gdb: add target_ops::supports_displaced_step
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "cli/cli-style.h"
45 #include "fnmatch.h"
46 #include "hashtab.h"
47 #include "typeprint.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include <sys/stat.h>
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "cp-support.h"
59 #include "observable.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "parser-defs.h"
65 #include "completer.h"
66 #include "progspace-and-thread.h"
67 #include "gdbsupport/gdb_optional.h"
68 #include "filename-seen-cache.h"
69 #include "arch-utils.h"
70 #include <algorithm>
71 #include "gdbsupport/gdb_string_view.h"
72 #include "gdbsupport/pathstuff.h"
73 #include "gdbsupport/common-utils.h"
74
75 /* Forward declarations for local functions. */
76
77 static void rbreak_command (const char *, int);
78
79 static int find_line_common (struct linetable *, int, int *, int);
80
81 static struct block_symbol
82 lookup_symbol_aux (const char *name,
83 symbol_name_match_type match_type,
84 const struct block *block,
85 const domain_enum domain,
86 enum language language,
87 struct field_of_this_result *);
88
89 static
90 struct block_symbol lookup_local_symbol (const char *name,
91 symbol_name_match_type match_type,
92 const struct block *block,
93 const domain_enum domain,
94 enum language language);
95
96 static struct block_symbol
97 lookup_symbol_in_objfile (struct objfile *objfile,
98 enum block_enum block_index,
99 const char *name, const domain_enum domain);
100
101 /* Type of the data stored on the program space. */
102
103 struct main_info
104 {
105 main_info () = default;
106
107 ~main_info ()
108 {
109 xfree (name_of_main);
110 }
111
112 /* Name of "main". */
113
114 char *name_of_main = nullptr;
115
116 /* Language of "main". */
117
118 enum language language_of_main = language_unknown;
119 };
120
121 /* Program space key for finding name and language of "main". */
122
123 static const program_space_key<main_info> main_progspace_key;
124
125 /* The default symbol cache size.
126 There is no extra cpu cost for large N (except when flushing the cache,
127 which is rare). The value here is just a first attempt. A better default
128 value may be higher or lower. A prime number can make up for a bad hash
129 computation, so that's why the number is what it is. */
130 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
131
132 /* The maximum symbol cache size.
133 There's no method to the decision of what value to use here, other than
134 there's no point in allowing a user typo to make gdb consume all memory. */
135 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
136
137 /* symbol_cache_lookup returns this if a previous lookup failed to find the
138 symbol in any objfile. */
139 #define SYMBOL_LOOKUP_FAILED \
140 ((struct block_symbol) {(struct symbol *) 1, NULL})
141 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
142
143 /* Recording lookups that don't find the symbol is just as important, if not
144 more so, than recording found symbols. */
145
146 enum symbol_cache_slot_state
147 {
148 SYMBOL_SLOT_UNUSED,
149 SYMBOL_SLOT_NOT_FOUND,
150 SYMBOL_SLOT_FOUND
151 };
152
153 struct symbol_cache_slot
154 {
155 enum symbol_cache_slot_state state;
156
157 /* The objfile that was current when the symbol was looked up.
158 This is only needed for global blocks, but for simplicity's sake
159 we allocate the space for both. If data shows the extra space used
160 for static blocks is a problem, we can split things up then.
161
162 Global blocks need cache lookup to include the objfile context because
163 we need to account for gdbarch_iterate_over_objfiles_in_search_order
164 which can traverse objfiles in, effectively, any order, depending on
165 the current objfile, thus affecting which symbol is found. Normally,
166 only the current objfile is searched first, and then the rest are
167 searched in recorded order; but putting cache lookup inside
168 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
169 Instead we just make the current objfile part of the context of
170 cache lookup. This means we can record the same symbol multiple times,
171 each with a different "current objfile" that was in effect when the
172 lookup was saved in the cache, but cache space is pretty cheap. */
173 const struct objfile *objfile_context;
174
175 union
176 {
177 struct block_symbol found;
178 struct
179 {
180 char *name;
181 domain_enum domain;
182 } not_found;
183 } value;
184 };
185
186 /* Clear out SLOT. */
187
188 static void
189 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
190 {
191 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
192 xfree (slot->value.not_found.name);
193 slot->state = SYMBOL_SLOT_UNUSED;
194 }
195
196 /* Symbols don't specify global vs static block.
197 So keep them in separate caches. */
198
199 struct block_symbol_cache
200 {
201 unsigned int hits;
202 unsigned int misses;
203 unsigned int collisions;
204
205 /* SYMBOLS is a variable length array of this size.
206 One can imagine that in general one cache (global/static) should be a
207 fraction of the size of the other, but there's no data at the moment
208 on which to decide. */
209 unsigned int size;
210
211 struct symbol_cache_slot symbols[1];
212 };
213
214 /* Clear all slots of BSC and free BSC. */
215
216 static void
217 destroy_block_symbol_cache (struct block_symbol_cache *bsc)
218 {
219 if (bsc != nullptr)
220 {
221 for (unsigned int i = 0; i < bsc->size; i++)
222 symbol_cache_clear_slot (&bsc->symbols[i]);
223 xfree (bsc);
224 }
225 }
226
227 /* The symbol cache.
228
229 Searching for symbols in the static and global blocks over multiple objfiles
230 again and again can be slow, as can searching very big objfiles. This is a
231 simple cache to improve symbol lookup performance, which is critical to
232 overall gdb performance.
233
234 Symbols are hashed on the name, its domain, and block.
235 They are also hashed on their objfile for objfile-specific lookups. */
236
237 struct symbol_cache
238 {
239 symbol_cache () = default;
240
241 ~symbol_cache ()
242 {
243 destroy_block_symbol_cache (global_symbols);
244 destroy_block_symbol_cache (static_symbols);
245 }
246
247 struct block_symbol_cache *global_symbols = nullptr;
248 struct block_symbol_cache *static_symbols = nullptr;
249 };
250
251 /* Program space key for finding its symbol cache. */
252
253 static const program_space_key<symbol_cache> symbol_cache_key;
254
255 /* When non-zero, print debugging messages related to symtab creation. */
256 unsigned int symtab_create_debug = 0;
257
258 /* When non-zero, print debugging messages related to symbol lookup. */
259 unsigned int symbol_lookup_debug = 0;
260
261 /* The size of the cache is staged here. */
262 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
263
264 /* The current value of the symbol cache size.
265 This is saved so that if the user enters a value too big we can restore
266 the original value from here. */
267 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
268
269 /* True if a file may be known by two different basenames.
270 This is the uncommon case, and significantly slows down gdb.
271 Default set to "off" to not slow down the common case. */
272 bool basenames_may_differ = false;
273
274 /* Allow the user to configure the debugger behavior with respect
275 to multiple-choice menus when more than one symbol matches during
276 a symbol lookup. */
277
278 const char multiple_symbols_ask[] = "ask";
279 const char multiple_symbols_all[] = "all";
280 const char multiple_symbols_cancel[] = "cancel";
281 static const char *const multiple_symbols_modes[] =
282 {
283 multiple_symbols_ask,
284 multiple_symbols_all,
285 multiple_symbols_cancel,
286 NULL
287 };
288 static const char *multiple_symbols_mode = multiple_symbols_all;
289
290 /* Read-only accessor to AUTO_SELECT_MODE. */
291
292 const char *
293 multiple_symbols_select_mode (void)
294 {
295 return multiple_symbols_mode;
296 }
297
298 /* Return the name of a domain_enum. */
299
300 const char *
301 domain_name (domain_enum e)
302 {
303 switch (e)
304 {
305 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
306 case VAR_DOMAIN: return "VAR_DOMAIN";
307 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
308 case MODULE_DOMAIN: return "MODULE_DOMAIN";
309 case LABEL_DOMAIN: return "LABEL_DOMAIN";
310 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
311 default: gdb_assert_not_reached ("bad domain_enum");
312 }
313 }
314
315 /* Return the name of a search_domain . */
316
317 const char *
318 search_domain_name (enum search_domain e)
319 {
320 switch (e)
321 {
322 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
323 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
324 case TYPES_DOMAIN: return "TYPES_DOMAIN";
325 case MODULES_DOMAIN: return "MODULES_DOMAIN";
326 case ALL_DOMAIN: return "ALL_DOMAIN";
327 default: gdb_assert_not_reached ("bad search_domain");
328 }
329 }
330
331 /* See symtab.h. */
332
333 struct symtab *
334 compunit_primary_filetab (const struct compunit_symtab *cust)
335 {
336 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
337
338 /* The primary file symtab is the first one in the list. */
339 return COMPUNIT_FILETABS (cust);
340 }
341
342 /* See symtab.h. */
343
344 enum language
345 compunit_language (const struct compunit_symtab *cust)
346 {
347 struct symtab *symtab = compunit_primary_filetab (cust);
348
349 /* The language of the compunit symtab is the language of its primary
350 source file. */
351 return SYMTAB_LANGUAGE (symtab);
352 }
353
354 /* See symtab.h. */
355
356 bool
357 minimal_symbol::data_p () const
358 {
359 return type == mst_data
360 || type == mst_bss
361 || type == mst_abs
362 || type == mst_file_data
363 || type == mst_file_bss;
364 }
365
366 /* See symtab.h. */
367
368 bool
369 minimal_symbol::text_p () const
370 {
371 return type == mst_text
372 || type == mst_text_gnu_ifunc
373 || type == mst_data_gnu_ifunc
374 || type == mst_slot_got_plt
375 || type == mst_solib_trampoline
376 || type == mst_file_text;
377 }
378
379 /* See whether FILENAME matches SEARCH_NAME using the rule that we
380 advertise to the user. (The manual's description of linespecs
381 describes what we advertise). Returns true if they match, false
382 otherwise. */
383
384 bool
385 compare_filenames_for_search (const char *filename, const char *search_name)
386 {
387 int len = strlen (filename);
388 size_t search_len = strlen (search_name);
389
390 if (len < search_len)
391 return false;
392
393 /* The tail of FILENAME must match. */
394 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
395 return false;
396
397 /* Either the names must completely match, or the character
398 preceding the trailing SEARCH_NAME segment of FILENAME must be a
399 directory separator.
400
401 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
402 cannot match FILENAME "/path//dir/file.c" - as user has requested
403 absolute path. The sama applies for "c:\file.c" possibly
404 incorrectly hypothetically matching "d:\dir\c:\file.c".
405
406 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
407 compatible with SEARCH_NAME "file.c". In such case a compiler had
408 to put the "c:file.c" name into debug info. Such compatibility
409 works only on GDB built for DOS host. */
410 return (len == search_len
411 || (!IS_ABSOLUTE_PATH (search_name)
412 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
413 || (HAS_DRIVE_SPEC (filename)
414 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
415 }
416
417 /* Same as compare_filenames_for_search, but for glob-style patterns.
418 Heads up on the order of the arguments. They match the order of
419 compare_filenames_for_search, but it's the opposite of the order of
420 arguments to gdb_filename_fnmatch. */
421
422 bool
423 compare_glob_filenames_for_search (const char *filename,
424 const char *search_name)
425 {
426 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
427 all /s have to be explicitly specified. */
428 int file_path_elements = count_path_elements (filename);
429 int search_path_elements = count_path_elements (search_name);
430
431 if (search_path_elements > file_path_elements)
432 return false;
433
434 if (IS_ABSOLUTE_PATH (search_name))
435 {
436 return (search_path_elements == file_path_elements
437 && gdb_filename_fnmatch (search_name, filename,
438 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
439 }
440
441 {
442 const char *file_to_compare
443 = strip_leading_path_elements (filename,
444 file_path_elements - search_path_elements);
445
446 return gdb_filename_fnmatch (search_name, file_to_compare,
447 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
448 }
449 }
450
451 /* Check for a symtab of a specific name by searching some symtabs.
452 This is a helper function for callbacks of iterate_over_symtabs.
453
454 If NAME is not absolute, then REAL_PATH is NULL
455 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
456
457 The return value, NAME, REAL_PATH and CALLBACK are identical to the
458 `map_symtabs_matching_filename' method of quick_symbol_functions.
459
460 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
461 Each symtab within the specified compunit symtab is also searched.
462 AFTER_LAST is one past the last compunit symtab to search; NULL means to
463 search until the end of the list. */
464
465 bool
466 iterate_over_some_symtabs (const char *name,
467 const char *real_path,
468 struct compunit_symtab *first,
469 struct compunit_symtab *after_last,
470 gdb::function_view<bool (symtab *)> callback)
471 {
472 struct compunit_symtab *cust;
473 const char* base_name = lbasename (name);
474
475 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
476 {
477 for (symtab *s : compunit_filetabs (cust))
478 {
479 if (compare_filenames_for_search (s->filename, name))
480 {
481 if (callback (s))
482 return true;
483 continue;
484 }
485
486 /* Before we invoke realpath, which can get expensive when many
487 files are involved, do a quick comparison of the basenames. */
488 if (! basenames_may_differ
489 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
490 continue;
491
492 if (compare_filenames_for_search (symtab_to_fullname (s), name))
493 {
494 if (callback (s))
495 return true;
496 continue;
497 }
498
499 /* If the user gave us an absolute path, try to find the file in
500 this symtab and use its absolute path. */
501 if (real_path != NULL)
502 {
503 const char *fullname = symtab_to_fullname (s);
504
505 gdb_assert (IS_ABSOLUTE_PATH (real_path));
506 gdb_assert (IS_ABSOLUTE_PATH (name));
507 gdb::unique_xmalloc_ptr<char> fullname_real_path
508 = gdb_realpath (fullname);
509 fullname = fullname_real_path.get ();
510 if (FILENAME_CMP (real_path, fullname) == 0)
511 {
512 if (callback (s))
513 return true;
514 continue;
515 }
516 }
517 }
518 }
519
520 return false;
521 }
522
523 /* Check for a symtab of a specific name; first in symtabs, then in
524 psymtabs. *If* there is no '/' in the name, a match after a '/'
525 in the symtab filename will also work.
526
527 Calls CALLBACK with each symtab that is found. If CALLBACK returns
528 true, the search stops. */
529
530 void
531 iterate_over_symtabs (const char *name,
532 gdb::function_view<bool (symtab *)> callback)
533 {
534 gdb::unique_xmalloc_ptr<char> real_path;
535
536 /* Here we are interested in canonicalizing an absolute path, not
537 absolutizing a relative path. */
538 if (IS_ABSOLUTE_PATH (name))
539 {
540 real_path = gdb_realpath (name);
541 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
542 }
543
544 for (objfile *objfile : current_program_space->objfiles ())
545 {
546 if (iterate_over_some_symtabs (name, real_path.get (),
547 objfile->compunit_symtabs, NULL,
548 callback))
549 return;
550 }
551
552 /* Same search rules as above apply here, but now we look thru the
553 psymtabs. */
554
555 for (objfile *objfile : current_program_space->objfiles ())
556 {
557 if (objfile->sf
558 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
559 name,
560 real_path.get (),
561 callback))
562 return;
563 }
564 }
565
566 /* A wrapper for iterate_over_symtabs that returns the first matching
567 symtab, or NULL. */
568
569 struct symtab *
570 lookup_symtab (const char *name)
571 {
572 struct symtab *result = NULL;
573
574 iterate_over_symtabs (name, [&] (symtab *symtab)
575 {
576 result = symtab;
577 return true;
578 });
579
580 return result;
581 }
582
583 \f
584 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
585 full method name, which consist of the class name (from T), the unadorned
586 method name from METHOD_ID, and the signature for the specific overload,
587 specified by SIGNATURE_ID. Note that this function is g++ specific. */
588
589 char *
590 gdb_mangle_name (struct type *type, int method_id, int signature_id)
591 {
592 int mangled_name_len;
593 char *mangled_name;
594 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
595 struct fn_field *method = &f[signature_id];
596 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
597 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
598 const char *newname = type->name ();
599
600 /* Does the form of physname indicate that it is the full mangled name
601 of a constructor (not just the args)? */
602 int is_full_physname_constructor;
603
604 int is_constructor;
605 int is_destructor = is_destructor_name (physname);
606 /* Need a new type prefix. */
607 const char *const_prefix = method->is_const ? "C" : "";
608 const char *volatile_prefix = method->is_volatile ? "V" : "";
609 char buf[20];
610 int len = (newname == NULL ? 0 : strlen (newname));
611
612 /* Nothing to do if physname already contains a fully mangled v3 abi name
613 or an operator name. */
614 if ((physname[0] == '_' && physname[1] == 'Z')
615 || is_operator_name (field_name))
616 return xstrdup (physname);
617
618 is_full_physname_constructor = is_constructor_name (physname);
619
620 is_constructor = is_full_physname_constructor
621 || (newname && strcmp (field_name, newname) == 0);
622
623 if (!is_destructor)
624 is_destructor = (startswith (physname, "__dt"));
625
626 if (is_destructor || is_full_physname_constructor)
627 {
628 mangled_name = (char *) xmalloc (strlen (physname) + 1);
629 strcpy (mangled_name, physname);
630 return mangled_name;
631 }
632
633 if (len == 0)
634 {
635 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
636 }
637 else if (physname[0] == 't' || physname[0] == 'Q')
638 {
639 /* The physname for template and qualified methods already includes
640 the class name. */
641 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
642 newname = NULL;
643 len = 0;
644 }
645 else
646 {
647 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
648 volatile_prefix, len);
649 }
650 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
651 + strlen (buf) + len + strlen (physname) + 1);
652
653 mangled_name = (char *) xmalloc (mangled_name_len);
654 if (is_constructor)
655 mangled_name[0] = '\0';
656 else
657 strcpy (mangled_name, field_name);
658
659 strcat (mangled_name, buf);
660 /* If the class doesn't have a name, i.e. newname NULL, then we just
661 mangle it using 0 for the length of the class. Thus it gets mangled
662 as something starting with `::' rather than `classname::'. */
663 if (newname != NULL)
664 strcat (mangled_name, newname);
665
666 strcat (mangled_name, physname);
667 return (mangled_name);
668 }
669
670 /* See symtab.h. */
671
672 void
673 general_symbol_info::set_demangled_name (const char *name,
674 struct obstack *obstack)
675 {
676 if (language () == language_ada)
677 {
678 if (name == NULL)
679 {
680 ada_mangled = 0;
681 language_specific.obstack = obstack;
682 }
683 else
684 {
685 ada_mangled = 1;
686 language_specific.demangled_name = name;
687 }
688 }
689 else
690 language_specific.demangled_name = name;
691 }
692
693 \f
694 /* Initialize the language dependent portion of a symbol
695 depending upon the language for the symbol. */
696
697 void
698 general_symbol_info::set_language (enum language language,
699 struct obstack *obstack)
700 {
701 m_language = language;
702 if (language == language_cplus
703 || language == language_d
704 || language == language_go
705 || language == language_objc
706 || language == language_fortran)
707 {
708 set_demangled_name (NULL, obstack);
709 }
710 else if (language == language_ada)
711 {
712 gdb_assert (ada_mangled == 0);
713 language_specific.obstack = obstack;
714 }
715 else
716 {
717 memset (&language_specific, 0, sizeof (language_specific));
718 }
719 }
720
721 /* Functions to initialize a symbol's mangled name. */
722
723 /* Objects of this type are stored in the demangled name hash table. */
724 struct demangled_name_entry
725 {
726 demangled_name_entry (gdb::string_view mangled_name)
727 : mangled (mangled_name) {}
728
729 gdb::string_view mangled;
730 enum language language;
731 gdb::unique_xmalloc_ptr<char> demangled;
732 };
733
734 /* Hash function for the demangled name hash. */
735
736 static hashval_t
737 hash_demangled_name_entry (const void *data)
738 {
739 const struct demangled_name_entry *e
740 = (const struct demangled_name_entry *) data;
741
742 return fast_hash (e->mangled.data (), e->mangled.length ());
743 }
744
745 /* Equality function for the demangled name hash. */
746
747 static int
748 eq_demangled_name_entry (const void *a, const void *b)
749 {
750 const struct demangled_name_entry *da
751 = (const struct demangled_name_entry *) a;
752 const struct demangled_name_entry *db
753 = (const struct demangled_name_entry *) b;
754
755 return da->mangled == db->mangled;
756 }
757
758 static void
759 free_demangled_name_entry (void *data)
760 {
761 struct demangled_name_entry *e
762 = (struct demangled_name_entry *) data;
763
764 e->~demangled_name_entry();
765 }
766
767 /* Create the hash table used for demangled names. Each hash entry is
768 a pair of strings; one for the mangled name and one for the demangled
769 name. The entry is hashed via just the mangled name. */
770
771 static void
772 create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd)
773 {
774 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
775 The hash table code will round this up to the next prime number.
776 Choosing a much larger table size wastes memory, and saves only about
777 1% in symbol reading. However, if the minsym count is already
778 initialized (e.g. because symbol name setting was deferred to
779 a background thread) we can initialize the hashtable with a count
780 based on that, because we will almost certainly have at least that
781 many entries. If we have a nonzero number but less than 256,
782 we still stay with 256 to have some space for psymbols, etc. */
783
784 /* htab will expand the table when it is 3/4th full, so we account for that
785 here. +2 to round up. */
786 int minsym_based_count = (per_bfd->minimal_symbol_count + 2) / 3 * 4;
787 int count = std::max (per_bfd->minimal_symbol_count, minsym_based_count);
788
789 per_bfd->demangled_names_hash.reset (htab_create_alloc
790 (count, hash_demangled_name_entry, eq_demangled_name_entry,
791 free_demangled_name_entry, xcalloc, xfree));
792 }
793
794 /* See symtab.h */
795
796 char *
797 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
798 const char *mangled)
799 {
800 char *demangled = NULL;
801 int i;
802
803 if (gsymbol->language () == language_unknown)
804 gsymbol->m_language = language_auto;
805
806 if (gsymbol->language () != language_auto)
807 {
808 const struct language_defn *lang = language_def (gsymbol->language ());
809
810 lang->sniff_from_mangled_name (mangled, &demangled);
811 return demangled;
812 }
813
814 for (i = language_unknown; i < nr_languages; ++i)
815 {
816 enum language l = (enum language) i;
817 const struct language_defn *lang = language_def (l);
818
819 if (lang->sniff_from_mangled_name (mangled, &demangled))
820 {
821 gsymbol->m_language = l;
822 return demangled;
823 }
824 }
825
826 return NULL;
827 }
828
829 /* Set both the mangled and demangled (if any) names for GSYMBOL based
830 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
831 objfile's obstack; but if COPY_NAME is 0 and if NAME is
832 NUL-terminated, then this function assumes that NAME is already
833 correctly saved (either permanently or with a lifetime tied to the
834 objfile), and it will not be copied.
835
836 The hash table corresponding to OBJFILE is used, and the memory
837 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
838 so the pointer can be discarded after calling this function. */
839
840 void
841 general_symbol_info::compute_and_set_names (gdb::string_view linkage_name,
842 bool copy_name,
843 objfile_per_bfd_storage *per_bfd,
844 gdb::optional<hashval_t> hash)
845 {
846 struct demangled_name_entry **slot;
847
848 if (language () == language_ada)
849 {
850 /* In Ada, we do the symbol lookups using the mangled name, so
851 we can save some space by not storing the demangled name. */
852 if (!copy_name)
853 m_name = linkage_name.data ();
854 else
855 m_name = obstack_strndup (&per_bfd->storage_obstack,
856 linkage_name.data (),
857 linkage_name.length ());
858 set_demangled_name (NULL, &per_bfd->storage_obstack);
859
860 return;
861 }
862
863 if (per_bfd->demangled_names_hash == NULL)
864 create_demangled_names_hash (per_bfd);
865
866 struct demangled_name_entry entry (linkage_name);
867 if (!hash.has_value ())
868 hash = hash_demangled_name_entry (&entry);
869 slot = ((struct demangled_name_entry **)
870 htab_find_slot_with_hash (per_bfd->demangled_names_hash.get (),
871 &entry, *hash, INSERT));
872
873 /* The const_cast is safe because the only reason it is already
874 initialized is if we purposefully set it from a background
875 thread to avoid doing the work here. However, it is still
876 allocated from the heap and needs to be freed by us, just
877 like if we called symbol_find_demangled_name here. If this is
878 nullptr, we call symbol_find_demangled_name below, but we put
879 this smart pointer here to be sure that we don't leak this name. */
880 gdb::unique_xmalloc_ptr<char> demangled_name
881 (const_cast<char *> (language_specific.demangled_name));
882
883 /* If this name is not in the hash table, add it. */
884 if (*slot == NULL
885 /* A C version of the symbol may have already snuck into the table.
886 This happens to, e.g., main.init (__go_init_main). Cope. */
887 || (language () == language_go && (*slot)->demangled == nullptr))
888 {
889 /* A 0-terminated copy of the linkage name. Callers must set COPY_NAME
890 to true if the string might not be nullterminated. We have to make
891 this copy because demangling needs a nullterminated string. */
892 gdb::string_view linkage_name_copy;
893 if (copy_name)
894 {
895 char *alloc_name = (char *) alloca (linkage_name.length () + 1);
896 memcpy (alloc_name, linkage_name.data (), linkage_name.length ());
897 alloc_name[linkage_name.length ()] = '\0';
898
899 linkage_name_copy = gdb::string_view (alloc_name,
900 linkage_name.length ());
901 }
902 else
903 linkage_name_copy = linkage_name;
904
905 if (demangled_name.get () == nullptr)
906 demangled_name.reset
907 (symbol_find_demangled_name (this, linkage_name_copy.data ()));
908
909 /* Suppose we have demangled_name==NULL, copy_name==0, and
910 linkage_name_copy==linkage_name. In this case, we already have the
911 mangled name saved, and we don't have a demangled name. So,
912 you might think we could save a little space by not recording
913 this in the hash table at all.
