54c7ed9c7c784a91f9cd1e2d2afcd5115f3c54e5
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "cli/cli-style.h"
45 #include "fnmatch.h"
46 #include "hashtab.h"
47 #include "typeprint.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include <sys/stat.h>
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "cp-support.h"
59 #include "observable.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "parser-defs.h"
65 #include "completer.h"
66 #include "progspace-and-thread.h"
67 #include "gdbsupport/gdb_optional.h"
68 #include "filename-seen-cache.h"
69 #include "arch-utils.h"
70 #include <algorithm>
71 #include "gdbsupport/pathstuff.h"
72
73 /* Forward declarations for local functions. */
74
75 static void rbreak_command (const char *, int);
76
77 static int find_line_common (struct linetable *, int, int *, int);
78
79 static struct block_symbol
80 lookup_symbol_aux (const char *name,
81 symbol_name_match_type match_type,
82 const struct block *block,
83 const domain_enum domain,
84 enum language language,
85 struct field_of_this_result *);
86
87 static
88 struct block_symbol lookup_local_symbol (const char *name,
89 symbol_name_match_type match_type,
90 const struct block *block,
91 const domain_enum domain,
92 enum language language);
93
94 static struct block_symbol
95 lookup_symbol_in_objfile (struct objfile *objfile,
96 enum block_enum block_index,
97 const char *name, const domain_enum domain);
98
99 /* Type of the data stored on the program space. */
100
101 struct main_info
102 {
103 main_info () = default;
104
105 ~main_info ()
106 {
107 xfree (name_of_main);
108 }
109
110 /* Name of "main". */
111
112 char *name_of_main = nullptr;
113
114 /* Language of "main". */
115
116 enum language language_of_main = language_unknown;
117 };
118
119 /* Program space key for finding name and language of "main". */
120
121 static const program_space_key<main_info> main_progspace_key;
122
123 /* The default symbol cache size.
124 There is no extra cpu cost for large N (except when flushing the cache,
125 which is rare). The value here is just a first attempt. A better default
126 value may be higher or lower. A prime number can make up for a bad hash
127 computation, so that's why the number is what it is. */
128 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
129
130 /* The maximum symbol cache size.
131 There's no method to the decision of what value to use here, other than
132 there's no point in allowing a user typo to make gdb consume all memory. */
133 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
134
135 /* symbol_cache_lookup returns this if a previous lookup failed to find the
136 symbol in any objfile. */
137 #define SYMBOL_LOOKUP_FAILED \
138 ((struct block_symbol) {(struct symbol *) 1, NULL})
139 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
140
141 /* Recording lookups that don't find the symbol is just as important, if not
142 more so, than recording found symbols. */
143
144 enum symbol_cache_slot_state
145 {
146 SYMBOL_SLOT_UNUSED,
147 SYMBOL_SLOT_NOT_FOUND,
148 SYMBOL_SLOT_FOUND
149 };
150
151 struct symbol_cache_slot
152 {
153 enum symbol_cache_slot_state state;
154
155 /* The objfile that was current when the symbol was looked up.
156 This is only needed for global blocks, but for simplicity's sake
157 we allocate the space for both. If data shows the extra space used
158 for static blocks is a problem, we can split things up then.
159
160 Global blocks need cache lookup to include the objfile context because
161 we need to account for gdbarch_iterate_over_objfiles_in_search_order
162 which can traverse objfiles in, effectively, any order, depending on
163 the current objfile, thus affecting which symbol is found. Normally,
164 only the current objfile is searched first, and then the rest are
165 searched in recorded order; but putting cache lookup inside
166 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
167 Instead we just make the current objfile part of the context of
168 cache lookup. This means we can record the same symbol multiple times,
169 each with a different "current objfile" that was in effect when the
170 lookup was saved in the cache, but cache space is pretty cheap. */
171 const struct objfile *objfile_context;
172
173 union
174 {
175 struct block_symbol found;
176 struct
177 {
178 char *name;
179 domain_enum domain;
180 } not_found;
181 } value;
182 };
183
184 /* Symbols don't specify global vs static block.
185 So keep them in separate caches. */
186
187 struct block_symbol_cache
188 {
189 unsigned int hits;
190 unsigned int misses;
191 unsigned int collisions;
192
193 /* SYMBOLS is a variable length array of this size.
194 One can imagine that in general one cache (global/static) should be a
195 fraction of the size of the other, but there's no data at the moment
196 on which to decide. */
197 unsigned int size;
198
199 struct symbol_cache_slot symbols[1];
200 };
201
202 /* The symbol cache.
203
204 Searching for symbols in the static and global blocks over multiple objfiles
205 again and again can be slow, as can searching very big objfiles. This is a
206 simple cache to improve symbol lookup performance, which is critical to
207 overall gdb performance.
208
209 Symbols are hashed on the name, its domain, and block.
210 They are also hashed on their objfile for objfile-specific lookups. */
211
212 struct symbol_cache
213 {
214 symbol_cache () = default;
215
216 ~symbol_cache ()
217 {
218 xfree (global_symbols);
219 xfree (static_symbols);
220 }
221
222 struct block_symbol_cache *global_symbols = nullptr;
223 struct block_symbol_cache *static_symbols = nullptr;
224 };
225
226 /* Program space key for finding its symbol cache. */
227
228 static const program_space_key<symbol_cache> symbol_cache_key;
229
230 /* When non-zero, print debugging messages related to symtab creation. */
231 unsigned int symtab_create_debug = 0;
232
233 /* When non-zero, print debugging messages related to symbol lookup. */
234 unsigned int symbol_lookup_debug = 0;
235
236 /* The size of the cache is staged here. */
237 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
238
239 /* The current value of the symbol cache size.
240 This is saved so that if the user enters a value too big we can restore
241 the original value from here. */
242 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
243
244 /* True if a file may be known by two different basenames.
245 This is the uncommon case, and significantly slows down gdb.
246 Default set to "off" to not slow down the common case. */
247 bool basenames_may_differ = false;
248
249 /* Allow the user to configure the debugger behavior with respect
250 to multiple-choice menus when more than one symbol matches during
251 a symbol lookup. */
252
253 const char multiple_symbols_ask[] = "ask";
254 const char multiple_symbols_all[] = "all";
255 const char multiple_symbols_cancel[] = "cancel";
256 static const char *const multiple_symbols_modes[] =
257 {
258 multiple_symbols_ask,
259 multiple_symbols_all,
260 multiple_symbols_cancel,
261 NULL
262 };
263 static const char *multiple_symbols_mode = multiple_symbols_all;
264
265 /* Read-only accessor to AUTO_SELECT_MODE. */
266
267 const char *
268 multiple_symbols_select_mode (void)
269 {
270 return multiple_symbols_mode;
271 }
272
273 /* Return the name of a domain_enum. */
274
275 const char *
276 domain_name (domain_enum e)
277 {
278 switch (e)
279 {
280 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
281 case VAR_DOMAIN: return "VAR_DOMAIN";
282 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
283 case MODULE_DOMAIN: return "MODULE_DOMAIN";
284 case LABEL_DOMAIN: return "LABEL_DOMAIN";
285 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
286 default: gdb_assert_not_reached ("bad domain_enum");
287 }
288 }
289
290 /* Return the name of a search_domain . */
291
292 const char *
293 search_domain_name (enum search_domain e)
294 {
295 switch (e)
296 {
297 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
298 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
299 case TYPES_DOMAIN: return "TYPES_DOMAIN";
300 case ALL_DOMAIN: return "ALL_DOMAIN";
301 default: gdb_assert_not_reached ("bad search_domain");
302 }
303 }
304
305 /* See symtab.h. */
306
307 struct symtab *
308 compunit_primary_filetab (const struct compunit_symtab *cust)
309 {
310 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
311
312 /* The primary file symtab is the first one in the list. */
313 return COMPUNIT_FILETABS (cust);
314 }
315
316 /* See symtab.h. */
317
318 enum language
319 compunit_language (const struct compunit_symtab *cust)
320 {
321 struct symtab *symtab = compunit_primary_filetab (cust);
322
323 /* The language of the compunit symtab is the language of its primary
324 source file. */
325 return SYMTAB_LANGUAGE (symtab);
326 }
327
328 /* See symtab.h. */
329
330 bool
331 minimal_symbol::data_p () const
332 {
333 return type == mst_data
334 || type == mst_bss
335 || type == mst_abs
336 || type == mst_file_data
337 || type == mst_file_bss;
338 }
339
340 /* See symtab.h. */
341
342 bool
343 minimal_symbol::text_p () const
344 {
345 return type == mst_text
346 || type == mst_text_gnu_ifunc
347 || type == mst_data_gnu_ifunc
348 || type == mst_slot_got_plt
349 || type == mst_solib_trampoline
350 || type == mst_file_text;
351 }
352
353 /* See whether FILENAME matches SEARCH_NAME using the rule that we
354 advertise to the user. (The manual's description of linespecs
355 describes what we advertise). Returns true if they match, false
356 otherwise. */
357
358 int
359 compare_filenames_for_search (const char *filename, const char *search_name)
360 {
361 int len = strlen (filename);
362 size_t search_len = strlen (search_name);
363
364 if (len < search_len)
365 return 0;
366
367 /* The tail of FILENAME must match. */
368 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
369 return 0;
370
371 /* Either the names must completely match, or the character
372 preceding the trailing SEARCH_NAME segment of FILENAME must be a
373 directory separator.
374
375 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
376 cannot match FILENAME "/path//dir/file.c" - as user has requested
377 absolute path. The sama applies for "c:\file.c" possibly
378 incorrectly hypothetically matching "d:\dir\c:\file.c".
379
380 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
381 compatible with SEARCH_NAME "file.c". In such case a compiler had
382 to put the "c:file.c" name into debug info. Such compatibility
383 works only on GDB built for DOS host. */
384 return (len == search_len
385 || (!IS_ABSOLUTE_PATH (search_name)
386 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
387 || (HAS_DRIVE_SPEC (filename)
388 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
389 }
390
391 /* Same as compare_filenames_for_search, but for glob-style patterns.
392 Heads up on the order of the arguments. They match the order of
393 compare_filenames_for_search, but it's the opposite of the order of
394 arguments to gdb_filename_fnmatch. */
395
396 int
397 compare_glob_filenames_for_search (const char *filename,
398 const char *search_name)
399 {
400 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
401 all /s have to be explicitly specified. */
402 int file_path_elements = count_path_elements (filename);
403 int search_path_elements = count_path_elements (search_name);
404
405 if (search_path_elements > file_path_elements)
406 return 0;
407
408 if (IS_ABSOLUTE_PATH (search_name))
409 {
410 return (search_path_elements == file_path_elements
411 && gdb_filename_fnmatch (search_name, filename,
412 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
413 }
414
415 {
416 const char *file_to_compare
417 = strip_leading_path_elements (filename,
418 file_path_elements - search_path_elements);
419
420 return gdb_filename_fnmatch (search_name, file_to_compare,
421 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
422 }
423 }
424
425 /* Check for a symtab of a specific name by searching some symtabs.
426 This is a helper function for callbacks of iterate_over_symtabs.
427
428 If NAME is not absolute, then REAL_PATH is NULL
429 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
430
431 The return value, NAME, REAL_PATH and CALLBACK are identical to the
432 `map_symtabs_matching_filename' method of quick_symbol_functions.
433
434 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
435 Each symtab within the specified compunit symtab is also searched.
436 AFTER_LAST is one past the last compunit symtab to search; NULL means to
437 search until the end of the list. */
438
439 bool
440 iterate_over_some_symtabs (const char *name,
441 const char *real_path,
442 struct compunit_symtab *first,
443 struct compunit_symtab *after_last,
444 gdb::function_view<bool (symtab *)> callback)
445 {
446 struct compunit_symtab *cust;
447 const char* base_name = lbasename (name);
448
449 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
450 {
451 for (symtab *s : compunit_filetabs (cust))
452 {
453 if (compare_filenames_for_search (s->filename, name))
454 {
455 if (callback (s))
456 return true;
457 continue;
458 }
459
460 /* Before we invoke realpath, which can get expensive when many
461 files are involved, do a quick comparison of the basenames. */
462 if (! basenames_may_differ
463 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
464 continue;
465
466 if (compare_filenames_for_search (symtab_to_fullname (s), name))
467 {
468 if (callback (s))
469 return true;
470 continue;
471 }
472
473 /* If the user gave us an absolute path, try to find the file in
474 this symtab and use its absolute path. */
475 if (real_path != NULL)
476 {
477 const char *fullname = symtab_to_fullname (s);
478
479 gdb_assert (IS_ABSOLUTE_PATH (real_path));
480 gdb_assert (IS_ABSOLUTE_PATH (name));
481 if (FILENAME_CMP (real_path, fullname) == 0)
482 {
483 if (callback (s))
484 return true;
485 continue;
486 }
487 }
488 }
489 }
490
491 return false;
492 }
493
494 /* Check for a symtab of a specific name; first in symtabs, then in
495 psymtabs. *If* there is no '/' in the name, a match after a '/'
496 in the symtab filename will also work.
497
498 Calls CALLBACK with each symtab that is found. If CALLBACK returns
499 true, the search stops. */
500
501 void
502 iterate_over_symtabs (const char *name,
503 gdb::function_view<bool (symtab *)> callback)
504 {
505 gdb::unique_xmalloc_ptr<char> real_path;
506
507 /* Here we are interested in canonicalizing an absolute path, not
508 absolutizing a relative path. */
509 if (IS_ABSOLUTE_PATH (name))
510 {
511 real_path = gdb_realpath (name);
512 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
513 }
514
515 for (objfile *objfile : current_program_space->objfiles ())
516 {
517 if (iterate_over_some_symtabs (name, real_path.get (),
518 objfile->compunit_symtabs, NULL,
519 callback))
520 return;
521 }
522
523 /* Same search rules as above apply here, but now we look thru the
524 psymtabs. */
525
526 for (objfile *objfile : current_program_space->objfiles ())
527 {
528 if (objfile->sf
529 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
530 name,
531 real_path.get (),
532 callback))
533 return;
534 }
535 }
536
537 /* A wrapper for iterate_over_symtabs that returns the first matching
538 symtab, or NULL. */
539
540 struct symtab *
541 lookup_symtab (const char *name)
542 {
543 struct symtab *result = NULL;
544
545 iterate_over_symtabs (name, [&] (symtab *symtab)
546 {
547 result = symtab;
548 return true;
549 });
550
551 return result;
552 }
553
554 \f
555 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
556 full method name, which consist of the class name (from T), the unadorned
557 method name from METHOD_ID, and the signature for the specific overload,
558 specified by SIGNATURE_ID. Note that this function is g++ specific. */
559
560 char *
561 gdb_mangle_name (struct type *type, int method_id, int signature_id)
562 {
563 int mangled_name_len;
564 char *mangled_name;
565 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
566 struct fn_field *method = &f[signature_id];
567 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
568 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
569 const char *newname = TYPE_NAME (type);
570
571 /* Does the form of physname indicate that it is the full mangled name
572 of a constructor (not just the args)? */
573 int is_full_physname_constructor;
574
575 int is_constructor;
576 int is_destructor = is_destructor_name (physname);
577 /* Need a new type prefix. */
578 const char *const_prefix = method->is_const ? "C" : "";
579 const char *volatile_prefix = method->is_volatile ? "V" : "";
580 char buf[20];
581 int len = (newname == NULL ? 0 : strlen (newname));
582
583 /* Nothing to do if physname already contains a fully mangled v3 abi name
584 or an operator name. */
585 if ((physname[0] == '_' && physname[1] == 'Z')
586 || is_operator_name (field_name))
587 return xstrdup (physname);
588
589 is_full_physname_constructor = is_constructor_name (physname);
590
591 is_constructor = is_full_physname_constructor
592 || (newname && strcmp (field_name, newname) == 0);
593
594 if (!is_destructor)
595 is_destructor = (startswith (physname, "__dt"));
596
597 if (is_destructor || is_full_physname_constructor)
598 {
599 mangled_name = (char *) xmalloc (strlen (physname) + 1);
600 strcpy (mangled_name, physname);
601 return mangled_name;
602 }
603
604 if (len == 0)
605 {
606 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
607 }
608 else if (physname[0] == 't' || physname[0] == 'Q')
609 {
610 /* The physname for template and qualified methods already includes
611 the class name. */
612 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
613 newname = NULL;
614 len = 0;
615 }
616 else
617 {
618 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
619 volatile_prefix, len);
620 }
621 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
622 + strlen (buf) + len + strlen (physname) + 1);
623
624 mangled_name = (char *) xmalloc (mangled_name_len);
625 if (is_constructor)
626 mangled_name[0] = '\0';
627 else
628 strcpy (mangled_name, field_name);
629
630 strcat (mangled_name, buf);
631 /* If the class doesn't have a name, i.e. newname NULL, then we just
632 mangle it using 0 for the length of the class. Thus it gets mangled
633 as something starting with `::' rather than `classname::'. */
634 if (newname != NULL)
635 strcat (mangled_name, newname);
636
637 strcat (mangled_name, physname);
638 return (mangled_name);
639 }
640
641 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
642 correctly allocated. */
643
644 void
645 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
646 const char *name,
647 struct obstack *obstack)
648 {
649 if (gsymbol->language == language_ada)
650 {
651 if (name == NULL)
652 {
653 gsymbol->ada_mangled = 0;
654 gsymbol->language_specific.obstack = obstack;
655 }
656 else
657 {
658 gsymbol->ada_mangled = 1;
659 gsymbol->language_specific.demangled_name = name;
660 }
661 }
662 else
663 gsymbol->language_specific.demangled_name = name;
664 }
665
666 /* Return the demangled name of GSYMBOL. */
667
668 const char *
669 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
670 {
671 if (gsymbol->language == language_ada)
672 {
673 if (!gsymbol->ada_mangled)
674 return NULL;
675 /* Fall through. */
676 }
677
678 return gsymbol->language_specific.demangled_name;
679 }
680
681 \f
682 /* Initialize the language dependent portion of a symbol
683 depending upon the language for the symbol. */
684
685 void
686 symbol_set_language (struct general_symbol_info *gsymbol,
687 enum language language,
688 struct obstack *obstack)
689 {
690 gsymbol->language = language;
691 if (gsymbol->language == language_cplus
692 || gsymbol->language == language_d
693 || gsymbol->language == language_go
694 || gsymbol->language == language_objc
695 || gsymbol->language == language_fortran)
696 {
697 symbol_set_demangled_name (gsymbol, NULL, obstack);
698 }
699 else if (gsymbol->language == language_ada)
700 {
701 gdb_assert (gsymbol->ada_mangled == 0);
702 gsymbol->language_specific.obstack = obstack;
703 }
704 else
705 {
706 memset (&gsymbol->language_specific, 0,
707 sizeof (gsymbol->language_specific));
708 }
709 }
710
711 /* Functions to initialize a symbol's mangled name. */
712
713 /* Objects of this type are stored in the demangled name hash table. */
714 struct demangled_name_entry
715 {
716 const char *mangled;
717 ENUM_BITFIELD(language) language : LANGUAGE_BITS;
718 char demangled[1];
719 };
720
721 /* Hash function for the demangled name hash. */
722
723 static hashval_t
724 hash_demangled_name_entry (const void *data)
725 {
726 const struct demangled_name_entry *e
727 = (const struct demangled_name_entry *) data;
728
729 return htab_hash_string (e->mangled);
730 }
731
732 /* Equality function for the demangled name hash. */
733
734 static int
735 eq_demangled_name_entry (const void *a, const void *b)
736 {
737 const struct demangled_name_entry *da
738 = (const struct demangled_name_entry *) a;
739 const struct demangled_name_entry *db
740 = (const struct demangled_name_entry *) b;
741
742 return strcmp (da->mangled, db->mangled) == 0;
743 }
744
745 /* Create the hash table used for demangled names. Each hash entry is
746 a pair of strings; one for the mangled name and one for the demangled
747 name. The entry is hashed via just the mangled name. */
748
749 static void
750 create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd)
751 {
752 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
753 The hash table code will round this up to the next prime number.
754 Choosing a much larger table size wastes memory, and saves only about
755 1% in symbol reading. */
756
757 per_bfd->demangled_names_hash.reset (htab_create_alloc
758 (256, hash_demangled_name_entry, eq_demangled_name_entry,
759 NULL, xcalloc, xfree));
760 }
761
762 /* Try to determine the demangled name for a symbol, based on the
763 language of that symbol. If the language is set to language_auto,
764 it will attempt to find any demangling algorithm that works and
765 then set the language appropriately. The returned name is allocated
766 by the demangler and should be xfree'd. */
767
768 static char *
769 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
770 const char *mangled)
771 {
772 char *demangled = NULL;
773 int i;
774
775 if (gsymbol->language == language_unknown)
776 gsymbol->language = language_auto;
777
778 if (gsymbol->language != language_auto)
779 {
780 const struct language_defn *lang = language_def (gsymbol->language);
781
782 language_sniff_from_mangled_name (lang, mangled, &demangled);
783 return demangled;
784 }
785
786 for (i = language_unknown; i < nr_languages; ++i)
787 {
788 enum language l = (enum language) i;
789 const struct language_defn *lang = language_def (l);
790
791 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
792 {
793 gsymbol->language = l;
794 return demangled;
795 }
796 }
797
798 return NULL;
799 }
800
801 /* Set both the mangled and demangled (if any) names for GSYMBOL based
802 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
803 objfile's obstack; but if COPY_NAME is 0 and if NAME is
804 NUL-terminated, then this function assumes that NAME is already
805 correctly saved (either permanently or with a lifetime tied to the
806 objfile), and it will not be copied.
807
808 The hash table corresponding to OBJFILE is used, and the memory
809 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
810 so the pointer can be discarded after calling this function. */
811
812 void
813 symbol_set_names (struct general_symbol_info *gsymbol,
814 const char *linkage_name, int len, bool copy_name,
815 struct objfile_per_bfd_storage *per_bfd)
816 {
817 struct demangled_name_entry **slot;
818 /* A 0-terminated copy of the linkage name. */
819 const char *linkage_name_copy;
820 struct demangled_name_entry entry;
821
822 if (gsymbol->language == language_ada)
823 {
824 /* In Ada, we do the symbol lookups using the mangled name, so
825 we can save some space by not storing the demangled name. */
826 if (!copy_name)
827 gsymbol->name = linkage_name;
828 else
829 {
830 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
831 len + 1);
832
833 memcpy (name, linkage_name, len);
834 name[len] = '\0';
835 gsymbol->name = name;
836 }
837 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
838
839 return;
840 }
841
842 if (per_bfd->demangled_names_hash == NULL)
843 create_demangled_names_hash (per_bfd);
844
845 if (linkage_name[len] != '\0')
846 {
847 char *alloc_name;
848
849 alloc_name = (char *) alloca (len + 1);
850 memcpy (alloc_name, linkage_name, len);
851 alloc_name[len] = '\0';
852
853 linkage_name_copy = alloc_name;
854 }
855 else
856 linkage_name_copy = linkage_name;
857
858 entry.mangled = linkage_name_copy;
859 slot = ((struct demangled_name_entry **)
860 htab_find_slot (per_bfd->demangled_names_hash.get (),
861 &entry, INSERT));
862
863 /* If this name is not in the hash table, add it. */
864 if (*slot == NULL
865 /* A C version of the symbol may have already snuck into the table.
866 This happens to, e.g., main.init (__go_init_main). Cope. */
867 || (gsymbol->language == language_go
868 && (*slot)->demangled[0] == '\0'))
869 {
870 char *demangled_name_ptr
871 = symbol_find_demangled_name (gsymbol, linkage_name_copy);
872 gdb::unique_xmalloc_ptr<char> demangled_name (demangled_name_ptr);
873 int demangled_len = demangled_name ? strlen (demangled_name.get ()) : 0;
874
875 /* Suppose we have demangled_name==NULL, copy_name==0, and
876 linkage_name_copy==linkage_name. In this case, we already have the
877 mangled name saved, and we don't have a demangled name. So,
878 you might think we could save a little space by not recording
879 this in the hash table at all.
