009
2010 /* See symfile.h. */
2011
2012 void
2013 generic_load (const char *args, int from_tty)
2014 {
2015 struct load_progress_data total_progress;
2016 struct load_section_data cbdata (&total_progress);
2017 struct ui_out *uiout = current_uiout;
2018
2019 if (args == NULL)
2020 error_no_arg (_("file to load"));
2021
2022 gdb_argv argv (args);
2023
2024 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2025
2026 if (argv[1] != NULL)
2027 {
2028 const char *endptr;
2029
2030 cbdata.load_offset = strtoulst (argv[1], &endptr, 0);
2031
2032 /* If the last word was not a valid number then
2033 treat it as a file name with spaces in. */
2034 if (argv[1] == endptr)
2035 error (_("Invalid download offset:%s."), argv[1]);
2036
2037 if (argv[2] != NULL)
2038 error (_("Too many parameters."));
2039 }
2040
2041 /* Open the file for loading. */
2042 gdb_bfd_ref_ptr loadfile_bfd (gdb_bfd_open (filename.get (), gnutarget));
2043 if (loadfile_bfd == NULL)
2044 perror_with_name (filename.get ());
2045
2046 if (!bfd_check_format (loadfile_bfd.get (), bfd_object))
2047 {
2048 error (_("\"%s\" is not an object file: %s"), filename.get (),
2049 bfd_errmsg (bfd_get_error ()));
2050 }
2051
2052 bfd_map_over_sections (loadfile_bfd.get (), add_section_size_callback,
2053 (void *) &total_progress.total_size);
2054
2055 bfd_map_over_sections (loadfile_bfd.get (), load_section_callback, &cbdata);
2056
2057 using namespace std::chrono;
2058
2059 steady_clock::time_point start_time = steady_clock::now ();
2060
2061 if (target_write_memory_blocks (cbdata.requests, flash_discard,
2062 load_progress) != 0)
2063 error (_("Load failed"));
2064
2065 steady_clock::time_point end_time = steady_clock::now ();
2066
2067 CORE_ADDR entry = bfd_get_start_address (loadfile_bfd.get ());
2068 entry = gdbarch_addr_bits_remove (target_gdbarch (), entry);
2069 uiout->text ("Start address ");
2070 uiout->field_core_addr ("address", target_gdbarch (), entry);
2071 uiout->text (", load size ");
2072 uiout->field_unsigned ("load-size", total_progress.data_count);
2073 uiout->text ("\n");
2074 regcache_write_pc (get_current_regcache (), entry);
2075
2076 /* Reset breakpoints, now that we have changed the load image. For
2077 instance, breakpoints may have been set (or reset, by
2078 post_create_inferior) while connected to the target but before we
2079 loaded the program. In that case, the prologue analyzer could
2080 have read instructions from the target to find the right
2081 breakpoint locations. Loading has changed the contents of that
2082 memory. */
2083
2084 breakpoint_re_set ();
2085
2086 print_transfer_performance (gdb_stdout, total_progress.data_count,
2087 total_progress.write_count,
2088 end_time - start_time);
2089 }
2090
2091 /* Report on STREAM the performance of a memory transfer operation,
2092 such as 'load'. DATA_COUNT is the number of bytes transferred.
2093 WRITE_COUNT is the number of separate write operations, or 0, if
2094 that information is not available. TIME is how long the operation
2095 lasted. */
2096
2097 static void
2098 print_transfer_performance (struct ui_file *stream,
2099 unsigned long data_count,
2100 unsigned long write_count,
2101 std::chrono::steady_clock::duration time)
2102 {
2103 using namespace std::chrono;
2104 struct ui_out *uiout = current_uiout;
2105
2106 milliseconds ms = duration_cast<milliseconds> (time);
2107
2108 uiout->text ("Transfer rate: ");
2109 if (ms.count () > 0)
2110 {
2111 unsigned long rate = ((ULONGEST) data_count * 1000) / ms.count ();
2112
2113 if (uiout->is_mi_like_p ())
2114 {
2115 uiout->field_unsigned ("transfer-rate", rate * 8);
2116 uiout->text (" bits/sec");
2117 }
2118 else if (rate < 1024)
2119 {
2120 uiout->field_unsigned ("transfer-rate", rate);
2121 uiout->text (" bytes/sec");
2122 }
2123 else
2124 {
2125 uiout->field_unsigned ("transfer-rate", rate / 1024);
2126 uiout->text (" KB/sec");
2127 }
2128 }
2129 else
2130 {
2131 uiout->field_unsigned ("transferred-bits", (data_count * 8));
2132 uiout->text (" bits in <1 sec");
2133 }
2134 if (write_count > 0)
2135 {
2136 uiout->text (", ");
2137 uiout->field_unsigned ("write-rate", data_count / write_count);
2138 uiout->text (" bytes/write");
2139 }
2140 uiout->text (".\n");
2141 }
2142
2143 /* Add an OFFSET to the start address of each section in OBJF, except
2144 sections that were specified in ADDRS. */
2145
2146 static void
2147 set_objfile_default_section_offset (struct objfile *objf,
2148 const section_addr_info &addrs,
2149 CORE_ADDR offset)
2150 {
2151 /* Add OFFSET to all sections by default. */
2152 section_offsets offsets (objf->section_offsets.size (), offset);
2153
2154 /* Create sorted lists of all sections in ADDRS as well as all
2155 sections in OBJF. */
2156
2157 std::vector<const struct other_sections *> addrs_sorted
2158 = addrs_section_sort (addrs);
2159
2160 section_addr_info objf_addrs
2161 = build_section_addr_info_from_objfile (objf);
2162 std::vector<const struct other_sections *> objf_addrs_sorted
2163 = addrs_section_sort (objf_addrs);
2164
2165 /* Walk the BFD section list, and if a matching section is found in
2166 ADDRS_SORTED_LIST, set its offset to zero to keep its address
2167 unchanged.
2168
2169 Note that both lists may contain multiple sections with the same
2170 name, and then the sections from ADDRS are matched in BFD order
2171 (thanks to sectindex). */
2172
2173 std::vector<const struct other_sections *>::iterator addrs_sorted_iter
2174 = addrs_sorted.begin ();
2175 for (const other_sections *objf_sect : objf_addrs_sorted)
2176 {
2177 const char *objf_name = addr_section_name (objf_sect->name.c_str ());
2178 int cmp = -1;
2179
2180 while (cmp < 0 && addrs_sorted_iter != addrs_sorted.end ())
2181 {
2182 const struct other_sections *sect = *addrs_sorted_iter;
2183 const char *sect_name = addr_section_name (sect->name.c_str ());
2184 cmp = strcmp (sect_name, objf_name);
2185 if (cmp <= 0)
2186 ++addrs_sorted_iter;
2187 }
2188
2189 if (cmp == 0)
2190 offsets[objf_sect->sectindex] = 0;
2191 }
2192
2193 /* Apply the new section offsets. */
2194 objfile_relocate (objf, offsets);
2195 }
2196
2197 /* This function allows the addition of incrementally linked object files.
2198 It does not modify any state in the target, only in the debugger. */
2199
2200 static void
2201 add_symbol_file_command (const char *args, int from_tty)
2202 {
2203 struct gdbarch *gdbarch = get_current_arch ();
2204 gdb::unique_xmalloc_ptr<char> filename;
2205 char *arg;
2206 int argcnt = 0;
2207 struct objfile *objf;
2208 objfile_flags flags = OBJF_USERLOADED | OBJF_SHARED;
2209 symfile_add_flags add_flags = 0;
2210
2211 if (from_tty)
2212 add_flags |= SYMFILE_VERBOSE;
2213
2214 struct sect_opt
2215 {
2216 const char *name;
2217 const char *value;
2218 };
2219
2220 std::vector<sect_opt> sect_opts = { { ".text", NULL } };
2221 bool stop_processing_options = false;
2222 CORE_ADDR offset = 0;
2223
2224 dont_repeat ();
2225
2226 if (args == NULL)
2227 error (_("add-symbol-file takes a file name and an address"));
2228
2229 bool seen_addr = false;
2230 bool seen_offset = false;
2231 gdb_argv argv (args);
2232
2233 for (arg = argv[0], argcnt = 0; arg != NULL; arg = argv[++argcnt])
2234 {
2235 if (stop_processing_options || *arg != '-')
2236 {
2237 if (filename == NULL)
2238 {
2239 /* First non-option argument is always the filename. */
2240 filename.reset (tilde_expand (arg));
2241 }
2242 else if (!seen_addr)
2243 {
2244 /* The second non-option argument is always the text
2245 address at which to load the program. */
2246 sect_opts[0].value = arg;
2247 seen_addr = true;
2248 }
2249 else
2250 error (_("Unrecognized argument \"%s\""), arg);
2251 }
2252 else if (strcmp (arg, "-readnow") == 0)
2253 flags |= OBJF_READNOW;
2254 else if (strcmp (arg, "-readnever") == 0)
2255 flags |= OBJF_READNEVER;
2256 else if (strcmp (arg, "-s") == 0)
2257 {
2258 if (argv[argcnt + 1] == NULL)
2259 error (_("Missing section name after \"-s\""));
2260 else if (argv[argcnt + 2] == NULL)
2261 error (_("Missing section address after \"-s\""));
2262
2263 sect_opt sect = { argv[argcnt + 1], argv[argcnt + 2] };
2264
2265 sect_opts.push_back (sect);
2266 argcnt += 2;
2267 }
2268 else if (strcmp (arg, "-o") == 0)
2269 {
2270 arg = argv[++argcnt];
2271 if (arg == NULL)
2272 error (_("Missing argument to -o"));
2273
2274 offset = parse_and_eval_address (arg);
2275 seen_offset = true;
2276 }
2277 else if (strcmp (arg, "--") == 0)
2278 stop_processing_options = true;
2279 else
2280 error (_("Unrecognized argument \"%s\""), arg);
2281 }
2282
2283 if (filename == NULL)
2284 error (_("You must provide a filename to be loaded."));
2285
2286 validate_readnow_readnever (flags);
2287
2288 /* Print the prompt for the query below. And save the arguments into
2289 a sect_addr_info structure to be passed around to other
2290 functions. We have to split this up into separate print
2291 statements because hex_string returns a local static
2292 string. */
2293
2294 printf_unfiltered (_("add symbol table from file \"%s\""),
2295 filename.get ());
2296 section_addr_info section_addrs;
2297 std::vector<sect_opt>::const_iterator it = sect_opts.begin ();
2298 if (!seen_addr)
2299 ++it;
2300 for (; it != sect_opts.end (); ++it)
2301 {
2302 CORE_ADDR addr;
2303 const char *val = it->value;
2304 const char *sec = it->name;
2305
2306 if (section_addrs.empty ())
2307 printf_unfiltered (_(" at\n"));
2308 addr = parse_and_eval_address (val);
2309
2310 /* Here we store the section offsets in the order they were
2311 entered on the command line. Every array element is
2312 assigned an ascending section index to preserve the above
2313 order over an unstable sorting algorithm. This dummy
2314 index is not used for any other purpose.
