5274b88f7ab538fe1d918c40b5021d46a94de557
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "cli/cli-style.h"
45 #include "fnmatch.h"
46 #include "hashtab.h"
47 #include "typeprint.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include <sys/stat.h>
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "cp-support.h"
59 #include "observable.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "parser-defs.h"
65 #include "completer.h"
66 #include "progspace-and-thread.h"
67 #include "gdbsupport/gdb_optional.h"
68 #include "filename-seen-cache.h"
69 #include "arch-utils.h"
70 #include <algorithm>
71 #include "gdbsupport/gdb_string_view.h"
72 #include "gdbsupport/pathstuff.h"
73 #include "gdbsupport/common-utils.h"
74
75 /* Forward declarations for local functions. */
76
77 static void rbreak_command (const char *, int);
78
79 static int find_line_common (struct linetable *, int, int *, int);
80
81 static struct block_symbol
82 lookup_symbol_aux (const char *name,
83 symbol_name_match_type match_type,
84 const struct block *block,
85 const domain_enum domain,
86 enum language language,
87 struct field_of_this_result *);
88
89 static
90 struct block_symbol lookup_local_symbol (const char *name,
91 symbol_name_match_type match_type,
92 const struct block *block,
93 const domain_enum domain,
94 enum language language);
95
96 static struct block_symbol
97 lookup_symbol_in_objfile (struct objfile *objfile,
98 enum block_enum block_index,
99 const char *name, const domain_enum domain);
100
101 /* Type of the data stored on the program space. */
102
103 struct main_info
104 {
105 main_info () = default;
106
107 ~main_info ()
108 {
109 xfree (name_of_main);
110 }
111
112 /* Name of "main". */
113
114 char *name_of_main = nullptr;
115
116 /* Language of "main". */
117
118 enum language language_of_main = language_unknown;
119 };
120
121 /* Program space key for finding name and language of "main". */
122
123 static const program_space_key<main_info> main_progspace_key;
124
125 /* The default symbol cache size.
126 There is no extra cpu cost for large N (except when flushing the cache,
127 which is rare). The value here is just a first attempt. A better default
128 value may be higher or lower. A prime number can make up for a bad hash
129 computation, so that's why the number is what it is. */
130 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
131
132 /* The maximum symbol cache size.
133 There's no method to the decision of what value to use here, other than
134 there's no point in allowing a user typo to make gdb consume all memory. */
135 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
136
137 /* symbol_cache_lookup returns this if a previous lookup failed to find the
138 symbol in any objfile. */
139 #define SYMBOL_LOOKUP_FAILED \
140 ((struct block_symbol) {(struct symbol *) 1, NULL})
141 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
142
143 /* Recording lookups that don't find the symbol is just as important, if not
144 more so, than recording found symbols. */
145
146 enum symbol_cache_slot_state
147 {
148 SYMBOL_SLOT_UNUSED,
149 SYMBOL_SLOT_NOT_FOUND,
150 SYMBOL_SLOT_FOUND
151 };
152
153 struct symbol_cache_slot
154 {
155 enum symbol_cache_slot_state state;
156
157 /* The objfile that was current when the symbol was looked up.
158 This is only needed for global blocks, but for simplicity's sake
159 we allocate the space for both. If data shows the extra space used
160 for static blocks is a problem, we can split things up then.
161
162 Global blocks need cache lookup to include the objfile context because
163 we need to account for gdbarch_iterate_over_objfiles_in_search_order
164 which can traverse objfiles in, effectively, any order, depending on
165 the current objfile, thus affecting which symbol is found. Normally,
166 only the current objfile is searched first, and then the rest are
167 searched in recorded order; but putting cache lookup inside
168 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
169 Instead we just make the current objfile part of the context of
170 cache lookup. This means we can record the same symbol multiple times,
171 each with a different "current objfile" that was in effect when the
172 lookup was saved in the cache, but cache space is pretty cheap. */
173 const struct objfile *objfile_context;
174
175 union
176 {
177 struct block_symbol found;
178 struct
179 {
180 char *name;
181 domain_enum domain;
182 } not_found;
183 } value;
184 };
185
186 /* Clear out SLOT. */
187
188 static void
189 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
190 {
191 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
192 xfree (slot->value.not_found.name);
193 slot->state = SYMBOL_SLOT_UNUSED;
194 }
195
196 /* Symbols don't specify global vs static block.
197 So keep them in separate caches. */
198
199 struct block_symbol_cache
200 {
201 unsigned int hits;
202 unsigned int misses;
203 unsigned int collisions;
204
205 /* SYMBOLS is a variable length array of this size.
206 One can imagine that in general one cache (global/static) should be a
207 fraction of the size of the other, but there's no data at the moment
208 on which to decide. */
209 unsigned int size;
210
211 struct symbol_cache_slot symbols[1];
212 };
213
214 /* Clear all slots of BSC and free BSC. */
215
216 static void
217 destroy_block_symbol_cache (struct block_symbol_cache *bsc)
218 {
219 if (bsc != nullptr)
220 {
221 for (unsigned int i = 0; i < bsc->size; i++)
222 symbol_cache_clear_slot (&bsc->symbols[i]);
223 xfree (bsc);
224 }
225 }
226
227 /* The symbol cache.
228
229 Searching for symbols in the static and global blocks over multiple objfiles
230 again and again can be slow, as can searching very big objfiles. This is a
231 simple cache to improve symbol lookup performance, which is critical to
232 overall gdb performance.
233
234 Symbols are hashed on the name, its domain, and block.
235 They are also hashed on their objfile for objfile-specific lookups. */
236
237 struct symbol_cache
238 {
239 symbol_cache () = default;
240
241 ~symbol_cache ()
242 {
243 destroy_block_symbol_cache (global_symbols);
244 destroy_block_symbol_cache (static_symbols);
245 }
246
247 struct block_symbol_cache *global_symbols = nullptr;
248 struct block_symbol_cache *static_symbols = nullptr;
249 };
250
251 /* Program space key for finding its symbol cache. */
252
253 static const program_space_key<symbol_cache> symbol_cache_key;
254
255 /* When non-zero, print debugging messages related to symtab creation. */
256 unsigned int symtab_create_debug = 0;
257
258 /* When non-zero, print debugging messages related to symbol lookup. */
259 unsigned int symbol_lookup_debug = 0;
260
261 /* The size of the cache is staged here. */
262 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
263
264 /* The current value of the symbol cache size.
265 This is saved so that if the user enters a value too big we can restore
266 the original value from here. */
267 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
268
269 /* True if a file may be known by two different basenames.
270 This is the uncommon case, and significantly slows down gdb.
271 Default set to "off" to not slow down the common case. */
272 bool basenames_may_differ = false;
273
274 /* Allow the user to configure the debugger behavior with respect
275 to multiple-choice menus when more than one symbol matches during
276 a symbol lookup. */
277
278 const char multiple_symbols_ask[] = "ask";
279 const char multiple_symbols_all[] = "all";
280 const char multiple_symbols_cancel[] = "cancel";
281 static const char *const multiple_symbols_modes[] =
282 {
283 multiple_symbols_ask,
284 multiple_symbols_all,
285 multiple_symbols_cancel,
286 NULL
287 };
288 static const char *multiple_symbols_mode = multiple_symbols_all;
289
290 /* Read-only accessor to AUTO_SELECT_MODE. */
291
292 const char *
293 multiple_symbols_select_mode (void)
294 {
295 return multiple_symbols_mode;
296 }
297
298 /* Return the name of a domain_enum. */
299
300 const char *
301 domain_name (domain_enum e)
302 {
303 switch (e)
304 {
305 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
306 case VAR_DOMAIN: return "VAR_DOMAIN";
307 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
308 case MODULE_DOMAIN: return "MODULE_DOMAIN";
309 case LABEL_DOMAIN: return "LABEL_DOMAIN";
310 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
311 default: gdb_assert_not_reached ("bad domain_enum");
312 }
313 }
314
315 /* Return the name of a search_domain . */
316
317 const char *
318 search_domain_name (enum search_domain e)
319 {
320 switch (e)
321 {
322 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
323 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
324 case TYPES_DOMAIN: return "TYPES_DOMAIN";
325 case MODULES_DOMAIN: return "MODULES_DOMAIN";
326 case ALL_DOMAIN: return "ALL_DOMAIN";
327 default: gdb_assert_not_reached ("bad search_domain");
328 }
329 }
330
331 /* See symtab.h. */
332
333 struct symtab *
334 compunit_primary_filetab (const struct compunit_symtab *cust)
335 {
336 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
337
338 /* The primary file symtab is the first one in the list. */
339 return COMPUNIT_FILETABS (cust);
340 }
341
342 /* See symtab.h. */
343
344 enum language
345 compunit_language (const struct compunit_symtab *cust)
346 {
347 struct symtab *symtab = compunit_primary_filetab (cust);
348
349 /* The language of the compunit symtab is the language of its primary
350 source file. */
351 return SYMTAB_LANGUAGE (symtab);
352 }
353
354 /* See symtab.h. */
355
356 bool
357 minimal_symbol::data_p () const
358 {
359 return type == mst_data
360 || type == mst_bss
361 || type == mst_abs
362 || type == mst_file_data
363 || type == mst_file_bss;
364 }
365
366 /* See symtab.h. */
367
368 bool
369 minimal_symbol::text_p () const
370 {
371 return type == mst_text
372 || type == mst_text_gnu_ifunc
373 || type == mst_data_gnu_ifunc
374 || type == mst_slot_got_plt
375 || type == mst_solib_trampoline
376 || type == mst_file_text;
377 }
378
379 /* See whether FILENAME matches SEARCH_NAME using the rule that we
380 advertise to the user. (The manual's description of linespecs
381 describes what we advertise). Returns true if they match, false
382 otherwise. */
383
384 bool
385 compare_filenames_for_search (const char *filename, const char *search_name)
386 {
387 int len = strlen (filename);
388 size_t search_len = strlen (search_name);
389
390 if (len < search_len)
391 return false;
392
393 /* The tail of FILENAME must match. */
394 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
395 return false;
396
397 /* Either the names must completely match, or the character
398 preceding the trailing SEARCH_NAME segment of FILENAME must be a
399 directory separator.
400
401 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
402 cannot match FILENAME "/path//dir/file.c" - as user has requested
403 absolute path. The sama applies for "c:\file.c" possibly
404 incorrectly hypothetically matching "d:\dir\c:\file.c".
405
406 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
407 compatible with SEARCH_NAME "file.c". In such case a compiler had
408 to put the "c:file.c" name into debug info. Such compatibility
409 works only on GDB built for DOS host. */
410 return (len == search_len
411 || (!IS_ABSOLUTE_PATH (search_name)
412 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
413 || (HAS_DRIVE_SPEC (filename)
414 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
415 }
416
417 /* Same as compare_filenames_for_search, but for glob-style patterns.
418 Heads up on the order of the arguments. They match the order of
419 compare_filenames_for_search, but it's the opposite of the order of
420 arguments to gdb_filename_fnmatch. */
421
422 bool
423 compare_glob_filenames_for_search (const char *filename,
424 const char *search_name)
425 {
426 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
427 all /s have to be explicitly specified. */
428 int file_path_elements = count_path_elements (filename);
429 int search_path_elements = count_path_elements (search_name);
430
431 if (search_path_elements > file_path_elements)
432 return false;
433
434 if (IS_ABSOLUTE_PATH (search_name))
435 {
436 return (search_path_elements == file_path_elements
437 && gdb_filename_fnmatch (search_name, filename,
438 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
439 }
440
441 {
442 const char *file_to_compare
443 = strip_leading_path_elements (filename,
444 file_path_elements - search_path_elements);
445
446 return gdb_filename_fnmatch (search_name, file_to_compare,
447 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
448 }
449 }
450
451 /* Check for a symtab of a specific name by searching some symtabs.
452 This is a helper function for callbacks of iterate_over_symtabs.
453
454 If NAME is not absolute, then REAL_PATH is NULL
455 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
456
457 The return value, NAME, REAL_PATH and CALLBACK are identical to the
458 `map_symtabs_matching_filename' method of quick_symbol_functions.
459
460 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
461 Each symtab within the specified compunit symtab is also searched.
462 AFTER_LAST is one past the last compunit symtab to search; NULL means to
463 search until the end of the list. */
464
465 bool
466 iterate_over_some_symtabs (const char *name,
467 const char *real_path,
468 struct compunit_symtab *first,
469 struct compunit_symtab *after_last,
470 gdb::function_view<bool (symtab *)> callback)
471 {
472 struct compunit_symtab *cust;
473 const char* base_name = lbasename (name);
474
475 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
476 {
477 for (symtab *s : compunit_filetabs (cust))
478 {
479 if (compare_filenames_for_search (s->filename, name))
480 {
481 if (callback (s))
482 return true;
483 continue;
484 }
485
486 /* Before we invoke realpath, which can get expensive when many
487 files are involved, do a quick comparison of the basenames. */
488 if (! basenames_may_differ
489 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
490 continue;
491
492 if (compare_filenames_for_search (symtab_to_fullname (s), name))
493 {
494 if (callback (s))
495 return true;
496 continue;
497 }
498
499 /* If the user gave us an absolute path, try to find the file in
500 this symtab and use its absolute path. */
501 if (real_path != NULL)
502 {
503 const char *fullname = symtab_to_fullname (s);
504
505 gdb_assert (IS_ABSOLUTE_PATH (real_path));
506 gdb_assert (IS_ABSOLUTE_PATH (name));
507 gdb::unique_xmalloc_ptr<char> fullname_real_path
508 = gdb_realpath (fullname);
509 fullname = fullname_real_path.get ();
510 if (FILENAME_CMP (real_path, fullname) == 0)
511 {
512 if (callback (s))
513 return true;
514 continue;
515 }
516 }
517 }
518 }
519
520 return false;
521 }
522
523 /* Check for a symtab of a specific name; first in symtabs, then in
524 psymtabs. *If* there is no '/' in the name, a match after a '/'
525 in the symtab filename will also work.
526
527 Calls CALLBACK with each symtab that is found. If CALLBACK returns
528 true, the search stops. */
529
530 void
531 iterate_over_symtabs (const char *name,
532 gdb::function_view<bool (symtab *)> callback)
533 {
534 gdb::unique_xmalloc_ptr<char> real_path;
535
536 /* Here we are interested in canonicalizing an absolute path, not
537 absolutizing a relative path. */
538 if (IS_ABSOLUTE_PATH (name))
539 {
540 real_path = gdb_realpath (name);
541 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
542 }
543
544 for (objfile *objfile : current_program_space->objfiles ())
545 {
546 if (iterate_over_some_symtabs (name, real_path.get (),
547 objfile->compunit_symtabs, NULL,
548 callback))
549 return;
550 }
551
552 /* Same search rules as above apply here, but now we look thru the
553 psymtabs. */
554
555 for (objfile *objfile : current_program_space->objfiles ())
556 {
557 if (objfile->sf
558 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
559 name,
560 real_path.get (),
561 callback))
562 return;
563 }
564 }
565
566 /* A wrapper for iterate_over_symtabs that returns the first matching
567 symtab, or NULL. */
568
569 struct symtab *
570 lookup_symtab (const char *name)
571 {
572 struct symtab *result = NULL;
573
574 iterate_over_symtabs (name, [&] (symtab *symtab)
575 {
576 result = symtab;
577 return true;
578 });
579
580 return result;
581 }
582
583 \f
584 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
585 full method name, which consist of the class name (from T), the unadorned
586 method name from METHOD_ID, and the signature for the specific overload,
587 specified by SIGNATURE_ID. Note that this function is g++ specific. */
588
589 char *
590 gdb_mangle_name (struct type *type, int method_id, int signature_id)
591 {
592 int mangled_name_len;
593 char *mangled_name;
594 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
595 struct fn_field *method = &f[signature_id];
596 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
597 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
598 const char *newname = TYPE_NAME (type);
599
600 /* Does the form of physname indicate that it is the full mangled name
601 of a constructor (not just the args)? */
602 int is_full_physname_constructor;
603
604 int is_constructor;
605 int is_destructor = is_destructor_name (physname);
606 /* Need a new type prefix. */
607 const char *const_prefix = method->is_const ? "C" : "";
608 const char *volatile_prefix = method->is_volatile ? "V" : "";
609 char buf[20];
610 int len = (newname == NULL ? 0 : strlen (newname));
611
612 /* Nothing to do if physname already contains a fully mangled v3 abi name
613 or an operator name. */
614 if ((physname[0] == '_' && physname[1] == 'Z')
615 || is_operator_name (field_name))
616 return xstrdup (physname);
617
618 is_full_physname_constructor = is_constructor_name (physname);
619
620 is_constructor = is_full_physname_constructor
621 || (newname && strcmp (field_name, newname) == 0);
622
623 if (!is_destructor)
624 is_destructor = (startswith (physname, "__dt"));
625
626 if (is_destructor || is_full_physname_constructor)
627 {
628 mangled_name = (char *) xmalloc (strlen (physname) + 1);
629 strcpy (mangled_name, physname);
630 return mangled_name;
631 }
632
633 if (len == 0)
634 {
635 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
636 }
637 else if (physname[0] == 't' || physname[0] == 'Q')
638 {
639 /* The physname for template and qualified methods already includes
640 the class name. */
641 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
642 newname = NULL;
643 len = 0;
644 }
645 else
646 {
647 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
648 volatile_prefix, len);
649 }
650 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
651 + strlen (buf) + len + strlen (physname) + 1);
652
653 mangled_name = (char *) xmalloc (mangled_name_len);
654 if (is_constructor)
655 mangled_name[0] = '\0';
656 else
657 strcpy (mangled_name, field_name);
658
659 strcat (mangled_name, buf);
660 /* If the class doesn't have a name, i.e. newname NULL, then we just
661 mangle it using 0 for the length of the class. Thus it gets mangled
662 as something starting with `::' rather than `classname::'. */
663 if (newname != NULL)
664 strcat (mangled_name, newname);
665
666 strcat (mangled_name, physname);
667 return (mangled_name);
668 }
669
670 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
671 correctly allocated. */
672
673 void
674 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
675 const char *name,
676 struct obstack *obstack)
677 {
678 if (gsymbol->language () == language_ada)
679 {
680 if (name == NULL)
681 {
682 gsymbol->ada_mangled = 0;
683 gsymbol->language_specific.obstack = obstack;
684 }
685 else
686 {
687 gsymbol->ada_mangled = 1;
688 gsymbol->language_specific.demangled_name = name;
689 }
690 }
691 else
692 gsymbol->language_specific.demangled_name = name;
693 }
694
695 /* Return the demangled name of GSYMBOL. */
696
697 const char *
698 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
699 {
700 if (gsymbol->language () == language_ada)
701 {
702 if (!gsymbol->ada_mangled)
703 return NULL;
704 /* Fall through. */
705 }
706
707 return gsymbol->language_specific.demangled_name;
708 }
709
710 \f
711 /* Initialize the language dependent portion of a symbol
712 depending upon the language for the symbol. */
713
714 void
715 general_symbol_info::set_language (enum language language,
716 struct obstack *obstack)
717 {
718 m_language = language;
719 if (language == language_cplus
720 || language == language_d
721 || language == language_go
722 || language == language_objc
723 || language == language_fortran)
724 {
725 symbol_set_demangled_name (this, NULL, obstack);
726 }
727 else if (language == language_ada)
728 {
729 gdb_assert (ada_mangled == 0);
730 language_specific.obstack = obstack;
731 }
732 else
733 {
734 memset (&language_specific, 0, sizeof (language_specific));
735 }
736 }
737
738 /* Functions to initialize a symbol's mangled name. */
739
740 /* Objects of this type are stored in the demangled name hash table. */
741 struct demangled_name_entry
742 {
743 demangled_name_entry (gdb::string_view mangled_name)
744 : mangled (mangled_name) {}
745
746 gdb::string_view mangled;
747 enum language language;
748 gdb::unique_xmalloc_ptr<char> demangled;
749 };
750
751 /* Hash function for the demangled name hash. */
752
753 static hashval_t
754 hash_demangled_name_entry (const void *data)
755 {
756 const struct demangled_name_entry *e
757 = (const struct demangled_name_entry *) data;
758
759 return fast_hash (e->mangled.data (), e->mangled.length ());
760 }
761
762 /* Equality function for the demangled name hash. */
763
764 static int
765 eq_demangled_name_entry (const void *a, const void *b)
766 {
767 const struct demangled_name_entry *da
768 = (const struct demangled_name_entry *) a;
769 const struct demangled_name_entry *db
770 = (const struct demangled_name_entry *) b;
771
772 return da->mangled == db->mangled;
773 }
774
775 static void
776 free_demangled_name_entry (void *data)
777 {
778 struct demangled_name_entry *e
779 = (struct demangled_name_entry *) data;
780
781 e->~demangled_name_entry();
782 }
783
784 /* Create the hash table used for demangled names. Each hash entry is
785 a pair of strings; one for the mangled name and one for the demangled
786 name. The entry is hashed via just the mangled name. */
787
788 static void
789 create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd)
790 {
791 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
792 The hash table code will round this up to the next prime number.
793 Choosing a much larger table size wastes memory, and saves only about
794 1% in symbol reading. However, if the minsym count is already
795 initialized (e.g. because symbol name setting was deferred to
796 a background thread) we can initialize the hashtable with a count
797 based on that, because we will almost certainly have at least that
798 many entries. If we have a nonzero number but less than 256,
799 we still stay with 256 to have some space for psymbols, etc. */
800
801 /* htab will expand the table when it is 3/4th full, so we account for that
802 here. +2 to round up. */
803 int minsym_based_count = (per_bfd->minimal_symbol_count + 2) / 3 * 4;
804 int count = std::max (per_bfd->minimal_symbol_count, minsym_based_count);
805
806 per_bfd->demangled_names_hash.reset (htab_create_alloc
807 (count, hash_demangled_name_entry, eq_demangled_name_entry,
808 free_demangled_name_entry, xcalloc, xfree));
809 }
810
811 /* See symtab.h */
812
813 char *
814 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
815 const char *mangled)
816 {
817 char *demangled = NULL;
818 int i;
819
820 if (gsymbol->language () == language_unknown)
821 gsymbol->m_language = language_auto;
822
823 if (gsymbol->language () != language_auto)
824 {
825 const struct language_defn *lang = language_def (gsymbol->language ());
826
827 language_sniff_from_mangled_name (lang, mangled, &demangled);
828 return demangled;
829 }
830
831 for (i = language_unknown; i < nr_languages; ++i)
832 {
833 enum language l = (enum language) i;
834 const struct language_defn *lang = language_def (l);
835
836 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
837 {
838 gsymbol->m_language = l;
839 return demangled;
840 }
841 }
842
843 return NULL;
844 }
845
846 /* Set both the mangled and demangled (if any) names for GSYMBOL based
847 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
848 objfile's obstack; but if COPY_NAME is 0 and if NAME is
849 NUL-terminated, then this function assumes that NAME is already
850 correctly saved (either permanently or with a lifetime tied to the
851 objfile), and it will not be copied.
852
853 The hash table corresponding to OBJFILE is used, and the memory
854 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
855 so the pointer can be discarded after calling this function. */
856
857 void
858 general_symbol_info::compute_and_set_names (gdb::string_view linkage_name,
859 bool copy_name,
860 objfile_per_bfd_storage *per_bfd,
861 gdb::optional<hashval_t> hash)
862 {
863 struct demangled_name_entry **slot;
864
865 if (language () == language_ada)
866 {
867 /* In Ada, we do the symbol lookups using the mangled name, so
868 we can save some space by not storing the demangled name. */
869 if (!copy_name)
870 m_name = linkage_name.data ();
871 else
872 {
873 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
874 linkage_name.length () + 1);
875
876 memcpy (name, linkage_name.data (), linkage_name.length ());
877 name[linkage_name.length ()] = '\0';
878 m_name = name;
879 }
880 symbol_set_demangled_name (this, NULL, &per_bfd->storage_obstack);
881
882 return;
883 }
884
885 if (per_bfd->demangled_names_hash == NULL)
886 create_demangled_names_hash (per_bfd);
887
888 struct demangled_name_entry entry (linkage_name);
889 if (!hash.has_value ())
890 hash = hash_demangled_name_entry (&entry);
891 slot = ((struct demangled_name_entry **)
892 htab_find_slot_with_hash (per_bfd->demangled_names_hash.get (),
893 &entry, *hash, INSERT));
894
895 /* If this name is not in the hash table, add it. */
896 if (*slot == NULL
897 /* A C version of the symbol may have already snuck into the table.
898 This happens to, e.g., main.init (__go_init_main). Cope. */
899 || (language () == language_go && (*slot)->demangled == nullptr))
900 {
901 /* A 0-terminated copy of the linkage name. Callers must set COPY_NAME
902 to true if the string might not be nullterminated. We have to make
903 this copy because demangling needs a nullterminated string. */
904 gdb::string_view linkage_name_copy;
905 if (copy_name)
906 {
907 char *alloc_name = (char *) alloca (linkage_name.length () + 1);
908 memcpy (alloc_name, linkage_name.data (), linkage_name.length ());
909 alloc_name[linkage_name.length ()] = '\0';
910
911 linkage_name_copy = gdb::string_view (alloc_name,
912 linkage_name.length ());
913 }
914 else
915 linkage_name_copy = linkage_name;
916
917 /* The const_cast is safe because the only reason it is already
918 initialized is if we purposefully set it from a background
919 thread to avoid doing the work here. However, it is still
920 allocated from the heap and needs to be freed by us, just
921 like if we called symbol_find_demangled_name here. */
922 gdb::unique_xmalloc_ptr<char> demangled_name
923 (language_specific.demangled_name
924 ? const_cast<char *> (language_specific.demangled_name)
925 : symbol_find_demangled_name (this, linkage_name_copy.data ()));
926
927 /* Suppose we have demangled_name==NULL, copy_name==0, and
928 linkage_name_copy==linkage_name. In this case, we already have the
929 mangled name saved, and we don't have a demangled name. So,
930 you might think we could save a little space by not recording
931 this in the hash table at all.