880
881 It turns out that it is actually important to still save such
882 an entry in the hash table, because storing this name gives
883 us better bcache hit rates for partial symbols. */
884 if (!copy_name && linkage_name_copy == linkage_name)
885 {
886 *slot
887 = ((struct demangled_name_entry *)
888 obstack_alloc (&per_bfd->storage_obstack,
889 offsetof (struct demangled_name_entry, demangled)
890 + demangled_len + 1));
891 (*slot)->mangled = linkage_name;
892 }
893 else
894 {
895 char *mangled_ptr;
896
897 /* If we must copy the mangled name, put it directly after
898 the demangled name so we can have a single
899 allocation. */
900 *slot
901 = ((struct demangled_name_entry *)
902 obstack_alloc (&per_bfd->storage_obstack,
903 offsetof (struct demangled_name_entry, demangled)
904 + len + demangled_len + 2));
905 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
906 strcpy (mangled_ptr, linkage_name_copy);
907 (*slot)->mangled = mangled_ptr;
908 }
909 (*slot)->language = gsymbol->language;
910
911 if (demangled_name != NULL)
912 strcpy ((*slot)->demangled, demangled_name.get ());
913 else
914 (*slot)->demangled[0] = '\0';
915 }
916 else if (gsymbol->language == language_unknown
917 || gsymbol->language == language_auto)
918 gsymbol->language = (*slot)->language;
919
920 gsymbol->name = (*slot)->mangled;
921 if ((*slot)->demangled[0] != '\0')
922 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
923 &per_bfd->storage_obstack);
924 else
925 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
926 }
927
928 /* Return the source code name of a symbol. In languages where
929 demangling is necessary, this is the demangled name. */
930
931 const char *
932 symbol_natural_name (const struct general_symbol_info *gsymbol)
933 {
934 switch (gsymbol->language)
935 {
936 case language_cplus:
937 case language_d:
938 case language_go:
939 case language_objc:
940 case language_fortran:
941 if (symbol_get_demangled_name (gsymbol) != NULL)
942 return symbol_get_demangled_name (gsymbol);
943 break;
944 case language_ada:
945 return ada_decode_symbol (gsymbol);
946 default:
947 break;
948 }
949 return gsymbol->name;
950 }
951
952 /* Return the demangled name for a symbol based on the language for
953 that symbol. If no demangled name exists, return NULL. */
954
955 const char *
956 symbol_demangled_name (const struct general_symbol_info *gsymbol)
957 {
958 const char *dem_name = NULL;
959
960 switch (gsymbol->language)
961 {
962 case language_cplus:
963 case language_d:
964 case language_go:
965 case language_objc:
966 case language_fortran:
967 dem_name = symbol_get_demangled_name (gsymbol);
968 break;
969 case language_ada:
970 dem_name = ada_decode_symbol (gsymbol);
971 break;
972 default:
973 break;
974 }
975 return dem_name;
976 }
977
978 /* Return the search name of a symbol---generally the demangled or
979 linkage name of the symbol, depending on how it will be searched for.
980 If there is no distinct demangled name, then returns the same value
981 (same pointer) as SYMBOL_LINKAGE_NAME. */
982
983 const char *
984 symbol_search_name (const struct general_symbol_info *gsymbol)
985 {
986 if (gsymbol->language == language_ada)
987 return gsymbol->name;
988 else
989 return symbol_natural_name (gsymbol);
990 }
991
992 /* See symtab.h. */
993
994 bool
995 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
996 const lookup_name_info &name)
997 {
998 symbol_name_matcher_ftype *name_match
999 = get_symbol_name_matcher (language_def (gsymbol->language), name);
1000 return name_match (symbol_search_name (gsymbol), name, NULL);
1001 }
1002
1003 \f
1004
1005 /* Return 1 if the two sections are the same, or if they could
1006 plausibly be copies of each other, one in an original object
1007 file and another in a separated debug file. */
1008
1009 int
1010 matching_obj_sections (struct obj_section *obj_first,
1011 struct obj_section *obj_second)
1012 {
1013 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1014 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1015
1016 /* If they're the same section, then they match. */
1017 if (first == second)
1018 return 1;
1019
1020 /* If either is NULL, give up. */
1021 if (first == NULL || second == NULL)
1022 return 0;
1023
1024 /* This doesn't apply to absolute symbols. */
1025 if (first->owner == NULL || second->owner == NULL)
1026 return 0;
1027
1028 /* If they're in the same object file, they must be different sections. */
1029 if (first->owner == second->owner)
1030 return 0;
1031
1032 /* Check whether the two sections are potentially corresponding. They must
1033 have the same size, address, and name. We can't compare section indexes,
1034 which would be more reliable, because some sections may have been
1035 stripped. */
1036 if (bfd_section_size (first) != bfd_section_size (second))
1037 return 0;
1038
1039 /* In-memory addresses may start at a different offset, relativize them. */
1040 if (bfd_section_vma (first) - bfd_get_start_address (first->owner)
1041 != bfd_section_vma (second) - bfd_get_start_address (second->owner))
1042 return 0;
1043
1044 if (bfd_section_name (first) == NULL
1045 || bfd_section_name (second) == NULL
1046 || strcmp (bfd_section_name (first), bfd_section_name (second)) != 0)
1047 return 0;
1048
1049 /* Otherwise check that they are in corresponding objfiles. */
1050
1051 struct objfile *obj = NULL;
1052 for (objfile *objfile : current_program_space->objfiles ())
1053 if (objfile->obfd == first->owner)
1054 {
1055 obj = objfile;
1056 break;
1057 }
1058 gdb_assert (obj != NULL);
1059
1060 if (obj->separate_debug_objfile != NULL
1061 && obj->separate_debug_objfile->obfd == second->owner)
1062 return 1;
1063 if (obj->separate_debug_objfile_backlink != NULL
1064 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1065 return 1;
1066
1067 return 0;
1068 }
1069
1070 /* See symtab.h. */
1071
1072 void
1073 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1074 {
1075 struct bound_minimal_symbol msymbol;
1076
1077 /* If we know that this is not a text address, return failure. This is
1078 necessary because we loop based on texthigh and textlow, which do
1079 not include the data ranges. */
1080 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1081 if (msymbol.minsym && msymbol.minsym->data_p ())
1082 return;
1083
1084 for (objfile *objfile : current_program_space->objfiles ())
1085 {
1086 struct compunit_symtab *cust = NULL;
1087
1088 if (objfile->sf)
1089 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1090 pc, section, 0);
1091 if (cust)
1092 return;
1093 }
1094 }
1095 \f
1096 /* Hash function for the symbol cache. */
1097
1098 static unsigned int
1099 hash_symbol_entry (const struct objfile *objfile_context,
1100 const char *name, domain_enum domain)
1101 {
1102 unsigned int hash = (uintptr_t) objfile_context;
1103
1104 if (name != NULL)
1105 hash += htab_hash_string (name);
1106
1107 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1108 to map to the same slot. */
1109 if (domain == STRUCT_DOMAIN)
1110 hash += VAR_DOMAIN * 7;
1111 else
1112 hash += domain * 7;
1113
1114 return hash;
1115 }
1116
1117 /* Equality function for the symbol cache. */
1118
1119 static int
1120 eq_symbol_entry (const struct symbol_cache_slot *slot,
1121 const struct objfile *objfile_context,
1122 const char *name, domain_enum domain)
1123 {
1124 const char *slot_name;
1125 domain_enum slot_domain;
1126
1127 if (slot->state == SYMBOL_SLOT_UNUSED)
1128 return 0;
1129
1130 if (slot->objfile_context != objfile_context)
1131 return 0;
1132
1133 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1134 {
1135 slot_name = slot->value.not_found.name;
1136 slot_domain = slot->value.not_found.domain;
1137 }
1138 else
1139 {
1140 slot_name = SYMBOL_SEARCH_NAME (slot->value.found.symbol);
1141 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1142 }
1143
1144 /* NULL names match. */
1145 if (slot_name == NULL && name == NULL)
1146 {
1147 /* But there's no point in calling symbol_matches_domain in the
1148 SYMBOL_SLOT_FOUND case. */
1149 if (slot_domain != domain)
1150 return 0;
1151 }
1152 else if (slot_name != NULL && name != NULL)
1153 {
1154 /* It's important that we use the same comparison that was done
1155 the first time through. If the slot records a found symbol,
1156 then this means using the symbol name comparison function of
1157 the symbol's language with SYMBOL_SEARCH_NAME. See
1158 dictionary.c. It also means using symbol_matches_domain for
1159 found symbols. See block.c.
1160
1161 If the slot records a not-found symbol, then require a precise match.
1162 We could still be lax with whitespace like strcmp_iw though. */
1163
1164 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1165 {
1166 if (strcmp (slot_name, name) != 0)
1167 return 0;
1168 if (slot_domain != domain)
1169 return 0;
1170 }
1171 else
1172 {
1173 struct symbol *sym = slot->value.found.symbol;
1174 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1175
1176 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1177 return 0;
1178
1179 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1180 slot_domain, domain))
1181 return 0;
1182 }
1183 }
1184 else
1185 {
1186 /* Only one name is NULL. */
1187 return 0;
1188 }
1189
1190 return 1;
1191 }
1192
1193 /* Given a cache of size SIZE, return the size of the struct (with variable
1194 length array) in bytes. */
1195
1196 static size_t
1197 symbol_cache_byte_size (unsigned int size)
1198 {
1199 return (sizeof (struct block_symbol_cache)
1200 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1201 }
1202
1203 /* Resize CACHE. */
1204
1205 static void
1206 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1207 {
1208 /* If there's no change in size, don't do anything.
1209 All caches have the same size, so we can just compare with the size
1210 of the global symbols cache. */
1211 if ((cache->global_symbols != NULL
1212 && cache->global_symbols->size == new_size)
1213 || (cache->global_symbols == NULL
1214 && new_size == 0))
1215 return;
1216
1217 xfree (cache->global_symbols);
1218 xfree (cache->static_symbols);
1219
1220 if (new_size == 0)
1221 {
1222 cache->global_symbols = NULL;
1223 cache->static_symbols = NULL;
1224 }
1225 else
1226 {
1227 size_t total_size = symbol_cache_byte_size (new_size);
1228
1229 cache->global_symbols
1230 = (struct block_symbol_cache *) xcalloc (1, total_size);
1231 cache->static_symbols
1232 = (struct block_symbol_cache *) xcalloc (1, total_size);
1233 cache->global_symbols->size = new_size;
1234 cache->static_symbols->size = new_size;
1235 }
1236 }
1237
1238 /* Return the symbol cache of PSPACE.
1239 Create one if it doesn't exist yet. */
1240
1241 static struct symbol_cache *
1242 get_symbol_cache (struct program_space *pspace)
1243 {
1244 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1245
1246 if (cache == NULL)
1247 {
1248 cache = symbol_cache_key.emplace (pspace);
1249 resize_symbol_cache (cache, symbol_cache_size);
1250 }
1251
1252 return cache;
1253 }
1254
1255 /* Set the size of the symbol cache in all program spaces. */
1256
1257 static void
1258 set_symbol_cache_size (unsigned int new_size)
1259 {
1260 struct program_space *pspace;
1261
1262 ALL_PSPACES (pspace)
1263 {
1264 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1265
1266 /* The pspace could have been created but not have a cache yet. */
1267 if (cache != NULL)
1268 resize_symbol_cache (cache, new_size);
1269 }
1270 }
1271
1272 /* Called when symbol-cache-size is set. */
1273
1274 static void
1275 set_symbol_cache_size_handler (const char *args, int from_tty,
1276 struct cmd_list_element *c)
1277 {
1278 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1279 {
1280 /* Restore the previous value.
1281 This is the value the "show" command prints. */
1282 new_symbol_cache_size = symbol_cache_size;
1283
1284 error (_("Symbol cache size is too large, max is %u."),
1285 MAX_SYMBOL_CACHE_SIZE);
1286 }
1287 symbol_cache_size = new_symbol_cache_size;
1288
1289 set_symbol_cache_size (symbol_cache_size);
1290 }
1291
1292 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1293 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1294 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1295 failed (and thus this one will too), or NULL if the symbol is not present
1296 in the cache.
1297 *BSC_PTR and *SLOT_PTR are set to the cache and slot of the symbol, which
1298 can be used to save the result of a full lookup attempt. */
1299
1300 static struct block_symbol
1301 symbol_cache_lookup (struct symbol_cache *cache,
1302 struct objfile *objfile_context, enum block_enum block,
1303 const char *name, domain_enum domain,
1304 struct block_symbol_cache **bsc_ptr,
1305 struct symbol_cache_slot **slot_ptr)
1306 {
1307 struct block_symbol_cache *bsc;
1308 unsigned int hash;
1309 struct symbol_cache_slot *slot;
1310
1311 if (block == GLOBAL_BLOCK)
1312 bsc = cache->global_symbols;
1313 else
1314 bsc = cache->static_symbols;
1315 if (bsc == NULL)
1316 {
1317 *bsc_ptr = NULL;
1318 *slot_ptr = NULL;
1319 return {};
1320 }
1321
1322 hash = hash_symbol_entry (objfile_context, name, domain);
1323 slot = bsc->symbols + hash % bsc->size;
1324
1325 *bsc_ptr = bsc;
1326 *slot_ptr = slot;
1327
1328 if (eq_symbol_entry (slot, objfile_context, name, domain))
1329 {
1330 if (symbol_lookup_debug)
1331 fprintf_unfiltered (gdb_stdlog,
1332 "%s block symbol cache hit%s for %s, %s\n",
1333 block == GLOBAL_BLOCK ? "Global" : "Static",
1334 slot->state == SYMBOL_SLOT_NOT_FOUND
1335 ? " (not found)" : "",
1336 name, domain_name (domain));
1337 ++bsc->hits;
1338 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1339 return SYMBOL_LOOKUP_FAILED;
1340 return slot->value.found;
1341 }
1342
1343 /* Symbol is not present in the cache. */
1344
1345 if (symbol_lookup_debug)
1346 {
1347 fprintf_unfiltered (gdb_stdlog,
1348 "%s block symbol cache miss for %s, %s\n",
1349 block == GLOBAL_BLOCK ? "Global" : "Static",
1350 name, domain_name (domain));
1351 }
1352 ++bsc->misses;
1353 return {};
1354 }
1355
1356 /* Clear out SLOT. */
1357
1358 static void
1359 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1360 {
1361 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1362 xfree (slot->value.not_found.name);
1363 slot->state = SYMBOL_SLOT_UNUSED;
1364 }
1365
1366 /* Mark SYMBOL as found in SLOT.
1367 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1368 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1369 necessarily the objfile the symbol was found in. */
1370
1371 static void
1372 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1373 struct symbol_cache_slot *slot,
1374 struct objfile *objfile_context,
1375 struct symbol *symbol,
1376 const struct block *block)
1377 {
1378 if (bsc == NULL)
1379 return;
1380 if (slot->state != SYMBOL_SLOT_UNUSED)
1381 {
1382 ++bsc->collisions;
1383 symbol_cache_clear_slot (slot);
1384 }
1385 slot->state = SYMBOL_SLOT_FOUND;
1386 slot->objfile_context = objfile_context;
1387 slot->value.found.symbol = symbol;
1388 slot->value.found.block = block;
1389 }
1390
1391 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1392 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1393 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1394
1395 static void
1396 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1397 struct symbol_cache_slot *slot,
1398 struct objfile *objfile_context,
1399 const char *name, domain_enum domain)
1400 {
1401 if (bsc == NULL)
1402 return;
1403 if (slot->state != SYMBOL_SLOT_UNUSED)
1404 {
1405 ++bsc->collisions;
1406 symbol_cache_clear_slot (slot);
1407 }
1408 slot->state = SYMBOL_SLOT_NOT_FOUND;
1409 slot->objfile_context = objfile_context;
1410 slot->value.not_found.name = xstrdup (name);
1411 slot->value.not_found.domain = domain;
1412 }
1413
1414 /* Flush the symbol cache of PSPACE. */
1415
1416 static void
1417 symbol_cache_flush (struct program_space *pspace)
1418 {
1419 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1420 int pass;
1421
1422 if (cache == NULL)
1423 return;
1424 if (cache->global_symbols == NULL)
1425 {
1426 gdb_assert (symbol_cache_size == 0);
1427 gdb_assert (cache->static_symbols == NULL);
1428 return;
1429 }
1430
1431 /* If the cache is untouched since the last flush, early exit.
1432 This is important for performance during the startup of a program linked
1433 with 100s (or 1000s) of shared libraries. */
1434 if (cache->global_symbols->misses == 0
1435 && cache->static_symbols->misses == 0)
1436 return;
1437
1438 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1439 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1440
1441 for (pass = 0; pass < 2; ++pass)
1442 {
1443 struct block_symbol_cache *bsc
1444 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1445 unsigned int i;
1446
1447 for (i = 0; i < bsc->size; ++i)
1448 symbol_cache_clear_slot (&bsc->symbols[i]);
1449 }
1450
1451 cache->global_symbols->hits = 0;
1452 cache->global_symbols->misses = 0;
1453 cache->global_symbols->collisions = 0;
1454 cache->static_symbols->hits = 0;
1455 cache->static_symbols->misses = 0;
1456 cache->static_symbols->collisions = 0;
1457 }
1458
1459 /* Dump CACHE. */
1460
1461 static void
1462 symbol_cache_dump (const struct symbol_cache *cache)
1463 {
1464 int pass;
1465
1466 if (cache->global_symbols == NULL)
1467 {
1468 printf_filtered (" <disabled>\n");
1469 return;
1470 }
1471
1472 for (pass = 0; pass < 2; ++pass)
1473 {
1474 const struct block_symbol_cache *bsc
1475 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1476 unsigned int i;
1477
1478 if (pass == 0)
1479 printf_filtered ("Global symbols:\n");
1480 else
1481 printf_filtered ("Static symbols:\n");
1482
1483 for (i = 0; i < bsc->size; ++i)
1484 {
1485 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1486
1487 QUIT;
1488
1489 switch (slot->state)
1490 {
1491 case SYMBOL_SLOT_UNUSED:
1492 break;
1493 case SYMBOL_SLOT_NOT_FOUND:
1494 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1495 host_address_to_string (slot->objfile_context),
1496 slot->value.not_found.name,
1497 domain_name (slot->value.not_found.domain));
1498 break;
1499 case SYMBOL_SLOT_FOUND:
1500 {
1501 struct symbol *found = slot->value.found.symbol;
1502 const struct objfile *context = slot->objfile_context;
1503
1504 printf_filtered (" [%4u] = %s, %s %s\n", i,
1505 host_address_to_string (context),
1506 SYMBOL_PRINT_NAME (found),
1507 domain_name (SYMBOL_DOMAIN (found)));
1508 break;
1509 }
1510 }
1511 }
1512 }
1513 }
1514
1515 /* The "mt print symbol-cache" command. */
1516
1517 static void
1518 maintenance_print_symbol_cache (const char *args, int from_tty)
1519 {
1520 struct program_space *pspace;
1521
1522 ALL_PSPACES (pspace)
1523 {
1524 struct symbol_cache *cache;
1525
1526 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1527 pspace->num,
1528 pspace->symfile_object_file != NULL
1529 ? objfile_name (pspace->symfile_object_file)
1530 : "(no object file)");
1531
1532 /* If the cache hasn't been created yet, avoid creating one. */
1533 cache = symbol_cache_key.get (pspace);
1534 if (cache == NULL)
1535 printf_filtered (" <empty>\n");
1536 else
1537 symbol_cache_dump (cache);
1538 }
1539 }
1540
1541 /* The "mt flush-symbol-cache" command. */
1542
1543 static void
1544 maintenance_flush_symbol_cache (const char *args, int from_tty)
1545 {
1546 struct program_space *pspace;
1547
1548 ALL_PSPACES (pspace)
1549 {
1550 symbol_cache_flush (pspace);
1551 }
1552 }
1553
1554 /* Print usage statistics of CACHE. */
1555
1556 static void
1557 symbol_cache_stats (struct symbol_cache *cache)
1558 {
1559 int pass;
1560
1561 if (cache->global_symbols == NULL)
1562 {
1563 printf_filtered (" <disabled>\n");
1564 return;
1565 }
1566
1567 for (pass = 0; pass < 2; ++pass)
1568 {
1569 const struct block_symbol_cache *bsc
1570 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1571
1572 QUIT;
1573
1574 if (pass == 0)
1575 printf_filtered ("Global block cache stats:\n");
1576 else
1577 printf_filtered ("Static block cache stats:\n");
1578
1579 printf_filtered (" size: %u\n", bsc->size);
1580 printf_filtered (" hits: %u\n", bsc->hits);
1581 printf_filtered (" misses: %u\n", bsc->misses);
1582 printf_filtered (" collisions: %u\n", bsc->collisions);
1583 }
1584 }
1585
1586 /* The "mt print symbol-cache-statistics" command. */
1587
1588 static void
1589 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1590 {
1591 struct program_space *pspace;
1592
1593 ALL_PSPACES (pspace)
1594 {
1595 struct symbol_cache *cache;
1596
1597 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1598 pspace->num,
1599 pspace->symfile_object_file != NULL
1600 ? objfile_name (pspace->symfile_object_file)
1601 : "(no object file)");
1602
1603 /* If the cache hasn't been created yet, avoid creating one. */
1604 cache = symbol_cache_key.get (pspace);
1605 if (cache == NULL)
1606 printf_filtered (" empty, no stats available\n");
1607 else
1608 symbol_cache_stats (cache);
1609 }
1610 }
1611
1612 /* This module's 'new_objfile' observer. */
1613
1614 static void
1615 symtab_new_objfile_observer (struct objfile *objfile)
1616 {
1617 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1618 symbol_cache_flush (current_program_space);
1619 }
1620
1621 /* This module's 'free_objfile' observer. */
1622
1623 static void
1624 symtab_free_objfile_observer (struct objfile *objfile)
1625 {
1626 symbol_cache_flush (objfile->pspace);
1627 }
1628 \f
1629 /* Debug symbols usually don't have section information. We need to dig that
1630 out of the minimal symbols and stash that in the debug symbol. */
1631
1632 void
1633 fixup_section (struct general_symbol_info *ginfo,
1634 CORE_ADDR addr, struct objfile *objfile)
1635 {
1636 struct minimal_symbol *msym;
1637
1638 /* First, check whether a minimal symbol with the same name exists
1639 and points to the same address. The address check is required
1640 e.g. on PowerPC64, where the minimal symbol for a function will
1641 point to the function descriptor, while the debug symbol will
1642 point to the actual function code. */
1643 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1644 if (msym)
1645 ginfo->section = MSYMBOL_SECTION (msym);
1646 else
1647 {
1648 /* Static, function-local variables do appear in the linker
1649 (minimal) symbols, but are frequently given names that won't
1650 be found via lookup_minimal_symbol(). E.g., it has been
1651 observed in frv-uclinux (ELF) executables that a static,
1652 function-local variable named "foo" might appear in the
1653 linker symbols as "foo.6" or "foo.3". Thus, there is no
1654 point in attempting to extend the lookup-by-name mechanism to
1655 handle this case due to the fact that there can be multiple
1656 names.
1657
1658 So, instead, search the section table when lookup by name has
1659 failed. The ``addr'' and ``endaddr'' fields may have already
1660 been relocated. If so, the relocation offset (i.e. the
1661 ANOFFSET value) needs to be subtracted from these values when
1662 performing the comparison. We unconditionally subtract it,
1663 because, when no relocation has been performed, the ANOFFSET
1664 value will simply be zero.
1665
1666 The address of the symbol whose section we're fixing up HAS
1667 NOT BEEN adjusted (relocated) yet. It can't have been since
1668 the section isn't yet known and knowing the section is
1669 necessary in order to add the correct relocation value. In
1670 other words, we wouldn't even be in this function (attempting
1671 to compute the section) if it were already known.
1672
1673 Note that it is possible to search the minimal symbols
1674 (subtracting the relocation value if necessary) to find the
1675 matching minimal symbol, but this is overkill and much less
1676 efficient. It is not necessary to find the matching minimal
1677 symbol, only its section.