2315 */
2316 section_addrs.emplace_back (addr, sec, section_addrs.size ());
2317 printf_filtered ("\t%s_addr = %s\n", sec,
2318 paddress (gdbarch, addr));
2319
2320 /* The object's sections are initialized when a
2321 call is made to build_objfile_section_table (objfile).
2322 This happens in reread_symbols.
2323 At this point, we don't know what file type this is,
2324 so we can't determine what section names are valid. */
2325 }
2326 if (seen_offset)
2327 printf_unfiltered (_("%s offset by %s\n"),
2328 (section_addrs.empty ()
2329 ? _(" with all sections")
2330 : _("with other sections")),
2331 paddress (gdbarch, offset));
2332 else if (section_addrs.empty ())
2333 printf_unfiltered ("\n");
2334
2335 if (from_tty && (!query ("%s", "")))
2336 error (_("Not confirmed."));
2337
2338 objf = symbol_file_add (filename.get (), add_flags, &section_addrs,
2339 flags);
2340 if (!objfile_has_symbols (objf) && objf->per_bfd->minimal_symbol_count <= 0)
2341 warning (_("newly-added symbol file \"%s\" does not provide any symbols"),
2342 filename.get ());
2343
2344 if (seen_offset)
2345 set_objfile_default_section_offset (objf, section_addrs, offset);
2346
2347 add_target_sections_of_objfile (objf);
2348
2349 /* Getting new symbols may change our opinion about what is
2350 frameless. */
2351 reinit_frame_cache ();
2352 }
2353 \f
2354
2355 /* This function removes a symbol file that was added via add-symbol-file. */
2356
2357 static void
2358 remove_symbol_file_command (const char *args, int from_tty)
2359 {
2360 struct objfile *objf = NULL;
2361 struct program_space *pspace = current_program_space;
2362
2363 dont_repeat ();
2364
2365 if (args == NULL)
2366 error (_("remove-symbol-file: no symbol file provided"));
2367
2368 gdb_argv argv (args);
2369
2370 if (strcmp (argv[0], "-a") == 0)
2371 {
2372 /* Interpret the next argument as an address. */
2373 CORE_ADDR addr;
2374
2375 if (argv[1] == NULL)
2376 error (_("Missing address argument"));
2377
2378 if (argv[2] != NULL)
2379 error (_("Junk after %s"), argv[1]);
2380
2381 addr = parse_and_eval_address (argv[1]);
2382
2383 for (objfile *objfile : current_program_space->objfiles ())
2384 {
2385 if ((objfile->flags & OBJF_USERLOADED) != 0
2386 && (objfile->flags & OBJF_SHARED) != 0
2387 && objfile->pspace == pspace
2388 && is_addr_in_objfile (addr, objfile))
2389 {
2390 objf = objfile;
2391 break;
2392 }
2393 }
2394 }
2395 else if (argv[0] != NULL)
2396 {
2397 /* Interpret the current argument as a file name. */
2398
2399 if (argv[1] != NULL)
2400 error (_("Junk after %s"), argv[0]);
2401
2402 gdb::unique_xmalloc_ptr<char> filename (tilde_expand (argv[0]));
2403
2404 for (objfile *objfile : current_program_space->objfiles ())
2405 {
2406 if ((objfile->flags & OBJF_USERLOADED) != 0
2407 && (objfile->flags & OBJF_SHARED) != 0
2408 && objfile->pspace == pspace
2409 && filename_cmp (filename.get (), objfile_name (objfile)) == 0)
2410 {
2411 objf = objfile;
2412 break;
2413 }
2414 }
2415 }
2416
2417 if (objf == NULL)
2418 error (_("No symbol file found"));
2419
2420 if (from_tty
2421 && !query (_("Remove symbol table from file \"%s\"? "),
2422 objfile_name (objf)))
2423 error (_("Not confirmed."));
2424
2425 objf->unlink ();
2426 clear_symtab_users (0);
2427 }
2428
2429 /* Re-read symbols if a symbol-file has changed. */
2430
2431 void
2432 reread_symbols (void)
2433 {
2434 long new_modtime;
2435 struct stat new_statbuf;
2436 int res;
2437 std::vector<struct objfile *> new_objfiles;
2438
2439 for (objfile *objfile : current_program_space->objfiles ())
2440 {
2441 if (objfile->obfd == NULL)
2442 continue;
2443
2444 /* Separate debug objfiles are handled in the main objfile. */
2445 if (objfile->separate_debug_objfile_backlink)
2446 continue;
2447
2448 /* If this object is from an archive (what you usually create with
2449 `ar', often called a `static library' on most systems, though
2450 a `shared library' on AIX is also an archive), then you should
2451 stat on the archive name, not member name. */
2452 if (objfile->obfd->my_archive)
2453 res = stat (bfd_get_filename (objfile->obfd->my_archive), &new_statbuf);
2454 else
2455 res = stat (objfile_name (objfile), &new_statbuf);
2456 if (res != 0)
2457 {
2458 /* FIXME, should use print_sys_errmsg but it's not filtered. */
2459 printf_filtered (_("`%s' has disappeared; keeping its symbols.\n"),
2460 objfile_name (objfile));
2461 continue;
2462 }
2463 new_modtime = new_statbuf.st_mtime;
2464 if (new_modtime != objfile->mtime)
2465 {
2466 printf_filtered (_("`%s' has changed; re-reading symbols.\n"),
2467 objfile_name (objfile));
2468
2469 /* There are various functions like symbol_file_add,
2470 symfile_bfd_open, syms_from_objfile, etc., which might
2471 appear to do what we want. But they have various other
2472 effects which we *don't* want. So we just do stuff
2473 ourselves. We don't worry about mapped files (for one thing,
2474 any mapped file will be out of date). */
2475
2476 /* If we get an error, blow away this objfile (not sure if
2477 that is the correct response for things like shared
2478 libraries). */
2479 objfile_up objfile_holder (objfile);
2480
2481 /* We need to do this whenever any symbols go away. */
2482 clear_symtab_users_cleanup defer_clear_users (0);
2483
2484 if (exec_bfd != NULL
2485 && filename_cmp (bfd_get_filename (objfile->obfd),
2486 bfd_get_filename (exec_bfd)) == 0)
2487 {
2488 /* Reload EXEC_BFD without asking anything. */
2489
2490 exec_file_attach (bfd_get_filename (objfile->obfd), 0);
2491 }
2492
2493 /* Keep the calls order approx. the same as in free_objfile. */
2494
2495 /* Free the separate debug objfiles. It will be
2496 automatically recreated by sym_read. */
2497 free_objfile_separate_debug (objfile);
2498
2499 /* Clear the stale source cache. */
2500 forget_cached_source_info ();
2501
2502 /* Remove any references to this objfile in the global
2503 value lists. */
2504 preserve_values (objfile);
2505
2506 /* Nuke all the state that we will re-read. Much of the following
2507 code which sets things to NULL really is necessary to tell
2508 other parts of GDB that there is nothing currently there.