914
915 It turns out that it is actually important to still save such
916 an entry in the hash table, because storing this name gives
917 us better bcache hit rates for partial symbols. */
918 if (!copy_name)
919 {
920 *slot
921 = ((struct demangled_name_entry *)
922 obstack_alloc (&per_bfd->storage_obstack,
923 sizeof (demangled_name_entry)));
924 new (*slot) demangled_name_entry (linkage_name);
925 }
926 else
927 {
928 /* If we must copy the mangled name, put it directly after
929 the struct so we can have a single allocation. */
930 *slot
931 = ((struct demangled_name_entry *)
932 obstack_alloc (&per_bfd->storage_obstack,
933 sizeof (demangled_name_entry)
934 + linkage_name.length () + 1));
935 char *mangled_ptr = reinterpret_cast<char *> (*slot + 1);
936 memcpy (mangled_ptr, linkage_name.data (), linkage_name.length ());
937 mangled_ptr [linkage_name.length ()] = '\0';
938 new (*slot) demangled_name_entry
939 (gdb::string_view (mangled_ptr, linkage_name.length ()));
940 }
941 (*slot)->demangled = std::move (demangled_name);
942 (*slot)->language = language ();
943 }
944 else if (language () == language_unknown || language () == language_auto)
945 m_language = (*slot)->language;
946
947 m_name = (*slot)->mangled.data ();
948 set_demangled_name ((*slot)->demangled.get (), &per_bfd->storage_obstack);
949 }
950
951 /* See symtab.h. */
952
953 const char *
954 general_symbol_info::natural_name () const
955 {
956 switch (language ())
957 {
958 case language_cplus:
959 case language_d:
960 case language_go:
961 case language_objc:
962 case language_fortran:
963 case language_rust:
964 if (language_specific.demangled_name != nullptr)
965 return language_specific.demangled_name;
966 break;
967 case language_ada:
968 return ada_decode_symbol (this);
969 default:
970 break;
971 }
972 return linkage_name ();
973 }
974
975 /* See symtab.h. */
976
977 const char *
978 general_symbol_info::demangled_name () const
979 {
980 const char *dem_name = NULL;
981
982 switch (language ())
983 {
984 case language_cplus:
985 case language_d:
986 case language_go:
987 case language_objc:
988 case language_fortran:
989 case language_rust:
990 dem_name = language_specific.demangled_name;
991 break;
992 case language_ada:
993 dem_name = ada_decode_symbol (this);
994 break;
995 default:
996 break;
997 }
998 return dem_name;
999 }
1000
1001 /* See symtab.h. */
1002
1003 const char *
1004 general_symbol_info::search_name () const
1005 {
1006 if (language () == language_ada)
1007 return linkage_name ();
1008 else
1009 return natural_name ();
1010 }
1011
1012 /* See symtab.h. */
1013
1014 bool
1015 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
1016 const lookup_name_info &name)
1017 {
1018 symbol_name_matcher_ftype *name_match
1019 = get_symbol_name_matcher (language_def (gsymbol->language ()), name);
1020 return name_match (gsymbol->search_name (), name, NULL);
1021 }
1022
1023 \f
1024
1025 /* Return true if the two sections are the same, or if they could
1026 plausibly be copies of each other, one in an original object
1027 file and another in a separated debug file. */
1028
1029 bool
1030 matching_obj_sections (struct obj_section *obj_first,
1031 struct obj_section *obj_second)
1032 {
1033 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1034 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1035
1036 /* If they're the same section, then they match. */
1037 if (first == second)
1038 return true;
1039
1040 /* If either is NULL, give up. */
1041 if (first == NULL || second == NULL)
1042 return false;
1043
1044 /* This doesn't apply to absolute symbols. */
1045 if (first->owner == NULL || second->owner == NULL)
1046 return false;
1047
1048 /* If they're in the same object file, they must be different sections. */
1049 if (first->owner == second->owner)
1050 return false;
1051
1052 /* Check whether the two sections are potentially corresponding. They must
1053 have the same size, address, and name. We can't compare section indexes,
1054 which would be more reliable, because some sections may have been
1055 stripped. */
1056 if (bfd_section_size (first) != bfd_section_size (second))
1057 return false;
1058
1059 /* In-memory addresses may start at a different offset, relativize them. */
1060 if (bfd_section_vma (first) - bfd_get_start_address (first->owner)
1061 != bfd_section_vma (second) - bfd_get_start_address (second->owner))
1062 return false;
1063
1064 if (bfd_section_name (first) == NULL
1065 || bfd_section_name (second) == NULL
1066 || strcmp (bfd_section_name (first), bfd_section_name (second)) != 0)
1067 return false;
1068
1069 /* Otherwise check that they are in corresponding objfiles. */
1070
1071 struct objfile *obj = NULL;
1072 for (objfile *objfile : current_program_space->objfiles ())
1073 if (objfile->obfd == first->owner)
1074 {
1075 obj = objfile;
1076 break;
1077 }
1078 gdb_assert (obj != NULL);
1079
1080 if (obj->separate_debug_objfile != NULL
1081 && obj->separate_debug_objfile->obfd == second->owner)
1082 return true;
1083 if (obj->separate_debug_objfile_backlink != NULL
1084 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1085 return true;
1086
1087 return false;
1088 }
1089
1090 /* See symtab.h. */
1091
1092 void
1093 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1094 {
1095 struct bound_minimal_symbol msymbol;
1096
1097 /* If we know that this is not a text address, return failure. This is
1098 necessary because we loop based on texthigh and textlow, which do
1099 not include the data ranges. */
1100 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1101 if (msymbol.minsym && msymbol.minsym->data_p ())
1102 return;
1103
1104 for (objfile *objfile : current_program_space->objfiles ())
1105 {
1106 struct compunit_symtab *cust = NULL;
1107
1108 if (objfile->sf)
1109 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1110 pc, section, 0);
1111 if (cust)
1112 return;
1113 }
1114 }
1115 \f
1116 /* Hash function for the symbol cache. */
1117
1118 static unsigned int
1119 hash_symbol_entry (const struct objfile *objfile_context,
1120 const char *name, domain_enum domain)
1121 {
1122 unsigned int hash = (uintptr_t) objfile_context;
1123
1124 if (name != NULL)
1125 hash += htab_hash_string (name);
1126
1127 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1128 to map to the same slot. */
1129 if (domain == STRUCT_DOMAIN)
1130 hash += VAR_DOMAIN * 7;
1131 else
1132 hash += domain * 7;
1133
1134 return hash;
1135 }
1136
1137 /* Equality function for the symbol cache. */
1138
1139 static int
1140 eq_symbol_entry (const struct symbol_cache_slot *slot,
1141 const struct objfile *objfile_context,
1142 const char *name, domain_enum domain)
1143 {
1144 const char *slot_name;
1145 domain_enum slot_domain;
1146
1147 if (slot->state == SYMBOL_SLOT_UNUSED)
1148 return 0;
1149
1150 if (slot->objfile_context != objfile_context)
1151 return 0;
1152
1153 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1154 {
1155 slot_name = slot->value.not_found.name;
1156 slot_domain = slot->value.not_found.domain;
1157 }
1158 else
1159 {
1160 slot_name = slot->value.found.symbol->search_name ();
1161 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1162 }
1163
1164 /* NULL names match. */
1165 if (slot_name == NULL && name == NULL)
1166 {
1167 /* But there's no point in calling symbol_matches_domain in the
1168 SYMBOL_SLOT_FOUND case. */
1169 if (slot_domain != domain)
1170 return 0;
1171 }
1172 else if (slot_name != NULL && name != NULL)
1173 {
1174 /* It's important that we use the same comparison that was done
1175 the first time through. If the slot records a found symbol,
1176 then this means using the symbol name comparison function of
1177 the symbol's language with symbol->search_name (). See
1178 dictionary.c. It also means using symbol_matches_domain for
1179 found symbols. See block.c.
1180
1181 If the slot records a not-found symbol, then require a precise match.
1182 We could still be lax with whitespace like strcmp_iw though. */
1183
1184 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1185 {
1186 if (strcmp (slot_name, name) != 0)
1187 return 0;
1188 if (slot_domain != domain)
1189 return 0;
1190 }
1191 else
1192 {
1193 struct symbol *sym = slot->value.found.symbol;
1194 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1195
1196 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1197 return 0;
1198
1199 if (!symbol_matches_domain (sym->language (), slot_domain, domain))
1200 return 0;
1201 }
1202 }
1203 else
1204 {
1205 /* Only one name is NULL. */
1206 return 0;
1207 }
1208
1209 return 1;
1210 }
1211
1212 /* Given a cache of size SIZE, return the size of the struct (with variable
1213 length array) in bytes. */
1214
1215 static size_t
1216 symbol_cache_byte_size (unsigned int size)
1217 {
1218 return (sizeof (struct block_symbol_cache)
1219 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1220 }
1221
1222 /* Resize CACHE. */
1223
1224 static void
1225 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1226 {
1227 /* If there's no change in size, don't do anything.
1228 All caches have the same size, so we can just compare with the size
1229 of the global symbols cache. */
1230 if ((cache->global_symbols != NULL
1231 && cache->global_symbols->size == new_size)
1232 || (cache->global_symbols == NULL
1233 && new_size == 0))
1234 return;
1235
1236 destroy_block_symbol_cache (cache->global_symbols);
1237 destroy_block_symbol_cache (cache->static_symbols);
1238
1239 if (new_size == 0)
1240 {
1241 cache->global_symbols = NULL;
1242 cache->static_symbols = NULL;
1243 }
1244 else
1245 {
1246 size_t total_size = symbol_cache_byte_size (new_size);
1247
1248 cache->global_symbols
1249 = (struct block_symbol_cache *) xcalloc (1, total_size);
1250 cache->static_symbols
1251 = (struct block_symbol_cache *) xcalloc (1, total_size);
1252 cache->global_symbols->size = new_size;
1253 cache->static_symbols->size = new_size;
1254 }
1255 }
1256
1257 /* Return the symbol cache of PSPACE.
1258 Create one if it doesn't exist yet. */
1259
1260 static struct symbol_cache *
1261 get_symbol_cache (struct program_space *pspace)
1262 {
1263 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1264
1265 if (cache == NULL)
1266 {
1267 cache = symbol_cache_key.emplace (pspace);
1268 resize_symbol_cache (cache, symbol_cache_size);
1269 }
1270
1271 return cache;
1272 }
1273
1274 /* Set the size of the symbol cache in all program spaces. */
1275
1276 static void
1277 set_symbol_cache_size (unsigned int new_size)
1278 {
1279 for (struct program_space *pspace : program_spaces)
1280 {
1281 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1282
1283 /* The pspace could have been created but not have a cache yet. */
1284 if (cache != NULL)
1285 resize_symbol_cache (cache, new_size);
1286 }
1287 }
1288
1289 /* Called when symbol-cache-size is set. */
1290
1291 static void
1292 set_symbol_cache_size_handler (const char *args, int from_tty,
1293 struct cmd_list_element *c)
1294 {
1295 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1296 {
1297 /* Restore the previous value.
1298 This is the value the "show" command prints. */
1299 new_symbol_cache_size = symbol_cache_size;
1300
1301 error (_("Symbol cache size is too large, max is %u."),
1302 MAX_SYMBOL_CACHE_SIZE);
1303 }
1304 symbol_cache_size = new_symbol_cache_size;
1305
1306 set_symbol_cache_size (symbol_cache_size);
1307 }
1308
1309 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1310 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1311 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1312 failed (and thus this one will too), or NULL if the symbol is not present
1313 in the cache.
1314 *BSC_PTR and *SLOT_PTR are set to the cache and slot of the symbol, which
1315 can be used to save the result of a full lookup attempt. */
1316
1317 static struct block_symbol
1318 symbol_cache_lookup (struct symbol_cache *cache,
1319 struct objfile *objfile_context, enum block_enum block,
1320 const char *name, domain_enum domain,
1321 struct block_symbol_cache **bsc_ptr,
1322 struct symbol_cache_slot **slot_ptr)
1323 {
1324 struct block_symbol_cache *bsc;
1325 unsigned int hash;
1326 struct symbol_cache_slot *slot;
1327
1328 if (block == GLOBAL_BLOCK)
1329 bsc = cache->global_symbols;
1330 else
1331 bsc = cache->static_symbols;
1332 if (bsc == NULL)
1333 {
1334 *bsc_ptr = NULL;
1335 *slot_ptr = NULL;
1336 return {};
1337 }
1338
1339 hash = hash_symbol_entry (objfile_context, name, domain);
1340 slot = bsc->symbols + hash % bsc->size;
1341
1342 *bsc_ptr = bsc;
1343 *slot_ptr = slot;
1344
1345 if (eq_symbol_entry (slot, objfile_context, name, domain))
1346 {
1347 if (symbol_lookup_debug)
1348 fprintf_unfiltered (gdb_stdlog,
1349 "%s block symbol cache hit%s for %s, %s\n",
1350 block == GLOBAL_BLOCK ? "Global" : "Static",
1351 slot->state == SYMBOL_SLOT_NOT_FOUND
1352 ? " (not found)" : "",
1353 name, domain_name (domain));
1354 ++bsc->hits;
1355 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1356 return SYMBOL_LOOKUP_FAILED;
1357 return slot->value.found;
1358 }
1359
1360 /* Symbol is not present in the cache. */
1361
1362 if (symbol_lookup_debug)
1363 {
1364 fprintf_unfiltered (gdb_stdlog,
1365 "%s block symbol cache miss for %s, %s\n",
1366 block == GLOBAL_BLOCK ? "Global" : "Static",
1367 name, domain_name (domain));
1368 }
1369 ++bsc->misses;
1370 return {};
1371 }
1372
1373 /* Mark SYMBOL as found in SLOT.
1374 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1375 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1376 necessarily the objfile the symbol was found in. */
1377
1378 static void
1379 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1380 struct symbol_cache_slot *slot,
1381 struct objfile *objfile_context,
1382 struct symbol *symbol,
1383 const struct block *block)
1384 {
1385 if (bsc == NULL)
1386 return;
1387 if (slot->state != SYMBOL_SLOT_UNUSED)
1388 {
1389 ++bsc->collisions;
1390 symbol_cache_clear_slot (slot);
1391 }
1392 slot->state = SYMBOL_SLOT_FOUND;
1393 slot->objfile_context = objfile_context;
1394 slot->value.found.symbol = symbol;
1395 slot->value.found.block = block;
1396 }
1397
1398 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1399 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1400 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1401
1402 static void
1403 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1404 struct symbol_cache_slot *slot,
1405 struct objfile *objfile_context,
1406 const char *name, domain_enum domain)
1407 {
1408 if (bsc == NULL)
1409 return;
1410 if (slot->state != SYMBOL_SLOT_UNUSED)
1411 {
1412 ++bsc->collisions;
1413 symbol_cache_clear_slot (slot);
1414 }
1415 slot->state = SYMBOL_SLOT_NOT_FOUND;
1416 slot->objfile_context = objfile_context;
1417 slot->value.not_found.name = xstrdup (name);
1418 slot->value.not_found.domain = domain;
1419 }
1420
1421 /* Flush the symbol cache of PSPACE. */
1422
1423 static void
1424 symbol_cache_flush (struct program_space *pspace)
1425 {
1426 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1427 int pass;
1428
1429 if (cache == NULL)
1430 return;
1431 if (cache->global_symbols == NULL)
1432 {
1433 gdb_assert (symbol_cache_size == 0);
1434 gdb_assert (cache->static_symbols == NULL);
1435 return;
1436 }
1437
1438 /* If the cache is untouched since the last flush, early exit.
1439 This is important for performance during the startup of a program linked
1440 with 100s (or 1000s) of shared libraries. */
1441 if (cache->global_symbols->misses == 0
1442 && cache->static_symbols->misses == 0)
1443 return;
1444
1445 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1446 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1447
1448 for (pass = 0; pass < 2; ++pass)
1449 {
1450 struct block_symbol_cache *bsc
1451 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1452 unsigned int i;
1453
1454 for (i = 0; i < bsc->size; ++i)
1455 symbol_cache_clear_slot (&bsc->symbols[i]);
1456 }
1457
1458 cache->global_symbols->hits = 0;
1459 cache->global_symbols->misses = 0;
1460 cache->global_symbols->collisions = 0;
1461 cache->static_symbols->hits = 0;
1462 cache->static_symbols->misses = 0;
1463 cache->static_symbols->collisions = 0;
1464 }
1465
1466 /* Dump CACHE. */
1467
1468 static void
1469 symbol_cache_dump (const struct symbol_cache *cache)
1470 {
1471 int pass;
1472
1473 if (cache->global_symbols == NULL)
1474 {
1475 printf_filtered (" <disabled>\n");
1476 return;
1477 }
1478
1479 for (pass = 0; pass < 2; ++pass)
1480 {
1481 const struct block_symbol_cache *bsc
1482 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1483 unsigned int i;
1484
1485 if (pass == 0)
1486 printf_filtered ("Global symbols:\n");
1487 else
1488 printf_filtered ("Static symbols:\n");
1489
1490 for (i = 0; i < bsc->size; ++i)
1491 {
1492 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1493
1494 QUIT;
1495
1496 switch (slot->state)
1497 {
1498 case SYMBOL_SLOT_UNUSED:
1499 break;
1500 case SYMBOL_SLOT_NOT_FOUND:
1501 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1502 host_address_to_string (slot->objfile_context),
1503 slot->value.not_found.name,
1504 domain_name (slot->value.not_found.domain));
1505 break;
1506 case SYMBOL_SLOT_FOUND:
1507 {
1508 struct symbol *found = slot->value.found.symbol;
1509 const struct objfile *context = slot->objfile_context;
1510
1511 printf_filtered (" [%4u] = %s, %s %s\n", i,
1512 host_address_to_string (context),
1513 found->print_name (),
1514 domain_name (SYMBOL_DOMAIN (found)));
1515 break;
1516 }
1517 }
1518 }
1519 }
1520 }
1521
1522 /* The "mt print symbol-cache" command. */
1523
1524 static void
1525 maintenance_print_symbol_cache (const char *args, int from_tty)
1526 {
1527 for (struct program_space *pspace : program_spaces)
1528 {
1529 struct symbol_cache *cache;
1530
1531 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1532 pspace->num,
1533 pspace->symfile_object_file != NULL
1534 ? objfile_name (pspace->symfile_object_file)
1535 : "(no object file)");
1536
1537 /* If the cache hasn't been created yet, avoid creating one. */
1538 cache = symbol_cache_key.get (pspace);
1539 if (cache == NULL)
1540 printf_filtered (" <empty>\n");
1541 else
1542 symbol_cache_dump (cache);
1543 }
1544 }
1545
1546 /* The "mt flush-symbol-cache" command. */
1547
1548 static void
1549 maintenance_flush_symbol_cache (const char *args, int from_tty)
1550 {
1551 for (struct program_space *pspace : program_spaces)
1552 {
1553 symbol_cache_flush (pspace);
1554 }
1555 }
1556
1557 /* Print usage statistics of CACHE. */
1558
1559 static void
1560 symbol_cache_stats (struct symbol_cache *cache)
1561 {
1562 int pass;
1563
1564 if (cache->global_symbols == NULL)
1565 {
1566 printf_filtered (" <disabled>\n");
1567 return;
1568 }
1569
1570 for (pass = 0; pass < 2; ++pass)
1571 {
1572 const struct block_symbol_cache *bsc
1573 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1574
1575 QUIT;
1576
1577 if (pass == 0)
1578 printf_filtered ("Global block cache stats:\n");
1579 else
1580 printf_filtered ("Static block cache stats:\n");
1581
1582 printf_filtered (" size: %u\n", bsc->size);
1583 printf_filtered (" hits: %u\n", bsc->hits);
1584 printf_filtered (" misses: %u\n", bsc->misses);
1585 printf_filtered (" collisions: %u\n", bsc->collisions);
1586 }
1587 }
1588
1589 /* The "mt print symbol-cache-statistics" command. */
1590
1591 static void
1592 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1593 {
1594 for (struct program_space *pspace : program_spaces)
1595 {
1596 struct symbol_cache *cache;
1597
1598 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1599 pspace->num,
1600 pspace->symfile_object_file != NULL
1601 ? objfile_name (pspace->symfile_object_file)
1602 : "(no object file)");
1603
1604 /* If the cache hasn't been created yet, avoid creating one. */
1605 cache = symbol_cache_key.get (pspace);
1606 if (cache == NULL)
1607 printf_filtered (" empty, no stats available\n");
1608 else
1609 symbol_cache_stats (cache);
1610 }
1611 }
1612
1613 /* This module's 'new_objfile' observer. */
1614
1615 static void
1616 symtab_new_objfile_observer (struct objfile *objfile)
1617 {
1618 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1619 symbol_cache_flush (current_program_space);
1620 }
1621
1622 /* This module's 'free_objfile' observer. */
1623
1624 static void
1625 symtab_free_objfile_observer (struct objfile *objfile)
1626 {
1627 symbol_cache_flush (objfile->pspace);
1628 }
1629 \f
1630 /* Debug symbols usually don't have section information. We need to dig that
1631 out of the minimal symbols and stash that in the debug symbol. */
1632
1633 void
1634 fixup_section (struct general_symbol_info *ginfo,
1635 CORE_ADDR addr, struct objfile *objfile)
1636 {
1637 struct minimal_symbol *msym;
1638
1639 /* First, check whether a minimal symbol with the same name exists
1640 and points to the same address. The address check is required
1641 e.g. on PowerPC64, where the minimal symbol for a function will
1642 point to the function descriptor, while the debug symbol will
1643 point to the actual function code. */
1644 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->linkage_name (),
1645 objfile);
1646 if (msym)
1647 ginfo->section = MSYMBOL_SECTION (msym);
1648 else
1649 {
1650 /* Static, function-local variables do appear in the linker
1651 (minimal) symbols, but are frequently given names that won't
1652 be found via lookup_minimal_symbol(). E.g., it has been
1653 observed in frv-uclinux (ELF) executables that a static,
1654 function-local variable named "foo" might appear in the
1655 linker symbols as "foo.6" or "foo.3". Thus, there is no
1656 point in attempting to extend the lookup-by-name mechanism to
1657 handle this case due to the fact that there can be multiple
1658 names.
1659
1660 So, instead, search the section table when lookup by name has
1661 failed. The ``addr'' and ``endaddr'' fields may have already
1662 been relocated. If so, the relocation offset needs to be
1663 subtracted from these values when performing the comparison.
1664 We unconditionally subtract it, because, when no relocation
1665 has been performed, the value will simply be zero.
1666
1667 The address of the symbol whose section we're fixing up HAS
1668 NOT BEEN adjusted (relocated) yet. It can't have been since
1669 the section isn't yet known and knowing the section is
1670 necessary in order to add the correct relocation value. In
1671 other words, we wouldn't even be in this function (attempting
1672 to compute the section) if it were already known.
1673
1674 Note that it is possible to search the minimal symbols
1675 (subtracting the relocation value if necessary) to find the
1676 matching minimal symbol, but this is overkill and much less
1677 efficient. It is not necessary to find the matching minimal
1678 symbol, only its section.
1679
1680 Note that this technique (of doing a section table search)
1681 can fail when unrelocated section addresses overlap. For
1682 this reason, we still attempt a lookup by name prior to doing
1683 a search of the section table. */
1684
1685 struct obj_section *s;
1686 int fallback = -1;
1687
1688 ALL_OBJFILE_OSECTIONS (objfile, s)
1689 {
1690 int idx = s - objfile->sections;
1691 CORE_ADDR offset = objfile->section_offsets[idx];
1692
1693 if (fallback == -1)
1694 fallback = idx;
1695
1696 if (obj_section_addr (s) - offset <= addr
1697 && addr < obj_section_endaddr (s) - offset)
1698 {
1699 ginfo->section = idx;
1700 return;
1701 }
1702 }
1703
1704 /* If we didn't find the section, assume it is in the first
1705 section. If there is no allocated section, then it hardly
1706 matters what we pick, so just pick zero. */
1707 if (fallback == -1)
1708 ginfo->section = 0;
1709 else
1710 ginfo->section = fallback;
1711 }
1712 }
1713
1714 struct symbol *
1715 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1716 {
1717 CORE_ADDR addr;
1718
1719 if (!sym)
1720 return NULL;
1721
1722 if (!SYMBOL_OBJFILE_OWNED (sym))
1723 return sym;
1724
1725 /* We either have an OBJFILE, or we can get at it from the sym's
1726 symtab. Anything else is a bug. */
1727 gdb_assert (objfile || symbol_symtab (sym));
1728
1729 if (objfile == NULL)
1730 objfile = symbol_objfile (sym);
1731
1732 if (SYMBOL_OBJ_SECTION (objfile, sym))
1733 return sym;
1734
1735 /* We should have an objfile by now. */
1736 gdb_assert (objfile);
1737
1738 switch (SYMBOL_CLASS (sym))
1739 {
1740 case LOC_STATIC:
1741 case LOC_LABEL:
1742 addr = SYMBOL_VALUE_ADDRESS (sym);
1743 break;
1744 case LOC_BLOCK:
1745 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1746 break;
1747
1748 default:
1749 /* Nothing else will be listed in the minsyms -- no use looking
1750 it up. */
1751 return sym;
1752 }
1753
1754 fixup_section (sym, addr, objfile);
1755
1756 return sym;
1757 }
1758
1759 /* See symtab.h. */
1760
1761 demangle_for_lookup_info::demangle_for_lookup_info
1762 (const lookup_name_info &lookup_name, language lang)
1763 {
1764 demangle_result_storage storage;
1765
1766 if (lookup_name.ignore_parameters () && lang == language_cplus)
1767 {
1768 gdb::unique_xmalloc_ptr<char> without_params
1769 = cp_remove_params_if_any (lookup_name.c_str (),
1770 lookup_name.completion_mode ());
1771
1772 if (without_params != NULL)
1773 {
1774 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1775 m_demangled_name = demangle_for_lookup (without_params.get (),
1776 lang, storage);
1777 return;
1778 }
1779 }
1780
1781 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1782 m_demangled_name = lookup_name.c_str ();
1783 else
1784 m_demangled_name = demangle_for_lookup (lookup_name.c_str (),
1785 lang, storage);
1786 }
1787
1788 /* See symtab.h. */
1789
1790 const lookup_name_info &
1791 lookup_name_info::match_any ()
1792 {
1793 /* Lookup any symbol that "" would complete. I.e., this matches all
1794 symbol names. */
1795 static const lookup_name_info lookup_name ("", symbol_name_match_type::FULL,
1796 true);
1797
1798 return lookup_name;
1799 }
1800
1801 /* Compute the demangled form of NAME as used by the various symbol
1802 lookup functions. The result can either be the input NAME
1803 directly, or a pointer to a buffer owned by the STORAGE object.
1804
1805 For Ada, this function just returns NAME, unmodified.
1806 Normally, Ada symbol lookups are performed using the encoded name
1807 rather than the demangled name, and so it might seem to make sense
1808 for this function to return an encoded version of NAME.
1809 Unfortunately, we cannot do this, because this function is used in
1810 circumstances where it is not appropriate to try to encode NAME.
