Fix memory leak of the demangled symbol name
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "cli/cli-style.h"
45 #include "fnmatch.h"
46 #include "hashtab.h"
47 #include "typeprint.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include <sys/stat.h>
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "cp-support.h"
59 #include "observable.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "parser-defs.h"
65 #include "completer.h"
66 #include "progspace-and-thread.h"
67 #include "gdbsupport/gdb_optional.h"
68 #include "filename-seen-cache.h"
69 #include "arch-utils.h"
70 #include <algorithm>
71 #include "gdbsupport/gdb_string_view.h"
72 #include "gdbsupport/pathstuff.h"
73 #include "gdbsupport/common-utils.h"
74
75 /* Forward declarations for local functions. */
76
77 static void rbreak_command (const char *, int);
78
79 static int find_line_common (struct linetable *, int, int *, int);
80
81 static struct block_symbol
82 lookup_symbol_aux (const char *name,
83 symbol_name_match_type match_type,
84 const struct block *block,
85 const domain_enum domain,
86 enum language language,
87 struct field_of_this_result *);
88
89 static
90 struct block_symbol lookup_local_symbol (const char *name,
91 symbol_name_match_type match_type,
92 const struct block *block,
93 const domain_enum domain,
94 enum language language);
95
96 static struct block_symbol
97 lookup_symbol_in_objfile (struct objfile *objfile,
98 enum block_enum block_index,
99 const char *name, const domain_enum domain);
100
101 /* Type of the data stored on the program space. */
102
103 struct main_info
104 {
105 main_info () = default;
106
107 ~main_info ()
108 {
109 xfree (name_of_main);
110 }
111
112 /* Name of "main". */
113
114 char *name_of_main = nullptr;
115
116 /* Language of "main". */
117
118 enum language language_of_main = language_unknown;
119 };
120
121 /* Program space key for finding name and language of "main". */
122
123 static const program_space_key<main_info> main_progspace_key;
124
125 /* The default symbol cache size.
126 There is no extra cpu cost for large N (except when flushing the cache,
127 which is rare). The value here is just a first attempt. A better default
128 value may be higher or lower. A prime number can make up for a bad hash
129 computation, so that's why the number is what it is. */
130 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
131
132 /* The maximum symbol cache size.
133 There's no method to the decision of what value to use here, other than
134 there's no point in allowing a user typo to make gdb consume all memory. */
135 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
136
137 /* symbol_cache_lookup returns this if a previous lookup failed to find the
138 symbol in any objfile. */
139 #define SYMBOL_LOOKUP_FAILED \
140 ((struct block_symbol) {(struct symbol *) 1, NULL})
141 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
142
143 /* Recording lookups that don't find the symbol is just as important, if not
144 more so, than recording found symbols. */
145
146 enum symbol_cache_slot_state
147 {
148 SYMBOL_SLOT_UNUSED,
149 SYMBOL_SLOT_NOT_FOUND,
150 SYMBOL_SLOT_FOUND
151 };
152
153 struct symbol_cache_slot
154 {
155 enum symbol_cache_slot_state state;
156
157 /* The objfile that was current when the symbol was looked up.
158 This is only needed for global blocks, but for simplicity's sake
159 we allocate the space for both. If data shows the extra space used
160 for static blocks is a problem, we can split things up then.
161
162 Global blocks need cache lookup to include the objfile context because
163 we need to account for gdbarch_iterate_over_objfiles_in_search_order
164 which can traverse objfiles in, effectively, any order, depending on
165 the current objfile, thus affecting which symbol is found. Normally,
166 only the current objfile is searched first, and then the rest are
167 searched in recorded order; but putting cache lookup inside
168 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
169 Instead we just make the current objfile part of the context of
170 cache lookup. This means we can record the same symbol multiple times,
171 each with a different "current objfile" that was in effect when the
172 lookup was saved in the cache, but cache space is pretty cheap. */
173 const struct objfile *objfile_context;
174
175 union
176 {
177 struct block_symbol found;
178 struct
179 {
180 char *name;
181 domain_enum domain;
182 } not_found;
183 } value;
184 };
185
186 /* Clear out SLOT. */
187
188 static void
189 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
190 {
191 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
192 xfree (slot->value.not_found.name);
193 slot->state = SYMBOL_SLOT_UNUSED;
194 }
195
196 /* Symbols don't specify global vs static block.
197 So keep them in separate caches. */
198
199 struct block_symbol_cache
200 {
201 unsigned int hits;
202 unsigned int misses;
203 unsigned int collisions;
204
205 /* SYMBOLS is a variable length array of this size.