2509
2510 Try to keep the freeing order compatible with free_objfile. */
2511
2512 if (objfile->sf != NULL)
2513 {
2514 (*objfile->sf->sym_finish) (objfile);
2515 }
2516
2517 clear_objfile_data (objfile);
2518
2519 /* Clean up any state BFD has sitting around. */
2520 {
2521 gdb_bfd_ref_ptr obfd (objfile->obfd);
2522 const char *obfd_filename;
2523
2524 obfd_filename = bfd_get_filename (objfile->obfd);
2525 /* Open the new BFD before freeing the old one, so that
2526 the filename remains live. */
2527 gdb_bfd_ref_ptr temp (gdb_bfd_open (obfd_filename, gnutarget));
2528 objfile->obfd = temp.release ();
2529 if (objfile->obfd == NULL)
2530 error (_("Can't open %s to read symbols."), obfd_filename);
2531 }
2532
2533 std::string original_name = objfile->original_name;
2534
2535 /* bfd_openr sets cacheable to true, which is what we want. */
2536 if (!bfd_check_format (objfile->obfd, bfd_object))
2537 error (_("Can't read symbols from %s: %s."), objfile_name (objfile),
2538 bfd_errmsg (bfd_get_error ()));
2539
2540 objfile->reset_psymtabs ();
2541
2542 /* NB: after this call to obstack_free, objfiles_changed
2543 will need to be called (see discussion below). */
2544 obstack_free (&objfile->objfile_obstack, 0);
2545 objfile->sections = NULL;
2546 objfile->section_offsets.clear ();
2547 objfile->sect_index_bss = -1;
2548 objfile->sect_index_data = -1;
2549 objfile->sect_index_rodata = -1;
2550 objfile->sect_index_text = -1;
2551 objfile->compunit_symtabs = NULL;
2552 objfile->template_symbols = NULL;
2553 objfile->static_links.reset (nullptr);
2554
2555 /* obstack_init also initializes the obstack so it is
2556 empty. We could use obstack_specify_allocation but
2557 gdb_obstack.h specifies the alloc/dealloc functions. */
2558 obstack_init (&objfile->objfile_obstack);
2559
2560 /* set_objfile_per_bfd potentially allocates the per-bfd
2561 data on the objfile's obstack (if sharing data across
2562 multiple users is not possible), so it's important to
2563 do it *after* the obstack has been initialized. */
2564 set_objfile_per_bfd (objfile);
2565
2566 objfile->original_name
2567 = obstack_strdup (&objfile->objfile_obstack, original_name);
2568
2569 /* Reset the sym_fns pointer. The ELF reader can change it
2570 based on whether .gdb_index is present, and we need it to
2571 start over. PR symtab/15885 */
2572 objfile_set_sym_fns (objfile, find_sym_fns (objfile->obfd));
2573
2574 build_objfile_section_table (objfile);
2575
2576 /* What the hell is sym_new_init for, anyway? The concept of
2577 distinguishing between the main file and additional files
2578 in this way seems rather dubious. */
2579 if (objfile == symfile_objfile)
2580 {
2581 (*objfile->sf->sym_new_init) (objfile);
2582 }
2583
2584 (*objfile->sf->sym_init) (objfile);
2585 clear_complaints ();
2586
2587 objfile->flags &= ~OBJF_PSYMTABS_READ;
2588
2589 /* We are about to read new symbols and potentially also
2590 DWARF information. Some targets may want to pass addresses
2591 read from DWARF DIE's through an adjustment function before
2592 saving them, like MIPS, which may call into
2593 "find_pc_section". When called, that function will make
2594 use of per-objfile program space data.
2595
2596 Since we discarded our section information above, we have
2597 dangling pointers in the per-objfile program space data
2598 structure. Force GDB to update the section mapping
2599 information by letting it know the objfile has changed,
2600 making the dangling pointers point to correct data
2601 again. */
2602
2603 objfiles_changed ();
2604
2605 /* Recompute section offsets and section indices. */
2606 objfile->sf->sym_offsets (objfile, {});
2607
2608 read_symbols (objfile, 0);
2609
2610 if (!objfile_has_symbols (objfile))
2611 {
2612 wrap_here ("");
2613 printf_filtered (_("(no debugging symbols found)\n"));
2614 wrap_here ("");
2615 }
2616
2617 /* We're done reading the symbol file; finish off complaints. */
2618 clear_complaints ();
2619
2620 /* Getting new symbols may change our opinion about what is
2621 frameless. */
2622
2623 reinit_frame_cache ();
2624
2625 /* Discard cleanups as symbol reading was successful. */
2626 objfile_holder.release ();
2627 defer_clear_users.release ();
2628
2629 /* If the mtime has changed between the time we set new_modtime
2630 and now, we *want* this to be out of date, so don't call stat
2631 again now. */
2632 objfile->mtime = new_modtime;
2633 init_entry_point_info (objfile);
2634
2635 new_objfiles.push_back (objfile);
2636 }
2637 }
2638
2639 if (!new_objfiles.empty ())
2640 {
2641 clear_symtab_users (0);
2642
2643 /* clear_objfile_data for each objfile was called before freeing it and
2644 gdb::observers::new_objfile.notify (NULL) has been called by
2645 clear_symtab_users above. Notify the new files now. */
2646 for (auto iter : new_objfiles)
2647 gdb::observers::new_objfile.notify (iter);
2648
2649 /* At least one objfile has changed, so we can consider that
2650 the executable we're debugging has changed too. */
2651 gdb::observers::executable_changed.notify ();
2652 }
2653 }
2654 \f
2655
2656 struct filename_language
2657 {
2658 filename_language (const std::string &ext_, enum language lang_)
2659 : ext (ext_), lang (lang_)
2660 {}
2661
2662 std::string ext;
2663 enum language lang;
2664 };
2665
2666 static std::vector<filename_language> filename_language_table;
2667
2668 /* See symfile.h. */
2669
2670 void
2671 add_filename_language (const char *ext, enum language lang)
2672 {
2673 filename_language_table.emplace_back (ext, lang);
2674 }
2675
2676 static char *ext_args;
2677 static void
2678 show_ext_args (struct ui_file *file, int from_tty,
2679 struct cmd_list_element *c, const char *value)
2680 {
2681 fprintf_filtered (file,
2682 _("Mapping between filename extension "
2683 "and source language is \"%s\".\n"),
2684 value);
2685 }
2686
2687 static void
2688 set_ext_lang_command (const char *args,
2689 int from_tty, struct cmd_list_element *e)
2690 {
2691 char *cp = ext_args;
2692 enum language lang;
2693
2694 /* First arg is filename extension, starting with '.' */
2695 if (*cp != '.')
2696 error (_("'%s': Filename extension must begin with '.'"), ext_args);
2697
2698 /* Find end of first arg. */
2699 while (*cp && !isspace (*cp))
2700 cp++;
2701
2702 if (*cp == '\0')
2703 error (_("'%s': two arguments required -- "
2704 "filename extension and language"),
2705 ext_args);
2706
2707 /* Null-terminate first arg. */
2708 *cp++ = '\0';
2709
2710 /* Find beginning of second arg, which should be a source language. */
2711 cp = skip_spaces (cp);
2712
2713 if (*cp == '\0')
2714 error (_("'%s': two arguments required -- "
2715 "filename extension and language"),
2716 ext_args);
2717
2718 /* Lookup the language from among those we know. */
2719 lang = language_enum (cp);
2720
2721 auto it = filename_language_table.begin ();
2722 /* Now lookup the filename extension: do we already know it? */
2723 for (; it != filename_language_table.end (); it++)
2724 {
2725 if (it->ext == ext_args)
2726 break;
2727 }
2728
2729 if (it == filename_language_table.end ())
2730 {
2731 /* New file extension. */
2732 add_filename_language (ext_args, lang);
2733 }
2734 else
2735 {
2736 /* Redefining a previously known filename extension. */
2737
2738 /* if (from_tty) */
2739 /* query ("Really make files of type %s '%s'?", */
2740 /* ext_args, language_str (lang)); */
2741
2742 it->lang = lang;
2743 }
2744 }
2745
2746 static void
2747 info_ext_lang_command (const char *args, int from_tty)
2748 {
2749 printf_filtered (_("Filename extensions and the languages they represent:"));
2750 printf_filtered ("\n\n");
2751 for (const filename_language &entry : filename_language_table)
2752 printf_filtered ("\t%s\t- %s\n", entry.ext.c_str (),
2753 language_str (entry.lang));
2754 }
2755
2756 enum language
2757 deduce_language_from_filename (const char *filename)
2758 {
2759 const char *cp;
2760
2761 if (filename != NULL)
2762 if ((cp = strrchr (filename, '.')) != NULL)
2763 {
2764 for (const filename_language &entry : filename_language_table)
2765 if (entry.ext == cp)
2766 return entry.lang;
2767 }
2768
2769 return language_unknown;
2770 }
2771 \f
2772 /* Allocate and initialize a new symbol table.
2773 CUST is from the result of allocate_compunit_symtab. */
2774
2775 struct symtab *
2776 allocate_symtab (struct compunit_symtab *cust, const char *filename)
2777 {
2778 struct objfile *objfile = cust->objfile;
2779 struct symtab *symtab
2780 = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symtab);
2781
2782 symtab->filename = objfile->intern (filename);
2783 symtab->fullname = NULL;
2784 symtab->language = deduce_language_from_filename (filename);
2785
2786 /* This can be very verbose with lots of headers.