1811 For instance, when displaying the frame info, we demangle the name
1812 of each parameter, and then perform a symbol lookup inside our
1813 function using that demangled name. In Ada, certain functions
1814 have internally-generated parameters whose name contain uppercase
1815 characters. Encoding those name would result in those uppercase
1816 characters to become lowercase, and thus cause the symbol lookup
1817 to fail. */
1818
1819 const char *
1820 demangle_for_lookup (const char *name, enum language lang,
1821 demangle_result_storage &storage)
1822 {
1823 /* If we are using C++, D, or Go, demangle the name before doing a
1824 lookup, so we can always binary search. */
1825 if (lang == language_cplus)
1826 {
1827 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1828 if (demangled_name != NULL)
1829 return storage.set_malloc_ptr (demangled_name);
1830
1831 /* If we were given a non-mangled name, canonicalize it
1832 according to the language (so far only for C++). */
1833 gdb::unique_xmalloc_ptr<char> canon = cp_canonicalize_string (name);
1834 if (canon != nullptr)
1835 return storage.set_malloc_ptr (std::move (canon));
1836 }
1837 else if (lang == language_d)
1838 {
1839 char *demangled_name = d_demangle (name, 0);
1840 if (demangled_name != NULL)
1841 return storage.set_malloc_ptr (demangled_name);
1842 }
1843 else if (lang == language_go)
1844 {
1845 char *demangled_name = go_demangle (name, 0);
1846 if (demangled_name != NULL)
1847 return storage.set_malloc_ptr (demangled_name);
1848 }
1849
1850 return name;
1851 }
1852
1853 /* See symtab.h. */
1854
1855 unsigned int
1856 search_name_hash (enum language language, const char *search_name)
1857 {
1858 return language_def (language)->search_name_hash (search_name);
1859 }
1860
1861 /* See symtab.h.
1862
1863 This function (or rather its subordinates) have a bunch of loops and
1864 it would seem to be attractive to put in some QUIT's (though I'm not really
1865 sure whether it can run long enough to be really important). But there
1866 are a few calls for which it would appear to be bad news to quit
1867 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1868 that there is C++ code below which can error(), but that probably
1869 doesn't affect these calls since they are looking for a known
1870 variable and thus can probably assume it will never hit the C++
1871 code). */
1872
1873 struct block_symbol
1874 lookup_symbol_in_language (const char *name, const struct block *block,
1875 const domain_enum domain, enum language lang,
1876 struct field_of_this_result *is_a_field_of_this)
1877 {
1878 demangle_result_storage storage;
1879 const char *modified_name = demangle_for_lookup (name, lang, storage);
1880
1881 return lookup_symbol_aux (modified_name,
1882 symbol_name_match_type::FULL,
1883 block, domain, lang,
1884 is_a_field_of_this);
1885 }
1886
1887 /* See symtab.h. */
1888
1889 struct block_symbol
1890 lookup_symbol (const char *name, const struct block *block,
1891 domain_enum domain,
1892 struct field_of_this_result *is_a_field_of_this)
1893 {
1894 return lookup_symbol_in_language (name, block, domain,
1895 current_language->la_language,
1896 is_a_field_of_this);
1897 }
1898
1899 /* See symtab.h. */
1900
1901 struct block_symbol
1902 lookup_symbol_search_name (const char *search_name, const struct block *block,
1903 domain_enum domain)
1904 {
1905 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1906 block, domain, language_asm, NULL);
1907 }
1908
1909 /* See symtab.h. */
1910
1911 struct block_symbol
1912 lookup_language_this (const struct language_defn *lang,
1913 const struct block *block)
1914 {
1915 if (lang->la_name_of_this == NULL || block == NULL)
1916 return {};
1917
1918 if (symbol_lookup_debug > 1)
1919 {
1920 struct objfile *objfile = block_objfile (block);
1921
1922 fprintf_unfiltered (gdb_stdlog,
1923 "lookup_language_this (%s, %s (objfile %s))",
1924 lang->la_name, host_address_to_string (block),
1925 objfile_debug_name (objfile));
1926 }
1927
1928 while (block)
1929 {
1930 struct symbol *sym;
1931
1932 sym = block_lookup_symbol (block, lang->la_name_of_this,
1933 symbol_name_match_type::SEARCH_NAME,
1934 VAR_DOMAIN);
1935 if (sym != NULL)
1936 {
1937 if (symbol_lookup_debug > 1)
1938 {
1939 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1940 sym->print_name (),
1941 host_address_to_string (sym),
1942 host_address_to_string (block));
1943 }
1944 return (struct block_symbol) {sym, block};
1945 }
1946 if (BLOCK_FUNCTION (block))
1947 break;
1948 block = BLOCK_SUPERBLOCK (block);
1949 }
1950
1951 if (symbol_lookup_debug > 1)
1952 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1953 return {};
1954 }
1955
1956 /* Given TYPE, a structure/union,
1957 return 1 if the component named NAME from the ultimate target
1958 structure/union is defined, otherwise, return 0. */
1959
1960 static int
1961 check_field (struct type *type, const char *name,
1962 struct field_of_this_result *is_a_field_of_this)
1963 {
1964 int i;
1965
1966 /* The type may be a stub. */
1967 type = check_typedef (type);
1968
1969 for (i = type->num_fields () - 1; i >= TYPE_N_BASECLASSES (type); i--)
1970 {
1971 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1972
1973 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1974 {
1975 is_a_field_of_this->type = type;
1976 is_a_field_of_this->field = &type->field (i);
1977 return 1;
1978 }
1979 }
1980
1981 /* C++: If it was not found as a data field, then try to return it
1982 as a pointer to a method. */
1983
1984 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1985 {
1986 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1987 {
1988 is_a_field_of_this->type = type;
1989 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1990 return 1;
1991 }
1992 }
1993
1994 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
1995 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
1996 return 1;
1997
1998 return 0;
1999 }
2000
2001 /* Behave like lookup_symbol except that NAME is the natural name
2002 (e.g., demangled name) of the symbol that we're looking for. */
2003
2004 static struct block_symbol
2005 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2006 const struct block *block,
2007 const domain_enum domain, enum language language,
2008 struct field_of_this_result *is_a_field_of_this)
2009 {
2010 struct block_symbol result;
2011 const struct language_defn *langdef;
2012
2013 if (symbol_lookup_debug)
2014 {
2015 struct objfile *objfile = (block == nullptr
2016 ? nullptr : block_objfile (block));
2017
2018 fprintf_unfiltered (gdb_stdlog,
2019 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2020 name, host_address_to_string (block),
2021 objfile != NULL
2022 ? objfile_debug_name (objfile) : "NULL",
2023 domain_name (domain), language_str (language));
2024 }
2025
2026 /* Make sure we do something sensible with is_a_field_of_this, since
2027 the callers that set this parameter to some non-null value will
2028 certainly use it later. If we don't set it, the contents of
2029 is_a_field_of_this are undefined. */
2030 if (is_a_field_of_this != NULL)
2031 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2032
2033 /* Search specified block and its superiors. Don't search
2034 STATIC_BLOCK or GLOBAL_BLOCK. */
2035
2036 result = lookup_local_symbol (name, match_type, block, domain, language);
2037 if (result.symbol != NULL)
2038 {
2039 if (symbol_lookup_debug)
2040 {
2041 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2042 host_address_to_string (result.symbol));
2043 }
2044 return result;
2045 }
2046
2047 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2048 check to see if NAME is a field of `this'. */
2049
2050 langdef = language_def (language);
2051
2052 /* Don't do this check if we are searching for a struct. It will
2053 not be found by check_field, but will be found by other
2054 means. */
2055 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2056 {
2057 result = lookup_language_this (langdef, block);
2058
2059 if (result.symbol)
2060 {
2061 struct type *t = result.symbol->type;
2062
2063 /* I'm not really sure that type of this can ever
2064 be typedefed; just be safe. */
2065 t = check_typedef (t);
2066 if (t->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2067 t = TYPE_TARGET_TYPE (t);
2068
2069 if (t->code () != TYPE_CODE_STRUCT
2070 && t->code () != TYPE_CODE_UNION)
2071 error (_("Internal error: `%s' is not an aggregate"),
2072 langdef->la_name_of_this);
2073
2074 if (check_field (t, name, is_a_field_of_this))
2075 {
2076 if (symbol_lookup_debug)
2077 {
2078 fprintf_unfiltered (gdb_stdlog,
2079 "lookup_symbol_aux (...) = NULL\n");
2080 }
2081 return {};
2082 }
2083 }
2084 }
2085
2086 /* Now do whatever is appropriate for LANGUAGE to look
2087 up static and global variables. */
2088
2089 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2090 if (result.symbol != NULL)
2091 {
2092 if (symbol_lookup_debug)
2093 {
2094 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2095 host_address_to_string (result.symbol));
2096 }
2097 return result;
2098 }
2099
2100 /* Now search all static file-level symbols. Not strictly correct,
2101 but more useful than an error. */
2102
2103 result = lookup_static_symbol (name, domain);
2104 if (symbol_lookup_debug)
2105 {
2106 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2107 result.symbol != NULL
2108 ? host_address_to_string (result.symbol)
2109 : "NULL");
2110 }
2111 return result;
2112 }
2113
2114 /* Check to see if the symbol is defined in BLOCK or its superiors.
2115 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2116
2117 static struct block_symbol
2118 lookup_local_symbol (const char *name,
2119 symbol_name_match_type match_type,
2120 const struct block *block,
2121 const domain_enum domain,
2122 enum language language)
2123 {
2124 struct symbol *sym;
2125 const struct block *static_block = block_static_block (block);
2126 const char *scope = block_scope (block);
2127
2128 /* Check if either no block is specified or it's a global block. */
2129
2130 if (static_block == NULL)
2131 return {};
2132
2133 while (block != static_block)
2134 {
2135 sym = lookup_symbol_in_block (name, match_type, block, domain);
2136 if (sym != NULL)
2137 return (struct block_symbol) {sym, block};
2138
2139 if (language == language_cplus || language == language_fortran)
2140 {
2141 struct block_symbol blocksym
2142 = cp_lookup_symbol_imports_or_template (scope, name, block,
2143 domain);
2144
2145 if (blocksym.symbol != NULL)
2146 return blocksym;
2147 }
2148
2149 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2150 break;
2151 block = BLOCK_SUPERBLOCK (block);
2152 }
2153
2154 /* We've reached the end of the function without finding a result. */
2155
2156 return {};
2157 }
2158
2159 /* See symtab.h. */
2160
2161 struct symbol *
2162 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2163 const struct block *block,
2164 const domain_enum domain)
2165 {
2166 struct symbol *sym;
2167
2168 if (symbol_lookup_debug > 1)
2169 {
2170 struct objfile *objfile = (block == nullptr
2171 ? nullptr : block_objfile (block));
2172
2173 fprintf_unfiltered (gdb_stdlog,
2174 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2175 name, host_address_to_string (block),
2176 objfile_debug_name (objfile),
2177 domain_name (domain));
2178 }
2179
2180 sym = block_lookup_symbol (block, name, match_type, domain);
2181 if (sym)
2182 {
2183 if (symbol_lookup_debug > 1)
2184 {
2185 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2186 host_address_to_string (sym));
2187 }
2188 return fixup_symbol_section (sym, NULL);
2189 }
2190
2191 if (symbol_lookup_debug > 1)
2192 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2193 return NULL;
2194 }
2195
2196 /* See symtab.h. */
2197
2198 struct block_symbol
2199 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2200 enum block_enum block_index,
2201 const char *name,
2202 const domain_enum domain)
2203 {
2204 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2205
2206 for (objfile *objfile : main_objfile->separate_debug_objfiles ())
2207 {
2208 struct block_symbol result
2209 = lookup_symbol_in_objfile (objfile, block_index, name, domain);
2210
2211 if (result.symbol != nullptr)
2212 return result;
2213 }
2214
2215 return {};
2216 }
2217
2218 /* Check to see if the symbol is defined in one of the OBJFILE's
2219 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2220 depending on whether or not we want to search global symbols or
2221 static symbols. */
2222
2223 static struct block_symbol
2224 lookup_symbol_in_objfile_symtabs (struct objfile *objfile,
2225 enum block_enum block_index, const char *name,
2226 const domain_enum domain)
2227 {
2228 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2229
2230 if (symbol_lookup_debug > 1)
2231 {
2232 fprintf_unfiltered (gdb_stdlog,
2233 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2234 objfile_debug_name (objfile),
2235 block_index == GLOBAL_BLOCK
2236 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2237 name, domain_name (domain));
2238 }
2239
2240 struct block_symbol other;
2241 other.symbol = NULL;
2242 for (compunit_symtab *cust : objfile->compunits ())
2243 {
2244 const struct blockvector *bv;
2245 const struct block *block;
2246 struct block_symbol result;
2247
2248 bv = COMPUNIT_BLOCKVECTOR (cust);
2249 block = BLOCKVECTOR_BLOCK (bv, block_index);
2250 result.symbol = block_lookup_symbol_primary (block, name, domain);
2251 result.block = block;
2252 if (result.symbol == NULL)
2253 continue;
2254 if (best_symbol (result.symbol, domain))
2255 {
2256 other = result;
2257 break;
2258 }
2259 if (symbol_matches_domain (result.symbol->language (),
2260 SYMBOL_DOMAIN (result.symbol), domain))
2261 {
2262 struct symbol *better
2263 = better_symbol (other.symbol, result.symbol, domain);
2264 if (better != other.symbol)
2265 {
2266 other.symbol = better;
2267 other.block = block;
2268 }
2269 }
2270 }
2271
2272 if (other.symbol != NULL)
2273 {
2274 if (symbol_lookup_debug > 1)
2275 {
2276 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2277 host_address_to_string (other.symbol),
2278 host_address_to_string (other.block));
2279 }
2280 other.symbol = fixup_symbol_section (other.symbol, objfile);
2281 return other;
2282 }
2283
2284 if (symbol_lookup_debug > 1)
2285 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2286 return {};
2287 }
2288
2289 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2290 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2291 and all associated separate debug objfiles.
2292
2293 Normally we only look in OBJFILE, and not any separate debug objfiles
2294 because the outer loop will cause them to be searched too. This case is
2295 different. Here we're called from search_symbols where it will only
2296 call us for the objfile that contains a matching minsym. */
2297
2298 static struct block_symbol
2299 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2300 const char *linkage_name,
2301 domain_enum domain)
2302 {
2303 enum language lang = current_language->la_language;
2304 struct objfile *main_objfile;
2305
2306 demangle_result_storage storage;
2307 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2308
2309 if (objfile->separate_debug_objfile_backlink)
2310 main_objfile = objfile->separate_debug_objfile_backlink;
2311 else
2312 main_objfile = objfile;
2313
2314 for (::objfile *cur_objfile : main_objfile->separate_debug_objfiles ())
2315 {
2316 struct block_symbol result;
2317
2318 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2319 modified_name, domain);
2320 if (result.symbol == NULL)
2321 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2322 modified_name, domain);
2323 if (result.symbol != NULL)
2324 return result;
2325 }
2326
2327 return {};
2328 }
2329
2330 /* A helper function that throws an exception when a symbol was found
2331 in a psymtab but not in a symtab. */
2332
2333 static void ATTRIBUTE_NORETURN
2334 error_in_psymtab_expansion (enum block_enum block_index, const char *name,
2335 struct compunit_symtab *cust)
2336 {
2337 error (_("\
2338 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2339 %s may be an inlined function, or may be a template function\n \
2340 (if a template, try specifying an instantiation: %s<type>)."),
2341 block_index == GLOBAL_BLOCK ? "global" : "static",
2342 name,
2343 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2344 name, name);
2345 }
2346
2347 /* A helper function for various lookup routines that interfaces with
2348 the "quick" symbol table functions. */
2349
2350 static struct block_symbol
2351 lookup_symbol_via_quick_fns (struct objfile *objfile,
2352 enum block_enum block_index, const char *name,
2353 const domain_enum domain)
2354 {
2355 struct compunit_symtab *cust;
2356 const struct blockvector *bv;
2357 const struct block *block;
2358 struct block_symbol result;
2359
2360 if (!objfile->sf)
2361 return {};
2362
2363 if (symbol_lookup_debug > 1)
2364 {
2365 fprintf_unfiltered (gdb_stdlog,
2366 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2367 objfile_debug_name (objfile),
2368 block_index == GLOBAL_BLOCK
2369 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2370 name, domain_name (domain));
2371 }
2372
2373 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2374 if (cust == NULL)
2375 {
2376 if (symbol_lookup_debug > 1)
2377 {
2378 fprintf_unfiltered (gdb_stdlog,
2379 "lookup_symbol_via_quick_fns (...) = NULL\n");
2380 }
2381 return {};
2382 }
2383
2384 bv = COMPUNIT_BLOCKVECTOR (cust);
2385 block = BLOCKVECTOR_BLOCK (bv, block_index);
2386 result.symbol = block_lookup_symbol (block, name,
2387 symbol_name_match_type::FULL, domain);
2388 if (result.symbol == NULL)
2389 error_in_psymtab_expansion (block_index, name, cust);
2390
2391 if (symbol_lookup_debug > 1)
2392 {
2393 fprintf_unfiltered (gdb_stdlog,
2394 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2395 host_address_to_string (result.symbol),
2396 host_address_to_string (block));
2397 }
2398
2399 result.symbol = fixup_symbol_section (result.symbol, objfile);
2400 result.block = block;
2401 return result;
2402 }
2403
2404 /* See symtab.h. */
2405
2406 struct block_symbol
2407 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2408 const char *name,
2409 const struct block *block,
2410 const domain_enum domain)
2411 {
2412 struct block_symbol result;
2413
2414 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2415 the current objfile. Searching the current objfile first is useful
2416 for both matching user expectations as well as performance. */
2417
2418 result = lookup_symbol_in_static_block (name, block, domain);
2419 if (result.symbol != NULL)
2420 return result;
2421
2422 /* If we didn't find a definition for a builtin type in the static block,
2423 search for it now. This is actually the right thing to do and can be
2424 a massive performance win. E.g., when debugging a program with lots of
2425 shared libraries we could search all of them only to find out the
2426 builtin type isn't defined in any of them. This is common for types
2427 like "void". */
2428 if (domain == VAR_DOMAIN)
2429 {
2430 struct gdbarch *gdbarch;
2431
2432 if (block == NULL)
2433 gdbarch = target_gdbarch ();
2434 else
2435 gdbarch = block_gdbarch (block);
2436 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2437 gdbarch, name);
2438 result.block = NULL;
2439 if (result.symbol != NULL)
2440 return result;
2441 }
2442
2443 return lookup_global_symbol (name, block, domain);
2444 }
2445
2446 /* See symtab.h. */
2447
2448 struct block_symbol
2449 lookup_symbol_in_static_block (const char *name,
2450 const struct block *block,
2451 const domain_enum domain)
2452 {
2453 const struct block *static_block = block_static_block (block);
2454 struct symbol *sym;
2455
2456 if (static_block == NULL)
2457 return {};
2458
2459 if (symbol_lookup_debug)
2460 {
2461 struct objfile *objfile = (block == nullptr
2462 ? nullptr : block_objfile (block));
2463
2464 fprintf_unfiltered (gdb_stdlog,
2465 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2466 " %s)\n",
2467 name,
2468 host_address_to_string (block),
2469 objfile_debug_name (objfile),
2470 domain_name (domain));
2471 }
2472
2473 sym = lookup_symbol_in_block (name,
2474 symbol_name_match_type::FULL,
2475 static_block, domain);
2476 if (symbol_lookup_debug)
2477 {
2478 fprintf_unfiltered (gdb_stdlog,
2479 "lookup_symbol_in_static_block (...) = %s\n",
2480 sym != NULL ? host_address_to_string (sym) : "NULL");
2481 }
2482 return (struct block_symbol) {sym, static_block};
2483 }
2484
2485 /* Perform the standard symbol lookup of NAME in OBJFILE:
2486 1) First search expanded symtabs, and if not found
2487 2) Search the "quick" symtabs (partial or .gdb_index).
2488 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2489
2490 static struct block_symbol
2491 lookup_symbol_in_objfile (struct objfile *objfile, enum block_enum block_index,
2492 const char *name, const domain_enum domain)
2493 {
2494 struct block_symbol result;
2495
2496 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2497
2498 if (symbol_lookup_debug)
2499 {
2500 fprintf_unfiltered (gdb_stdlog,
2501 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2502 objfile_debug_name (objfile),
2503 block_index == GLOBAL_BLOCK
2504 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2505 name, domain_name (domain));
2506 }
2507
2508 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2509 name, domain);
2510 if (result.symbol != NULL)
2511 {
2512 if (symbol_lookup_debug)
2513 {
2514 fprintf_unfiltered (gdb_stdlog,
2515 "lookup_symbol_in_objfile (...) = %s"
2516 " (in symtabs)\n",
2517 host_address_to_string (result.symbol));
2518 }
2519 return result;
2520 }
2521
2522 result = lookup_symbol_via_quick_fns (objfile, block_index,
2523 name, domain);
2524 if (symbol_lookup_debug)
2525 {
2526 fprintf_unfiltered (gdb_stdlog,
2527 "lookup_symbol_in_objfile (...) = %s%s\n",
2528 result.symbol != NULL
2529 ? host_address_to_string (result.symbol)
2530 : "NULL",
2531 result.symbol != NULL ? " (via quick fns)" : "");
2532 }
2533 return result;
2534 }
2535
2536 /* Find the language for partial symbol with NAME. */
2537
2538 static enum language
2539 find_quick_global_symbol_language (const char *name, const domain_enum domain)
2540 {
2541 for (objfile *objfile : current_program_space->objfiles ())
2542 {
2543 if (objfile->sf && objfile->sf->qf
2544 && objfile->sf->qf->lookup_global_symbol_language)
2545 continue;
2546 return language_unknown;
2547 }
2548
2549 for (objfile *objfile : current_program_space->objfiles ())
2550 {
2551 bool symbol_found_p;
2552 enum language lang
2553 = objfile->sf->qf->lookup_global_symbol_language (objfile, name, domain,
2554 &symbol_found_p);
2555 if (!symbol_found_p)
2556 continue;
2557 return lang;
2558 }
2559
2560 return language_unknown;
2561 }
2562
2563 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2564
2565 struct global_or_static_sym_lookup_data
2566 {
2567 /* The name of the symbol we are searching for. */
2568 const char *name;
2569
2570 /* The domain to use for our search. */
2571 domain_enum domain;
2572
2573 /* The block index in which to search. */
2574 enum block_enum block_index;
2575
2576 /* The field where the callback should store the symbol if found.
2577 It should be initialized to {NULL, NULL} before the search is started. */
2578 struct block_symbol result;
2579 };
2580
2581 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2582 It searches by name for a symbol in the block given by BLOCK_INDEX of the
2583 given OBJFILE. The arguments for the search are passed via CB_DATA, which
2584 in reality is a pointer to struct global_or_static_sym_lookup_data. */
2585
2586 static int
2587 lookup_symbol_global_or_static_iterator_cb (struct objfile *objfile,
2588 void *cb_data)
2589 {
2590 struct global_or_static_sym_lookup_data *data =
2591 (struct global_or_static_sym_lookup_data *) cb_data;
2592
2593 gdb_assert (data->result.symbol == NULL
2594 && data->result.block == NULL);
2595
2596 data->result = lookup_symbol_in_objfile (objfile, data->block_index,
2597 data->name, data->domain);
2598
2599 /* If we found a match, tell the iterator to stop. Otherwise,
2600 keep going. */
2601 return (data->result.symbol != NULL);
2602 }
2603
2604 /* This function contains the common code of lookup_{global,static}_symbol.
2605 OBJFILE is only used if BLOCK_INDEX is GLOBAL_SCOPE, in which case it is
2606 the objfile to start the lookup in. */
2607
2608 static struct block_symbol
2609 lookup_global_or_static_symbol (const char *name,
2610 enum block_enum block_index,
2611 struct objfile *objfile,
2612 const domain_enum domain)
2613 {
2614 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2615 struct block_symbol result;
2616 struct global_or_static_sym_lookup_data lookup_data;
2617 struct block_symbol_cache *bsc;
2618 struct symbol_cache_slot *slot;
2619
2620 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2621 gdb_assert (objfile == nullptr || block_index == GLOBAL_BLOCK);
2622
2623 /* First see if we can find the symbol in the cache.
2624 This works because we use the current objfile to qualify the lookup. */
2625 result = symbol_cache_lookup (cache, objfile, block_index, name, domain,
2626 &bsc, &slot);
2627 if (result.symbol != NULL)
2628 {
2629 if (SYMBOL_LOOKUP_FAILED_P (result))
2630 return {};
2631 return result;
2632 }
2633
2634 /* Do a global search (of global blocks, heh). */
2635 if (result.symbol == NULL)
2636 {
2637 memset (&lookup_data, 0, sizeof (lookup_data));
2638 lookup_data.name = name;
2639 lookup_data.block_index = block_index;
2640 lookup_data.domain = domain;
2641 gdbarch_iterate_over_objfiles_in_search_order
2642 (objfile != NULL ? objfile->arch () : target_gdbarch (),
2643 lookup_symbol_global_or_static_iterator_cb, &lookup_data, objfile);
2644 result = lookup_data.result;
2645 }
2646
2647 if (result.symbol != NULL)
2648 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2649 else
2650 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2651
2652 return result;
2653 }
2654
2655 /* See symtab.h. */
2656
2657 struct block_symbol
2658 lookup_static_symbol (const char *name, const domain_enum domain)
2659 {
2660 return lookup_global_or_static_symbol (name, STATIC_BLOCK, nullptr, domain);
2661 }
2662
2663 /* See symtab.h. */
2664
2665 struct block_symbol
2666 lookup_global_symbol (const char *name,
2667 const struct block *block,
2668 const domain_enum domain)
2669 {
2670 /* If a block was passed in, we want to search the corresponding
2671 global block first. This yields "more expected" behavior, and is
2672 needed to support 'FILENAME'::VARIABLE lookups. */
2673 const struct block *global_block = block_global_block (block);
2674 symbol *sym = NULL;
2675 if (global_block != nullptr)
2676 {
2677 sym = lookup_symbol_in_block (name,
2678 symbol_name_match_type::FULL,
2679 global_block, domain);
2680 if (sym != NULL && best_symbol (sym, domain))
2681 return { sym, global_block };
2682 }
2683
2684 struct objfile *objfile = nullptr;
2685 if (block != nullptr)
2686 {
2687 objfile = block_objfile (block);
2688 if (objfile->separate_debug_objfile_backlink != nullptr)
2689 objfile = objfile->separate_debug_objfile_backlink;
2690 }
2691
2692 block_symbol bs
2693 = lookup_global_or_static_symbol (name, GLOBAL_BLOCK, objfile, domain);
2694 if (better_symbol (sym, bs.symbol, domain) == sym)
2695 return { sym, global_block };
2696 else
2697 return bs;
2698 }
2699
2700 bool
2701 symbol_matches_domain (enum language symbol_language,
2702 domain_enum symbol_domain,
2703 domain_enum domain)
2704 {
2705 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2706 Similarly, any Ada type declaration implicitly defines a typedef. */
2707 if (symbol_language == language_cplus
2708 || symbol_language == language_d
2709 || symbol_language == language_ada
2710 || symbol_language == language_rust)
2711 {
2712 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2713 && symbol_domain == STRUCT_DOMAIN)
2714 return true;
2715 }
2716 /* For all other languages, strict match is required. */
2717 return (symbol_domain == domain);
2718 }
2719
2720 /* See symtab.h. */
2721
2722 struct type *
2723 lookup_transparent_type (const char *name)
2724 {
2725 return current_language->lookup_transparent_type (name);
2726 }
2727
2728 /* A helper for basic_lookup_transparent_type that interfaces with the
2729 "quick" symbol table functions. */
2730
2731 static struct type *
2732 basic_lookup_transparent_type_quick (struct objfile *objfile,
2733 enum block_enum block_index,
2734 const char *name)
2735 {
2736 struct compunit_symtab *cust;
2737 const struct blockvector *bv;
2738 const struct block *block;
2739 struct symbol *sym;
2740
2741 if (!objfile->sf)
2742 return NULL;
2743 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2744 STRUCT_DOMAIN);
2745 if (cust == NULL)
2746 return NULL;
2747
2748 bv = COMPUNIT_BLOCKVECTOR (cust);
2749 block = BLOCKVECTOR_BLOCK (bv, block_index);
2750 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2751 block_find_non_opaque_type, NULL);
2752 if (sym == NULL)
2753 error_in_psymtab_expansion (block_index, name, cust);
2754 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2755 return SYMBOL_TYPE (sym);
2756 }
2757
2758 /* Subroutine of basic_lookup_transparent_type to simplify it.