206 One can imagine that in general one cache (global/static) should be a
207 fraction of the size of the other, but there's no data at the moment
208 on which to decide. */
209 unsigned int size;
210
211 struct symbol_cache_slot symbols[1];
212 };
213
214 /* Clear all slots of BSC and free BSC. */
215
216 static void
217 destroy_block_symbol_cache (struct block_symbol_cache *bsc)
218 {
219 if (bsc != nullptr)
220 {
221 for (unsigned int i = 0; i < bsc->size; i++)
222 symbol_cache_clear_slot (&bsc->symbols[i]);
223 xfree (bsc);
224 }
225 }
226
227 /* The symbol cache.
228
229 Searching for symbols in the static and global blocks over multiple objfiles
230 again and again can be slow, as can searching very big objfiles. This is a
231 simple cache to improve symbol lookup performance, which is critical to
232 overall gdb performance.
233
234 Symbols are hashed on the name, its domain, and block.
235 They are also hashed on their objfile for objfile-specific lookups. */
236
237 struct symbol_cache
238 {
239 symbol_cache () = default;
240
241 ~symbol_cache ()
242 {
243 destroy_block_symbol_cache (global_symbols);
244 destroy_block_symbol_cache (static_symbols);
245 }
246
247 struct block_symbol_cache *global_symbols = nullptr;
248 struct block_symbol_cache *static_symbols = nullptr;
249 };
250
251 /* Program space key for finding its symbol cache. */
252
253 static const program_space_key<symbol_cache> symbol_cache_key;
254
255 /* When non-zero, print debugging messages related to symtab creation. */
256 unsigned int symtab_create_debug = 0;
257
258 /* When non-zero, print debugging messages related to symbol lookup. */
259 unsigned int symbol_lookup_debug = 0;
260
261 /* The size of the cache is staged here. */
262 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
263
264 /* The current value of the symbol cache size.
265 This is saved so that if the user enters a value too big we can restore
266 the original value from here. */
267 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
268
269 /* True if a file may be known by two different basenames.
270 This is the uncommon case, and significantly slows down gdb.
271 Default set to "off" to not slow down the common case. */
272 bool basenames_may_differ = false;
273
274 /* Allow the user to configure the debugger behavior with respect
275 to multiple-choice menus when more than one symbol matches during
276 a symbol lookup. */
277
278 const char multiple_symbols_ask[] = "ask";
279 const char multiple_symbols_all[] = "all";
280 const char multiple_symbols_cancel[] = "cancel";
281 static const char *const multiple_symbols_modes[] =
282 {
283 multiple_symbols_ask,
284 multiple_symbols_all,
285 multiple_symbols_cancel,
286 NULL
287 };
288 static const char *multiple_symbols_mode = multiple_symbols_all;
289
290 /* Read-only accessor to AUTO_SELECT_MODE. */
291
292 const char *
293 multiple_symbols_select_mode (void)
294 {
295 return multiple_symbols_mode;
296 }
297
298 /* Return the name of a domain_enum. */
299
300 const char *
301 domain_name (domain_enum e)
302 {
303 switch (e)
304 {
305 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
306 case VAR_DOMAIN: return "VAR_DOMAIN";
307 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
308 case MODULE_DOMAIN: return "MODULE_DOMAIN";
309 case LABEL_DOMAIN: return "LABEL_DOMAIN";
310 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
311 default: gdb_assert_not_reached ("bad domain_enum");
312 }
313 }
314
315 /* Return the name of a search_domain . */
316
317 const char *
318 search_domain_name (enum search_domain e)
319 {
320 switch (e)
321 {
322 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
323 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
324 case TYPES_DOMAIN: return "TYPES_DOMAIN";
325 case MODULES_DOMAIN: return "MODULES_DOMAIN";
326 case ALL_DOMAIN: return "ALL_DOMAIN";
327 default: gdb_assert_not_reached ("bad search_domain");
328 }
329 }
330
331 /* See symtab.h. */
332
333 struct symtab *
334 compunit_primary_filetab (const struct compunit_symtab *cust)
335 {
336 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
337
338 /* The primary file symtab is the first one in the list. */
339 return COMPUNIT_FILETABS (cust);
340 }
341
342 /* See symtab.h. */
343
344 enum language
345 compunit_language (const struct compunit_symtab *cust)
346 {
347 struct symtab *symtab = compunit_primary_filetab (cust);
348
349 /* The language of the compunit symtab is the language of its primary
350 source file. */
351 return SYMTAB_LANGUAGE (symtab);
352 }
353
354 /* See symtab.h. */
355
356 bool
357 minimal_symbol::data_p () const
358 {
359 return type == mst_data
360 || type == mst_bss
361 || type == mst_abs
362 || type == mst_file_data
363 || type == mst_file_bss;
364 }
365
366 /* See symtab.h. */
367
368 bool
369 minimal_symbol::text_p () const
370 {
371 return type == mst_text
372 || type == mst_text_gnu_ifunc
373 || type == mst_data_gnu_ifunc
374 || type == mst_slot_got_plt
375 || type == mst_solib_trampoline
376 || type == mst_file_text;
377 }
378
379 /* See whether FILENAME matches SEARCH_NAME using the rule that we
380 advertise to the user. (The manual's description of linespecs
381 describes what we advertise). Returns true if they match, false
382 otherwise. */
383
384 bool
385 compare_filenames_for_search (const char *filename, const char *search_name)
386 {
387 int len = strlen (filename);
388 size_t search_len = strlen (search_name);
389
390 if (len < search_len)
391 return false;
392
393 /* The tail of FILENAME must match. */
394 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
395 return false;
396
397 /* Either the names must completely match, or the character
398 preceding the trailing SEARCH_NAME segment of FILENAME must be a
399 directory separator.