2787 Only print at higher debug levels. */
2788 if (symtab_create_debug >= 2)
2789 {
2790 /* Be a bit clever with debugging messages, and don't print objfile
2791 every time, only when it changes. */
2792 static char *last_objfile_name = NULL;
2793
2794 if (last_objfile_name == NULL
2795 || strcmp (last_objfile_name, objfile_name (objfile)) != 0)
2796 {
2797 xfree (last_objfile_name);
2798 last_objfile_name = xstrdup (objfile_name (objfile));
2799 fprintf_filtered (gdb_stdlog,
2800 "Creating one or more symtabs for objfile %s ...\n",
2801 last_objfile_name);
2802 }
2803 fprintf_filtered (gdb_stdlog,
2804 "Created symtab %s for module %s.\n",
2805 host_address_to_string (symtab), filename);
2806 }
2807
2808 /* Add it to CUST's list of symtabs. */
2809 if (cust->filetabs == NULL)
2810 {
2811 cust->filetabs = symtab;
2812 cust->last_filetab = symtab;
2813 }
2814 else
2815 {
2816 cust->last_filetab->next = symtab;
2817 cust->last_filetab = symtab;
2818 }
2819
2820 /* Backlink to the containing compunit symtab. */
2821 symtab->compunit_symtab = cust;
2822
2823 return symtab;
2824 }
2825
2826 /* Allocate and initialize a new compunit.
2827 NAME is the name of the main source file, if there is one, or some
2828 descriptive text if there are no source files. */
2829
2830 struct compunit_symtab *
2831 allocate_compunit_symtab (struct objfile *objfile, const char *name)
2832 {
2833 struct compunit_symtab *cu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2834 struct compunit_symtab);
2835 const char *saved_name;
2836
2837 cu->objfile = objfile;
2838
2839 /* The name we record here is only for display/debugging purposes.
2840 Just save the basename to avoid path issues (too long for display,
2841 relative vs absolute, etc.). */
2842 saved_name = lbasename (name);
2843 cu->name = obstack_strdup (&objfile->objfile_obstack, saved_name);
2844
2845 COMPUNIT_DEBUGFORMAT (cu) = "unknown";
2846
2847 if (symtab_create_debug)
2848 {
2849 fprintf_filtered (gdb_stdlog,
2850 "Created compunit symtab %s for %s.\n",
2851 host_address_to_string (cu),
2852 cu->name);
2853 }
2854
2855 return cu;
2856 }
2857
2858 /* Hook CU to the objfile it comes from. */
2859
2860 void
2861 add_compunit_symtab_to_objfile (struct compunit_symtab *cu)
2862 {
2863 cu->next = cu->objfile->compunit_symtabs;
2864 cu->objfile->compunit_symtabs = cu;
2865 }
2866 \f
2867
2868 /* Reset all data structures in gdb which may contain references to
2869 symbol table data. */
2870
2871 void
2872 clear_symtab_users (symfile_add_flags add_flags)
2873 {
2874 /* Someday, we should do better than this, by only blowing away
2875 the things that really need to be blown. */
2876
2877 /* Clear the "current" symtab first, because it is no longer valid.
2878 breakpoint_re_set may try to access the current symtab. */
2879 clear_current_source_symtab_and_line ();
2880
2881 clear_displays ();
2882 clear_last_displayed_sal ();
2883 clear_pc_function_cache ();
2884 gdb::observers::new_objfile.notify (NULL);
2885
2886 /* Varobj may refer to old symbols, perform a cleanup. */
2887 varobj_invalidate ();
2888
2889 /* Now that the various caches have been cleared, we can re_set
2890 our breakpoints without risking it using stale data. */
2891 if ((add_flags & SYMFILE_DEFER_BP_RESET) == 0)
2892 breakpoint_re_set ();
2893 }
2894 \f
2895 /* OVERLAYS:
2896 The following code implements an abstraction for debugging overlay sections.
2897
2898 The target model is as follows:
2899 1) The gnu linker will permit multiple sections to be mapped into the
2900 same VMA, each with its own unique LMA (or load address).
2901 2) It is assumed that some runtime mechanism exists for mapping the
2902 sections, one by one, from the load address into the VMA address.
2903 3) This code provides a mechanism for gdb to keep track of which
2904 sections should be considered to be mapped from the VMA to the LMA.
2905 This information is used for symbol lookup, and memory read/write.
2906 For instance, if a section has been mapped then its contents
2907 should be read from the VMA, otherwise from the LMA.
2908
2909 Two levels of debugger support for overlays are available. One is
2910 "manual", in which the debugger relies on the user to tell it which
2911 overlays are currently mapped. This level of support is
2912 implemented entirely in the core debugger, and the information about
2913 whether a section is mapped is kept in the objfile->obj_section table.
2914
2915 The second level of support is "automatic", and is only available if
2916 the target-specific code provides functionality to read the target's
2917 overlay mapping table, and translate its contents for the debugger
2918 (by updating the mapped state information in the obj_section tables).
2919
2920 The interface is as follows:
2921 User commands:
2922 overlay map <name> -- tell gdb to consider this section mapped
2923 overlay unmap <name> -- tell gdb to consider this section unmapped
2924 overlay list -- list the sections that GDB thinks are mapped
2925 overlay read-target -- get the target's state of what's mapped
2926 overlay off/manual/auto -- set overlay debugging state
2927 Functional interface:
2928 find_pc_mapped_section(pc): if the pc is in the range of a mapped
2929 section, return that section.
2930 find_pc_overlay(pc): find any overlay section that contains
2931 the pc, either in its VMA or its LMA
2932 section_is_mapped(sect): true if overlay is marked as mapped
2933 section_is_overlay(sect): true if section's VMA != LMA
2934 pc_in_mapped_range(pc,sec): true if pc belongs to section's VMA
2935 pc_in_unmapped_range(...): true if pc belongs to section's LMA
2936 sections_overlap(sec1, sec2): true if mapped sec1 and sec2 ranges overlap
2937 overlay_mapped_address(...): map an address from section's LMA to VMA
2938 overlay_unmapped_address(...): map an address from section's VMA to LMA
2939 symbol_overlayed_address(...): Return a "current" address for symbol:
2940 either in VMA or LMA depending on whether
2941 the symbol's section is currently mapped. */
2942
2943 /* Overlay debugging state: */
2944
2945 enum overlay_debugging_state overlay_debugging = ovly_off;
2946 int overlay_cache_invalid = 0; /* True if need to refresh mapped state. */
2947
2948 /* Function: section_is_overlay (SECTION)
2949 Returns true if SECTION has VMA not equal to LMA, ie.
2950 SECTION is loaded at an address different from where it will "run". */
2951
2952 int
2953 section_is_overlay (struct obj_section *section)
2954 {
2955 if (overlay_debugging && section)
2956 {
2957 asection *bfd_section = section->the_bfd_section;
2958
2959 if (bfd_section_lma (bfd_section) != 0
2960 && bfd_section_lma (bfd_section) != bfd_section_vma (bfd_section))
2961 return 1;
2962 }
2963
2964 return 0;
2965 }
2966
2967 /* Function: overlay_invalidate_all (void)
2968 Invalidate the mapped state of all overlay sections (mark it as stale). */
2969
2970 static void
2971 overlay_invalidate_all (void)
2972 {
2973 struct obj_section *sect;
2974
2975 for (objfile *objfile : current_program_space->objfiles ())
2976 ALL_OBJFILE_OSECTIONS (objfile, sect)
2977 if (section_is_overlay (sect))
2978 sect->ovly_mapped = -1;
2979 }
2980
2981 /* Function: section_is_mapped (SECTION)
2982 Returns true if section is an overlay, and is currently mapped.
2983
2984 Access to the ovly_mapped flag is restricted to this function, so
2985 that we can do automatic update. If the global flag
2986 OVERLAY_CACHE_INVALID is set (by wait_for_inferior), then call
2987 overlay_invalidate_all. If the mapped state of the particular
2988 section is stale, then call TARGET_OVERLAY_UPDATE to refresh it. */
2989
2990 int
2991 section_is_mapped (struct obj_section *osect)
2992 {
2993 struct gdbarch *gdbarch;
2994
2995 if (osect == 0 || !section_is_overlay (osect))
2996 return 0;
2997
2998 switch (overlay_debugging)
2999 {
3000 default:
3001 case ovly_off:
3002 return 0; /* overlay debugging off */
3003 case ovly_auto: /* overlay debugging automatic */
3004 /* Unles there is a gdbarch_overlay_update function,
3005 there's really nothing useful to do here (can't really go auto). */
3006 gdbarch = osect->objfile->arch ();
3007 if (gdbarch_overlay_update_p (gdbarch))
3008 {
3009 if (overlay_cache_invalid)
3010 {
3011 overlay_invalidate_all ();
3012 overlay_cache_invalid = 0;
3013 }
3014 if (osect->ovly_mapped == -1)
3015 gdbarch_overlay_update (gdbarch, osect);
3016 }
3017 /* fall thru */
3018 case ovly_on: /* overlay debugging manual */
3019 return osect->ovly_mapped == 1;
3020 }
3021 }
3022
3023 /* Function: pc_in_unmapped_range
3024 If PC falls into the lma range of SECTION, return true, else false. */
3025
3026 CORE_ADDR
3027 pc_in_unmapped_range (CORE_ADDR pc, struct obj_section *section)
3028 {
3029 if (section_is_overlay (section))
3030 {
3031 asection *bfd_section = section->the_bfd_section;
3032
3033 /* We assume the LMA is relocated by the same offset as the VMA. */
3034 bfd_vma size = bfd_section_size (bfd_section);
3035 CORE_ADDR offset = obj_section_offset (section);
3036
3037 if (bfd_section_lma (bfd_section) + offset <= pc
3038 && pc < bfd_section_lma (bfd_section) + offset + size)
3039 return 1;
3040 }
3041
3042 return 0;
3043 }
3044
3045 /* Function: pc_in_mapped_range
3046 If PC falls into the vma range of SECTION, return true, else false. */
3047
3048 CORE_ADDR
3049 pc_in_mapped_range (CORE_ADDR pc, struct obj_section *section)
3050 {
3051 if (section_is_overlay (section))
3052 {
3053 if (obj_section_addr (section) <= pc
3054 && pc < obj_section_endaddr (section))
3055 return 1;
3056 }
3057
3058 return 0;
3059 }
3060
3061 /* Return true if the mapped ranges of sections A and B overlap, false
3062 otherwise. */
3063
3064 static int
3065 sections_overlap (struct obj_section *a, struct obj_section *b)
3066 {
3067 CORE_ADDR a_start = obj_section_addr (a);
3068 CORE_ADDR a_end = obj_section_endaddr (a);
3069 CORE_ADDR b_start = obj_section_addr (b);
3070 CORE_ADDR b_end = obj_section_endaddr (b);
3071
3072 return (a_start < b_end && b_start < a_end);
3073 }
3074
3075 /* Function: overlay_unmapped_address (PC, SECTION)