932
933 It turns out that it is actually important to still save such
934 an entry in the hash table, because storing this name gives
935 us better bcache hit rates for partial symbols. */
936 if (!copy_name)
937 {
938 *slot
939 = ((struct demangled_name_entry *)
940 obstack_alloc (&per_bfd->storage_obstack,
941 sizeof (demangled_name_entry)));
942 new (*slot) demangled_name_entry (linkage_name);
943 }
944 else
945 {
946 /* If we must copy the mangled name, put it directly after
947 the struct so we can have a single allocation. */
948 *slot
949 = ((struct demangled_name_entry *)
950 obstack_alloc (&per_bfd->storage_obstack,
951 sizeof (demangled_name_entry)
952 + linkage_name.length () + 1));
953 char *mangled_ptr = reinterpret_cast<char *> (*slot + 1);
954 memcpy (mangled_ptr, linkage_name.data (), linkage_name.length ());
955 mangled_ptr [linkage_name.length ()] = '\0';
956 new (*slot) demangled_name_entry
957 (gdb::string_view (mangled_ptr, linkage_name.length ()));
958 }
959 (*slot)->demangled = std::move (demangled_name);
960 (*slot)->language = language ();
961 }
962 else if (language () == language_unknown || language () == language_auto)
963 m_language = (*slot)->language;
964
965 m_name = (*slot)->mangled.data ();
966 if ((*slot)->demangled != nullptr)
967 symbol_set_demangled_name (this, (*slot)->demangled.get (),
968 &per_bfd->storage_obstack);
969 else
970 symbol_set_demangled_name (this, NULL, &per_bfd->storage_obstack);
971 }
972
973 /* See symtab.h. */
974
975 const char *
976 general_symbol_info::natural_name () const
977 {
978 switch (language ())
979 {
980 case language_cplus:
981 case language_d:
982 case language_go:
983 case language_objc:
984 case language_fortran:
985 if (symbol_get_demangled_name (this) != NULL)
986 return symbol_get_demangled_name (this);
987 break;
988 case language_ada:
989 return ada_decode_symbol (this);
990 default:
991 break;
992 }
993 return linkage_name ();
994 }
995
996 /* See symtab.h. */
997
998 const char *
999 general_symbol_info::demangled_name () const
1000 {
1001 const char *dem_name = NULL;
1002
1003 switch (language ())
1004 {
1005 case language_cplus:
1006 case language_d:
1007 case language_go:
1008 case language_objc:
1009 case language_fortran:
1010 dem_name = symbol_get_demangled_name (this);
1011 break;
1012 case language_ada:
1013 dem_name = ada_decode_symbol (this);
1014 break;
1015 default:
1016 break;
1017 }
1018 return dem_name;
1019 }
1020
1021 /* See symtab.h. */
1022
1023 const char *
1024 general_symbol_info::search_name () const
1025 {
1026 if (language () == language_ada)
1027 return linkage_name ();
1028 else
1029 return natural_name ();
1030 }
1031
1032 /* See symtab.h. */
1033
1034 bool
1035 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
1036 const lookup_name_info &name)
1037 {
1038 symbol_name_matcher_ftype *name_match
1039 = get_symbol_name_matcher (language_def (gsymbol->language ()), name);
1040 return name_match (gsymbol->search_name (), name, NULL);
1041 }
1042
1043 \f
1044
1045 /* Return true if the two sections are the same, or if they could
1046 plausibly be copies of each other, one in an original object
1047 file and another in a separated debug file. */
1048
1049 bool
1050 matching_obj_sections (struct obj_section *obj_first,
1051 struct obj_section *obj_second)
1052 {
1053 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1054 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1055
1056 /* If they're the same section, then they match. */
1057 if (first == second)
1058 return true;
1059
1060 /* If either is NULL, give up. */
1061 if (first == NULL || second == NULL)
1062 return false;
1063
1064 /* This doesn't apply to absolute symbols. */
1065 if (first->owner == NULL || second->owner == NULL)
1066 return false;
1067
1068 /* If they're in the same object file, they must be different sections. */
1069 if (first->owner == second->owner)
1070 return false;
1071
1072 /* Check whether the two sections are potentially corresponding. They must
1073 have the same size, address, and name. We can't compare section indexes,
1074 which would be more reliable, because some sections may have been
1075 stripped. */
1076 if (bfd_section_size (first) != bfd_section_size (second))
1077 return false;
1078
1079 /* In-memory addresses may start at a different offset, relativize them. */
1080 if (bfd_section_vma (first) - bfd_get_start_address (first->owner)
1081 != bfd_section_vma (second) - bfd_get_start_address (second->owner))
1082 return false;
1083
1084 if (bfd_section_name (first) == NULL
1085 || bfd_section_name (second) == NULL
1086 || strcmp (bfd_section_name (first), bfd_section_name (second)) != 0)
1087 return false;
1088
1089 /* Otherwise check that they are in corresponding objfiles. */
1090
1091 struct objfile *obj = NULL;
1092 for (objfile *objfile : current_program_space->objfiles ())
1093 if (objfile->obfd == first->owner)
1094 {
1095 obj = objfile;
1096 break;
1097 }
1098 gdb_assert (obj != NULL);
1099
1100 if (obj->separate_debug_objfile != NULL
1101 && obj->separate_debug_objfile->obfd == second->owner)
1102 return true;
1103 if (obj->separate_debug_objfile_backlink != NULL
1104 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1105 return true;
1106
1107 return false;
1108 }
1109
1110 /* See symtab.h. */
1111
1112 void
1113 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1114 {
1115 struct bound_minimal_symbol msymbol;
1116
1117 /* If we know that this is not a text address, return failure. This is
1118 necessary because we loop based on texthigh and textlow, which do
1119 not include the data ranges. */
1120 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1121 if (msymbol.minsym && msymbol.minsym->data_p ())
1122 return;
1123
1124 for (objfile *objfile : current_program_space->objfiles ())
1125 {
1126 struct compunit_symtab *cust = NULL;
1127
1128 if (objfile->sf)
1129 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1130 pc, section, 0);
1131 if (cust)
1132 return;
1133 }
1134 }
1135 \f
1136 /* Hash function for the symbol cache. */
1137
1138 static unsigned int
1139 hash_symbol_entry (const struct objfile *objfile_context,
1140 const char *name, domain_enum domain)
1141 {
1142 unsigned int hash = (uintptr_t) objfile_context;
1143
1144 if (name != NULL)
1145 hash += htab_hash_string (name);
1146
1147 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1148 to map to the same slot. */
1149 if (domain == STRUCT_DOMAIN)
1150 hash += VAR_DOMAIN * 7;
1151 else
1152 hash += domain * 7;
1153
1154 return hash;
1155 }
1156
1157 /* Equality function for the symbol cache. */
1158
1159 static int
1160 eq_symbol_entry (const struct symbol_cache_slot *slot,
1161 const struct objfile *objfile_context,
1162 const char *name, domain_enum domain)
1163 {
1164 const char *slot_name;
1165 domain_enum slot_domain;
1166
1167 if (slot->state == SYMBOL_SLOT_UNUSED)
1168 return 0;
1169
1170 if (slot->objfile_context != objfile_context)
1171 return 0;
1172
1173 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1174 {
1175 slot_name = slot->value.not_found.name;
1176 slot_domain = slot->value.not_found.domain;
1177 }
1178 else
1179 {
1180 slot_name = slot->value.found.symbol->search_name ();
1181 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1182 }
1183
1184 /* NULL names match. */
1185 if (slot_name == NULL && name == NULL)
1186 {
1187 /* But there's no point in calling symbol_matches_domain in the
1188 SYMBOL_SLOT_FOUND case. */
1189 if (slot_domain != domain)
1190 return 0;
1191 }
1192 else if (slot_name != NULL && name != NULL)
1193 {
1194 /* It's important that we use the same comparison that was done
1195 the first time through. If the slot records a found symbol,
1196 then this means using the symbol name comparison function of
1197 the symbol's language with symbol->search_name (). See
1198 dictionary.c. It also means using symbol_matches_domain for
1199 found symbols. See block.c.
1200
1201 If the slot records a not-found symbol, then require a precise match.
1202 We could still be lax with whitespace like strcmp_iw though. */
1203
1204 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1205 {
1206 if (strcmp (slot_name, name) != 0)
1207 return 0;
1208 if (slot_domain != domain)
1209 return 0;
1210 }
1211 else
1212 {
1213 struct symbol *sym = slot->value.found.symbol;
1214 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1215
1216 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1217 return 0;
1218
1219 if (!symbol_matches_domain (sym->language (), slot_domain, domain))
1220 return 0;
1221 }
1222 }
1223 else
1224 {
1225 /* Only one name is NULL. */
1226 return 0;
1227 }
1228
1229 return 1;
1230 }
1231
1232 /* Given a cache of size SIZE, return the size of the struct (with variable
1233 length array) in bytes. */
1234
1235 static size_t
1236 symbol_cache_byte_size (unsigned int size)
1237 {
1238 return (sizeof (struct block_symbol_cache)
1239 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1240 }
1241
1242 /* Resize CACHE. */
1243
1244 static void
1245 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1246 {
1247 /* If there's no change in size, don't do anything.
1248 All caches have the same size, so we can just compare with the size
1249 of the global symbols cache. */
1250 if ((cache->global_symbols != NULL
1251 && cache->global_symbols->size == new_size)
1252 || (cache->global_symbols == NULL
1253 && new_size == 0))
1254 return;
1255
1256 destroy_block_symbol_cache (cache->global_symbols);
1257 destroy_block_symbol_cache (cache->static_symbols);
1258
1259 if (new_size == 0)
1260 {
1261 cache->global_symbols = NULL;
1262 cache->static_symbols = NULL;
1263 }
1264 else
1265 {
1266 size_t total_size = symbol_cache_byte_size (new_size);
1267
1268 cache->global_symbols
1269 = (struct block_symbol_cache *) xcalloc (1, total_size);
1270 cache->static_symbols
1271 = (struct block_symbol_cache *) xcalloc (1, total_size);
1272 cache->global_symbols->size = new_size;
1273 cache->static_symbols->size = new_size;
1274 }
1275 }
1276
1277 /* Return the symbol cache of PSPACE.
1278 Create one if it doesn't exist yet. */
1279
1280 static struct symbol_cache *
1281 get_symbol_cache (struct program_space *pspace)
1282 {
1283 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1284
1285 if (cache == NULL)
1286 {
1287 cache = symbol_cache_key.emplace (pspace);
1288 resize_symbol_cache (cache, symbol_cache_size);
1289 }
1290
1291 return cache;
1292 }
1293
1294 /* Set the size of the symbol cache in all program spaces. */
1295
1296 static void
1297 set_symbol_cache_size (unsigned int new_size)
1298 {
1299 struct program_space *pspace;
1300
1301 ALL_PSPACES (pspace)
1302 {
1303 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1304
1305 /* The pspace could have been created but not have a cache yet. */
1306 if (cache != NULL)
1307 resize_symbol_cache (cache, new_size);
1308 }
1309 }
1310
1311 /* Called when symbol-cache-size is set. */
1312
1313 static void
1314 set_symbol_cache_size_handler (const char *args, int from_tty,
1315 struct cmd_list_element *c)
1316 {
1317 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1318 {
1319 /* Restore the previous value.
1320 This is the value the "show" command prints. */
1321 new_symbol_cache_size = symbol_cache_size;
1322
1323 error (_("Symbol cache size is too large, max is %u."),
1324 MAX_SYMBOL_CACHE_SIZE);
1325 }
1326 symbol_cache_size = new_symbol_cache_size;
1327
1328 set_symbol_cache_size (symbol_cache_size);
1329 }
1330
1331 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1332 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1333 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1334 failed (and thus this one will too), or NULL if the symbol is not present
1335 in the cache.
1336 *BSC_PTR and *SLOT_PTR are set to the cache and slot of the symbol, which
1337 can be used to save the result of a full lookup attempt. */
1338
1339 static struct block_symbol
1340 symbol_cache_lookup (struct symbol_cache *cache,
1341 struct objfile *objfile_context, enum block_enum block,
1342 const char *name, domain_enum domain,
1343 struct block_symbol_cache **bsc_ptr,
1344 struct symbol_cache_slot **slot_ptr)
1345 {
1346 struct block_symbol_cache *bsc;
1347 unsigned int hash;
1348 struct symbol_cache_slot *slot;
1349
1350 if (block == GLOBAL_BLOCK)
1351 bsc = cache->global_symbols;
1352 else
1353 bsc = cache->static_symbols;
1354 if (bsc == NULL)
1355 {
1356 *bsc_ptr = NULL;
1357 *slot_ptr = NULL;
1358 return {};
1359 }
1360
1361 hash = hash_symbol_entry (objfile_context, name, domain);
1362 slot = bsc->symbols + hash % bsc->size;
1363
1364 *bsc_ptr = bsc;
1365 *slot_ptr = slot;
1366
1367 if (eq_symbol_entry (slot, objfile_context, name, domain))
1368 {
1369 if (symbol_lookup_debug)
1370 fprintf_unfiltered (gdb_stdlog,
1371 "%s block symbol cache hit%s for %s, %s\n",
1372 block == GLOBAL_BLOCK ? "Global" : "Static",
1373 slot->state == SYMBOL_SLOT_NOT_FOUND
1374 ? " (not found)" : "",
1375 name, domain_name (domain));
1376 ++bsc->hits;
1377 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1378 return SYMBOL_LOOKUP_FAILED;
1379 return slot->value.found;
1380 }
1381
1382 /* Symbol is not present in the cache. */
1383
1384 if (symbol_lookup_debug)
1385 {
1386 fprintf_unfiltered (gdb_stdlog,
1387 "%s block symbol cache miss for %s, %s\n",
1388 block == GLOBAL_BLOCK ? "Global" : "Static",
1389 name, domain_name (domain));
1390 }
1391 ++bsc->misses;
1392 return {};
1393 }
1394
1395 /* Mark SYMBOL as found in SLOT.
1396 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1397 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1398 necessarily the objfile the symbol was found in. */
1399
1400 static void
1401 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1402 struct symbol_cache_slot *slot,
1403 struct objfile *objfile_context,
1404 struct symbol *symbol,
1405 const struct block *block)
1406 {
1407 if (bsc == NULL)
1408 return;
1409 if (slot->state != SYMBOL_SLOT_UNUSED)
1410 {
1411 ++bsc->collisions;
1412 symbol_cache_clear_slot (slot);
1413 }
1414 slot->state = SYMBOL_SLOT_FOUND;
1415 slot->objfile_context = objfile_context;
1416 slot->value.found.symbol = symbol;
1417 slot->value.found.block = block;
1418 }
1419
1420 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1421 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1422 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1423
1424 static void
1425 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1426 struct symbol_cache_slot *slot,
1427 struct objfile *objfile_context,
1428 const char *name, domain_enum domain)
1429 {
1430 if (bsc == NULL)
1431 return;
1432 if (slot->state != SYMBOL_SLOT_UNUSED)
1433 {
1434 ++bsc->collisions;
1435 symbol_cache_clear_slot (slot);
1436 }
1437 slot->state = SYMBOL_SLOT_NOT_FOUND;
1438 slot->objfile_context = objfile_context;
1439 slot->value.not_found.name = xstrdup (name);
1440 slot->value.not_found.domain = domain;
1441 }
1442
1443 /* Flush the symbol cache of PSPACE. */
1444
1445 static void
1446 symbol_cache_flush (struct program_space *pspace)
1447 {
1448 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1449 int pass;
1450
1451 if (cache == NULL)
1452 return;
1453 if (cache->global_symbols == NULL)
1454 {
1455 gdb_assert (symbol_cache_size == 0);
1456 gdb_assert (cache->static_symbols == NULL);
1457 return;
1458 }
1459
1460 /* If the cache is untouched since the last flush, early exit.
1461 This is important for performance during the startup of a program linked
1462 with 100s (or 1000s) of shared libraries. */
1463 if (cache->global_symbols->misses == 0
1464 && cache->static_symbols->misses == 0)
1465 return;
1466
1467 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1468 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1469
1470 for (pass = 0; pass < 2; ++pass)
1471 {
1472 struct block_symbol_cache *bsc
1473 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1474 unsigned int i;
1475
1476 for (i = 0; i < bsc->size; ++i)
1477 symbol_cache_clear_slot (&bsc->symbols[i]);
1478 }
1479
1480 cache->global_symbols->hits = 0;
1481 cache->global_symbols->misses = 0;
1482 cache->global_symbols->collisions = 0;
1483 cache->static_symbols->hits = 0;
1484 cache->static_symbols->misses = 0;
1485 cache->static_symbols->collisions = 0;
1486 }
1487
1488 /* Dump CACHE. */
1489
1490 static void
1491 symbol_cache_dump (const struct symbol_cache *cache)
1492 {
1493 int pass;
1494
1495 if (cache->global_symbols == NULL)
1496 {
1497 printf_filtered (" <disabled>\n");
1498 return;
1499 }
1500
1501 for (pass = 0; pass < 2; ++pass)
1502 {
1503 const struct block_symbol_cache *bsc
1504 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1505 unsigned int i;
1506
1507 if (pass == 0)
1508 printf_filtered ("Global symbols:\n");
1509 else
1510 printf_filtered ("Static symbols:\n");
1511
1512 for (i = 0; i < bsc->size; ++i)
1513 {
1514 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1515
1516 QUIT;
1517
1518 switch (slot->state)
1519 {
1520 case SYMBOL_SLOT_UNUSED:
1521 break;
1522 case SYMBOL_SLOT_NOT_FOUND:
1523 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1524 host_address_to_string (slot->objfile_context),
1525 slot->value.not_found.name,
1526 domain_name (slot->value.not_found.domain));
1527 break;
1528 case SYMBOL_SLOT_FOUND:
1529 {
1530 struct symbol *found = slot->value.found.symbol;
1531 const struct objfile *context = slot->objfile_context;
1532
1533 printf_filtered (" [%4u] = %s, %s %s\n", i,
1534 host_address_to_string (context),
1535 found->print_name (),
1536 domain_name (SYMBOL_DOMAIN (found)));
1537 break;
1538 }
1539 }
1540 }
1541 }
1542 }
1543
1544 /* The "mt print symbol-cache" command. */
1545
1546 static void
1547 maintenance_print_symbol_cache (const char *args, int from_tty)
1548 {
1549 struct program_space *pspace;
1550
1551 ALL_PSPACES (pspace)
1552 {
1553 struct symbol_cache *cache;
1554
1555 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1556 pspace->num,
1557 pspace->symfile_object_file != NULL
1558 ? objfile_name (pspace->symfile_object_file)
1559 : "(no object file)");
1560
1561 /* If the cache hasn't been created yet, avoid creating one. */
1562 cache = symbol_cache_key.get (pspace);
1563 if (cache == NULL)
1564 printf_filtered (" <empty>\n");
1565 else
1566 symbol_cache_dump (cache);
1567 }
1568 }
1569
1570 /* The "mt flush-symbol-cache" command. */
1571
1572 static void
1573 maintenance_flush_symbol_cache (const char *args, int from_tty)
1574 {
1575 struct program_space *pspace;
1576
1577 ALL_PSPACES (pspace)
1578 {
1579 symbol_cache_flush (pspace);
1580 }
1581 }
1582
1583 /* Print usage statistics of CACHE. */
1584
1585 static void
1586 symbol_cache_stats (struct symbol_cache *cache)
1587 {
1588 int pass;
1589
1590 if (cache->global_symbols == NULL)
1591 {
1592 printf_filtered (" <disabled>\n");
1593 return;
1594 }
1595
1596 for (pass = 0; pass < 2; ++pass)
1597 {
1598 const struct block_symbol_cache *bsc
1599 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1600
1601 QUIT;
1602
1603 if (pass == 0)
1604 printf_filtered ("Global block cache stats:\n");
1605 else
1606 printf_filtered ("Static block cache stats:\n");
1607
1608 printf_filtered (" size: %u\n", bsc->size);
1609 printf_filtered (" hits: %u\n", bsc->hits);
1610 printf_filtered (" misses: %u\n", bsc->misses);
1611 printf_filtered (" collisions: %u\n", bsc->collisions);
1612 }
1613 }
1614
1615 /* The "mt print symbol-cache-statistics" command. */
1616
1617 static void
1618 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1619 {
1620 struct program_space *pspace;
1621
1622 ALL_PSPACES (pspace)
1623 {
1624 struct symbol_cache *cache;
1625
1626 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1627 pspace->num,
1628 pspace->symfile_object_file != NULL
1629 ? objfile_name (pspace->symfile_object_file)
1630 : "(no object file)");
1631
1632 /* If the cache hasn't been created yet, avoid creating one. */
1633 cache = symbol_cache_key.get (pspace);
1634 if (cache == NULL)
1635 printf_filtered (" empty, no stats available\n");
1636 else
1637 symbol_cache_stats (cache);
1638 }
1639 }
1640
1641 /* This module's 'new_objfile' observer. */
1642
1643 static void
1644 symtab_new_objfile_observer (struct objfile *objfile)
1645 {
1646 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1647 symbol_cache_flush (current_program_space);
1648 }
1649
1650 /* This module's 'free_objfile' observer. */
1651
1652 static void
1653 symtab_free_objfile_observer (struct objfile *objfile)
1654 {
1655 symbol_cache_flush (objfile->pspace);
1656 }
1657 \f
1658 /* Debug symbols usually don't have section information. We need to dig that
1659 out of the minimal symbols and stash that in the debug symbol. */
1660
1661 void
1662 fixup_section (struct general_symbol_info *ginfo,
1663 CORE_ADDR addr, struct objfile *objfile)
1664 {
1665 struct minimal_symbol *msym;
1666
1667 /* First, check whether a minimal symbol with the same name exists
1668 and points to the same address. The address check is required
1669 e.g. on PowerPC64, where the minimal symbol for a function will
1670 point to the function descriptor, while the debug symbol will
1671 point to the actual function code. */
1672 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->linkage_name (),
1673 objfile);
1674 if (msym)
1675 ginfo->section = MSYMBOL_SECTION (msym);
1676 else
1677 {
1678 /* Static, function-local variables do appear in the linker
1679 (minimal) symbols, but are frequently given names that won't
1680 be found via lookup_minimal_symbol(). E.g., it has been
1681 observed in frv-uclinux (ELF) executables that a static,
1682 function-local variable named "foo" might appear in the
1683 linker symbols as "foo.6" or "foo.3". Thus, there is no
1684 point in attempting to extend the lookup-by-name mechanism to
1685 handle this case due to the fact that there can be multiple
1686 names.
1687
1688 So, instead, search the section table when lookup by name has
1689 failed. The ``addr'' and ``endaddr'' fields may have already
1690 been relocated. If so, the relocation offset needs to be
1691 subtracted from these values when performing the comparison.
1692 We unconditionally subtract it, because, when no relocation
1693 has been performed, the value will simply be zero.
1694
1695 The address of the symbol whose section we're fixing up HAS
1696 NOT BEEN adjusted (relocated) yet. It can't have been since
1697 the section isn't yet known and knowing the section is
1698 necessary in order to add the correct relocation value. In
1699 other words, we wouldn't even be in this function (attempting
1700 to compute the section) if it were already known.
1701
1702 Note that it is possible to search the minimal symbols
1703 (subtracting the relocation value if necessary) to find the
1704 matching minimal symbol, but this is overkill and much less
1705 efficient. It is not necessary to find the matching minimal
1706 symbol, only its section.
1707
1708 Note that this technique (of doing a section table search)
1709 can fail when unrelocated section addresses overlap. For
1710 this reason, we still attempt a lookup by name prior to doing
1711 a search of the section table. */
1712
1713 struct obj_section *s;
1714 int fallback = -1;
1715
1716 ALL_OBJFILE_OSECTIONS (objfile, s)
1717 {
1718 int idx = s - objfile->sections;
1719 CORE_ADDR offset = objfile->section_offsets[idx];
1720
1721 if (fallback == -1)
1722 fallback = idx;
1723
1724 if (obj_section_addr (s) - offset <= addr
1725 && addr < obj_section_endaddr (s) - offset)
1726 {
1727 ginfo->section = idx;
1728 return;
1729 }
1730 }
1731
1732 /* If we didn't find the section, assume it is in the first
1733 section. If there is no allocated section, then it hardly
1734 matters what we pick, so just pick zero. */
1735 if (fallback == -1)
1736 ginfo->section = 0;
1737 else
1738 ginfo->section = fallback;
1739 }
1740 }
1741
1742 struct symbol *
1743 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1744 {
1745 CORE_ADDR addr;
1746
1747 if (!sym)
1748 return NULL;
1749
1750 if (!SYMBOL_OBJFILE_OWNED (sym))
1751 return sym;
1752
1753 /* We either have an OBJFILE, or we can get at it from the sym's
1754 symtab. Anything else is a bug. */
1755 gdb_assert (objfile || symbol_symtab (sym));
1756
1757 if (objfile == NULL)
1758 objfile = symbol_objfile (sym);
1759
1760 if (SYMBOL_OBJ_SECTION (objfile, sym))
1761 return sym;
1762
1763 /* We should have an objfile by now. */
1764 gdb_assert (objfile);
1765
1766 switch (SYMBOL_CLASS (sym))
1767 {
1768 case LOC_STATIC:
1769 case LOC_LABEL:
1770 addr = SYMBOL_VALUE_ADDRESS (sym);
1771 break;
1772 case LOC_BLOCK:
1773 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1774 break;
1775
1776 default:
1777 /* Nothing else will be listed in the minsyms -- no use looking
1778 it up. */
1779 return sym;
1780 }
1781
1782 fixup_section (sym, addr, objfile);
1783
1784 return sym;
1785 }
1786
1787 /* See symtab.h. */
1788
1789 demangle_for_lookup_info::demangle_for_lookup_info
1790 (const lookup_name_info &lookup_name, language lang)
1791 {
1792 demangle_result_storage storage;
1793
1794 if (lookup_name.ignore_parameters () && lang == language_cplus)
1795 {
1796 gdb::unique_xmalloc_ptr<char> without_params
1797 = cp_remove_params_if_any (lookup_name.name ().c_str (),
1798 lookup_name.completion_mode ());
1799
1800 if (without_params != NULL)
1801 {
1802 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1803 m_demangled_name = demangle_for_lookup (without_params.get (),
1804 lang, storage);
1805 return;
1806 }
1807 }
1808
1809 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1810 m_demangled_name = lookup_name.name ();
1811 else
1812 m_demangled_name = demangle_for_lookup (lookup_name.name ().c_str (),
1813 lang, storage);
1814 }
1815
1816 /* See symtab.h. */
1817
1818 const lookup_name_info &
1819 lookup_name_info::match_any ()
1820 {
1821 /* Lookup any symbol that "" would complete. I.e., this matches all
1822 symbol names. */
1823 static const lookup_name_info lookup_name ({}, symbol_name_match_type::FULL,
1824 true);
1825
1826 return lookup_name;
1827 }
1828
1829 /* Compute the demangled form of NAME as used by the various symbol
1830 lookup functions. The result can either be the input NAME
1831 directly, or a pointer to a buffer owned by the STORAGE object.