400
401 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
402 cannot match FILENAME "/path//dir/file.c" - as user has requested
403 absolute path. The sama applies for "c:\file.c" possibly
404 incorrectly hypothetically matching "d:\dir\c:\file.c".
405
406 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
407 compatible with SEARCH_NAME "file.c". In such case a compiler had
408 to put the "c:file.c" name into debug info. Such compatibility
409 works only on GDB built for DOS host. */
410 return (len == search_len
411 || (!IS_ABSOLUTE_PATH (search_name)
412 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
413 || (HAS_DRIVE_SPEC (filename)
414 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
415 }
416
417 /* Same as compare_filenames_for_search, but for glob-style patterns.
418 Heads up on the order of the arguments. They match the order of
419 compare_filenames_for_search, but it's the opposite of the order of
420 arguments to gdb_filename_fnmatch. */
421
422 bool
423 compare_glob_filenames_for_search (const char *filename,
424 const char *search_name)
425 {
426 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
427 all /s have to be explicitly specified. */
428 int file_path_elements = count_path_elements (filename);
429 int search_path_elements = count_path_elements (search_name);
430
431 if (search_path_elements > file_path_elements)
432 return false;
433
434 if (IS_ABSOLUTE_PATH (search_name))
435 {
436 return (search_path_elements == file_path_elements
437 && gdb_filename_fnmatch (search_name, filename,
438 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
439 }
440
441 {
442 const char *file_to_compare
443 = strip_leading_path_elements (filename,
444 file_path_elements - search_path_elements);
445
446 return gdb_filename_fnmatch (search_name, file_to_compare,
447 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
448 }
449 }
450
451 /* Check for a symtab of a specific name by searching some symtabs.
452 This is a helper function for callbacks of iterate_over_symtabs.
453
454 If NAME is not absolute, then REAL_PATH is NULL
455 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
456
457 The return value, NAME, REAL_PATH and CALLBACK are identical to the
458 `map_symtabs_matching_filename' method of quick_symbol_functions.
459
460 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
461 Each symtab within the specified compunit symtab is also searched.
462 AFTER_LAST is one past the last compunit symtab to search; NULL means to
463 search until the end of the list. */
464
465 bool
466 iterate_over_some_symtabs (const char *name,
467 const char *real_path,
468 struct compunit_symtab *first,
469 struct compunit_symtab *after_last,
470 gdb::function_view<bool (symtab *)> callback)
471 {
472 struct compunit_symtab *cust;
473 const char* base_name = lbasename (name);
474
475 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
476 {
477 for (symtab *s : compunit_filetabs (cust))
478 {
479 if (compare_filenames_for_search (s->filename, name))
480 {
481 if (callback (s))
482 return true;
483 continue;
484 }
485
486 /* Before we invoke realpath, which can get expensive when many
487 files are involved, do a quick comparison of the basenames. */
488 if (! basenames_may_differ
489 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
490 continue;
491
492 if (compare_filenames_for_search (symtab_to_fullname (s), name))
493 {
494 if (callback (s))
495 return true;
496 continue;
497 }
498
499 /* If the user gave us an absolute path, try to find the file in
500 this symtab and use its absolute path. */
501 if (real_path != NULL)
502 {
503 const char *fullname = symtab_to_fullname (s);
504
505 gdb_assert (IS_ABSOLUTE_PATH (real_path));
506 gdb_assert (IS_ABSOLUTE_PATH (name));
507 gdb::unique_xmalloc_ptr<char> fullname_real_path
508 = gdb_realpath (fullname);
509 fullname = fullname_real_path.get ();
510 if (FILENAME_CMP (real_path, fullname) == 0)
511 {
512 if (callback (s))
513 return true;
514 continue;
515 }
516 }
517 }
518 }
519
520 return false;
521 }
522
523 /* Check for a symtab of a specific name; first in symtabs, then in
524 psymtabs. *If* there is no '/' in the name, a match after a '/'
525 in the symtab filename will also work.