3076 Returns the address corresponding to PC in the unmapped (load) range.
3077 May be the same as PC. */
3078
3079 CORE_ADDR
3080 overlay_unmapped_address (CORE_ADDR pc, struct obj_section *section)
3081 {
3082 if (section_is_overlay (section) && pc_in_mapped_range (pc, section))
3083 {
3084 asection *bfd_section = section->the_bfd_section;
3085
3086 return (pc + bfd_section_lma (bfd_section)
3087 - bfd_section_vma (bfd_section));
3088 }
3089
3090 return pc;
3091 }
3092
3093 /* Function: overlay_mapped_address (PC, SECTION)
3094 Returns the address corresponding to PC in the mapped (runtime) range.
3095 May be the same as PC. */
3096
3097 CORE_ADDR
3098 overlay_mapped_address (CORE_ADDR pc, struct obj_section *section)
3099 {
3100 if (section_is_overlay (section) && pc_in_unmapped_range (pc, section))
3101 {
3102 asection *bfd_section = section->the_bfd_section;
3103
3104 return (pc + bfd_section_vma (bfd_section)
3105 - bfd_section_lma (bfd_section));
3106 }
3107
3108 return pc;
3109 }
3110
3111 /* Function: symbol_overlayed_address
3112 Return one of two addresses (relative to the VMA or to the LMA),
3113 depending on whether the section is mapped or not. */
3114
3115 CORE_ADDR
3116 symbol_overlayed_address (CORE_ADDR address, struct obj_section *section)
3117 {
3118 if (overlay_debugging)
3119 {
3120 /* If the symbol has no section, just return its regular address. */
3121 if (section == 0)
3122 return address;
3123 /* If the symbol's section is not an overlay, just return its
3124 address. */
3125 if (!section_is_overlay (section))
3126 return address;
3127 /* If the symbol's section is mapped, just return its address. */
3128 if (section_is_mapped (section))
3129 return address;
3130 /*
3131 * HOWEVER: if the symbol is in an overlay section which is NOT mapped,
3132 * then return its LOADED address rather than its vma address!!
3133 */
3134 return overlay_unmapped_address (address, section);
3135 }
3136 return address;
3137 }
3138
3139 /* Function: find_pc_overlay (PC)
3140 Return the best-match overlay section for PC:
3141 If PC matches a mapped overlay section's VMA, return that section.
3142 Else if PC matches an unmapped section's VMA, return that section.
3143 Else if PC matches an unmapped section's LMA, return that section. */
3144
3145 struct obj_section *
3146 find_pc_overlay (CORE_ADDR pc)
3147 {
3148 struct obj_section *osect, *best_match = NULL;
3149
3150 if (overlay_debugging)
3151 {
3152 for (objfile *objfile : current_program_space->objfiles ())
3153 ALL_OBJFILE_OSECTIONS (objfile, osect)
3154 if (section_is_overlay (osect))
3155 {
3156 if (pc_in_mapped_range (pc, osect))
3157 {
3158 if (section_is_mapped (osect))
3159 return osect;
3160 else
3161 best_match = osect;
3162 }
3163 else if (pc_in_unmapped_range (pc, osect))
3164 best_match = osect;
3165 }
3166 }
3167 return best_match;
3168 }
3169
3170 /* Function: find_pc_mapped_section (PC)
3171 If PC falls into the VMA address range of an overlay section that is
3172 currently marked as MAPPED, return that section. Else return NULL. */
3173
3174 struct obj_section *
3175 find_pc_mapped_section (CORE_ADDR pc)
3176 {
3177 struct obj_section *osect;
3178
3179 if (overlay_debugging)
3180 {
3181 for (objfile *objfile : current_program_space->objfiles ())
3182 ALL_OBJFILE_OSECTIONS (objfile, osect)
3183 if (pc_in_mapped_range (pc, osect) && section_is_mapped (osect))
3184 return osect;
3185 }
3186
3187 return NULL;
3188 }
3189
3190 /* Function: list_overlays_command
3191 Print a list of mapped sections and their PC ranges. */
3192
3193 static void
3194 list_overlays_command (const char *args, int from_tty)
3195 {
3196 int nmapped = 0;
3197 struct obj_section *osect;
3198
3199 if (overlay_debugging)
3200 {
3201 for (objfile *objfile : current_program_space->objfiles ())
3202 ALL_OBJFILE_OSECTIONS (objfile, osect)
3203 if (section_is_mapped (osect))
3204 {
3205 struct gdbarch *gdbarch = objfile->arch ();
3206 const char *name;
3207 bfd_vma lma, vma;
3208 int size;
3209
3210 vma = bfd_section_vma (osect->the_bfd_section);
3211 lma = bfd_section_lma (osect->the_bfd_section);
3212 size = bfd_section_size (osect->the_bfd_section);
3213 name = bfd_section_name (osect->the_bfd_section);
3214
3215 printf_filtered ("Section %s, loaded at ", name);
3216 fputs_filtered (paddress (gdbarch, lma), gdb_stdout);
3217 puts_filtered (" - ");
3218 fputs_filtered (paddress (gdbarch, lma + size), gdb_stdout);
3219 printf_filtered (", mapped at ");
3220 fputs_filtered (paddress (gdbarch, vma), gdb_stdout);
3221 puts_filtered (" - ");
3222 fputs_filtered (paddress (gdbarch, vma + size), gdb_stdout);
3223 puts_filtered ("\n");
3224
3225 nmapped++;
3226 }
3227 }
3228 if (nmapped == 0)
3229 printf_filtered (_("No sections are mapped.\n"));
3230 }
3231
3232 /* Function: map_overlay_command
3233 Mark the named section as mapped (ie. residing at its VMA address). */
3234
3235 static void
3236 map_overlay_command (const char *args, int from_tty)
3237 {
3238 struct obj_section *sec, *sec2;
3239
3240 if (!overlay_debugging)
3241 error (_("Overlay debugging not enabled. Use "
3242 "either the 'overlay auto' or\n"
3243 "the 'overlay manual' command."));
3244
3245 if (args == 0 || *args == 0)
3246 error (_("Argument required: name of an overlay section"));
3247
3248 /* First, find a section matching the user supplied argument. */
3249 for (objfile *obj_file : current_program_space->objfiles ())
3250 ALL_OBJFILE_OSECTIONS (obj_file, sec)
3251 if (!strcmp (bfd_section_name (sec->the_bfd_section), args))
3252 {
3253 /* Now, check to see if the section is an overlay. */
3254 if (!section_is_overlay (sec))
3255 continue; /* not an overlay section */
3256
3257 /* Mark the overlay as "mapped". */
3258 sec->ovly_mapped = 1;
3259
3260 /* Next, make a pass and unmap any sections that are
3261 overlapped by this new section: */
3262 for (objfile *objfile2 : current_program_space->objfiles ())
3263 ALL_OBJFILE_OSECTIONS (objfile2, sec2)
3264 if (sec2->ovly_mapped && sec != sec2 && sections_overlap (sec,
3265 sec2))
3266 {
3267 if (info_verbose)
3268 printf_unfiltered (_("Note: section %s unmapped by overlap\n"),
3269 bfd_section_name (sec2->the_bfd_section));
3270 sec2->ovly_mapped = 0; /* sec2 overlaps sec: unmap sec2. */
3271 }
3272 return;
3273 }
3274 error (_("No overlay section called %s"), args);
3275 }
3276
3277 /* Function: unmap_overlay_command
3278 Mark the overlay section as unmapped
3279 (ie. resident in its LMA address range, rather than the VMA range). */
3280
3281 static void
3282 unmap_overlay_command (const char *args, int from_tty)
3283 {
3284 struct obj_section *sec = NULL;
3285
3286 if (!overlay_debugging)
3287 error (_("Overlay debugging not enabled. "
3288 "Use either the 'overlay auto' or\n"
3289 "the 'overlay manual' command."));
3290
3291 if (args == 0 || *args == 0)
3292 error (_("Argument required: name of an overlay section"));
3293
3294 /* First, find a section matching the user supplied argument. */
3295 for (objfile *objfile : current_program_space->objfiles ())
3296 ALL_OBJFILE_OSECTIONS (objfile, sec)
3297 if (!strcmp (bfd_section_name (sec->the_bfd_section), args))
3298 {
3299 if (!sec->ovly_mapped)
3300 error (_("Section %s is not mapped"), args);
3301 sec->ovly_mapped = 0;
3302 return;
3303 }
3304 error (_("No overlay section called %s"), args);