1832
1833 For Ada, this function just returns NAME, unmodified.
1834 Normally, Ada symbol lookups are performed using the encoded name
1835 rather than the demangled name, and so it might seem to make sense
1836 for this function to return an encoded version of NAME.
1837 Unfortunately, we cannot do this, because this function is used in
1838 circumstances where it is not appropriate to try to encode NAME.
1839 For instance, when displaying the frame info, we demangle the name
1840 of each parameter, and then perform a symbol lookup inside our
1841 function using that demangled name. In Ada, certain functions
1842 have internally-generated parameters whose name contain uppercase
1843 characters. Encoding those name would result in those uppercase
1844 characters to become lowercase, and thus cause the symbol lookup
1845 to fail. */
1846
1847 const char *
1848 demangle_for_lookup (const char *name, enum language lang,
1849 demangle_result_storage &storage)
1850 {
1851 /* If we are using C++, D, or Go, demangle the name before doing a
1852 lookup, so we can always binary search. */
1853 if (lang == language_cplus)
1854 {
1855 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1856 if (demangled_name != NULL)
1857 return storage.set_malloc_ptr (demangled_name);
1858
1859 /* If we were given a non-mangled name, canonicalize it
1860 according to the language (so far only for C++). */
1861 std::string canon = cp_canonicalize_string (name);
1862 if (!canon.empty ())
1863 return storage.swap_string (canon);
1864 }
1865 else if (lang == language_d)
1866 {
1867 char *demangled_name = d_demangle (name, 0);
1868 if (demangled_name != NULL)
1869 return storage.set_malloc_ptr (demangled_name);
1870 }
1871 else if (lang == language_go)
1872 {
1873 char *demangled_name = go_demangle (name, 0);
1874 if (demangled_name != NULL)
1875 return storage.set_malloc_ptr (demangled_name);
1876 }
1877
1878 return name;
1879 }
1880
1881 /* See symtab.h. */
1882
1883 unsigned int
1884 search_name_hash (enum language language, const char *search_name)
1885 {
1886 return language_def (language)->la_search_name_hash (search_name);
1887 }
1888
1889 /* See symtab.h.
1890
1891 This function (or rather its subordinates) have a bunch of loops and
1892 it would seem to be attractive to put in some QUIT's (though I'm not really
1893 sure whether it can run long enough to be really important). But there
1894 are a few calls for which it would appear to be bad news to quit
1895 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1896 that there is C++ code below which can error(), but that probably
1897 doesn't affect these calls since they are looking for a known
1898 variable and thus can probably assume it will never hit the C++
1899 code). */
1900
1901 struct block_symbol
1902 lookup_symbol_in_language (const char *name, const struct block *block,
1903 const domain_enum domain, enum language lang,
1904 struct field_of_this_result *is_a_field_of_this)
1905 {
1906 demangle_result_storage storage;
1907 const char *modified_name = demangle_for_lookup (name, lang, storage);
1908
1909 return lookup_symbol_aux (modified_name,
1910 symbol_name_match_type::FULL,
1911 block, domain, lang,
1912 is_a_field_of_this);
1913 }
1914
1915 /* See symtab.h. */
1916
1917 struct block_symbol
1918 lookup_symbol (const char *name, const struct block *block,
1919 domain_enum domain,
1920 struct field_of_this_result *is_a_field_of_this)
1921 {
1922 return lookup_symbol_in_language (name, block, domain,
1923 current_language->la_language,
1924 is_a_field_of_this);
1925 }
1926
1927 /* See symtab.h. */
1928
1929 struct block_symbol
1930 lookup_symbol_search_name (const char *search_name, const struct block *block,
1931 domain_enum domain)
1932 {
1933 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1934 block, domain, language_asm, NULL);
1935 }
1936
1937 /* See symtab.h. */
1938
1939 struct block_symbol
1940 lookup_language_this (const struct language_defn *lang,
1941 const struct block *block)
1942 {
1943 if (lang->la_name_of_this == NULL || block == NULL)
1944 return {};
1945
1946 if (symbol_lookup_debug > 1)
1947 {
1948 struct objfile *objfile = lookup_objfile_from_block (block);
1949
1950 fprintf_unfiltered (gdb_stdlog,
1951 "lookup_language_this (%s, %s (objfile %s))",
1952 lang->la_name, host_address_to_string (block),
1953 objfile_debug_name (objfile));
1954 }
1955
1956 while (block)
1957 {
1958 struct symbol *sym;
1959
1960 sym = block_lookup_symbol (block, lang->la_name_of_this,
1961 symbol_name_match_type::SEARCH_NAME,
1962 VAR_DOMAIN);
1963 if (sym != NULL)
1964 {
1965 if (symbol_lookup_debug > 1)
1966 {
1967 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1968 sym->print_name (),
1969 host_address_to_string (sym),
1970 host_address_to_string (block));
1971 }
1972 return (struct block_symbol) {sym, block};
1973 }
1974 if (BLOCK_FUNCTION (block))
1975 break;
1976 block = BLOCK_SUPERBLOCK (block);
1977 }
1978
1979 if (symbol_lookup_debug > 1)
1980 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1981 return {};
1982 }
1983
1984 /* Given TYPE, a structure/union,
1985 return 1 if the component named NAME from the ultimate target
1986 structure/union is defined, otherwise, return 0. */
1987
1988 static int
1989 check_field (struct type *type, const char *name,
1990 struct field_of_this_result *is_a_field_of_this)
1991 {
1992 int i;
1993
1994 /* The type may be a stub. */
1995 type = check_typedef (type);
1996
1997 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1998 {
1999 const char *t_field_name = TYPE_FIELD_NAME (type, i);
2000
2001 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2002 {
2003 is_a_field_of_this->type = type;
2004 is_a_field_of_this->field = &TYPE_FIELD (type, i);
2005 return 1;
2006 }
2007 }
2008
2009 /* C++: If it was not found as a data field, then try to return it
2010 as a pointer to a method. */
2011
2012 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2013 {
2014 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2015 {
2016 is_a_field_of_this->type = type;
2017 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
2018 return 1;
2019 }
2020 }
2021
2022 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2023 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
2024 return 1;
2025
2026 return 0;
2027 }
2028
2029 /* Behave like lookup_symbol except that NAME is the natural name
2030 (e.g., demangled name) of the symbol that we're looking for. */
2031
2032 static struct block_symbol
2033 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2034 const struct block *block,
2035 const domain_enum domain, enum language language,
2036 struct field_of_this_result *is_a_field_of_this)
2037 {
2038 struct block_symbol result;
2039 const struct language_defn *langdef;
2040
2041 if (symbol_lookup_debug)
2042 {
2043 struct objfile *objfile = lookup_objfile_from_block (block);
2044
2045 fprintf_unfiltered (gdb_stdlog,
2046 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2047 name, host_address_to_string (block),
2048 objfile != NULL
2049 ? objfile_debug_name (objfile) : "NULL",
2050 domain_name (domain), language_str (language));
2051 }
2052
2053 /* Make sure we do something sensible with is_a_field_of_this, since
2054 the callers that set this parameter to some non-null value will
2055 certainly use it later. If we don't set it, the contents of
2056 is_a_field_of_this are undefined. */
2057 if (is_a_field_of_this != NULL)
2058 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2059
2060 /* Search specified block and its superiors. Don't search
2061 STATIC_BLOCK or GLOBAL_BLOCK. */
2062
2063 result = lookup_local_symbol (name, match_type, block, domain, language);
2064 if (result.symbol != NULL)
2065 {
2066 if (symbol_lookup_debug)
2067 {
2068 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2069 host_address_to_string (result.symbol));
2070 }
2071 return result;
2072 }
2073
2074 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2075 check to see if NAME is a field of `this'. */
2076
2077 langdef = language_def (language);
2078
2079 /* Don't do this check if we are searching for a struct. It will
2080 not be found by check_field, but will be found by other
2081 means. */
2082 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2083 {
2084 result = lookup_language_this (langdef, block);
2085
2086 if (result.symbol)
2087 {
2088 struct type *t = result.symbol->type;
2089
2090 /* I'm not really sure that type of this can ever
2091 be typedefed; just be safe. */
2092 t = check_typedef (t);
2093 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2094 t = TYPE_TARGET_TYPE (t);
2095
2096 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2097 && TYPE_CODE (t) != TYPE_CODE_UNION)
2098 error (_("Internal error: `%s' is not an aggregate"),
2099 langdef->la_name_of_this);
2100
2101 if (check_field (t, name, is_a_field_of_this))
2102 {
2103 if (symbol_lookup_debug)
2104 {
2105 fprintf_unfiltered (gdb_stdlog,
2106 "lookup_symbol_aux (...) = NULL\n");
2107 }
2108 return {};
2109 }
2110 }
2111 }
2112
2113 /* Now do whatever is appropriate for LANGUAGE to look
2114 up static and global variables. */
2115
2116 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2117 if (result.symbol != NULL)
2118 {
2119 if (symbol_lookup_debug)
2120 {
2121 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2122 host_address_to_string (result.symbol));
2123 }
2124 return result;
2125 }
2126
2127 /* Now search all static file-level symbols. Not strictly correct,
2128 but more useful than an error. */
2129
2130 result = lookup_static_symbol (name, domain);
2131 if (symbol_lookup_debug)
2132 {
2133 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2134 result.symbol != NULL
2135 ? host_address_to_string (result.symbol)
2136 : "NULL");
2137 }
2138 return result;
2139 }
2140
2141 /* Check to see if the symbol is defined in BLOCK or its superiors.
2142 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2143
2144 static struct block_symbol
2145 lookup_local_symbol (const char *name,
2146 symbol_name_match_type match_type,
2147 const struct block *block,
2148 const domain_enum domain,
2149 enum language language)
2150 {
2151 struct symbol *sym;
2152 const struct block *static_block = block_static_block (block);
2153 const char *scope = block_scope (block);
2154
2155 /* Check if either no block is specified or it's a global block. */
2156
2157 if (static_block == NULL)
2158 return {};
2159
2160 while (block != static_block)
2161 {
2162 sym = lookup_symbol_in_block (name, match_type, block, domain);
2163 if (sym != NULL)
2164 return (struct block_symbol) {sym, block};
2165
2166 if (language == language_cplus || language == language_fortran)
2167 {
2168 struct block_symbol blocksym
2169 = cp_lookup_symbol_imports_or_template (scope, name, block,
2170 domain);
2171
2172 if (blocksym.symbol != NULL)
2173 return blocksym;
2174 }
2175
2176 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2177 break;
2178 block = BLOCK_SUPERBLOCK (block);
2179 }
2180
2181 /* We've reached the end of the function without finding a result. */
2182
2183 return {};
2184 }
2185
2186 /* See symtab.h. */
2187
2188 struct objfile *
2189 lookup_objfile_from_block (const struct block *block)
2190 {
2191 if (block == NULL)
2192 return NULL;
2193
2194 block = block_global_block (block);
2195 /* Look through all blockvectors. */
2196 for (objfile *obj : current_program_space->objfiles ())
2197 {
2198 for (compunit_symtab *cust : obj->compunits ())
2199 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2200 GLOBAL_BLOCK))
2201 {
2202 if (obj->separate_debug_objfile_backlink)
2203 obj = obj->separate_debug_objfile_backlink;
2204
2205 return obj;
2206 }
2207 }
2208
2209 return NULL;
2210 }
2211
2212 /* See symtab.h. */
2213
2214 struct symbol *
2215 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2216 const struct block *block,
2217 const domain_enum domain)
2218 {
2219 struct symbol *sym;
2220
2221 if (symbol_lookup_debug > 1)
2222 {
2223 struct objfile *objfile = lookup_objfile_from_block (block);
2224
2225 fprintf_unfiltered (gdb_stdlog,
2226 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2227 name, host_address_to_string (block),
2228 objfile_debug_name (objfile),
2229 domain_name (domain));
2230 }
2231
2232 sym = block_lookup_symbol (block, name, match_type, domain);
2233 if (sym)
2234 {
2235 if (symbol_lookup_debug > 1)
2236 {
2237 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2238 host_address_to_string (sym));
2239 }
2240 return fixup_symbol_section (sym, NULL);
2241 }
2242
2243 if (symbol_lookup_debug > 1)
2244 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2245 return NULL;
2246 }
2247
2248 /* See symtab.h. */
2249
2250 struct block_symbol
2251 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2252 enum block_enum block_index,
2253 const char *name,
2254 const domain_enum domain)
2255 {
2256 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2257
2258 for (objfile *objfile : main_objfile->separate_debug_objfiles ())
2259 {
2260 struct block_symbol result
2261 = lookup_symbol_in_objfile (objfile, block_index, name, domain);
2262
2263 if (result.symbol != nullptr)
2264 return result;
2265 }
2266
2267 return {};
2268 }
2269
2270 /* Check to see if the symbol is defined in one of the OBJFILE's
2271 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2272 depending on whether or not we want to search global symbols or
2273 static symbols. */
2274
2275 static struct block_symbol
2276 lookup_symbol_in_objfile_symtabs (struct objfile *objfile,
2277 enum block_enum block_index, const char *name,
2278 const domain_enum domain)
2279 {
2280 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2281
2282 if (symbol_lookup_debug > 1)
2283 {
2284 fprintf_unfiltered (gdb_stdlog,
2285 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2286 objfile_debug_name (objfile),
2287 block_index == GLOBAL_BLOCK
2288 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2289 name, domain_name (domain));
2290 }
2291
2292 for (compunit_symtab *cust : objfile->compunits ())
2293 {
2294 const struct blockvector *bv;
2295 const struct block *block;
2296 struct block_symbol result;
2297
2298 bv = COMPUNIT_BLOCKVECTOR (cust);
2299 block = BLOCKVECTOR_BLOCK (bv, block_index);
2300 result.symbol = block_lookup_symbol_primary (block, name, domain);
2301 result.block = block;
2302 if (result.symbol != NULL)
2303 {
2304 if (symbol_lookup_debug > 1)
2305 {
2306 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2307 host_address_to_string (result.symbol),
2308 host_address_to_string (block));
2309 }
2310 result.symbol = fixup_symbol_section (result.symbol, objfile);
2311 return result;
2312
2313 }
2314 }
2315
2316 if (symbol_lookup_debug > 1)
2317 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2318 return {};
2319 }
2320
2321 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2322 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2323 and all associated separate debug objfiles.
2324
2325 Normally we only look in OBJFILE, and not any separate debug objfiles
2326 because the outer loop will cause them to be searched too. This case is
2327 different. Here we're called from search_symbols where it will only
2328 call us for the objfile that contains a matching minsym. */
2329
2330 static struct block_symbol
2331 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2332 const char *linkage_name,
2333 domain_enum domain)
2334 {
2335 enum language lang = current_language->la_language;
2336 struct objfile *main_objfile;
2337
2338 demangle_result_storage storage;
2339 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2340
2341 if (objfile->separate_debug_objfile_backlink)
2342 main_objfile = objfile->separate_debug_objfile_backlink;
2343 else
2344 main_objfile = objfile;
2345
2346 for (::objfile *cur_objfile : main_objfile->separate_debug_objfiles ())
2347 {
2348 struct block_symbol result;
2349
2350 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2351 modified_name, domain);
2352 if (result.symbol == NULL)
2353 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2354 modified_name, domain);
2355 if (result.symbol != NULL)
2356 return result;
2357 }
2358
2359 return {};
2360 }
2361
2362 /* A helper function that throws an exception when a symbol was found
2363 in a psymtab but not in a symtab. */
2364
2365 static void ATTRIBUTE_NORETURN
2366 error_in_psymtab_expansion (enum block_enum block_index, const char *name,
2367 struct compunit_symtab *cust)
2368 {
2369 error (_("\
2370 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2371 %s may be an inlined function, or may be a template function\n \
2372 (if a template, try specifying an instantiation: %s<type>)."),
2373 block_index == GLOBAL_BLOCK ? "global" : "static",
2374 name,
2375 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2376 name, name);
2377 }
2378
2379 /* A helper function for various lookup routines that interfaces with
2380 the "quick" symbol table functions. */
2381
2382 static struct block_symbol
2383 lookup_symbol_via_quick_fns (struct objfile *objfile,
2384 enum block_enum block_index, const char *name,
2385 const domain_enum domain)
2386 {
2387 struct compunit_symtab *cust;
2388 const struct blockvector *bv;
2389 const struct block *block;
2390 struct block_symbol result;
2391
2392 if (!objfile->sf)
2393 return {};
2394
2395 if (symbol_lookup_debug > 1)
2396 {
2397 fprintf_unfiltered (gdb_stdlog,
2398 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2399 objfile_debug_name (objfile),
2400 block_index == GLOBAL_BLOCK
2401 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2402 name, domain_name (domain));
2403 }
2404
2405 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2406 if (cust == NULL)
2407 {
2408 if (symbol_lookup_debug > 1)
2409 {
2410 fprintf_unfiltered (gdb_stdlog,
2411 "lookup_symbol_via_quick_fns (...) = NULL\n");
2412 }
2413 return {};
2414 }
2415
2416 bv = COMPUNIT_BLOCKVECTOR (cust);
2417 block = BLOCKVECTOR_BLOCK (bv, block_index);
2418 result.symbol = block_lookup_symbol (block, name,
2419 symbol_name_match_type::FULL, domain);
2420 if (result.symbol == NULL)
2421 error_in_psymtab_expansion (block_index, name, cust);
2422
2423 if (symbol_lookup_debug > 1)
2424 {
2425 fprintf_unfiltered (gdb_stdlog,
2426 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2427 host_address_to_string (result.symbol),
2428 host_address_to_string (block));
2429 }
2430
2431 result.symbol = fixup_symbol_section (result.symbol, objfile);
2432 result.block = block;
2433 return result;
2434 }
2435
2436 /* See symtab.h. */
2437
2438 struct block_symbol
2439 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2440 const char *name,
2441 const struct block *block,
2442 const domain_enum domain)
2443 {
2444 struct block_symbol result;
2445
2446 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2447 the current objfile. Searching the current objfile first is useful
2448 for both matching user expectations as well as performance. */
2449
2450 result = lookup_symbol_in_static_block (name, block, domain);
2451 if (result.symbol != NULL)
2452 return result;
2453
2454 /* If we didn't find a definition for a builtin type in the static block,
2455 search for it now. This is actually the right thing to do and can be
2456 a massive performance win. E.g., when debugging a program with lots of
2457 shared libraries we could search all of them only to find out the
2458 builtin type isn't defined in any of them. This is common for types
2459 like "void". */
2460 if (domain == VAR_DOMAIN)
2461 {
2462 struct gdbarch *gdbarch;
2463
2464 if (block == NULL)
2465 gdbarch = target_gdbarch ();
2466 else
2467 gdbarch = block_gdbarch (block);
2468 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2469 gdbarch, name);
2470 result.block = NULL;
2471 if (result.symbol != NULL)
2472 return result;
2473 }
2474
2475 return lookup_global_symbol (name, block, domain);
2476 }
2477
2478 /* See symtab.h. */
2479
2480 struct block_symbol
2481 lookup_symbol_in_static_block (const char *name,
2482 const struct block *block,
2483 const domain_enum domain)
2484 {
2485 const struct block *static_block = block_static_block (block);
2486 struct symbol *sym;
2487
2488 if (static_block == NULL)
2489 return {};
2490
2491 if (symbol_lookup_debug)
2492 {
2493 struct objfile *objfile = lookup_objfile_from_block (static_block);
2494
2495 fprintf_unfiltered (gdb_stdlog,
2496 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2497 " %s)\n",
2498 name,
2499 host_address_to_string (block),
2500 objfile_debug_name (objfile),
2501 domain_name (domain));
2502 }
2503
2504 sym = lookup_symbol_in_block (name,
2505 symbol_name_match_type::FULL,
2506 static_block, domain);
2507 if (symbol_lookup_debug)
2508 {
2509 fprintf_unfiltered (gdb_stdlog,
2510 "lookup_symbol_in_static_block (...) = %s\n",
2511 sym != NULL ? host_address_to_string (sym) : "NULL");
2512 }
2513 return (struct block_symbol) {sym, static_block};
2514 }
2515
2516 /* Perform the standard symbol lookup of NAME in OBJFILE:
2517 1) First search expanded symtabs, and if not found
2518 2) Search the "quick" symtabs (partial or .gdb_index).
2519 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2520
2521 static struct block_symbol
2522 lookup_symbol_in_objfile (struct objfile *objfile, enum block_enum block_index,
2523 const char *name, const domain_enum domain)
2524 {
2525 struct block_symbol result;
2526
2527 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2528
2529 if (symbol_lookup_debug)
2530 {
2531 fprintf_unfiltered (gdb_stdlog,
2532 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2533 objfile_debug_name (objfile),
2534 block_index == GLOBAL_BLOCK
2535 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2536 name, domain_name (domain));
2537 }
2538
2539 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2540 name, domain);
2541 if (result.symbol != NULL)
2542 {
2543 if (symbol_lookup_debug)
2544 {
2545 fprintf_unfiltered (gdb_stdlog,
2546 "lookup_symbol_in_objfile (...) = %s"
2547 " (in symtabs)\n",
2548 host_address_to_string (result.symbol));
2549 }
2550 return result;
2551 }
2552
2553 result = lookup_symbol_via_quick_fns (objfile, block_index,
2554 name, domain);
2555 if (symbol_lookup_debug)
2556 {
2557 fprintf_unfiltered (gdb_stdlog,
2558 "lookup_symbol_in_objfile (...) = %s%s\n",
2559 result.symbol != NULL
2560 ? host_address_to_string (result.symbol)
2561 : "NULL",
2562 result.symbol != NULL ? " (via quick fns)" : "");
2563 }
2564 return result;
2565 }
2566
2567 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2568
2569 struct global_or_static_sym_lookup_data
2570 {
2571 /* The name of the symbol we are searching for. */
2572 const char *name;
2573
2574 /* The domain to use for our search. */
2575 domain_enum domain;
2576
2577 /* The block index in which to search. */
2578 enum block_enum block_index;
2579
2580 /* The field where the callback should store the symbol if found.
2581 It should be initialized to {NULL, NULL} before the search is started. */
2582 struct block_symbol result;
2583 };
2584
2585 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2586 It searches by name for a symbol in the block given by BLOCK_INDEX of the
2587 given OBJFILE. The arguments for the search are passed via CB_DATA, which
2588 in reality is a pointer to struct global_or_static_sym_lookup_data. */
2589
2590 static int
2591 lookup_symbol_global_or_static_iterator_cb (struct objfile *objfile,
2592 void *cb_data)
2593 {
2594 struct global_or_static_sym_lookup_data *data =
2595 (struct global_or_static_sym_lookup_data *) cb_data;
2596
2597 gdb_assert (data->result.symbol == NULL
2598 && data->result.block == NULL);
2599
2600 data->result = lookup_symbol_in_objfile (objfile, data->block_index,
2601 data->name, data->domain);
2602
2603 /* If we found a match, tell the iterator to stop. Otherwise,
2604 keep going. */
2605 return (data->result.symbol != NULL);
2606 }
2607
2608 /* This function contains the common code of lookup_{global,static}_symbol.
2609 OBJFILE is only used if BLOCK_INDEX is GLOBAL_SCOPE, in which case it is
2610 the objfile to start the lookup in. */
2611
2612 static struct block_symbol
2613 lookup_global_or_static_symbol (const char *name,
2614 enum block_enum block_index,
2615 struct objfile *objfile,
2616 const domain_enum domain)
2617 {
2618 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2619 struct block_symbol result;
2620 struct global_or_static_sym_lookup_data lookup_data;
2621 struct block_symbol_cache *bsc;
2622 struct symbol_cache_slot *slot;
2623
2624 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2625 gdb_assert (objfile == nullptr || block_index == GLOBAL_BLOCK);
2626
2627 /* First see if we can find the symbol in the cache.