1678
1679 Note that this technique (of doing a section table search)
1680 can fail when unrelocated section addresses overlap. For
1681 this reason, we still attempt a lookup by name prior to doing
1682 a search of the section table. */
1683
1684 struct obj_section *s;
1685 int fallback = -1;
1686
1687 ALL_OBJFILE_OSECTIONS (objfile, s)
1688 {
1689 int idx = s - objfile->sections;
1690 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1691
1692 if (fallback == -1)
1693 fallback = idx;
1694
1695 if (obj_section_addr (s) - offset <= addr
1696 && addr < obj_section_endaddr (s) - offset)
1697 {
1698 ginfo->section = idx;
1699 return;
1700 }
1701 }
1702
1703 /* If we didn't find the section, assume it is in the first
1704 section. If there is no allocated section, then it hardly
1705 matters what we pick, so just pick zero. */
1706 if (fallback == -1)
1707 ginfo->section = 0;
1708 else
1709 ginfo->section = fallback;
1710 }
1711 }
1712
1713 struct symbol *
1714 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1715 {
1716 CORE_ADDR addr;
1717
1718 if (!sym)
1719 return NULL;
1720
1721 if (!SYMBOL_OBJFILE_OWNED (sym))
1722 return sym;
1723
1724 /* We either have an OBJFILE, or we can get at it from the sym's
1725 symtab. Anything else is a bug. */
1726 gdb_assert (objfile || symbol_symtab (sym));
1727
1728 if (objfile == NULL)
1729 objfile = symbol_objfile (sym);
1730
1731 if (SYMBOL_OBJ_SECTION (objfile, sym))
1732 return sym;
1733
1734 /* We should have an objfile by now. */
1735 gdb_assert (objfile);
1736
1737 switch (SYMBOL_CLASS (sym))
1738 {
1739 case LOC_STATIC:
1740 case LOC_LABEL:
1741 addr = SYMBOL_VALUE_ADDRESS (sym);
1742 break;
1743 case LOC_BLOCK:
1744 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1745 break;
1746
1747 default:
1748 /* Nothing else will be listed in the minsyms -- no use looking
1749 it up. */
1750 return sym;
1751 }
1752
1753 fixup_section (&sym->ginfo, addr, objfile);
1754
1755 return sym;
1756 }
1757
1758 /* See symtab.h. */
1759
1760 demangle_for_lookup_info::demangle_for_lookup_info
1761 (const lookup_name_info &lookup_name, language lang)
1762 {
1763 demangle_result_storage storage;
1764
1765 if (lookup_name.ignore_parameters () && lang == language_cplus)
1766 {
1767 gdb::unique_xmalloc_ptr<char> without_params
1768 = cp_remove_params_if_any (lookup_name.name ().c_str (),
1769 lookup_name.completion_mode ());
1770
1771 if (without_params != NULL)
1772 {
1773 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1774 m_demangled_name = demangle_for_lookup (without_params.get (),
1775 lang, storage);
1776 return;
1777 }
1778 }
1779
1780 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1781 m_demangled_name = lookup_name.name ();
1782 else
1783 m_demangled_name = demangle_for_lookup (lookup_name.name ().c_str (),
1784 lang, storage);
1785 }
1786
1787 /* See symtab.h. */
1788
1789 const lookup_name_info &
1790 lookup_name_info::match_any ()
1791 {
1792 /* Lookup any symbol that "" would complete. I.e., this matches all
1793 symbol names. */
1794 static const lookup_name_info lookup_name ({}, symbol_name_match_type::FULL,
1795 true);
1796
1797 return lookup_name;
1798 }
1799
1800 /* Compute the demangled form of NAME as used by the various symbol
1801 lookup functions. The result can either be the input NAME
1802 directly, or a pointer to a buffer owned by the STORAGE object.
1803
1804 For Ada, this function just returns NAME, unmodified.
1805 Normally, Ada symbol lookups are performed using the encoded name
1806 rather than the demangled name, and so it might seem to make sense
1807 for this function to return an encoded version of NAME.
1808 Unfortunately, we cannot do this, because this function is used in
1809 circumstances where it is not appropriate to try to encode NAME.
1810 For instance, when displaying the frame info, we demangle the name
1811 of each parameter, and then perform a symbol lookup inside our
1812 function using that demangled name. In Ada, certain functions
1813 have internally-generated parameters whose name contain uppercase
1814 characters. Encoding those name would result in those uppercase
1815 characters to become lowercase, and thus cause the symbol lookup
1816 to fail. */
1817
1818 const char *
1819 demangle_for_lookup (const char *name, enum language lang,
1820 demangle_result_storage &storage)
1821 {
1822 /* If we are using C++, D, or Go, demangle the name before doing a
1823 lookup, so we can always binary search. */
1824 if (lang == language_cplus)
1825 {
1826 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1827 if (demangled_name != NULL)
1828 return storage.set_malloc_ptr (demangled_name);
1829
1830 /* If we were given a non-mangled name, canonicalize it
1831 according to the language (so far only for C++). */
1832 std::string canon = cp_canonicalize_string (name);
1833 if (!canon.empty ())
1834 return storage.swap_string (canon);
1835 }
1836 else if (lang == language_d)
1837 {
1838 char *demangled_name = d_demangle (name, 0);
1839 if (demangled_name != NULL)
1840 return storage.set_malloc_ptr (demangled_name);
1841 }
1842 else if (lang == language_go)
1843 {
1844 char *demangled_name = go_demangle (name, 0);
1845 if (demangled_name != NULL)
1846 return storage.set_malloc_ptr (demangled_name);
1847 }
1848
1849 return name;
1850 }
1851
1852 /* See symtab.h. */
1853
1854 unsigned int
1855 search_name_hash (enum language language, const char *search_name)
1856 {
1857 return language_def (language)->la_search_name_hash (search_name);
1858 }
1859
1860 /* See symtab.h.
1861
1862 This function (or rather its subordinates) have a bunch of loops and
1863 it would seem to be attractive to put in some QUIT's (though I'm not really
1864 sure whether it can run long enough to be really important). But there
1865 are a few calls for which it would appear to be bad news to quit
1866 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1867 that there is C++ code below which can error(), but that probably
1868 doesn't affect these calls since they are looking for a known
1869 variable and thus can probably assume it will never hit the C++
1870 code). */
1871
1872 struct block_symbol
1873 lookup_symbol_in_language (const char *name, const struct block *block,
1874 const domain_enum domain, enum language lang,
1875 struct field_of_this_result *is_a_field_of_this)
1876 {
1877 demangle_result_storage storage;
1878 const char *modified_name = demangle_for_lookup (name, lang, storage);
1879
1880 return lookup_symbol_aux (modified_name,
1881 symbol_name_match_type::FULL,
1882 block, domain, lang,
1883 is_a_field_of_this);
1884 }
1885
1886 /* See symtab.h. */
1887
1888 struct block_symbol
1889 lookup_symbol (const char *name, const struct block *block,
1890 domain_enum domain,
1891 struct field_of_this_result *is_a_field_of_this)
1892 {
1893 return lookup_symbol_in_language (name, block, domain,
1894 current_language->la_language,
1895 is_a_field_of_this);
1896 }
1897
1898 /* See symtab.h. */
1899
1900 struct block_symbol
1901 lookup_symbol_search_name (const char *search_name, const struct block *block,
1902 domain_enum domain)
1903 {
1904 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1905 block, domain, language_asm, NULL);
1906 }
1907
1908 /* See symtab.h. */
1909
1910 struct block_symbol
1911 lookup_language_this (const struct language_defn *lang,
1912 const struct block *block)
1913 {
1914 if (lang->la_name_of_this == NULL || block == NULL)
1915 return {};
1916
1917 if (symbol_lookup_debug > 1)
1918 {
1919 struct objfile *objfile = lookup_objfile_from_block (block);
1920
1921 fprintf_unfiltered (gdb_stdlog,
1922 "lookup_language_this (%s, %s (objfile %s))",
1923 lang->la_name, host_address_to_string (block),
1924 objfile_debug_name (objfile));
1925 }
1926
1927 while (block)
1928 {
1929 struct symbol *sym;
1930
1931 sym = block_lookup_symbol (block, lang->la_name_of_this,
1932 symbol_name_match_type::SEARCH_NAME,
1933 VAR_DOMAIN);
1934 if (sym != NULL)
1935 {
1936 if (symbol_lookup_debug > 1)
1937 {
1938 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1939 SYMBOL_PRINT_NAME (sym),
1940 host_address_to_string (sym),
1941 host_address_to_string (block));
1942 }
1943 return (struct block_symbol) {sym, block};
1944 }
1945 if (BLOCK_FUNCTION (block))
1946 break;
1947 block = BLOCK_SUPERBLOCK (block);
1948 }
1949
1950 if (symbol_lookup_debug > 1)
1951 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1952 return {};
1953 }
1954
1955 /* Given TYPE, a structure/union,
1956 return 1 if the component named NAME from the ultimate target
1957 structure/union is defined, otherwise, return 0. */
1958
1959 static int
1960 check_field (struct type *type, const char *name,
1961 struct field_of_this_result *is_a_field_of_this)
1962 {
1963 int i;
1964
1965 /* The type may be a stub. */
1966 type = check_typedef (type);
1967
1968 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1969 {
1970 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1971
1972 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1973 {
1974 is_a_field_of_this->type = type;
1975 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1976 return 1;
1977 }
1978 }
1979
1980 /* C++: If it was not found as a data field, then try to return it
1981 as a pointer to a method. */
1982
1983 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1984 {
1985 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1986 {
1987 is_a_field_of_this->type = type;
1988 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1989 return 1;
1990 }
1991 }
1992
1993 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1994 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1995 return 1;
1996
1997 return 0;
1998 }
1999
2000 /* Behave like lookup_symbol except that NAME is the natural name
2001 (e.g., demangled name) of the symbol that we're looking for. */
2002
2003 static struct block_symbol
2004 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2005 const struct block *block,
2006 const domain_enum domain, enum language language,
2007 struct field_of_this_result *is_a_field_of_this)
2008 {
2009 struct block_symbol result;
2010 const struct language_defn *langdef;
2011
2012 if (symbol_lookup_debug)
2013 {
2014 struct objfile *objfile = lookup_objfile_from_block (block);
2015
2016 fprintf_unfiltered (gdb_stdlog,
2017 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2018 name, host_address_to_string (block),
2019 objfile != NULL
2020 ? objfile_debug_name (objfile) : "NULL",
2021 domain_name (domain), language_str (language));
2022 }
2023
2024 /* Make sure we do something sensible with is_a_field_of_this, since
2025 the callers that set this parameter to some non-null value will
2026 certainly use it later. If we don't set it, the contents of
2027 is_a_field_of_this are undefined. */
2028 if (is_a_field_of_this != NULL)
2029 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2030
2031 /* Search specified block and its superiors. Don't search
2032 STATIC_BLOCK or GLOBAL_BLOCK. */
2033
2034 result = lookup_local_symbol (name, match_type, block, domain, language);
2035 if (result.symbol != NULL)
2036 {
2037 if (symbol_lookup_debug)
2038 {
2039 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2040 host_address_to_string (result.symbol));
2041 }
2042 return result;
2043 }
2044
2045 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2046 check to see if NAME is a field of `this'. */
2047
2048 langdef = language_def (language);
2049
2050 /* Don't do this check if we are searching for a struct. It will
2051 not be found by check_field, but will be found by other
2052 means. */
2053 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2054 {
2055 result = lookup_language_this (langdef, block);
2056
2057 if (result.symbol)
2058 {
2059 struct type *t = result.symbol->type;
2060
2061 /* I'm not really sure that type of this can ever
2062 be typedefed; just be safe. */
2063 t = check_typedef (t);
2064 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2065 t = TYPE_TARGET_TYPE (t);
2066
2067 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2068 && TYPE_CODE (t) != TYPE_CODE_UNION)
2069 error (_("Internal error: `%s' is not an aggregate"),
2070 langdef->la_name_of_this);
2071
2072 if (check_field (t, name, is_a_field_of_this))
2073 {
2074 if (symbol_lookup_debug)
2075 {
2076 fprintf_unfiltered (gdb_stdlog,
2077 "lookup_symbol_aux (...) = NULL\n");
2078 }
2079 return {};
2080 }
2081 }
2082 }
2083
2084 /* Now do whatever is appropriate for LANGUAGE to look
2085 up static and global variables. */
2086
2087 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2088 if (result.symbol != NULL)
2089 {
2090 if (symbol_lookup_debug)
2091 {
2092 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2093 host_address_to_string (result.symbol));
2094 }
2095 return result;
2096 }
2097
2098 /* Now search all static file-level symbols. Not strictly correct,
2099 but more useful than an error. */
2100
2101 result = lookup_static_symbol (name, domain);
2102 if (symbol_lookup_debug)
2103 {
2104 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2105 result.symbol != NULL
2106 ? host_address_to_string (result.symbol)
2107 : "NULL");
2108 }
2109 return result;
2110 }
2111
2112 /* Check to see if the symbol is defined in BLOCK or its superiors.
2113 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2114
2115 static struct block_symbol
2116 lookup_local_symbol (const char *name,
2117 symbol_name_match_type match_type,
2118 const struct block *block,
2119 const domain_enum domain,
2120 enum language language)
2121 {
2122 struct symbol *sym;
2123 const struct block *static_block = block_static_block (block);
2124 const char *scope = block_scope (block);
2125
2126 /* Check if either no block is specified or it's a global block. */
2127
2128 if (static_block == NULL)
2129 return {};
2130
2131 while (block != static_block)
2132 {
2133 sym = lookup_symbol_in_block (name, match_type, block, domain);
2134 if (sym != NULL)
2135 return (struct block_symbol) {sym, block};
2136
2137 if (language == language_cplus || language == language_fortran)
2138 {
2139 struct block_symbol blocksym
2140 = cp_lookup_symbol_imports_or_template (scope, name, block,
2141 domain);
2142
2143 if (blocksym.symbol != NULL)
2144 return blocksym;
2145 }
2146
2147 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2148 break;
2149 block = BLOCK_SUPERBLOCK (block);
2150 }
2151
2152 /* We've reached the end of the function without finding a result. */
2153
2154 return {};
2155 }
2156
2157 /* See symtab.h. */
2158
2159 struct objfile *
2160 lookup_objfile_from_block (const struct block *block)
2161 {
2162 if (block == NULL)
2163 return NULL;
2164
2165 block = block_global_block (block);
2166 /* Look through all blockvectors. */
2167 for (objfile *obj : current_program_space->objfiles ())
2168 {
2169 for (compunit_symtab *cust : obj->compunits ())
2170 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2171 GLOBAL_BLOCK))
2172 {
2173 if (obj->separate_debug_objfile_backlink)
2174 obj = obj->separate_debug_objfile_backlink;
2175
2176 return obj;
2177 }
2178 }
2179
2180 return NULL;
2181 }
2182
2183 /* See symtab.h. */
2184
2185 struct symbol *
2186 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2187 const struct block *block,
2188 const domain_enum domain)
2189 {
2190 struct symbol *sym;
2191
2192 if (symbol_lookup_debug > 1)
2193 {
2194 struct objfile *objfile = lookup_objfile_from_block (block);
2195
2196 fprintf_unfiltered (gdb_stdlog,
2197 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2198 name, host_address_to_string (block),
2199 objfile_debug_name (objfile),
2200 domain_name (domain));
2201 }
2202
2203 sym = block_lookup_symbol (block, name, match_type, domain);
2204 if (sym)
2205 {
2206 if (symbol_lookup_debug > 1)
2207 {
2208 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2209 host_address_to_string (sym));
2210 }
2211 return fixup_symbol_section (sym, NULL);
2212 }
2213
2214 if (symbol_lookup_debug > 1)
2215 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2216 return NULL;
2217 }
2218
2219 /* See symtab.h. */
2220
2221 struct block_symbol
2222 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2223 enum block_enum block_index,
2224 const char *name,
2225 const domain_enum domain)
2226 {
2227 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2228
2229 for (objfile *objfile : main_objfile->separate_debug_objfiles ())
2230 {
2231 struct block_symbol result
2232 = lookup_symbol_in_objfile (objfile, block_index, name, domain);
2233
2234 if (result.symbol != nullptr)
2235 return result;
2236 }
2237
2238 return {};
2239 }
2240
2241 /* Check to see if the symbol is defined in one of the OBJFILE's
2242 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2243 depending on whether or not we want to search global symbols or
2244 static symbols. */
2245
2246 static struct block_symbol
2247 lookup_symbol_in_objfile_symtabs (struct objfile *objfile,
2248 enum block_enum block_index, const char *name,
2249 const domain_enum domain)
2250 {
2251 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2252
2253 if (symbol_lookup_debug > 1)
2254 {
2255 fprintf_unfiltered (gdb_stdlog,
2256 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2257 objfile_debug_name (objfile),
2258 block_index == GLOBAL_BLOCK
2259 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2260 name, domain_name (domain));
2261 }
2262
2263 for (compunit_symtab *cust : objfile->compunits ())
2264 {
2265 const struct blockvector *bv;
2266 const struct block *block;
2267 struct block_symbol result;
2268
2269 bv = COMPUNIT_BLOCKVECTOR (cust);
2270 block = BLOCKVECTOR_BLOCK (bv, block_index);
2271 result.symbol = block_lookup_symbol_primary (block, name, domain);
2272 result.block = block;
2273 if (result.symbol != NULL)
2274 {
2275 if (symbol_lookup_debug > 1)
2276 {
2277 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2278 host_address_to_string (result.symbol),
2279 host_address_to_string (block));
2280 }
2281 result.symbol = fixup_symbol_section (result.symbol, objfile);
2282 return result;
2283
2284 }
2285 }
2286
2287 if (symbol_lookup_debug > 1)
2288 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2289 return {};
2290 }
2291
2292 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2293 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2294 and all associated separate debug objfiles.
2295
2296 Normally we only look in OBJFILE, and not any separate debug objfiles
2297 because the outer loop will cause them to be searched too. This case is
2298 different. Here we're called from search_symbols where it will only
2299 call us for the objfile that contains a matching minsym. */
2300
2301 static struct block_symbol
2302 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2303 const char *linkage_name,
2304 domain_enum domain)
2305 {
2306 enum language lang = current_language->la_language;
2307 struct objfile *main_objfile;
2308
2309 demangle_result_storage storage;
2310 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2311
2312 if (objfile->separate_debug_objfile_backlink)
2313 main_objfile = objfile->separate_debug_objfile_backlink;
2314 else
2315 main_objfile = objfile;
2316
2317 for (::objfile *cur_objfile : main_objfile->separate_debug_objfiles ())
2318 {
2319 struct block_symbol result;
2320
2321 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2322 modified_name, domain);
2323 if (result.symbol == NULL)
2324 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2325 modified_name, domain);
2326 if (result.symbol != NULL)
2327 return result;
2328 }
2329
2330 return {};
2331 }
2332
2333 /* A helper function that throws an exception when a symbol was found
2334 in a psymtab but not in a symtab. */
2335
2336 static void ATTRIBUTE_NORETURN
2337 error_in_psymtab_expansion (enum block_enum block_index, const char *name,
2338 struct compunit_symtab *cust)
2339 {
2340 error (_("\
2341 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2342 %s may be an inlined function, or may be a template function\n \
2343 (if a template, try specifying an instantiation: %s<type>)."),
2344 block_index == GLOBAL_BLOCK ? "global" : "static",
2345 name,
2346 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2347 name, name);
2348 }
2349
2350 /* A helper function for various lookup routines that interfaces with
2351 the "quick" symbol table functions. */
2352
2353 static struct block_symbol
2354 lookup_symbol_via_quick_fns (struct objfile *objfile,
2355 enum block_enum block_index, const char *name,
2356 const domain_enum domain)
2357 {
2358 struct compunit_symtab *cust;
2359 const struct blockvector *bv;
2360 const struct block *block;
2361 struct block_symbol result;
2362
2363 if (!objfile->sf)
2364 return {};
2365
2366 if (symbol_lookup_debug > 1)
2367 {
2368 fprintf_unfiltered (gdb_stdlog,
2369 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2370 objfile_debug_name (objfile),
2371 block_index == GLOBAL_BLOCK
2372 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2373 name, domain_name (domain));
2374 }
2375
2376 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2377 if (cust == NULL)
2378 {
2379 if (symbol_lookup_debug > 1)
2380 {
2381 fprintf_unfiltered (gdb_stdlog,
2382 "lookup_symbol_via_quick_fns (...) = NULL\n");
2383 }
2384 return {};
2385 }
2386
2387 bv = COMPUNIT_BLOCKVECTOR (cust);
2388 block = BLOCKVECTOR_BLOCK (bv, block_index);
2389 result.symbol = block_lookup_symbol (block, name,
2390 symbol_name_match_type::FULL, domain);
2391 if (result.symbol == NULL)
2392 error_in_psymtab_expansion (block_index, name, cust);
2393
2394 if (symbol_lookup_debug > 1)
2395 {
2396 fprintf_unfiltered (gdb_stdlog,
2397 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2398 host_address_to_string (result.symbol),
2399 host_address_to_string (block));
2400 }
2401
2402 result.symbol = fixup_symbol_section (result.symbol, objfile);
2403 result.block = block;
2404 return result;
2405 }
2406
2407 /* See symtab.h. */
2408
2409 struct block_symbol
2410 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2411 const char *name,
2412 const struct block *block,
2413 const domain_enum domain)
2414 {
2415 struct block_symbol result;
2416
2417 /* NOTE: carlton/2003-05-19: The comments below were written when
2418 this (or what turned into this) was part of lookup_symbol_aux;
2419 I'm much less worried about these questions now, since these
2420 decisions have turned out well, but I leave these comments here
2421 for posterity. */
2422
2423 /* NOTE: carlton/2002-12-05: There is a question as to whether or
2424 not it would be appropriate to search the current global block
2425 here as well. (That's what this code used to do before the
2426 is_a_field_of_this check was moved up.) On the one hand, it's
2427 redundant with the lookup in all objfiles search that happens
2428 next. On the other hand, if decode_line_1 is passed an argument
2429 like filename:var, then the user presumably wants 'var' to be
2430 searched for in filename. On the third hand, there shouldn't be
2431 multiple global variables all of which are named 'var', and it's
2432 not like decode_line_1 has ever restricted its search to only
2433 global variables in a single filename. All in all, only
2434 searching the static block here seems best: it's correct and it's
2435 cleanest. */
2436
2437 /* NOTE: carlton/2002-12-05: There's also a possible performance
2438 issue here: if you usually search for global symbols in the
2439 current file, then it would be slightly better to search the
2440 current global block before searching all the symtabs. But there
2441 are other factors that have a much greater effect on performance
2442 than that one, so I don't think we should worry about that for
2443 now. */
2444
2445 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2446 the current objfile. Searching the current objfile first is useful
2447 for both matching user expectations as well as performance. */
2448
2449 result = lookup_symbol_in_static_block (name, block, domain);
2450 if (result.symbol != NULL)
2451 return result;
2452
2453 /* If we didn't find a definition for a builtin type in the static block,
2454 search for it now. This is actually the right thing to do and can be
2455 a massive performance win. E.g., when debugging a program with lots of
2456 shared libraries we could search all of them only to find out the
2457 builtin type isn't defined in any of them. This is common for types
2458 like "void". */
2459 if (domain == VAR_DOMAIN)
2460 {
2461 struct gdbarch *gdbarch;
2462
2463 if (block == NULL)
2464 gdbarch = target_gdbarch ();
2465 else
2466 gdbarch = block_gdbarch (block);
2467 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2468 gdbarch, name);
2469 result.block = NULL;
2470 if (result.symbol != NULL)
2471 return result;
2472 }
2473
2474 return lookup_global_symbol (name, block, domain);
2475 }
2476
2477 /* See symtab.h. */
2478
2479 struct block_symbol
2480 lookup_symbol_in_static_block (const char *name,
2481 const struct block *block,
2482 const domain_enum domain)
2483 {
2484 const struct block *static_block = block_static_block (block);
2485 struct symbol *sym;
2486
2487 if (static_block == NULL)
2488 return {};
2489
2490 if (symbol_lookup_debug)
2491 {
2492 struct objfile *objfile = lookup_objfile_from_block (static_block);
2493
2494 fprintf_unfiltered (gdb_stdlog,
2495 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2496 " %s)\n",
2497 name,
2498 host_address_to_string (block),
2499 objfile_debug_name (objfile),
2500 domain_name (domain));
2501 }
2502
2503 sym = lookup_symbol_in_block (name,
2504 symbol_name_match_type::FULL,
2505 static_block, domain);
2506 if (symbol_lookup_debug)
2507 {
2508 fprintf_unfiltered (gdb_stdlog,
2509 "lookup_symbol_in_static_block (...) = %s\n",
2510 sym != NULL ? host_address_to_string (sym) : "NULL");
2511 }
2512 return (struct block_symbol) {sym, static_block};
2513 }
2514
2515 /* Perform the standard symbol lookup of NAME in OBJFILE:
2516 1) First search expanded symtabs, and if not found
2517 2) Search the "quick" symtabs (partial or .gdb_index).