526
527 Calls CALLBACK with each symtab that is found. If CALLBACK returns
528 true, the search stops. */
529
530 void
531 iterate_over_symtabs (const char *name,
532 gdb::function_view<bool (symtab *)> callback)
533 {
534 gdb::unique_xmalloc_ptr<char> real_path;
535
536 /* Here we are interested in canonicalizing an absolute path, not
537 absolutizing a relative path. */
538 if (IS_ABSOLUTE_PATH (name))
539 {
540 real_path = gdb_realpath (name);
541 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
542 }
543
544 for (objfile *objfile : current_program_space->objfiles ())
545 {
546 if (iterate_over_some_symtabs (name, real_path.get (),
547 objfile->compunit_symtabs, NULL,
548 callback))
549 return;
550 }
551
552 /* Same search rules as above apply here, but now we look thru the
553 psymtabs. */
554
555 for (objfile *objfile : current_program_space->objfiles ())
556 {
557 if (objfile->sf
558 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
559 name,
560 real_path.get (),
561 callback))
562 return;
563 }
564 }
565
566 /* A wrapper for iterate_over_symtabs that returns the first matching
567 symtab, or NULL. */
568
569 struct symtab *
570 lookup_symtab (const char *name)
571 {
572 struct symtab *result = NULL;
573
574 iterate_over_symtabs (name, [&] (symtab *symtab)
575 {
576 result = symtab;
577 return true;
578 });
579
580 return result;
581 }
582
583 \f
584 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
585 full method name, which consist of the class name (from T), the unadorned
586 method name from METHOD_ID, and the signature for the specific overload,
587 specified by SIGNATURE_ID. Note that this function is g++ specific. */
588
589 char *
590 gdb_mangle_name (struct type *type, int method_id, int signature_id)
591 {
592 int mangled_name_len;
593 char *mangled_name;
594 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
595 struct fn_field *method = &f[signature_id];
596 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
597 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
598 const char *newname = TYPE_NAME (type);
599
600 /* Does the form of physname indicate that it is the full mangled name
601 of a constructor (not just the args)? */
602 int is_full_physname_constructor;
603
604 int is_constructor;
605 int is_destructor = is_destructor_name (physname);
606 /* Need a new type prefix. */
607 const char *const_prefix = method->is_const ? "C" : "";
608 const char *volatile_prefix = method->is_volatile ? "V" : "";
609 char buf[20];
610 int len = (newname == NULL ? 0 : strlen (newname));
611
612 /* Nothing to do if physname already contains a fully mangled v3 abi name
613 or an operator name. */
614 if ((physname[0] == '_' && physname[1] == 'Z')
615 || is_operator_name (field_name))
616 return xstrdup (physname);
617
618 is_full_physname_constructor = is_constructor_name (physname);
619
620 is_constructor = is_full_physname_constructor
621 || (newname && strcmp (field_name, newname) == 0);
622
623 if (!is_destructor)
624 is_destructor = (startswith (physname, "__dt"));
625
626 if (is_destructor || is_full_physname_constructor)
627 {
628 mangled_name = (char *) xmalloc (strlen (physname) + 1);
629 strcpy (mangled_name, physname);
630 return mangled_name;
631 }
632
633 if (len == 0)
634 {
635 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
636 }
637 else if (physname[0] == 't' || physname[0] == 'Q')
638 {
639 /* The physname for template and qualified methods already includes
640 the class name. */
641 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
642 newname = NULL;
643 len = 0;
644 }
645 else
646 {
647 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
648 volatile_prefix, len);
649 }
650 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
651 + strlen (buf) + len + strlen (physname) + 1);
652
653 mangled_name = (char *) xmalloc (mangled_name_len);
654 if (is_constructor)
655 mangled_name[0] = '\0';
656 else
657 strcpy (mangled_name, field_name);
658
659 strcat (mangled_name, buf);
660 /* If the class doesn't have a name, i.e. newname NULL, then we just
661 mangle it using 0 for the length of the class. Thus it gets mangled
662 as something starting with `::' rather than `classname::'. */
663 if (newname != NULL)
664 strcat (mangled_name, newname);
665
666 strcat (mangled_name, physname);
667 return (mangled_name);
668 }
669
670 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
671 correctly allocated. */
672
673 void
674 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
675 const char *name,
676 struct obstack *obstack)
677 {
678 if (gsymbol->language () == language_ada)
679 {
680 if (name == NULL)
681 {
682 gsymbol->ada_mangled = 0;
683 gsymbol->language_specific.obstack = obstack;
684 }
685 else
686 {
687 gsymbol->ada_mangled = 1;
688 gsymbol->language_specific.demangled_name = name;
689 }
690 }
691 else