2628 This works because we use the current objfile to qualify the lookup. */
2629 result = symbol_cache_lookup (cache, objfile, block_index, name, domain,
2630 &bsc, &slot);
2631 if (result.symbol != NULL)
2632 {
2633 if (SYMBOL_LOOKUP_FAILED_P (result))
2634 return {};
2635 return result;
2636 }
2637
2638 /* Do a global search (of global blocks, heh). */
2639 if (result.symbol == NULL)
2640 {
2641 memset (&lookup_data, 0, sizeof (lookup_data));
2642 lookup_data.name = name;
2643 lookup_data.block_index = block_index;
2644 lookup_data.domain = domain;
2645 gdbarch_iterate_over_objfiles_in_search_order
2646 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2647 lookup_symbol_global_or_static_iterator_cb, &lookup_data, objfile);
2648 result = lookup_data.result;
2649 }
2650
2651 if (result.symbol != NULL)
2652 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2653 else
2654 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2655
2656 return result;
2657 }
2658
2659 /* See symtab.h. */
2660
2661 struct block_symbol
2662 lookup_static_symbol (const char *name, const domain_enum domain)
2663 {
2664 return lookup_global_or_static_symbol (name, STATIC_BLOCK, nullptr, domain);
2665 }
2666
2667 /* See symtab.h. */
2668
2669 struct block_symbol
2670 lookup_global_symbol (const char *name,
2671 const struct block *block,
2672 const domain_enum domain)
2673 {
2674 /* If a block was passed in, we want to search the corresponding
2675 global block first. This yields "more expected" behavior, and is
2676 needed to support 'FILENAME'::VARIABLE lookups. */
2677 const struct block *global_block = block_global_block (block);
2678 if (global_block != nullptr)
2679 {
2680 symbol *sym = lookup_symbol_in_block (name,
2681 symbol_name_match_type::FULL,
2682 global_block, domain);
2683 if (sym != nullptr)
2684 return { sym, global_block };
2685 }
2686
2687 struct objfile *objfile = lookup_objfile_from_block (block);
2688 return lookup_global_or_static_symbol (name, GLOBAL_BLOCK, objfile, domain);
2689 }
2690
2691 bool
2692 symbol_matches_domain (enum language symbol_language,
2693 domain_enum symbol_domain,
2694 domain_enum domain)
2695 {
2696 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2697 Similarly, any Ada type declaration implicitly defines a typedef. */
2698 if (symbol_language == language_cplus
2699 || symbol_language == language_d
2700 || symbol_language == language_ada
2701 || symbol_language == language_rust)
2702 {
2703 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2704 && symbol_domain == STRUCT_DOMAIN)
2705 return true;
2706 }
2707 /* For all other languages, strict match is required. */
2708 return (symbol_domain == domain);
2709 }
2710
2711 /* See symtab.h. */
2712
2713 struct type *
2714 lookup_transparent_type (const char *name)
2715 {
2716 return current_language->la_lookup_transparent_type (name);
2717 }
2718
2719 /* A helper for basic_lookup_transparent_type that interfaces with the
2720 "quick" symbol table functions. */
2721
2722 static struct type *
2723 basic_lookup_transparent_type_quick (struct objfile *objfile,
2724 enum block_enum block_index,
2725 const char *name)
2726 {
2727 struct compunit_symtab *cust;
2728 const struct blockvector *bv;
2729 const struct block *block;
2730 struct symbol *sym;
2731
2732 if (!objfile->sf)
2733 return NULL;
2734 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2735 STRUCT_DOMAIN);
2736 if (cust == NULL)
2737 return NULL;
2738
2739 bv = COMPUNIT_BLOCKVECTOR (cust);
2740 block = BLOCKVECTOR_BLOCK (bv, block_index);
2741 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2742 block_find_non_opaque_type, NULL);
2743 if (sym == NULL)
2744 error_in_psymtab_expansion (block_index, name, cust);
2745 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2746 return SYMBOL_TYPE (sym);
2747 }
2748
2749 /* Subroutine of basic_lookup_transparent_type to simplify it.
2750 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2751 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2752
2753 static struct type *
2754 basic_lookup_transparent_type_1 (struct objfile *objfile,
2755 enum block_enum block_index,
2756 const char *name)
2757 {
2758 const struct blockvector *bv;
2759 const struct block *block;
2760 const struct symbol *sym;
2761
2762 for (compunit_symtab *cust : objfile->compunits ())
2763 {
2764 bv = COMPUNIT_BLOCKVECTOR (cust);
2765 block = BLOCKVECTOR_BLOCK (bv, block_index);
2766 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2767 block_find_non_opaque_type, NULL);
2768 if (sym != NULL)
2769 {
2770 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2771 return SYMBOL_TYPE (sym);
2772 }
2773 }
2774
2775 return NULL;
2776 }
2777
2778 /* The standard implementation of lookup_transparent_type. This code
2779 was modeled on lookup_symbol -- the parts not relevant to looking
2780 up types were just left out. In particular it's assumed here that
2781 types are available in STRUCT_DOMAIN and only in file-static or
2782 global blocks. */
2783
2784 struct type *
2785 basic_lookup_transparent_type (const char *name)
2786 {
2787 struct type *t;
2788
2789 /* Now search all the global symbols. Do the symtab's first, then
2790 check the psymtab's. If a psymtab indicates the existence
2791 of the desired name as a global, then do psymtab-to-symtab
2792 conversion on the fly and return the found symbol. */
2793
2794 for (objfile *objfile : current_program_space->objfiles ())
2795 {
2796 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2797 if (t)
2798 return t;
2799 }
2800
2801 for (objfile *objfile : current_program_space->objfiles ())
2802 {
2803 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2804 if (t)
2805 return t;
2806 }
2807
2808 /* Now search the static file-level symbols.
2809 Not strictly correct, but more useful than an error.
2810 Do the symtab's first, then
2811 check the psymtab's. If a psymtab indicates the existence
2812 of the desired name as a file-level static, then do psymtab-to-symtab
2813 conversion on the fly and return the found symbol. */
2814
2815 for (objfile *objfile : current_program_space->objfiles ())
2816 {
2817 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2818 if (t)
2819 return t;
2820 }
2821
2822 for (objfile *objfile : current_program_space->objfiles ())
2823 {
2824 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2825 if (t)
2826 return t;
2827 }
2828
2829 return (struct type *) 0;
2830 }
2831
2832 /* See symtab.h. */
2833
2834 bool
2835 iterate_over_symbols (const struct block *block,
2836 const lookup_name_info &name,
2837 const domain_enum domain,
2838 gdb::function_view<symbol_found_callback_ftype> callback)
2839 {
2840 struct block_iterator iter;
2841 struct symbol *sym;
2842
2843 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2844 {
2845 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
2846 {
2847 struct block_symbol block_sym = {sym, block};
2848
2849 if (!callback (&block_sym))
2850 return false;
2851 }
2852 }
2853 return true;
2854 }
2855
2856 /* See symtab.h. */
2857
2858 bool
2859 iterate_over_symbols_terminated
2860 (const struct block *block,
2861 const lookup_name_info &name,
2862 const domain_enum domain,
2863 gdb::function_view<symbol_found_callback_ftype> callback)
2864 {
2865 if (!iterate_over_symbols (block, name, domain, callback))
2866 return false;
2867 struct block_symbol block_sym = {nullptr, block};
2868 return callback (&block_sym);
2869 }
2870
2871 /* Find the compunit symtab associated with PC and SECTION.
2872 This will read in debug info as necessary. */
2873
2874 struct compunit_symtab *
2875 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2876 {
2877 struct compunit_symtab *best_cust = NULL;
2878 CORE_ADDR distance = 0;
2879 struct bound_minimal_symbol msymbol;
2880
2881 /* If we know that this is not a text address, return failure. This is
2882 necessary because we loop based on the block's high and low code
2883 addresses, which do not include the data ranges, and because
2884 we call find_pc_sect_psymtab which has a similar restriction based
2885 on the partial_symtab's texthigh and textlow. */
2886 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2887 if (msymbol.minsym && msymbol.minsym->data_p ())
2888 return NULL;
2889
2890 /* Search all symtabs for the one whose file contains our address, and which
2891 is the smallest of all the ones containing the address. This is designed
2892 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2893 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2894 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2895
2896 This happens for native ecoff format, where code from included files
2897 gets its own symtab. The symtab for the included file should have
2898 been read in already via the dependency mechanism.
2899 It might be swifter to create several symtabs with the same name
2900 like xcoff does (I'm not sure).
2901
2902 It also happens for objfiles that have their functions reordered.
2903 For these, the symtab we are looking for is not necessarily read in. */
2904
2905 for (objfile *obj_file : current_program_space->objfiles ())
2906 {
2907 for (compunit_symtab *cust : obj_file->compunits ())
2908 {
2909 const struct block *b;
2910 const struct blockvector *bv;
2911
2912 bv = COMPUNIT_BLOCKVECTOR (cust);
2913 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2914
2915 if (BLOCK_START (b) <= pc
2916 && BLOCK_END (b) > pc
2917 && (distance == 0
2918 || BLOCK_END (b) - BLOCK_START (b) < distance))
2919 {
2920 /* For an objfile that has its functions reordered,
2921 find_pc_psymtab will find the proper partial symbol table
2922 and we simply return its corresponding symtab. */
2923 /* In order to better support objfiles that contain both
2924 stabs and coff debugging info, we continue on if a psymtab
2925 can't be found. */
2926 if ((obj_file->flags & OBJF_REORDERED) && obj_file->sf)
2927 {
2928 struct compunit_symtab *result;
2929
2930 result
2931 = obj_file->sf->qf->find_pc_sect_compunit_symtab (obj_file,
2932 msymbol,
2933 pc,
2934 section,
2935 0);
2936 if (result != NULL)
2937 return result;
2938 }
2939 if (section != 0)
2940 {
2941 struct block_iterator iter;
2942 struct symbol *sym = NULL;
2943
2944 ALL_BLOCK_SYMBOLS (b, iter, sym)
2945 {
2946 fixup_symbol_section (sym, obj_file);
2947 if (matching_obj_sections (SYMBOL_OBJ_SECTION (obj_file,
2948 sym),
2949 section))
2950 break;
2951 }
2952 if (sym == NULL)
2953 continue; /* No symbol in this symtab matches
2954 section. */
2955 }
2956 distance = BLOCK_END (b) - BLOCK_START (b);
2957 best_cust = cust;
2958 }
2959 }
2960 }
2961
2962 if (best_cust != NULL)
2963 return best_cust;
2964
2965 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2966
2967 for (objfile *objf : current_program_space->objfiles ())
2968 {
2969 struct compunit_symtab *result;
2970
2971 if (!objf->sf)
2972 continue;
2973 result = objf->sf->qf->find_pc_sect_compunit_symtab (objf,
2974 msymbol,
2975 pc, section,
2976 1);
2977 if (result != NULL)
2978 return result;
2979 }
2980
2981 return NULL;
2982 }
2983
2984 /* Find the compunit symtab associated with PC.
2985 This will read in debug info as necessary.
2986 Backward compatibility, no section. */
2987
2988 struct compunit_symtab *
2989 find_pc_compunit_symtab (CORE_ADDR pc)
2990 {
2991 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2992 }
2993
2994 /* See symtab.h. */
2995
2996 struct symbol *
2997 find_symbol_at_address (CORE_ADDR address)
2998 {
2999 for (objfile *objfile : current_program_space->objfiles ())
3000 {
3001 if (objfile->sf == NULL
3002 || objfile->sf->qf->find_compunit_symtab_by_address == NULL)
3003 continue;
3004
3005 struct compunit_symtab *symtab
3006 = objfile->sf->qf->find_compunit_symtab_by_address (objfile, address);
3007 if (symtab != NULL)
3008 {
3009 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
3010
3011 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
3012 {
3013 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
3014 struct block_iterator iter;
3015 struct symbol *sym;
3016
3017 ALL_BLOCK_SYMBOLS (b, iter, sym)
3018 {
3019 if (SYMBOL_CLASS (sym) == LOC_STATIC
3020 && SYMBOL_VALUE_ADDRESS (sym) == address)
3021 return sym;
3022 }
3023 }
3024 }
3025 }
3026
3027 return NULL;
3028 }
3029
3030 \f
3031
3032 /* Find the source file and line number for a given PC value and SECTION.
3033 Return a structure containing a symtab pointer, a line number,
3034 and a pc range for the entire source line.
3035 The value's .pc field is NOT the specified pc.
3036 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3037 use the line that ends there. Otherwise, in that case, the line
3038 that begins there is used. */
3039
3040 /* The big complication here is that a line may start in one file, and end just
3041 before the start of another file. This usually occurs when you #include
3042 code in the middle of a subroutine. To properly find the end of a line's PC
3043 range, we must search all symtabs associated with this compilation unit, and
3044 find the one whose first PC is closer than that of the next line in this
3045 symtab. */
3046
3047 struct symtab_and_line
3048 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3049 {
3050 struct compunit_symtab *cust;
3051 struct linetable *l;
3052 int len;
3053 struct linetable_entry *item;
3054 const struct blockvector *bv;
3055 struct bound_minimal_symbol msymbol;
3056
3057 /* Info on best line seen so far, and where it starts, and its file. */
3058
3059 struct linetable_entry *best = NULL;
3060 CORE_ADDR best_end = 0;
3061 struct symtab *best_symtab = 0;
3062
3063 /* Store here the first line number
3064 of a file which contains the line at the smallest pc after PC.
3065 If we don't find a line whose range contains PC,
3066 we will use a line one less than this,
3067 with a range from the start of that file to the first line's pc. */
3068 struct linetable_entry *alt = NULL;
3069
3070 /* Info on best line seen in this file. */
3071
3072 struct linetable_entry *prev;
3073
3074 /* If this pc is not from the current frame,
3075 it is the address of the end of a call instruction.
3076 Quite likely that is the start of the following statement.
3077 But what we want is the statement containing the instruction.
3078 Fudge the pc to make sure we get that. */
3079
3080 /* It's tempting to assume that, if we can't find debugging info for
3081 any function enclosing PC, that we shouldn't search for line
3082 number info, either. However, GAS can emit line number info for
3083 assembly files --- very helpful when debugging hand-written
3084 assembly code. In such a case, we'd have no debug info for the
3085 function, but we would have line info. */
3086
3087 if (notcurrent)
3088 pc -= 1;
3089
3090 /* elz: added this because this function returned the wrong
3091 information if the pc belongs to a stub (import/export)
3092 to call a shlib function. This stub would be anywhere between
3093 two functions in the target, and the line info was erroneously
3094 taken to be the one of the line before the pc. */
3095
3096 /* RT: Further explanation:
3097
3098 * We have stubs (trampolines) inserted between procedures.
3099 *
3100 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3101 * exists in the main image.
3102 *
3103 * In the minimal symbol table, we have a bunch of symbols
3104 * sorted by start address. The stubs are marked as "trampoline",
3105 * the others appear as text. E.g.:
3106 *
3107 * Minimal symbol table for main image
3108 * main: code for main (text symbol)
3109 * shr1: stub (trampoline symbol)
3110 * foo: code for foo (text symbol)
3111 * ...
3112 * Minimal symbol table for "shr1" image:
3113 * ...
3114 * shr1: code for shr1 (text symbol)
3115 * ...
3116 *
3117 * So the code below is trying to detect if we are in the stub
3118 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3119 * and if found, do the symbolization from the real-code address
3120 * rather than the stub address.
3121 *
3122 * Assumptions being made about the minimal symbol table:
3123 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3124 * if we're really in the trampoline.s If we're beyond it (say
3125 * we're in "foo" in the above example), it'll have a closer
3126 * symbol (the "foo" text symbol for example) and will not
3127 * return the trampoline.
3128 * 2. lookup_minimal_symbol_text() will find a real text symbol
3129 * corresponding to the trampoline, and whose address will
3130 * be different than the trampoline address. I put in a sanity
3131 * check for the address being the same, to avoid an
3132 * infinite recursion.
3133 */
3134 msymbol = lookup_minimal_symbol_by_pc (pc);
3135 if (msymbol.minsym != NULL)
3136 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3137 {
3138 struct bound_minimal_symbol mfunsym
3139 = lookup_minimal_symbol_text (msymbol.minsym->linkage_name (),
3140 NULL);
3141
3142 if (mfunsym.minsym == NULL)
3143 /* I eliminated this warning since it is coming out
3144 * in the following situation:
3145 * gdb shmain // test program with shared libraries
3146 * (gdb) break shr1 // function in shared lib
3147 * Warning: In stub for ...
3148 * In the above situation, the shared lib is not loaded yet,
3149 * so of course we can't find the real func/line info,
3150 * but the "break" still works, and the warning is annoying.
3151 * So I commented out the warning. RT */
3152 /* warning ("In stub for %s; unable to find real function/line info",
3153 msymbol->linkage_name ()); */
3154 ;
3155 /* fall through */
3156 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3157 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3158 /* Avoid infinite recursion */
3159 /* See above comment about why warning is commented out. */
3160 /* warning ("In stub for %s; unable to find real function/line info",
3161 msymbol->linkage_name ()); */
3162 ;
3163 /* fall through */
3164 else
3165 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3166 }
3167
3168 symtab_and_line val;
3169 val.pspace = current_program_space;
3170
3171 cust = find_pc_sect_compunit_symtab (pc, section);
3172 if (cust == NULL)
3173 {
3174 /* If no symbol information, return previous pc. */
3175 if (notcurrent)
3176 pc++;
3177 val.pc = pc;
3178 return val;
3179 }
3180
3181 bv = COMPUNIT_BLOCKVECTOR (cust);
3182
3183 /* Look at all the symtabs that share this blockvector.
3184 They all have the same apriori range, that we found was right;
3185 but they have different line tables. */
3186
3187 for (symtab *iter_s : compunit_filetabs (cust))
3188 {
3189 /* Find the best line in this symtab. */
3190 l = SYMTAB_LINETABLE (iter_s);
3191 if (!l)
3192 continue;
3193 len = l->nitems;
3194 if (len <= 0)
3195 {
3196 /* I think len can be zero if the symtab lacks line numbers
3197 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3198 I'm not sure which, and maybe it depends on the symbol
3199 reader). */
3200 continue;
3201 }
3202
3203 prev = NULL;
3204 item = l->item; /* Get first line info. */
3205
3206 /* Is this file's first line closer than the first lines of other files?
3207 If so, record this file, and its first line, as best alternate. */
3208 if (item->pc > pc && (!alt || item->pc < alt->pc))
3209 alt = item;
3210
3211 auto pc_compare = [](const CORE_ADDR & comp_pc,
3212 const struct linetable_entry & lhs)->bool
3213 {
3214 return comp_pc < lhs.pc;
3215 };
3216
3217 struct linetable_entry *first = item;
3218 struct linetable_entry *last = item + len;
3219 item = std::upper_bound (first, last, pc, pc_compare);
3220 if (item != first)
3221 prev = item - 1; /* Found a matching item. */
3222
3223 /* At this point, prev points at the line whose start addr is <= pc, and
3224 item points at the next line. If we ran off the end of the linetable
3225 (pc >= start of the last line), then prev == item. If pc < start of
3226 the first line, prev will not be set. */
3227
3228 /* Is this file's best line closer than the best in the other files?
3229 If so, record this file, and its best line, as best so far. Don't
3230 save prev if it represents the end of a function (i.e. line number
3231 0) instead of a real line. */
3232
3233 if (prev && prev->line && (!best || prev->pc > best->pc))
3234 {
3235 best = prev;
3236 best_symtab = iter_s;
3237
3238 /* Discard BEST_END if it's before the PC of the current BEST. */
3239 if (best_end <= best->pc)
3240 best_end = 0;
3241 }
3242
3243 /* If another line (denoted by ITEM) is in the linetable and its
3244 PC is after BEST's PC, but before the current BEST_END, then
3245 use ITEM's PC as the new best_end. */
3246 if (best && item < last && item->pc > best->pc
3247 && (best_end == 0 || best_end > item->pc))
3248 best_end = item->pc;
3249 }
3250
3251 if (!best_symtab)
3252 {
3253 /* If we didn't find any line number info, just return zeros.
3254 We used to return alt->line - 1 here, but that could be
3255 anywhere; if we don't have line number info for this PC,
3256 don't make some up. */
3257 val.pc = pc;
3258 }
3259 else if (best->line == 0)
3260 {
3261 /* If our best fit is in a range of PC's for which no line
3262 number info is available (line number is zero) then we didn't
3263 find any valid line information. */
3264 val.pc = pc;
3265 }
3266 else
3267 {
3268 val.symtab = best_symtab;
3269 val.line = best->line;
3270 val.pc = best->pc;
3271 if (best_end && (!alt || best_end < alt->pc))
3272 val.end = best_end;
3273 else if (alt)
3274 val.end = alt->pc;
3275 else
3276 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3277 }
3278 val.section = section;
3279 return val;
3280 }
3281
3282 /* Backward compatibility (no section). */
3283
3284 struct symtab_and_line
3285 find_pc_line (CORE_ADDR pc, int notcurrent)
3286 {
3287 struct obj_section *section;
3288
3289 section = find_pc_overlay (pc);
3290 if (pc_in_unmapped_range (pc, section))
3291 pc = overlay_mapped_address (pc, section);
3292 return find_pc_sect_line (pc, section, notcurrent);
3293 }
3294
3295 /* See symtab.h. */
3296
3297 struct symtab *
3298 find_pc_line_symtab (CORE_ADDR pc)
3299 {
3300 struct symtab_and_line sal;
3301
3302 /* This always passes zero for NOTCURRENT to find_pc_line.
3303 There are currently no callers that ever pass non-zero. */
3304 sal = find_pc_line (pc, 0);
3305 return sal.symtab;
3306 }
3307 \f
3308 /* Find line number LINE in any symtab whose name is the same as
3309 SYMTAB.
3310
3311 If found, return the symtab that contains the linetable in which it was
3312 found, set *INDEX to the index in the linetable of the best entry
3313 found, and set *EXACT_MATCH to true if the value returned is an
3314 exact match.
3315
3316 If not found, return NULL. */
3317
3318 struct symtab *
3319 find_line_symtab (struct symtab *sym_tab, int line,
3320 int *index, bool *exact_match)
3321 {
3322 int exact = 0; /* Initialized here to avoid a compiler warning. */
3323
3324 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3325 so far seen. */
3326
3327 int best_index;
3328 struct linetable *best_linetable;
3329 struct symtab *best_symtab;
3330
3331 /* First try looking it up in the given symtab. */
3332 best_linetable = SYMTAB_LINETABLE (sym_tab);
3333 best_symtab = sym_tab;
3334 best_index = find_line_common (best_linetable, line, &exact, 0);
3335 if (best_index < 0 || !exact)
3336 {
3337 /* Didn't find an exact match. So we better keep looking for
3338 another symtab with the same name. In the case of xcoff,
3339 multiple csects for one source file (produced by IBM's FORTRAN
3340 compiler) produce multiple symtabs (this is unavoidable
3341 assuming csects can be at arbitrary places in memory and that
3342 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3343
3344 /* BEST is the smallest linenumber > LINE so far seen,
3345 or 0 if none has been seen so far.
3346 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3347 int best;
3348
3349 if (best_index >= 0)
3350 best = best_linetable->item[best_index].line;
3351 else
3352 best = 0;
3353
3354 for (objfile *objfile : current_program_space->objfiles ())
3355 {
3356 if (objfile->sf)
3357 objfile->sf->qf->expand_symtabs_with_fullname
3358 (objfile, symtab_to_fullname (sym_tab));
3359 }
3360
3361 for (objfile *objfile : current_program_space->objfiles ())
3362 {
3363 for (compunit_symtab *cu : objfile->compunits ())
3364 {
3365 for (symtab *s : compunit_filetabs (cu))
3366 {
3367 struct linetable *l;
3368 int ind;
3369
3370 if (FILENAME_CMP (sym_tab->filename, s->filename) != 0)
3371 continue;
3372 if (FILENAME_CMP (symtab_to_fullname (sym_tab),
3373 symtab_to_fullname (s)) != 0)
3374 continue;
3375 l = SYMTAB_LINETABLE (s);
3376 ind = find_line_common (l, line, &exact, 0);
3377 if (ind >= 0)
3378 {
3379 if (exact)
3380 {
3381 best_index = ind;
3382 best_linetable = l;
3383 best_symtab = s;
3384 goto done;
3385 }
3386 if (best == 0 || l->item[ind].line < best)
3387 {
3388 best = l->item[ind].line;
3389 best_index = ind;
3390 best_linetable = l;
3391 best_symtab = s;
3392 }
3393 }
3394 }
3395 }
3396 }
3397 }
3398 done:
3399 if (best_index < 0)
3400 return NULL;
3401
3402 if (index)
3403 *index = best_index;
3404 if (exact_match)
3405 *exact_match = (exact != 0);
3406
3407 return best_symtab;
3408 }
3409
3410 /* Given SYMTAB, returns all the PCs function in the symtab that
3411 exactly match LINE. Returns an empty vector if there are no exact
3412 matches, but updates BEST_ITEM in this case. */
3413
3414 std::vector<CORE_ADDR>
3415 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3416 struct linetable_entry **best_item)
3417 {
3418 int start = 0;
3419 std::vector<CORE_ADDR> result;
3420
3421 /* First, collect all the PCs that are at this line. */
3422 while (1)
3423 {
3424 int was_exact;
3425 int idx;
3426
3427 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3428 start);
3429 if (idx < 0)
3430 break;
3431
3432 if (!was_exact)
3433 {
3434 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3435
3436 if (*best_item == NULL || item->line < (*best_item)->line)
3437 *best_item = item;
3438
3439 break;
3440 }
3441
3442 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3443 start = idx + 1;
3444 }
3445
3446 return result;
3447 }
3448
3449 \f
3450 /* Set the PC value for a given source file and line number and return true.
3451 Returns false for invalid line number (and sets the PC to 0).
3452 The source file is specified with a struct symtab. */
3453
3454 bool
3455 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3456 {
3457 struct linetable *l;
3458 int ind;
3459
3460 *pc = 0;
3461 if (symtab == 0)
3462 return false;
3463
3464 symtab = find_line_symtab (symtab, line, &ind, NULL);
3465 if (symtab != NULL)
3466 {
3467 l = SYMTAB_LINETABLE (symtab);
3468 *pc = l->item[ind].pc;
3469 return true;
3470 }
3471 else
3472 return false;
3473 }
3474
3475 /* Find the range of pc values in a line.
3476 Store the starting pc of the line into *STARTPTR
3477 and the ending pc (start of next line) into *ENDPTR.
3478 Returns true to indicate success.
3479 Returns false if could not find the specified line. */
3480
3481 bool
3482 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3483 CORE_ADDR *endptr)
3484 {
3485 CORE_ADDR startaddr;
3486 struct symtab_and_line found_sal;
3487
3488 startaddr = sal.pc;
3489 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3490 return false;
3491
3492 /* This whole function is based on address. For example, if line 10 has
3493 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3494 "info line *0x123" should say the line goes from 0x100 to 0x200
3495 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3496 This also insures that we never give a range like "starts at 0x134
3497 and ends at 0x12c". */
3498
3499 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3500 if (found_sal.line != sal.line)
3501 {
3502 /* The specified line (sal) has zero bytes. */
3503 *startptr = found_sal.pc;
3504 *endptr = found_sal.pc;
3505 }
3506 else
3507 {
3508 *startptr = found_sal.pc;
3509 *endptr = found_sal.end;
3510 }
3511 return true;
3512 }
3513
3514 /* Given a line table and a line number, return the index into the line
3515 table for the pc of the nearest line whose number is >= the specified one.
3516 Return -1 if none is found. The value is >= 0 if it is an index.
3517 START is the index at which to start searching the line table.
3518
3519 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3520
3521 static int
3522 find_line_common (struct linetable *l, int lineno,
3523 int *exact_match, int start)
3524 {
3525 int i;
3526 int len;
3527
3528 /* BEST is the smallest linenumber > LINENO so far seen,
3529 or 0 if none has been seen so far.