2518 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2519
2520 static struct block_symbol
2521 lookup_symbol_in_objfile (struct objfile *objfile, enum block_enum block_index,
2522 const char *name, const domain_enum domain)
2523 {
2524 struct block_symbol result;
2525
2526 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2527
2528 if (symbol_lookup_debug)
2529 {
2530 fprintf_unfiltered (gdb_stdlog,
2531 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2532 objfile_debug_name (objfile),
2533 block_index == GLOBAL_BLOCK
2534 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2535 name, domain_name (domain));
2536 }
2537
2538 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2539 name, domain);
2540 if (result.symbol != NULL)
2541 {
2542 if (symbol_lookup_debug)
2543 {
2544 fprintf_unfiltered (gdb_stdlog,
2545 "lookup_symbol_in_objfile (...) = %s"
2546 " (in symtabs)\n",
2547 host_address_to_string (result.symbol));
2548 }
2549 return result;
2550 }
2551
2552 result = lookup_symbol_via_quick_fns (objfile, block_index,
2553 name, domain);
2554 if (symbol_lookup_debug)
2555 {
2556 fprintf_unfiltered (gdb_stdlog,
2557 "lookup_symbol_in_objfile (...) = %s%s\n",
2558 result.symbol != NULL
2559 ? host_address_to_string (result.symbol)
2560 : "NULL",
2561 result.symbol != NULL ? " (via quick fns)" : "");
2562 }
2563 return result;
2564 }
2565
2566 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2567
2568 struct global_or_static_sym_lookup_data
2569 {
2570 /* The name of the symbol we are searching for. */
2571 const char *name;
2572
2573 /* The domain to use for our search. */
2574 domain_enum domain;
2575
2576 /* The block index in which to search. */
2577 enum block_enum block_index;
2578
2579 /* The field where the callback should store the symbol if found.
2580 It should be initialized to {NULL, NULL} before the search is started. */
2581 struct block_symbol result;
2582 };
2583
2584 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2585 It searches by name for a symbol in the block given by BLOCK_INDEX of the
2586 given OBJFILE. The arguments for the search are passed via CB_DATA, which
2587 in reality is a pointer to struct global_or_static_sym_lookup_data. */
2588
2589 static int
2590 lookup_symbol_global_or_static_iterator_cb (struct objfile *objfile,
2591 void *cb_data)
2592 {
2593 struct global_or_static_sym_lookup_data *data =
2594 (struct global_or_static_sym_lookup_data *) cb_data;
2595
2596 gdb_assert (data->result.symbol == NULL
2597 && data->result.block == NULL);
2598
2599 data->result = lookup_symbol_in_objfile (objfile, data->block_index,
2600 data->name, data->domain);
2601
2602 /* If we found a match, tell the iterator to stop. Otherwise,
2603 keep going. */
2604 return (data->result.symbol != NULL);
2605 }
2606
2607 /* This function contains the common code of lookup_{global,static}_symbol.
2608 OBJFILE is only used if BLOCK_INDEX is GLOBAL_SCOPE, in which case it is
2609 the objfile to start the lookup in. */
2610
2611 static struct block_symbol
2612 lookup_global_or_static_symbol (const char *name,
2613 enum block_enum block_index,
2614 struct objfile *objfile,
2615 const domain_enum domain)
2616 {
2617 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2618 struct block_symbol result;
2619 struct global_or_static_sym_lookup_data lookup_data;
2620 struct block_symbol_cache *bsc;
2621 struct symbol_cache_slot *slot;
2622
2623 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2624 gdb_assert (objfile == nullptr || block_index == GLOBAL_BLOCK);
2625
2626 /* First see if we can find the symbol in the cache.
2627 This works because we use the current objfile to qualify the lookup. */
2628 result = symbol_cache_lookup (cache, objfile, block_index, name, domain,
2629 &bsc, &slot);
2630 if (result.symbol != NULL)
2631 {
2632 if (SYMBOL_LOOKUP_FAILED_P (result))
2633 return {};
2634 return result;
2635 }
2636
2637 /* Do a global search (of global blocks, heh). */
2638 if (result.symbol == NULL)
2639 {
2640 memset (&lookup_data, 0, sizeof (lookup_data));
2641 lookup_data.name = name;
2642 lookup_data.block_index = block_index;
2643 lookup_data.domain = domain;
2644 gdbarch_iterate_over_objfiles_in_search_order
2645 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2646 lookup_symbol_global_or_static_iterator_cb, &lookup_data, objfile);
2647 result = lookup_data.result;
2648 }
2649
2650 if (result.symbol != NULL)
2651 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2652 else
2653 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2654
2655 return result;
2656 }
2657
2658 /* See symtab.h. */
2659
2660 struct block_symbol
2661 lookup_static_symbol (const char *name, const domain_enum domain)
2662 {
2663 return lookup_global_or_static_symbol (name, STATIC_BLOCK, nullptr, domain);
2664 }
2665
2666 /* See symtab.h. */
2667
2668 struct block_symbol
2669 lookup_global_symbol (const char *name,
2670 const struct block *block,
2671 const domain_enum domain)
2672 {
2673 struct objfile *objfile = lookup_objfile_from_block (block);
2674 return lookup_global_or_static_symbol (name, GLOBAL_BLOCK, objfile, domain);
2675 }
2676
2677 int
2678 symbol_matches_domain (enum language symbol_language,
2679 domain_enum symbol_domain,
2680 domain_enum domain)
2681 {
2682 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2683 Similarly, any Ada type declaration implicitly defines a typedef. */
2684 if (symbol_language == language_cplus
2685 || symbol_language == language_d
2686 || symbol_language == language_ada
2687 || symbol_language == language_rust)
2688 {
2689 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2690 && symbol_domain == STRUCT_DOMAIN)
2691 return 1;
2692 }
2693 /* For all other languages, strict match is required. */
2694 return (symbol_domain == domain);
2695 }
2696
2697 /* See symtab.h. */
2698
2699 struct type *
2700 lookup_transparent_type (const char *name)
2701 {
2702 return current_language->la_lookup_transparent_type (name);
2703 }
2704
2705 /* A helper for basic_lookup_transparent_type that interfaces with the
2706 "quick" symbol table functions. */
2707
2708 static struct type *
2709 basic_lookup_transparent_type_quick (struct objfile *objfile,
2710 enum block_enum block_index,
2711 const char *name)
2712 {
2713 struct compunit_symtab *cust;
2714 const struct blockvector *bv;
2715 const struct block *block;
2716 struct symbol *sym;
2717
2718 if (!objfile->sf)
2719 return NULL;
2720 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2721 STRUCT_DOMAIN);
2722 if (cust == NULL)
2723 return NULL;
2724
2725 bv = COMPUNIT_BLOCKVECTOR (cust);
2726 block = BLOCKVECTOR_BLOCK (bv, block_index);
2727 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2728 block_find_non_opaque_type, NULL);
2729 if (sym == NULL)
2730 error_in_psymtab_expansion (block_index, name, cust);
2731 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2732 return SYMBOL_TYPE (sym);
2733 }
2734
2735 /* Subroutine of basic_lookup_transparent_type to simplify it.
2736 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2737 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2738
2739 static struct type *
2740 basic_lookup_transparent_type_1 (struct objfile *objfile,
2741 enum block_enum block_index,
2742 const char *name)
2743 {
2744 const struct blockvector *bv;
2745 const struct block *block;
2746 const struct symbol *sym;
2747
2748 for (compunit_symtab *cust : objfile->compunits ())
2749 {
2750 bv = COMPUNIT_BLOCKVECTOR (cust);
2751 block = BLOCKVECTOR_BLOCK (bv, block_index);
2752 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2753 block_find_non_opaque_type, NULL);
2754 if (sym != NULL)
2755 {
2756 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2757 return SYMBOL_TYPE (sym);
2758 }
2759 }
2760
2761 return NULL;
2762 }
2763
2764 /* The standard implementation of lookup_transparent_type. This code
2765 was modeled on lookup_symbol -- the parts not relevant to looking
2766 up types were just left out. In particular it's assumed here that
2767 types are available in STRUCT_DOMAIN and only in file-static or
2768 global blocks. */
2769
2770 struct type *
2771 basic_lookup_transparent_type (const char *name)
2772 {
2773 struct type *t;
2774
2775 /* Now search all the global symbols. Do the symtab's first, then
2776 check the psymtab's. If a psymtab indicates the existence
2777 of the desired name as a global, then do psymtab-to-symtab
2778 conversion on the fly and return the found symbol. */
2779
2780 for (objfile *objfile : current_program_space->objfiles ())
2781 {
2782 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2783 if (t)
2784 return t;
2785 }
2786
2787 for (objfile *objfile : current_program_space->objfiles ())
2788 {
2789 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2790 if (t)
2791 return t;
2792 }
2793
2794 /* Now search the static file-level symbols.
2795 Not strictly correct, but more useful than an error.
2796 Do the symtab's first, then
2797 check the psymtab's. If a psymtab indicates the existence
2798 of the desired name as a file-level static, then do psymtab-to-symtab
2799 conversion on the fly and return the found symbol. */
2800
2801 for (objfile *objfile : current_program_space->objfiles ())
2802 {
2803 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2804 if (t)
2805 return t;
2806 }
2807
2808 for (objfile *objfile : current_program_space->objfiles ())
2809 {
2810 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2811 if (t)
2812 return t;
2813 }
2814
2815 return (struct type *) 0;
2816 }
2817
2818 /* See symtab.h. */
2819
2820 bool
2821 iterate_over_symbols (const struct block *block,
2822 const lookup_name_info &name,
2823 const domain_enum domain,
2824 gdb::function_view<symbol_found_callback_ftype> callback)
2825 {
2826 struct block_iterator iter;
2827 struct symbol *sym;
2828
2829 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2830 {
2831 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2832 SYMBOL_DOMAIN (sym), domain))
2833 {
2834 struct block_symbol block_sym = {sym, block};
2835
2836 if (!callback (&block_sym))
2837 return false;
2838 }
2839 }
2840 return true;
2841 }
2842
2843 /* See symtab.h. */
2844
2845 bool
2846 iterate_over_symbols_terminated
2847 (const struct block *block,
2848 const lookup_name_info &name,
2849 const domain_enum domain,
2850 gdb::function_view<symbol_found_callback_ftype> callback)
2851 {
2852 if (!iterate_over_symbols (block, name, domain, callback))
2853 return false;
2854 struct block_symbol block_sym = {nullptr, block};
2855 return callback (&block_sym);
2856 }
2857
2858 /* Find the compunit symtab associated with PC and SECTION.
2859 This will read in debug info as necessary. */
2860
2861 struct compunit_symtab *
2862 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2863 {
2864 struct compunit_symtab *best_cust = NULL;
2865 CORE_ADDR distance = 0;
2866 struct bound_minimal_symbol msymbol;
2867
2868 /* If we know that this is not a text address, return failure. This is
2869 necessary because we loop based on the block's high and low code
2870 addresses, which do not include the data ranges, and because
2871 we call find_pc_sect_psymtab which has a similar restriction based
2872 on the partial_symtab's texthigh and textlow. */
2873 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2874 if (msymbol.minsym && msymbol.minsym->data_p ())
2875 return NULL;
2876
2877 /* Search all symtabs for the one whose file contains our address, and which
2878 is the smallest of all the ones containing the address. This is designed
2879 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2880 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2881 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2882
2883 This happens for native ecoff format, where code from included files
2884 gets its own symtab. The symtab for the included file should have
2885 been read in already via the dependency mechanism.
2886 It might be swifter to create several symtabs with the same name
2887 like xcoff does (I'm not sure).
2888
2889 It also happens for objfiles that have their functions reordered.
2890 For these, the symtab we are looking for is not necessarily read in. */
2891
2892 for (objfile *obj_file : current_program_space->objfiles ())
2893 {
2894 for (compunit_symtab *cust : obj_file->compunits ())
2895 {
2896 const struct block *b;
2897 const struct blockvector *bv;
2898
2899 bv = COMPUNIT_BLOCKVECTOR (cust);
2900 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2901
2902 if (BLOCK_START (b) <= pc
2903 && BLOCK_END (b) > pc
2904 && (distance == 0
2905 || BLOCK_END (b) - BLOCK_START (b) < distance))
2906 {
2907 /* For an objfile that has its functions reordered,
2908 find_pc_psymtab will find the proper partial symbol table
2909 and we simply return its corresponding symtab. */
2910 /* In order to better support objfiles that contain both
2911 stabs and coff debugging info, we continue on if a psymtab
2912 can't be found. */
2913 if ((obj_file->flags & OBJF_REORDERED) && obj_file->sf)
2914 {
2915 struct compunit_symtab *result;
2916
2917 result
2918 = obj_file->sf->qf->find_pc_sect_compunit_symtab (obj_file,
2919 msymbol,
2920 pc,
2921 section,
2922 0);
2923 if (result != NULL)
2924 return result;
2925 }
2926 if (section != 0)
2927 {
2928 struct block_iterator iter;
2929 struct symbol *sym = NULL;
2930
2931 ALL_BLOCK_SYMBOLS (b, iter, sym)
2932 {
2933 fixup_symbol_section (sym, obj_file);
2934 if (matching_obj_sections (SYMBOL_OBJ_SECTION (obj_file,
2935 sym),
2936 section))
2937 break;
2938 }
2939 if (sym == NULL)
2940 continue; /* No symbol in this symtab matches
2941 section. */
2942 }
2943 distance = BLOCK_END (b) - BLOCK_START (b);
2944 best_cust = cust;
2945 }
2946 }
2947 }
2948
2949 if (best_cust != NULL)
2950 return best_cust;
2951
2952 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2953
2954 for (objfile *objf : current_program_space->objfiles ())
2955 {
2956 struct compunit_symtab *result;
2957
2958 if (!objf->sf)
2959 continue;
2960 result = objf->sf->qf->find_pc_sect_compunit_symtab (objf,
2961 msymbol,
2962 pc, section,
2963 1);
2964 if (result != NULL)
2965 return result;
2966 }
2967
2968 return NULL;
2969 }
2970
2971 /* Find the compunit symtab associated with PC.
2972 This will read in debug info as necessary.
2973 Backward compatibility, no section. */
2974
2975 struct compunit_symtab *
2976 find_pc_compunit_symtab (CORE_ADDR pc)
2977 {
2978 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2979 }
2980
2981 /* See symtab.h. */
2982
2983 struct symbol *
2984 find_symbol_at_address (CORE_ADDR address)
2985 {
2986 for (objfile *objfile : current_program_space->objfiles ())
2987 {
2988 if (objfile->sf == NULL
2989 || objfile->sf->qf->find_compunit_symtab_by_address == NULL)
2990 continue;
2991
2992 struct compunit_symtab *symtab
2993 = objfile->sf->qf->find_compunit_symtab_by_address (objfile, address);
2994 if (symtab != NULL)
2995 {
2996 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
2997
2998 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
2999 {
3000 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
3001 struct block_iterator iter;
3002 struct symbol *sym;
3003
3004 ALL_BLOCK_SYMBOLS (b, iter, sym)
3005 {
3006 if (SYMBOL_CLASS (sym) == LOC_STATIC
3007 && SYMBOL_VALUE_ADDRESS (sym) == address)
3008 return sym;
3009 }
3010 }
3011 }
3012 }
3013
3014 return NULL;
3015 }
3016
3017 \f
3018
3019 /* Find the source file and line number for a given PC value and SECTION.
3020 Return a structure containing a symtab pointer, a line number,
3021 and a pc range for the entire source line.
3022 The value's .pc field is NOT the specified pc.
3023 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3024 use the line that ends there. Otherwise, in that case, the line
3025 that begins there is used. */
3026
3027 /* The big complication here is that a line may start in one file, and end just
3028 before the start of another file. This usually occurs when you #include
3029 code in the middle of a subroutine. To properly find the end of a line's PC
3030 range, we must search all symtabs associated with this compilation unit, and
3031 find the one whose first PC is closer than that of the next line in this
3032 symtab. */
3033
3034 struct symtab_and_line
3035 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3036 {
3037 struct compunit_symtab *cust;
3038 struct linetable *l;
3039 int len;
3040 struct linetable_entry *item;
3041 const struct blockvector *bv;
3042 struct bound_minimal_symbol msymbol;
3043
3044 /* Info on best line seen so far, and where it starts, and its file. */
3045
3046 struct linetable_entry *best = NULL;
3047 CORE_ADDR best_end = 0;
3048 struct symtab *best_symtab = 0;
3049
3050 /* Store here the first line number
3051 of a file which contains the line at the smallest pc after PC.
3052 If we don't find a line whose range contains PC,
3053 we will use a line one less than this,
3054 with a range from the start of that file to the first line's pc. */
3055 struct linetable_entry *alt = NULL;
3056
3057 /* Info on best line seen in this file. */
3058
3059 struct linetable_entry *prev;
3060
3061 /* If this pc is not from the current frame,
3062 it is the address of the end of a call instruction.
3063 Quite likely that is the start of the following statement.
3064 But what we want is the statement containing the instruction.
3065 Fudge the pc to make sure we get that. */
3066
3067 /* It's tempting to assume that, if we can't find debugging info for
3068 any function enclosing PC, that we shouldn't search for line
3069 number info, either. However, GAS can emit line number info for
3070 assembly files --- very helpful when debugging hand-written
3071 assembly code. In such a case, we'd have no debug info for the
3072 function, but we would have line info. */
3073
3074 if (notcurrent)
3075 pc -= 1;
3076
3077 /* elz: added this because this function returned the wrong
3078 information if the pc belongs to a stub (import/export)
3079 to call a shlib function. This stub would be anywhere between
3080 two functions in the target, and the line info was erroneously
3081 taken to be the one of the line before the pc. */
3082
3083 /* RT: Further explanation:
3084
3085 * We have stubs (trampolines) inserted between procedures.
3086 *
3087 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3088 * exists in the main image.
3089 *
3090 * In the minimal symbol table, we have a bunch of symbols
3091 * sorted by start address. The stubs are marked as "trampoline",
3092 * the others appear as text. E.g.:
3093 *
3094 * Minimal symbol table for main image
3095 * main: code for main (text symbol)
3096 * shr1: stub (trampoline symbol)
3097 * foo: code for foo (text symbol)
3098 * ...
3099 * Minimal symbol table for "shr1" image:
3100 * ...
3101 * shr1: code for shr1 (text symbol)
3102 * ...
3103 *
3104 * So the code below is trying to detect if we are in the stub
3105 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3106 * and if found, do the symbolization from the real-code address
3107 * rather than the stub address.
3108 *
3109 * Assumptions being made about the minimal symbol table:
3110 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3111 * if we're really in the trampoline.s If we're beyond it (say
3112 * we're in "foo" in the above example), it'll have a closer
3113 * symbol (the "foo" text symbol for example) and will not
3114 * return the trampoline.
3115 * 2. lookup_minimal_symbol_text() will find a real text symbol
3116 * corresponding to the trampoline, and whose address will
3117 * be different than the trampoline address. I put in a sanity
3118 * check for the address being the same, to avoid an
3119 * infinite recursion.
3120 */
3121 msymbol = lookup_minimal_symbol_by_pc (pc);
3122 if (msymbol.minsym != NULL)
3123 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3124 {
3125 struct bound_minimal_symbol mfunsym
3126 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3127 NULL);
3128
3129 if (mfunsym.minsym == NULL)
3130 /* I eliminated this warning since it is coming out
3131 * in the following situation:
3132 * gdb shmain // test program with shared libraries
3133 * (gdb) break shr1 // function in shared lib
3134 * Warning: In stub for ...
3135 * In the above situation, the shared lib is not loaded yet,
3136 * so of course we can't find the real func/line info,
3137 * but the "break" still works, and the warning is annoying.
3138 * So I commented out the warning. RT */
3139 /* warning ("In stub for %s; unable to find real function/line info",
3140 SYMBOL_LINKAGE_NAME (msymbol)); */
3141 ;
3142 /* fall through */
3143 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3144 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3145 /* Avoid infinite recursion */
3146 /* See above comment about why warning is commented out. */
3147 /* warning ("In stub for %s; unable to find real function/line info",
3148 SYMBOL_LINKAGE_NAME (msymbol)); */
3149 ;
3150 /* fall through */
3151 else
3152 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3153 }
3154
3155 symtab_and_line val;
3156 val.pspace = current_program_space;
3157
3158 cust = find_pc_sect_compunit_symtab (pc, section);
3159 if (cust == NULL)
3160 {
3161 /* If no symbol information, return previous pc. */
3162 if (notcurrent)
3163 pc++;
3164 val.pc = pc;
3165 return val;
3166 }
3167
3168 bv = COMPUNIT_BLOCKVECTOR (cust);
3169
3170 /* Look at all the symtabs that share this blockvector.
3171 They all have the same apriori range, that we found was right;
3172 but they have different line tables. */
3173
3174 for (symtab *iter_s : compunit_filetabs (cust))
3175 {
3176 /* Find the best line in this symtab. */
3177 l = SYMTAB_LINETABLE (iter_s);
3178 if (!l)
3179 continue;
3180 len = l->nitems;
3181 if (len <= 0)
3182 {
3183 /* I think len can be zero if the symtab lacks line numbers
3184 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3185 I'm not sure which, and maybe it depends on the symbol
3186 reader). */
3187 continue;
3188 }
3189
3190 prev = NULL;
3191 item = l->item; /* Get first line info. */
3192
3193 /* Is this file's first line closer than the first lines of other files?
3194 If so, record this file, and its first line, as best alternate. */
3195 if (item->pc > pc && (!alt || item->pc < alt->pc))
3196 alt = item;
3197
3198 auto pc_compare = [](const CORE_ADDR & comp_pc,
3199 const struct linetable_entry & lhs)->bool
3200 {
3201 return comp_pc < lhs.pc;
3202 };
3203
3204 struct linetable_entry *first = item;
3205 struct linetable_entry *last = item + len;
3206 item = std::upper_bound (first, last, pc, pc_compare);
3207 if (item != first)
3208 prev = item - 1; /* Found a matching item. */
3209
3210 /* At this point, prev points at the line whose start addr is <= pc, and
3211 item points at the next line. If we ran off the end of the linetable
3212 (pc >= start of the last line), then prev == item. If pc < start of
3213 the first line, prev will not be set. */
3214
3215 /* Is this file's best line closer than the best in the other files?
3216 If so, record this file, and its best line, as best so far. Don't
3217 save prev if it represents the end of a function (i.e. line number
3218 0) instead of a real line. */
3219
3220 if (prev && prev->line && (!best || prev->pc > best->pc))
3221 {
3222 best = prev;
3223 best_symtab = iter_s;
3224
3225 /* Discard BEST_END if it's before the PC of the current BEST. */
3226 if (best_end <= best->pc)
3227 best_end = 0;
3228 }
3229
3230 /* If another line (denoted by ITEM) is in the linetable and its
3231 PC is after BEST's PC, but before the current BEST_END, then
3232 use ITEM's PC as the new best_end. */
3233 if (best && item < last && item->pc > best->pc
3234 && (best_end == 0 || best_end > item->pc))
3235 best_end = item->pc;
3236 }
3237
3238 if (!best_symtab)
3239 {
3240 /* If we didn't find any line number info, just return zeros.