692 gsymbol->language_specific.demangled_name = name;
693 }
694
695 /* Return the demangled name of GSYMBOL. */
696
697 const char *
698 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
699 {
700 if (gsymbol->language () == language_ada)
701 {
702 if (!gsymbol->ada_mangled)
703 return NULL;
704 /* Fall through. */
705 }
706
707 return gsymbol->language_specific.demangled_name;
708 }
709
710 \f
711 /* Initialize the language dependent portion of a symbol
712 depending upon the language for the symbol. */
713
714 void
715 general_symbol_info::set_language (enum language language,
716 struct obstack *obstack)
717 {
718 m_language = language;
719 if (language == language_cplus
720 || language == language_d
721 || language == language_go
722 || language == language_objc
723 || language == language_fortran)
724 {
725 symbol_set_demangled_name (this, NULL, obstack);
726 }
727 else if (language == language_ada)
728 {
729 gdb_assert (ada_mangled == 0);
730 language_specific.obstack = obstack;
731 }
732 else
733 {
734 memset (&language_specific, 0, sizeof (language_specific));
735 }
736 }
737
738 /* Functions to initialize a symbol's mangled name. */
739
740 /* Objects of this type are stored in the demangled name hash table. */
741 struct demangled_name_entry
742 {
743 demangled_name_entry (gdb::string_view mangled_name)
744 : mangled (mangled_name) {}
745
746 gdb::string_view mangled;
747 enum language language;
748 gdb::unique_xmalloc_ptr<char> demangled;
749 };
750
751 /* Hash function for the demangled name hash. */
752
753 static hashval_t
754 hash_demangled_name_entry (const void *data)
755 {
756 const struct demangled_name_entry *e
757 = (const struct demangled_name_entry *) data;
758
759 return fast_hash (e->mangled.data (), e->mangled.length ());
760 }
761
762 /* Equality function for the demangled name hash. */
763
764 static int
765 eq_demangled_name_entry (const void *a, const void *b)
766 {
767 const struct demangled_name_entry *da
768 = (const struct demangled_name_entry *) a;
769 const struct demangled_name_entry *db
770 = (const struct demangled_name_entry *) b;
771
772 return da->mangled == db->mangled;
773 }
774
775 static void
776 free_demangled_name_entry (void *data)
777 {
778 struct demangled_name_entry *e
779 = (struct demangled_name_entry *) data;
780
781 e->~demangled_name_entry();
782 }
783
784 /* Create the hash table used for demangled names. Each hash entry is
785 a pair of strings; one for the mangled name and one for the demangled
786 name. The entry is hashed via just the mangled name. */
787
788 static void
789 create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd)
790 {
791 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
792 The hash table code will round this up to the next prime number.
793 Choosing a much larger table size wastes memory, and saves only about
794 1% in symbol reading. However, if the minsym count is already
795 initialized (e.g. because symbol name setting was deferred to
796 a background thread) we can initialize the hashtable with a count
797 based on that, because we will almost certainly have at least that
798 many entries. If we have a nonzero number but less than 256,
799 we still stay with 256 to have some space for psymbols, etc. */
800
801 /* htab will expand the table when it is 3/4th full, so we account for that
802 here. +2 to round up. */
803 int minsym_based_count = (per_bfd->minimal_symbol_count + 2) / 3 * 4;
804 int count = std::max (per_bfd->minimal_symbol_count, minsym_based_count);
805
806 per_bfd->demangled_names_hash.reset (htab_create_alloc
807 (count, hash_demangled_name_entry, eq_demangled_name_entry,
808 free_demangled_name_entry, xcalloc, xfree));
809 }
810
811 /* See symtab.h */
812
813 char *
814 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
815 const char *mangled)
816 {
817 char *demangled = NULL;
818 int i;
819
820 if (gsymbol->language () == language_unknown)
821 gsymbol->m_language = language_auto;
822
823 if (gsymbol->language () != language_auto)
824 {
825 const struct language_defn *lang = language_def (gsymbol->language ());
826
827 language_sniff_from_mangled_name (lang, mangled, &demangled);
828 return demangled;
829 }
830
831 for (i = language_unknown; i < nr_languages; ++i)
832 {
833 enum language l = (enum language) i;
834 const struct language_defn *lang = language_def (l);
835
836 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
837 {
838 gsymbol->m_language = l;
839 return demangled;
840 }
841 }
842
843 return NULL;
844 }
845
846 /* Set both the mangled and demangled (if any) names for GSYMBOL based
847 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
848 objfile's obstack; but if COPY_NAME is 0 and if NAME is
849 NUL-terminated, then this function assumes that NAME is already
850 correctly saved (either permanently or with a lifetime tied to the
851 objfile), and it will not be copied.