3530 BEST_INDEX identifies the item for it. */
3531
3532 int best_index = -1;
3533 int best = 0;
3534
3535 *exact_match = 0;
3536
3537 if (lineno <= 0)
3538 return -1;
3539 if (l == 0)
3540 return -1;
3541
3542 len = l->nitems;
3543 for (i = start; i < len; i++)
3544 {
3545 struct linetable_entry *item = &(l->item[i]);
3546
3547 if (item->line == lineno)
3548 {
3549 /* Return the first (lowest address) entry which matches. */
3550 *exact_match = 1;
3551 return i;
3552 }
3553
3554 if (item->line > lineno && (best == 0 || item->line < best))
3555 {
3556 best = item->line;
3557 best_index = i;
3558 }
3559 }
3560
3561 /* If we got here, we didn't get an exact match. */
3562 return best_index;
3563 }
3564
3565 bool
3566 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3567 {
3568 struct symtab_and_line sal;
3569
3570 sal = find_pc_line (pc, 0);
3571 *startptr = sal.pc;
3572 *endptr = sal.end;
3573 return sal.symtab != 0;
3574 }
3575
3576 /* Helper for find_function_start_sal. Does most of the work, except
3577 setting the sal's symbol. */
3578
3579 static symtab_and_line
3580 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3581 bool funfirstline)
3582 {
3583 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3584
3585 if (funfirstline && sal.symtab != NULL
3586 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3587 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3588 {
3589 struct gdbarch *gdbarch = get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
3590
3591 sal.pc = func_addr;
3592 if (gdbarch_skip_entrypoint_p (gdbarch))
3593 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3594 return sal;
3595 }
3596
3597 /* We always should have a line for the function start address.
3598 If we don't, something is odd. Create a plain SAL referring
3599 just the PC and hope that skip_prologue_sal (if requested)
3600 can find a line number for after the prologue. */
3601 if (sal.pc < func_addr)
3602 {
3603 sal = {};
3604 sal.pspace = current_program_space;
3605 sal.pc = func_addr;
3606 sal.section = section;
3607 }
3608
3609 if (funfirstline)
3610 skip_prologue_sal (&sal);
3611
3612 return sal;
3613 }
3614
3615 /* See symtab.h. */
3616
3617 symtab_and_line
3618 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3619 bool funfirstline)
3620 {
3621 symtab_and_line sal
3622 = find_function_start_sal_1 (func_addr, section, funfirstline);
3623
3624 /* find_function_start_sal_1 does a linetable search, so it finds
3625 the symtab and linenumber, but not a symbol. Fill in the
3626 function symbol too. */
3627 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3628
3629 return sal;
3630 }
3631
3632 /* See symtab.h. */
3633
3634 symtab_and_line
3635 find_function_start_sal (symbol *sym, bool funfirstline)
3636 {
3637 fixup_symbol_section (sym, NULL);
3638 symtab_and_line sal
3639 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)),
3640 SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym),
3641 funfirstline);
3642 sal.symbol = sym;
3643 return sal;
3644 }
3645
3646
3647 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3648 address for that function that has an entry in SYMTAB's line info
3649 table. If such an entry cannot be found, return FUNC_ADDR
3650 unaltered. */
3651
3652 static CORE_ADDR
3653 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3654 {
3655 CORE_ADDR func_start, func_end;
3656 struct linetable *l;
3657 int i;
3658
3659 /* Give up if this symbol has no lineinfo table. */
3660 l = SYMTAB_LINETABLE (symtab);
3661 if (l == NULL)
3662 return func_addr;
3663
3664 /* Get the range for the function's PC values, or give up if we
3665 cannot, for some reason. */
3666 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3667 return func_addr;
3668
3669 /* Linetable entries are ordered by PC values, see the commentary in
3670 symtab.h where `struct linetable' is defined. Thus, the first
3671 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3672 address we are looking for. */
3673 for (i = 0; i < l->nitems; i++)
3674 {
3675 struct linetable_entry *item = &(l->item[i]);
3676
3677 /* Don't use line numbers of zero, they mark special entries in
3678 the table. See the commentary on symtab.h before the
3679 definition of struct linetable. */
3680 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3681 return item->pc;
3682 }
3683
3684 return func_addr;
3685 }
3686
3687 /* Adjust SAL to the first instruction past the function prologue.
3688 If the PC was explicitly specified, the SAL is not changed.
3689 If the line number was explicitly specified then the SAL can still be
3690 updated, unless the language for SAL is assembler, in which case the SAL
3691 will be left unchanged.
3692 If SAL is already past the prologue, then do nothing. */
3693
3694 void
3695 skip_prologue_sal (struct symtab_and_line *sal)
3696 {
3697 struct symbol *sym;
3698 struct symtab_and_line start_sal;
3699 CORE_ADDR pc, saved_pc;
3700 struct obj_section *section;
3701 const char *name;
3702 struct objfile *objfile;
3703 struct gdbarch *gdbarch;
3704 const struct block *b, *function_block;
3705 int force_skip, skip;
3706
3707 /* Do not change the SAL if PC was specified explicitly. */
3708 if (sal->explicit_pc)
3709 return;
3710
3711 /* In assembly code, if the user asks for a specific line then we should
3712 not adjust the SAL. The user already has instruction level
3713 visibility in this case, so selecting a line other than one requested
3714 is likely to be the wrong choice. */
3715 if (sal->symtab != nullptr
3716 && sal->explicit_line
3717 && SYMTAB_LANGUAGE (sal->symtab) == language_asm)
3718 return;
3719
3720 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3721
3722 switch_to_program_space_and_thread (sal->pspace);
3723
3724 sym = find_pc_sect_function (sal->pc, sal->section);
3725 if (sym != NULL)
3726 {
3727 fixup_symbol_section (sym, NULL);
3728
3729 objfile = symbol_objfile (sym);
3730 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
3731 section = SYMBOL_OBJ_SECTION (objfile, sym);
3732 name = sym->linkage_name ();
3733 }
3734 else
3735 {
3736 struct bound_minimal_symbol msymbol
3737 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3738
3739 if (msymbol.minsym == NULL)
3740 return;
3741
3742 objfile = msymbol.objfile;
3743 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3744 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3745 name = msymbol.minsym->linkage_name ();
3746 }
3747
3748 gdbarch = get_objfile_arch (objfile);
3749
3750 /* Process the prologue in two passes. In the first pass try to skip the
3751 prologue (SKIP is true) and verify there is a real need for it (indicated
3752 by FORCE_SKIP). If no such reason was found run a second pass where the
3753 prologue is not skipped (SKIP is false). */
3754
3755 skip = 1;
3756 force_skip = 1;
3757
3758 /* Be conservative - allow direct PC (without skipping prologue) only if we
3759 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3760 have to be set by the caller so we use SYM instead. */
3761 if (sym != NULL
3762 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3763 force_skip = 0;
3764
3765 saved_pc = pc;
3766 do
3767 {
3768 pc = saved_pc;
3769
3770 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3771 so that gdbarch_skip_prologue has something unique to work on. */
3772 if (section_is_overlay (section) && !section_is_mapped (section))
3773 pc = overlay_unmapped_address (pc, section);
3774
3775 /* Skip "first line" of function (which is actually its prologue). */
3776 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3777 if (gdbarch_skip_entrypoint_p (gdbarch))
3778 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3779 if (skip)
3780 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3781
3782 /* For overlays, map pc back into its mapped VMA range. */
3783 pc = overlay_mapped_address (pc, section);
3784
3785 /* Calculate line number. */
3786 start_sal = find_pc_sect_line (pc, section, 0);
3787
3788 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3789 line is still part of the same function. */
3790 if (skip && start_sal.pc != pc
3791 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3792 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3793 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3794 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3795 {
3796 /* First pc of next line */
3797 pc = start_sal.end;
3798 /* Recalculate the line number (might not be N+1). */
3799 start_sal = find_pc_sect_line (pc, section, 0);
3800 }
3801
3802 /* On targets with executable formats that don't have a concept of
3803 constructors (ELF with .init has, PE doesn't), gcc emits a call
3804 to `__main' in `main' between the prologue and before user
3805 code. */
3806 if (gdbarch_skip_main_prologue_p (gdbarch)
3807 && name && strcmp_iw (name, "main") == 0)
3808 {
3809 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3810 /* Recalculate the line number (might not be N+1). */
3811 start_sal = find_pc_sect_line (pc, section, 0);
3812 force_skip = 1;
3813 }
3814 }
3815 while (!force_skip && skip--);
3816
3817 /* If we still don't have a valid source line, try to find the first
3818 PC in the lineinfo table that belongs to the same function. This
3819 happens with COFF debug info, which does not seem to have an
3820 entry in lineinfo table for the code after the prologue which has
3821 no direct relation to source. For example, this was found to be
3822 the case with the DJGPP target using "gcc -gcoff" when the
3823 compiler inserted code after the prologue to make sure the stack
3824 is aligned. */
3825 if (!force_skip && sym && start_sal.symtab == NULL)
3826 {
3827 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3828 /* Recalculate the line number. */
3829 start_sal = find_pc_sect_line (pc, section, 0);
3830 }
3831
3832 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3833 forward SAL to the end of the prologue. */
3834 if (sal->pc >= pc)
3835 return;
3836
3837 sal->pc = pc;
3838 sal->section = section;
3839 sal->symtab = start_sal.symtab;
3840 sal->line = start_sal.line;
3841 sal->end = start_sal.end;
3842
3843 /* Check if we are now inside an inlined function. If we can,
3844 use the call site of the function instead. */
3845 b = block_for_pc_sect (sal->pc, sal->section);
3846 function_block = NULL;
3847 while (b != NULL)
3848 {
3849 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3850 function_block = b;
3851 else if (BLOCK_FUNCTION (b) != NULL)
3852 break;
3853 b = BLOCK_SUPERBLOCK (b);
3854 }
3855 if (function_block != NULL
3856 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3857 {
3858 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3859 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3860 }
3861 }
3862
3863 /* Given PC at the function's start address, attempt to find the
3864 prologue end using SAL information. Return zero if the skip fails.
3865
3866 A non-optimized prologue traditionally has one SAL for the function
3867 and a second for the function body. A single line function has
3868 them both pointing at the same line.
3869
3870 An optimized prologue is similar but the prologue may contain
3871 instructions (SALs) from the instruction body. Need to skip those
3872 while not getting into the function body.
3873
3874 The functions end point and an increasing SAL line are used as
3875 indicators of the prologue's endpoint.
3876
3877 This code is based on the function refine_prologue_limit
3878 (found in ia64). */
3879
3880 CORE_ADDR
3881 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3882 {
3883 struct symtab_and_line prologue_sal;
3884 CORE_ADDR start_pc;
3885 CORE_ADDR end_pc;
3886 const struct block *bl;
3887
3888 /* Get an initial range for the function. */
3889 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3890 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3891
3892 prologue_sal = find_pc_line (start_pc, 0);
3893 if (prologue_sal.line != 0)
3894 {
3895 /* For languages other than assembly, treat two consecutive line
3896 entries at the same address as a zero-instruction prologue.
3897 The GNU assembler emits separate line notes for each instruction
3898 in a multi-instruction macro, but compilers generally will not
3899 do this. */
3900 if (prologue_sal.symtab->language != language_asm)
3901 {
3902 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3903 int idx = 0;
3904
3905 /* Skip any earlier lines, and any end-of-sequence marker
3906 from a previous function. */
3907 while (linetable->item[idx].pc != prologue_sal.pc
3908 || linetable->item[idx].line == 0)
3909 idx++;
3910
3911 if (idx+1 < linetable->nitems
3912 && linetable->item[idx+1].line != 0
3913 && linetable->item[idx+1].pc == start_pc)
3914 return start_pc;
3915 }
3916
3917 /* If there is only one sal that covers the entire function,
3918 then it is probably a single line function, like
3919 "foo(){}". */
3920 if (prologue_sal.end >= end_pc)
3921 return 0;
3922
3923 while (prologue_sal.end < end_pc)
3924 {
3925 struct symtab_and_line sal;
3926
3927 sal = find_pc_line (prologue_sal.end, 0);
3928 if (sal.line == 0)
3929 break;
3930 /* Assume that a consecutive SAL for the same (or larger)
3931 line mark the prologue -> body transition. */
3932 if (sal.line >= prologue_sal.line)
3933 break;
3934 /* Likewise if we are in a different symtab altogether
3935 (e.g. within a file included via #include).  */
3936 if (sal.symtab != prologue_sal.symtab)
3937 break;
3938
3939 /* The line number is smaller. Check that it's from the
3940 same function, not something inlined. If it's inlined,
3941 then there is no point comparing the line numbers. */
3942 bl = block_for_pc (prologue_sal.end);
3943 while (bl)
3944 {
3945 if (block_inlined_p (bl))
3946 break;
3947 if (BLOCK_FUNCTION (bl))
3948 {
3949 bl = NULL;
3950 break;
3951 }
3952 bl = BLOCK_SUPERBLOCK (bl);
3953 }
3954 if (bl != NULL)
3955 break;
3956
3957 /* The case in which compiler's optimizer/scheduler has
3958 moved instructions into the prologue. We look ahead in
3959 the function looking for address ranges whose
3960 corresponding line number is less the first one that we
3961 found for the function. This is more conservative then
3962 refine_prologue_limit which scans a large number of SALs
3963 looking for any in the prologue. */
3964 prologue_sal = sal;
3965 }
3966 }
3967
3968 if (prologue_sal.end < end_pc)
3969 /* Return the end of this line, or zero if we could not find a
3970 line. */
3971 return prologue_sal.end;
3972 else
3973 /* Don't return END_PC, which is past the end of the function. */
3974 return prologue_sal.pc;
3975 }
3976
3977 /* See symtab.h. */
3978
3979 symbol *
3980 find_function_alias_target (bound_minimal_symbol msymbol)
3981 {
3982 CORE_ADDR func_addr;
3983 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
3984 return NULL;
3985
3986 symbol *sym = find_pc_function (func_addr);
3987 if (sym != NULL
3988 && SYMBOL_CLASS (sym) == LOC_BLOCK
3989 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
3990 return sym;
3991
3992 return NULL;
3993 }
3994
3995 \f
3996 /* If P is of the form "operator[ \t]+..." where `...' is
3997 some legitimate operator text, return a pointer to the
3998 beginning of the substring of the operator text.
3999 Otherwise, return "". */
4000
4001 static const char *
4002 operator_chars (const char *p, const char **end)
4003 {
4004 *end = "";
4005 if (!startswith (p, CP_OPERATOR_STR))
4006 return *end;
4007 p += CP_OPERATOR_LEN;
4008
4009 /* Don't get faked out by `operator' being part of a longer
4010 identifier. */
4011 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4012 return *end;
4013
4014 /* Allow some whitespace between `operator' and the operator symbol. */
4015 while (*p == ' ' || *p == '\t')
4016 p++;
4017
4018 /* Recognize 'operator TYPENAME'. */
4019
4020 if (isalpha (*p) || *p == '_' || *p == '$')
4021 {
4022 const char *q = p + 1;
4023
4024 while (isalnum (*q) || *q == '_' || *q == '$')
4025 q++;
4026 *end = q;
4027 return p;
4028 }
4029
4030 while (*p)
4031 switch (*p)
4032 {
4033 case '\\': /* regexp quoting */
4034 if (p[1] == '*')
4035 {
4036 if (p[2] == '=') /* 'operator\*=' */
4037 *end = p + 3;
4038 else /* 'operator\*' */
4039 *end = p + 2;
4040 return p;
4041 }
4042 else if (p[1] == '[')
4043 {
4044 if (p[2] == ']')
4045 error (_("mismatched quoting on brackets, "
4046 "try 'operator\\[\\]'"));
4047 else if (p[2] == '\\' && p[3] == ']')
4048 {
4049 *end = p + 4; /* 'operator\[\]' */
4050 return p;
4051 }
4052 else
4053 error (_("nothing is allowed between '[' and ']'"));
4054 }
4055 else
4056 {
4057 /* Gratuitous quote: skip it and move on. */
4058 p++;
4059 continue;
4060 }
4061 break;
4062 case '!':
4063 case '=':
4064 case '*':
4065 case '/':
4066 case '%':
4067 case '^':
4068 if (p[1] == '=')
4069 *end = p + 2;
4070 else
4071 *end = p + 1;
4072 return p;
4073 case '<':
4074 case '>':
4075 case '+':
4076 case '-':
4077 case '&':
4078 case '|':
4079 if (p[0] == '-' && p[1] == '>')
4080 {
4081 /* Struct pointer member operator 'operator->'. */
4082 if (p[2] == '*')
4083 {
4084 *end = p + 3; /* 'operator->*' */
4085 return p;
4086 }
4087 else if (p[2] == '\\')
4088 {
4089 *end = p + 4; /* Hopefully 'operator->\*' */
4090 return p;
4091 }
4092 else
4093 {
4094 *end = p + 2; /* 'operator->' */
4095 return p;
4096 }
4097 }
4098 if (p[1] == '=' || p[1] == p[0])
4099 *end = p + 2;
4100 else
4101 *end = p + 1;
4102 return p;
4103 case '~':
4104 case ',':
4105 *end = p + 1;
4106 return p;
4107 case '(':
4108 if (p[1] != ')')
4109 error (_("`operator ()' must be specified "
4110 "without whitespace in `()'"));
4111 *end = p + 2;
4112 return p;
4113 case '?':
4114 if (p[1] != ':')
4115 error (_("`operator ?:' must be specified "
4116 "without whitespace in `?:'"));
4117 *end = p + 2;
4118 return p;
4119 case '[':
4120 if (p[1] != ']')
4121 error (_("`operator []' must be specified "
4122 "without whitespace in `[]'"));
4123 *end = p + 2;
4124 return p;
4125 default:
4126 error (_("`operator %s' not supported"), p);
4127 break;
4128 }
4129
4130 *end = "";
4131 return *end;
4132 }
4133 \f
4134
4135 /* What part to match in a file name. */
4136
4137 struct filename_partial_match_opts
4138 {
4139 /* Only match the directory name part. */
4140 bool dirname = false;
4141
4142 /* Only match the basename part. */
4143 bool basename = false;
4144 };
4145
4146 /* Data structure to maintain printing state for output_source_filename. */
4147
4148 struct output_source_filename_data
4149 {
4150 /* Output only filenames matching REGEXP. */
4151 std::string regexp;
4152 gdb::optional<compiled_regex> c_regexp;
4153 /* Possibly only match a part of the filename. */
4154 filename_partial_match_opts partial_match;
4155
4156
4157 /* Cache of what we've seen so far. */
4158 struct filename_seen_cache *filename_seen_cache;
4159
4160 /* Flag of whether we're printing the first one. */
4161 int first;
4162 };
4163
4164 /* Slave routine for sources_info. Force line breaks at ,'s.
4165 NAME is the name to print.
4166 DATA contains the state for printing and watching for duplicates. */
4167
4168 static void
4169 output_source_filename (const char *name,
4170 struct output_source_filename_data *data)
4171 {
4172 /* Since a single source file can result in several partial symbol
4173 tables, we need to avoid printing it more than once. Note: if
4174 some of the psymtabs are read in and some are not, it gets
4175 printed both under "Source files for which symbols have been
4176 read" and "Source files for which symbols will be read in on
4177 demand". I consider this a reasonable way to deal with the
4178 situation. I'm not sure whether this can also happen for
4179 symtabs; it doesn't hurt to check. */
4180
4181 /* Was NAME already seen? */
4182 if (data->filename_seen_cache->seen (name))
4183 {
4184 /* Yes; don't print it again. */
4185 return;
4186 }
4187
4188 /* Does it match data->regexp? */
4189 if (data->c_regexp.has_value ())
4190 {
4191 const char *to_match;
4192 std::string dirname;
4193
4194 if (data->partial_match.dirname)
4195 {
4196 dirname = ldirname (name);
4197 to_match = dirname.c_str ();
4198 }
4199 else if (data->partial_match.basename)
4200 to_match = lbasename (name);
4201 else
4202 to_match = name;
4203
4204 if (data->c_regexp->exec (to_match, 0, NULL, 0) != 0)
4205 return;
4206 }
4207
4208 /* Print it and reset *FIRST. */
4209 if (! data->first)
4210 printf_filtered (", ");
4211 data->first = 0;
4212
4213 wrap_here ("");
4214 fputs_styled (name, file_name_style.style (), gdb_stdout);
4215 }
4216
4217 /* A callback for map_partial_symbol_filenames. */
4218
4219 static void
4220 output_partial_symbol_filename (const char *filename, const char *fullname,
4221 void *data)
4222 {
4223 output_source_filename (fullname ? fullname : filename,
4224 (struct output_source_filename_data *) data);
4225 }
4226
4227 using isrc_flag_option_def
4228 = gdb::option::flag_option_def<filename_partial_match_opts>;
4229
4230 static const gdb::option::option_def info_sources_option_defs[] = {
4231
4232 isrc_flag_option_def {
4233 "dirname",
4234 [] (filename_partial_match_opts *opts) { return &opts->dirname; },
4235 N_("Show only the files having a dirname matching REGEXP."),
4236 },
4237
4238 isrc_flag_option_def {
4239 "basename",
4240 [] (filename_partial_match_opts *opts) { return &opts->basename; },
4241 N_("Show only the files having a basename matching REGEXP."),
4242 },
4243
4244 };
4245
4246 /* Create an option_def_group for the "info sources" options, with
4247 ISRC_OPTS as context. */
4248
4249 static inline gdb::option::option_def_group
4250 make_info_sources_options_def_group (filename_partial_match_opts *isrc_opts)
4251 {
4252 return {{info_sources_option_defs}, isrc_opts};
4253 }
4254
4255 /* Prints the header message for the source files that will be printed
4256 with the matching info present in DATA. SYMBOL_MSG is a message
4257 that tells what will or has been done with the symbols of the
4258 matching source files. */
4259
4260 static void
4261 print_info_sources_header (const char *symbol_msg,
4262 const struct output_source_filename_data *data)
4263 {
4264 puts_filtered (symbol_msg);
4265 if (!data->regexp.empty ())
4266 {
4267 if (data->partial_match.dirname)
4268 printf_filtered (_("(dirname matching regular expression \"%s\")"),
4269 data->regexp.c_str ());
4270 else if (data->partial_match.basename)
4271 printf_filtered (_("(basename matching regular expression \"%s\")"),
4272 data->regexp.c_str ());
4273 else
4274 printf_filtered (_("(filename matching regular expression \"%s\")"),
4275 data->regexp.c_str ());
4276 }
4277 puts_filtered ("\n");
4278 }
4279
4280 /* Completer for "info sources". */
4281
4282 static void
4283 info_sources_command_completer (cmd_list_element *ignore,
4284 completion_tracker &tracker,
4285 const char *text, const char *word)
4286 {
4287 const auto group = make_info_sources_options_def_group (nullptr);
4288 if (gdb::option::complete_options
4289 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
4290 return;
4291 }
4292
4293 static void
4294 info_sources_command (const char *args, int from_tty)
4295 {
4296 struct output_source_filename_data data;
4297
4298 if (!have_full_symbols () && !have_partial_symbols ())
4299 {
4300 error (_("No symbol table is loaded. Use the \"file\" command."));
4301 }
4302
4303 filename_seen_cache filenames_seen;
4304
4305 auto group = make_info_sources_options_def_group (&data.partial_match);
4306
4307 gdb::option::process_options
4308 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group);
4309
4310 if (args != NULL && *args != '\000')
4311 data.regexp = args;
4312
4313 data.filename_seen_cache = &filenames_seen;
4314 data.first = 1;
4315
4316 if (data.partial_match.dirname && data.partial_match.basename)
4317 error (_("You cannot give both -basename and -dirname to 'info sources'."));
4318 if ((data.partial_match.dirname || data.partial_match.basename)
4319 && data.regexp.empty ())
4320 error (_("Missing REGEXP for 'info sources'."));
4321
4322 if (data.regexp.empty ())
4323 data.c_regexp.reset ();
4324 else
4325 {
4326 int cflags = REG_NOSUB;
4327 #ifdef HAVE_CASE_INSENSITIVE_FILE_SYSTEM
4328 cflags |= REG_ICASE;
4329 #endif
4330 data.c_regexp.emplace (data.regexp.c_str (), cflags,
4331 _("Invalid regexp"));
4332 }
4333
4334 print_info_sources_header
4335 (_("Source files for which symbols have been read in:\n"), &data);
4336
4337 for (objfile *objfile : current_program_space->objfiles ())
4338 {
4339 for (compunit_symtab *cu : objfile->compunits ())
4340 {
4341 for (symtab *s : compunit_filetabs (cu))
4342 {
4343 const char *fullname = symtab_to_fullname (s);
4344
4345 output_source_filename (fullname, &data);
4346 }
4347 }
4348 }
4349 printf_filtered ("\n\n");
4350
4351 print_info_sources_header
4352 (_("Source files for which symbols will be read in on demand:\n"), &data);
4353
4354 filenames_seen.clear ();
4355 data.first = 1;
4356 map_symbol_filenames (output_partial_symbol_filename, &data,
4357 1 /*need_fullname*/);
4358 printf_filtered ("\n");
4359 }
4360
4361 /* Compare FILE against all the entries of FILENAMES. If BASENAMES is
4362 true compare only lbasename of FILENAMES. */
4363
4364 static bool
4365 file_matches (const char *file, const std::vector<const char *> &filenames,
4366 bool basenames)
4367 {
4368 if (filenames.empty ())
4369 return true;
4370
4371 for (const char *name : filenames)
4372 {
4373 name = (basenames ? lbasename (name) : name);
4374 if (compare_filenames_for_search (file, name))
4375 return true;
4376 }
4377
4378 return false;
4379 }
4380
4381 /* Helper function for std::sort on symbol_search objects. Can only sort
4382 symbols, not minimal symbols. */
4383
4384 int
4385 symbol_search::compare_search_syms (const symbol_search &sym_a,
4386 const symbol_search &sym_b)
4387 {
4388 int c;
4389
4390 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4391 symbol_symtab (sym_b.symbol)->filename);
4392 if (c != 0)
4393 return c;
4394
4395 if (sym_a.block != sym_b.block)
4396 return sym_a.block - sym_b.block;
4397
4398 return strcmp (sym_a.symbol->print_name (), sym_b.symbol->print_name ());
4399 }
4400
4401 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4402 If SYM has no symbol_type or symbol_name, returns false. */
4403
4404 bool
4405 treg_matches_sym_type_name (const compiled_regex &treg,
4406 const struct symbol *sym)
4407 {
4408 struct type *sym_type;
4409 std::string printed_sym_type_name;
4410
4411 if (symbol_lookup_debug > 1)
4412 {
4413 fprintf_unfiltered (gdb_stdlog,
4414 "treg_matches_sym_type_name\n sym %s\n",
4415 sym->natural_name ());
4416 }
4417
4418 sym_type = SYMBOL_TYPE (sym);
4419 if (sym_type == NULL)
4420 return false;
4421
4422 {
4423 scoped_switch_to_sym_language_if_auto l (sym);
4424
4425 printed_sym_type_name = type_to_string (sym_type);
4426 }
4427
4428
4429 if (symbol_lookup_debug > 1)
4430 {
4431 fprintf_unfiltered (gdb_stdlog,
4432 " sym_type_name %s\n",
4433 printed_sym_type_name.c_str ());
4434 }
4435
4436
4437 if (printed_sym_type_name.empty ())
4438 return false;
4439
4440 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4441 }
4442
4443 /* See symtab.h. */
4444
4445 bool
4446 global_symbol_searcher::is_suitable_msymbol
4447 (const enum search_domain kind, const minimal_symbol *msymbol)
4448 {
4449 switch (MSYMBOL_TYPE (msymbol))
4450 {
4451 case mst_data:
4452 case mst_bss:
4453 case mst_file_data:
4454 case mst_file_bss:
4455 return kind == VARIABLES_DOMAIN;
4456 case mst_text:
4457 case mst_file_text:
4458 case mst_solib_trampoline:
4459 case mst_text_gnu_ifunc:
4460 return kind == FUNCTIONS_DOMAIN;
4461 default:
4462 return false;
4463 }
4464 }
4465
4466 /* See symtab.h. */
4467
4468 bool
4469 global_symbol_searcher::expand_symtabs
4470 (objfile *objfile, const gdb::optional<compiled_regex> &preg) const
4471 {
4472 enum search_domain kind = m_kind;
4473 bool found_msymbol = false;
4474
4475 if (objfile->sf)
4476 objfile->sf->qf->expand_symtabs_matching
4477 (objfile,
4478 [&] (const char *filename, bool basenames)
4479 {
4480 return file_matches (filename, filenames, basenames);
4481 },
4482 lookup_name_info::match_any (),
4483 [&] (const char *symname)
4484 {
4485 return (!preg.has_value ()
4486 || preg->exec (symname, 0, NULL, 0) == 0);
4487 },
4488 NULL,
4489 kind);
4490
4491 /* Here, we search through the minimal symbol tables for functions and
4492 variables that match, and force their symbols to be read. This is in
4493 particular necessary for demangled variable names, which are no longer
4494 put into the partial symbol tables. The symbol will then be found
4495 during the scan of symtabs later.