3305 }
3306
3307 /* Function: overlay_auto_command
3308 A utility command to turn on overlay debugging.
3309 Possibly this should be done via a set/show command. */
3310
3311 static void
3312 overlay_auto_command (const char *args, int from_tty)
3313 {
3314 overlay_debugging = ovly_auto;
3315 enable_overlay_breakpoints ();
3316 if (info_verbose)
3317 printf_unfiltered (_("Automatic overlay debugging enabled."));
3318 }
3319
3320 /* Function: overlay_manual_command
3321 A utility command to turn on overlay debugging.
3322 Possibly this should be done via a set/show command. */
3323
3324 static void
3325 overlay_manual_command (const char *args, int from_tty)
3326 {
3327 overlay_debugging = ovly_on;
3328 disable_overlay_breakpoints ();
3329 if (info_verbose)
3330 printf_unfiltered (_("Overlay debugging enabled."));
3331 }
3332
3333 /* Function: overlay_off_command
3334 A utility command to turn on overlay debugging.
3335 Possibly this should be done via a set/show command. */
3336
3337 static void
3338 overlay_off_command (const char *args, int from_tty)
3339 {
3340 overlay_debugging = ovly_off;
3341 disable_overlay_breakpoints ();
3342 if (info_verbose)
3343 printf_unfiltered (_("Overlay debugging disabled."));
3344 }
3345
3346 static void
3347 overlay_load_command (const char *args, int from_tty)
3348 {
3349 struct gdbarch *gdbarch = get_current_arch ();
3350
3351 if (gdbarch_overlay_update_p (gdbarch))
3352 gdbarch_overlay_update (gdbarch, NULL);
3353 else
3354 error (_("This target does not know how to read its overlay state."));
3355 }
3356
3357 /* Command list chain containing all defined "overlay" subcommands. */
3358 static struct cmd_list_element *overlaylist;
3359
3360 /* Target Overlays for the "Simplest" overlay manager:
3361
3362 This is GDB's default target overlay layer. It works with the
3363 minimal overlay manager supplied as an example by Cygnus. The
3364 entry point is via a function pointer "gdbarch_overlay_update",
3365 so targets that use a different runtime overlay manager can
3366 substitute their own overlay_update function and take over the
3367 function pointer.
3368
3369 The overlay_update function pokes around in the target's data structures
3370 to see what overlays are mapped, and updates GDB's overlay mapping with
3371 this information.
3372
3373 In this simple implementation, the target data structures are as follows:
3374 unsigned _novlys; /# number of overlay sections #/
3375 unsigned _ovly_table[_novlys][4] = {
3376 {VMA, OSIZE, LMA, MAPPED}, /# one entry per overlay section #/
3377 {..., ..., ..., ...},
3378 }
3379 unsigned _novly_regions; /# number of overlay regions #/
3380 unsigned _ovly_region_table[_novly_regions][3] = {
3381 {VMA, OSIZE, MAPPED_TO_LMA}, /# one entry per overlay region #/
3382 {..., ..., ...},
3383 }
3384 These functions will attempt to update GDB's mappedness state in the
3385 symbol section table, based on the target's mappedness state.
3386
3387 To do this, we keep a cached copy of the target's _ovly_table, and
3388 attempt to detect when the cached copy is invalidated. The main
3389 entry point is "simple_overlay_update(SECT), which looks up SECT in
3390 the cached table and re-reads only the entry for that section from
3391 the target (whenever possible). */
3392
3393 /* Cached, dynamically allocated copies of the target data structures: */
3394 static unsigned (*cache_ovly_table)[4] = 0;
3395 static unsigned cache_novlys = 0;
3396 static CORE_ADDR cache_ovly_table_base = 0;
3397 enum ovly_index
3398 {
3399 VMA, OSIZE, LMA, MAPPED
3400 };
3401
3402 /* Throw away the cached copy of _ovly_table. */
3403
3404 static void
3405 simple_free_overlay_table (void)
3406 {
3407 xfree (cache_ovly_table);
3408 cache_novlys = 0;
3409 cache_ovly_table = NULL;
3410 cache_ovly_table_base = 0;
3411 }
3412
3413 /* Read an array of ints of size SIZE from the target into a local buffer.
3414 Convert to host order. int LEN is number of ints. */
3415
3416 static void
3417 read_target_long_array (CORE_ADDR memaddr, unsigned int *myaddr,
3418 int len, int size, enum bfd_endian byte_order)
3419 {
3420 /* FIXME (alloca): Not safe if array is very large. */
3421 gdb_byte *buf = (gdb_byte *) alloca (len * size);
3422 int i;
3423
3424 read_memory (memaddr, buf, len * size);
3425 for (i = 0; i < len; i++)
3426 myaddr[i] = extract_unsigned_integer (size * i + buf, size, byte_order);
3427 }
3428
3429 /* Find and grab a copy of the target _ovly_table
3430 (and _novlys, which is needed for the table's size). */
3431
3432 static int
3433 simple_read_overlay_table (void)
3434 {
3435 struct bound_minimal_symbol novlys_msym;
3436 struct bound_minimal_symbol ovly_table_msym;
3437 struct gdbarch *gdbarch;
3438 int word_size;
3439 enum bfd_endian byte_order;
3440
3441 simple_free_overlay_table ();
3442 novlys_msym = lookup_minimal_symbol ("_novlys", NULL, NULL);
3443 if (! novlys_msym.minsym)
3444 {
3445 error (_("Error reading inferior's overlay table: "
3446 "couldn't find `_novlys' variable\n"
3447 "in inferior. Use `overlay manual' mode."));
3448 return 0;
3449 }
3450
3451 ovly_table_msym = lookup_bound_minimal_symbol ("_ovly_table");
3452 if (! ovly_table_msym.minsym)
3453 {
3454 error (_("Error reading inferior's overlay table: couldn't find "
3455 "`_ovly_table' array\n"
3456 "in inferior. Use `overlay manual' mode."));
3457 return 0;
3458 }
3459
3460 gdbarch = ovly_table_msym.objfile->arch ();
3461 word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3462 byte_order = gdbarch_byte_order (gdbarch);
3463
3464 cache_novlys = read_memory_integer (BMSYMBOL_VALUE_ADDRESS (novlys_msym),
3465 4, byte_order);
3466 cache_ovly_table
3467 = (unsigned int (*)[4]) xmalloc (cache_novlys * sizeof (*cache_ovly_table));
3468 cache_ovly_table_base = BMSYMBOL_VALUE_ADDRESS (ovly_table_msym);
3469 read_target_long_array (cache_ovly_table_base,
3470 (unsigned int *) cache_ovly_table,
3471 cache_novlys * 4, word_size, byte_order);
3472
3473 return 1; /* SUCCESS */
3474 }
3475
3476 /* Function: simple_overlay_update_1
3477 A helper function for simple_overlay_update. Assuming a cached copy
3478 of _ovly_table exists, look through it to find an entry whose vma,
3479 lma and size match those of OSECT. Re-read the entry and make sure
3480 it still matches OSECT (else the table may no longer be valid).
3481 Set OSECT's mapped state to match the entry. Return: 1 for
3482 success, 0 for failure. */
3483
3484 static int
3485 simple_overlay_update_1 (struct obj_section *osect)
3486 {
3487 int i;
3488 asection *bsect = osect->the_bfd_section;
3489 struct gdbarch *gdbarch = osect->objfile->arch ();
3490 int word_size = gdbarch_long_bit (gdbarch) / TARGET_CHAR_BIT;
3491 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
3492
3493 for (i = 0; i < cache_novlys; i++)
3494 if (cache_ovly_table[i][VMA] == bfd_section_vma (bsect)
3495 && cache_ovly_table[i][LMA] == bfd_section_lma (bsect))
3496 {
3497 read_target_long_array (cache_ovly_table_base + i * word_size,
3498 (unsigned int *) cache_ovly_table[i],
3499 4, word_size, byte_order);
3500 if (cache_ovly_table[i][VMA] == bfd_section_vma (bsect)
3501 && cache_ovly_table[i][LMA] == bfd_section_lma (bsect))
3502 {
3503 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3504 return 1;
3505 }
3506 else /* Warning! Warning! Target's ovly table has changed! */
3507 return 0;
3508 }
3509 return 0;
3510 }
3511
3512 /* Function: simple_overlay_update
3513 If OSECT is NULL, then update all sections' mapped state
3514 (after re-reading the entire target _ovly_table).