2759 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2760 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2761
2762 static struct type *
2763 basic_lookup_transparent_type_1 (struct objfile *objfile,
2764 enum block_enum block_index,
2765 const char *name)
2766 {
2767 const struct blockvector *bv;
2768 const struct block *block;
2769 const struct symbol *sym;
2770
2771 for (compunit_symtab *cust : objfile->compunits ())
2772 {
2773 bv = COMPUNIT_BLOCKVECTOR (cust);
2774 block = BLOCKVECTOR_BLOCK (bv, block_index);
2775 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2776 block_find_non_opaque_type, NULL);
2777 if (sym != NULL)
2778 {
2779 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2780 return SYMBOL_TYPE (sym);
2781 }
2782 }
2783
2784 return NULL;
2785 }
2786
2787 /* The standard implementation of lookup_transparent_type. This code
2788 was modeled on lookup_symbol -- the parts not relevant to looking
2789 up types were just left out. In particular it's assumed here that
2790 types are available in STRUCT_DOMAIN and only in file-static or
2791 global blocks. */
2792
2793 struct type *
2794 basic_lookup_transparent_type (const char *name)
2795 {
2796 struct type *t;
2797
2798 /* Now search all the global symbols. Do the symtab's first, then
2799 check the psymtab's. If a psymtab indicates the existence
2800 of the desired name as a global, then do psymtab-to-symtab
2801 conversion on the fly and return the found symbol. */
2802
2803 for (objfile *objfile : current_program_space->objfiles ())
2804 {
2805 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2806 if (t)
2807 return t;
2808 }
2809
2810 for (objfile *objfile : current_program_space->objfiles ())
2811 {
2812 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2813 if (t)
2814 return t;
2815 }
2816
2817 /* Now search the static file-level symbols.
2818 Not strictly correct, but more useful than an error.
2819 Do the symtab's first, then
2820 check the psymtab's. If a psymtab indicates the existence
2821 of the desired name as a file-level static, then do psymtab-to-symtab
2822 conversion on the fly and return the found symbol. */
2823
2824 for (objfile *objfile : current_program_space->objfiles ())
2825 {
2826 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2827 if (t)
2828 return t;
2829 }
2830
2831 for (objfile *objfile : current_program_space->objfiles ())
2832 {
2833 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2834 if (t)
2835 return t;
2836 }
2837
2838 return (struct type *) 0;
2839 }
2840
2841 /* See symtab.h. */
2842
2843 bool
2844 iterate_over_symbols (const struct block *block,
2845 const lookup_name_info &name,
2846 const domain_enum domain,
2847 gdb::function_view<symbol_found_callback_ftype> callback)
2848 {
2849 struct block_iterator iter;
2850 struct symbol *sym;
2851
2852 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2853 {
2854 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
2855 {
2856 struct block_symbol block_sym = {sym, block};
2857
2858 if (!callback (&block_sym))
2859 return false;
2860 }
2861 }
2862 return true;
2863 }
2864
2865 /* See symtab.h. */
2866
2867 bool
2868 iterate_over_symbols_terminated
2869 (const struct block *block,
2870 const lookup_name_info &name,
2871 const domain_enum domain,
2872 gdb::function_view<symbol_found_callback_ftype> callback)
2873 {
2874 if (!iterate_over_symbols (block, name, domain, callback))
2875 return false;
2876 struct block_symbol block_sym = {nullptr, block};
2877 return callback (&block_sym);
2878 }
2879
2880 /* Find the compunit symtab associated with PC and SECTION.
2881 This will read in debug info as necessary. */
2882
2883 struct compunit_symtab *
2884 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2885 {
2886 struct compunit_symtab *best_cust = NULL;
2887 CORE_ADDR distance = 0;
2888 struct bound_minimal_symbol msymbol;
2889
2890 /* If we know that this is not a text address, return failure. This is
2891 necessary because we loop based on the block's high and low code
2892 addresses, which do not include the data ranges, and because
2893 we call find_pc_sect_psymtab which has a similar restriction based
2894 on the partial_symtab's texthigh and textlow. */
2895 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2896 if (msymbol.minsym && msymbol.minsym->data_p ())
2897 return NULL;
2898
2899 /* Search all symtabs for the one whose file contains our address, and which
2900 is the smallest of all the ones containing the address. This is designed
2901 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2902 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2903 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2904
2905 This happens for native ecoff format, where code from included files
2906 gets its own symtab. The symtab for the included file should have
2907 been read in already via the dependency mechanism.
2908 It might be swifter to create several symtabs with the same name
2909 like xcoff does (I'm not sure).
2910
2911 It also happens for objfiles that have their functions reordered.
2912 For these, the symtab we are looking for is not necessarily read in. */
2913
2914 for (objfile *obj_file : current_program_space->objfiles ())
2915 {
2916 for (compunit_symtab *cust : obj_file->compunits ())
2917 {
2918 const struct block *b;
2919 const struct blockvector *bv;
2920
2921 bv = COMPUNIT_BLOCKVECTOR (cust);
2922 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2923
2924 if (BLOCK_START (b) <= pc
2925 && BLOCK_END (b) > pc
2926 && (distance == 0
2927 || BLOCK_END (b) - BLOCK_START (b) < distance))
2928 {
2929 /* For an objfile that has its functions reordered,
2930 find_pc_psymtab will find the proper partial symbol table
2931 and we simply return its corresponding symtab. */
2932 /* In order to better support objfiles that contain both
2933 stabs and coff debugging info, we continue on if a psymtab
2934 can't be found. */
2935 if ((obj_file->flags & OBJF_REORDERED) && obj_file->sf)
2936 {
2937 struct compunit_symtab *result;
2938
2939 result
2940 = obj_file->sf->qf->find_pc_sect_compunit_symtab (obj_file,
2941 msymbol,
2942 pc,
2943 section,
2944 0);
2945 if (result != NULL)
2946 return result;
2947 }
2948 if (section != 0)
2949 {
2950 struct block_iterator iter;
2951 struct symbol *sym = NULL;
2952
2953 ALL_BLOCK_SYMBOLS (b, iter, sym)
2954 {
2955 fixup_symbol_section (sym, obj_file);
2956 if (matching_obj_sections (SYMBOL_OBJ_SECTION (obj_file,
2957 sym),
2958 section))
2959 break;
2960 }
2961 if (sym == NULL)
2962 continue; /* No symbol in this symtab matches
2963 section. */
2964 }
2965 distance = BLOCK_END (b) - BLOCK_START (b);
2966 best_cust = cust;
2967 }
2968 }
2969 }
2970
2971 if (best_cust != NULL)
2972 return best_cust;
2973
2974 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2975
2976 for (objfile *objf : current_program_space->objfiles ())
2977 {
2978 struct compunit_symtab *result;
2979
2980 if (!objf->sf)
2981 continue;
2982 result = objf->sf->qf->find_pc_sect_compunit_symtab (objf,
2983 msymbol,
2984 pc, section,
2985 1);
2986 if (result != NULL)
2987 return result;
2988 }
2989
2990 return NULL;
2991 }
2992
2993 /* Find the compunit symtab associated with PC.
2994 This will read in debug info as necessary.
2995 Backward compatibility, no section. */
2996
2997 struct compunit_symtab *
2998 find_pc_compunit_symtab (CORE_ADDR pc)
2999 {
3000 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
3001 }
3002
3003 /* See symtab.h. */
3004
3005 struct symbol *
3006 find_symbol_at_address (CORE_ADDR address)
3007 {
3008 for (objfile *objfile : current_program_space->objfiles ())
3009 {
3010 if (objfile->sf == NULL
3011 || objfile->sf->qf->find_compunit_symtab_by_address == NULL)
3012 continue;
3013
3014 struct compunit_symtab *symtab
3015 = objfile->sf->qf->find_compunit_symtab_by_address (objfile, address);
3016 if (symtab != NULL)
3017 {
3018 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
3019
3020 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
3021 {
3022 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
3023 struct block_iterator iter;
3024 struct symbol *sym;
3025
3026 ALL_BLOCK_SYMBOLS (b, iter, sym)
3027 {
3028 if (SYMBOL_CLASS (sym) == LOC_STATIC
3029 && SYMBOL_VALUE_ADDRESS (sym) == address)
3030 return sym;
3031 }
3032 }
3033 }
3034 }
3035
3036 return NULL;
3037 }
3038
3039 \f
3040
3041 /* Find the source file and line number for a given PC value and SECTION.
3042 Return a structure containing a symtab pointer, a line number,
3043 and a pc range for the entire source line.
3044 The value's .pc field is NOT the specified pc.
3045 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3046 use the line that ends there. Otherwise, in that case, the line
3047 that begins there is used. */
3048
3049 /* The big complication here is that a line may start in one file, and end just
3050 before the start of another file. This usually occurs when you #include
3051 code in the middle of a subroutine. To properly find the end of a line's PC
3052 range, we must search all symtabs associated with this compilation unit, and
3053 find the one whose first PC is closer than that of the next line in this
3054 symtab. */
3055
3056 struct symtab_and_line
3057 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3058 {
3059 struct compunit_symtab *cust;
3060 struct linetable *l;
3061 int len;
3062 struct linetable_entry *item;
3063 const struct blockvector *bv;
3064 struct bound_minimal_symbol msymbol;
3065
3066 /* Info on best line seen so far, and where it starts, and its file. */
3067
3068 struct linetable_entry *best = NULL;
3069 CORE_ADDR best_end = 0;
3070 struct symtab *best_symtab = 0;
3071
3072 /* Store here the first line number
3073 of a file which contains the line at the smallest pc after PC.
3074 If we don't find a line whose range contains PC,
3075 we will use a line one less than this,
3076 with a range from the start of that file to the first line's pc. */
3077 struct linetable_entry *alt = NULL;
3078
3079 /* Info on best line seen in this file. */
3080
3081 struct linetable_entry *prev;
3082
3083 /* If this pc is not from the current frame,
3084 it is the address of the end of a call instruction.
3085 Quite likely that is the start of the following statement.
3086 But what we want is the statement containing the instruction.
3087 Fudge the pc to make sure we get that. */
3088
3089 /* It's tempting to assume that, if we can't find debugging info for
3090 any function enclosing PC, that we shouldn't search for line
3091 number info, either. However, GAS can emit line number info for
3092 assembly files --- very helpful when debugging hand-written
3093 assembly code. In such a case, we'd have no debug info for the
3094 function, but we would have line info. */
3095
3096 if (notcurrent)
3097 pc -= 1;
3098
3099 /* elz: added this because this function returned the wrong
3100 information if the pc belongs to a stub (import/export)
3101 to call a shlib function. This stub would be anywhere between
3102 two functions in the target, and the line info was erroneously
3103 taken to be the one of the line before the pc. */
3104
3105 /* RT: Further explanation:
3106
3107 * We have stubs (trampolines) inserted between procedures.
3108 *
3109 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3110 * exists in the main image.
3111 *
3112 * In the minimal symbol table, we have a bunch of symbols
3113 * sorted by start address. The stubs are marked as "trampoline",
3114 * the others appear as text. E.g.:
3115 *
3116 * Minimal symbol table for main image
3117 * main: code for main (text symbol)
3118 * shr1: stub (trampoline symbol)
3119 * foo: code for foo (text symbol)
3120 * ...
3121 * Minimal symbol table for "shr1" image:
3122 * ...
3123 * shr1: code for shr1 (text symbol)
3124 * ...
3125 *
3126 * So the code below is trying to detect if we are in the stub
3127 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3128 * and if found, do the symbolization from the real-code address
3129 * rather than the stub address.
3130 *
3131 * Assumptions being made about the minimal symbol table:
3132 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3133 * if we're really in the trampoline.s If we're beyond it (say
3134 * we're in "foo" in the above example), it'll have a closer
3135 * symbol (the "foo" text symbol for example) and will not
3136 * return the trampoline.
3137 * 2. lookup_minimal_symbol_text() will find a real text symbol
3138 * corresponding to the trampoline, and whose address will
3139 * be different than the trampoline address. I put in a sanity
3140 * check for the address being the same, to avoid an
3141 * infinite recursion.
3142 */
3143 msymbol = lookup_minimal_symbol_by_pc (pc);
3144 if (msymbol.minsym != NULL)
3145 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3146 {
3147 struct bound_minimal_symbol mfunsym
3148 = lookup_minimal_symbol_text (msymbol.minsym->linkage_name (),
3149 NULL);
3150
3151 if (mfunsym.minsym == NULL)
3152 /* I eliminated this warning since it is coming out
3153 * in the following situation:
3154 * gdb shmain // test program with shared libraries
3155 * (gdb) break shr1 // function in shared lib
3156 * Warning: In stub for ...
3157 * In the above situation, the shared lib is not loaded yet,
3158 * so of course we can't find the real func/line info,
3159 * but the "break" still works, and the warning is annoying.
3160 * So I commented out the warning. RT */
3161 /* warning ("In stub for %s; unable to find real function/line info",
3162 msymbol->linkage_name ()); */
3163 ;
3164 /* fall through */
3165 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3166 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3167 /* Avoid infinite recursion */
3168 /* See above comment about why warning is commented out. */
3169 /* warning ("In stub for %s; unable to find real function/line info",
3170 msymbol->linkage_name ()); */
3171 ;
3172 /* fall through */
3173 else
3174 {
3175 /* Detect an obvious case of infinite recursion. If this
3176 should occur, we'd like to know about it, so error out,
3177 fatally. */
3178 if (BMSYMBOL_VALUE_ADDRESS (mfunsym) == pc)
3179 internal_error (__FILE__, __LINE__,
3180 _("Infinite recursion detected in find_pc_sect_line;"
3181 "please file a bug report"));
3182
3183 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3184 }
3185 }
3186
3187 symtab_and_line val;
3188 val.pspace = current_program_space;
3189
3190 cust = find_pc_sect_compunit_symtab (pc, section);
3191 if (cust == NULL)
3192 {
3193 /* If no symbol information, return previous pc. */
3194 if (notcurrent)
3195 pc++;
3196 val.pc = pc;
3197 return val;
3198 }
3199
3200 bv = COMPUNIT_BLOCKVECTOR (cust);
3201
3202 /* Look at all the symtabs that share this blockvector.
3203 They all have the same apriori range, that we found was right;
3204 but they have different line tables. */
3205
3206 for (symtab *iter_s : compunit_filetabs (cust))
3207 {
3208 /* Find the best line in this symtab. */
3209 l = SYMTAB_LINETABLE (iter_s);
3210 if (!l)
3211 continue;
3212 len = l->nitems;
3213 if (len <= 0)
3214 {
3215 /* I think len can be zero if the symtab lacks line numbers
3216 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3217 I'm not sure which, and maybe it depends on the symbol
3218 reader). */
3219 continue;
3220 }
3221
3222 prev = NULL;
3223 item = l->item; /* Get first line info. */
3224
3225 /* Is this file's first line closer than the first lines of other files?
3226 If so, record this file, and its first line, as best alternate. */
3227 if (item->pc > pc && (!alt || item->pc < alt->pc))
3228 alt = item;
3229
3230 auto pc_compare = [](const CORE_ADDR & comp_pc,
3231 const struct linetable_entry & lhs)->bool
3232 {
3233 return comp_pc < lhs.pc;
3234 };
3235
3236 struct linetable_entry *first = item;
3237 struct linetable_entry *last = item + len;
3238 item = std::upper_bound (first, last, pc, pc_compare);
3239 if (item != first)
3240 {
3241 /* Found a matching item. Skip backwards over any end of
3242 sequence markers. */
3243 for (prev = item - 1; prev->line == 0 && prev != first; prev--)
3244 /* Nothing. */;
3245 }
3246
3247 /* At this point, prev points at the line whose start addr is <= pc, and
3248 item points at the next line. If we ran off the end of the linetable
3249 (pc >= start of the last line), then prev == item. If pc < start of
3250 the first line, prev will not be set. */
3251
3252 /* Is this file's best line closer than the best in the other files?
3253 If so, record this file, and its best line, as best so far. Don't
3254 save prev if it represents the end of a function (i.e. line number
3255 0) instead of a real line. */
3256
3257 if (prev && prev->line && (!best || prev->pc > best->pc))
3258 {
3259 best = prev;
3260 best_symtab = iter_s;
3261
3262 /* If during the binary search we land on a non-statement entry,
3263 scan backward through entries at the same address to see if
3264 there is an entry marked as is-statement. In theory this
3265 duplication should have been removed from the line table
3266 during construction, this is just a double check. If the line
3267 table has had the duplication removed then this should be
3268 pretty cheap. */
3269 if (!best->is_stmt)
3270 {
3271 struct linetable_entry *tmp = best;
3272 while (tmp > first && (tmp - 1)->pc == tmp->pc
3273 && (tmp - 1)->line != 0 && !tmp->is_stmt)
3274 --tmp;
3275 if (tmp->is_stmt)
3276 best = tmp;
3277 }
3278
3279 /* Discard BEST_END if it's before the PC of the current BEST. */
3280 if (best_end <= best->pc)
3281 best_end = 0;
3282 }
3283
3284 /* If another line (denoted by ITEM) is in the linetable and its
3285 PC is after BEST's PC, but before the current BEST_END, then
3286 use ITEM's PC as the new best_end. */
3287 if (best && item < last && item->pc > best->pc
3288 && (best_end == 0 || best_end > item->pc))
3289 best_end = item->pc;
3290 }
3291
3292 if (!best_symtab)
3293 {
3294 /* If we didn't find any line number info, just return zeros.
3295 We used to return alt->line - 1 here, but that could be
3296 anywhere; if we don't have line number info for this PC,
3297 don't make some up. */
3298 val.pc = pc;
3299 }
3300 else if (best->line == 0)
3301 {
3302 /* If our best fit is in a range of PC's for which no line
3303 number info is available (line number is zero) then we didn't
3304 find any valid line information. */
3305 val.pc = pc;
3306 }
3307 else
3308 {
3309 val.is_stmt = best->is_stmt;
3310 val.symtab = best_symtab;
3311 val.line = best->line;
3312 val.pc = best->pc;
3313 if (best_end && (!alt || best_end < alt->pc))
3314 val.end = best_end;
3315 else if (alt)
3316 val.end = alt->pc;
3317 else
3318 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3319 }
3320 val.section = section;
3321 return val;
3322 }
3323
3324 /* Backward compatibility (no section). */
3325
3326 struct symtab_and_line
3327 find_pc_line (CORE_ADDR pc, int notcurrent)
3328 {
3329 struct obj_section *section;
3330
3331 section = find_pc_overlay (pc);
3332 if (pc_in_unmapped_range (pc, section))
3333 pc = overlay_mapped_address (pc, section);
3334 return find_pc_sect_line (pc, section, notcurrent);
3335 }
3336
3337 /* See symtab.h. */
3338
3339 struct symtab *
3340 find_pc_line_symtab (CORE_ADDR pc)
3341 {
3342 struct symtab_and_line sal;
3343
3344 /* This always passes zero for NOTCURRENT to find_pc_line.
3345 There are currently no callers that ever pass non-zero. */
3346 sal = find_pc_line (pc, 0);
3347 return sal.symtab;
3348 }
3349 \f
3350 /* Find line number LINE in any symtab whose name is the same as
3351 SYMTAB.
3352
3353 If found, return the symtab that contains the linetable in which it was
3354 found, set *INDEX to the index in the linetable of the best entry
3355 found, and set *EXACT_MATCH to true if the value returned is an
3356 exact match.
3357
3358 If not found, return NULL. */
3359
3360 struct symtab *
3361 find_line_symtab (struct symtab *sym_tab, int line,
3362 int *index, bool *exact_match)
3363 {
3364 int exact = 0; /* Initialized here to avoid a compiler warning. */
3365
3366 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3367 so far seen. */
3368
3369 int best_index;
3370 struct linetable *best_linetable;
3371 struct symtab *best_symtab;
3372
3373 /* First try looking it up in the given symtab. */
3374 best_linetable = SYMTAB_LINETABLE (sym_tab);
3375 best_symtab = sym_tab;
3376 best_index = find_line_common (best_linetable, line, &exact, 0);
3377 if (best_index < 0 || !exact)
3378 {
3379 /* Didn't find an exact match. So we better keep looking for
3380 another symtab with the same name. In the case of xcoff,
3381 multiple csects for one source file (produced by IBM's FORTRAN
3382 compiler) produce multiple symtabs (this is unavoidable
3383 assuming csects can be at arbitrary places in memory and that
3384 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3385
3386 /* BEST is the smallest linenumber > LINE so far seen,
3387 or 0 if none has been seen so far.
3388 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3389 int best;
3390
3391 if (best_index >= 0)
3392 best = best_linetable->item[best_index].line;
3393 else
3394 best = 0;
3395
3396 for (objfile *objfile : current_program_space->objfiles ())
3397 {
3398 if (objfile->sf)
3399 objfile->sf->qf->expand_symtabs_with_fullname
3400 (objfile, symtab_to_fullname (sym_tab));
3401 }
3402
3403 for (objfile *objfile : current_program_space->objfiles ())
3404 {
3405 for (compunit_symtab *cu : objfile->compunits ())
3406 {
3407 for (symtab *s : compunit_filetabs (cu))
3408 {
3409 struct linetable *l;
3410 int ind;
3411
3412 if (FILENAME_CMP (sym_tab->filename, s->filename) != 0)
3413 continue;
3414 if (FILENAME_CMP (symtab_to_fullname (sym_tab),
3415 symtab_to_fullname (s)) != 0)
3416 continue;
3417 l = SYMTAB_LINETABLE (s);
3418 ind = find_line_common (l, line, &exact, 0);
3419 if (ind >= 0)
3420 {
3421 if (exact)
3422 {
3423 best_index = ind;
3424 best_linetable = l;
3425 best_symtab = s;
3426 goto done;
3427 }
3428 if (best == 0 || l->item[ind].line < best)
3429 {
3430 best = l->item[ind].line;
3431 best_index = ind;
3432 best_linetable = l;
3433 best_symtab = s;
3434 }
3435 }
3436 }
3437 }
3438 }
3439 }
3440 done:
3441 if (best_index < 0)
3442 return NULL;
3443
3444 if (index)
3445 *index = best_index;
3446 if (exact_match)
3447 *exact_match = (exact != 0);
3448
3449 return best_symtab;
3450 }
3451
3452 /* Given SYMTAB, returns all the PCs function in the symtab that
3453 exactly match LINE. Returns an empty vector if there are no exact
3454 matches, but updates BEST_ITEM in this case. */
3455
3456 std::vector<CORE_ADDR>
3457 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3458 struct linetable_entry **best_item)
3459 {
3460 int start = 0;
3461 std::vector<CORE_ADDR> result;
3462
3463 /* First, collect all the PCs that are at this line. */
3464 while (1)
3465 {
3466 int was_exact;
3467 int idx;
3468
3469 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3470 start);
3471 if (idx < 0)
3472 break;
3473
3474 if (!was_exact)
3475 {
3476 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3477
3478 if (*best_item == NULL
3479 || (item->line < (*best_item)->line && item->is_stmt))
3480 *best_item = item;
3481
3482 break;
3483 }
3484
3485 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3486 start = idx + 1;
3487 }
3488
3489 return result;
3490 }
3491
3492 \f
3493 /* Set the PC value for a given source file and line number and return true.
3494 Returns false for invalid line number (and sets the PC to 0).
3495 The source file is specified with a struct symtab. */
3496
3497 bool
3498 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3499 {
3500 struct linetable *l;
3501 int ind;
3502
3503 *pc = 0;
3504 if (symtab == 0)
3505 return false;
3506
3507 symtab = find_line_symtab (symtab, line, &ind, NULL);
3508 if (symtab != NULL)
3509 {
3510 l = SYMTAB_LINETABLE (symtab);
3511 *pc = l->item[ind].pc;
3512 return true;
3513 }
3514 else
3515 return false;
3516 }
3517
3518 /* Find the range of pc values in a line.
3519 Store the starting pc of the line into *STARTPTR
3520 and the ending pc (start of next line) into *ENDPTR.
3521 Returns true to indicate success.
3522 Returns false if could not find the specified line. */
3523
3524 bool
3525 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3526 CORE_ADDR *endptr)
3527 {
3528 CORE_ADDR startaddr;
3529 struct symtab_and_line found_sal;
3530
3531 startaddr = sal.pc;
3532 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3533 return false;
3534
3535 /* This whole function is based on address. For example, if line 10 has
3536 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3537 "info line *0x123" should say the line goes from 0x100 to 0x200
3538 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3539 This also insures that we never give a range like "starts at 0x134
3540 and ends at 0x12c". */
3541
3542 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3543 if (found_sal.line != sal.line)
3544 {
3545 /* The specified line (sal) has zero bytes. */
3546 *startptr = found_sal.pc;
3547 *endptr = found_sal.pc;
3548 }
3549 else
3550 {
3551 *startptr = found_sal.pc;
3552 *endptr = found_sal.end;
3553 }
3554 return true;
3555 }
3556
3557 /* Given a line table and a line number, return the index into the line
3558 table for the pc of the nearest line whose number is >= the specified one.