852
853 The hash table corresponding to OBJFILE is used, and the memory
854 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
855 so the pointer can be discarded after calling this function. */
856
857 void
858 general_symbol_info::compute_and_set_names (gdb::string_view linkage_name,
859 bool copy_name,
860 objfile_per_bfd_storage *per_bfd,
861 gdb::optional<hashval_t> hash)
862 {
863 struct demangled_name_entry **slot;
864
865 if (language () == language_ada)
866 {
867 /* In Ada, we do the symbol lookups using the mangled name, so
868 we can save some space by not storing the demangled name. */
869 if (!copy_name)
870 m_name = linkage_name.data ();
871 else
872 {
873 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
874 linkage_name.length () + 1);
875
876 memcpy (name, linkage_name.data (), linkage_name.length ());
877 name[linkage_name.length ()] = '\0';
878 m_name = name;
879 }
880 symbol_set_demangled_name (this, NULL, &per_bfd->storage_obstack);
881
882 return;
883 }
884
885 if (per_bfd->demangled_names_hash == NULL)
886 create_demangled_names_hash (per_bfd);
887
888 struct demangled_name_entry entry (linkage_name);
889 if (!hash.has_value ())
890 hash = hash_demangled_name_entry (&entry);
891 slot = ((struct demangled_name_entry **)
892 htab_find_slot_with_hash (per_bfd->demangled_names_hash.get (),
893 &entry, *hash, INSERT));
894
895 /* The const_cast is safe because the only reason it is already
896 initialized is if we purposefully set it from a background
897 thread to avoid doing the work here. However, it is still
898 allocated from the heap and needs to be freed by us, just
899 like if we called symbol_find_demangled_name here. If this is
900 nullptr, we call symbol_find_demangled_name below, but we put
901 this smart pointer here to be sure that we don't leak this name. */
902 gdb::unique_xmalloc_ptr<char> demangled_name
903 (const_cast<char *> (language_specific.demangled_name));
904
905 /* If this name is not in the hash table, add it. */
906 if (*slot == NULL
907 /* A C version of the symbol may have already snuck into the table.
908 This happens to, e.g., main.init (__go_init_main). Cope. */
909 || (language () == language_go && (*slot)->demangled == nullptr))
910 {
911 /* A 0-terminated copy of the linkage name. Callers must set COPY_NAME
912 to true if the string might not be nullterminated. We have to make
913 this copy because demangling needs a nullterminated string. */
914 gdb::string_view linkage_name_copy;
915 if (copy_name)
916 {
917 char *alloc_name = (char *) alloca (linkage_name.length () + 1);
918 memcpy (alloc_name, linkage_name.data (), linkage_name.length ());
919 alloc_name[linkage_name.length ()] = '\0';
920
921 linkage_name_copy = gdb::string_view (alloc_name,
922 linkage_name.length ());
923 }
924 else
925 linkage_name_copy = linkage_name;
926
927 if (demangled_name.get () == nullptr)
928 demangled_name.reset
929 (symbol_find_demangled_name (this, linkage_name_copy.data ()));
930
931 /* Suppose we have demangled_name==NULL, copy_name==0, and
932 linkage_name_copy==linkage_name. In this case, we already have the
933 mangled name saved, and we don't have a demangled name. So,
934 you might think we could save a little space by not recording
935 this in the hash table at all.
936
937 It turns out that it is actually important to still save such
938 an entry in the hash table, because storing this name gives
939 us better bcache hit rates for partial symbols. */
940 if (!copy_name)
941 {
942 *slot
943 = ((struct demangled_name_entry *)
944 obstack_alloc (&per_bfd->storage_obstack,
945 sizeof (demangled_name_entry)));
946 new (*slot) demangled_name_entry (linkage_name);
947 }
948 else
949 {
950 /* If we must copy the mangled name, put it directly after
951 the struct so we can have a single allocation. */
952 *slot
953 = ((struct demangled_name_entry *)
954 obstack_alloc (&per_bfd->storage_obstack,
955 sizeof (demangled_name_entry)
956 + linkage_name.length () + 1));
957 char *mangled_ptr = reinterpret_cast<char *> (*slot + 1);
958 memcpy (mangled_ptr, linkage_name.data (), linkage_name.length ());
959 mangled_ptr [linkage_name.length ()] = '\0';
960 new (*slot) demangled_name_entry
961 (gdb::string_view (mangled_ptr, linkage_name.length ()));
962 }
963 (*slot)->demangled = std::move (demangled_name);
964 (*slot)->language = language ();
965 }
966 else if (language () == language_unknown || language () == language_auto)
967 m_language = (*slot)->language;
968
969 m_name = (*slot)->mangled.data ();
970 if ((*slot)->demangled != nullptr)
971 symbol_set_demangled_name (this, (*slot)->demangled.get (),
972 &per_bfd->storage_obstack);
973 else
974 symbol_set_demangled_name (this, NULL, &per_bfd->storage_obstack);
975 }
976
977 /* See symtab.h. */
978
979 const char *
980 general_symbol_info::natural_name () const