3241 We used to return alt->line - 1 here, but that could be
3242 anywhere; if we don't have line number info for this PC,
3243 don't make some up. */
3244 val.pc = pc;
3245 }
3246 else if (best->line == 0)
3247 {
3248 /* If our best fit is in a range of PC's for which no line
3249 number info is available (line number is zero) then we didn't
3250 find any valid line information. */
3251 val.pc = pc;
3252 }
3253 else
3254 {
3255 val.symtab = best_symtab;
3256 val.line = best->line;
3257 val.pc = best->pc;
3258 if (best_end && (!alt || best_end < alt->pc))
3259 val.end = best_end;
3260 else if (alt)
3261 val.end = alt->pc;
3262 else
3263 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3264 }
3265 val.section = section;
3266 return val;
3267 }
3268
3269 /* Backward compatibility (no section). */
3270
3271 struct symtab_and_line
3272 find_pc_line (CORE_ADDR pc, int notcurrent)
3273 {
3274 struct obj_section *section;
3275
3276 section = find_pc_overlay (pc);
3277 if (pc_in_unmapped_range (pc, section))
3278 pc = overlay_mapped_address (pc, section);
3279 return find_pc_sect_line (pc, section, notcurrent);
3280 }
3281
3282 /* See symtab.h. */
3283
3284 struct symtab *
3285 find_pc_line_symtab (CORE_ADDR pc)
3286 {
3287 struct symtab_and_line sal;
3288
3289 /* This always passes zero for NOTCURRENT to find_pc_line.
3290 There are currently no callers that ever pass non-zero. */
3291 sal = find_pc_line (pc, 0);
3292 return sal.symtab;
3293 }
3294 \f
3295 /* Find line number LINE in any symtab whose name is the same as
3296 SYMTAB.
3297
3298 If found, return the symtab that contains the linetable in which it was
3299 found, set *INDEX to the index in the linetable of the best entry
3300 found, and set *EXACT_MATCH nonzero if the value returned is an
3301 exact match.
3302
3303 If not found, return NULL. */
3304
3305 struct symtab *
3306 find_line_symtab (struct symtab *sym_tab, int line,
3307 int *index, int *exact_match)
3308 {
3309 int exact = 0; /* Initialized here to avoid a compiler warning. */
3310
3311 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3312 so far seen. */
3313
3314 int best_index;
3315 struct linetable *best_linetable;
3316 struct symtab *best_symtab;
3317
3318 /* First try looking it up in the given symtab. */
3319 best_linetable = SYMTAB_LINETABLE (sym_tab);
3320 best_symtab = sym_tab;
3321 best_index = find_line_common (best_linetable, line, &exact, 0);
3322 if (best_index < 0 || !exact)
3323 {
3324 /* Didn't find an exact match. So we better keep looking for
3325 another symtab with the same name. In the case of xcoff,
3326 multiple csects for one source file (produced by IBM's FORTRAN
3327 compiler) produce multiple symtabs (this is unavoidable
3328 assuming csects can be at arbitrary places in memory and that
3329 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3330
3331 /* BEST is the smallest linenumber > LINE so far seen,
3332 or 0 if none has been seen so far.
3333 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3334 int best;
3335
3336 if (best_index >= 0)
3337 best = best_linetable->item[best_index].line;
3338 else
3339 best = 0;
3340
3341 for (objfile *objfile : current_program_space->objfiles ())
3342 {
3343 if (objfile->sf)
3344 objfile->sf->qf->expand_symtabs_with_fullname
3345 (objfile, symtab_to_fullname (sym_tab));
3346 }
3347
3348 for (objfile *objfile : current_program_space->objfiles ())
3349 {
3350 for (compunit_symtab *cu : objfile->compunits ())
3351 {
3352 for (symtab *s : compunit_filetabs (cu))
3353 {
3354 struct linetable *l;
3355 int ind;
3356
3357 if (FILENAME_CMP (sym_tab->filename, s->filename) != 0)
3358 continue;
3359 if (FILENAME_CMP (symtab_to_fullname (sym_tab),
3360 symtab_to_fullname (s)) != 0)
3361 continue;
3362 l = SYMTAB_LINETABLE (s);
3363 ind = find_line_common (l, line, &exact, 0);
3364 if (ind >= 0)
3365 {
3366 if (exact)
3367 {
3368 best_index = ind;
3369 best_linetable = l;
3370 best_symtab = s;
3371 goto done;
3372 }
3373 if (best == 0 || l->item[ind].line < best)
3374 {
3375 best = l->item[ind].line;
3376 best_index = ind;
3377 best_linetable = l;
3378 best_symtab = s;
3379 }
3380 }
3381 }
3382 }
3383 }
3384 }
3385 done:
3386 if (best_index < 0)
3387 return NULL;
3388
3389 if (index)
3390 *index = best_index;
3391 if (exact_match)
3392 *exact_match = exact;
3393
3394 return best_symtab;
3395 }
3396
3397 /* Given SYMTAB, returns all the PCs function in the symtab that
3398 exactly match LINE. Returns an empty vector if there are no exact
3399 matches, but updates BEST_ITEM in this case. */
3400
3401 std::vector<CORE_ADDR>
3402 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3403 struct linetable_entry **best_item)
3404 {
3405 int start = 0;
3406 std::vector<CORE_ADDR> result;
3407
3408 /* First, collect all the PCs that are at this line. */
3409 while (1)
3410 {
3411 int was_exact;
3412 int idx;
3413
3414 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3415 start);
3416 if (idx < 0)
3417 break;
3418
3419 if (!was_exact)
3420 {
3421 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3422
3423 if (*best_item == NULL || item->line < (*best_item)->line)
3424 *best_item = item;
3425
3426 break;
3427 }
3428
3429 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3430 start = idx + 1;
3431 }
3432
3433 return result;
3434 }
3435
3436 \f
3437 /* Set the PC value for a given source file and line number and return true.
3438 Returns zero for invalid line number (and sets the PC to 0).
3439 The source file is specified with a struct symtab. */
3440
3441 int
3442 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3443 {
3444 struct linetable *l;
3445 int ind;
3446
3447 *pc = 0;
3448 if (symtab == 0)
3449 return 0;
3450
3451 symtab = find_line_symtab (symtab, line, &ind, NULL);
3452 if (symtab != NULL)
3453 {
3454 l = SYMTAB_LINETABLE (symtab);
3455 *pc = l->item[ind].pc;
3456 return 1;
3457 }
3458 else
3459 return 0;
3460 }
3461
3462 /* Find the range of pc values in a line.
3463 Store the starting pc of the line into *STARTPTR
3464 and the ending pc (start of next line) into *ENDPTR.
3465 Returns 1 to indicate success.
3466 Returns 0 if could not find the specified line. */
3467
3468 int
3469 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3470 CORE_ADDR *endptr)
3471 {
3472 CORE_ADDR startaddr;
3473 struct symtab_and_line found_sal;
3474
3475 startaddr = sal.pc;
3476 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3477 return 0;
3478
3479 /* This whole function is based on address. For example, if line 10 has
3480 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3481 "info line *0x123" should say the line goes from 0x100 to 0x200
3482 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3483 This also insures that we never give a range like "starts at 0x134
3484 and ends at 0x12c". */
3485
3486 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3487 if (found_sal.line != sal.line)
3488 {
3489 /* The specified line (sal) has zero bytes. */
3490 *startptr = found_sal.pc;
3491 *endptr = found_sal.pc;
3492 }
3493 else
3494 {
3495 *startptr = found_sal.pc;
3496 *endptr = found_sal.end;
3497 }
3498 return 1;
3499 }
3500
3501 /* Given a line table and a line number, return the index into the line
3502 table for the pc of the nearest line whose number is >= the specified one.
3503 Return -1 if none is found. The value is >= 0 if it is an index.
3504 START is the index at which to start searching the line table.
3505
3506 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3507
3508 static int
3509 find_line_common (struct linetable *l, int lineno,
3510 int *exact_match, int start)
3511 {
3512 int i;
3513 int len;
3514
3515 /* BEST is the smallest linenumber > LINENO so far seen,
3516 or 0 if none has been seen so far.
3517 BEST_INDEX identifies the item for it. */
3518
3519 int best_index = -1;
3520 int best = 0;
3521
3522 *exact_match = 0;
3523
3524 if (lineno <= 0)
3525 return -1;
3526 if (l == 0)
3527 return -1;
3528
3529 len = l->nitems;
3530 for (i = start; i < len; i++)
3531 {
3532 struct linetable_entry *item = &(l->item[i]);
3533
3534 if (item->line == lineno)
3535 {
3536 /* Return the first (lowest address) entry which matches. */
3537 *exact_match = 1;
3538 return i;
3539 }
3540
3541 if (item->line > lineno && (best == 0 || item->line < best))
3542 {
3543 best = item->line;
3544 best_index = i;
3545 }
3546 }
3547
3548 /* If we got here, we didn't get an exact match. */
3549 return best_index;
3550 }
3551
3552 int
3553 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3554 {
3555 struct symtab_and_line sal;
3556
3557 sal = find_pc_line (pc, 0);
3558 *startptr = sal.pc;
3559 *endptr = sal.end;
3560 return sal.symtab != 0;
3561 }
3562
3563 /* Helper for find_function_start_sal. Does most of the work, except
3564 setting the sal's symbol. */
3565
3566 static symtab_and_line
3567 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3568 bool funfirstline)
3569 {
3570 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3571
3572 if (funfirstline && sal.symtab != NULL
3573 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3574 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3575 {
3576 struct gdbarch *gdbarch = get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
3577
3578 sal.pc = func_addr;
3579 if (gdbarch_skip_entrypoint_p (gdbarch))
3580 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3581 return sal;
3582 }
3583
3584 /* We always should have a line for the function start address.
3585 If we don't, something is odd. Create a plain SAL referring
3586 just the PC and hope that skip_prologue_sal (if requested)
3587 can find a line number for after the prologue. */
3588 if (sal.pc < func_addr)
3589 {
3590 sal = {};
3591 sal.pspace = current_program_space;
3592 sal.pc = func_addr;
3593 sal.section = section;
3594 }
3595
3596 if (funfirstline)
3597 skip_prologue_sal (&sal);
3598
3599 return sal;
3600 }
3601
3602 /* See symtab.h. */
3603
3604 symtab_and_line
3605 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3606 bool funfirstline)
3607 {
3608 symtab_and_line sal
3609 = find_function_start_sal_1 (func_addr, section, funfirstline);
3610
3611 /* find_function_start_sal_1 does a linetable search, so it finds
3612 the symtab and linenumber, but not a symbol. Fill in the
3613 function symbol too. */
3614 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3615
3616 return sal;
3617 }
3618
3619 /* See symtab.h. */
3620
3621 symtab_and_line
3622 find_function_start_sal (symbol *sym, bool funfirstline)
3623 {
3624 fixup_symbol_section (sym, NULL);
3625 symtab_and_line sal
3626 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)),
3627 SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym),
3628 funfirstline);
3629 sal.symbol = sym;
3630 return sal;
3631 }
3632
3633
3634 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3635 address for that function that has an entry in SYMTAB's line info
3636 table. If such an entry cannot be found, return FUNC_ADDR
3637 unaltered. */
3638
3639 static CORE_ADDR
3640 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3641 {
3642 CORE_ADDR func_start, func_end;
3643 struct linetable *l;
3644 int i;
3645
3646 /* Give up if this symbol has no lineinfo table. */
3647 l = SYMTAB_LINETABLE (symtab);
3648 if (l == NULL)
3649 return func_addr;
3650
3651 /* Get the range for the function's PC values, or give up if we
3652 cannot, for some reason. */
3653 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3654 return func_addr;
3655
3656 /* Linetable entries are ordered by PC values, see the commentary in
3657 symtab.h where `struct linetable' is defined. Thus, the first
3658 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3659 address we are looking for. */
3660 for (i = 0; i < l->nitems; i++)
3661 {
3662 struct linetable_entry *item = &(l->item[i]);
3663
3664 /* Don't use line numbers of zero, they mark special entries in
3665 the table. See the commentary on symtab.h before the
3666 definition of struct linetable. */
3667 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3668 return item->pc;
3669 }
3670
3671 return func_addr;
3672 }
3673
3674 /* Adjust SAL to the first instruction past the function prologue.
3675 If the PC was explicitly specified, the SAL is not changed.
3676 If the line number was explicitly specified then the SAL can still be
3677 updated, unless the language for SAL is assembler, in which case the SAL
3678 will be left unchanged.
3679 If SAL is already past the prologue, then do nothing. */
3680
3681 void
3682 skip_prologue_sal (struct symtab_and_line *sal)
3683 {
3684 struct symbol *sym;
3685 struct symtab_and_line start_sal;
3686 CORE_ADDR pc, saved_pc;
3687 struct obj_section *section;
3688 const char *name;
3689 struct objfile *objfile;
3690 struct gdbarch *gdbarch;
3691 const struct block *b, *function_block;
3692 int force_skip, skip;
3693
3694 /* Do not change the SAL if PC was specified explicitly. */
3695 if (sal->explicit_pc)
3696 return;
3697
3698 /* In assembly code, if the user asks for a specific line then we should
3699 not adjust the SAL. The user already has instruction level
3700 visibility in this case, so selecting a line other than one requested
3701 is likely to be the wrong choice. */
3702 if (sal->symtab != nullptr
3703 && sal->explicit_line
3704 && SYMTAB_LANGUAGE (sal->symtab) == language_asm)
3705 return;
3706
3707 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3708
3709 switch_to_program_space_and_thread (sal->pspace);
3710
3711 sym = find_pc_sect_function (sal->pc, sal->section);
3712 if (sym != NULL)
3713 {
3714 fixup_symbol_section (sym, NULL);
3715
3716 objfile = symbol_objfile (sym);
3717 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
3718 section = SYMBOL_OBJ_SECTION (objfile, sym);
3719 name = SYMBOL_LINKAGE_NAME (sym);
3720 }
3721 else
3722 {
3723 struct bound_minimal_symbol msymbol
3724 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3725
3726 if (msymbol.minsym == NULL)
3727 return;
3728
3729 objfile = msymbol.objfile;
3730 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3731 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3732 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3733 }
3734
3735 gdbarch = get_objfile_arch (objfile);
3736
3737 /* Process the prologue in two passes. In the first pass try to skip the
3738 prologue (SKIP is true) and verify there is a real need for it (indicated
3739 by FORCE_SKIP). If no such reason was found run a second pass where the
3740 prologue is not skipped (SKIP is false). */
3741
3742 skip = 1;
3743 force_skip = 1;
3744
3745 /* Be conservative - allow direct PC (without skipping prologue) only if we
3746 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3747 have to be set by the caller so we use SYM instead. */
3748 if (sym != NULL
3749 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3750 force_skip = 0;
3751
3752 saved_pc = pc;
3753 do
3754 {
3755 pc = saved_pc;
3756
3757 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3758 so that gdbarch_skip_prologue has something unique to work on. */
3759 if (section_is_overlay (section) && !section_is_mapped (section))
3760 pc = overlay_unmapped_address (pc, section);
3761
3762 /* Skip "first line" of function (which is actually its prologue). */
3763 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3764 if (gdbarch_skip_entrypoint_p (gdbarch))
3765 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3766 if (skip)
3767 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3768
3769 /* For overlays, map pc back into its mapped VMA range. */
3770 pc = overlay_mapped_address (pc, section);
3771
3772 /* Calculate line number. */
3773 start_sal = find_pc_sect_line (pc, section, 0);
3774
3775 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3776 line is still part of the same function. */
3777 if (skip && start_sal.pc != pc
3778 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3779 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3780 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3781 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3782 {
3783 /* First pc of next line */
3784 pc = start_sal.end;
3785 /* Recalculate the line number (might not be N+1). */
3786 start_sal = find_pc_sect_line (pc, section, 0);
3787 }
3788
3789 /* On targets with executable formats that don't have a concept of
3790 constructors (ELF with .init has, PE doesn't), gcc emits a call
3791 to `__main' in `main' between the prologue and before user
3792 code. */
3793 if (gdbarch_skip_main_prologue_p (gdbarch)
3794 && name && strcmp_iw (name, "main") == 0)
3795 {
3796 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3797 /* Recalculate the line number (might not be N+1). */
3798 start_sal = find_pc_sect_line (pc, section, 0);
3799 force_skip = 1;
3800 }
3801 }
3802 while (!force_skip && skip--);
3803
3804 /* If we still don't have a valid source line, try to find the first
3805 PC in the lineinfo table that belongs to the same function. This
3806 happens with COFF debug info, which does not seem to have an
3807 entry in lineinfo table for the code after the prologue which has
3808 no direct relation to source. For example, this was found to be
3809 the case with the DJGPP target using "gcc -gcoff" when the
3810 compiler inserted code after the prologue to make sure the stack
3811 is aligned. */
3812 if (!force_skip && sym && start_sal.symtab == NULL)
3813 {
3814 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3815 /* Recalculate the line number. */
3816 start_sal = find_pc_sect_line (pc, section, 0);
3817 }
3818
3819 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3820 forward SAL to the end of the prologue. */
3821 if (sal->pc >= pc)
3822 return;
3823
3824 sal->pc = pc;
3825 sal->section = section;
3826 sal->symtab = start_sal.symtab;
3827 sal->line = start_sal.line;
3828 sal->end = start_sal.end;
3829
3830 /* Check if we are now inside an inlined function. If we can,
3831 use the call site of the function instead. */
3832 b = block_for_pc_sect (sal->pc, sal->section);
3833 function_block = NULL;
3834 while (b != NULL)
3835 {
3836 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3837 function_block = b;
3838 else if (BLOCK_FUNCTION (b) != NULL)
3839 break;
3840 b = BLOCK_SUPERBLOCK (b);
3841 }
3842 if (function_block != NULL
3843 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3844 {
3845 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3846 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3847 }
3848 }
3849
3850 /* Given PC at the function's start address, attempt to find the
3851 prologue end using SAL information. Return zero if the skip fails.
3852
3853 A non-optimized prologue traditionally has one SAL for the function
3854 and a second for the function body. A single line function has
3855 them both pointing at the same line.
3856
3857 An optimized prologue is similar but the prologue may contain
3858 instructions (SALs) from the instruction body. Need to skip those
3859 while not getting into the function body.
3860
3861 The functions end point and an increasing SAL line are used as
3862 indicators of the prologue's endpoint.
3863
3864 This code is based on the function refine_prologue_limit
3865 (found in ia64). */
3866
3867 CORE_ADDR
3868 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3869 {
3870 struct symtab_and_line prologue_sal;
3871 CORE_ADDR start_pc;
3872 CORE_ADDR end_pc;
3873 const struct block *bl;
3874
3875 /* Get an initial range for the function. */
3876 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3877 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3878
3879 prologue_sal = find_pc_line (start_pc, 0);
3880 if (prologue_sal.line != 0)
3881 {
3882 /* For languages other than assembly, treat two consecutive line
3883 entries at the same address as a zero-instruction prologue.
3884 The GNU assembler emits separate line notes for each instruction
3885 in a multi-instruction macro, but compilers generally will not
3886 do this. */
3887 if (prologue_sal.symtab->language != language_asm)
3888 {
3889 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3890 int idx = 0;
3891
3892 /* Skip any earlier lines, and any end-of-sequence marker
3893 from a previous function. */
3894 while (linetable->item[idx].pc != prologue_sal.pc
3895 || linetable->item[idx].line == 0)
3896 idx++;
3897
3898 if (idx+1 < linetable->nitems
3899 && linetable->item[idx+1].line != 0
3900 && linetable->item[idx+1].pc == start_pc)
3901 return start_pc;
3902 }
3903
3904 /* If there is only one sal that covers the entire function,
3905 then it is probably a single line function, like
3906 "foo(){}". */
3907 if (prologue_sal.end >= end_pc)
3908 return 0;
3909
3910 while (prologue_sal.end < end_pc)
3911 {
3912 struct symtab_and_line sal;
3913
3914 sal = find_pc_line (prologue_sal.end, 0);
3915 if (sal.line == 0)
3916 break;
3917 /* Assume that a consecutive SAL for the same (or larger)
3918 line mark the prologue -> body transition. */
3919 if (sal.line >= prologue_sal.line)
3920 break;
3921 /* Likewise if we are in a different symtab altogether
3922 (e.g. within a file included via #include).  */
3923 if (sal.symtab != prologue_sal.symtab)
3924 break;
3925
3926 /* The line number is smaller. Check that it's from the
3927 same function, not something inlined. If it's inlined,
3928 then there is no point comparing the line numbers. */
3929 bl = block_for_pc (prologue_sal.end);
3930 while (bl)
3931 {
3932 if (block_inlined_p (bl))
3933 break;
3934 if (BLOCK_FUNCTION (bl))
3935 {
3936 bl = NULL;
3937 break;
3938 }
3939 bl = BLOCK_SUPERBLOCK (bl);
3940 }
3941 if (bl != NULL)
3942 break;
3943
3944 /* The case in which compiler's optimizer/scheduler has
3945 moved instructions into the prologue. We look ahead in
3946 the function looking for address ranges whose
3947 corresponding line number is less the first one that we
3948 found for the function. This is more conservative then
3949 refine_prologue_limit which scans a large number of SALs
3950 looking for any in the prologue. */
3951 prologue_sal = sal;
3952 }
3953 }
3954
3955 if (prologue_sal.end < end_pc)
3956 /* Return the end of this line, or zero if we could not find a
3957 line. */
3958 return prologue_sal.end;
3959 else
3960 /* Don't return END_PC, which is past the end of the function. */
3961 return prologue_sal.pc;
3962 }
3963
3964 /* See symtab.h. */
3965
3966 symbol *
3967 find_function_alias_target (bound_minimal_symbol msymbol)
3968 {
3969 CORE_ADDR func_addr;
3970 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
3971 return NULL;
3972
3973 symbol *sym = find_pc_function (func_addr);
3974 if (sym != NULL
3975 && SYMBOL_CLASS (sym) == LOC_BLOCK
3976 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
3977 return sym;
3978
3979 return NULL;
3980 }
3981
3982 \f
3983 /* If P is of the form "operator[ \t]+..." where `...' is
3984 some legitimate operator text, return a pointer to the
3985 beginning of the substring of the operator text.
3986 Otherwise, return "". */
3987
3988 static const char *
3989 operator_chars (const char *p, const char **end)
3990 {
3991 *end = "";
3992 if (!startswith (p, CP_OPERATOR_STR))
3993 return *end;
3994 p += CP_OPERATOR_LEN;
3995
3996 /* Don't get faked out by `operator' being part of a longer
3997 identifier. */
3998 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
3999 return *end;
4000
4001 /* Allow some whitespace between `operator' and the operator symbol. */
4002 while (*p == ' ' || *p == '\t')
4003 p++;
4004
4005 /* Recognize 'operator TYPENAME'. */
4006
4007 if (isalpha (*p) || *p == '_' || *p == '$')
4008 {
4009 const char *q = p + 1;
4010
4011 while (isalnum (*q) || *q == '_' || *q == '$')
4012 q++;
4013 *end = q;
4014 return p;
4015 }
4016
4017 while (*p)
4018 switch (*p)
4019 {
4020 case '\\': /* regexp quoting */
4021 if (p[1] == '*')
4022 {
4023 if (p[2] == '=') /* 'operator\*=' */
4024 *end = p + 3;
4025 else /* 'operator\*' */
4026 *end = p + 2;
4027 return p;
4028 }
4029 else if (p[1] == '[')
4030 {
4031 if (p[2] == ']')
4032 error (_("mismatched quoting on brackets, "
4033 "try 'operator\\[\\]'"));
4034 else if (p[2] == '\\' && p[3] == ']')
4035 {
4036 *end = p + 4; /* 'operator\[\]' */
4037 return p;
4038 }
4039 else
4040 error (_("nothing is allowed between '[' and ']'"));
4041 }
4042 else
4043 {
4044 /* Gratuitous qoute: skip it and move on. */
4045 p++;
4046 continue;
4047 }
4048 break;
4049 case '!':
4050 case '=':
4051 case '*':
4052 case '/':
4053 case '%':
4054 case '^':
4055 if (p[1] == '=')
4056 *end = p + 2;
4057 else
4058 *end = p + 1;
4059 return p;
4060 case '<':
4061 case '>':
4062 case '+':
4063 case '-':
4064 case '&':
4065 case '|':
4066 if (p[0] == '-' && p[1] == '>')
4067 {
4068 /* Struct pointer member operator 'operator->'. */
4069 if (p[2] == '*')
4070 {
4071 *end = p + 3; /* 'operator->*' */
4072 return p;
4073 }
4074 else if (p[2] == '\\')
4075 {
4076 *end = p + 4; /* Hopefully 'operator->\*' */
4077 return p;
4078 }
4079 else
4080 {
4081 *end = p + 2; /* 'operator->' */
4082 return p;
4083 }
4084 }
4085 if (p[1] == '=' || p[1] == p[0])
4086 *end = p + 2;
4087 else
4088 *end = p + 1;
4089 return p;
4090 case '~':
4091 case ',':
4092 *end = p + 1;
4093 return p;
4094 case '(':
4095 if (p[1] != ')')
4096 error (_("`operator ()' must be specified "
4097 "without whitespace in `()'"));
4098 *end = p + 2;
4099 return p;
4100 case '?':
4101 if (p[1] != ':')
4102 error (_("`operator ?:' must be specified "
4103 "without whitespace in `?:'"));
4104 *end = p + 2;
4105 return p;
4106 case '[':
4107 if (p[1] != ']')
4108 error (_("`operator []' must be specified "
4109 "without whitespace in `[]'"));
4110 *end = p + 2;
4111 return p;
4112 default:
4113 error (_("`operator %s' not supported"), p);
4114 break;
4115 }
4116
4117 *end = "";
4118 return *end;
4119 }
4120 \f
4121
4122 /* What part to match in a file name. */
4123
4124 struct filename_partial_match_opts
4125 {
4126 /* Only match the directory name part. */
4127 bool dirname = false;
4128
4129 /* Only match the basename part. */
4130 bool basename = false;
4131 };
4132
4133 /* Data structure to maintain printing state for output_source_filename. */
4134
4135 struct output_source_filename_data
4136 {
4137 /* Output only filenames matching REGEXP. */
4138 std::string regexp;
4139 gdb::optional<compiled_regex> c_regexp;
4140 /* Possibly only match a part of the filename. */
4141 filename_partial_match_opts partial_match;
4142
4143
4144 /* Cache of what we've seen so far. */
4145 struct filename_seen_cache *filename_seen_cache;
4146
4147 /* Flag of whether we're printing the first one. */
4148 int first;
4149 };
4150
4151 /* Slave routine for sources_info. Force line breaks at ,'s.