3559 Return -1 if none is found. The value is >= 0 if it is an index.
3560 START is the index at which to start searching the line table.
3561
3562 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3563
3564 static int
3565 find_line_common (struct linetable *l, int lineno,
3566 int *exact_match, int start)
3567 {
3568 int i;
3569 int len;
3570
3571 /* BEST is the smallest linenumber > LINENO so far seen,
3572 or 0 if none has been seen so far.
3573 BEST_INDEX identifies the item for it. */
3574
3575 int best_index = -1;
3576 int best = 0;
3577
3578 *exact_match = 0;
3579
3580 if (lineno <= 0)
3581 return -1;
3582 if (l == 0)
3583 return -1;
3584
3585 len = l->nitems;
3586 for (i = start; i < len; i++)
3587 {
3588 struct linetable_entry *item = &(l->item[i]);
3589
3590 /* Ignore non-statements. */
3591 if (!item->is_stmt)
3592 continue;
3593
3594 if (item->line == lineno)
3595 {
3596 /* Return the first (lowest address) entry which matches. */
3597 *exact_match = 1;
3598 return i;
3599 }
3600
3601 if (item->line > lineno && (best == 0 || item->line < best))
3602 {
3603 best = item->line;
3604 best_index = i;
3605 }
3606 }
3607
3608 /* If we got here, we didn't get an exact match. */
3609 return best_index;
3610 }
3611
3612 bool
3613 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3614 {
3615 struct symtab_and_line sal;
3616
3617 sal = find_pc_line (pc, 0);
3618 *startptr = sal.pc;
3619 *endptr = sal.end;
3620 return sal.symtab != 0;
3621 }
3622
3623 /* Helper for find_function_start_sal. Does most of the work, except
3624 setting the sal's symbol. */
3625
3626 static symtab_and_line
3627 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3628 bool funfirstline)
3629 {
3630 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3631
3632 if (funfirstline && sal.symtab != NULL
3633 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3634 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3635 {
3636 struct gdbarch *gdbarch = SYMTAB_OBJFILE (sal.symtab)->arch ();
3637
3638 sal.pc = func_addr;
3639 if (gdbarch_skip_entrypoint_p (gdbarch))
3640 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3641 return sal;
3642 }
3643
3644 /* We always should have a line for the function start address.
3645 If we don't, something is odd. Create a plain SAL referring
3646 just the PC and hope that skip_prologue_sal (if requested)
3647 can find a line number for after the prologue. */
3648 if (sal.pc < func_addr)
3649 {
3650 sal = {};
3651 sal.pspace = current_program_space;
3652 sal.pc = func_addr;
3653 sal.section = section;
3654 }
3655
3656 if (funfirstline)
3657 skip_prologue_sal (&sal);
3658
3659 return sal;
3660 }
3661
3662 /* See symtab.h. */
3663
3664 symtab_and_line
3665 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3666 bool funfirstline)
3667 {
3668 symtab_and_line sal
3669 = find_function_start_sal_1 (func_addr, section, funfirstline);
3670
3671 /* find_function_start_sal_1 does a linetable search, so it finds
3672 the symtab and linenumber, but not a symbol. Fill in the
3673 function symbol too. */
3674 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3675
3676 return sal;
3677 }
3678
3679 /* See symtab.h. */
3680
3681 symtab_and_line
3682 find_function_start_sal (symbol *sym, bool funfirstline)
3683 {
3684 fixup_symbol_section (sym, NULL);
3685 symtab_and_line sal
3686 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)),
3687 SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym),
3688 funfirstline);
3689 sal.symbol = sym;
3690 return sal;
3691 }
3692
3693
3694 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3695 address for that function that has an entry in SYMTAB's line info
3696 table. If such an entry cannot be found, return FUNC_ADDR
3697 unaltered. */
3698
3699 static CORE_ADDR
3700 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3701 {
3702 CORE_ADDR func_start, func_end;
3703 struct linetable *l;
3704 int i;
3705
3706 /* Give up if this symbol has no lineinfo table. */
3707 l = SYMTAB_LINETABLE (symtab);
3708 if (l == NULL)
3709 return func_addr;
3710
3711 /* Get the range for the function's PC values, or give up if we
3712 cannot, for some reason. */
3713 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3714 return func_addr;
3715
3716 /* Linetable entries are ordered by PC values, see the commentary in
3717 symtab.h where `struct linetable' is defined. Thus, the first
3718 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3719 address we are looking for. */
3720 for (i = 0; i < l->nitems; i++)
3721 {
3722 struct linetable_entry *item = &(l->item[i]);
3723
3724 /* Don't use line numbers of zero, they mark special entries in
3725 the table. See the commentary on symtab.h before the
3726 definition of struct linetable. */
3727 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3728 return item->pc;
3729 }
3730
3731 return func_addr;
3732 }
3733
3734 /* Adjust SAL to the first instruction past the function prologue.
3735 If the PC was explicitly specified, the SAL is not changed.
3736 If the line number was explicitly specified then the SAL can still be
3737 updated, unless the language for SAL is assembler, in which case the SAL
3738 will be left unchanged.
3739 If SAL is already past the prologue, then do nothing. */
3740
3741 void
3742 skip_prologue_sal (struct symtab_and_line *sal)
3743 {
3744 struct symbol *sym;
3745 struct symtab_and_line start_sal;
3746 CORE_ADDR pc, saved_pc;
3747 struct obj_section *section;
3748 const char *name;
3749 struct objfile *objfile;
3750 struct gdbarch *gdbarch;
3751 const struct block *b, *function_block;
3752 int force_skip, skip;
3753
3754 /* Do not change the SAL if PC was specified explicitly. */
3755 if (sal->explicit_pc)
3756 return;
3757
3758 /* In assembly code, if the user asks for a specific line then we should
3759 not adjust the SAL. The user already has instruction level
3760 visibility in this case, so selecting a line other than one requested
3761 is likely to be the wrong choice. */
3762 if (sal->symtab != nullptr
3763 && sal->explicit_line
3764 && SYMTAB_LANGUAGE (sal->symtab) == language_asm)
3765 return;
3766
3767 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3768
3769 switch_to_program_space_and_thread (sal->pspace);
3770
3771 sym = find_pc_sect_function (sal->pc, sal->section);
3772 if (sym != NULL)
3773 {
3774 fixup_symbol_section (sym, NULL);
3775
3776 objfile = symbol_objfile (sym);
3777 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
3778 section = SYMBOL_OBJ_SECTION (objfile, sym);
3779 name = sym->linkage_name ();
3780 }
3781 else
3782 {
3783 struct bound_minimal_symbol msymbol
3784 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3785
3786 if (msymbol.minsym == NULL)
3787 return;
3788
3789 objfile = msymbol.objfile;
3790 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3791 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3792 name = msymbol.minsym->linkage_name ();
3793 }
3794
3795 gdbarch = objfile->arch ();
3796
3797 /* Process the prologue in two passes. In the first pass try to skip the
3798 prologue (SKIP is true) and verify there is a real need for it (indicated
3799 by FORCE_SKIP). If no such reason was found run a second pass where the
3800 prologue is not skipped (SKIP is false). */
3801
3802 skip = 1;
3803 force_skip = 1;
3804
3805 /* Be conservative - allow direct PC (without skipping prologue) only if we
3806 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3807 have to be set by the caller so we use SYM instead. */
3808 if (sym != NULL
3809 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3810 force_skip = 0;
3811
3812 saved_pc = pc;
3813 do
3814 {
3815 pc = saved_pc;
3816
3817 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3818 so that gdbarch_skip_prologue has something unique to work on. */
3819 if (section_is_overlay (section) && !section_is_mapped (section))
3820 pc = overlay_unmapped_address (pc, section);
3821
3822 /* Skip "first line" of function (which is actually its prologue). */
3823 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3824 if (gdbarch_skip_entrypoint_p (gdbarch))
3825 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3826 if (skip)
3827 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3828
3829 /* For overlays, map pc back into its mapped VMA range. */
3830 pc = overlay_mapped_address (pc, section);
3831
3832 /* Calculate line number. */
3833 start_sal = find_pc_sect_line (pc, section, 0);
3834
3835 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3836 line is still part of the same function. */
3837 if (skip && start_sal.pc != pc
3838 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3839 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3840 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3841 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3842 {
3843 /* First pc of next line */
3844 pc = start_sal.end;
3845 /* Recalculate the line number (might not be N+1). */
3846 start_sal = find_pc_sect_line (pc, section, 0);
3847 }
3848
3849 /* On targets with executable formats that don't have a concept of
3850 constructors (ELF with .init has, PE doesn't), gcc emits a call
3851 to `__main' in `main' between the prologue and before user
3852 code. */
3853 if (gdbarch_skip_main_prologue_p (gdbarch)
3854 && name && strcmp_iw (name, "main") == 0)
3855 {
3856 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3857 /* Recalculate the line number (might not be N+1). */
3858 start_sal = find_pc_sect_line (pc, section, 0);
3859 force_skip = 1;
3860 }
3861 }
3862 while (!force_skip && skip--);
3863
3864 /* If we still don't have a valid source line, try to find the first
3865 PC in the lineinfo table that belongs to the same function. This
3866 happens with COFF debug info, which does not seem to have an
3867 entry in lineinfo table for the code after the prologue which has
3868 no direct relation to source. For example, this was found to be
3869 the case with the DJGPP target using "gcc -gcoff" when the
3870 compiler inserted code after the prologue to make sure the stack
3871 is aligned. */
3872 if (!force_skip && sym && start_sal.symtab == NULL)
3873 {
3874 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3875 /* Recalculate the line number. */
3876 start_sal = find_pc_sect_line (pc, section, 0);
3877 }
3878
3879 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3880 forward SAL to the end of the prologue. */
3881 if (sal->pc >= pc)
3882 return;
3883
3884 sal->pc = pc;
3885 sal->section = section;
3886 sal->symtab = start_sal.symtab;
3887 sal->line = start_sal.line;
3888 sal->end = start_sal.end;
3889
3890 /* Check if we are now inside an inlined function. If we can,
3891 use the call site of the function instead. */
3892 b = block_for_pc_sect (sal->pc, sal->section);
3893 function_block = NULL;
3894 while (b != NULL)
3895 {
3896 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3897 function_block = b;
3898 else if (BLOCK_FUNCTION (b) != NULL)
3899 break;
3900 b = BLOCK_SUPERBLOCK (b);
3901 }
3902 if (function_block != NULL
3903 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3904 {
3905 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3906 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3907 }
3908 }
3909
3910 /* Given PC at the function's start address, attempt to find the
3911 prologue end using SAL information. Return zero if the skip fails.
3912
3913 A non-optimized prologue traditionally has one SAL for the function
3914 and a second for the function body. A single line function has
3915 them both pointing at the same line.
3916
3917 An optimized prologue is similar but the prologue may contain
3918 instructions (SALs) from the instruction body. Need to skip those
3919 while not getting into the function body.
3920
3921 The functions end point and an increasing SAL line are used as
3922 indicators of the prologue's endpoint.
3923
3924 This code is based on the function refine_prologue_limit
3925 (found in ia64). */
3926
3927 CORE_ADDR
3928 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3929 {
3930 struct symtab_and_line prologue_sal;
3931 CORE_ADDR start_pc;
3932 CORE_ADDR end_pc;
3933 const struct block *bl;
3934
3935 /* Get an initial range for the function. */
3936 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3937 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3938
3939 prologue_sal = find_pc_line (start_pc, 0);
3940 if (prologue_sal.line != 0)
3941 {
3942 /* For languages other than assembly, treat two consecutive line
3943 entries at the same address as a zero-instruction prologue.
3944 The GNU assembler emits separate line notes for each instruction
3945 in a multi-instruction macro, but compilers generally will not
3946 do this. */
3947 if (prologue_sal.symtab->language != language_asm)
3948 {
3949 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3950 int idx = 0;
3951
3952 /* Skip any earlier lines, and any end-of-sequence marker
3953 from a previous function. */
3954 while (linetable->item[idx].pc != prologue_sal.pc
3955 || linetable->item[idx].line == 0)
3956 idx++;
3957
3958 if (idx+1 < linetable->nitems
3959 && linetable->item[idx+1].line != 0
3960 && linetable->item[idx+1].pc == start_pc)
3961 return start_pc;
3962 }
3963
3964 /* If there is only one sal that covers the entire function,
3965 then it is probably a single line function, like
3966 "foo(){}". */
3967 if (prologue_sal.end >= end_pc)
3968 return 0;
3969
3970 while (prologue_sal.end < end_pc)
3971 {
3972 struct symtab_and_line sal;
3973
3974 sal = find_pc_line (prologue_sal.end, 0);
3975 if (sal.line == 0)
3976 break;
3977 /* Assume that a consecutive SAL for the same (or larger)
3978 line mark the prologue -> body transition. */
3979 if (sal.line >= prologue_sal.line)
3980 break;
3981 /* Likewise if we are in a different symtab altogether
3982 (e.g. within a file included via #include).  */
3983 if (sal.symtab != prologue_sal.symtab)
3984 break;
3985
3986 /* The line number is smaller. Check that it's from the
3987 same function, not something inlined. If it's inlined,
3988 then there is no point comparing the line numbers. */
3989 bl = block_for_pc (prologue_sal.end);
3990 while (bl)
3991 {
3992 if (block_inlined_p (bl))
3993 break;
3994 if (BLOCK_FUNCTION (bl))
3995 {
3996 bl = NULL;
3997 break;
3998 }
3999 bl = BLOCK_SUPERBLOCK (bl);
4000 }
4001 if (bl != NULL)
4002 break;
4003
4004 /* The case in which compiler's optimizer/scheduler has
4005 moved instructions into the prologue. We look ahead in
4006 the function looking for address ranges whose
4007 corresponding line number is less the first one that we
4008 found for the function. This is more conservative then
4009 refine_prologue_limit which scans a large number of SALs
4010 looking for any in the prologue. */
4011 prologue_sal = sal;
4012 }
4013 }
4014
4015 if (prologue_sal.end < end_pc)
4016 /* Return the end of this line, or zero if we could not find a
4017 line. */
4018 return prologue_sal.end;
4019 else
4020 /* Don't return END_PC, which is past the end of the function. */
4021 return prologue_sal.pc;
4022 }
4023
4024 /* See symtab.h. */
4025
4026 symbol *
4027 find_function_alias_target (bound_minimal_symbol msymbol)
4028 {
4029 CORE_ADDR func_addr;
4030 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
4031 return NULL;
4032
4033 symbol *sym = find_pc_function (func_addr);
4034 if (sym != NULL
4035 && SYMBOL_CLASS (sym) == LOC_BLOCK
4036 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
4037 return sym;
4038
4039 return NULL;
4040 }
4041
4042 \f
4043 /* If P is of the form "operator[ \t]+..." where `...' is
4044 some legitimate operator text, return a pointer to the
4045 beginning of the substring of the operator text.
4046 Otherwise, return "". */
4047
4048 static const char *
4049 operator_chars (const char *p, const char **end)
4050 {
4051 *end = "";
4052 if (!startswith (p, CP_OPERATOR_STR))
4053 return *end;
4054 p += CP_OPERATOR_LEN;
4055
4056 /* Don't get faked out by `operator' being part of a longer
4057 identifier. */
4058 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4059 return *end;
4060
4061 /* Allow some whitespace between `operator' and the operator symbol. */
4062 while (*p == ' ' || *p == '\t')
4063 p++;
4064
4065 /* Recognize 'operator TYPENAME'. */
4066
4067 if (isalpha (*p) || *p == '_' || *p == '$')
4068 {
4069 const char *q = p + 1;
4070
4071 while (isalnum (*q) || *q == '_' || *q == '$')
4072 q++;
4073 *end = q;
4074 return p;
4075 }
4076
4077 while (*p)
4078 switch (*p)
4079 {
4080 case '\\': /* regexp quoting */
4081 if (p[1] == '*')
4082 {
4083 if (p[2] == '=') /* 'operator\*=' */
4084 *end = p + 3;
4085 else /* 'operator\*' */
4086 *end = p + 2;
4087 return p;
4088 }
4089 else if (p[1] == '[')
4090 {
4091 if (p[2] == ']')
4092 error (_("mismatched quoting on brackets, "
4093 "try 'operator\\[\\]'"));
4094 else if (p[2] == '\\' && p[3] == ']')
4095 {
4096 *end = p + 4; /* 'operator\[\]' */
4097 return p;
4098 }
4099 else
4100 error (_("nothing is allowed between '[' and ']'"));
4101 }
4102 else
4103 {
4104 /* Gratuitous quote: skip it and move on. */
4105 p++;
4106 continue;
4107 }
4108 break;
4109 case '!':
4110 case '=':
4111 case '*':
4112 case '/':
4113 case '%':
4114 case '^':
4115 if (p[1] == '=')
4116 *end = p + 2;
4117 else
4118 *end = p + 1;
4119 return p;
4120 case '<':
4121 case '>':
4122 case '+':
4123 case '-':
4124 case '&':
4125 case '|':
4126 if (p[0] == '-' && p[1] == '>')
4127 {
4128 /* Struct pointer member operator 'operator->'. */
4129 if (p[2] == '*')
4130 {
4131 *end = p + 3; /* 'operator->*' */
4132 return p;
4133 }
4134 else if (p[2] == '\\')
4135 {
4136 *end = p + 4; /* Hopefully 'operator->\*' */
4137 return p;
4138 }
4139 else
4140 {
4141 *end = p + 2; /* 'operator->' */
4142 return p;
4143 }
4144 }
4145 if (p[1] == '=' || p[1] == p[0])
4146 *end = p + 2;
4147 else
4148 *end = p + 1;
4149 return p;
4150 case '~':
4151 case ',':
4152 *end = p + 1;
4153 return p;
4154 case '(':
4155 if (p[1] != ')')
4156 error (_("`operator ()' must be specified "
4157 "without whitespace in `()'"));
4158 *end = p + 2;
4159 return p;
4160 case '?':
4161 if (p[1] != ':')
4162 error (_("`operator ?:' must be specified "
4163 "without whitespace in `?:'"));
4164 *end = p + 2;
4165 return p;
4166 case '[':
4167 if (p[1] != ']')
4168 error (_("`operator []' must be specified "
4169 "without whitespace in `[]'"));
4170 *end = p + 2;
4171 return p;
4172 default:
4173 error (_("`operator %s' not supported"), p);
4174 break;
4175 }
4176
4177 *end = "";
4178 return *end;
4179 }
4180 \f
4181
4182 /* What part to match in a file name. */
4183
4184 struct filename_partial_match_opts
4185 {
4186 /* Only match the directory name part. */
4187 bool dirname = false;
4188
4189 /* Only match the basename part. */
4190 bool basename = false;
4191 };
4192
4193 /* Data structure to maintain printing state for output_source_filename. */
4194
4195 struct output_source_filename_data
4196 {
4197 /* Output only filenames matching REGEXP. */
4198 std::string regexp;
4199 gdb::optional<compiled_regex> c_regexp;
4200 /* Possibly only match a part of the filename. */
4201 filename_partial_match_opts partial_match;
4202
4203
4204 /* Cache of what we've seen so far. */
4205 struct filename_seen_cache *filename_seen_cache;
4206
4207 /* Flag of whether we're printing the first one. */
4208 int first;
4209 };
4210
4211 /* Slave routine for sources_info. Force line breaks at ,'s.
4212 NAME is the name to print.
4213 DATA contains the state for printing and watching for duplicates. */
4214
4215 static void
4216 output_source_filename (const char *name,
4217 struct output_source_filename_data *data)
4218 {
4219 /* Since a single source file can result in several partial symbol
4220 tables, we need to avoid printing it more than once. Note: if
4221 some of the psymtabs are read in and some are not, it gets
4222 printed both under "Source files for which symbols have been
4223 read" and "Source files for which symbols will be read in on
4224 demand". I consider this a reasonable way to deal with the
4225 situation. I'm not sure whether this can also happen for
4226 symtabs; it doesn't hurt to check. */
4227
4228 /* Was NAME already seen? */
4229 if (data->filename_seen_cache->seen (name))
4230 {
4231 /* Yes; don't print it again. */
4232 return;
4233 }
4234
4235 /* Does it match data->regexp? */
4236 if (data->c_regexp.has_value ())
4237 {
4238 const char *to_match;
4239 std::string dirname;
4240
4241 if (data->partial_match.dirname)
4242 {
4243 dirname = ldirname (name);
4244 to_match = dirname.c_str ();
4245 }
4246 else if (data->partial_match.basename)
4247 to_match = lbasename (name);
4248 else
4249 to_match = name;
4250
4251 if (data->c_regexp->exec (to_match, 0, NULL, 0) != 0)
4252 return;
4253 }
4254
4255 /* Print it and reset *FIRST. */
4256 if (! data->first)
4257 printf_filtered (", ");
4258 data->first = 0;
4259
4260 wrap_here ("");
4261 fputs_styled (name, file_name_style.style (), gdb_stdout);
4262 }
4263
4264 /* A callback for map_partial_symbol_filenames. */
4265
4266 static void
4267 output_partial_symbol_filename (const char *filename, const char *fullname,
4268 void *data)
4269 {
4270 output_source_filename (fullname ? fullname : filename,
4271 (struct output_source_filename_data *) data);
4272 }
4273
4274 using isrc_flag_option_def
4275 = gdb::option::flag_option_def<filename_partial_match_opts>;
4276
4277 static const gdb::option::option_def info_sources_option_defs[] = {
4278
4279 isrc_flag_option_def {
4280 "dirname",
4281 [] (filename_partial_match_opts *opts) { return &opts->dirname; },
4282 N_("Show only the files having a dirname matching REGEXP."),
4283 },
4284
4285 isrc_flag_option_def {
4286 "basename",
4287 [] (filename_partial_match_opts *opts) { return &opts->basename; },
4288 N_("Show only the files having a basename matching REGEXP."),
4289 },
4290
4291 };
4292
4293 /* Create an option_def_group for the "info sources" options, with
4294 ISRC_OPTS as context. */
4295
4296 static inline gdb::option::option_def_group
4297 make_info_sources_options_def_group (filename_partial_match_opts *isrc_opts)
4298 {
4299 return {{info_sources_option_defs}, isrc_opts};
4300 }
4301
4302 /* Prints the header message for the source files that will be printed
4303 with the matching info present in DATA. SYMBOL_MSG is a message
4304 that tells what will or has been done with the symbols of the
4305 matching source files. */
4306
4307 static void
4308 print_info_sources_header (const char *symbol_msg,
4309 const struct output_source_filename_data *data)
4310 {
4311 puts_filtered (symbol_msg);
4312 if (!data->regexp.empty ())
4313 {
4314 if (data->partial_match.dirname)
4315 printf_filtered (_("(dirname matching regular expression \"%s\")"),
4316 data->regexp.c_str ());
4317 else if (data->partial_match.basename)
4318 printf_filtered (_("(basename matching regular expression \"%s\")"),
4319 data->regexp.c_str ());
4320 else
4321 printf_filtered (_("(filename matching regular expression \"%s\")"),
4322 data->regexp.c_str ());
4323 }
4324 puts_filtered ("\n");
4325 }
4326
4327 /* Completer for "info sources". */
4328
4329 static void
4330 info_sources_command_completer (cmd_list_element *ignore,
4331 completion_tracker &tracker,
4332 const char *text, const char *word)
4333 {
4334 const auto group = make_info_sources_options_def_group (nullptr);
4335 if (gdb::option::complete_options
4336 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
4337 return;
4338 }
4339
4340 static void
4341 info_sources_command (const char *args, int from_tty)
4342 {
4343 struct output_source_filename_data data;
4344
4345 if (!have_full_symbols () && !have_partial_symbols ())
4346 {
4347 error (_("No symbol table is loaded. Use the \"file\" command."));
4348 }
4349
4350 filename_seen_cache filenames_seen;
4351
4352 auto group = make_info_sources_options_def_group (&data.partial_match);
4353
4354 gdb::option::process_options
4355 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group);
4356
4357 if (args != NULL && *args != '\000')
4358 data.regexp = args;
4359
4360 data.filename_seen_cache = &filenames_seen;
4361 data.first = 1;
4362
4363 if (data.partial_match.dirname && data.partial_match.basename)
4364 error (_("You cannot give both -basename and -dirname to 'info sources'."));
4365 if ((data.partial_match.dirname || data.partial_match.basename)
4366 && data.regexp.empty ())
4367 error (_("Missing REGEXP for 'info sources'."));
4368
4369 if (data.regexp.empty ())
4370 data.c_regexp.reset ();
4371 else
4372 {
4373 int cflags = REG_NOSUB;
4374 #ifdef HAVE_CASE_INSENSITIVE_FILE_SYSTEM
4375 cflags |= REG_ICASE;
4376 #endif
4377 data.c_regexp.emplace (data.regexp.c_str (), cflags,
4378 _("Invalid regexp"));
4379 }
4380
4381 print_info_sources_header
4382 (_("Source files for which symbols have been read in:\n"), &data);
4383
4384 for (objfile *objfile : current_program_space->objfiles ())
4385 {
4386 for (compunit_symtab *cu : objfile->compunits ())
4387 {
4388 for (symtab *s : compunit_filetabs (cu))
4389 {
4390 const char *fullname = symtab_to_fullname (s);
4391
4392 output_source_filename (fullname, &data);
4393 }
4394 }
4395 }
4396 printf_filtered ("\n\n");
4397
4398 print_info_sources_header
4399 (_("Source files for which symbols will be read in on demand:\n"), &data);
4400
4401 filenames_seen.clear ();
4402 data.first = 1;
4403 map_symbol_filenames (output_partial_symbol_filename, &data,
4404 1 /*need_fullname*/);
4405 printf_filtered ("\n");
4406 }
4407
4408 /* Compare FILE against all the entries of FILENAMES. If BASENAMES is
4409 true compare only lbasename of FILENAMES. */
4410
4411 static bool
4412 file_matches (const char *file, const std::vector<const char *> &filenames,
4413 bool basenames)
4414 {
4415 if (filenames.empty ())
4416 return true;
4417
4418 for (const char *name : filenames)
4419 {
4420 name = (basenames ? lbasename (name) : name);
4421 if (compare_filenames_for_search (file, name))
4422 return true;
4423 }
4424
4425 return false;
4426 }
4427
4428 /* Helper function for std::sort on symbol_search objects. Can only sort
4429 symbols, not minimal symbols. */
4430
4431 int
4432 symbol_search::compare_search_syms (const symbol_search &sym_a,
4433 const symbol_search &sym_b)
4434 {
4435 int c;
4436
4437 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4438 symbol_symtab (sym_b.symbol)->filename);
4439 if (c != 0)
4440 return c;
4441
4442 if (sym_a.block != sym_b.block)
4443 return sym_a.block - sym_b.block;
4444
4445 return strcmp (sym_a.symbol->print_name (), sym_b.symbol->print_name ());
4446 }
4447
4448 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4449 If SYM has no symbol_type or symbol_name, returns false. */
4450
4451 bool
4452 treg_matches_sym_type_name (const compiled_regex &treg,
4453 const struct symbol *sym)
4454 {
4455 struct type *sym_type;
4456 std::string printed_sym_type_name;
4457
4458 if (symbol_lookup_debug > 1)
4459 {
4460 fprintf_unfiltered (gdb_stdlog,
4461 "treg_matches_sym_type_name\n sym %s\n",
4462 sym->natural_name ());
4463 }
4464
4465 sym_type = SYMBOL_TYPE (sym);
4466 if (sym_type == NULL)
4467 return false;
4468
4469 {
4470 scoped_switch_to_sym_language_if_auto l (sym);
4471
4472 printed_sym_type_name = type_to_string (sym_type);
4473 }
4474
4475
4476 if (symbol_lookup_debug > 1)
4477 {
4478 fprintf_unfiltered (gdb_stdlog,
4479 " sym_type_name %s\n",
4480 printed_sym_type_name.c_str ());
4481 }
4482
4483
4484 if (printed_sym_type_name.empty ())
4485 return false;
4486
4487 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4488 }
4489
4490 /* See symtab.h. */
4491
4492 bool
4493 global_symbol_searcher::is_suitable_msymbol
4494 (const enum search_domain kind, const minimal_symbol *msymbol)
4495 {
4496 switch (MSYMBOL_TYPE (msymbol))
4497 {
4498 case mst_data:
4499 case mst_bss:
4500 case mst_file_data:
4501 case mst_file_bss:
4502 return kind == VARIABLES_DOMAIN;
4503 case mst_text:
4504 case mst_file_text:
4505 case mst_solib_trampoline:
4506 case mst_text_gnu_ifunc:
4507 return kind == FUNCTIONS_DOMAIN;
4508 default:
4509 return false;
4510 }
4511 }
4512
4513 /* See symtab.h. */
4514
4515 bool
4516 global_symbol_searcher::expand_symtabs
4517 (objfile *objfile, const gdb::optional<compiled_regex> &preg) const
4518 {
4519 enum search_domain kind = m_kind;
4520 bool found_msymbol = false;
4521
4522 if (objfile->sf)
4523 objfile->sf->qf->expand_symtabs_matching
4524 (objfile,
4525 [&] (const char *filename, bool basenames)
4526 {
4527 return file_matches (filename, filenames, basenames);
4528 },
4529 &lookup_name_info::match_any (),
4530 [&] (const char *symname)
4531 {
4532 return (!preg.has_value ()
4533 || preg->exec (symname, 0, NULL, 0) == 0);
4534 },
4535 NULL,
4536 kind);
4537
4538 /* Here, we search through the minimal symbol tables for functions and
4539 variables that match, and force their symbols to be read. This is in
4540 particular necessary for demangled variable names, which are no longer
4541 put into the partial symbol tables. The symbol will then be found
4542 during the scan of symtabs later.