981 {
982 switch (language ())
983 {
984 case language_cplus:
985 case language_d:
986 case language_go:
987 case language_objc:
988 case language_fortran:
989 if (symbol_get_demangled_name (this) != NULL)
990 return symbol_get_demangled_name (this);
991 break;
992 case language_ada:
993 return ada_decode_symbol (this);
994 default:
995 break;
996 }
997 return linkage_name ();
998 }
999
1000 /* See symtab.h. */
1001
1002 const char *
1003 general_symbol_info::demangled_name () const
1004 {
1005 const char *dem_name = NULL;
1006
1007 switch (language ())
1008 {
1009 case language_cplus:
1010 case language_d:
1011 case language_go:
1012 case language_objc:
1013 case language_fortran:
1014 dem_name = symbol_get_demangled_name (this);
1015 break;
1016 case language_ada:
1017 dem_name = ada_decode_symbol (this);
1018 break;
1019 default:
1020 break;
1021 }
1022 return dem_name;
1023 }
1024
1025 /* See symtab.h. */
1026
1027 const char *
1028 general_symbol_info::search_name () const
1029 {
1030 if (language () == language_ada)
1031 return linkage_name ();
1032 else
1033 return natural_name ();
1034 }
1035
1036 /* See symtab.h. */
1037
1038 bool
1039 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
1040 const lookup_name_info &name)
1041 {
1042 symbol_name_matcher_ftype *name_match
1043 = get_symbol_name_matcher (language_def (gsymbol->language ()), name);
1044 return name_match (gsymbol->search_name (), name, NULL);
1045 }
1046
1047 \f
1048
1049 /* Return true if the two sections are the same, or if they could
1050 plausibly be copies of each other, one in an original object
1051 file and another in a separated debug file. */
1052
1053 bool
1054 matching_obj_sections (struct obj_section *obj_first,
1055 struct obj_section *obj_second)
1056 {
1057 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1058 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1059
1060 /* If they're the same section, then they match. */
1061 if (first == second)
1062 return true;
1063
1064 /* If either is NULL, give up. */
1065 if (first == NULL || second == NULL)
1066 return false;
1067
1068 /* This doesn't apply to absolute symbols. */
1069 if (first->owner == NULL || second->owner == NULL)
1070 return false;
1071
1072 /* If they're in the same object file, they must be different sections. */
1073 if (first->owner == second->owner)
1074 return false;
1075
1076 /* Check whether the two sections are potentially corresponding. They must
1077 have the same size, address, and name. We can't compare section indexes,
1078 which would be more reliable, because some sections may have been
1079 stripped. */
1080 if (bfd_section_size (first) != bfd_section_size (second))
1081 return false;
1082
1083 /* In-memory addresses may start at a different offset, relativize them. */
1084 if (bfd_section_vma (first) - bfd_get_start_address (first->owner)
1085 != bfd_section_vma (second) - bfd_get_start_address (second->owner))
1086 return false;
1087
1088 if (bfd_section_name (first) == NULL
1089 || bfd_section_name (second) == NULL
1090 || strcmp (bfd_section_name (first), bfd_section_name (second)) != 0)
1091 return false;
1092
1093 /* Otherwise check that they are in corresponding objfiles. */
1094
1095 struct objfile *obj = NULL;
1096 for (objfile *objfile : current_program_space->objfiles ())
1097 if (objfile->obfd == first->owner)
1098 {
1099 obj = objfile;
1100 break;
1101 }
1102 gdb_assert (obj != NULL);
1103
1104 if (obj->separate_debug_objfile != NULL
1105 && obj->separate_debug_objfile->obfd == second->owner)
1106 return true;
1107 if (obj->separate_debug_objfile_backlink != NULL
1108 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1109 return true;
1110
1111 return false;
1112 }
1113
1114 /* See symtab.h. */
1115
1116 void
1117 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1118 {
1119 struct bound_minimal_symbol msymbol;
1120
1121 /* If we know that this is not a text address, return failure. This is
1122 necessary because we loop based on texthigh and textlow, which do
1123 not include the data ranges. */
1124 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1125 if (msymbol.minsym && msymbol.minsym->data_p ())
1126 return;
1127
1128 for (objfile *objfile : current_program_space->objfiles ())
1129 {
1130 struct compunit_symtab *cust = NULL;
1131
1132 if (objfile->sf)
1133 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1134 pc, section, 0);
1135 if (cust)
1136 return;
1137 }
1138 }
1139 \f
1140 /* Hash function for the symbol cache. */
1141
1142 static unsigned int
1143 hash_symbol_entry (const struct objfile *objfile_context,
1144 const char *name, domain_enum domain)
1145 {
1146 unsigned int hash = (uintptr_t) objfile_context;
1147
1148 if (name != NULL)
1149 hash += htab_hash_string (name);
1150