4496
4497 For functions, find_pc_symtab should succeed if we have debug info for
4498 the function, for variables we have to call
4499 lookup_symbol_in_objfile_from_linkage_name to determine if the
4500 variable has debug info. If the lookup fails, set found_msymbol so
4501 that we will rescan to print any matching symbols without debug info.
4502 We only search the objfile the msymbol came from, we no longer search
4503 all objfiles. In large programs (1000s of shared libs) searching all
4504 objfiles is not worth the pain. */
4505 if (filenames.empty ()
4506 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4507 {
4508 for (minimal_symbol *msymbol : objfile->msymbols ())
4509 {
4510 QUIT;
4511
4512 if (msymbol->created_by_gdb)
4513 continue;
4514
4515 if (is_suitable_msymbol (kind, msymbol))
4516 {
4517 if (!preg.has_value ()
4518 || preg->exec (msymbol->natural_name (), 0,
4519 NULL, 0) == 0)
4520 {
4521 /* An important side-effect of these lookup functions is
4522 to expand the symbol table if msymbol is found, later
4523 in the process we will add matching symbols or
4524 msymbols to the results list, and that requires that
4525 the symbols tables are expanded. */
4526 if (kind == FUNCTIONS_DOMAIN
4527 ? (find_pc_compunit_symtab
4528 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4529 == NULL)
4530 : (lookup_symbol_in_objfile_from_linkage_name
4531 (objfile, msymbol->linkage_name (),
4532 VAR_DOMAIN)
4533 .symbol == NULL))
4534 found_msymbol = true;
4535 }
4536 }
4537 }
4538 }
4539
4540 return found_msymbol;
4541 }
4542
4543 /* See symtab.h. */
4544
4545 bool
4546 global_symbol_searcher::add_matching_symbols
4547 (objfile *objfile,
4548 const gdb::optional<compiled_regex> &preg,
4549 const gdb::optional<compiled_regex> &treg,
4550 std::set<symbol_search> *result_set) const
4551 {
4552 enum search_domain kind = m_kind;
4553
4554 /* Add matching symbols (if not already present). */
4555 for (compunit_symtab *cust : objfile->compunits ())
4556 {
4557 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
4558
4559 for (block_enum block : { GLOBAL_BLOCK, STATIC_BLOCK })
4560 {
4561 struct block_iterator iter;
4562 struct symbol *sym;
4563 const struct block *b = BLOCKVECTOR_BLOCK (bv, block);
4564
4565 ALL_BLOCK_SYMBOLS (b, iter, sym)
4566 {
4567 struct symtab *real_symtab = symbol_symtab (sym);
4568
4569 QUIT;
4570
4571 /* Check first sole REAL_SYMTAB->FILENAME. It does
4572 not need to be a substring of symtab_to_fullname as
4573 it may contain "./" etc. */
4574 if ((file_matches (real_symtab->filename, filenames, false)
4575 || ((basenames_may_differ
4576 || file_matches (lbasename (real_symtab->filename),
4577 filenames, true))
4578 && file_matches (symtab_to_fullname (real_symtab),
4579 filenames, false)))
4580 && ((!preg.has_value ()
4581 || preg->exec (sym->natural_name (), 0,
4582 NULL, 0) == 0)
4583 && ((kind == VARIABLES_DOMAIN
4584 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4585 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4586 && SYMBOL_CLASS (sym) != LOC_BLOCK
4587 /* LOC_CONST can be used for more than
4588 just enums, e.g., c++ static const
4589 members. We only want to skip enums
4590 here. */
4591 && !(SYMBOL_CLASS (sym) == LOC_CONST
4592 && (TYPE_CODE (SYMBOL_TYPE (sym))
4593 == TYPE_CODE_ENUM))
4594 && (!treg.has_value ()
4595 || treg_matches_sym_type_name (*treg, sym)))
4596 || (kind == FUNCTIONS_DOMAIN
4597 && SYMBOL_CLASS (sym) == LOC_BLOCK
4598 && (!treg.has_value ()
4599 || treg_matches_sym_type_name (*treg,
4600 sym)))
4601 || (kind == TYPES_DOMAIN
4602 && SYMBOL_CLASS (sym) == LOC_TYPEDEF
4603 && SYMBOL_DOMAIN (sym) != MODULE_DOMAIN)
4604 || (kind == MODULES_DOMAIN
4605 && SYMBOL_DOMAIN (sym) == MODULE_DOMAIN
4606 && SYMBOL_LINE (sym) != 0))))
4607 {
4608 if (result_set->size () < m_max_search_results)
4609 {
4610 /* Match, insert if not already in the results. */
4611 symbol_search ss (block, sym);
4612 if (result_set->find (ss) == result_set->end ())
4613 result_set->insert (ss);
4614 }
4615 else
4616 return false;
4617 }
4618 }
4619 }
4620 }
4621
4622 return true;
4623 }
4624
4625 /* See symtab.h. */
4626
4627 bool
4628 global_symbol_searcher::add_matching_msymbols
4629 (objfile *objfile, const gdb::optional<compiled_regex> &preg,
4630 std::vector<symbol_search> *results) const
4631 {
4632 enum search_domain kind = m_kind;
4633
4634 for (minimal_symbol *msymbol : objfile->msymbols ())
4635 {
4636 QUIT;
4637
4638 if (msymbol->created_by_gdb)
4639 continue;
4640
4641 if (is_suitable_msymbol (kind, msymbol))
4642 {
4643 if (!preg.has_value ()
4644 || preg->exec (msymbol->natural_name (), 0,
4645 NULL, 0) == 0)
4646 {
4647 /* For functions we can do a quick check of whether the
4648 symbol might be found via find_pc_symtab. */
4649 if (kind != FUNCTIONS_DOMAIN
4650 || (find_pc_compunit_symtab
4651 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4652 == NULL))
4653 {
4654 if (lookup_symbol_in_objfile_from_linkage_name
4655 (objfile, msymbol->linkage_name (),
4656 VAR_DOMAIN).symbol == NULL)
4657 {
4658 /* Matching msymbol, add it to the results list. */
4659 if (results->size () < m_max_search_results)
4660 results->emplace_back (GLOBAL_BLOCK, msymbol, objfile);
4661 else
4662 return false;
4663 }
4664 }
4665 }
4666 }
4667 }
4668
4669 return true;
4670 }
4671
4672 /* See symtab.h. */
4673
4674 std::vector<symbol_search>
4675 global_symbol_searcher::search () const
4676 {
4677 gdb::optional<compiled_regex> preg;
4678 gdb::optional<compiled_regex> treg;
4679
4680 gdb_assert (m_kind != ALL_DOMAIN);
4681
4682 if (m_symbol_name_regexp != NULL)
4683 {
4684 const char *symbol_name_regexp = m_symbol_name_regexp;
4685
4686 /* Make sure spacing is right for C++ operators.
4687 This is just a courtesy to make the matching less sensitive
4688 to how many spaces the user leaves between 'operator'
4689 and <TYPENAME> or <OPERATOR>. */
4690 const char *opend;
4691 const char *opname = operator_chars (symbol_name_regexp, &opend);
4692
4693 if (*opname)
4694 {
4695 int fix = -1; /* -1 means ok; otherwise number of
4696 spaces needed. */
4697
4698 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4699 {
4700 /* There should 1 space between 'operator' and 'TYPENAME'. */
4701 if (opname[-1] != ' ' || opname[-2] == ' ')
4702 fix = 1;
4703 }
4704 else
4705 {
4706 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4707 if (opname[-1] == ' ')
4708 fix = 0;
4709 }
4710 /* If wrong number of spaces, fix it. */
4711 if (fix >= 0)
4712 {
4713 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4714
4715 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4716 symbol_name_regexp = tmp;
4717 }
4718 }
4719
4720 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4721 ? REG_ICASE : 0);
4722 preg.emplace (symbol_name_regexp, cflags,
4723 _("Invalid regexp"));
4724 }
4725
4726 if (m_symbol_type_regexp != NULL)
4727 {
4728 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4729 ? REG_ICASE : 0);
4730 treg.emplace (m_symbol_type_regexp, cflags,
4731 _("Invalid regexp"));
4732 }
4733
4734 bool found_msymbol = false;
4735 std::set<symbol_search> result_set;
4736 for (objfile *objfile : current_program_space->objfiles ())
4737 {
4738 /* Expand symtabs within objfile that possibly contain matching
4739 symbols. */
4740 found_msymbol |= expand_symtabs (objfile, preg);
4741
4742 /* Find matching symbols within OBJFILE and add them in to the
4743 RESULT_SET set. Use a set here so that we can easily detect
4744 duplicates as we go, and can therefore track how many unique
4745 matches we have found so far. */
4746 if (!add_matching_symbols (objfile, preg, treg, &result_set))
4747 break;
4748 }
4749
4750 /* Convert the result set into a sorted result list, as std::set is
4751 defined to be sorted then no explicit call to std::sort is needed. */
4752 std::vector<symbol_search> result (result_set.begin (), result_set.end ());
4753
4754 /* If there are no debug symbols, then add matching minsyms. But if the
4755 user wants to see symbols matching a type regexp, then never give a
4756 minimal symbol, as we assume that a minimal symbol does not have a
4757 type. */
4758 if ((found_msymbol || (filenames.empty () && m_kind == VARIABLES_DOMAIN))
4759 && !m_exclude_minsyms
4760 && !treg.has_value ())
4761 {
4762 gdb_assert (m_kind == VARIABLES_DOMAIN || m_kind == FUNCTIONS_DOMAIN);
4763 for (objfile *objfile : current_program_space->objfiles ())
4764 if (!add_matching_msymbols (objfile, preg, &result))
4765 break;
4766 }
4767
4768 return result;
4769 }
4770
4771 /* See symtab.h. */
4772
4773 std::string
4774 symbol_to_info_string (struct symbol *sym, int block,
4775 enum search_domain kind)
4776 {
4777 std::string str;
4778
4779 gdb_assert (block == GLOBAL_BLOCK || block == STATIC_BLOCK);
4780
4781 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4782 str += "static ";
4783
4784 /* Typedef that is not a C++ class. */
4785 if (kind == TYPES_DOMAIN
4786 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4787 {
4788 string_file tmp_stream;
4789
4790 /* FIXME: For C (and C++) we end up with a difference in output here
4791 between how a typedef is printed, and non-typedefs are printed.
4792 The TYPEDEF_PRINT code places a ";" at the end in an attempt to
4793 appear C-like, while TYPE_PRINT doesn't.
4794
4795 For the struct printing case below, things are worse, we force
4796 printing of the ";" in this function, which is going to be wrong
4797 for languages that don't require a ";" between statements. */
4798 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_TYPEDEF)
4799 typedef_print (SYMBOL_TYPE (sym), sym, &tmp_stream);
4800 else
4801 type_print (SYMBOL_TYPE (sym), "", &tmp_stream, -1);
4802 str += tmp_stream.string ();
4803 }
4804 /* variable, func, or typedef-that-is-c++-class. */
4805 else if (kind < TYPES_DOMAIN
4806 || (kind == TYPES_DOMAIN
4807 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4808 {
4809 string_file tmp_stream;
4810
4811 type_print (SYMBOL_TYPE (sym),
4812 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4813 ? "" : sym->print_name ()),
4814 &tmp_stream, 0);
4815
4816 str += tmp_stream.string ();
4817 str += ";";
4818 }
4819 /* Printing of modules is currently done here, maybe at some future
4820 point we might want a language specific method to print the module
4821 symbol so that we can customise the output more. */
4822 else if (kind == MODULES_DOMAIN)
4823 str += sym->print_name ();
4824
4825 return str;
4826 }
4827
4828 /* Helper function for symbol info commands, for example 'info functions',
4829 'info variables', etc. KIND is the kind of symbol we searched for, and
4830 BLOCK is the type of block the symbols was found in, either GLOBAL_BLOCK
4831 or STATIC_BLOCK. SYM is the symbol we found. If LAST is not NULL,
4832 print file and line number information for the symbol as well. Skip
4833 printing the filename if it matches LAST. */
4834
4835 static void
4836 print_symbol_info (enum search_domain kind,
4837 struct symbol *sym,
4838 int block, const char *last)
4839 {
4840 scoped_switch_to_sym_language_if_auto l (sym);
4841 struct symtab *s = symbol_symtab (sym);
4842
4843 if (last != NULL)
4844 {
4845 const char *s_filename = symtab_to_filename_for_display (s);
4846
4847 if (filename_cmp (last, s_filename) != 0)
4848 {
4849 printf_filtered (_("\nFile %ps:\n"),
4850 styled_string (file_name_style.style (),
4851 s_filename));
4852 }
4853
4854 if (SYMBOL_LINE (sym) != 0)
4855 printf_filtered ("%d:\t", SYMBOL_LINE (sym));
4856 else
4857 puts_filtered ("\t");
4858 }
4859
4860 std::string str = symbol_to_info_string (sym, block, kind);
4861 printf_filtered ("%s\n", str.c_str ());
4862 }
4863
4864 /* This help function for symtab_symbol_info() prints information
4865 for non-debugging symbols to gdb_stdout. */
4866
4867 static void
4868 print_msymbol_info (struct bound_minimal_symbol msymbol)
4869 {
4870 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4871 char *tmp;
4872
4873 if (gdbarch_addr_bit (gdbarch) <= 32)
4874 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4875 & (CORE_ADDR) 0xffffffff,
4876 8);
4877 else
4878 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4879 16);
4880
4881 ui_file_style sym_style = (msymbol.minsym->text_p ()
4882 ? function_name_style.style ()
4883 : ui_file_style ());
4884
4885 printf_filtered (_("%ps %ps\n"),
4886 styled_string (address_style.style (), tmp),
4887 styled_string (sym_style, msymbol.minsym->print_name ()));
4888 }
4889
4890 /* This is the guts of the commands "info functions", "info types", and
4891 "info variables". It calls search_symbols to find all matches and then
4892 print_[m]symbol_info to print out some useful information about the
4893 matches. */
4894
4895 static void
4896 symtab_symbol_info (bool quiet, bool exclude_minsyms,
4897 const char *regexp, enum search_domain kind,
4898 const char *t_regexp, int from_tty)
4899 {
4900 static const char * const classnames[] =
4901 {"variable", "function", "type", "module"};
4902 const char *last_filename = "";
4903 int first = 1;
4904
4905 gdb_assert (kind != ALL_DOMAIN);
4906
4907 if (regexp != nullptr && *regexp == '\0')
4908 regexp = nullptr;
4909
4910 global_symbol_searcher spec (kind, regexp);
4911 spec.set_symbol_type_regexp (t_regexp);
4912 spec.set_exclude_minsyms (exclude_minsyms);
4913 std::vector<symbol_search> symbols = spec.search ();
4914
4915 if (!quiet)
4916 {
4917 if (regexp != NULL)
4918 {
4919 if (t_regexp != NULL)
4920 printf_filtered
4921 (_("All %ss matching regular expression \"%s\""
4922 " with type matching regular expression \"%s\":\n"),
4923 classnames[kind], regexp, t_regexp);
4924 else
4925 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4926 classnames[kind], regexp);
4927 }
4928 else
4929 {
4930 if (t_regexp != NULL)
4931 printf_filtered
4932 (_("All defined %ss"
4933 " with type matching regular expression \"%s\" :\n"),
4934 classnames[kind], t_regexp);
4935 else
4936 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4937 }
4938 }
4939
4940 for (const symbol_search &p : symbols)
4941 {
4942 QUIT;
4943
4944 if (p.msymbol.minsym != NULL)
4945 {
4946 if (first)
4947 {
4948 if (!quiet)
4949 printf_filtered (_("\nNon-debugging symbols:\n"));
4950 first = 0;
4951 }
4952 print_msymbol_info (p.msymbol);
4953 }
4954 else
4955 {
4956 print_symbol_info (kind,
4957 p.symbol,
4958 p.block,
4959 last_filename);
4960 last_filename
4961 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
4962 }
4963 }
4964 }
4965
4966 /* Structure to hold the values of the options used by the 'info variables'
4967 and 'info functions' commands. These correspond to the -q, -t, and -n
4968 options. */
4969
4970 struct info_print_options
4971 {
4972 bool quiet = false;
4973 bool exclude_minsyms = false;
4974 char *type_regexp = nullptr;
4975
4976 ~info_print_options ()
4977 {
4978 xfree (type_regexp);
4979 }
4980 };
4981
4982 /* The options used by the 'info variables' and 'info functions'
4983 commands. */
4984
4985 static const gdb::option::option_def info_print_options_defs[] = {
4986 gdb::option::boolean_option_def<info_print_options> {
4987 "q",
4988 [] (info_print_options *opt) { return &opt->quiet; },
4989 nullptr, /* show_cmd_cb */
4990 nullptr /* set_doc */
4991 },
4992
4993 gdb::option::boolean_option_def<info_print_options> {
4994 "n",
4995 [] (info_print_options *opt) { return &opt->exclude_minsyms; },
4996 nullptr, /* show_cmd_cb */
4997 nullptr /* set_doc */
4998 },
4999
5000 gdb::option::string_option_def<info_print_options> {
5001 "t",
5002 [] (info_print_options *opt) { return &opt->type_regexp; },
5003 nullptr, /* show_cmd_cb */
5004 nullptr /* set_doc */
5005 }
5006 };
5007
5008 /* Returns the option group used by 'info variables' and 'info
5009 functions'. */
5010
5011 static gdb::option::option_def_group
5012 make_info_print_options_def_group (info_print_options *opts)
5013 {
5014 return {{info_print_options_defs}, opts};
5015 }
5016
5017 /* Command completer for 'info variables' and 'info functions'. */
5018
5019 static void
5020 info_print_command_completer (struct cmd_list_element *ignore,
5021 completion_tracker &tracker,
5022 const char *text, const char * /* word */)
5023 {
5024 const auto group
5025 = make_info_print_options_def_group (nullptr);
5026 if (gdb::option::complete_options
5027 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5028 return;
5029
5030 const char *word = advance_to_expression_complete_word_point (tracker, text);
5031 symbol_completer (ignore, tracker, text, word);
5032 }
5033
5034 /* Implement the 'info variables' command. */
5035
5036 static void
5037 info_variables_command (const char *args, int from_tty)
5038 {
5039 info_print_options opts;
5040 auto grp = make_info_print_options_def_group (&opts);
5041 gdb::option::process_options
5042 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5043 if (args != nullptr && *args == '\0')
5044 args = nullptr;
5045
5046 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args, VARIABLES_DOMAIN,
5047 opts.type_regexp, from_tty);
5048 }
5049
5050 /* Implement the 'info functions' command. */
5051
5052 static void
5053 info_functions_command (const char *args, int from_tty)
5054 {
5055 info_print_options opts;
5056 auto grp = make_info_print_options_def_group (&opts);
5057 gdb::option::process_options
5058 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5059 if (args != nullptr && *args == '\0')
5060 args = nullptr;
5061
5062 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args,
5063 FUNCTIONS_DOMAIN, opts.type_regexp, from_tty);
5064 }
5065
5066 /* Holds the -q option for the 'info types' command. */
5067
5068 struct info_types_options
5069 {
5070 bool quiet = false;
5071 };
5072
5073 /* The options used by the 'info types' command. */
5074
5075 static const gdb::option::option_def info_types_options_defs[] = {
5076 gdb::option::boolean_option_def<info_types_options> {
5077 "q",
5078 [] (info_types_options *opt) { return &opt->quiet; },
5079 nullptr, /* show_cmd_cb */
5080 nullptr /* set_doc */
5081 }
5082 };
5083
5084 /* Returns the option group used by 'info types'. */
5085
5086 static gdb::option::option_def_group
5087 make_info_types_options_def_group (info_types_options *opts)
5088 {
5089 return {{info_types_options_defs}, opts};
5090 }
5091
5092 /* Implement the 'info types' command. */
5093
5094 static void
5095 info_types_command (const char *args, int from_tty)
5096 {
5097 info_types_options opts;
5098
5099 auto grp = make_info_types_options_def_group (&opts);
5100 gdb::option::process_options
5101 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5102 if (args != nullptr && *args == '\0')
5103 args = nullptr;
5104 symtab_symbol_info (opts.quiet, false, args, TYPES_DOMAIN, NULL, from_tty);
5105 }
5106
5107 /* Command completer for 'info types' command. */
5108
5109 static void
5110 info_types_command_completer (struct cmd_list_element *ignore,
5111 completion_tracker &tracker,
5112 const char *text, const char * /* word */)
5113 {
5114 const auto group
5115 = make_info_types_options_def_group (nullptr);
5116 if (gdb::option::complete_options
5117 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5118 return;
5119
5120 const char *word = advance_to_expression_complete_word_point (tracker, text);
5121 symbol_completer (ignore, tracker, text, word);
5122 }
5123
5124 /* Implement the 'info modules' command. */
5125
5126 static void
5127 info_modules_command (const char *args, int from_tty)
5128 {
5129 info_types_options opts;
5130
5131 auto grp = make_info_types_options_def_group (&opts);
5132 gdb::option::process_options
5133 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5134 if (args != nullptr && *args == '\0')
5135 args = nullptr;
5136 symtab_symbol_info (opts.quiet, true, args, MODULES_DOMAIN, NULL,
5137 from_tty);
5138 }
5139
5140 static void
5141 rbreak_command (const char *regexp, int from_tty)
5142 {
5143 std::string string;
5144 const char *file_name = nullptr;
5145
5146 if (regexp != nullptr)
5147 {
5148 const char *colon = strchr (regexp, ':');
5149
5150 if (colon && *(colon + 1) != ':')
5151 {
5152 int colon_index;
5153 char *local_name;
5154
5155 colon_index = colon - regexp;
5156 local_name = (char *) alloca (colon_index + 1);
5157 memcpy (local_name, regexp, colon_index);
5158 local_name[colon_index--] = 0;
5159 while (isspace (local_name[colon_index]))
5160 local_name[colon_index--] = 0;
5161 file_name = local_name;
5162 regexp = skip_spaces (colon + 1);
5163 }
5164 }
5165
5166 global_symbol_searcher spec (FUNCTIONS_DOMAIN, regexp);
5167 if (file_name != nullptr)
5168 spec.filenames.push_back (file_name);
5169 std::vector<symbol_search> symbols = spec.search ();
5170
5171 scoped_rbreak_breakpoints finalize;
5172 for (const symbol_search &p : symbols)
5173 {
5174 if (p.msymbol.minsym == NULL)
5175 {
5176 struct symtab *symtab = symbol_symtab (p.symbol);
5177 const char *fullname = symtab_to_fullname (symtab);
5178
5179 string = string_printf ("%s:'%s'", fullname,
5180 p.symbol->linkage_name ());
5181 break_command (&string[0], from_tty);
5182 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
5183 }
5184 else
5185 {
5186 string = string_printf ("'%s'",
5187 p.msymbol.minsym->linkage_name ());
5188
5189 break_command (&string[0], from_tty);
5190 printf_filtered ("<function, no debug info> %s;\n",
5191 p.msymbol.minsym->print_name ());
5192 }
5193 }
5194 }
5195 \f
5196
5197 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
5198
5199 static int
5200 compare_symbol_name (const char *symbol_name, language symbol_language,
5201 const lookup_name_info &lookup_name,
5202 completion_match_result &match_res)
5203 {
5204 const language_defn *lang = language_def (symbol_language);
5205
5206 symbol_name_matcher_ftype *name_match
5207 = get_symbol_name_matcher (lang, lookup_name);
5208
5209 return name_match (symbol_name, lookup_name, &match_res);
5210 }
5211
5212 /* See symtab.h. */
5213
5214 void
5215 completion_list_add_name (completion_tracker &tracker,
5216 language symbol_language,
5217 const char *symname,
5218 const lookup_name_info &lookup_name,
5219 const char *text, const char *word)
5220 {
5221 completion_match_result &match_res
5222 = tracker.reset_completion_match_result ();
5223
5224 /* Clip symbols that cannot match. */
5225 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
5226 return;
5227
5228 /* Refresh SYMNAME from the match string. It's potentially
5229 different depending on language. (E.g., on Ada, the match may be
5230 the encoded symbol name wrapped in "<>"). */
5231 symname = match_res.match.match ();
5232 gdb_assert (symname != NULL);
5233
5234 /* We have a match for a completion, so add SYMNAME to the current list
5235 of matches. Note that the name is moved to freshly malloc'd space. */
5236
5237 {
5238 gdb::unique_xmalloc_ptr<char> completion
5239 = make_completion_match_str (symname, text, word);
5240
5241 /* Here we pass the match-for-lcd object to add_completion. Some
5242 languages match the user text against substrings of symbol
5243 names in some cases. E.g., in C++, "b push_ba" completes to
5244 "std::vector::push_back", "std::string::push_back", etc., and
5245 in this case we want the completion lowest common denominator
5246 to be "push_back" instead of "std::". */
5247 tracker.add_completion (std::move (completion),
5248 &match_res.match_for_lcd, text, word);
5249 }
5250 }
5251
5252 /* completion_list_add_name wrapper for struct symbol. */
5253
5254 static void
5255 completion_list_add_symbol (completion_tracker &tracker,
5256 symbol *sym,
5257 const lookup_name_info &lookup_name,
5258 const char *text, const char *word)
5259 {
5260 completion_list_add_name (tracker, sym->language (),
5261 sym->natural_name (),
5262 lookup_name, text, word);
5263 }
5264
5265 /* completion_list_add_name wrapper for struct minimal_symbol. */
5266
5267 static void
5268 completion_list_add_msymbol (completion_tracker &tracker,
5269 minimal_symbol *sym,
5270 const lookup_name_info &lookup_name,
5271 const char *text, const char *word)
5272 {
5273 completion_list_add_name (tracker, sym->language (),
5274 sym->natural_name (),
5275 lookup_name, text, word);
5276 }
5277
5278
5279 /* ObjC: In case we are completing on a selector, look as the msymbol
5280 again and feed all the selectors into the mill. */
5281
5282 static void
5283 completion_list_objc_symbol (completion_tracker &tracker,
5284 struct minimal_symbol *msymbol,
5285 const lookup_name_info &lookup_name,
5286 const char *text, const char *word)
5287 {
5288 static char *tmp = NULL;
5289 static unsigned int tmplen = 0;
5290
5291 const char *method, *category, *selector;
5292 char *tmp2 = NULL;
5293
5294 method = msymbol->natural_name ();
5295
5296 /* Is it a method? */
5297 if ((method[0] != '-') && (method[0] != '+'))
5298 return;
5299
5300 if (text[0] == '[')
5301 /* Complete on shortened method method. */
5302 completion_list_add_name (tracker, language_objc,
5303 method + 1,
5304 lookup_name,
5305 text, word);
5306
5307 while ((strlen (method) + 1) >= tmplen)
5308 {
5309 if (tmplen == 0)
5310 tmplen = 1024;
5311 else
5312 tmplen *= 2;
5313 tmp = (char *) xrealloc (tmp, tmplen);
5314 }
5315 selector = strchr (method, ' ');
5316 if (selector != NULL)
5317 selector++;
5318
5319 category = strchr (method, '(');
5320
5321 if ((category != NULL) && (selector != NULL))
5322 {
5323 memcpy (tmp, method, (category - method));
5324 tmp[category - method] = ' ';
5325 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5326 completion_list_add_name (tracker, language_objc, tmp,
5327 lookup_name, text, word);
5328 if (text[0] == '[')
5329 completion_list_add_name (tracker, language_objc, tmp + 1,
5330 lookup_name, text, word);
5331 }
5332
5333 if (selector != NULL)
5334 {
5335 /* Complete on selector only. */
5336 strcpy (tmp, selector);
5337 tmp2 = strchr (tmp, ']');
5338 if (tmp2 != NULL)
5339 *tmp2 = '\0';
5340
5341 completion_list_add_name (tracker, language_objc, tmp,
5342 lookup_name, text, word);
5343 }
5344 }
5345
5346 /* Break the non-quoted text based on the characters which are in
5347 symbols. FIXME: This should probably be language-specific. */
5348
5349 static const char *
5350 language_search_unquoted_string (const char *text, const char *p)
5351 {
5352 for (; p > text; --p)
5353 {
5354 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5355 continue;
5356 else
5357 {
5358 if ((current_language->la_language == language_objc))
5359 {
5360 if (p[-1] == ':') /* Might be part of a method name. */
5361 continue;
5362 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5363 p -= 2; /* Beginning of a method name. */
5364 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5365 { /* Might be part of a method name. */
5366 const char *t = p;
5367
5368 /* Seeing a ' ' or a '(' is not conclusive evidence
5369 that we are in the middle of a method name. However,
5370 finding "-[" or "+[" should be pretty un-ambiguous.