4543
4544 For functions, find_pc_symtab should succeed if we have debug info for
4545 the function, for variables we have to call
4546 lookup_symbol_in_objfile_from_linkage_name to determine if the
4547 variable has debug info. If the lookup fails, set found_msymbol so
4548 that we will rescan to print any matching symbols without debug info.
4549 We only search the objfile the msymbol came from, we no longer search
4550 all objfiles. In large programs (1000s of shared libs) searching all
4551 objfiles is not worth the pain. */
4552 if (filenames.empty ()
4553 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4554 {
4555 for (minimal_symbol *msymbol : objfile->msymbols ())
4556 {
4557 QUIT;
4558
4559 if (msymbol->created_by_gdb)
4560 continue;
4561
4562 if (is_suitable_msymbol (kind, msymbol))
4563 {
4564 if (!preg.has_value ()
4565 || preg->exec (msymbol->natural_name (), 0,
4566 NULL, 0) == 0)
4567 {
4568 /* An important side-effect of these lookup functions is
4569 to expand the symbol table if msymbol is found, later
4570 in the process we will add matching symbols or
4571 msymbols to the results list, and that requires that
4572 the symbols tables are expanded. */
4573 if (kind == FUNCTIONS_DOMAIN
4574 ? (find_pc_compunit_symtab
4575 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4576 == NULL)
4577 : (lookup_symbol_in_objfile_from_linkage_name
4578 (objfile, msymbol->linkage_name (),
4579 VAR_DOMAIN)
4580 .symbol == NULL))
4581 found_msymbol = true;
4582 }
4583 }
4584 }
4585 }
4586
4587 return found_msymbol;
4588 }
4589
4590 /* See symtab.h. */
4591
4592 bool
4593 global_symbol_searcher::add_matching_symbols
4594 (objfile *objfile,
4595 const gdb::optional<compiled_regex> &preg,
4596 const gdb::optional<compiled_regex> &treg,
4597 std::set<symbol_search> *result_set) const
4598 {
4599 enum search_domain kind = m_kind;
4600
4601 /* Add matching symbols (if not already present). */
4602 for (compunit_symtab *cust : objfile->compunits ())
4603 {
4604 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
4605
4606 for (block_enum block : { GLOBAL_BLOCK, STATIC_BLOCK })
4607 {
4608 struct block_iterator iter;
4609 struct symbol *sym;
4610 const struct block *b = BLOCKVECTOR_BLOCK (bv, block);
4611
4612 ALL_BLOCK_SYMBOLS (b, iter, sym)
4613 {
4614 struct symtab *real_symtab = symbol_symtab (sym);
4615
4616 QUIT;
4617
4618 /* Check first sole REAL_SYMTAB->FILENAME. It does
4619 not need to be a substring of symtab_to_fullname as
4620 it may contain "./" etc. */
4621 if ((file_matches (real_symtab->filename, filenames, false)
4622 || ((basenames_may_differ
4623 || file_matches (lbasename (real_symtab->filename),
4624 filenames, true))
4625 && file_matches (symtab_to_fullname (real_symtab),
4626 filenames, false)))
4627 && ((!preg.has_value ()
4628 || preg->exec (sym->natural_name (), 0,
4629 NULL, 0) == 0)
4630 && ((kind == VARIABLES_DOMAIN
4631 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4632 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4633 && SYMBOL_CLASS (sym) != LOC_BLOCK
4634 /* LOC_CONST can be used for more than
4635 just enums, e.g., c++ static const
4636 members. We only want to skip enums
4637 here. */
4638 && !(SYMBOL_CLASS (sym) == LOC_CONST
4639 && (SYMBOL_TYPE (sym)->code ()
4640 == TYPE_CODE_ENUM))
4641 && (!treg.has_value ()
4642 || treg_matches_sym_type_name (*treg, sym)))
4643 || (kind == FUNCTIONS_DOMAIN
4644 && SYMBOL_CLASS (sym) == LOC_BLOCK
4645 && (!treg.has_value ()
4646 || treg_matches_sym_type_name (*treg,
4647 sym)))
4648 || (kind == TYPES_DOMAIN
4649 && SYMBOL_CLASS (sym) == LOC_TYPEDEF
4650 && SYMBOL_DOMAIN (sym) != MODULE_DOMAIN)
4651 || (kind == MODULES_DOMAIN
4652 && SYMBOL_DOMAIN (sym) == MODULE_DOMAIN
4653 && SYMBOL_LINE (sym) != 0))))
4654 {
4655 if (result_set->size () < m_max_search_results)
4656 {
4657 /* Match, insert if not already in the results. */
4658 symbol_search ss (block, sym);
4659 if (result_set->find (ss) == result_set->end ())
4660 result_set->insert (ss);
4661 }
4662 else
4663 return false;
4664 }
4665 }
4666 }
4667 }
4668
4669 return true;
4670 }
4671
4672 /* See symtab.h. */
4673
4674 bool
4675 global_symbol_searcher::add_matching_msymbols
4676 (objfile *objfile, const gdb::optional<compiled_regex> &preg,
4677 std::vector<symbol_search> *results) const
4678 {
4679 enum search_domain kind = m_kind;
4680
4681 for (minimal_symbol *msymbol : objfile->msymbols ())
4682 {
4683 QUIT;
4684
4685 if (msymbol->created_by_gdb)
4686 continue;
4687
4688 if (is_suitable_msymbol (kind, msymbol))
4689 {
4690 if (!preg.has_value ()
4691 || preg->exec (msymbol->natural_name (), 0,
4692 NULL, 0) == 0)
4693 {
4694 /* For functions we can do a quick check of whether the
4695 symbol might be found via find_pc_symtab. */
4696 if (kind != FUNCTIONS_DOMAIN
4697 || (find_pc_compunit_symtab
4698 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4699 == NULL))
4700 {
4701 if (lookup_symbol_in_objfile_from_linkage_name
4702 (objfile, msymbol->linkage_name (),
4703 VAR_DOMAIN).symbol == NULL)
4704 {
4705 /* Matching msymbol, add it to the results list. */
4706 if (results->size () < m_max_search_results)
4707 results->emplace_back (GLOBAL_BLOCK, msymbol, objfile);
4708 else
4709 return false;
4710 }
4711 }
4712 }
4713 }
4714 }
4715
4716 return true;
4717 }
4718
4719 /* See symtab.h. */
4720
4721 std::vector<symbol_search>
4722 global_symbol_searcher::search () const
4723 {
4724 gdb::optional<compiled_regex> preg;
4725 gdb::optional<compiled_regex> treg;
4726
4727 gdb_assert (m_kind != ALL_DOMAIN);
4728
4729 if (m_symbol_name_regexp != NULL)
4730 {
4731 const char *symbol_name_regexp = m_symbol_name_regexp;
4732
4733 /* Make sure spacing is right for C++ operators.
4734 This is just a courtesy to make the matching less sensitive
4735 to how many spaces the user leaves between 'operator'
4736 and <TYPENAME> or <OPERATOR>. */
4737 const char *opend;
4738 const char *opname = operator_chars (symbol_name_regexp, &opend);
4739
4740 if (*opname)
4741 {
4742 int fix = -1; /* -1 means ok; otherwise number of
4743 spaces needed. */
4744
4745 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4746 {
4747 /* There should 1 space between 'operator' and 'TYPENAME'. */
4748 if (opname[-1] != ' ' || opname[-2] == ' ')
4749 fix = 1;
4750 }
4751 else
4752 {
4753 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4754 if (opname[-1] == ' ')
4755 fix = 0;
4756 }
4757 /* If wrong number of spaces, fix it. */
4758 if (fix >= 0)
4759 {
4760 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4761
4762 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4763 symbol_name_regexp = tmp;
4764 }
4765 }
4766
4767 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4768 ? REG_ICASE : 0);
4769 preg.emplace (symbol_name_regexp, cflags,
4770 _("Invalid regexp"));
4771 }
4772
4773 if (m_symbol_type_regexp != NULL)
4774 {
4775 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4776 ? REG_ICASE : 0);
4777 treg.emplace (m_symbol_type_regexp, cflags,
4778 _("Invalid regexp"));
4779 }
4780
4781 bool found_msymbol = false;
4782 std::set<symbol_search> result_set;
4783 for (objfile *objfile : current_program_space->objfiles ())
4784 {
4785 /* Expand symtabs within objfile that possibly contain matching
4786 symbols. */
4787 found_msymbol |= expand_symtabs (objfile, preg);
4788
4789 /* Find matching symbols within OBJFILE and add them in to the
4790 RESULT_SET set. Use a set here so that we can easily detect
4791 duplicates as we go, and can therefore track how many unique
4792 matches we have found so far. */
4793 if (!add_matching_symbols (objfile, preg, treg, &result_set))
4794 break;
4795 }
4796
4797 /* Convert the result set into a sorted result list, as std::set is
4798 defined to be sorted then no explicit call to std::sort is needed. */
4799 std::vector<symbol_search> result (result_set.begin (), result_set.end ());
4800
4801 /* If there are no debug symbols, then add matching minsyms. But if the
4802 user wants to see symbols matching a type regexp, then never give a
4803 minimal symbol, as we assume that a minimal symbol does not have a
4804 type. */
4805 if ((found_msymbol || (filenames.empty () && m_kind == VARIABLES_DOMAIN))
4806 && !m_exclude_minsyms
4807 && !treg.has_value ())
4808 {
4809 gdb_assert (m_kind == VARIABLES_DOMAIN || m_kind == FUNCTIONS_DOMAIN);
4810 for (objfile *objfile : current_program_space->objfiles ())
4811 if (!add_matching_msymbols (objfile, preg, &result))
4812 break;
4813 }
4814
4815 return result;
4816 }
4817
4818 /* See symtab.h. */
4819
4820 std::string
4821 symbol_to_info_string (struct symbol *sym, int block,
4822 enum search_domain kind)
4823 {
4824 std::string str;
4825
4826 gdb_assert (block == GLOBAL_BLOCK || block == STATIC_BLOCK);
4827
4828 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4829 str += "static ";
4830
4831 /* Typedef that is not a C++ class. */
4832 if (kind == TYPES_DOMAIN
4833 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4834 {
4835 string_file tmp_stream;
4836
4837 /* FIXME: For C (and C++) we end up with a difference in output here
4838 between how a typedef is printed, and non-typedefs are printed.
4839 The TYPEDEF_PRINT code places a ";" at the end in an attempt to
4840 appear C-like, while TYPE_PRINT doesn't.
4841
4842 For the struct printing case below, things are worse, we force
4843 printing of the ";" in this function, which is going to be wrong
4844 for languages that don't require a ";" between statements. */
4845 if (SYMBOL_TYPE (sym)->code () == TYPE_CODE_TYPEDEF)
4846 typedef_print (SYMBOL_TYPE (sym), sym, &tmp_stream);
4847 else
4848 type_print (SYMBOL_TYPE (sym), "", &tmp_stream, -1);
4849 str += tmp_stream.string ();
4850 }
4851 /* variable, func, or typedef-that-is-c++-class. */
4852 else if (kind < TYPES_DOMAIN
4853 || (kind == TYPES_DOMAIN
4854 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4855 {
4856 string_file tmp_stream;
4857
4858 type_print (SYMBOL_TYPE (sym),
4859 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4860 ? "" : sym->print_name ()),
4861 &tmp_stream, 0);
4862
4863 str += tmp_stream.string ();
4864 str += ";";
4865 }
4866 /* Printing of modules is currently done here, maybe at some future
4867 point we might want a language specific method to print the module
4868 symbol so that we can customise the output more. */
4869 else if (kind == MODULES_DOMAIN)
4870 str += sym->print_name ();
4871
4872 return str;
4873 }
4874
4875 /* Helper function for symbol info commands, for example 'info functions',
4876 'info variables', etc. KIND is the kind of symbol we searched for, and
4877 BLOCK is the type of block the symbols was found in, either GLOBAL_BLOCK
4878 or STATIC_BLOCK. SYM is the symbol we found. If LAST is not NULL,
4879 print file and line number information for the symbol as well. Skip
4880 printing the filename if it matches LAST. */
4881
4882 static void
4883 print_symbol_info (enum search_domain kind,
4884 struct symbol *sym,
4885 int block, const char *last)
4886 {
4887 scoped_switch_to_sym_language_if_auto l (sym);
4888 struct symtab *s = symbol_symtab (sym);
4889
4890 if (last != NULL)
4891 {
4892 const char *s_filename = symtab_to_filename_for_display (s);
4893
4894 if (filename_cmp (last, s_filename) != 0)
4895 {
4896 printf_filtered (_("\nFile %ps:\n"),
4897 styled_string (file_name_style.style (),
4898 s_filename));
4899 }
4900
4901 if (SYMBOL_LINE (sym) != 0)
4902 printf_filtered ("%d:\t", SYMBOL_LINE (sym));
4903 else
4904 puts_filtered ("\t");
4905 }
4906
4907 std::string str = symbol_to_info_string (sym, block, kind);
4908 printf_filtered ("%s\n", str.c_str ());
4909 }
4910
4911 /* This help function for symtab_symbol_info() prints information
4912 for non-debugging symbols to gdb_stdout. */
4913
4914 static void
4915 print_msymbol_info (struct bound_minimal_symbol msymbol)
4916 {
4917 struct gdbarch *gdbarch = msymbol.objfile->arch ();
4918 char *tmp;
4919
4920 if (gdbarch_addr_bit (gdbarch) <= 32)
4921 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4922 & (CORE_ADDR) 0xffffffff,
4923 8);
4924 else
4925 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4926 16);
4927
4928 ui_file_style sym_style = (msymbol.minsym->text_p ()
4929 ? function_name_style.style ()
4930 : ui_file_style ());
4931
4932 printf_filtered (_("%ps %ps\n"),
4933 styled_string (address_style.style (), tmp),
4934 styled_string (sym_style, msymbol.minsym->print_name ()));
4935 }
4936
4937 /* This is the guts of the commands "info functions", "info types", and
4938 "info variables". It calls search_symbols to find all matches and then
4939 print_[m]symbol_info to print out some useful information about the
4940 matches. */
4941
4942 static void
4943 symtab_symbol_info (bool quiet, bool exclude_minsyms,
4944 const char *regexp, enum search_domain kind,
4945 const char *t_regexp, int from_tty)
4946 {
4947 static const char * const classnames[] =
4948 {"variable", "function", "type", "module"};
4949 const char *last_filename = "";
4950 int first = 1;
4951
4952 gdb_assert (kind != ALL_DOMAIN);
4953
4954 if (regexp != nullptr && *regexp == '\0')
4955 regexp = nullptr;
4956
4957 global_symbol_searcher spec (kind, regexp);
4958 spec.set_symbol_type_regexp (t_regexp);
4959 spec.set_exclude_minsyms (exclude_minsyms);
4960 std::vector<symbol_search> symbols = spec.search ();
4961
4962 if (!quiet)
4963 {
4964 if (regexp != NULL)
4965 {
4966 if (t_regexp != NULL)
4967 printf_filtered
4968 (_("All %ss matching regular expression \"%s\""
4969 " with type matching regular expression \"%s\":\n"),
4970 classnames[kind], regexp, t_regexp);
4971 else
4972 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4973 classnames[kind], regexp);
4974 }
4975 else
4976 {
4977 if (t_regexp != NULL)
4978 printf_filtered
4979 (_("All defined %ss"
4980 " with type matching regular expression \"%s\" :\n"),
4981 classnames[kind], t_regexp);
4982 else
4983 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4984 }
4985 }
4986
4987 for (const symbol_search &p : symbols)
4988 {
4989 QUIT;
4990
4991 if (p.msymbol.minsym != NULL)
4992 {
4993 if (first)
4994 {
4995 if (!quiet)
4996 printf_filtered (_("\nNon-debugging symbols:\n"));
4997 first = 0;
4998 }
4999 print_msymbol_info (p.msymbol);
5000 }
5001 else
5002 {
5003 print_symbol_info (kind,
5004 p.symbol,
5005 p.block,
5006 last_filename);
5007 last_filename
5008 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
5009 }
5010 }
5011 }
5012
5013 /* Structure to hold the values of the options used by the 'info variables'
5014 and 'info functions' commands. These correspond to the -q, -t, and -n
5015 options. */
5016
5017 struct info_vars_funcs_options
5018 {
5019 bool quiet = false;
5020 bool exclude_minsyms = false;
5021 char *type_regexp = nullptr;
5022
5023 ~info_vars_funcs_options ()
5024 {
5025 xfree (type_regexp);
5026 }
5027 };
5028
5029 /* The options used by the 'info variables' and 'info functions'
5030 commands. */
5031
5032 static const gdb::option::option_def info_vars_funcs_options_defs[] = {
5033 gdb::option::boolean_option_def<info_vars_funcs_options> {
5034 "q",
5035 [] (info_vars_funcs_options *opt) { return &opt->quiet; },
5036 nullptr, /* show_cmd_cb */
5037 nullptr /* set_doc */
5038 },
5039
5040 gdb::option::boolean_option_def<info_vars_funcs_options> {
5041 "n",
5042 [] (info_vars_funcs_options *opt) { return &opt->exclude_minsyms; },
5043 nullptr, /* show_cmd_cb */
5044 nullptr /* set_doc */
5045 },
5046
5047 gdb::option::string_option_def<info_vars_funcs_options> {
5048 "t",
5049 [] (info_vars_funcs_options *opt) { return &opt->type_regexp;
5050 },
5051 nullptr, /* show_cmd_cb */
5052 nullptr /* set_doc */
5053 }
5054 };
5055
5056 /* Returns the option group used by 'info variables' and 'info
5057 functions'. */
5058
5059 static gdb::option::option_def_group
5060 make_info_vars_funcs_options_def_group (info_vars_funcs_options *opts)
5061 {
5062 return {{info_vars_funcs_options_defs}, opts};
5063 }
5064
5065 /* Command completer for 'info variables' and 'info functions'. */
5066
5067 static void
5068 info_vars_funcs_command_completer (struct cmd_list_element *ignore,
5069 completion_tracker &tracker,
5070 const char *text, const char * /* word */)
5071 {
5072 const auto group
5073 = make_info_vars_funcs_options_def_group (nullptr);
5074 if (gdb::option::complete_options
5075 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5076 return;
5077
5078 const char *word = advance_to_expression_complete_word_point (tracker, text);
5079 symbol_completer (ignore, tracker, text, word);
5080 }
5081
5082 /* Implement the 'info variables' command. */
5083
5084 static void
5085 info_variables_command (const char *args, int from_tty)
5086 {
5087 info_vars_funcs_options opts;
5088 auto grp = make_info_vars_funcs_options_def_group (&opts);
5089 gdb::option::process_options
5090 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5091 if (args != nullptr && *args == '\0')
5092 args = nullptr;
5093
5094 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args, VARIABLES_DOMAIN,
5095 opts.type_regexp, from_tty);
5096 }
5097
5098 /* Implement the 'info functions' command. */
5099
5100 static void
5101 info_functions_command (const char *args, int from_tty)
5102 {
5103 info_vars_funcs_options opts;
5104
5105 auto grp = make_info_vars_funcs_options_def_group (&opts);
5106 gdb::option::process_options
5107 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5108 if (args != nullptr && *args == '\0')
5109 args = nullptr;
5110
5111 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args,
5112 FUNCTIONS_DOMAIN, opts.type_regexp, from_tty);
5113 }
5114
5115 /* Holds the -q option for the 'info types' command. */
5116
5117 struct info_types_options
5118 {
5119 bool quiet = false;
5120 };
5121
5122 /* The options used by the 'info types' command. */
5123
5124 static const gdb::option::option_def info_types_options_defs[] = {
5125 gdb::option::boolean_option_def<info_types_options> {
5126 "q",
5127 [] (info_types_options *opt) { return &opt->quiet; },
5128 nullptr, /* show_cmd_cb */
5129 nullptr /* set_doc */
5130 }
5131 };
5132
5133 /* Returns the option group used by 'info types'. */
5134
5135 static gdb::option::option_def_group
5136 make_info_types_options_def_group (info_types_options *opts)
5137 {
5138 return {{info_types_options_defs}, opts};
5139 }
5140
5141 /* Implement the 'info types' command. */
5142
5143 static void
5144 info_types_command (const char *args, int from_tty)
5145 {
5146 info_types_options opts;
5147
5148 auto grp = make_info_types_options_def_group (&opts);
5149 gdb::option::process_options
5150 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5151 if (args != nullptr && *args == '\0')
5152 args = nullptr;
5153 symtab_symbol_info (opts.quiet, false, args, TYPES_DOMAIN, NULL, from_tty);
5154 }
5155
5156 /* Command completer for 'info types' command. */
5157
5158 static void
5159 info_types_command_completer (struct cmd_list_element *ignore,
5160 completion_tracker &tracker,
5161 const char *text, const char * /* word */)
5162 {
5163 const auto group
5164 = make_info_types_options_def_group (nullptr);
5165 if (gdb::option::complete_options
5166 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5167 return;
5168
5169 const char *word = advance_to_expression_complete_word_point (tracker, text);
5170 symbol_completer (ignore, tracker, text, word);
5171 }
5172
5173 /* Implement the 'info modules' command. */
5174
5175 static void
5176 info_modules_command (const char *args, int from_tty)
5177 {
5178 info_types_options opts;
5179
5180 auto grp = make_info_types_options_def_group (&opts);
5181 gdb::option::process_options
5182 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5183 if (args != nullptr && *args == '\0')
5184 args = nullptr;
5185 symtab_symbol_info (opts.quiet, true, args, MODULES_DOMAIN, NULL,
5186 from_tty);
5187 }
5188
5189 static void
5190 rbreak_command (const char *regexp, int from_tty)
5191 {
5192 std::string string;
5193 const char *file_name = nullptr;
5194
5195 if (regexp != nullptr)
5196 {
5197 const char *colon = strchr (regexp, ':');
5198
5199 if (colon && *(colon + 1) != ':')
5200 {
5201 int colon_index;
5202 char *local_name;
5203
5204 colon_index = colon - regexp;
5205 local_name = (char *) alloca (colon_index + 1);
5206 memcpy (local_name, regexp, colon_index);
5207 local_name[colon_index--] = 0;
5208 while (isspace (local_name[colon_index]))
5209 local_name[colon_index--] = 0;
5210 file_name = local_name;
5211 regexp = skip_spaces (colon + 1);
5212 }
5213 }
5214
5215 global_symbol_searcher spec (FUNCTIONS_DOMAIN, regexp);
5216 if (file_name != nullptr)
5217 spec.filenames.push_back (file_name);
5218 std::vector<symbol_search> symbols = spec.search ();
5219
5220 scoped_rbreak_breakpoints finalize;
5221 for (const symbol_search &p : symbols)
5222 {
5223 if (p.msymbol.minsym == NULL)
5224 {
5225 struct symtab *symtab = symbol_symtab (p.symbol);
5226 const char *fullname = symtab_to_fullname (symtab);
5227
5228 string = string_printf ("%s:'%s'", fullname,
5229 p.symbol->linkage_name ());
5230 break_command (&string[0], from_tty);
5231 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
5232 }
5233 else
5234 {
5235 string = string_printf ("'%s'",
5236 p.msymbol.minsym->linkage_name ());
5237
5238 break_command (&string[0], from_tty);
5239 printf_filtered ("<function, no debug info> %s;\n",
5240 p.msymbol.minsym->print_name ());
5241 }
5242 }
5243 }
5244 \f
5245
5246 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
5247
5248 static int
5249 compare_symbol_name (const char *symbol_name, language symbol_language,
5250 const lookup_name_info &lookup_name,
5251 completion_match_result &match_res)
5252 {
5253 const language_defn *lang = language_def (symbol_language);
5254
5255 symbol_name_matcher_ftype *name_match
5256 = get_symbol_name_matcher (lang, lookup_name);
5257
5258 return name_match (symbol_name, lookup_name, &match_res);
5259 }
5260
5261 /* See symtab.h. */
5262
5263 bool
5264 completion_list_add_name (completion_tracker &tracker,
5265 language symbol_language,
5266 const char *symname,
5267 const lookup_name_info &lookup_name,
5268 const char *text, const char *word)
5269 {
5270 completion_match_result &match_res
5271 = tracker.reset_completion_match_result ();
5272
5273 /* Clip symbols that cannot match. */
5274 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
5275 return false;
5276
5277 /* Refresh SYMNAME from the match string. It's potentially
5278 different depending on language. (E.g., on Ada, the match may be
5279 the encoded symbol name wrapped in "<>"). */
5280 symname = match_res.match.match ();
5281 gdb_assert (symname != NULL);
5282
5283 /* We have a match for a completion, so add SYMNAME to the current list
5284 of matches. Note that the name is moved to freshly malloc'd space. */
5285
5286 {
5287 gdb::unique_xmalloc_ptr<char> completion
5288 = make_completion_match_str (symname, text, word);
5289
5290 /* Here we pass the match-for-lcd object to add_completion. Some
5291 languages match the user text against substrings of symbol
5292 names in some cases. E.g., in C++, "b push_ba" completes to
5293 "std::vector::push_back", "std::string::push_back", etc., and
5294 in this case we want the completion lowest common denominator
5295 to be "push_back" instead of "std::". */
5296 tracker.add_completion (std::move (completion),
5297 &match_res.match_for_lcd, text, word);
5298 }
5299
5300 return true;
5301 }
5302
5303 /* completion_list_add_name wrapper for struct symbol. */
5304
5305 static void
5306 completion_list_add_symbol (completion_tracker &tracker,
5307 symbol *sym,
5308 const lookup_name_info &lookup_name,
5309 const char *text, const char *word)
5310 {
5311 if (!completion_list_add_name (tracker, sym->language (),
5312 sym->natural_name (),
5313 lookup_name, text, word))
5314 return;
5315
5316 /* C++ function symbols include the parameters within both the msymbol
5317 name and the symbol name. The problem is that the msymbol name will
5318 describe the parameters in the most basic way, with typedefs stripped
5319 out, while the symbol name will represent the types as they appear in
5320 the program. This means we will see duplicate entries in the
5321 completion tracker. The following converts the symbol name back to
5322 the msymbol name and removes the msymbol name from the completion
5323 tracker. */
5324 if (sym->language () == language_cplus
5325 && SYMBOL_DOMAIN (sym) == VAR_DOMAIN
5326 && SYMBOL_CLASS (sym) == LOC_BLOCK)
5327 {
5328 /* The call to canonicalize returns the empty string if the input
5329 string is already in canonical form, thanks to this we don't
5330 remove the symbol we just added above. */
5331 gdb::unique_xmalloc_ptr<char> str
5332 = cp_canonicalize_string_no_typedefs (sym->natural_name ());
5333 if (str != nullptr)
5334 tracker.remove_completion (str.get ());
5335 }
5336 }
5337
5338 /* completion_list_add_name wrapper for struct minimal_symbol. */
5339
5340 static void
5341 completion_list_add_msymbol (completion_tracker &tracker,
5342 minimal_symbol *sym,
5343 const lookup_name_info &lookup_name,
5344 const char *text, const char *word)
5345 {
5346 completion_list_add_name (tracker, sym->language (),
5347 sym->natural_name (),
5348 lookup_name, text, word);
5349 }
5350
5351
5352 /* ObjC: In case we are completing on a selector, look as the msymbol
5353 again and feed all the selectors into the mill. */
5354
5355 static void
5356 completion_list_objc_symbol (completion_tracker &tracker,
5357 struct minimal_symbol *msymbol,
5358 const lookup_name_info &lookup_name,
5359 const char *text, const char *word)
5360 {
5361 static char *tmp = NULL;
5362 static unsigned int tmplen = 0;
5363
5364 const char *method, *category, *selector;
5365 char *tmp2 = NULL;
5366
5367 method = msymbol->natural_name ();
5368
5369 /* Is it a method? */
5370 if ((method[0] != '-') && (method[0] != '+'))
5371 return;
5372
5373 if (text[0] == '[')
5374 /* Complete on shortened method method. */
5375 completion_list_add_name (tracker, language_objc,
5376 method + 1,
5377 lookup_name,
5378 text, word);
5379
5380 while ((strlen (method) + 1) >= tmplen)
5381 {
5382 if (tmplen == 0)
5383 tmplen = 1024;
5384 else
5385 tmplen *= 2;
5386 tmp = (char *) xrealloc (tmp, tmplen);
5387 }
5388 selector = strchr (method, ' ');
5389 if (selector != NULL)
5390 selector++;
5391
5392 category = strchr (method, '(');
5393
5394 if ((category != NULL) && (selector != NULL))
5395 {
5396 memcpy (tmp, method, (category - method));
5397 tmp[category - method] = ' ';
5398 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5399 completion_list_add_name (tracker, language_objc, tmp,
5400 lookup_name, text, word);
5401 if (text[0] == '[')
5402 completion_list_add_name (tracker, language_objc, tmp + 1,
5403 lookup_name, text, word);
5404 }
5405
5406 if (selector != NULL)
5407 {
5408 /* Complete on selector only. */
5409 strcpy (tmp, selector);
5410 tmp2 = strchr (tmp, ']');
5411 if (tmp2 != NULL)
5412 *tmp2 = '\0';
5413
5414 completion_list_add_name (tracker, language_objc, tmp,
5415 lookup_name, text, word);
5416 }
5417 }
5418
5419 /* Break the non-quoted text based on the characters which are in
5420 symbols. FIXME: This should probably be language-specific. */
5421
5422 static const char *
5423 language_search_unquoted_string (const char *text, const char *p)
5424 {
5425 for (; p > text; --p)
5426 {
5427 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5428 continue;
5429 else
5430 {
5431 if ((current_language->la_language == language_objc))
5432 {
5433 if (p[-1] == ':') /* Might be part of a method name. */
5434 continue;
5435 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5436 p -= 2; /* Beginning of a method name. */
5437 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5438 { /* Might be part of a method name. */
5439 const char *t = p;
5440
5441 /* Seeing a ' ' or a '(' is not conclusive evidence
5442 that we are in the middle of a method name. However,
5443 finding "-[" or "+[" should be pretty un-ambiguous.