4152 NAME is the name to print.
4153 DATA contains the state for printing and watching for duplicates. */
4154
4155 static void
4156 output_source_filename (const char *name,
4157 struct output_source_filename_data *data)
4158 {
4159 /* Since a single source file can result in several partial symbol
4160 tables, we need to avoid printing it more than once. Note: if
4161 some of the psymtabs are read in and some are not, it gets
4162 printed both under "Source files for which symbols have been
4163 read" and "Source files for which symbols will be read in on
4164 demand". I consider this a reasonable way to deal with the
4165 situation. I'm not sure whether this can also happen for
4166 symtabs; it doesn't hurt to check. */
4167
4168 /* Was NAME already seen? */
4169 if (data->filename_seen_cache->seen (name))
4170 {
4171 /* Yes; don't print it again. */
4172 return;
4173 }
4174
4175 /* Does it match data->regexp? */
4176 if (data->c_regexp.has_value ())
4177 {
4178 const char *to_match;
4179 std::string dirname;
4180
4181 if (data->partial_match.dirname)
4182 {
4183 dirname = ldirname (name);
4184 to_match = dirname.c_str ();
4185 }
4186 else if (data->partial_match.basename)
4187 to_match = lbasename (name);
4188 else
4189 to_match = name;
4190
4191 if (data->c_regexp->exec (to_match, 0, NULL, 0) != 0)
4192 return;
4193 }
4194
4195 /* Print it and reset *FIRST. */
4196 if (! data->first)
4197 printf_filtered (", ");
4198 data->first = 0;
4199
4200 wrap_here ("");
4201 fputs_styled (name, file_name_style.style (), gdb_stdout);
4202 }
4203
4204 /* A callback for map_partial_symbol_filenames. */
4205
4206 static void
4207 output_partial_symbol_filename (const char *filename, const char *fullname,
4208 void *data)
4209 {
4210 output_source_filename (fullname ? fullname : filename,
4211 (struct output_source_filename_data *) data);
4212 }
4213
4214 using isrc_flag_option_def
4215 = gdb::option::flag_option_def<filename_partial_match_opts>;
4216
4217 static const gdb::option::option_def info_sources_option_defs[] = {
4218
4219 isrc_flag_option_def {
4220 "dirname",
4221 [] (filename_partial_match_opts *opts) { return &opts->dirname; },
4222 N_("Show only the files having a dirname matching REGEXP."),
4223 },
4224
4225 isrc_flag_option_def {
4226 "basename",
4227 [] (filename_partial_match_opts *opts) { return &opts->basename; },
4228 N_("Show only the files having a basename matching REGEXP."),
4229 },
4230
4231 };
4232
4233 /* Create an option_def_group for the "info sources" options, with
4234 ISRC_OPTS as context. */
4235
4236 static inline gdb::option::option_def_group
4237 make_info_sources_options_def_group (filename_partial_match_opts *isrc_opts)
4238 {
4239 return {{info_sources_option_defs}, isrc_opts};
4240 }
4241
4242 /* Prints the header message for the source files that will be printed
4243 with the matching info present in DATA. SYMBOL_MSG is a message
4244 that tells what will or has been done with the symbols of the
4245 matching source files. */
4246
4247 static void
4248 print_info_sources_header (const char *symbol_msg,
4249 const struct output_source_filename_data *data)
4250 {
4251 puts_filtered (symbol_msg);
4252 if (!data->regexp.empty ())
4253 {
4254 if (data->partial_match.dirname)
4255 printf_filtered (_("(dirname matching regular expression \"%s\")"),
4256 data->regexp.c_str ());
4257 else if (data->partial_match.basename)
4258 printf_filtered (_("(basename matching regular expression \"%s\")"),
4259 data->regexp.c_str ());
4260 else
4261 printf_filtered (_("(filename matching regular expression \"%s\")"),
4262 data->regexp.c_str ());
4263 }
4264 puts_filtered ("\n");
4265 }
4266
4267 /* Completer for "info sources". */
4268
4269 static void
4270 info_sources_command_completer (cmd_list_element *ignore,
4271 completion_tracker &tracker,
4272 const char *text, const char *word)
4273 {
4274 const auto group = make_info_sources_options_def_group (nullptr);
4275 if (gdb::option::complete_options
4276 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
4277 return;
4278 }
4279
4280 static void
4281 info_sources_command (const char *args, int from_tty)
4282 {
4283 struct output_source_filename_data data;
4284
4285 if (!have_full_symbols () && !have_partial_symbols ())
4286 {
4287 error (_("No symbol table is loaded. Use the \"file\" command."));
4288 }
4289
4290 filename_seen_cache filenames_seen;
4291
4292 auto group = make_info_sources_options_def_group (&data.partial_match);
4293
4294 gdb::option::process_options
4295 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group);
4296
4297 if (args != NULL && *args != '\000')
4298 data.regexp = args;
4299
4300 data.filename_seen_cache = &filenames_seen;
4301 data.first = 1;
4302
4303 if (data.partial_match.dirname && data.partial_match.basename)
4304 error (_("You cannot give both -basename and -dirname to 'info sources'."));
4305 if ((data.partial_match.dirname || data.partial_match.basename)
4306 && data.regexp.empty ())
4307 error (_("Missing REGEXP for 'info sources'."));
4308
4309 if (data.regexp.empty ())
4310 data.c_regexp.reset ();
4311 else
4312 {
4313 int cflags = REG_NOSUB;
4314 #ifdef HAVE_CASE_INSENSITIVE_FILE_SYSTEM
4315 cflags |= REG_ICASE;
4316 #endif
4317 data.c_regexp.emplace (data.regexp.c_str (), cflags,
4318 _("Invalid regexp"));
4319 }
4320
4321 print_info_sources_header
4322 (_("Source files for which symbols have been read in:\n"), &data);
4323
4324 for (objfile *objfile : current_program_space->objfiles ())
4325 {
4326 for (compunit_symtab *cu : objfile->compunits ())
4327 {
4328 for (symtab *s : compunit_filetabs (cu))
4329 {
4330 const char *fullname = symtab_to_fullname (s);
4331
4332 output_source_filename (fullname, &data);
4333 }
4334 }
4335 }
4336 printf_filtered ("\n\n");
4337
4338 print_info_sources_header
4339 (_("Source files for which symbols will be read in on demand:\n"), &data);
4340
4341 filenames_seen.clear ();
4342 data.first = 1;
4343 map_symbol_filenames (output_partial_symbol_filename, &data,
4344 1 /*need_fullname*/);
4345 printf_filtered ("\n");
4346 }
4347
4348 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4349 non-zero compare only lbasename of FILES. */
4350
4351 static int
4352 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4353 {
4354 int i;
4355
4356 if (file != NULL && nfiles != 0)
4357 {
4358 for (i = 0; i < nfiles; i++)
4359 {
4360 if (compare_filenames_for_search (file, (basenames
4361 ? lbasename (files[i])
4362 : files[i])))
4363 return 1;
4364 }
4365 }
4366 else if (nfiles == 0)
4367 return 1;
4368 return 0;
4369 }
4370
4371 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4372 sort symbols, not minimal symbols. */
4373
4374 int
4375 symbol_search::compare_search_syms (const symbol_search &sym_a,
4376 const symbol_search &sym_b)
4377 {
4378 int c;
4379
4380 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4381 symbol_symtab (sym_b.symbol)->filename);
4382 if (c != 0)
4383 return c;
4384
4385 if (sym_a.block != sym_b.block)
4386 return sym_a.block - sym_b.block;
4387
4388 return strcmp (SYMBOL_PRINT_NAME (sym_a.symbol),
4389 SYMBOL_PRINT_NAME (sym_b.symbol));
4390 }
4391
4392 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4393 If SYM has no symbol_type or symbol_name, returns false. */
4394
4395 bool
4396 treg_matches_sym_type_name (const compiled_regex &treg,
4397 const struct symbol *sym)
4398 {
4399 struct type *sym_type;
4400 std::string printed_sym_type_name;
4401
4402 if (symbol_lookup_debug > 1)
4403 {
4404 fprintf_unfiltered (gdb_stdlog,
4405 "treg_matches_sym_type_name\n sym %s\n",
4406 SYMBOL_NATURAL_NAME (sym));
4407 }
4408
4409 sym_type = SYMBOL_TYPE (sym);
4410 if (sym_type == NULL)
4411 return false;
4412
4413 {
4414 scoped_switch_to_sym_language_if_auto l (sym);
4415
4416 printed_sym_type_name = type_to_string (sym_type);
4417 }
4418
4419
4420 if (symbol_lookup_debug > 1)
4421 {
4422 fprintf_unfiltered (gdb_stdlog,
4423 " sym_type_name %s\n",
4424 printed_sym_type_name.c_str ());
4425 }
4426
4427
4428 if (printed_sym_type_name.empty ())
4429 return false;
4430
4431 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4432 }
4433
4434
4435 /* Sort the symbols in RESULT and remove duplicates. */
4436
4437 static void
4438 sort_search_symbols_remove_dups (std::vector<symbol_search> *result)
4439 {
4440 std::sort (result->begin (), result->end ());
4441 result->erase (std::unique (result->begin (), result->end ()),
4442 result->end ());
4443 }
4444
4445 /* Search the symbol table for matches to the regular expression REGEXP,
4446 returning the results.
4447
4448 Only symbols of KIND are searched:
4449 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4450 and constants (enums).
4451 if T_REGEXP is not NULL, only returns var that have
4452 a type matching regular expression T_REGEXP.
4453 FUNCTIONS_DOMAIN - search all functions
4454 TYPES_DOMAIN - search all type names
4455 ALL_DOMAIN - an internal error for this function
4456
4457 Within each file the results are sorted locally; each symtab's global and
4458 static blocks are separately alphabetized.
4459 Duplicate entries are removed.
4460
4461 When EXCLUDE_MINSYMS is false then matching minsyms are also returned,
4462 otherwise they are excluded. */
4463
4464 std::vector<symbol_search>
4465 search_symbols (const char *regexp, enum search_domain kind,
4466 const char *t_regexp,
4467 int nfiles, const char *files[],
4468 bool exclude_minsyms)
4469 {
4470 const struct blockvector *bv;
4471 const struct block *b;
4472 int i = 0;
4473 struct block_iterator iter;
4474 struct symbol *sym;
4475 int found_misc = 0;
4476 static const enum minimal_symbol_type types[]
4477 = {mst_data, mst_text, mst_unknown};
4478 static const enum minimal_symbol_type types2[]
4479 = {mst_bss, mst_file_text, mst_unknown};
4480 static const enum minimal_symbol_type types3[]
4481 = {mst_file_data, mst_solib_trampoline, mst_unknown};
4482 static const enum minimal_symbol_type types4[]
4483 = {mst_file_bss, mst_text_gnu_ifunc, mst_unknown};
4484 enum minimal_symbol_type ourtype;
4485 enum minimal_symbol_type ourtype2;
4486 enum minimal_symbol_type ourtype3;
4487 enum minimal_symbol_type ourtype4;
4488 std::vector<symbol_search> result;
4489 gdb::optional<compiled_regex> preg;
4490 gdb::optional<compiled_regex> treg;
4491
4492 gdb_assert (kind <= TYPES_DOMAIN);
4493
4494 ourtype = types[kind];
4495 ourtype2 = types2[kind];
4496 ourtype3 = types3[kind];
4497 ourtype4 = types4[kind];
4498
4499 if (regexp != NULL)
4500 {
4501 /* Make sure spacing is right for C++ operators.
4502 This is just a courtesy to make the matching less sensitive
4503 to how many spaces the user leaves between 'operator'
4504 and <TYPENAME> or <OPERATOR>. */
4505 const char *opend;
4506 const char *opname = operator_chars (regexp, &opend);
4507
4508 if (*opname)
4509 {
4510 int fix = -1; /* -1 means ok; otherwise number of
4511 spaces needed. */
4512
4513 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4514 {
4515 /* There should 1 space between 'operator' and 'TYPENAME'. */
4516 if (opname[-1] != ' ' || opname[-2] == ' ')
4517 fix = 1;
4518 }
4519 else
4520 {
4521 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4522 if (opname[-1] == ' ')
4523 fix = 0;
4524 }
4525 /* If wrong number of spaces, fix it. */
4526 if (fix >= 0)
4527 {
4528 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4529
4530 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4531 regexp = tmp;
4532 }
4533 }
4534
4535 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4536 ? REG_ICASE : 0);
4537 preg.emplace (regexp, cflags, _("Invalid regexp"));
4538 }
4539
4540 if (t_regexp != NULL)
4541 {
4542 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4543 ? REG_ICASE : 0);
4544 treg.emplace (t_regexp, cflags, _("Invalid regexp"));
4545 }
4546
4547 /* Search through the partial symtabs *first* for all symbols
4548 matching the regexp. That way we don't have to reproduce all of
4549 the machinery below. */
4550 expand_symtabs_matching ([&] (const char *filename, bool basenames)
4551 {
4552 return file_matches (filename, files, nfiles,
4553 basenames);
4554 },
4555 lookup_name_info::match_any (),
4556 [&] (const char *symname)
4557 {
4558 return (!preg.has_value ()
4559 || preg->exec (symname,
4560 0, NULL, 0) == 0);
4561 },
4562 NULL,
4563 kind);
4564
4565 /* Here, we search through the minimal symbol tables for functions
4566 and variables that match, and force their symbols to be read.
4567 This is in particular necessary for demangled variable names,
4568 which are no longer put into the partial symbol tables.
4569 The symbol will then be found during the scan of symtabs below.
4570
4571 For functions, find_pc_symtab should succeed if we have debug info
4572 for the function, for variables we have to call
4573 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4574 has debug info.
4575 If the lookup fails, set found_misc so that we will rescan to print
4576 any matching symbols without debug info.
4577 We only search the objfile the msymbol came from, we no longer search
4578 all objfiles. In large programs (1000s of shared libs) searching all
4579 objfiles is not worth the pain. */
4580
4581 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4582 {
4583 for (objfile *objfile : current_program_space->objfiles ())
4584 {
4585 for (minimal_symbol *msymbol : objfile->msymbols ())
4586 {
4587 QUIT;
4588
4589 if (msymbol->created_by_gdb)
4590 continue;
4591
4592 if (MSYMBOL_TYPE (msymbol) == ourtype
4593 || MSYMBOL_TYPE (msymbol) == ourtype2
4594 || MSYMBOL_TYPE (msymbol) == ourtype3
4595 || MSYMBOL_TYPE (msymbol) == ourtype4)
4596 {
4597 if (!preg.has_value ()
4598 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4599 NULL, 0) == 0)
4600 {
4601 /* Note: An important side-effect of these
4602 lookup functions is to expand the symbol
4603 table if msymbol is found, for the benefit of
4604 the next loop on compunits. */
4605 if (kind == FUNCTIONS_DOMAIN
4606 ? (find_pc_compunit_symtab
4607 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4608 == NULL)
4609 : (lookup_symbol_in_objfile_from_linkage_name
4610 (objfile, MSYMBOL_LINKAGE_NAME (msymbol),
4611 VAR_DOMAIN)
4612 .symbol == NULL))
4613 found_misc = 1;
4614 }
4615 }
4616 }
4617 }
4618 }
4619
4620 for (objfile *objfile : current_program_space->objfiles ())
4621 {
4622 for (compunit_symtab *cust : objfile->compunits ())
4623 {
4624 bv = COMPUNIT_BLOCKVECTOR (cust);
4625 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4626 {
4627 b = BLOCKVECTOR_BLOCK (bv, i);
4628 ALL_BLOCK_SYMBOLS (b, iter, sym)
4629 {
4630 struct symtab *real_symtab = symbol_symtab (sym);
4631
4632 QUIT;
4633
4634 /* Check first sole REAL_SYMTAB->FILENAME. It does
4635 not need to be a substring of symtab_to_fullname as
4636 it may contain "./" etc. */
4637 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4638 || ((basenames_may_differ
4639 || file_matches (lbasename (real_symtab->filename),
4640 files, nfiles, 1))
4641 && file_matches (symtab_to_fullname (real_symtab),
4642 files, nfiles, 0)))
4643 && ((!preg.has_value ()
4644 || preg->exec (SYMBOL_NATURAL_NAME (sym), 0,
4645 NULL, 0) == 0)
4646 && ((kind == VARIABLES_DOMAIN
4647 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4648 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4649 && SYMBOL_CLASS (sym) != LOC_BLOCK
4650 /* LOC_CONST can be used for more than
4651 just enums, e.g., c++ static const
4652 members. We only want to skip enums
4653 here. */
4654 && !(SYMBOL_CLASS (sym) == LOC_CONST
4655 && (TYPE_CODE (SYMBOL_TYPE (sym))
4656 == TYPE_CODE_ENUM))
4657 && (!treg.has_value ()
4658 || treg_matches_sym_type_name (*treg, sym)))
4659 || (kind == FUNCTIONS_DOMAIN
4660 && SYMBOL_CLASS (sym) == LOC_BLOCK
4661 && (!treg.has_value ()
4662 || treg_matches_sym_type_name (*treg,
4663 sym)))
4664 || (kind == TYPES_DOMAIN
4665 && SYMBOL_CLASS (sym) == LOC_TYPEDEF
4666 && SYMBOL_DOMAIN (sym) != MODULE_DOMAIN))))
4667 {
4668 /* match */
4669 result.emplace_back (i, sym);
4670 }
4671 }
4672 }
4673 }
4674 }
4675
4676 if (!result.empty ())
4677 sort_search_symbols_remove_dups (&result);
4678
4679 /* If there are no eyes, avoid all contact. I mean, if there are
4680 no debug symbols, then add matching minsyms. But if the user wants
4681 to see symbols matching a type regexp, then never give a minimal symbol,
4682 as we assume that a minimal symbol does not have a type. */
4683
4684 if ((found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4685 && !exclude_minsyms
4686 && !treg.has_value ())
4687 {
4688 for (objfile *objfile : current_program_space->objfiles ())
4689 {
4690 for (minimal_symbol *msymbol : objfile->msymbols ())
4691 {
4692 QUIT;
4693
4694 if (msymbol->created_by_gdb)
4695 continue;
4696
4697 if (MSYMBOL_TYPE (msymbol) == ourtype
4698 || MSYMBOL_TYPE (msymbol) == ourtype2
4699 || MSYMBOL_TYPE (msymbol) == ourtype3
4700 || MSYMBOL_TYPE (msymbol) == ourtype4)
4701 {
4702 if (!preg.has_value ()
4703 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4704 NULL, 0) == 0)
4705 {
4706 /* For functions we can do a quick check of whether the
4707 symbol might be found via find_pc_symtab. */
4708 if (kind != FUNCTIONS_DOMAIN
4709 || (find_pc_compunit_symtab
4710 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4711 == NULL))
4712 {
4713 if (lookup_symbol_in_objfile_from_linkage_name
4714 (objfile, MSYMBOL_LINKAGE_NAME (msymbol),
4715 VAR_DOMAIN)
4716 .symbol == NULL)
4717 {
4718 /* match */
4719 result.emplace_back (i, msymbol, objfile);
4720 }
4721 }
4722 }
4723 }
4724 }
4725 }
4726 }
4727
4728 return result;
4729 }
4730
4731 /* Helper function for symtab_symbol_info, this function uses
4732 the data returned from search_symbols() to print information
4733 regarding the match to gdb_stdout. If LAST is not NULL,
4734 print file and line number information for the symbol as
4735 well. Skip printing the filename if it matches LAST. */
4736
4737 static void
4738 print_symbol_info (enum search_domain kind,
4739 struct symbol *sym,
4740 int block, const char *last)
4741 {
4742 scoped_switch_to_sym_language_if_auto l (sym);
4743 struct symtab *s = symbol_symtab (sym);
4744
4745 if (last != NULL)
4746 {
4747 const char *s_filename = symtab_to_filename_for_display (s);
4748
4749 if (filename_cmp (last, s_filename) != 0)
4750 {
4751 fputs_filtered ("\nFile ", gdb_stdout);
4752 fputs_styled (s_filename, file_name_style.style (), gdb_stdout);
4753 fputs_filtered (":\n", gdb_stdout);
4754 }
4755
4756 if (SYMBOL_LINE (sym) != 0)
4757 printf_filtered ("%d:\t", SYMBOL_LINE (sym));
4758 else
4759 puts_filtered ("\t");
4760 }
4761
4762 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4763 printf_filtered ("static ");
4764
4765 /* Typedef that is not a C++ class. */
4766 if (kind == TYPES_DOMAIN
4767 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4768 {
4769 /* FIXME: For C (and C++) we end up with a difference in output here
4770 between how a typedef is printed, and non-typedefs are printed.
4771 The TYPEDEF_PRINT code places a ";" at the end in an attempt to
4772 appear C-like, while TYPE_PRINT doesn't.