3515 If OSECT is non-NULL, then try to find a matching entry in the
3516 cached ovly_table and update only OSECT's mapped state.
3517 If a cached entry can't be found or the cache isn't valid, then
3518 re-read the entire cache, and go ahead and update all sections. */
3519
3520 void
3521 simple_overlay_update (struct obj_section *osect)
3522 {
3523 /* Were we given an osect to look up? NULL means do all of them. */
3524 if (osect)
3525 /* Have we got a cached copy of the target's overlay table? */
3526 if (cache_ovly_table != NULL)
3527 {
3528 /* Does its cached location match what's currently in the
3529 symtab? */
3530 struct bound_minimal_symbol minsym
3531 = lookup_minimal_symbol ("_ovly_table", NULL, NULL);
3532
3533 if (minsym.minsym == NULL)
3534 error (_("Error reading inferior's overlay table: couldn't "
3535 "find `_ovly_table' array\n"
3536 "in inferior. Use `overlay manual' mode."));
3537
3538 if (cache_ovly_table_base == BMSYMBOL_VALUE_ADDRESS (minsym))
3539 /* Then go ahead and try to look up this single section in
3540 the cache. */
3541 if (simple_overlay_update_1 (osect))
3542 /* Found it! We're done. */
3543 return;
3544 }
3545
3546 /* Cached table no good: need to read the entire table anew.
3547 Or else we want all the sections, in which case it's actually
3548 more efficient to read the whole table in one block anyway. */
3549
3550 if (! simple_read_overlay_table ())
3551 return;
3552
3553 /* Now may as well update all sections, even if only one was requested. */
3554 for (objfile *objfile : current_program_space->objfiles ())
3555 ALL_OBJFILE_OSECTIONS (objfile, osect)
3556 if (section_is_overlay (osect))
3557 {
3558 int i;
3559 asection *bsect = osect->the_bfd_section;
3560
3561 for (i = 0; i < cache_novlys; i++)
3562 if (cache_ovly_table[i][VMA] == bfd_section_vma (bsect)
3563 && cache_ovly_table[i][LMA] == bfd_section_lma (bsect))
3564 { /* obj_section matches i'th entry in ovly_table. */
3565 osect->ovly_mapped = cache_ovly_table[i][MAPPED];
3566 break; /* finished with inner for loop: break out. */
3567 }
3568 }
3569 }
3570
3571 /* Set the output sections and output offsets for section SECTP in
3572 ABFD. The relocation code in BFD will read these offsets, so we
3573 need to be sure they're initialized. We map each section to itself,
3574 with no offset; this means that SECTP->vma will be honored. */
3575
3576 static void
3577 symfile_dummy_outputs (bfd *abfd, asection *sectp, void *dummy)
3578 {
3579 sectp->output_section = sectp;
3580 sectp->output_offset = 0;
3581 }
3582
3583 /* Default implementation for sym_relocate. */
3584
3585 bfd_byte *
3586 default_symfile_relocate (struct objfile *objfile, asection *sectp,
3587 bfd_byte *buf)
3588 {
3589 /* Use sectp->owner instead of objfile->obfd. sectp may point to a
3590 DWO file. */
3591 bfd *abfd = sectp->owner;
3592
3593 /* We're only interested in sections with relocation
3594 information. */
3595 if ((sectp->flags & SEC_RELOC) == 0)
3596 return NULL;
3597
3598 /* We will handle section offsets properly elsewhere, so relocate as if
3599 all sections begin at 0. */
3600 bfd_map_over_sections (abfd, symfile_dummy_outputs, NULL);
3601
3602 return bfd_simple_get_relocated_section_contents (abfd, sectp, buf, NULL);
3603 }
3604
3605 /* Relocate the contents of a debug section SECTP in ABFD. The
3606 contents are stored in BUF if it is non-NULL, or returned in a
3607 malloc'd buffer otherwise.
3608
3609 For some platforms and debug info formats, shared libraries contain
3610 relocations against the debug sections (particularly for DWARF-2;
3611 one affected platform is PowerPC GNU/Linux, although it depends on
3612 the version of the linker in use). Also, ELF object files naturally
3613 have unresolved relocations for their debug sections. We need to apply
3614 the relocations in order to get the locations of symbols correct.
3615 Another example that may require relocation processing, is the
3616 DWARF-2 .eh_frame section in .o files, although it isn't strictly a
3617 debug section. */
3618
3619 bfd_byte *
3620 symfile_relocate_debug_section (struct objfile *objfile,
3621 asection *sectp, bfd_byte *buf)
3622 {
3623 gdb_assert (objfile->sf->sym_relocate);
3624
3625 return (*objfile->sf->sym_relocate) (objfile, sectp, buf);
3626 }
3627
3628 symfile_segment_data_up
3629 get_symfile_segment_data (bfd *abfd)
3630 {
3631 const struct sym_fns *sf = find_sym_fns (abfd);
3632
3633 if (sf == NULL)
3634 return NULL;
3635
3636 return sf->sym_segments (abfd);
3637 }
3638
3639 /* Given:
3640 - DATA, containing segment addresses from the object file ABFD, and
3641 the mapping from ABFD's sections onto the segments that own them,
3642 and
3643 - SEGMENT_BASES[0 .. NUM_SEGMENT_BASES - 1], holding the actual
3644 segment addresses reported by the target,
3645 store the appropriate offsets for each section in OFFSETS.
3646
3647 If there are fewer entries in SEGMENT_BASES than there are segments
3648 in DATA, then apply SEGMENT_BASES' last entry to all the segments.
3649
3650 If there are more entries, then ignore the extra. The target may
3651 not be able to distinguish between an empty data segment and a
3652 missing data segment; a missing text segment is less plausible. */
3653
3654 int
3655 symfile_map_offsets_to_segments (bfd *abfd,
3656 const struct symfile_segment_data *data,
3657 section_offsets &offsets,
3658 int num_segment_bases,
3659 const CORE_ADDR *segment_bases)
3660 {
3661 int i;
3662 asection *sect;
3663
3664 /* It doesn't make sense to call this function unless you have some
3665 segment base addresses. */
3666 gdb_assert (num_segment_bases > 0);
3667
3668 /* If we do not have segment mappings for the object file, we
3669 can not relocate it by segments. */
3670 gdb_assert (data != NULL);
3671 gdb_assert (data->segments.size () > 0);
3672
3673 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3674 {
3675 int which = data->segment_info[i];
3676
3677 gdb_assert (0 <= which && which <= data->segments.size ());
3678
3679 /* Don't bother computing offsets for sections that aren't
3680 loaded as part of any segment. */
3681 if (! which)
3682 continue;
3683
3684 /* Use the last SEGMENT_BASES entry as the address of any extra
3685 segments mentioned in DATA->segment_info. */
3686 if (which > num_segment_bases)
3687 which = num_segment_bases;
3688
3689 offsets[i] = segment_bases[which - 1] - data->segments[which - 1].base;
3690 }
3691
3692 return 1;
3693 }
3694
3695 static void
3696 symfile_find_segment_sections (struct objfile *objfile)
3697 {
3698 bfd *abfd = objfile->obfd;
3699 int i;
3700 asection *sect;
3701
3702 symfile_segment_data_up data
3703 = get_symfile_segment_data (objfile->obfd);
3704 if (data == NULL)
3705 return;
3706
3707 if (data->segments.size () != 1 && data->segments.size () != 2)
3708 return;
3709
3710 for (i = 0, sect = abfd->sections; sect != NULL; i++, sect = sect->next)
3711 {
3712 int which = data->segment_info[i];
3713
3714 if (which == 1)
3715 {
3716 if (objfile->sect_index_text == -1)
3717 objfile->sect_index_text = sect->index;
3718
3719 if (objfile->sect_index_rodata == -1)
3720 objfile->sect_index_rodata = sect->index;
3721 }
3722 else if (which == 2)
3723 {
3724 if (objfile->sect_index_data == -1)
3725 objfile->sect_index_data = sect->index;
3726
3727 if (objfile->sect_index_bss == -1)
3728 objfile->sect_index_bss = sect->index;
3729 }
3730 }
3731 }
3732
3733 /* Listen for free_objfile events. */
3734
3735 static void
3736 symfile_free_objfile (struct objfile *objfile)
3737 {
3738 /* Remove the target sections owned by this objfile. */
3739 if (objfile != NULL)
3740 remove_target_sections ((void *) objfile);
3741 }
3742
3743 /* Wrapper around the quick_symbol_functions expand_symtabs_matching "method".
3744 Expand all symtabs that match the specified criteria.
3745 See quick_symbol_functions.expand_symtabs_matching for details. */
3746
3747 void
3748 expand_symtabs_matching
3749 (gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
3750 const lookup_name_info &lookup_name,
3751 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
3752 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
3753 enum search_domain kind)
3754 {
3755 for (objfile *objfile : current_program_space->objfiles ())
3756 {
3757 if (objfile->sf)
3758 objfile->sf->qf->expand_symtabs_matching (objfile, file_matcher,
3759 &lookup_name,
3760 symbol_matcher,
3761 expansion_notify, kind);
3762 }
3763 }
3764
3765 /* Wrapper around the quick_symbol_functions map_symbol_filenames "method".