5444 Unfortunately we have to find it now to decide. */
5445
5446 while (t > text)
5447 if (isalnum (t[-1]) || t[-1] == '_' ||
5448 t[-1] == ' ' || t[-1] == ':' ||
5449 t[-1] == '(' || t[-1] == ')')
5450 --t;
5451 else
5452 break;
5453
5454 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5455 p = t - 2; /* Method name detected. */
5456 /* Else we leave with p unchanged. */
5457 }
5458 }
5459 break;
5460 }
5461 }
5462 return p;
5463 }
5464
5465 static void
5466 completion_list_add_fields (completion_tracker &tracker,
5467 struct symbol *sym,
5468 const lookup_name_info &lookup_name,
5469 const char *text, const char *word)
5470 {
5471 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5472 {
5473 struct type *t = SYMBOL_TYPE (sym);
5474 enum type_code c = t->code ();
5475 int j;
5476
5477 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5478 for (j = TYPE_N_BASECLASSES (t); j < t->num_fields (); j++)
5479 if (TYPE_FIELD_NAME (t, j))
5480 completion_list_add_name (tracker, sym->language (),
5481 TYPE_FIELD_NAME (t, j),
5482 lookup_name, text, word);
5483 }
5484 }
5485
5486 /* See symtab.h. */
5487
5488 bool
5489 symbol_is_function_or_method (symbol *sym)
5490 {
5491 switch (SYMBOL_TYPE (sym)->code ())
5492 {
5493 case TYPE_CODE_FUNC:
5494 case TYPE_CODE_METHOD:
5495 return true;
5496 default:
5497 return false;
5498 }
5499 }
5500
5501 /* See symtab.h. */
5502
5503 bool
5504 symbol_is_function_or_method (minimal_symbol *msymbol)
5505 {
5506 switch (MSYMBOL_TYPE (msymbol))
5507 {
5508 case mst_text:
5509 case mst_text_gnu_ifunc:
5510 case mst_solib_trampoline:
5511 case mst_file_text:
5512 return true;
5513 default:
5514 return false;
5515 }
5516 }
5517
5518 /* See symtab.h. */
5519
5520 bound_minimal_symbol
5521 find_gnu_ifunc (const symbol *sym)
5522 {
5523 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
5524 return {};
5525
5526 lookup_name_info lookup_name (sym->search_name (),
5527 symbol_name_match_type::SEARCH_NAME);
5528 struct objfile *objfile = symbol_objfile (sym);
5529
5530 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
5531 minimal_symbol *ifunc = NULL;
5532
5533 iterate_over_minimal_symbols (objfile, lookup_name,
5534 [&] (minimal_symbol *minsym)
5535 {
5536 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc
5537 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5538 {
5539 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
5540 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5541 {
5542 struct gdbarch *gdbarch = objfile->arch ();
5543 msym_addr
5544 = gdbarch_convert_from_func_ptr_addr (gdbarch,
5545 msym_addr,
5546 current_top_target ());
5547 }
5548 if (msym_addr == address)
5549 {
5550 ifunc = minsym;
5551 return true;
5552 }
5553 }
5554 return false;
5555 });
5556
5557 if (ifunc != NULL)
5558 return {ifunc, objfile};
5559 return {};
5560 }
5561
5562 /* Add matching symbols from SYMTAB to the current completion list. */
5563
5564 static void
5565 add_symtab_completions (struct compunit_symtab *cust,
5566 completion_tracker &tracker,
5567 complete_symbol_mode mode,
5568 const lookup_name_info &lookup_name,
5569 const char *text, const char *word,
5570 enum type_code code)
5571 {
5572 struct symbol *sym;
5573 const struct block *b;
5574 struct block_iterator iter;
5575 int i;
5576
5577 if (cust == NULL)
5578 return;
5579
5580 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5581 {
5582 QUIT;
5583 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5584 ALL_BLOCK_SYMBOLS (b, iter, sym)
5585 {
5586 if (completion_skip_symbol (mode, sym))
5587 continue;
5588
5589 if (code == TYPE_CODE_UNDEF
5590 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5591 && SYMBOL_TYPE (sym)->code () == code))
5592 completion_list_add_symbol (tracker, sym,
5593 lookup_name,
5594 text, word);
5595 }
5596 }
5597 }
5598
5599 void
5600 default_collect_symbol_completion_matches_break_on
5601 (completion_tracker &tracker, complete_symbol_mode mode,
5602 symbol_name_match_type name_match_type,
5603 const char *text, const char *word,
5604 const char *break_on, enum type_code code)
5605 {
5606 /* Problem: All of the symbols have to be copied because readline
5607 frees them. I'm not going to worry about this; hopefully there
5608 won't be that many. */
5609
5610 struct symbol *sym;
5611 const struct block *b;
5612 const struct block *surrounding_static_block, *surrounding_global_block;
5613 struct block_iterator iter;
5614 /* The symbol we are completing on. Points in same buffer as text. */
5615 const char *sym_text;
5616
5617 /* Now look for the symbol we are supposed to complete on. */
5618 if (mode == complete_symbol_mode::LINESPEC)
5619 sym_text = text;
5620 else
5621 {
5622 const char *p;
5623 char quote_found;
5624 const char *quote_pos = NULL;
5625
5626 /* First see if this is a quoted string. */
5627 quote_found = '\0';
5628 for (p = text; *p != '\0'; ++p)
5629 {
5630 if (quote_found != '\0')
5631 {
5632 if (*p == quote_found)
5633 /* Found close quote. */
5634 quote_found = '\0';
5635 else if (*p == '\\' && p[1] == quote_found)
5636 /* A backslash followed by the quote character
5637 doesn't end the string. */
5638 ++p;
5639 }
5640 else if (*p == '\'' || *p == '"')
5641 {
5642 quote_found = *p;
5643 quote_pos = p;
5644 }
5645 }
5646 if (quote_found == '\'')
5647 /* A string within single quotes can be a symbol, so complete on it. */
5648 sym_text = quote_pos + 1;
5649 else if (quote_found == '"')
5650 /* A double-quoted string is never a symbol, nor does it make sense
5651 to complete it any other way. */
5652 {
5653 return;
5654 }
5655 else
5656 {
5657 /* It is not a quoted string. Break it based on the characters
5658 which are in symbols. */
5659 while (p > text)
5660 {
5661 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5662 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5663 --p;
5664 else
5665 break;
5666 }
5667 sym_text = p;
5668 }
5669 }
5670
5671 lookup_name_info lookup_name (sym_text, name_match_type, true);
5672
5673 /* At this point scan through the misc symbol vectors and add each
5674 symbol you find to the list. Eventually we want to ignore
5675 anything that isn't a text symbol (everything else will be
5676 handled by the psymtab code below). */
5677
5678 if (code == TYPE_CODE_UNDEF)
5679 {
5680 for (objfile *objfile : current_program_space->objfiles ())
5681 {
5682 for (minimal_symbol *msymbol : objfile->msymbols ())
5683 {
5684 QUIT;
5685
5686 if (completion_skip_symbol (mode, msymbol))
5687 continue;
5688
5689 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5690 sym_text, word);
5691
5692 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5693 sym_text, word);
5694 }
5695 }
5696 }
5697
5698 /* Add completions for all currently loaded symbol tables. */
5699 for (objfile *objfile : current_program_space->objfiles ())
5700 {
5701 for (compunit_symtab *cust : objfile->compunits ())
5702 add_symtab_completions (cust, tracker, mode, lookup_name,
5703 sym_text, word, code);
5704 }
5705
5706 /* Look through the partial symtabs for all symbols which begin by
5707 matching SYM_TEXT. Expand all CUs that you find to the list. */
5708 expand_symtabs_matching (NULL,
5709 lookup_name,
5710 NULL,
5711 [&] (compunit_symtab *symtab) /* expansion notify */
5712 {
5713 add_symtab_completions (symtab,
5714 tracker, mode, lookup_name,
5715 sym_text, word, code);
5716 },
5717 ALL_DOMAIN);
5718
5719 /* Search upwards from currently selected frame (so that we can
5720 complete on local vars). Also catch fields of types defined in
5721 this places which match our text string. Only complete on types
5722 visible from current context. */
5723
5724 b = get_selected_block (0);
5725 surrounding_static_block = block_static_block (b);
5726 surrounding_global_block = block_global_block (b);
5727 if (surrounding_static_block != NULL)
5728 while (b != surrounding_static_block)
5729 {
5730 QUIT;
5731
5732 ALL_BLOCK_SYMBOLS (b, iter, sym)
5733 {
5734 if (code == TYPE_CODE_UNDEF)
5735 {
5736 completion_list_add_symbol (tracker, sym, lookup_name,
5737 sym_text, word);
5738 completion_list_add_fields (tracker, sym, lookup_name,
5739 sym_text, word);
5740 }
5741 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5742 && SYMBOL_TYPE (sym)->code () == code)
5743 completion_list_add_symbol (tracker, sym, lookup_name,
5744 sym_text, word);
5745 }
5746
5747 /* Stop when we encounter an enclosing function. Do not stop for
5748 non-inlined functions - the locals of the enclosing function
5749 are in scope for a nested function. */
5750 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5751 break;
5752 b = BLOCK_SUPERBLOCK (b);
5753 }
5754
5755 /* Add fields from the file's types; symbols will be added below. */
5756
5757 if (code == TYPE_CODE_UNDEF)
5758 {
5759 if (surrounding_static_block != NULL)
5760 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5761 completion_list_add_fields (tracker, sym, lookup_name,
5762 sym_text, word);
5763
5764 if (surrounding_global_block != NULL)
5765 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5766 completion_list_add_fields (tracker, sym, lookup_name,
5767 sym_text, word);
5768 }
5769
5770 /* Skip macros if we are completing a struct tag -- arguable but
5771 usually what is expected. */
5772 if (current_language->la_macro_expansion == macro_expansion_c
5773 && code == TYPE_CODE_UNDEF)
5774 {
5775 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5776
5777 /* This adds a macro's name to the current completion list. */
5778 auto add_macro_name = [&] (const char *macro_name,
5779 const macro_definition *,
5780 macro_source_file *,
5781 int)
5782 {
5783 completion_list_add_name (tracker, language_c, macro_name,
5784 lookup_name, sym_text, word);
5785 };
5786
5787 /* Add any macros visible in the default scope. Note that this
5788 may yield the occasional wrong result, because an expression
5789 might be evaluated in a scope other than the default. For
5790 example, if the user types "break file:line if <TAB>", the
5791 resulting expression will be evaluated at "file:line" -- but
5792 at there does not seem to be a way to detect this at
5793 completion time. */
5794 scope = default_macro_scope ();
5795 if (scope)
5796 macro_for_each_in_scope (scope->file, scope->line,
5797 add_macro_name);
5798
5799 /* User-defined macros are always visible. */
5800 macro_for_each (macro_user_macros, add_macro_name);
5801 }
5802 }
5803
5804 void
5805 default_collect_symbol_completion_matches (completion_tracker &tracker,
5806 complete_symbol_mode mode,
5807 symbol_name_match_type name_match_type,
5808 const char *text, const char *word,
5809 enum type_code code)
5810 {
5811 return default_collect_symbol_completion_matches_break_on (tracker, mode,
5812 name_match_type,
5813 text, word, "",
5814 code);
5815 }
5816
5817 /* Collect all symbols (regardless of class) which begin by matching
5818 TEXT. */
5819
5820 void
5821 collect_symbol_completion_matches (completion_tracker &tracker,
5822 complete_symbol_mode mode,
5823 symbol_name_match_type name_match_type,
5824 const char *text, const char *word)
5825 {
5826 current_language->la_collect_symbol_completion_matches (tracker, mode,
5827 name_match_type,
5828 text, word,
5829 TYPE_CODE_UNDEF);
5830 }
5831
5832 /* Like collect_symbol_completion_matches, but only collect
5833 STRUCT_DOMAIN symbols whose type code is CODE. */
5834
5835 void
5836 collect_symbol_completion_matches_type (completion_tracker &tracker,
5837 const char *text, const char *word,
5838 enum type_code code)
5839 {
5840 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5841 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5842
5843 gdb_assert (code == TYPE_CODE_UNION
5844 || code == TYPE_CODE_STRUCT
5845 || code == TYPE_CODE_ENUM);
5846 current_language->la_collect_symbol_completion_matches (tracker, mode,
5847 name_match_type,
5848 text, word, code);
5849 }
5850
5851 /* Like collect_symbol_completion_matches, but collects a list of
5852 symbols defined in all source files named SRCFILE. */
5853
5854 void
5855 collect_file_symbol_completion_matches (completion_tracker &tracker,
5856 complete_symbol_mode mode,
5857 symbol_name_match_type name_match_type,
5858 const char *text, const char *word,
5859 const char *srcfile)
5860 {
5861 /* The symbol we are completing on. Points in same buffer as text. */
5862 const char *sym_text;
5863
5864 /* Now look for the symbol we are supposed to complete on.
5865 FIXME: This should be language-specific. */
5866 if (mode == complete_symbol_mode::LINESPEC)
5867 sym_text = text;
5868 else
5869 {
5870 const char *p;
5871 char quote_found;
5872 const char *quote_pos = NULL;
5873
5874 /* First see if this is a quoted string. */
5875 quote_found = '\0';
5876 for (p = text; *p != '\0'; ++p)
5877 {
5878 if (quote_found != '\0')
5879 {
5880 if (*p == quote_found)
5881 /* Found close quote. */
5882 quote_found = '\0';
5883 else if (*p == '\\' && p[1] == quote_found)
5884 /* A backslash followed by the quote character
5885 doesn't end the string. */
5886 ++p;
5887 }
5888 else if (*p == '\'' || *p == '"')
5889 {
5890 quote_found = *p;
5891 quote_pos = p;
5892 }
5893 }
5894 if (quote_found == '\'')
5895 /* A string within single quotes can be a symbol, so complete on it. */
5896 sym_text = quote_pos + 1;
5897 else if (quote_found == '"')
5898 /* A double-quoted string is never a symbol, nor does it make sense
5899 to complete it any other way. */
5900 {
5901 return;
5902 }
5903 else
5904 {
5905 /* Not a quoted string. */
5906 sym_text = language_search_unquoted_string (text, p);
5907 }
5908 }
5909
5910 lookup_name_info lookup_name (sym_text, name_match_type, true);
5911
5912 /* Go through symtabs for SRCFILE and check the externs and statics
5913 for symbols which match. */
5914 iterate_over_symtabs (srcfile, [&] (symtab *s)
5915 {
5916 add_symtab_completions (SYMTAB_COMPUNIT (s),
5917 tracker, mode, lookup_name,
5918 sym_text, word, TYPE_CODE_UNDEF);
5919 return false;
5920 });
5921 }
5922
5923 /* A helper function for make_source_files_completion_list. It adds
5924 another file name to a list of possible completions, growing the
5925 list as necessary. */
5926
5927 static void
5928 add_filename_to_list (const char *fname, const char *text, const char *word,
5929 completion_list *list)
5930 {
5931 list->emplace_back (make_completion_match_str (fname, text, word));
5932 }
5933
5934 static int
5935 not_interesting_fname (const char *fname)
5936 {
5937 static const char *illegal_aliens[] = {
5938 "_globals_", /* inserted by coff_symtab_read */
5939 NULL
5940 };
5941 int i;
5942
5943 for (i = 0; illegal_aliens[i]; i++)
5944 {
5945 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5946 return 1;
5947 }
5948 return 0;
5949 }
5950
5951 /* An object of this type is passed as the user_data argument to
5952 map_partial_symbol_filenames. */
5953 struct add_partial_filename_data
5954 {
5955 struct filename_seen_cache *filename_seen_cache;
5956 const char *text;
5957 const char *word;
5958 int text_len;
5959 completion_list *list;
5960 };
5961
5962 /* A callback for map_partial_symbol_filenames. */
5963
5964 static void
5965 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5966 void *user_data)
5967 {
5968 struct add_partial_filename_data *data
5969 = (struct add_partial_filename_data *) user_data;
5970
5971 if (not_interesting_fname (filename))
5972 return;
5973 if (!data->filename_seen_cache->seen (filename)
5974 && filename_ncmp (filename, data->text, data->text_len) == 0)
5975 {
5976 /* This file matches for a completion; add it to the
5977 current list of matches. */
5978 add_filename_to_list (filename, data->text, data->word, data->list);
5979 }
5980 else
5981 {
5982 const char *base_name = lbasename (filename);
5983
5984 if (base_name != filename
5985 && !data->filename_seen_cache->seen (base_name)
5986 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5987 add_filename_to_list (base_name, data->text, data->word, data->list);
5988 }
5989 }
5990
5991 /* Return a list of all source files whose names begin with matching
5992 TEXT. The file names are looked up in the symbol tables of this
5993 program. */
5994
5995 completion_list
5996 make_source_files_completion_list (const char *text, const char *word)
5997 {
5998 size_t text_len = strlen (text);
5999 completion_list list;
6000 const char *base_name;
6001 struct add_partial_filename_data datum;
6002
6003 if (!have_full_symbols () && !have_partial_symbols ())
6004 return list;
6005
6006 filename_seen_cache filenames_seen;
6007
6008 for (objfile *objfile : current_program_space->objfiles ())
6009 {
6010 for (compunit_symtab *cu : objfile->compunits ())
6011 {
6012 for (symtab *s : compunit_filetabs (cu))
6013 {
6014 if (not_interesting_fname (s->filename))
6015 continue;
6016 if (!filenames_seen.seen (s->filename)
6017 && filename_ncmp (s->filename, text, text_len) == 0)
6018 {
6019 /* This file matches for a completion; add it to the current
6020 list of matches. */
6021 add_filename_to_list (s->filename, text, word, &list);
6022 }
6023 else
6024 {
6025 /* NOTE: We allow the user to type a base name when the
6026 debug info records leading directories, but not the other
6027 way around. This is what subroutines of breakpoint
6028 command do when they parse file names. */
6029 base_name = lbasename (s->filename);
6030 if (base_name != s->filename
6031 && !filenames_seen.seen (base_name)
6032 && filename_ncmp (base_name, text, text_len) == 0)
6033 add_filename_to_list (base_name, text, word, &list);
6034 }
6035 }
6036 }
6037 }
6038
6039 datum.filename_seen_cache = &filenames_seen;
6040 datum.text = text;
6041 datum.word = word;
6042 datum.text_len = text_len;
6043 datum.list = &list;
6044 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
6045 0 /*need_fullname*/);
6046
6047 return list;
6048 }
6049 \f
6050 /* Track MAIN */
6051
6052 /* Return the "main_info" object for the current program space. If
6053 the object has not yet been created, create it and fill in some
6054 default values. */
6055
6056 static struct main_info *
6057 get_main_info (void)
6058 {
6059 struct main_info *info = main_progspace_key.get (current_program_space);
6060
6061 if (info == NULL)
6062 {
6063 /* It may seem strange to store the main name in the progspace
6064 and also in whatever objfile happens to see a main name in
6065 its debug info. The reason for this is mainly historical:
6066 gdb returned "main" as the name even if no function named
6067 "main" was defined the program; and this approach lets us
6068 keep compatibility. */
6069 info = main_progspace_key.emplace (current_program_space);
6070 }
6071
6072 return info;
6073 }
6074
6075 static void
6076 set_main_name (const char *name, enum language lang)
6077 {
6078 struct main_info *info = get_main_info ();
6079
6080 if (info->name_of_main != NULL)
6081 {
6082 xfree (info->name_of_main);
6083 info->name_of_main = NULL;
6084 info->language_of_main = language_unknown;
6085 }
6086 if (name != NULL)
6087 {
6088 info->name_of_main = xstrdup (name);
6089 info->language_of_main = lang;
6090 }
6091 }
6092
6093 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
6094 accordingly. */
6095
6096 static void
6097 find_main_name (void)
6098 {
6099 const char *new_main_name;
6100
6101 /* First check the objfiles to see whether a debuginfo reader has
6102 picked up the appropriate main name. Historically the main name
6103 was found in a more or less random way; this approach instead
6104 relies on the order of objfile creation -- which still isn't
6105 guaranteed to get the correct answer, but is just probably more
6106 accurate. */
6107 for (objfile *objfile : current_program_space->objfiles ())
6108 {
6109 if (objfile->per_bfd->name_of_main != NULL)
6110 {
6111 set_main_name (objfile->per_bfd->name_of_main,
6112 objfile->per_bfd->language_of_main);
6113 return;
6114 }
6115 }
6116
6117 /* Try to see if the main procedure is in Ada. */
6118 /* FIXME: brobecker/2005-03-07: Another way of doing this would
6119 be to add a new method in the language vector, and call this
6120 method for each language until one of them returns a non-empty
6121 name. This would allow us to remove this hard-coded call to
6122 an Ada function. It is not clear that this is a better approach
6123 at this point, because all methods need to be written in a way
6124 such that false positives never be returned. For instance, it is
6125 important that a method does not return a wrong name for the main
6126 procedure if the main procedure is actually written in a different
6127 language. It is easy to guaranty this with Ada, since we use a
6128 special symbol generated only when the main in Ada to find the name
6129 of the main procedure. It is difficult however to see how this can
6130 be guarantied for languages such as C, for instance. This suggests
6131 that order of call for these methods becomes important, which means
6132 a more complicated approach. */
6133 new_main_name = ada_main_name ();
6134 if (new_main_name != NULL)
6135 {
6136 set_main_name (new_main_name, language_ada);
6137 return;
6138 }
6139
6140 new_main_name = d_main_name ();
6141 if (new_main_name != NULL)
6142 {
6143 set_main_name (new_main_name, language_d);
6144 return;
6145 }
6146
6147 new_main_name = go_main_name ();
6148 if (new_main_name != NULL)
6149 {
6150 set_main_name (new_main_name, language_go);
6151 return;
6152 }
6153
6154 new_main_name = pascal_main_name ();
6155 if (new_main_name != NULL)
6156 {
6157 set_main_name (new_main_name, language_pascal);
6158 return;
6159 }
6160
6161 /* The languages above didn't identify the name of the main procedure.