4773
4774 For the struct printing case below, things are worse, we force
4775 printing of the ";" in this function, which is going to be wrong
4776 for languages that don't require a ";" between statements. */
4777 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_TYPEDEF)
4778 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4779 else
4780 {
4781 type_print (SYMBOL_TYPE (sym), "", gdb_stdout, -1);
4782 printf_filtered ("\n");
4783 }
4784 }
4785 /* variable, func, or typedef-that-is-c++-class. */
4786 else if (kind < TYPES_DOMAIN
4787 || (kind == TYPES_DOMAIN
4788 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4789 {
4790 type_print (SYMBOL_TYPE (sym),
4791 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4792 ? "" : SYMBOL_PRINT_NAME (sym)),
4793 gdb_stdout, 0);
4794
4795 printf_filtered (";\n");
4796 }
4797 }
4798
4799 /* This help function for symtab_symbol_info() prints information
4800 for non-debugging symbols to gdb_stdout. */
4801
4802 static void
4803 print_msymbol_info (struct bound_minimal_symbol msymbol)
4804 {
4805 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4806 char *tmp;
4807
4808 if (gdbarch_addr_bit (gdbarch) <= 32)
4809 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4810 & (CORE_ADDR) 0xffffffff,
4811 8);
4812 else
4813 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4814 16);
4815 fputs_styled (tmp, address_style.style (), gdb_stdout);
4816 fputs_filtered (" ", gdb_stdout);
4817 if (msymbol.minsym->text_p ())
4818 fputs_styled (MSYMBOL_PRINT_NAME (msymbol.minsym),
4819 function_name_style.style (),
4820 gdb_stdout);
4821 else
4822 fputs_filtered (MSYMBOL_PRINT_NAME (msymbol.minsym), gdb_stdout);
4823 fputs_filtered ("\n", gdb_stdout);
4824 }
4825
4826 /* This is the guts of the commands "info functions", "info types", and
4827 "info variables". It calls search_symbols to find all matches and then
4828 print_[m]symbol_info to print out some useful information about the
4829 matches. */
4830
4831 static void
4832 symtab_symbol_info (bool quiet, bool exclude_minsyms,
4833 const char *regexp, enum search_domain kind,
4834 const char *t_regexp, int from_tty)
4835 {
4836 static const char * const classnames[] =
4837 {"variable", "function", "type"};
4838 const char *last_filename = "";
4839 int first = 1;
4840
4841 gdb_assert (kind <= TYPES_DOMAIN);
4842
4843 if (regexp != nullptr && *regexp == '\0')
4844 regexp = nullptr;
4845
4846 /* Must make sure that if we're interrupted, symbols gets freed. */
4847 std::vector<symbol_search> symbols = search_symbols (regexp, kind,
4848 t_regexp, 0, NULL,
4849 exclude_minsyms);
4850
4851 if (!quiet)
4852 {
4853 if (regexp != NULL)
4854 {
4855 if (t_regexp != NULL)
4856 printf_filtered
4857 (_("All %ss matching regular expression \"%s\""
4858 " with type matching regular expression \"%s\":\n"),
4859 classnames[kind], regexp, t_regexp);
4860 else
4861 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4862 classnames[kind], regexp);
4863 }
4864 else
4865 {
4866 if (t_regexp != NULL)
4867 printf_filtered
4868 (_("All defined %ss"
4869 " with type matching regular expression \"%s\" :\n"),
4870 classnames[kind], t_regexp);
4871 else
4872 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4873 }
4874 }
4875
4876 for (const symbol_search &p : symbols)
4877 {
4878 QUIT;
4879
4880 if (p.msymbol.minsym != NULL)
4881 {
4882 if (first)
4883 {
4884 if (!quiet)
4885 printf_filtered (_("\nNon-debugging symbols:\n"));
4886 first = 0;
4887 }
4888 print_msymbol_info (p.msymbol);
4889 }
4890 else
4891 {
4892 print_symbol_info (kind,
4893 p.symbol,
4894 p.block,
4895 last_filename);
4896 last_filename
4897 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
4898 }
4899 }
4900 }
4901
4902 /* Structure to hold the values of the options used by the 'info variables'
4903 and 'info functions' commands. These correspond to the -q, -t, and -n
4904 options. */
4905
4906 struct info_print_options
4907 {
4908 bool quiet = false;
4909 bool exclude_minsyms = false;
4910 char *type_regexp = nullptr;
4911
4912 ~info_print_options ()
4913 {
4914 xfree (type_regexp);
4915 }
4916 };
4917
4918 /* The options used by the 'info variables' and 'info functions'
4919 commands. */
4920
4921 static const gdb::option::option_def info_print_options_defs[] = {
4922 gdb::option::boolean_option_def<info_print_options> {
4923 "q",
4924 [] (info_print_options *opt) { return &opt->quiet; },
4925 nullptr, /* show_cmd_cb */
4926 nullptr /* set_doc */
4927 },
4928
4929 gdb::option::boolean_option_def<info_print_options> {
4930 "n",
4931 [] (info_print_options *opt) { return &opt->exclude_minsyms; },
4932 nullptr, /* show_cmd_cb */
4933 nullptr /* set_doc */
4934 },
4935
4936 gdb::option::string_option_def<info_print_options> {
4937 "t",
4938 [] (info_print_options *opt) { return &opt->type_regexp; },
4939 nullptr, /* show_cmd_cb */
4940 nullptr /* set_doc */
4941 }
4942 };
4943
4944 /* Returns the option group used by 'info variables' and 'info
4945 functions'. */
4946
4947 static gdb::option::option_def_group
4948 make_info_print_options_def_group (info_print_options *opts)
4949 {
4950 return {{info_print_options_defs}, opts};
4951 }
4952
4953 /* Command completer for 'info variables' and 'info functions'. */
4954
4955 static void
4956 info_print_command_completer (struct cmd_list_element *ignore,
4957 completion_tracker &tracker,
4958 const char *text, const char * /* word */)
4959 {
4960 const auto group
4961 = make_info_print_options_def_group (nullptr);
4962 if (gdb::option::complete_options
4963 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
4964 return;
4965
4966 const char *word = advance_to_expression_complete_word_point (tracker, text);
4967 symbol_completer (ignore, tracker, text, word);
4968 }
4969
4970 /* Implement the 'info variables' command. */
4971
4972 static void
4973 info_variables_command (const char *args, int from_tty)
4974 {
4975 info_print_options opts;
4976 auto grp = make_info_print_options_def_group (&opts);
4977 gdb::option::process_options
4978 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
4979 if (args != nullptr && *args == '\0')
4980 args = nullptr;
4981
4982 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args, VARIABLES_DOMAIN,
4983 opts.type_regexp, from_tty);
4984 }
4985
4986 /* Implement the 'info functions' command. */
4987
4988 static void
4989 info_functions_command (const char *args, int from_tty)
4990 {
4991 info_print_options opts;
4992 auto grp = make_info_print_options_def_group (&opts);
4993 gdb::option::process_options
4994 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
4995 if (args != nullptr && *args == '\0')
4996 args = nullptr;
4997
4998 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args,
4999 FUNCTIONS_DOMAIN, opts.type_regexp, from_tty);
5000 }
5001
5002 /* Holds the -q option for the 'info types' command. */
5003
5004 struct info_types_options
5005 {
5006 bool quiet = false;
5007 };
5008
5009 /* The options used by the 'info types' command. */
5010
5011 static const gdb::option::option_def info_types_options_defs[] = {
5012 gdb::option::boolean_option_def<info_types_options> {
5013 "q",
5014 [] (info_types_options *opt) { return &opt->quiet; },
5015 nullptr, /* show_cmd_cb */
5016 nullptr /* set_doc */
5017 }
5018 };
5019
5020 /* Returns the option group used by 'info types'. */
5021
5022 static gdb::option::option_def_group
5023 make_info_types_options_def_group (info_types_options *opts)
5024 {
5025 return {{info_types_options_defs}, opts};
5026 }
5027
5028 /* Implement the 'info types' command. */
5029
5030 static void
5031 info_types_command (const char *args, int from_tty)
5032 {
5033 info_types_options opts;
5034
5035 auto grp = make_info_types_options_def_group (&opts);
5036 gdb::option::process_options
5037 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5038 if (args != nullptr && *args == '\0')
5039 args = nullptr;
5040 symtab_symbol_info (opts.quiet, false, args, TYPES_DOMAIN, NULL, from_tty);
5041 }
5042
5043 /* Command completer for 'info types' command. */
5044
5045 static void
5046 info_types_command_completer (struct cmd_list_element *ignore,
5047 completion_tracker &tracker,
5048 const char *text, const char * /* word */)
5049 {
5050 const auto group
5051 = make_info_types_options_def_group (nullptr);
5052 if (gdb::option::complete_options
5053 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5054 return;
5055
5056 const char *word = advance_to_expression_complete_word_point (tracker, text);
5057 symbol_completer (ignore, tracker, text, word);
5058 }
5059
5060 /* Breakpoint all functions matching regular expression. */
5061
5062 void
5063 rbreak_command_wrapper (char *regexp, int from_tty)
5064 {
5065 rbreak_command (regexp, from_tty);
5066 }
5067
5068 static void
5069 rbreak_command (const char *regexp, int from_tty)
5070 {
5071 std::string string;
5072 const char **files = NULL;
5073 const char *file_name;
5074 int nfiles = 0;
5075
5076 if (regexp)
5077 {
5078 const char *colon = strchr (regexp, ':');
5079
5080 if (colon && *(colon + 1) != ':')
5081 {
5082 int colon_index;
5083 char *local_name;
5084
5085 colon_index = colon - regexp;
5086 local_name = (char *) alloca (colon_index + 1);
5087 memcpy (local_name, regexp, colon_index);
5088 local_name[colon_index--] = 0;
5089 while (isspace (local_name[colon_index]))
5090 local_name[colon_index--] = 0;
5091 file_name = local_name;
5092 files = &file_name;
5093 nfiles = 1;
5094 regexp = skip_spaces (colon + 1);
5095 }
5096 }
5097
5098 std::vector<symbol_search> symbols = search_symbols (regexp,
5099 FUNCTIONS_DOMAIN,
5100 NULL,
5101 nfiles, files,
5102 false);
5103
5104 scoped_rbreak_breakpoints finalize;
5105 for (const symbol_search &p : symbols)
5106 {
5107 if (p.msymbol.minsym == NULL)
5108 {
5109 struct symtab *symtab = symbol_symtab (p.symbol);
5110 const char *fullname = symtab_to_fullname (symtab);
5111
5112 string = string_printf ("%s:'%s'", fullname,
5113 SYMBOL_LINKAGE_NAME (p.symbol));
5114 break_command (&string[0], from_tty);
5115 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
5116 }
5117 else
5118 {
5119 string = string_printf ("'%s'",
5120 MSYMBOL_LINKAGE_NAME (p.msymbol.minsym));
5121
5122 break_command (&string[0], from_tty);
5123 printf_filtered ("<function, no debug info> %s;\n",
5124 MSYMBOL_PRINT_NAME (p.msymbol.minsym));
5125 }
5126 }
5127 }
5128 \f
5129
5130 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
5131
5132 static int
5133 compare_symbol_name (const char *symbol_name, language symbol_language,
5134 const lookup_name_info &lookup_name,
5135 completion_match_result &match_res)
5136 {
5137 const language_defn *lang = language_def (symbol_language);
5138
5139 symbol_name_matcher_ftype *name_match
5140 = get_symbol_name_matcher (lang, lookup_name);
5141
5142 return name_match (symbol_name, lookup_name, &match_res);
5143 }
5144
5145 /* See symtab.h. */
5146
5147 void
5148 completion_list_add_name (completion_tracker &tracker,
5149 language symbol_language,
5150 const char *symname,
5151 const lookup_name_info &lookup_name,
5152 const char *text, const char *word)
5153 {
5154 completion_match_result &match_res
5155 = tracker.reset_completion_match_result ();
5156
5157 /* Clip symbols that cannot match. */
5158 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
5159 return;
5160
5161 /* Refresh SYMNAME from the match string. It's potentially
5162 different depending on language. (E.g., on Ada, the match may be
5163 the encoded symbol name wrapped in "<>"). */
5164 symname = match_res.match.match ();
5165 gdb_assert (symname != NULL);
5166
5167 /* We have a match for a completion, so add SYMNAME to the current list
5168 of matches. Note that the name is moved to freshly malloc'd space. */
5169
5170 {
5171 gdb::unique_xmalloc_ptr<char> completion
5172 = make_completion_match_str (symname, text, word);
5173
5174 /* Here we pass the match-for-lcd object to add_completion. Some
5175 languages match the user text against substrings of symbol
5176 names in some cases. E.g., in C++, "b push_ba" completes to
5177 "std::vector::push_back", "std::string::push_back", etc., and
5178 in this case we want the completion lowest common denominator
5179 to be "push_back" instead of "std::". */
5180 tracker.add_completion (std::move (completion),
5181 &match_res.match_for_lcd, text, word);
5182 }
5183 }
5184
5185 /* completion_list_add_name wrapper for struct symbol. */
5186
5187 static void
5188 completion_list_add_symbol (completion_tracker &tracker,
5189 symbol *sym,
5190 const lookup_name_info &lookup_name,
5191 const char *text, const char *word)
5192 {
5193 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
5194 SYMBOL_NATURAL_NAME (sym),
5195 lookup_name, text, word);
5196 }
5197
5198 /* completion_list_add_name wrapper for struct minimal_symbol. */
5199
5200 static void
5201 completion_list_add_msymbol (completion_tracker &tracker,
5202 minimal_symbol *sym,
5203 const lookup_name_info &lookup_name,
5204 const char *text, const char *word)
5205 {
5206 completion_list_add_name (tracker, MSYMBOL_LANGUAGE (sym),
5207 MSYMBOL_NATURAL_NAME (sym),
5208 lookup_name, text, word);
5209 }
5210
5211
5212 /* ObjC: In case we are completing on a selector, look as the msymbol
5213 again and feed all the selectors into the mill. */
5214
5215 static void
5216 completion_list_objc_symbol (completion_tracker &tracker,
5217 struct minimal_symbol *msymbol,
5218 const lookup_name_info &lookup_name,
5219 const char *text, const char *word)
5220 {
5221 static char *tmp = NULL;
5222 static unsigned int tmplen = 0;
5223
5224 const char *method, *category, *selector;
5225 char *tmp2 = NULL;
5226
5227 method = MSYMBOL_NATURAL_NAME (msymbol);
5228
5229 /* Is it a method? */
5230 if ((method[0] != '-') && (method[0] != '+'))
5231 return;
5232
5233 if (text[0] == '[')
5234 /* Complete on shortened method method. */
5235 completion_list_add_name (tracker, language_objc,
5236 method + 1,
5237 lookup_name,
5238 text, word);
5239
5240 while ((strlen (method) + 1) >= tmplen)
5241 {
5242 if (tmplen == 0)
5243 tmplen = 1024;
5244 else
5245 tmplen *= 2;
5246 tmp = (char *) xrealloc (tmp, tmplen);
5247 }
5248 selector = strchr (method, ' ');
5249 if (selector != NULL)
5250 selector++;
5251
5252 category = strchr (method, '(');
5253
5254 if ((category != NULL) && (selector != NULL))
5255 {
5256 memcpy (tmp, method, (category - method));
5257 tmp[category - method] = ' ';
5258 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5259 completion_list_add_name (tracker, language_objc, tmp,
5260 lookup_name, text, word);
5261 if (text[0] == '[')
5262 completion_list_add_name (tracker, language_objc, tmp + 1,
5263 lookup_name, text, word);
5264 }
5265
5266 if (selector != NULL)
5267 {
5268 /* Complete on selector only. */
5269 strcpy (tmp, selector);
5270 tmp2 = strchr (tmp, ']');
5271 if (tmp2 != NULL)
5272 *tmp2 = '\0';
5273
5274 completion_list_add_name (tracker, language_objc, tmp,
5275 lookup_name, text, word);
5276 }
5277 }
5278
5279 /* Break the non-quoted text based on the characters which are in
5280 symbols. FIXME: This should probably be language-specific. */
5281
5282 static const char *
5283 language_search_unquoted_string (const char *text, const char *p)
5284 {
5285 for (; p > text; --p)
5286 {
5287 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5288 continue;
5289 else
5290 {
5291 if ((current_language->la_language == language_objc))
5292 {
5293 if (p[-1] == ':') /* Might be part of a method name. */
5294 continue;
5295 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5296 p -= 2; /* Beginning of a method name. */
5297 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5298 { /* Might be part of a method name. */
5299 const char *t = p;
5300
5301 /* Seeing a ' ' or a '(' is not conclusive evidence
5302 that we are in the middle of a method name. However,
5303 finding "-[" or "+[" should be pretty un-ambiguous.
5304 Unfortunately we have to find it now to decide. */
5305
5306 while (t > text)
5307 if (isalnum (t[-1]) || t[-1] == '_' ||
5308 t[-1] == ' ' || t[-1] == ':' ||
5309 t[-1] == '(' || t[-1] == ')')
5310 --t;
5311 else
5312 break;
5313
5314 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5315 p = t - 2; /* Method name detected. */
5316 /* Else we leave with p unchanged. */
5317 }
5318 }
5319 break;
5320 }
5321 }
5322 return p;
5323 }
5324
5325 static void
5326 completion_list_add_fields (completion_tracker &tracker,
5327 struct symbol *sym,
5328 const lookup_name_info &lookup_name,
5329 const char *text, const char *word)
5330 {
5331 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5332 {
5333 struct type *t = SYMBOL_TYPE (sym);
5334 enum type_code c = TYPE_CODE (t);
5335 int j;
5336
5337 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5338 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5339 if (TYPE_FIELD_NAME (t, j))
5340 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
5341 TYPE_FIELD_NAME (t, j),
5342 lookup_name, text, word);
5343 }
5344 }
5345
5346 /* See symtab.h. */
5347
5348 bool
5349 symbol_is_function_or_method (symbol *sym)
5350 {
5351 switch (TYPE_CODE (SYMBOL_TYPE (sym)))
5352 {
5353 case TYPE_CODE_FUNC:
5354 case TYPE_CODE_METHOD:
5355 return true;
5356 default:
5357 return false;
5358 }
5359 }
5360
5361 /* See symtab.h. */
5362
5363 bool
5364 symbol_is_function_or_method (minimal_symbol *msymbol)
5365 {
5366 switch (MSYMBOL_TYPE (msymbol))
5367 {
5368 case mst_text:
5369 case mst_text_gnu_ifunc:
5370 case mst_solib_trampoline:
5371 case mst_file_text:
5372 return true;
5373 default:
5374 return false;
5375 }
5376 }
5377
5378 /* See symtab.h. */
5379
5380 bound_minimal_symbol
5381 find_gnu_ifunc (const symbol *sym)
5382 {
5383 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
5384 return {};
5385
5386 lookup_name_info lookup_name (SYMBOL_SEARCH_NAME (sym),
5387 symbol_name_match_type::SEARCH_NAME);
5388 struct objfile *objfile = symbol_objfile (sym);
5389
5390 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
5391 minimal_symbol *ifunc = NULL;
5392
5393 iterate_over_minimal_symbols (objfile, lookup_name,
5394 [&] (minimal_symbol *minsym)
5395 {
5396 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc
5397 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5398 {
5399 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
5400 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5401 {
5402 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5403 msym_addr
5404 = gdbarch_convert_from_func_ptr_addr (gdbarch,
5405 msym_addr,
5406 current_top_target ());
5407 }
5408 if (msym_addr == address)
5409 {
5410 ifunc = minsym;
5411 return true;
5412 }
5413 }
5414 return false;
5415 });
5416
5417 if (ifunc != NULL)
5418 return {ifunc, objfile};
5419 return {};
5420 }
5421
5422 /* Add matching symbols from SYMTAB to the current completion list. */
5423
5424 static void
5425 add_symtab_completions (struct compunit_symtab *cust,
5426 completion_tracker &tracker,
5427 complete_symbol_mode mode,
5428 const lookup_name_info &lookup_name,
5429 const char *text, const char *word,
5430 enum type_code code)
5431 {
5432 struct symbol *sym;
5433 const struct block *b;
5434 struct block_iterator iter;
5435 int i;
5436
5437 if (cust == NULL)
5438 return;
5439
5440 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5441 {
5442 QUIT;
5443 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5444 ALL_BLOCK_SYMBOLS (b, iter, sym)
5445 {
5446 if (completion_skip_symbol (mode, sym))
5447 continue;
5448
5449 if (code == TYPE_CODE_UNDEF
5450 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5451 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5452 completion_list_add_symbol (tracker, sym,
5453 lookup_name,
5454 text, word);
5455 }
5456 }
5457 }
5458
5459 void
5460 default_collect_symbol_completion_matches_break_on
5461 (completion_tracker &tracker, complete_symbol_mode mode,
5462 symbol_name_match_type name_match_type,
5463 const char *text, const char *word,
5464 const char *break_on, enum type_code code)
5465 {
5466 /* Problem: All of the symbols have to be copied because readline
5467 frees them. I'm not going to worry about this; hopefully there
5468 won't be that many. */
5469
5470 struct symbol *sym;
5471 const struct block *b;
5472 const struct block *surrounding_static_block, *surrounding_global_block;
5473 struct block_iterator iter;
5474 /* The symbol we are completing on. Points in same buffer as text. */
5475 const char *sym_text;
5476
5477 /* Now look for the symbol we are supposed to complete on. */
5478 if (mode == complete_symbol_mode::LINESPEC)
5479 sym_text = text;
5480 else
5481 {
5482 const char *p;
5483 char quote_found;
5484 const char *quote_pos = NULL;
5485
5486 /* First see if this is a quoted string. */
5487 quote_found = '\0';
5488 for (p = text; *p != '\0'; ++p)
5489 {
5490 if (quote_found != '\0')
5491 {
5492 if (*p == quote_found)
5493 /* Found close quote. */
5494 quote_found = '\0';
5495 else if (*p == '\\' && p[1] == quote_found)
5496 /* A backslash followed by the quote character
5497 doesn't end the string. */
5498 ++p;
5499 }
5500 else if (*p == '\'' || *p == '"')
5501 {
5502 quote_found = *p;
5503 quote_pos = p;
5504 }
5505 }
5506 if (quote_found == '\'')
5507 /* A string within single quotes can be a symbol, so complete on it. */
5508 sym_text = quote_pos + 1;
5509 else if (quote_found == '"')
5510 /* A double-quoted string is never a symbol, nor does it make sense
5511 to complete it any other way. */
5512 {
5513 return;
5514 }
5515 else
5516 {
5517 /* It is not a quoted string. Break it based on the characters
5518 which are in symbols. */
5519 while (p > text)
5520 {
5521 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5522 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5523 --p;
5524 else
5525 break;
5526 }
5527 sym_text = p;
5528 }
5529 }
5530
5531 lookup_name_info lookup_name (sym_text, name_match_type, true);
5532
5533 /* At this point scan through the misc symbol vectors and add each
5534 symbol you find to the list. Eventually we want to ignore
5535 anything that isn't a text symbol (everything else will be
5536 handled by the psymtab code below). */
5537
5538 if (code == TYPE_CODE_UNDEF)
5539 {
5540 for (objfile *objfile : current_program_space->objfiles ())
5541 {
5542 for (minimal_symbol *msymbol : objfile->msymbols ())
5543 {
5544 QUIT;
5545
5546 if (completion_skip_symbol (mode, msymbol))
5547 continue;
5548
5549 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5550 sym_text, word);
5551
5552 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5553 sym_text, word);
5554 }
5555 }
5556 }
5557
5558 /* Add completions for all currently loaded symbol tables. */
5559 for (objfile *objfile : current_program_space->objfiles ())
5560 {
5561 for (compunit_symtab *cust : objfile->compunits ())
5562 add_symtab_completions (cust, tracker, mode, lookup_name,
5563 sym_text, word, code);
5564 }
5565
5566 /* Look through the partial symtabs for all symbols which begin by
5567 matching SYM_TEXT. Expand all CUs that you find to the list. */
5568 expand_symtabs_matching (NULL,
5569 lookup_name,
5570 NULL,
5571 [&] (compunit_symtab *symtab) /* expansion notify */
5572 {
5573 add_symtab_completions (symtab,
5574 tracker, mode, lookup_name,
5575 sym_text, word, code);
5576 },
5577 ALL_DOMAIN);
5578
5579 /* Search upwards from currently selected frame (so that we can
5580 complete on local vars). Also catch fields of types defined in
5581 this places which match our text string. Only complete on types
5582 visible from current context. */
5583
5584 b = get_selected_block (0);
5585 surrounding_static_block = block_static_block (b);
5586 surrounding_global_block = block_global_block (b);
5587 if (surrounding_static_block != NULL)
5588 while (b != surrounding_static_block)
5589 {
5590 QUIT;
5591
5592 ALL_BLOCK_SYMBOLS (b, iter, sym)
5593 {
5594 if (code == TYPE_CODE_UNDEF)
5595 {
5596 completion_list_add_symbol (tracker, sym, lookup_name,
5597 sym_text, word);
5598 completion_list_add_fields (tracker, sym, lookup_name,
5599 sym_text, word);
5600 }
5601 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5602 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5603 completion_list_add_symbol (tracker, sym, lookup_name,
5604 sym_text, word);
5605 }
5606
5607 /* Stop when we encounter an enclosing function. Do not stop for
5608 non-inlined functions - the locals of the enclosing function
5609 are in scope for a nested function. */
5610 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5611 break;
5612 b = BLOCK_SUPERBLOCK (b);
5613 }
5614
5615 /* Add fields from the file's types; symbols will be added below. */
5616
5617 if (code == TYPE_CODE_UNDEF)
5618 {
5619 if (surrounding_static_block != NULL)
5620 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5621 completion_list_add_fields (tracker, sym, lookup_name,
5622 sym_text, word);
5623
5624 if (surrounding_global_block != NULL)
5625 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5626 completion_list_add_fields (tracker, sym, lookup_name,
5627 sym_text, word);
5628 }
5629
5630 /* Skip macros if we are completing a struct tag -- arguable but
5631 usually what is expected. */
5632 if (current_language->la_macro_expansion == macro_expansion_c
5633 && code == TYPE_CODE_UNDEF)
5634 {
5635 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5636
5637 /* This adds a macro's name to the current completion list. */
5638 auto add_macro_name = [&] (const char *macro_name,
5639 const macro_definition *,
5640 macro_source_file *,
5641 int)
5642 {
5643 completion_list_add_name (tracker, language_c, macro_name,
5644 lookup_name, sym_text, word);
5645 };
5646
5647 /* Add any macros visible in the default scope. Note that this
5648 may yield the occasional wrong result, because an expression
5649 might be evaluated in a scope other than the default. For
5650 example, if the user types "break file:line if <TAB>", the
5651 resulting expression will be evaluated at "file:line" -- but
5652 at there does not seem to be a way to detect this at
5653 completion time. */
5654 scope = default_macro_scope ();
5655 if (scope)
5656 macro_for_each_in_scope (scope->file, scope->line,
5657 add_macro_name);
5658
5659 /* User-defined macros are always visible. */
5660 macro_for_each (macro_user_macros, add_macro_name);
5661 }
5662 }
5663
5664 void
5665 default_collect_symbol_completion_matches (completion_tracker &tracker,
5666 complete_symbol_mode mode,
5667 symbol_name_match_type name_match_type,
5668 const char *text, const char *word,
5669 enum type_code code)
5670 {
5671 return default_collect_symbol_completion_matches_break_on (tracker, mode,
5672 name_match_type,
5673 text, word, "",
5674 code);
5675 }
5676
5677 /* Collect all symbols (regardless of class) which begin by matching
5678 TEXT. */
5679
5680 void
5681 collect_symbol_completion_matches (completion_tracker &tracker,
5682 complete_symbol_mode mode,
5683 symbol_name_match_type name_match_type,
5684 const char *text, const char *word)
5685 {
5686 current_language->la_collect_symbol_completion_matches (tracker, mode,
5687 name_match_type,
5688 text, word,
5689 TYPE_CODE_UNDEF);
5690 }
5691
5692 /* Like collect_symbol_completion_matches, but only collect
5693 STRUCT_DOMAIN symbols whose type code is CODE. */
5694
5695 void
5696 collect_symbol_completion_matches_type (completion_tracker &tracker,
5697 const char *text, const char *word,
5698 enum type_code code)
5699 {
5700 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5701 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5702
5703 gdb_assert (code == TYPE_CODE_UNION
5704 || code == TYPE_CODE_STRUCT
5705 || code == TYPE_CODE_ENUM);
5706 current_language->la_collect_symbol_completion_matches (tracker, mode,
5707 name_match_type,
5708 text, word, code);
5709 }
5710
5711 /* Like collect_symbol_completion_matches, but collects a list of
5712 symbols defined in all source files named SRCFILE. */
5713
5714 void
5715 collect_file_symbol_completion_matches (completion_tracker &tracker,
5716 complete_symbol_mode mode,
5717 symbol_name_match_type name_match_type,
5718 const char *text, const char *word,
5719 const char *srcfile)
5720 {
5721 /* The symbol we are completing on. Points in same buffer as text. */
5722 const char *sym_text;
5723
5724 /* Now look for the symbol we are supposed to complete on.