5371 Unfortunately we have to find it now to decide. */
5372
5373 while (t > text)
5374 if (isalnum (t[-1]) || t[-1] == '_' ||
5375 t[-1] == ' ' || t[-1] == ':' ||
5376 t[-1] == '(' || t[-1] == ')')
5377 --t;
5378 else
5379 break;
5380
5381 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5382 p = t - 2; /* Method name detected. */
5383 /* Else we leave with p unchanged. */
5384 }
5385 }
5386 break;
5387 }
5388 }
5389 return p;
5390 }
5391
5392 static void
5393 completion_list_add_fields (completion_tracker &tracker,
5394 struct symbol *sym,
5395 const lookup_name_info &lookup_name,
5396 const char *text, const char *word)
5397 {
5398 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5399 {
5400 struct type *t = SYMBOL_TYPE (sym);
5401 enum type_code c = TYPE_CODE (t);
5402 int j;
5403
5404 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5405 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5406 if (TYPE_FIELD_NAME (t, j))
5407 completion_list_add_name (tracker, sym->language (),
5408 TYPE_FIELD_NAME (t, j),
5409 lookup_name, text, word);
5410 }
5411 }
5412
5413 /* See symtab.h. */
5414
5415 bool
5416 symbol_is_function_or_method (symbol *sym)
5417 {
5418 switch (TYPE_CODE (SYMBOL_TYPE (sym)))
5419 {
5420 case TYPE_CODE_FUNC:
5421 case TYPE_CODE_METHOD:
5422 return true;
5423 default:
5424 return false;
5425 }
5426 }
5427
5428 /* See symtab.h. */
5429
5430 bool
5431 symbol_is_function_or_method (minimal_symbol *msymbol)
5432 {
5433 switch (MSYMBOL_TYPE (msymbol))
5434 {
5435 case mst_text:
5436 case mst_text_gnu_ifunc:
5437 case mst_solib_trampoline:
5438 case mst_file_text:
5439 return true;
5440 default:
5441 return false;
5442 }
5443 }
5444
5445 /* See symtab.h. */
5446
5447 bound_minimal_symbol
5448 find_gnu_ifunc (const symbol *sym)
5449 {
5450 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
5451 return {};
5452
5453 lookup_name_info lookup_name (sym->search_name (),
5454 symbol_name_match_type::SEARCH_NAME);
5455 struct objfile *objfile = symbol_objfile (sym);
5456
5457 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
5458 minimal_symbol *ifunc = NULL;
5459
5460 iterate_over_minimal_symbols (objfile, lookup_name,
5461 [&] (minimal_symbol *minsym)
5462 {
5463 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc
5464 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5465 {
5466 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
5467 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5468 {
5469 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5470 msym_addr
5471 = gdbarch_convert_from_func_ptr_addr (gdbarch,
5472 msym_addr,
5473 current_top_target ());
5474 }
5475 if (msym_addr == address)
5476 {
5477 ifunc = minsym;
5478 return true;
5479 }
5480 }
5481 return false;
5482 });
5483
5484 if (ifunc != NULL)
5485 return {ifunc, objfile};
5486 return {};
5487 }
5488
5489 /* Add matching symbols from SYMTAB to the current completion list. */
5490
5491 static void
5492 add_symtab_completions (struct compunit_symtab *cust,
5493 completion_tracker &tracker,
5494 complete_symbol_mode mode,
5495 const lookup_name_info &lookup_name,
5496 const char *text, const char *word,
5497 enum type_code code)
5498 {
5499 struct symbol *sym;
5500 const struct block *b;
5501 struct block_iterator iter;
5502 int i;
5503
5504 if (cust == NULL)
5505 return;
5506
5507 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5508 {
5509 QUIT;
5510 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5511 ALL_BLOCK_SYMBOLS (b, iter, sym)
5512 {
5513 if (completion_skip_symbol (mode, sym))
5514 continue;
5515
5516 if (code == TYPE_CODE_UNDEF
5517 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5518 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5519 completion_list_add_symbol (tracker, sym,
5520 lookup_name,
5521 text, word);
5522 }
5523 }
5524 }
5525
5526 void
5527 default_collect_symbol_completion_matches_break_on
5528 (completion_tracker &tracker, complete_symbol_mode mode,
5529 symbol_name_match_type name_match_type,
5530 const char *text, const char *word,
5531 const char *break_on, enum type_code code)
5532 {
5533 /* Problem: All of the symbols have to be copied because readline
5534 frees them. I'm not going to worry about this; hopefully there
5535 won't be that many. */
5536
5537 struct symbol *sym;
5538 const struct block *b;
5539 const struct block *surrounding_static_block, *surrounding_global_block;
5540 struct block_iterator iter;
5541 /* The symbol we are completing on. Points in same buffer as text. */
5542 const char *sym_text;
5543
5544 /* Now look for the symbol we are supposed to complete on. */
5545 if (mode == complete_symbol_mode::LINESPEC)
5546 sym_text = text;
5547 else
5548 {
5549 const char *p;
5550 char quote_found;
5551 const char *quote_pos = NULL;
5552
5553 /* First see if this is a quoted string. */
5554 quote_found = '\0';
5555 for (p = text; *p != '\0'; ++p)
5556 {
5557 if (quote_found != '\0')
5558 {
5559 if (*p == quote_found)
5560 /* Found close quote. */
5561 quote_found = '\0';
5562 else if (*p == '\\' && p[1] == quote_found)
5563 /* A backslash followed by the quote character
5564 doesn't end the string. */
5565 ++p;
5566 }
5567 else if (*p == '\'' || *p == '"')
5568 {
5569 quote_found = *p;
5570 quote_pos = p;
5571 }
5572 }
5573 if (quote_found == '\'')
5574 /* A string within single quotes can be a symbol, so complete on it. */
5575 sym_text = quote_pos + 1;
5576 else if (quote_found == '"')
5577 /* A double-quoted string is never a symbol, nor does it make sense
5578 to complete it any other way. */
5579 {
5580 return;
5581 }
5582 else
5583 {
5584 /* It is not a quoted string. Break it based on the characters
5585 which are in symbols. */
5586 while (p > text)
5587 {
5588 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5589 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5590 --p;
5591 else
5592 break;
5593 }
5594 sym_text = p;
5595 }
5596 }
5597
5598 lookup_name_info lookup_name (sym_text, name_match_type, true);
5599
5600 /* At this point scan through the misc symbol vectors and add each
5601 symbol you find to the list. Eventually we want to ignore
5602 anything that isn't a text symbol (everything else will be
5603 handled by the psymtab code below). */
5604
5605 if (code == TYPE_CODE_UNDEF)
5606 {
5607 for (objfile *objfile : current_program_space->objfiles ())
5608 {
5609 for (minimal_symbol *msymbol : objfile->msymbols ())
5610 {
5611 QUIT;
5612
5613 if (completion_skip_symbol (mode, msymbol))
5614 continue;
5615
5616 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5617 sym_text, word);
5618
5619 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5620 sym_text, word);
5621 }
5622 }
5623 }
5624
5625 /* Add completions for all currently loaded symbol tables. */
5626 for (objfile *objfile : current_program_space->objfiles ())
5627 {
5628 for (compunit_symtab *cust : objfile->compunits ())
5629 add_symtab_completions (cust, tracker, mode, lookup_name,
5630 sym_text, word, code);
5631 }
5632
5633 /* Look through the partial symtabs for all symbols which begin by
5634 matching SYM_TEXT. Expand all CUs that you find to the list. */
5635 expand_symtabs_matching (NULL,
5636 lookup_name,
5637 NULL,
5638 [&] (compunit_symtab *symtab) /* expansion notify */
5639 {
5640 add_symtab_completions (symtab,
5641 tracker, mode, lookup_name,
5642 sym_text, word, code);
5643 },
5644 ALL_DOMAIN);
5645
5646 /* Search upwards from currently selected frame (so that we can
5647 complete on local vars). Also catch fields of types defined in
5648 this places which match our text string. Only complete on types
5649 visible from current context. */
5650
5651 b = get_selected_block (0);
5652 surrounding_static_block = block_static_block (b);
5653 surrounding_global_block = block_global_block (b);
5654 if (surrounding_static_block != NULL)
5655 while (b != surrounding_static_block)
5656 {
5657 QUIT;
5658
5659 ALL_BLOCK_SYMBOLS (b, iter, sym)
5660 {
5661 if (code == TYPE_CODE_UNDEF)
5662 {
5663 completion_list_add_symbol (tracker, sym, lookup_name,
5664 sym_text, word);
5665 completion_list_add_fields (tracker, sym, lookup_name,
5666 sym_text, word);
5667 }
5668 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5669 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5670 completion_list_add_symbol (tracker, sym, lookup_name,
5671 sym_text, word);
5672 }
5673
5674 /* Stop when we encounter an enclosing function. Do not stop for
5675 non-inlined functions - the locals of the enclosing function
5676 are in scope for a nested function. */
5677 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5678 break;
5679 b = BLOCK_SUPERBLOCK (b);
5680 }
5681
5682 /* Add fields from the file's types; symbols will be added below. */
5683
5684 if (code == TYPE_CODE_UNDEF)
5685 {
5686 if (surrounding_static_block != NULL)
5687 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5688 completion_list_add_fields (tracker, sym, lookup_name,
5689 sym_text, word);
5690
5691 if (surrounding_global_block != NULL)
5692 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5693 completion_list_add_fields (tracker, sym, lookup_name,
5694 sym_text, word);
5695 }
5696
5697 /* Skip macros if we are completing a struct tag -- arguable but
5698 usually what is expected. */
5699 if (current_language->la_macro_expansion == macro_expansion_c
5700 && code == TYPE_CODE_UNDEF)
5701 {
5702 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5703
5704 /* This adds a macro's name to the current completion list. */
5705 auto add_macro_name = [&] (const char *macro_name,
5706 const macro_definition *,
5707 macro_source_file *,
5708 int)
5709 {
5710 completion_list_add_name (tracker, language_c, macro_name,
5711 lookup_name, sym_text, word);
5712 };
5713
5714 /* Add any macros visible in the default scope. Note that this
5715 may yield the occasional wrong result, because an expression
5716 might be evaluated in a scope other than the default. For
5717 example, if the user types "break file:line if <TAB>", the
5718 resulting expression will be evaluated at "file:line" -- but
5719 at there does not seem to be a way to detect this at
5720 completion time. */
5721 scope = default_macro_scope ();
5722 if (scope)
5723 macro_for_each_in_scope (scope->file, scope->line,
5724 add_macro_name);
5725
5726 /* User-defined macros are always visible. */
5727 macro_for_each (macro_user_macros, add_macro_name);
5728 }
5729 }
5730
5731 void
5732 default_collect_symbol_completion_matches (completion_tracker &tracker,
5733 complete_symbol_mode mode,
5734 symbol_name_match_type name_match_type,
5735 const char *text, const char *word,
5736 enum type_code code)
5737 {
5738 return default_collect_symbol_completion_matches_break_on (tracker, mode,
5739 name_match_type,
5740 text, word, "",
5741 code);
5742 }
5743
5744 /* Collect all symbols (regardless of class) which begin by matching
5745 TEXT. */
5746
5747 void
5748 collect_symbol_completion_matches (completion_tracker &tracker,
5749 complete_symbol_mode mode,
5750 symbol_name_match_type name_match_type,
5751 const char *text, const char *word)
5752 {
5753 current_language->la_collect_symbol_completion_matches (tracker, mode,
5754 name_match_type,
5755 text, word,
5756 TYPE_CODE_UNDEF);
5757 }
5758
5759 /* Like collect_symbol_completion_matches, but only collect
5760 STRUCT_DOMAIN symbols whose type code is CODE. */
5761
5762 void
5763 collect_symbol_completion_matches_type (completion_tracker &tracker,
5764 const char *text, const char *word,
5765 enum type_code code)
5766 {
5767 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5768 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5769
5770 gdb_assert (code == TYPE_CODE_UNION
5771 || code == TYPE_CODE_STRUCT
5772 || code == TYPE_CODE_ENUM);
5773 current_language->la_collect_symbol_completion_matches (tracker, mode,
5774 name_match_type,
5775 text, word, code);
5776 }
5777
5778 /* Like collect_symbol_completion_matches, but collects a list of
5779 symbols defined in all source files named SRCFILE. */
5780
5781 void
5782 collect_file_symbol_completion_matches (completion_tracker &tracker,
5783 complete_symbol_mode mode,
5784 symbol_name_match_type name_match_type,
5785 const char *text, const char *word,
5786 const char *srcfile)
5787 {
5788 /* The symbol we are completing on. Points in same buffer as text. */
5789 const char *sym_text;
5790
5791 /* Now look for the symbol we are supposed to complete on.
5792 FIXME: This should be language-specific. */
5793 if (mode == complete_symbol_mode::LINESPEC)
5794 sym_text = text;
5795 else
5796 {
5797 const char *p;
5798 char quote_found;
5799 const char *quote_pos = NULL;
5800
5801 /* First see if this is a quoted string. */
5802 quote_found = '\0';
5803 for (p = text; *p != '\0'; ++p)
5804 {
5805 if (quote_found != '\0')
5806 {
5807 if (*p == quote_found)
5808 /* Found close quote. */
5809 quote_found = '\0';
5810 else if (*p == '\\' && p[1] == quote_found)
5811 /* A backslash followed by the quote character
5812 doesn't end the string. */
5813 ++p;
5814 }
5815 else if (*p == '\'' || *p == '"')
5816 {
5817 quote_found = *p;
5818 quote_pos = p;
5819 }
5820 }
5821 if (quote_found == '\'')
5822 /* A string within single quotes can be a symbol, so complete on it. */
5823 sym_text = quote_pos + 1;
5824 else if (quote_found == '"')
5825 /* A double-quoted string is never a symbol, nor does it make sense
5826 to complete it any other way. */
5827 {
5828 return;
5829 }
5830 else
5831 {
5832 /* Not a quoted string. */
5833 sym_text = language_search_unquoted_string (text, p);
5834 }
5835 }
5836
5837 lookup_name_info lookup_name (sym_text, name_match_type, true);
5838
5839 /* Go through symtabs for SRCFILE and check the externs and statics
5840 for symbols which match. */
5841 iterate_over_symtabs (srcfile, [&] (symtab *s)
5842 {
5843 add_symtab_completions (SYMTAB_COMPUNIT (s),
5844 tracker, mode, lookup_name,
5845 sym_text, word, TYPE_CODE_UNDEF);
5846 return false;
5847 });
5848 }
5849
5850 /* A helper function for make_source_files_completion_list. It adds
5851 another file name to a list of possible completions, growing the
5852 list as necessary. */
5853
5854 static void
5855 add_filename_to_list (const char *fname, const char *text, const char *word,
5856 completion_list *list)
5857 {
5858 list->emplace_back (make_completion_match_str (fname, text, word));
5859 }
5860
5861 static int
5862 not_interesting_fname (const char *fname)
5863 {
5864 static const char *illegal_aliens[] = {
5865 "_globals_", /* inserted by coff_symtab_read */
5866 NULL
5867 };
5868 int i;
5869
5870 for (i = 0; illegal_aliens[i]; i++)
5871 {
5872 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5873 return 1;
5874 }
5875 return 0;
5876 }
5877
5878 /* An object of this type is passed as the user_data argument to
5879 map_partial_symbol_filenames. */
5880 struct add_partial_filename_data
5881 {
5882 struct filename_seen_cache *filename_seen_cache;
5883 const char *text;
5884 const char *word;
5885 int text_len;
5886 completion_list *list;
5887 };
5888
5889 /* A callback for map_partial_symbol_filenames. */
5890
5891 static void
5892 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5893 void *user_data)
5894 {
5895 struct add_partial_filename_data *data
5896 = (struct add_partial_filename_data *) user_data;
5897
5898 if (not_interesting_fname (filename))
5899 return;
5900 if (!data->filename_seen_cache->seen (filename)
5901 && filename_ncmp (filename, data->text, data->text_len) == 0)
5902 {
5903 /* This file matches for a completion; add it to the
5904 current list of matches. */
5905 add_filename_to_list (filename, data->text, data->word, data->list);
5906 }
5907 else
5908 {
5909 const char *base_name = lbasename (filename);
5910
5911 if (base_name != filename
5912 && !data->filename_seen_cache->seen (base_name)
5913 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5914 add_filename_to_list (base_name, data->text, data->word, data->list);
5915 }
5916 }
5917
5918 /* Return a list of all source files whose names begin with matching
5919 TEXT. The file names are looked up in the symbol tables of this
5920 program. */
5921
5922 completion_list
5923 make_source_files_completion_list (const char *text, const char *word)
5924 {
5925 size_t text_len = strlen (text);
5926 completion_list list;
5927 const char *base_name;
5928 struct add_partial_filename_data datum;
5929
5930 if (!have_full_symbols () && !have_partial_symbols ())
5931 return list;
5932
5933 filename_seen_cache filenames_seen;
5934
5935 for (objfile *objfile : current_program_space->objfiles ())
5936 {
5937 for (compunit_symtab *cu : objfile->compunits ())
5938 {
5939 for (symtab *s : compunit_filetabs (cu))
5940 {
5941 if (not_interesting_fname (s->filename))
5942 continue;
5943 if (!filenames_seen.seen (s->filename)
5944 && filename_ncmp (s->filename, text, text_len) == 0)
5945 {
5946 /* This file matches for a completion; add it to the current
5947 list of matches. */
5948 add_filename_to_list (s->filename, text, word, &list);
5949 }
5950 else
5951 {
5952 /* NOTE: We allow the user to type a base name when the
5953 debug info records leading directories, but not the other
5954 way around. This is what subroutines of breakpoint
5955 command do when they parse file names. */
5956 base_name = lbasename (s->filename);
5957 if (base_name != s->filename
5958 && !filenames_seen.seen (base_name)
5959 && filename_ncmp (base_name, text, text_len) == 0)
5960 add_filename_to_list (base_name, text, word, &list);
5961 }
5962 }
5963 }
5964 }
5965
5966 datum.filename_seen_cache = &filenames_seen;
5967 datum.text = text;
5968 datum.word = word;
5969 datum.text_len = text_len;
5970 datum.list = &list;
5971 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5972 0 /*need_fullname*/);
5973
5974 return list;
5975 }
5976 \f
5977 /* Track MAIN */
5978
5979 /* Return the "main_info" object for the current program space. If
5980 the object has not yet been created, create it and fill in some
5981 default values. */
5982
5983 static struct main_info *
5984 get_main_info (void)
5985 {
5986 struct main_info *info = main_progspace_key.get (current_program_space);
5987
5988 if (info == NULL)
5989 {
5990 /* It may seem strange to store the main name in the progspace
5991 and also in whatever objfile happens to see a main name in
5992 its debug info. The reason for this is mainly historical:
5993 gdb returned "main" as the name even if no function named
5994 "main" was defined the program; and this approach lets us
5995 keep compatibility. */
5996 info = main_progspace_key.emplace (current_program_space);
5997 }
5998
5999 return info;
6000 }
6001
6002 static void
6003 set_main_name (const char *name, enum language lang)
6004 {
6005 struct main_info *info = get_main_info ();
6006
6007 if (info->name_of_main != NULL)
6008 {
6009 xfree (info->name_of_main);
6010 info->name_of_main = NULL;
6011 info->language_of_main = language_unknown;
6012 }
6013 if (name != NULL)
6014 {
6015 info->name_of_main = xstrdup (name);
6016 info->language_of_main = lang;
6017 }
6018 }
6019
6020 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
6021 accordingly. */
6022
6023 static void
6024 find_main_name (void)
6025 {
6026 const char *new_main_name;
6027
6028 /* First check the objfiles to see whether a debuginfo reader has
6029 picked up the appropriate main name. Historically the main name
6030 was found in a more or less random way; this approach instead
6031 relies on the order of objfile creation -- which still isn't
6032 guaranteed to get the correct answer, but is just probably more
6033 accurate. */
6034 for (objfile *objfile : current_program_space->objfiles ())
6035 {
6036 if (objfile->per_bfd->name_of_main != NULL)
6037 {
6038 set_main_name (objfile->per_bfd->name_of_main,
6039 objfile->per_bfd->language_of_main);
6040 return;
6041 }
6042 }
6043
6044 /* Try to see if the main procedure is in Ada. */
6045 /* FIXME: brobecker/2005-03-07: Another way of doing this would
6046 be to add a new method in the language vector, and call this
6047 method for each language until one of them returns a non-empty
6048 name. This would allow us to remove this hard-coded call to
6049 an Ada function. It is not clear that this is a better approach
6050 at this point, because all methods need to be written in a way
6051 such that false positives never be returned. For instance, it is
6052 important that a method does not return a wrong name for the main
6053 procedure if the main procedure is actually written in a different
6054 language. It is easy to guaranty this with Ada, since we use a
6055 special symbol generated only when the main in Ada to find the name
6056 of the main procedure. It is difficult however to see how this can
6057 be guarantied for languages such as C, for instance. This suggests
6058 that order of call for these methods becomes important, which means
6059 a more complicated approach. */
6060 new_main_name = ada_main_name ();
6061 if (new_main_name != NULL)
6062 {
6063 set_main_name (new_main_name, language_ada);
6064 return;
6065 }
6066
6067 new_main_name = d_main_name ();
6068 if (new_main_name != NULL)
6069 {
6070 set_main_name (new_main_name, language_d);
6071 return;
6072 }
6073
6074 new_main_name = go_main_name ();
6075 if (new_main_name != NULL)
6076 {
6077 set_main_name (new_main_name, language_go);
6078 return;
6079 }
6080
6081 new_main_name = pascal_main_name ();
6082 if (new_main_name != NULL)
6083 {
6084 set_main_name (new_main_name, language_pascal);
6085 return;
6086 }
6087
6088 /* The languages above didn't identify the name of the main procedure.