3766 Map function FUN over every file.
3767 See quick_symbol_functions.map_symbol_filenames for details. */
3768
3769 void
3770 map_symbol_filenames (symbol_filename_ftype *fun, void *data,
3771 int need_fullname)
3772 {
3773 for (objfile *objfile : current_program_space->objfiles ())
3774 {
3775 if (objfile->sf)
3776 objfile->sf->qf->map_symbol_filenames (objfile, fun, data,
3777 need_fullname);
3778 }
3779 }
3780
3781 #if GDB_SELF_TEST
3782
3783 namespace selftests {
3784 namespace filename_language {
3785
3786 static void test_filename_language ()
3787 {
3788 /* This test messes up the filename_language_table global. */
3789 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3790
3791 /* Test deducing an unknown extension. */
3792 language lang = deduce_language_from_filename ("myfile.blah");
3793 SELF_CHECK (lang == language_unknown);
3794
3795 /* Test deducing a known extension. */
3796 lang = deduce_language_from_filename ("myfile.c");
3797 SELF_CHECK (lang == language_c);
3798
3799 /* Test adding a new extension using the internal API. */
3800 add_filename_language (".blah", language_pascal);
3801 lang = deduce_language_from_filename ("myfile.blah");
3802 SELF_CHECK (lang == language_pascal);
3803 }
3804
3805 static void
3806 test_set_ext_lang_command ()
3807 {
3808 /* This test messes up the filename_language_table global. */
3809 scoped_restore restore_flt = make_scoped_restore (&filename_language_table);
3810
3811 /* Confirm that the .hello extension is not known. */
3812 language lang = deduce_language_from_filename ("cake.hello");
3813 SELF_CHECK (lang == language_unknown);
3814
3815 /* Test adding a new extension using the CLI command. */
3816 auto args_holder = make_unique_xstrdup (".hello rust");
3817 ext_args = args_holder.get ();
3818 set_ext_lang_command (NULL, 1, NULL);
3819
3820 lang = deduce_language_from_filename ("cake.hello");
3821 SELF_CHECK (lang == language_rust);
3822
3823 /* Test overriding an existing extension using the CLI command. */
3824 int size_before = filename_language_table.size ();
3825 args_holder.reset (xstrdup (".hello pascal"));
3826 ext_args = args_holder.get ();
3827 set_ext_lang_command (NULL, 1, NULL);
3828 int size_after = filename_language_table.size ();
3829
3830 lang = deduce_language_from_filename ("cake.hello");
3831 SELF_CHECK (lang == language_pascal);
3832 SELF_CHECK (size_before == size_after);
3833 }
3834
3835 } /* namespace filename_language */
3836 } /* namespace selftests */
3837
3838 #endif /* GDB_SELF_TEST */
3839
3840 void _initialize_symfile ();
3841 void
3842 _initialize_symfile ()
3843 {
3844 struct cmd_list_element *c;
3845
3846 gdb::observers::free_objfile.attach (symfile_free_objfile);
3847
3848 #define READNOW_READNEVER_HELP \
3849 "The '-readnow' option will cause GDB to read the entire symbol file\n\
3850 immediately. This makes the command slower, but may make future operations\n\
3851 faster.\n\
3852 The '-readnever' option will prevent GDB from reading the symbol file's\n\
3853 symbolic debug information."
3854
3855 c = add_cmd ("symbol-file", class_files, symbol_file_command, _("\
3856 Load symbol table from executable file FILE.\n\
3857 Usage: symbol-file [-readnow | -readnever] [-o OFF] FILE\n\
3858 OFF is an optional offset which is added to each section address.\n\
3859 The `file' command can also load symbol tables, as well as setting the file\n\
3860 to execute.\n" READNOW_READNEVER_HELP), &cmdlist);
3861 set_cmd_completer (c, filename_completer);
3862
3863 c = add_cmd ("add-symbol-file", class_files, add_symbol_file_command, _("\
3864 Load symbols from FILE, assuming FILE has been dynamically loaded.\n\
3865 Usage: add-symbol-file FILE [-readnow | -readnever] [-o OFF] [ADDR] \
3866 [-s SECT-NAME SECT-ADDR]...\n\
3867 ADDR is the starting address of the file's text.\n\
3868 Each '-s' argument provides a section name and address, and\n\
3869 should be specified if the data and bss segments are not contiguous\n\
3870 with the text. SECT-NAME is a section name to be loaded at SECT-ADDR.\n\
3871 OFF is an optional offset which is added to the default load addresses\n\
3872 of all sections for which no other address was specified.\n"
3873 READNOW_READNEVER_HELP),
3874 &cmdlist);
3875 set_cmd_completer (c, filename_completer);
3876
3877 c = add_cmd ("remove-symbol-file", class_files,
3878 remove_symbol_file_command, _("\
3879 Remove a symbol file added via the add-symbol-file command.\n\
3880 Usage: remove-symbol-file FILENAME\n\
3881 remove-symbol-file -a ADDRESS\n\
3882 The file to remove can be identified by its filename or by an address\n\
3883 that lies within the boundaries of this symbol file in memory."),
3884 &cmdlist);
3885
3886 c = add_cmd ("load", class_files, load_command, _("\
3887 Dynamically load FILE into the running program.\n\
3888 FILE symbols are recorded for access from GDB.\n\
3889 Usage: load [FILE] [OFFSET]\n\
3890 An optional load OFFSET may also be given as a literal address.\n\
3891 When OFFSET is provided, FILE must also be provided. FILE can be provided\n\
3892 on its own."), &cmdlist);
3893 set_cmd_completer (c, filename_completer);
3894
3895 add_basic_prefix_cmd ("overlay", class_support,
3896 _("Commands for debugging overlays."), &overlaylist,
3897 "overlay ", 0, &cmdlist);
3898
3899 add_com_alias ("ovly", "overlay", class_support, 1);
3900 add_com_alias ("ov", "overlay", class_support, 1);
3901
3902 add_cmd ("map-overlay", class_support, map_overlay_command,
3903 _("Assert that an overlay section is mapped."), &overlaylist);
3904
3905 add_cmd ("unmap-overlay", class_support, unmap_overlay_command,
3906 _("Assert that an overlay section is unmapped."), &overlaylist);
3907
3908 add_cmd ("list-overlays", class_support, list_overlays_command,
3909 _("List mappings of overlay sections."), &overlaylist);
3910
3911 add_cmd ("manual", class_support, overlay_manual_command,
3912 _("Enable overlay debugging."), &overlaylist);
3913 add_cmd ("off", class_support, overlay_off_command,
3914 _("Disable overlay debugging."), &overlaylist);
3915 add_cmd ("auto", class_support, overlay_auto_command,
3916 _("Enable automatic overlay debugging."), &overlaylist);
3917 add_cmd ("load-target", class_support, overlay_load_command,
3918 _("Read the overlay mapping state from the target."), &overlaylist);
3919
3920 /* Filename extension to source language lookup table: */
3921 add_setshow_string_noescape_cmd ("extension-language", class_files,
3922 &ext_args, _("\
3923 Set mapping between filename extension and source language."), _("\
3924 Show mapping between filename extension and source language."), _("\
3925 Usage: set extension-language .foo bar"),
3926 set_ext_lang_command,
3927 show_ext_args,
3928 &setlist, &showlist);
3929
3930 add_info ("extensions", info_ext_lang_command,
3931 _("All filename extensions associated with a source language."));
3932
3933 add_setshow_optional_filename_cmd ("debug-file-directory", class_support,
3934 &debug_file_directory, _("\
3935 Set the directories where separate debug symbols are searched for."), _("\
3936 Show the directories where separate debug symbols are searched for."), _("\
3937 Separate debug symbols are first searched for in the same\n\
3938 directory as the binary, then in the `" DEBUG_SUBDIRECTORY "' subdirectory,\n\
3939 and lastly at the path of the directory of the binary with\n\
3940 each global debug-file-directory component prepended."),
3941 NULL,
3942 show_debug_file_directory,
3943 &setlist, &showlist);
3944
3945 add_setshow_enum_cmd ("symbol-loading", no_class,
3946 print_symbol_loading_enums, &print_symbol_loading,
3947 _("\
3948 Set printing of symbol loading messages."), _("\
3949 Show printing of symbol loading messages."), _("\
3950 off == turn all messages off\n\
3951 brief == print messages for the executable,\n\
3952 and brief messages for shared libraries\n\
3953 full == print messages for the executable,\n\
3954 and messages for each shared library."),
3955 NULL,
3956 NULL,
3957 &setprintlist, &showprintlist);
3958
3959 add_setshow_boolean_cmd ("separate-debug-file", no_class,
3960 &separate_debug_file_debug, _("\
3961 Set printing of separate debug info file search debug."), _("\
3962 Show printing of separate debug info file search debug."), _("\
3963 When on, GDB prints the searched locations while looking for separate debug \
3964 info files."), NULL, NULL, &setdebuglist, &showdebuglist);
3965
3966 #if GDB_SELF_TEST
3967 selftests::register_test
3968 ("filename_language", selftests::filename_language::test_filename_language);
3969 selftests::register_test
3970 ("set_ext_lang_command",
3971 selftests::filename_language::test_set_ext_lang_command);
3972 #endif
3973 }
This page took 0.11715 seconds and 4 git commands to generate.