5725 FIXME: This should be language-specific. */
5726 if (mode == complete_symbol_mode::LINESPEC)
5727 sym_text = text;
5728 else
5729 {
5730 const char *p;
5731 char quote_found;
5732 const char *quote_pos = NULL;
5733
5734 /* First see if this is a quoted string. */
5735 quote_found = '\0';
5736 for (p = text; *p != '\0'; ++p)
5737 {
5738 if (quote_found != '\0')
5739 {
5740 if (*p == quote_found)
5741 /* Found close quote. */
5742 quote_found = '\0';
5743 else if (*p == '\\' && p[1] == quote_found)
5744 /* A backslash followed by the quote character
5745 doesn't end the string. */
5746 ++p;
5747 }
5748 else if (*p == '\'' || *p == '"')
5749 {
5750 quote_found = *p;
5751 quote_pos = p;
5752 }
5753 }
5754 if (quote_found == '\'')
5755 /* A string within single quotes can be a symbol, so complete on it. */
5756 sym_text = quote_pos + 1;
5757 else if (quote_found == '"')
5758 /* A double-quoted string is never a symbol, nor does it make sense
5759 to complete it any other way. */
5760 {
5761 return;
5762 }
5763 else
5764 {
5765 /* Not a quoted string. */
5766 sym_text = language_search_unquoted_string (text, p);
5767 }
5768 }
5769
5770 lookup_name_info lookup_name (sym_text, name_match_type, true);
5771
5772 /* Go through symtabs for SRCFILE and check the externs and statics
5773 for symbols which match. */
5774 iterate_over_symtabs (srcfile, [&] (symtab *s)
5775 {
5776 add_symtab_completions (SYMTAB_COMPUNIT (s),
5777 tracker, mode, lookup_name,
5778 sym_text, word, TYPE_CODE_UNDEF);
5779 return false;
5780 });
5781 }
5782
5783 /* A helper function for make_source_files_completion_list. It adds
5784 another file name to a list of possible completions, growing the
5785 list as necessary. */
5786
5787 static void
5788 add_filename_to_list (const char *fname, const char *text, const char *word,
5789 completion_list *list)
5790 {
5791 list->emplace_back (make_completion_match_str (fname, text, word));
5792 }
5793
5794 static int
5795 not_interesting_fname (const char *fname)
5796 {
5797 static const char *illegal_aliens[] = {
5798 "_globals_", /* inserted by coff_symtab_read */
5799 NULL
5800 };
5801 int i;
5802
5803 for (i = 0; illegal_aliens[i]; i++)
5804 {
5805 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5806 return 1;
5807 }
5808 return 0;
5809 }
5810
5811 /* An object of this type is passed as the user_data argument to
5812 map_partial_symbol_filenames. */
5813 struct add_partial_filename_data
5814 {
5815 struct filename_seen_cache *filename_seen_cache;
5816 const char *text;
5817 const char *word;
5818 int text_len;
5819 completion_list *list;
5820 };
5821
5822 /* A callback for map_partial_symbol_filenames. */
5823
5824 static void
5825 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5826 void *user_data)
5827 {
5828 struct add_partial_filename_data *data
5829 = (struct add_partial_filename_data *) user_data;
5830
5831 if (not_interesting_fname (filename))
5832 return;
5833 if (!data->filename_seen_cache->seen (filename)
5834 && filename_ncmp (filename, data->text, data->text_len) == 0)
5835 {
5836 /* This file matches for a completion; add it to the
5837 current list of matches. */
5838 add_filename_to_list (filename, data->text, data->word, data->list);
5839 }
5840 else
5841 {
5842 const char *base_name = lbasename (filename);
5843
5844 if (base_name != filename
5845 && !data->filename_seen_cache->seen (base_name)
5846 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5847 add_filename_to_list (base_name, data->text, data->word, data->list);
5848 }
5849 }
5850
5851 /* Return a list of all source files whose names begin with matching
5852 TEXT. The file names are looked up in the symbol tables of this
5853 program. */
5854
5855 completion_list
5856 make_source_files_completion_list (const char *text, const char *word)
5857 {
5858 size_t text_len = strlen (text);
5859 completion_list list;
5860 const char *base_name;
5861 struct add_partial_filename_data datum;
5862
5863 if (!have_full_symbols () && !have_partial_symbols ())
5864 return list;
5865
5866 filename_seen_cache filenames_seen;
5867
5868 for (objfile *objfile : current_program_space->objfiles ())
5869 {
5870 for (compunit_symtab *cu : objfile->compunits ())
5871 {
5872 for (symtab *s : compunit_filetabs (cu))
5873 {
5874 if (not_interesting_fname (s->filename))
5875 continue;
5876 if (!filenames_seen.seen (s->filename)
5877 && filename_ncmp (s->filename, text, text_len) == 0)
5878 {
5879 /* This file matches for a completion; add it to the current
5880 list of matches. */
5881 add_filename_to_list (s->filename, text, word, &list);
5882 }
5883 else
5884 {
5885 /* NOTE: We allow the user to type a base name when the
5886 debug info records leading directories, but not the other
5887 way around. This is what subroutines of breakpoint
5888 command do when they parse file names. */
5889 base_name = lbasename (s->filename);
5890 if (base_name != s->filename
5891 && !filenames_seen.seen (base_name)
5892 && filename_ncmp (base_name, text, text_len) == 0)
5893 add_filename_to_list (base_name, text, word, &list);
5894 }
5895 }
5896 }
5897 }
5898
5899 datum.filename_seen_cache = &filenames_seen;
5900 datum.text = text;
5901 datum.word = word;
5902 datum.text_len = text_len;
5903 datum.list = &list;
5904 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5905 0 /*need_fullname*/);
5906
5907 return list;
5908 }
5909 \f
5910 /* Track MAIN */
5911
5912 /* Return the "main_info" object for the current program space. If
5913 the object has not yet been created, create it and fill in some
5914 default values. */
5915
5916 static struct main_info *
5917 get_main_info (void)
5918 {
5919 struct main_info *info = main_progspace_key.get (current_program_space);
5920
5921 if (info == NULL)
5922 {
5923 /* It may seem strange to store the main name in the progspace
5924 and also in whatever objfile happens to see a main name in
5925 its debug info. The reason for this is mainly historical:
5926 gdb returned "main" as the name even if no function named
5927 "main" was defined the program; and this approach lets us
5928 keep compatibility. */
5929 info = main_progspace_key.emplace (current_program_space);
5930 }
5931
5932 return info;
5933 }
5934
5935 static void
5936 set_main_name (const char *name, enum language lang)
5937 {
5938 struct main_info *info = get_main_info ();
5939
5940 if (info->name_of_main != NULL)
5941 {
5942 xfree (info->name_of_main);
5943 info->name_of_main = NULL;
5944 info->language_of_main = language_unknown;
5945 }
5946 if (name != NULL)
5947 {
5948 info->name_of_main = xstrdup (name);
5949 info->language_of_main = lang;
5950 }
5951 }
5952
5953 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5954 accordingly. */
5955
5956 static void
5957 find_main_name (void)
5958 {
5959 const char *new_main_name;
5960
5961 /* First check the objfiles to see whether a debuginfo reader has
5962 picked up the appropriate main name. Historically the main name
5963 was found in a more or less random way; this approach instead
5964 relies on the order of objfile creation -- which still isn't
5965 guaranteed to get the correct answer, but is just probably more
5966 accurate. */
5967 for (objfile *objfile : current_program_space->objfiles ())
5968 {
5969 if (objfile->per_bfd->name_of_main != NULL)
5970 {
5971 set_main_name (objfile->per_bfd->name_of_main,
5972 objfile->per_bfd->language_of_main);
5973 return;
5974 }
5975 }
5976
5977 /* Try to see if the main procedure is in Ada. */
5978 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5979 be to add a new method in the language vector, and call this
5980 method for each language until one of them returns a non-empty
5981 name. This would allow us to remove this hard-coded call to
5982 an Ada function. It is not clear that this is a better approach
5983 at this point, because all methods need to be written in a way
5984 such that false positives never be returned. For instance, it is
5985 important that a method does not return a wrong name for the main
5986 procedure if the main procedure is actually written in a different
5987 language. It is easy to guaranty this with Ada, since we use a
5988 special symbol generated only when the main in Ada to find the name
5989 of the main procedure. It is difficult however to see how this can
5990 be guarantied for languages such as C, for instance. This suggests
5991 that order of call for these methods becomes important, which means
5992 a more complicated approach. */
5993 new_main_name = ada_main_name ();
5994 if (new_main_name != NULL)
5995 {
5996 set_main_name (new_main_name, language_ada);
5997 return;
5998 }
5999
6000 new_main_name = d_main_name ();
6001 if (new_main_name != NULL)
6002 {
6003 set_main_name (new_main_name, language_d);
6004 return;
6005 }
6006
6007 new_main_name = go_main_name ();
6008 if (new_main_name != NULL)
6009 {
6010 set_main_name (new_main_name, language_go);
6011 return;
6012 }
6013
6014 new_main_name = pascal_main_name ();
6015 if (new_main_name != NULL)
6016 {
6017 set_main_name (new_main_name, language_pascal);
6018 return;
6019 }
6020
6021 /* The languages above didn't identify the name of the main procedure.
6022 Fallback to "main". */
6023 set_main_name ("main", language_unknown);
6024 }
6025
6026 /* See symtab.h. */
6027
6028 const char *
6029 main_name ()
6030 {
6031 struct main_info *info = get_main_info ();
6032
6033 if (info->name_of_main == NULL)
6034 find_main_name ();
6035
6036 return info->name_of_main;
6037 }
6038
6039 /* Return the language of the main function. If it is not known,
6040 return language_unknown. */
6041
6042 enum language
6043 main_language (void)
6044 {
6045 struct main_info *info = get_main_info ();
6046
6047 if (info->name_of_main == NULL)
6048 find_main_name ();
6049
6050 return info->language_of_main;
6051 }
6052
6053 /* Handle ``executable_changed'' events for the symtab module. */
6054
6055 static void
6056 symtab_observer_executable_changed (void)
6057 {
6058 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
6059 set_main_name (NULL, language_unknown);
6060 }
6061
6062 /* Return 1 if the supplied producer string matches the ARM RealView
6063 compiler (armcc). */
6064
6065 int
6066 producer_is_realview (const char *producer)
6067 {
6068 static const char *const arm_idents[] = {
6069 "ARM C Compiler, ADS",
6070 "Thumb C Compiler, ADS",
6071 "ARM C++ Compiler, ADS",
6072 "Thumb C++ Compiler, ADS",
6073 "ARM/Thumb C/C++ Compiler, RVCT",
6074 "ARM C/C++ Compiler, RVCT"
6075 };
6076 int i;
6077
6078 if (producer == NULL)
6079 return 0;
6080
6081 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
6082 if (startswith (producer, arm_idents[i]))
6083 return 1;
6084
6085 return 0;
6086 }
6087
6088 \f
6089
6090 /* The next index to hand out in response to a registration request. */
6091
6092 static int next_aclass_value = LOC_FINAL_VALUE;
6093
6094 /* The maximum number of "aclass" registrations we support. This is
6095 constant for convenience. */
6096 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6097
6098 /* The objects representing the various "aclass" values. The elements
6099 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6100 elements are those registered at gdb initialization time. */
6101
6102 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
6103
6104 /* The globally visible pointer. This is separate from 'symbol_impl'
6105 so that it can be const. */
6106
6107 const struct symbol_impl *symbol_impls = &symbol_impl[0];
6108
6109 /* Make sure we saved enough room in struct symbol. */
6110
6111 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6112
6113 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6114 is the ops vector associated with this index. This returns the new
6115 index, which should be used as the aclass_index field for symbols
6116 of this type. */
6117
6118 int
6119 register_symbol_computed_impl (enum address_class aclass,
6120 const struct symbol_computed_ops *ops)
6121 {
6122 int result = next_aclass_value++;
6123
6124 gdb_assert (aclass == LOC_COMPUTED);
6125 gdb_assert (result < MAX_SYMBOL_IMPLS);
6126 symbol_impl[result].aclass = aclass;
6127 symbol_impl[result].ops_computed = ops;
6128
6129 /* Sanity check OPS. */
6130 gdb_assert (ops != NULL);
6131 gdb_assert (ops->tracepoint_var_ref != NULL);
6132 gdb_assert (ops->describe_location != NULL);
6133 gdb_assert (ops->get_symbol_read_needs != NULL);
6134 gdb_assert (ops->read_variable != NULL);
6135
6136 return result;
6137 }
6138
6139 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6140 OPS is the ops vector associated with this index. This returns the
6141 new index, which should be used as the aclass_index field for symbols
6142 of this type. */
6143
6144 int
6145 register_symbol_block_impl (enum address_class aclass,
6146 const struct symbol_block_ops *ops)
6147 {
6148 int result = next_aclass_value++;
6149
6150 gdb_assert (aclass == LOC_BLOCK);
6151 gdb_assert (result < MAX_SYMBOL_IMPLS);
6152 symbol_impl[result].aclass = aclass;
6153 symbol_impl[result].ops_block = ops;
6154
6155 /* Sanity check OPS. */
6156 gdb_assert (ops != NULL);
6157 gdb_assert (ops->find_frame_base_location != NULL);
6158
6159 return result;
6160 }
6161
6162 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6163 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6164 this index. This returns the new index, which should be used as
6165 the aclass_index field for symbols of this type. */
6166
6167 int
6168 register_symbol_register_impl (enum address_class aclass,
6169 const struct symbol_register_ops *ops)
6170 {
6171 int result = next_aclass_value++;
6172
6173 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6174 gdb_assert (result < MAX_SYMBOL_IMPLS);
6175 symbol_impl[result].aclass = aclass;
6176 symbol_impl[result].ops_register = ops;
6177
6178 return result;
6179 }
6180
6181 /* Initialize elements of 'symbol_impl' for the constants in enum
6182 address_class. */
6183
6184 static void
6185 initialize_ordinary_address_classes (void)
6186 {
6187 int i;
6188
6189 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6190 symbol_impl[i].aclass = (enum address_class) i;
6191 }
6192
6193 \f
6194
6195 /* Helper function to initialize the fields of an objfile-owned symbol.
6196 It assumed that *SYM is already all zeroes. */
6197
6198 static void
6199 initialize_objfile_symbol_1 (struct symbol *sym)
6200 {
6201 SYMBOL_OBJFILE_OWNED (sym) = 1;
6202 SYMBOL_SECTION (sym) = -1;
6203 }
6204
6205 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
6206
6207 void
6208 initialize_objfile_symbol (struct symbol *sym)
6209 {
6210 memset (sym, 0, sizeof (*sym));
6211 initialize_objfile_symbol_1 (sym);
6212 }
6213
6214 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
6215 obstack. */
6216
6217 struct symbol *
6218 allocate_symbol (struct objfile *objfile)
6219 {
6220 struct symbol *result;
6221
6222 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
6223 initialize_objfile_symbol_1 (result);
6224
6225 return result;
6226 }
6227
6228 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
6229 obstack. */
6230
6231 struct template_symbol *
6232 allocate_template_symbol (struct objfile *objfile)
6233 {
6234 struct template_symbol *result;
6235
6236 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
6237 initialize_objfile_symbol_1 (result);
6238
6239 return result;
6240 }
6241
6242 /* See symtab.h. */
6243
6244 struct objfile *
6245 symbol_objfile (const struct symbol *symbol)
6246 {
6247 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6248 return SYMTAB_OBJFILE (symbol->owner.symtab);
6249 }
6250
6251 /* See symtab.h. */
6252
6253 struct gdbarch *
6254 symbol_arch (const struct symbol *symbol)
6255 {
6256 if (!SYMBOL_OBJFILE_OWNED (symbol))
6257 return symbol->owner.arch;
6258 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
6259 }
6260
6261 /* See symtab.h. */
6262
6263 struct symtab *
6264 symbol_symtab (const struct symbol *symbol)
6265 {
6266 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6267 return symbol->owner.symtab;
6268 }
6269
6270 /* See symtab.h. */
6271
6272 void
6273 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6274 {
6275 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6276 symbol->owner.symtab = symtab;
6277 }
6278
6279 \f
6280
6281 void
6282 _initialize_symtab (void)
6283 {
6284 cmd_list_element *c;
6285
6286 initialize_ordinary_address_classes ();
6287
6288 c = add_info ("variables", info_variables_command,
6289 info_print_args_help (_("\
6290 All global and static variable names or those matching REGEXPs.\n\
6291 Usage: info variables [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6292 Prints the global and static variables.\n"),
6293 _("global and static variables"),
6294 true));
6295 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6296 if (dbx_commands)
6297 {
6298 c = add_com ("whereis", class_info, info_variables_command,
6299 info_print_args_help (_("\
6300 All global and static variable names, or those matching REGEXPs.\n\
6301 Usage: whereis [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6302 Prints the global and static variables.\n"),
6303 _("global and static variables"),
6304 true));
6305 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6306 }
6307
6308 c = add_info ("functions", info_functions_command,
6309 info_print_args_help (_("\
6310 All function names or those matching REGEXPs.\n\
6311 Usage: info functions [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6312 Prints the functions.\n"),
6313 _("functions"),
6314 true));
6315 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6316
6317 c = add_info ("types", info_types_command, _("\
6318 All type names, or those matching REGEXP.\n\
6319 Usage: info types [-q] [REGEXP]\n\
6320 Print information about all types matching REGEXP, or all types if no\n\
6321 REGEXP is given. The optional flag -q disables printing of headers."));
6322 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6323
6324 const auto info_sources_opts = make_info_sources_options_def_group (nullptr);
6325
6326 static std::string info_sources_help
6327 = gdb::option::build_help (_("\
6328 All source files in the program or those matching REGEXP.\n\
6329 Usage: info sources [OPTION]... [REGEXP]\n\
6330 By default, REGEXP is used to match anywhere in the filename.\n\
6331 \n\
6332 Options:\n\
6333 %OPTIONS%"),
6334 info_sources_opts);
6335
6336 c = add_info ("sources", info_sources_command, info_sources_help.c_str ());
6337 set_cmd_completer_handle_brkchars (c, info_sources_command_completer);
6338
6339 add_com ("rbreak", class_breakpoint, rbreak_command,
6340 _("Set a breakpoint for all functions matching REGEXP."));
6341
6342 add_setshow_enum_cmd ("multiple-symbols", no_class,
6343 multiple_symbols_modes, &multiple_symbols_mode,
6344 _("\
6345 Set how the debugger handles ambiguities in expressions."), _("\
6346 Show how the debugger handles ambiguities in expressions."), _("\
6347 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6348 NULL, NULL, &setlist, &showlist);
6349
6350 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6351 &basenames_may_differ, _("\
6352 Set whether a source file may have multiple base names."), _("\
6353 Show whether a source file may have multiple base names."), _("\
6354 (A \"base name\" is the name of a file with the directory part removed.\n\
6355 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6356 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6357 before comparing them. Canonicalization is an expensive operation,\n\
6358 but it allows the same file be known by more than one base name.\n\
6359 If not set (the default), all source files are assumed to have just\n\
6360 one base name, and gdb will do file name comparisons more efficiently."),
6361 NULL, NULL,
6362 &setlist, &showlist);
6363
6364 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6365 _("Set debugging of symbol table creation."),
6366 _("Show debugging of symbol table creation."), _("\
6367 When enabled (non-zero), debugging messages are printed when building\n\
6368 symbol tables. A value of 1 (one) normally provides enough information.\n\
6369 A value greater than 1 provides more verbose information."),
6370 NULL,
6371 NULL,
6372 &setdebuglist, &showdebuglist);
6373
6374 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6375 _("\
6376 Set debugging of symbol lookup."), _("\
6377 Show debugging of symbol lookup."), _("\
6378 When enabled (non-zero), symbol lookups are logged."),
6379 NULL, NULL,
6380 &setdebuglist, &showdebuglist);
6381
6382 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6383 &new_symbol_cache_size,
6384 _("Set the size of the symbol cache."),
6385 _("Show the size of the symbol cache."), _("\
6386 The size of the symbol cache.\n\
6387 If zero then the symbol cache is disabled."),
6388 set_symbol_cache_size_handler, NULL,
6389 &maintenance_set_cmdlist,
6390 &maintenance_show_cmdlist);
6391
6392 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6393 _("Dump the symbol cache for each program space."),
6394 &maintenanceprintlist);
6395
6396 add_cmd ("symbol-cache-statistics", class_maintenance,
6397 maintenance_print_symbol_cache_statistics,
6398 _("Print symbol cache statistics for each program space."),
6399 &maintenanceprintlist);
6400
6401 add_cmd ("flush-symbol-cache", class_maintenance,
6402 maintenance_flush_symbol_cache,
6403 _("Flush the symbol cache for each program space."),
6404 &maintenancelist);
6405
6406 gdb::observers::executable_changed.attach (symtab_observer_executable_changed);
6407 gdb::observers::new_objfile.attach (symtab_new_objfile_observer);
6408 gdb::observers::free_objfile.attach (symtab_free_objfile_observer);
6409 }
This page took 0.158166 seconds and 3 git commands to generate.