6162 Fallback to "main". */
6163
6164 /* Try to find language for main in psymtabs. */
6165 enum language lang
6166 = find_quick_global_symbol_language ("main", VAR_DOMAIN);
6167 if (lang != language_unknown)
6168 {
6169 set_main_name ("main", lang);
6170 return;
6171 }
6172
6173 set_main_name ("main", language_unknown);
6174 }
6175
6176 /* See symtab.h. */
6177
6178 const char *
6179 main_name ()
6180 {
6181 struct main_info *info = get_main_info ();
6182
6183 if (info->name_of_main == NULL)
6184 find_main_name ();
6185
6186 return info->name_of_main;
6187 }
6188
6189 /* Return the language of the main function. If it is not known,
6190 return language_unknown. */
6191
6192 enum language
6193 main_language (void)
6194 {
6195 struct main_info *info = get_main_info ();
6196
6197 if (info->name_of_main == NULL)
6198 find_main_name ();
6199
6200 return info->language_of_main;
6201 }
6202
6203 /* Handle ``executable_changed'' events for the symtab module. */
6204
6205 static void
6206 symtab_observer_executable_changed (void)
6207 {
6208 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
6209 set_main_name (NULL, language_unknown);
6210 }
6211
6212 /* Return 1 if the supplied producer string matches the ARM RealView
6213 compiler (armcc). */
6214
6215 bool
6216 producer_is_realview (const char *producer)
6217 {
6218 static const char *const arm_idents[] = {
6219 "ARM C Compiler, ADS",
6220 "Thumb C Compiler, ADS",
6221 "ARM C++ Compiler, ADS",
6222 "Thumb C++ Compiler, ADS",
6223 "ARM/Thumb C/C++ Compiler, RVCT",
6224 "ARM C/C++ Compiler, RVCT"
6225 };
6226 int i;
6227
6228 if (producer == NULL)
6229 return false;
6230
6231 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
6232 if (startswith (producer, arm_idents[i]))
6233 return true;
6234
6235 return false;
6236 }
6237
6238 \f
6239
6240 /* The next index to hand out in response to a registration request. */
6241
6242 static int next_aclass_value = LOC_FINAL_VALUE;
6243
6244 /* The maximum number of "aclass" registrations we support. This is
6245 constant for convenience. */
6246 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6247
6248 /* The objects representing the various "aclass" values. The elements
6249 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6250 elements are those registered at gdb initialization time. */
6251
6252 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
6253
6254 /* The globally visible pointer. This is separate from 'symbol_impl'
6255 so that it can be const. */
6256
6257 const struct symbol_impl *symbol_impls = &symbol_impl[0];
6258
6259 /* Make sure we saved enough room in struct symbol. */
6260
6261 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6262
6263 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6264 is the ops vector associated with this index. This returns the new
6265 index, which should be used as the aclass_index field for symbols
6266 of this type. */
6267
6268 int
6269 register_symbol_computed_impl (enum address_class aclass,
6270 const struct symbol_computed_ops *ops)
6271 {
6272 int result = next_aclass_value++;
6273
6274 gdb_assert (aclass == LOC_COMPUTED);
6275 gdb_assert (result < MAX_SYMBOL_IMPLS);
6276 symbol_impl[result].aclass = aclass;
6277 symbol_impl[result].ops_computed = ops;
6278
6279 /* Sanity check OPS. */
6280 gdb_assert (ops != NULL);
6281 gdb_assert (ops->tracepoint_var_ref != NULL);
6282 gdb_assert (ops->describe_location != NULL);
6283 gdb_assert (ops->get_symbol_read_needs != NULL);
6284 gdb_assert (ops->read_variable != NULL);
6285
6286 return result;
6287 }
6288
6289 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6290 OPS is the ops vector associated with this index. This returns the
6291 new index, which should be used as the aclass_index field for symbols
6292 of this type. */
6293
6294 int
6295 register_symbol_block_impl (enum address_class aclass,
6296 const struct symbol_block_ops *ops)
6297 {
6298 int result = next_aclass_value++;
6299
6300 gdb_assert (aclass == LOC_BLOCK);
6301 gdb_assert (result < MAX_SYMBOL_IMPLS);
6302 symbol_impl[result].aclass = aclass;
6303 symbol_impl[result].ops_block = ops;
6304
6305 /* Sanity check OPS. */
6306 gdb_assert (ops != NULL);
6307 gdb_assert (ops->find_frame_base_location != NULL);
6308
6309 return result;
6310 }
6311
6312 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6313 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6314 this index. This returns the new index, which should be used as
6315 the aclass_index field for symbols of this type. */
6316
6317 int
6318 register_symbol_register_impl (enum address_class aclass,
6319 const struct symbol_register_ops *ops)
6320 {
6321 int result = next_aclass_value++;
6322
6323 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6324 gdb_assert (result < MAX_SYMBOL_IMPLS);
6325 symbol_impl[result].aclass = aclass;
6326 symbol_impl[result].ops_register = ops;
6327
6328 return result;
6329 }
6330
6331 /* Initialize elements of 'symbol_impl' for the constants in enum
6332 address_class. */
6333
6334 static void
6335 initialize_ordinary_address_classes (void)
6336 {
6337 int i;
6338
6339 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6340 symbol_impl[i].aclass = (enum address_class) i;
6341 }
6342
6343 \f
6344
6345 /* See symtab.h. */
6346
6347 struct objfile *
6348 symbol_objfile (const struct symbol *symbol)
6349 {
6350 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6351 return SYMTAB_OBJFILE (symbol->owner.symtab);
6352 }
6353
6354 /* See symtab.h. */
6355
6356 struct gdbarch *
6357 symbol_arch (const struct symbol *symbol)
6358 {
6359 if (!SYMBOL_OBJFILE_OWNED (symbol))
6360 return symbol->owner.arch;
6361 return SYMTAB_OBJFILE (symbol->owner.symtab)->arch ();
6362 }
6363
6364 /* See symtab.h. */
6365
6366 struct symtab *
6367 symbol_symtab (const struct symbol *symbol)
6368 {
6369 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6370 return symbol->owner.symtab;
6371 }
6372
6373 /* See symtab.h. */
6374
6375 void
6376 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6377 {
6378 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6379 symbol->owner.symtab = symtab;
6380 }
6381
6382 /* See symtab.h. */
6383
6384 CORE_ADDR
6385 get_symbol_address (const struct symbol *sym)
6386 {
6387 gdb_assert (sym->maybe_copied);
6388 gdb_assert (SYMBOL_CLASS (sym) == LOC_STATIC);
6389
6390 const char *linkage_name = sym->linkage_name ();
6391
6392 for (objfile *objfile : current_program_space->objfiles ())
6393 {
6394 if (objfile->separate_debug_objfile_backlink != nullptr)
6395 continue;
6396
6397 bound_minimal_symbol minsym
6398 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6399 if (minsym.minsym != nullptr)
6400 return BMSYMBOL_VALUE_ADDRESS (minsym);
6401 }
6402 return sym->value.address;
6403 }
6404
6405 /* See symtab.h. */
6406
6407 CORE_ADDR
6408 get_msymbol_address (struct objfile *objf, const struct minimal_symbol *minsym)
6409 {
6410 gdb_assert (minsym->maybe_copied);
6411 gdb_assert ((objf->flags & OBJF_MAINLINE) == 0);
6412
6413 const char *linkage_name = minsym->linkage_name ();
6414
6415 for (objfile *objfile : current_program_space->objfiles ())
6416 {
6417 if (objfile->separate_debug_objfile_backlink == nullptr
6418 && (objfile->flags & OBJF_MAINLINE) != 0)
6419 {
6420 bound_minimal_symbol found
6421 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6422 if (found.minsym != nullptr)
6423 return BMSYMBOL_VALUE_ADDRESS (found);
6424 }
6425 }
6426 return minsym->value.address + objf->section_offsets[minsym->section];
6427 }
6428
6429 \f
6430
6431 /* Hold the sub-commands of 'info module'. */
6432
6433 static struct cmd_list_element *info_module_cmdlist = NULL;
6434
6435 /* See symtab.h. */
6436
6437 std::vector<module_symbol_search>
6438 search_module_symbols (const char *module_regexp, const char *regexp,
6439 const char *type_regexp, search_domain kind)
6440 {
6441 std::vector<module_symbol_search> results;
6442
6443 /* Search for all modules matching MODULE_REGEXP. */
6444 global_symbol_searcher spec1 (MODULES_DOMAIN, module_regexp);
6445 spec1.set_exclude_minsyms (true);
6446 std::vector<symbol_search> modules = spec1.search ();
6447
6448 /* Now search for all symbols of the required KIND matching the required
6449 regular expressions. We figure out which ones are in which modules
6450 below. */
6451 global_symbol_searcher spec2 (kind, regexp);
6452 spec2.set_symbol_type_regexp (type_regexp);
6453 spec2.set_exclude_minsyms (true);
6454 std::vector<symbol_search> symbols = spec2.search ();
6455
6456 /* Now iterate over all MODULES, checking to see which items from
6457 SYMBOLS are in each module. */
6458 for (const symbol_search &p : modules)
6459 {
6460 QUIT;
6461
6462 /* This is a module. */
6463 gdb_assert (p.symbol != nullptr);
6464
6465 std::string prefix = p.symbol->print_name ();
6466 prefix += "::";
6467
6468 for (const symbol_search &q : symbols)
6469 {
6470 if (q.symbol == nullptr)
6471 continue;
6472
6473 if (strncmp (q.symbol->print_name (), prefix.c_str (),
6474 prefix.size ()) != 0)
6475 continue;
6476
6477 results.push_back ({p, q});
6478 }
6479 }
6480
6481 return results;
6482 }
6483
6484 /* Implement the core of both 'info module functions' and 'info module
6485 variables'. */
6486
6487 static void
6488 info_module_subcommand (bool quiet, const char *module_regexp,
6489 const char *regexp, const char *type_regexp,
6490 search_domain kind)
6491 {
6492 /* Print a header line. Don't build the header line bit by bit as this
6493 prevents internationalisation. */
6494 if (!quiet)
6495 {
6496 if (module_regexp == nullptr)
6497 {
6498 if (type_regexp == nullptr)
6499 {
6500 if (regexp == nullptr)
6501 printf_filtered ((kind == VARIABLES_DOMAIN
6502 ? _("All variables in all modules:")
6503 : _("All functions in all modules:")));
6504 else
6505 printf_filtered
6506 ((kind == VARIABLES_DOMAIN
6507 ? _("All variables matching regular expression"
6508 " \"%s\" in all modules:")
6509 : _("All functions matching regular expression"
6510 " \"%s\" in all modules:")),
6511 regexp);
6512 }
6513 else
6514 {
6515 if (regexp == nullptr)
6516 printf_filtered
6517 ((kind == VARIABLES_DOMAIN
6518 ? _("All variables with type matching regular "
6519 "expression \"%s\" in all modules:")
6520 : _("All functions with type matching regular "
6521 "expression \"%s\" in all modules:")),
6522 type_regexp);
6523 else
6524 printf_filtered
6525 ((kind == VARIABLES_DOMAIN
6526 ? _("All variables matching regular expression "
6527 "\"%s\",\n\twith type matching regular "
6528 "expression \"%s\" in all modules:")
6529 : _("All functions matching regular expression "
6530 "\"%s\",\n\twith type matching regular "
6531 "expression \"%s\" in all modules:")),
6532 regexp, type_regexp);
6533 }
6534 }
6535 else
6536 {
6537 if (type_regexp == nullptr)
6538 {
6539 if (regexp == nullptr)
6540 printf_filtered
6541 ((kind == VARIABLES_DOMAIN
6542 ? _("All variables in all modules matching regular "
6543 "expression \"%s\":")
6544 : _("All functions in all modules matching regular "
6545 "expression \"%s\":")),
6546 module_regexp);
6547 else
6548 printf_filtered
6549 ((kind == VARIABLES_DOMAIN
6550 ? _("All variables matching regular expression "
6551 "\"%s\",\n\tin all modules matching regular "
6552 "expression \"%s\":")
6553 : _("All functions matching regular expression "
6554 "\"%s\",\n\tin all modules matching regular "
6555 "expression \"%s\":")),
6556 regexp, module_regexp);
6557 }
6558 else
6559 {
6560 if (regexp == nullptr)
6561 printf_filtered
6562 ((kind == VARIABLES_DOMAIN
6563 ? _("All variables with type matching regular "
6564 "expression \"%s\"\n\tin all modules matching "
6565 "regular expression \"%s\":")
6566 : _("All functions with type matching regular "
6567 "expression \"%s\"\n\tin all modules matching "
6568 "regular expression \"%s\":")),
6569 type_regexp, module_regexp);
6570 else
6571 printf_filtered
6572 ((kind == VARIABLES_DOMAIN
6573 ? _("All variables matching regular expression "
6574 "\"%s\",\n\twith type matching regular expression "
6575 "\"%s\",\n\tin all modules matching regular "
6576 "expression \"%s\":")
6577 : _("All functions matching regular expression "
6578 "\"%s\",\n\twith type matching regular expression "
6579 "\"%s\",\n\tin all modules matching regular "
6580 "expression \"%s\":")),
6581 regexp, type_regexp, module_regexp);
6582 }
6583 }
6584 printf_filtered ("\n");
6585 }
6586
6587 /* Find all symbols of type KIND matching the given regular expressions
6588 along with the symbols for the modules in which those symbols
6589 reside. */
6590 std::vector<module_symbol_search> module_symbols
6591 = search_module_symbols (module_regexp, regexp, type_regexp, kind);
6592
6593 std::sort (module_symbols.begin (), module_symbols.end (),
6594 [] (const module_symbol_search &a, const module_symbol_search &b)
6595 {
6596 if (a.first < b.first)
6597 return true;
6598 else if (a.first == b.first)
6599 return a.second < b.second;
6600 else
6601 return false;
6602 });
6603
6604 const char *last_filename = "";
6605 const symbol *last_module_symbol = nullptr;
6606 for (const module_symbol_search &ms : module_symbols)
6607 {
6608 const symbol_search &p = ms.first;
6609 const symbol_search &q = ms.second;
6610
6611 gdb_assert (q.symbol != nullptr);
6612
6613 if (last_module_symbol != p.symbol)
6614 {
6615 printf_filtered ("\n");
6616 printf_filtered (_("Module \"%s\":\n"), p.symbol->print_name ());
6617 last_module_symbol = p.symbol;
6618 last_filename = "";
6619 }
6620
6621 print_symbol_info (FUNCTIONS_DOMAIN, q.symbol, q.block,
6622 last_filename);
6623 last_filename
6624 = symtab_to_filename_for_display (symbol_symtab (q.symbol));
6625 }
6626 }
6627
6628 /* Hold the option values for the 'info module .....' sub-commands. */
6629
6630 struct info_modules_var_func_options
6631 {
6632 bool quiet = false;
6633 char *type_regexp = nullptr;
6634 char *module_regexp = nullptr;
6635
6636 ~info_modules_var_func_options ()
6637 {
6638 xfree (type_regexp);
6639 xfree (module_regexp);
6640 }
6641 };
6642
6643 /* The options used by 'info module variables' and 'info module functions'
6644 commands. */
6645
6646 static const gdb::option::option_def info_modules_var_func_options_defs [] = {
6647 gdb::option::boolean_option_def<info_modules_var_func_options> {
6648 "q",
6649 [] (info_modules_var_func_options *opt) { return &opt->quiet; },
6650 nullptr, /* show_cmd_cb */
6651 nullptr /* set_doc */
6652 },
6653
6654 gdb::option::string_option_def<info_modules_var_func_options> {
6655 "t",
6656 [] (info_modules_var_func_options *opt) { return &opt->type_regexp; },
6657 nullptr, /* show_cmd_cb */
6658 nullptr /* set_doc */
6659 },
6660
6661 gdb::option::string_option_def<info_modules_var_func_options> {
6662 "m",
6663 [] (info_modules_var_func_options *opt) { return &opt->module_regexp; },
6664 nullptr, /* show_cmd_cb */
6665 nullptr /* set_doc */
6666 }
6667 };
6668
6669 /* Return the option group used by the 'info module ...' sub-commands. */
6670
6671 static inline gdb::option::option_def_group
6672 make_info_modules_var_func_options_def_group
6673 (info_modules_var_func_options *opts)
6674 {
6675 return {{info_modules_var_func_options_defs}, opts};
6676 }
6677
6678 /* Implements the 'info module functions' command. */
6679
6680 static void
6681 info_module_functions_command (const char *args, int from_tty)
6682 {
6683 info_modules_var_func_options opts;
6684 auto grp = make_info_modules_var_func_options_def_group (&opts);
6685 gdb::option::process_options
6686 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6687 if (args != nullptr && *args == '\0')
6688 args = nullptr;
6689
6690 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6691 opts.type_regexp, FUNCTIONS_DOMAIN);
6692 }
6693
6694 /* Implements the 'info module variables' command. */
6695
6696 static void
6697 info_module_variables_command (const char *args, int from_tty)
6698 {
6699 info_modules_var_func_options opts;
6700 auto grp = make_info_modules_var_func_options_def_group (&opts);
6701 gdb::option::process_options
6702 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6703 if (args != nullptr && *args == '\0')
6704 args = nullptr;
6705
6706 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6707 opts.type_regexp, VARIABLES_DOMAIN);
6708 }
6709
6710 /* Command completer for 'info module ...' sub-commands. */
6711
6712 static void
6713 info_module_var_func_command_completer (struct cmd_list_element *ignore,
6714 completion_tracker &tracker,
6715 const char *text,
6716 const char * /* word */)
6717 {
6718
6719 const auto group = make_info_modules_var_func_options_def_group (nullptr);
6720 if (gdb::option::complete_options
6721 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
6722 return;
6723
6724 const char *word = advance_to_expression_complete_word_point (tracker, text);
6725 symbol_completer (ignore, tracker, text, word);
6726 }
6727
6728 \f
6729
6730 void _initialize_symtab ();
6731 void
6732 _initialize_symtab ()
6733 {
6734 cmd_list_element *c;
6735
6736 initialize_ordinary_address_classes ();
6737
6738 c = add_info ("variables", info_variables_command,
6739 info_print_args_help (_("\
6740 All global and static variable names or those matching REGEXPs.\n\
6741 Usage: info variables [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6742 Prints the global and static variables.\n"),
6743 _("global and static variables"),
6744 true));
6745 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6746 if (dbx_commands)
6747 {
6748 c = add_com ("whereis", class_info, info_variables_command,
6749 info_print_args_help (_("\
6750 All global and static variable names, or those matching REGEXPs.\n\
6751 Usage: whereis [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6752 Prints the global and static variables.\n"),
6753 _("global and static variables"),
6754 true));
6755 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6756 }
6757
6758 c = add_info ("functions", info_functions_command,
6759 info_print_args_help (_("\
6760 All function names or those matching REGEXPs.\n\
6761 Usage: info functions [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6762 Prints the functions.\n"),
6763 _("functions"),
6764 true));
6765 set_cmd_completer_handle_brkchars (c, info_vars_funcs_command_completer);
6766
6767 c = add_info ("types", info_types_command, _("\
6768 All type names, or those matching REGEXP.\n\
6769 Usage: info types [-q] [REGEXP]\n\
6770 Print information about all types matching REGEXP, or all types if no\n\
6771 REGEXP is given. The optional flag -q disables printing of headers."));
6772 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6773
6774 const auto info_sources_opts = make_info_sources_options_def_group (nullptr);
6775
6776 static std::string info_sources_help
6777 = gdb::option::build_help (_("\
6778 All source files in the program or those matching REGEXP.\n\
6779 Usage: info sources [OPTION]... [REGEXP]\n\
6780 By default, REGEXP is used to match anywhere in the filename.\n\
6781 \n\
6782 Options:\n\
6783 %OPTIONS%"),
6784 info_sources_opts);
6785
6786 c = add_info ("sources", info_sources_command, info_sources_help.c_str ());
6787 set_cmd_completer_handle_brkchars (c, info_sources_command_completer);
6788
6789 c = add_info ("modules", info_modules_command,
6790 _("All module names, or those matching REGEXP."));
6791 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6792
6793 add_basic_prefix_cmd ("module", class_info, _("\
6794 Print information about modules."),
6795 &info_module_cmdlist, "info module ",
6796 0, &infolist);
6797
6798 c = add_cmd ("functions", class_info, info_module_functions_command, _("\
6799 Display functions arranged by modules.\n\
6800 Usage: info module functions [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6801 Print a summary of all functions within each Fortran module, grouped by\n\
6802 module and file. For each function the line on which the function is\n\
6803 defined is given along with the type signature and name of the function.\n\
6804 \n\
6805 If REGEXP is provided then only functions whose name matches REGEXP are\n\
6806 listed. If MODREGEXP is provided then only functions in modules matching\n\
6807 MODREGEXP are listed. If TYPEREGEXP is given then only functions whose\n\
6808 type signature matches TYPEREGEXP are listed.\n\
6809 \n\
6810 The -q flag suppresses printing some header information."),
6811 &info_module_cmdlist);
6812 set_cmd_completer_handle_brkchars
6813 (c, info_module_var_func_command_completer);
6814
6815 c = add_cmd ("variables", class_info, info_module_variables_command, _("\
6816 Display variables arranged by modules.\n\
6817 Usage: info module variables [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6818 Print a summary of all variables within each Fortran module, grouped by\n\
6819 module and file. For each variable the line on which the variable is\n\
6820 defined is given along with the type and name of the variable.\n\
6821 \n\
6822 If REGEXP is provided then only variables whose name matches REGEXP are\n\
6823 listed. If MODREGEXP is provided then only variables in modules matching\n\
6824 MODREGEXP are listed. If TYPEREGEXP is given then only variables whose\n\
6825 type matches TYPEREGEXP are listed.\n\
6826 \n\
6827 The -q flag suppresses printing some header information."),
6828 &info_module_cmdlist);
6829 set_cmd_completer_handle_brkchars
6830 (c, info_module_var_func_command_completer);
6831
6832 add_com ("rbreak", class_breakpoint, rbreak_command,
6833 _("Set a breakpoint for all functions matching REGEXP."));
6834
6835 add_setshow_enum_cmd ("multiple-symbols", no_class,
6836 multiple_symbols_modes, &multiple_symbols_mode,
6837 _("\
6838 Set how the debugger handles ambiguities in expressions."), _("\
6839 Show how the debugger handles ambiguities in expressions."), _("\
6840 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6841 NULL, NULL, &setlist, &showlist);
6842
6843 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6844 &basenames_may_differ, _("\
6845 Set whether a source file may have multiple base names."), _("\
6846 Show whether a source file may have multiple base names."), _("\
6847 (A \"base name\" is the name of a file with the directory part removed.\n\
6848 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6849 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6850 before comparing them. Canonicalization is an expensive operation,\n\
6851 but it allows the same file be known by more than one base name.\n\
6852 If not set (the default), all source files are assumed to have just\n\
6853 one base name, and gdb will do file name comparisons more efficiently."),
6854 NULL, NULL,
6855 &setlist, &showlist);
6856
6857 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6858 _("Set debugging of symbol table creation."),
6859 _("Show debugging of symbol table creation."), _("\
6860 When enabled (non-zero), debugging messages are printed when building\n\
6861 symbol tables. A value of 1 (one) normally provides enough information.\n\
6862 A value greater than 1 provides more verbose information."),
6863 NULL,
6864 NULL,
6865 &setdebuglist, &showdebuglist);
6866
6867 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6868 _("\
6869 Set debugging of symbol lookup."), _("\
6870 Show debugging of symbol lookup."), _("\
6871 When enabled (non-zero), symbol lookups are logged."),
6872 NULL, NULL,
6873 &setdebuglist, &showdebuglist);
6874
6875 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6876 &new_symbol_cache_size,
6877 _("Set the size of the symbol cache."),
6878 _("Show the size of the symbol cache."), _("\
6879 The size of the symbol cache.\n\
6880 If zero then the symbol cache is disabled."),
6881 set_symbol_cache_size_handler, NULL,
6882 &maintenance_set_cmdlist,
6883 &maintenance_show_cmdlist);
6884
6885 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6886 _("Dump the symbol cache for each program space."),
6887 &maintenanceprintlist);
6888
6889 add_cmd ("symbol-cache-statistics", class_maintenance,
6890 maintenance_print_symbol_cache_statistics,
6891 _("Print symbol cache statistics for each program space."),
6892 &maintenanceprintlist);
6893
6894 add_cmd ("flush-symbol-cache", class_maintenance,
6895 maintenance_flush_symbol_cache,
6896 _("Flush the symbol cache for each program space."),
6897 &maintenancelist);
6898
6899 gdb::observers::executable_changed.attach (symtab_observer_executable_changed);
6900 gdb::observers::new_objfile.attach (symtab_new_objfile_observer);
6901 gdb::observers::free_objfile.attach (symtab_free_objfile_observer);
6902 }
This page took 0.174676 seconds and 4 git commands to generate.