6089 Fallback to "main". */
6090 set_main_name ("main", language_unknown);
6091 }
6092
6093 /* See symtab.h. */
6094
6095 const char *
6096 main_name ()
6097 {
6098 struct main_info *info = get_main_info ();
6099
6100 if (info->name_of_main == NULL)
6101 find_main_name ();
6102
6103 return info->name_of_main;
6104 }
6105
6106 /* Return the language of the main function. If it is not known,
6107 return language_unknown. */
6108
6109 enum language
6110 main_language (void)
6111 {
6112 struct main_info *info = get_main_info ();
6113
6114 if (info->name_of_main == NULL)
6115 find_main_name ();
6116
6117 return info->language_of_main;
6118 }
6119
6120 /* Handle ``executable_changed'' events for the symtab module. */
6121
6122 static void
6123 symtab_observer_executable_changed (void)
6124 {
6125 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
6126 set_main_name (NULL, language_unknown);
6127 }
6128
6129 /* Return 1 if the supplied producer string matches the ARM RealView
6130 compiler (armcc). */
6131
6132 bool
6133 producer_is_realview (const char *producer)
6134 {
6135 static const char *const arm_idents[] = {
6136 "ARM C Compiler, ADS",
6137 "Thumb C Compiler, ADS",
6138 "ARM C++ Compiler, ADS",
6139 "Thumb C++ Compiler, ADS",
6140 "ARM/Thumb C/C++ Compiler, RVCT",
6141 "ARM C/C++ Compiler, RVCT"
6142 };
6143 int i;
6144
6145 if (producer == NULL)
6146 return false;
6147
6148 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
6149 if (startswith (producer, arm_idents[i]))
6150 return true;
6151
6152 return false;
6153 }
6154
6155 \f
6156
6157 /* The next index to hand out in response to a registration request. */
6158
6159 static int next_aclass_value = LOC_FINAL_VALUE;
6160
6161 /* The maximum number of "aclass" registrations we support. This is
6162 constant for convenience. */
6163 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6164
6165 /* The objects representing the various "aclass" values. The elements
6166 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6167 elements are those registered at gdb initialization time. */
6168
6169 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
6170
6171 /* The globally visible pointer. This is separate from 'symbol_impl'
6172 so that it can be const. */
6173
6174 const struct symbol_impl *symbol_impls = &symbol_impl[0];
6175
6176 /* Make sure we saved enough room in struct symbol. */
6177
6178 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6179
6180 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6181 is the ops vector associated with this index. This returns the new
6182 index, which should be used as the aclass_index field for symbols
6183 of this type. */
6184
6185 int
6186 register_symbol_computed_impl (enum address_class aclass,
6187 const struct symbol_computed_ops *ops)
6188 {
6189 int result = next_aclass_value++;
6190
6191 gdb_assert (aclass == LOC_COMPUTED);
6192 gdb_assert (result < MAX_SYMBOL_IMPLS);
6193 symbol_impl[result].aclass = aclass;
6194 symbol_impl[result].ops_computed = ops;
6195
6196 /* Sanity check OPS. */
6197 gdb_assert (ops != NULL);
6198 gdb_assert (ops->tracepoint_var_ref != NULL);
6199 gdb_assert (ops->describe_location != NULL);
6200 gdb_assert (ops->get_symbol_read_needs != NULL);
6201 gdb_assert (ops->read_variable != NULL);
6202
6203 return result;
6204 }
6205
6206 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6207 OPS is the ops vector associated with this index. This returns the
6208 new index, which should be used as the aclass_index field for symbols
6209 of this type. */
6210
6211 int
6212 register_symbol_block_impl (enum address_class aclass,
6213 const struct symbol_block_ops *ops)
6214 {
6215 int result = next_aclass_value++;
6216
6217 gdb_assert (aclass == LOC_BLOCK);
6218 gdb_assert (result < MAX_SYMBOL_IMPLS);
6219 symbol_impl[result].aclass = aclass;
6220 symbol_impl[result].ops_block = ops;
6221
6222 /* Sanity check OPS. */
6223 gdb_assert (ops != NULL);
6224 gdb_assert (ops->find_frame_base_location != NULL);
6225
6226 return result;
6227 }
6228
6229 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6230 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6231 this index. This returns the new index, which should be used as
6232 the aclass_index field for symbols of this type. */
6233
6234 int
6235 register_symbol_register_impl (enum address_class aclass,
6236 const struct symbol_register_ops *ops)
6237 {
6238 int result = next_aclass_value++;
6239
6240 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6241 gdb_assert (result < MAX_SYMBOL_IMPLS);
6242 symbol_impl[result].aclass = aclass;
6243 symbol_impl[result].ops_register = ops;
6244
6245 return result;
6246 }
6247
6248 /* Initialize elements of 'symbol_impl' for the constants in enum
6249 address_class. */
6250
6251 static void
6252 initialize_ordinary_address_classes (void)
6253 {
6254 int i;
6255
6256 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6257 symbol_impl[i].aclass = (enum address_class) i;
6258 }
6259
6260 \f
6261
6262 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
6263
6264 void
6265 initialize_objfile_symbol (struct symbol *sym)
6266 {
6267 SYMBOL_OBJFILE_OWNED (sym) = 1;
6268 SYMBOL_SECTION (sym) = -1;
6269 }
6270
6271 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
6272 obstack. */
6273
6274 struct symbol *
6275 allocate_symbol (struct objfile *objfile)
6276 {
6277 struct symbol *result = new (&objfile->objfile_obstack) symbol ();
6278
6279 initialize_objfile_symbol (result);
6280
6281 return result;
6282 }
6283
6284 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
6285 obstack. */
6286
6287 struct template_symbol *
6288 allocate_template_symbol (struct objfile *objfile)
6289 {
6290 struct template_symbol *result;
6291
6292 result = new (&objfile->objfile_obstack) template_symbol ();
6293 initialize_objfile_symbol (result);
6294
6295 return result;
6296 }
6297
6298 /* See symtab.h. */
6299
6300 struct objfile *
6301 symbol_objfile (const struct symbol *symbol)
6302 {
6303 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6304 return SYMTAB_OBJFILE (symbol->owner.symtab);
6305 }
6306
6307 /* See symtab.h. */
6308
6309 struct gdbarch *
6310 symbol_arch (const struct symbol *symbol)
6311 {
6312 if (!SYMBOL_OBJFILE_OWNED (symbol))
6313 return symbol->owner.arch;
6314 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
6315 }
6316
6317 /* See symtab.h. */
6318
6319 struct symtab *
6320 symbol_symtab (const struct symbol *symbol)
6321 {
6322 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6323 return symbol->owner.symtab;
6324 }
6325
6326 /* See symtab.h. */
6327
6328 void
6329 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6330 {
6331 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6332 symbol->owner.symtab = symtab;
6333 }
6334
6335 /* See symtab.h. */
6336
6337 CORE_ADDR
6338 get_symbol_address (const struct symbol *sym)
6339 {
6340 gdb_assert (sym->maybe_copied);
6341 gdb_assert (SYMBOL_CLASS (sym) == LOC_STATIC);
6342
6343 const char *linkage_name = sym->linkage_name ();
6344
6345 for (objfile *objfile : current_program_space->objfiles ())
6346 {
6347 bound_minimal_symbol minsym
6348 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6349 if (minsym.minsym != nullptr)
6350 return BMSYMBOL_VALUE_ADDRESS (minsym);
6351 }
6352 return sym->value.address;
6353 }
6354
6355 /* See symtab.h. */
6356
6357 CORE_ADDR
6358 get_msymbol_address (struct objfile *objf, const struct minimal_symbol *minsym)
6359 {
6360 gdb_assert (minsym->maybe_copied);
6361 gdb_assert ((objf->flags & OBJF_MAINLINE) == 0);
6362
6363 const char *linkage_name = minsym->linkage_name ();
6364
6365 for (objfile *objfile : current_program_space->objfiles ())
6366 {
6367 if ((objfile->flags & OBJF_MAINLINE) != 0)
6368 {
6369 bound_minimal_symbol found
6370 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6371 if (found.minsym != nullptr)
6372 return BMSYMBOL_VALUE_ADDRESS (found);
6373 }
6374 }
6375 return minsym->value.address + objf->section_offsets[minsym->section];
6376 }
6377
6378 \f
6379
6380 /* Hold the sub-commands of 'info module'. */
6381
6382 static struct cmd_list_element *info_module_cmdlist = NULL;
6383
6384 /* Implement the 'info module' command, just displays some help text for
6385 the available sub-commands. */
6386
6387 static void
6388 info_module_command (const char *args, int from_tty)
6389 {
6390 help_list (info_module_cmdlist, "info module ", class_info, gdb_stdout);
6391 }
6392
6393 /* See symtab.h. */
6394
6395 std::vector<module_symbol_search>
6396 search_module_symbols (const char *module_regexp, const char *regexp,
6397 const char *type_regexp, search_domain kind)
6398 {
6399 std::vector<module_symbol_search> results;
6400
6401 /* Search for all modules matching MODULE_REGEXP. */
6402 global_symbol_searcher spec1 (MODULES_DOMAIN, module_regexp);
6403 spec1.set_exclude_minsyms (true);
6404 std::vector<symbol_search> modules = spec1.search ();
6405
6406 /* Now search for all symbols of the required KIND matching the required
6407 regular expressions. We figure out which ones are in which modules
6408 below. */
6409 global_symbol_searcher spec2 (kind, regexp);
6410 spec2.set_symbol_type_regexp (type_regexp);
6411 spec2.set_exclude_minsyms (true);
6412 std::vector<symbol_search> symbols = spec2.search ();
6413
6414 /* Now iterate over all MODULES, checking to see which items from
6415 SYMBOLS are in each module. */
6416 for (const symbol_search &p : modules)
6417 {
6418 QUIT;
6419
6420 /* This is a module. */
6421 gdb_assert (p.symbol != nullptr);
6422
6423 std::string prefix = p.symbol->print_name ();
6424 prefix += "::";
6425
6426 for (const symbol_search &q : symbols)
6427 {
6428 if (q.symbol == nullptr)
6429 continue;
6430
6431 if (strncmp (q.symbol->print_name (), prefix.c_str (),
6432 prefix.size ()) != 0)
6433 continue;
6434
6435 results.push_back ({p, q});
6436 }
6437 }
6438
6439 return results;
6440 }
6441
6442 /* Implement the core of both 'info module functions' and 'info module
6443 variables'. */
6444
6445 static void
6446 info_module_subcommand (bool quiet, const char *module_regexp,
6447 const char *regexp, const char *type_regexp,
6448 search_domain kind)
6449 {
6450 /* Print a header line. Don't build the header line bit by bit as this
6451 prevents internationalisation. */
6452 if (!quiet)
6453 {
6454 if (module_regexp == nullptr)
6455 {
6456 if (type_regexp == nullptr)
6457 {
6458 if (regexp == nullptr)
6459 printf_filtered ((kind == VARIABLES_DOMAIN
6460 ? _("All variables in all modules:")
6461 : _("All functions in all modules:")));
6462 else
6463 printf_filtered
6464 ((kind == VARIABLES_DOMAIN
6465 ? _("All variables matching regular expression"
6466 " \"%s\" in all modules:")
6467 : _("All functions matching regular expression"
6468 " \"%s\" in all modules:")),
6469 regexp);
6470 }
6471 else
6472 {
6473 if (regexp == nullptr)
6474 printf_filtered
6475 ((kind == VARIABLES_DOMAIN
6476 ? _("All variables with type matching regular "
6477 "expression \"%s\" in all modules:")
6478 : _("All functions with type matching regular "
6479 "expression \"%s\" in all modules:")),
6480 type_regexp);
6481 else
6482 printf_filtered
6483 ((kind == VARIABLES_DOMAIN
6484 ? _("All variables matching regular expression "
6485 "\"%s\",\n\twith type matching regular "
6486 "expression \"%s\" in all modules:")
6487 : _("All functions matching regular expression "
6488 "\"%s\",\n\twith type matching regular "
6489 "expression \"%s\" in all modules:")),
6490 regexp, type_regexp);
6491 }
6492 }
6493 else
6494 {
6495 if (type_regexp == nullptr)
6496 {
6497 if (regexp == nullptr)
6498 printf_filtered
6499 ((kind == VARIABLES_DOMAIN
6500 ? _("All variables in all modules matching regular "
6501 "expression \"%s\":")
6502 : _("All functions in all modules matching regular "
6503 "expression \"%s\":")),
6504 module_regexp);
6505 else
6506 printf_filtered
6507 ((kind == VARIABLES_DOMAIN
6508 ? _("All variables matching regular expression "
6509 "\"%s\",\n\tin all modules matching regular "
6510 "expression \"%s\":")
6511 : _("All functions matching regular expression "
6512 "\"%s\",\n\tin all modules matching regular "
6513 "expression \"%s\":")),
6514 regexp, module_regexp);
6515 }
6516 else
6517 {
6518 if (regexp == nullptr)
6519 printf_filtered
6520 ((kind == VARIABLES_DOMAIN
6521 ? _("All variables with type matching regular "
6522 "expression \"%s\"\n\tin all modules matching "
6523 "regular expression \"%s\":")
6524 : _("All functions with type matching regular "
6525 "expression \"%s\"\n\tin all modules matching "
6526 "regular expression \"%s\":")),
6527 type_regexp, module_regexp);
6528 else
6529 printf_filtered
6530 ((kind == VARIABLES_DOMAIN
6531 ? _("All variables matching regular expression "
6532 "\"%s\",\n\twith type matching regular expression "
6533 "\"%s\",\n\tin all modules matching regular "
6534 "expression \"%s\":")
6535 : _("All functions matching regular expression "
6536 "\"%s\",\n\twith type matching regular expression "
6537 "\"%s\",\n\tin all modules matching regular "
6538 "expression \"%s\":")),
6539 regexp, type_regexp, module_regexp);
6540 }
6541 }
6542 printf_filtered ("\n");
6543 }
6544
6545 /* Find all symbols of type KIND matching the given regular expressions
6546 along with the symbols for the modules in which those symbols
6547 reside. */
6548 std::vector<module_symbol_search> module_symbols
6549 = search_module_symbols (module_regexp, regexp, type_regexp, kind);
6550
6551 std::sort (module_symbols.begin (), module_symbols.end (),
6552 [] (const module_symbol_search &a, const module_symbol_search &b)
6553 {
6554 if (a.first < b.first)
6555 return true;
6556 else if (a.first == b.first)
6557 return a.second < b.second;
6558 else
6559 return false;
6560 });
6561
6562 const char *last_filename = "";
6563 const symbol *last_module_symbol = nullptr;
6564 for (const module_symbol_search &ms : module_symbols)
6565 {
6566 const symbol_search &p = ms.first;
6567 const symbol_search &q = ms.second;
6568
6569 gdb_assert (q.symbol != nullptr);
6570
6571 if (last_module_symbol != p.symbol)
6572 {
6573 printf_filtered ("\n");
6574 printf_filtered (_("Module \"%s\":\n"), p.symbol->print_name ());
6575 last_module_symbol = p.symbol;
6576 last_filename = "";
6577 }
6578
6579 print_symbol_info (FUNCTIONS_DOMAIN, q.symbol, q.block,
6580 last_filename);
6581 last_filename
6582 = symtab_to_filename_for_display (symbol_symtab (q.symbol));
6583 }
6584 }
6585
6586 /* Hold the option values for the 'info module .....' sub-commands. */
6587
6588 struct info_modules_var_func_options
6589 {
6590 bool quiet = false;
6591 char *type_regexp = nullptr;
6592 char *module_regexp = nullptr;
6593
6594 ~info_modules_var_func_options ()
6595 {
6596 xfree (type_regexp);
6597 xfree (module_regexp);
6598 }
6599 };
6600
6601 /* The options used by 'info module variables' and 'info module functions'
6602 commands. */
6603
6604 static const gdb::option::option_def info_modules_var_func_options_defs [] = {
6605 gdb::option::boolean_option_def<info_modules_var_func_options> {
6606 "q",
6607 [] (info_modules_var_func_options *opt) { return &opt->quiet; },
6608 nullptr, /* show_cmd_cb */
6609 nullptr /* set_doc */
6610 },
6611
6612 gdb::option::string_option_def<info_modules_var_func_options> {
6613 "t",
6614 [] (info_modules_var_func_options *opt) { return &opt->type_regexp; },
6615 nullptr, /* show_cmd_cb */
6616 nullptr /* set_doc */
6617 },
6618
6619 gdb::option::string_option_def<info_modules_var_func_options> {
6620 "m",
6621 [] (info_modules_var_func_options *opt) { return &opt->module_regexp; },
6622 nullptr, /* show_cmd_cb */
6623 nullptr /* set_doc */
6624 }
6625 };
6626
6627 /* Return the option group used by the 'info module ...' sub-commands. */
6628
6629 static inline gdb::option::option_def_group
6630 make_info_modules_var_func_options_def_group
6631 (info_modules_var_func_options *opts)
6632 {
6633 return {{info_modules_var_func_options_defs}, opts};
6634 }
6635
6636 /* Implements the 'info module functions' command. */
6637
6638 static void
6639 info_module_functions_command (const char *args, int from_tty)
6640 {
6641 info_modules_var_func_options opts;
6642 auto grp = make_info_modules_var_func_options_def_group (&opts);
6643 gdb::option::process_options
6644 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6645 if (args != nullptr && *args == '\0')
6646 args = nullptr;
6647
6648 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6649 opts.type_regexp, FUNCTIONS_DOMAIN);
6650 }
6651
6652 /* Implements the 'info module variables' command. */
6653
6654 static void
6655 info_module_variables_command (const char *args, int from_tty)
6656 {
6657 info_modules_var_func_options opts;
6658 auto grp = make_info_modules_var_func_options_def_group (&opts);
6659 gdb::option::process_options
6660 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6661 if (args != nullptr && *args == '\0')
6662 args = nullptr;
6663
6664 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6665 opts.type_regexp, VARIABLES_DOMAIN);
6666 }
6667
6668 /* Command completer for 'info module ...' sub-commands. */
6669
6670 static void
6671 info_module_var_func_command_completer (struct cmd_list_element *ignore,
6672 completion_tracker &tracker,
6673 const char *text,
6674 const char * /* word */)
6675 {
6676
6677 const auto group = make_info_modules_var_func_options_def_group (nullptr);
6678 if (gdb::option::complete_options
6679 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
6680 return;
6681
6682 const char *word = advance_to_expression_complete_word_point (tracker, text);
6683 symbol_completer (ignore, tracker, text, word);
6684 }
6685
6686 \f
6687
6688 void
6689 _initialize_symtab (void)
6690 {
6691 cmd_list_element *c;
6692
6693 initialize_ordinary_address_classes ();
6694
6695 c = add_info ("variables", info_variables_command,
6696 info_print_args_help (_("\
6697 All global and static variable names or those matching REGEXPs.\n\
6698 Usage: info variables [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6699 Prints the global and static variables.\n"),
6700 _("global and static variables"),
6701 true));
6702 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6703 if (dbx_commands)
6704 {
6705 c = add_com ("whereis", class_info, info_variables_command,
6706 info_print_args_help (_("\
6707 All global and static variable names, or those matching REGEXPs.\n\
6708 Usage: whereis [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6709 Prints the global and static variables.\n"),
6710 _("global and static variables"),
6711 true));
6712 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6713 }
6714
6715 c = add_info ("functions", info_functions_command,
6716 info_print_args_help (_("\
6717 All function names or those matching REGEXPs.\n\
6718 Usage: info functions [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6719 Prints the functions.\n"),
6720 _("functions"),
6721 true));
6722 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6723
6724 c = add_info ("types", info_types_command, _("\
6725 All type names, or those matching REGEXP.\n\
6726 Usage: info types [-q] [REGEXP]\n\
6727 Print information about all types matching REGEXP, or all types if no\n\
6728 REGEXP is given. The optional flag -q disables printing of headers."));
6729 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6730
6731 const auto info_sources_opts = make_info_sources_options_def_group (nullptr);
6732
6733 static std::string info_sources_help
6734 = gdb::option::build_help (_("\
6735 All source files in the program or those matching REGEXP.\n\
6736 Usage: info sources [OPTION]... [REGEXP]\n\
6737 By default, REGEXP is used to match anywhere in the filename.\n\
6738 \n\
6739 Options:\n\
6740 %OPTIONS%"),
6741 info_sources_opts);
6742
6743 c = add_info ("sources", info_sources_command, info_sources_help.c_str ());
6744 set_cmd_completer_handle_brkchars (c, info_sources_command_completer);
6745
6746 c = add_info ("modules", info_modules_command,
6747 _("All module names, or those matching REGEXP."));
6748 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6749
6750 add_prefix_cmd ("module", class_info, info_module_command, _("\
6751 Print information about modules."),
6752 &info_module_cmdlist, "info module ",
6753 0, &infolist);
6754
6755 c = add_cmd ("functions", class_info, info_module_functions_command, _("\
6756 Display functions arranged by modules.\n\
6757 Usage: info module functions [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6758 Print a summary of all functions within each Fortran module, grouped by\n\
6759 module and file. For each function the line on which the function is\n\
6760 defined is given along with the type signature and name of the function.\n\
6761 \n\
6762 If REGEXP is provided then only functions whose name matches REGEXP are\n\
6763 listed. If MODREGEXP is provided then only functions in modules matching\n\
6764 MODREGEXP are listed. If TYPEREGEXP is given then only functions whose\n\
6765 type signature matches TYPEREGEXP are listed.\n\
6766 \n\
6767 The -q flag suppresses printing some header information."),
6768 &info_module_cmdlist);
6769 set_cmd_completer_handle_brkchars
6770 (c, info_module_var_func_command_completer);
6771
6772 c = add_cmd ("variables", class_info, info_module_variables_command, _("\
6773 Display variables arranged by modules.\n\
6774 Usage: info module variables [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6775 Print a summary of all variables within each Fortran module, grouped by\n\
6776 module and file. For each variable the line on which the variable is\n\
6777 defined is given along with the type and name of the variable.\n\
6778 \n\
6779 If REGEXP is provided then only variables whose name matches REGEXP are\n\
6780 listed. If MODREGEXP is provided then only variables in modules matching\n\
6781 MODREGEXP are listed. If TYPEREGEXP is given then only variables whose\n\
6782 type matches TYPEREGEXP are listed.\n\
6783 \n\
6784 The -q flag suppresses printing some header information."),
6785 &info_module_cmdlist);
6786 set_cmd_completer_handle_brkchars
6787 (c, info_module_var_func_command_completer);
6788
6789 add_com ("rbreak", class_breakpoint, rbreak_command,
6790 _("Set a breakpoint for all functions matching REGEXP."));
6791
6792 add_setshow_enum_cmd ("multiple-symbols", no_class,
6793 multiple_symbols_modes, &multiple_symbols_mode,
6794 _("\
6795 Set how the debugger handles ambiguities in expressions."), _("\
6796 Show how the debugger handles ambiguities in expressions."), _("\
6797 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6798 NULL, NULL, &setlist, &showlist);
6799
6800 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6801 &basenames_may_differ, _("\
6802 Set whether a source file may have multiple base names."), _("\
6803 Show whether a source file may have multiple base names."), _("\
6804 (A \"base name\" is the name of a file with the directory part removed.\n\
6805 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6806 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6807 before comparing them. Canonicalization is an expensive operation,\n\
6808 but it allows the same file be known by more than one base name.\n\
6809 If not set (the default), all source files are assumed to have just\n\
6810 one base name, and gdb will do file name comparisons more efficiently."),
6811 NULL, NULL,
6812 &setlist, &showlist);
6813
6814 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6815 _("Set debugging of symbol table creation."),
6816 _("Show debugging of symbol table creation."), _("\
6817 When enabled (non-zero), debugging messages are printed when building\n\
6818 symbol tables. A value of 1 (one) normally provides enough information.\n\
6819 A value greater than 1 provides more verbose information."),
6820 NULL,
6821 NULL,
6822 &setdebuglist, &showdebuglist);
6823
6824 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6825 _("\
6826 Set debugging of symbol lookup."), _("\
6827 Show debugging of symbol lookup."), _("\
6828 When enabled (non-zero), symbol lookups are logged."),
6829 NULL, NULL,
6830 &setdebuglist, &showdebuglist);
6831
6832 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6833 &new_symbol_cache_size,
6834 _("Set the size of the symbol cache."),
6835 _("Show the size of the symbol cache."), _("\
6836 The size of the symbol cache.\n\
6837 If zero then the symbol cache is disabled."),
6838 set_symbol_cache_size_handler, NULL,
6839 &maintenance_set_cmdlist,
6840 &maintenance_show_cmdlist);
6841
6842 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6843 _("Dump the symbol cache for each program space."),
6844 &maintenanceprintlist);
6845
6846 add_cmd ("symbol-cache-statistics", class_maintenance,
6847 maintenance_print_symbol_cache_statistics,
6848 _("Print symbol cache statistics for each program space."),
6849 &maintenanceprintlist);
6850
6851 add_cmd ("flush-symbol-cache", class_maintenance,
6852 maintenance_flush_symbol_cache,
6853 _("Flush the symbol cache for each program space."),
6854 &maintenancelist);
6855
6856 gdb::observers::executable_changed.attach (symtab_observer_executable_changed);
6857 gdb::observers::new_objfile.attach (symtab_new_objfile_observer);
6858 gdb::observers::free_objfile.attach (symtab_free_objfile_observer);
6859 }
This page took 0.21724 seconds and 3 git commands to generate.