1151 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1152 to map to the same slot. */
1153 if (domain == STRUCT_DOMAIN)
1154 hash += VAR_DOMAIN * 7;
1155 else
1156 hash += domain * 7;
1157
1158 return hash;
1159 }
1160
1161 /* Equality function for the symbol cache. */
1162
1163 static int
1164 eq_symbol_entry (const struct symbol_cache_slot *slot,
1165 const struct objfile *objfile_context,
1166 const char *name, domain_enum domain)
1167 {
1168 const char *slot_name;
1169 domain_enum slot_domain;
1170
1171 if (slot->state == SYMBOL_SLOT_UNUSED)
1172 return 0;
1173
1174 if (slot->objfile_context != objfile_context)
1175 return 0;
1176
1177 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1178 {
1179 slot_name = slot->value.not_found.name;
1180 slot_domain = slot->value.not_found.domain;
1181 }
1182 else
1183 {
1184 slot_name = slot->value.found.symbol->search_name ();
1185 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1186 }
1187
1188 /* NULL names match. */
1189 if (slot_name == NULL && name == NULL)
1190 {
1191 /* But there's no point in calling symbol_matches_domain in the
1192 SYMBOL_SLOT_FOUND case. */
1193 if (slot_domain != domain)
1194 return 0;
1195 }
1196 else if (slot_name != NULL && name != NULL)
1197 {
1198 /* It's important that we use the same comparison that was done
1199 the first time through. If the slot records a found symbol,
1200 then this means using the symbol name comparison function of
1201 the symbol's language with symbol->search_name (). See
1202 dictionary.c. It also means using symbol_matches_domain for
1203 found symbols. See block.c.
1204
1205 If the slot records a not-found symbol, then require a precise match.
1206 We could still be lax with whitespace like strcmp_iw though. */
1207
1208 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1209 {
1210 if (strcmp (slot_name, name) != 0)
1211 return 0;
1212 if (slot_domain != domain)
1213 return 0;
1214 }
1215 else
1216 {
1217 struct symbol *sym = slot->value.found.symbol;
1218 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1219
1220 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1221 return 0;
1222
1223 if (!symbol_matches_domain (sym->language (), slot_domain, domain))
1224 return 0;
1225 }
1226 }
1227 else
1228 {
1229 /* Only one name is NULL. */
1230 return 0;
1231 }
1232
1233 return 1;
1234 }
1235
1236 /* Given a cache of size SIZE, return the size of the struct (with variable
1237 length array) in bytes. */
1238
1239 static size_t
1240 symbol_cache_byte_size (unsigned int size)
1241 {
1242 return (sizeof (struct block_symbol_cache)
1243 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1244 }
1245
1246 /* Resize CACHE. */
1247
1248 static void
1249 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1250 {
1251 /* If there's no change in size, don't do anything.
1252 All caches have the same size, so we can just compare with the size
1253 of the global symbols cache. */
1254 if ((cache->global_symbols != NULL
1255 && cache->global_symbols->size == new_size)
1256 || (cache->global_symbols == NULL
1257 && new_size == 0))
1258 return;
1259
1260 destroy_block_symbol_cache (cache->global_symbols);
1261 destroy_block_symbol_cache (cache->static_symbols);
1262
1263 if (new_size == 0)
1264 {
1265 cache->global_symbols = NULL;
1266 cache->static_symbols = NULL;
1267 }
1268 else
1269 {
1270 size_t total_size = symbol_cache_byte_size (new_size);
1271
1272 cache->global_symbols
1273 = (struct block_symbol_cache *) xcalloc (1, total_size);
1274 cache->static_symbols
1275 = (struct block_symbol_cache *) xcalloc (1, total_size);
1276 cache->global_symbols->size = new_size;
1277 cache->static_symbols->size = new_size;
1278 }
1279 }
1280
1281 /* Return the symbol cache of PSPACE.
1282 Create one if it doesn't exist yet. */
1283
1284 static struct symbol_cache *
1285 get_symbol_cache (struct program_space *pspace)
1286 {
1287 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1288
1289 if (cache == NULL)
1290 {
1291 cache = symbol_cache_key.emplace (pspace);
1292 resize_symbol_cache (cache, symbol_cache_size);
1293 }
1294
1295 return cache;
1296 }
1297
1298 /* Set the size of the symbol cache in all program spaces. */
1299
1300 static void
1301 set_symbol_cache_size (unsigned int new_size)
1302 {
1303 struct program_space *pspace;
1304
1305 ALL_PSPACES (pspace)
1306 {
1307 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1308
1309 /* The pspace could have been created but not have a cache yet. */
1310 if (cache != NULL)
1311 resize_symbol_cache (cache, new_size);
1312 }
1313 }
1314
1315 /* Called when symbol-cache-size is set. */
1316
1317 static void
1318 set_symbol_cache_size_handler (const char *args, int from_tty,
1319 struct cmd_list_element *c)
1320 {
1321 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1322 {
1323 /* Restore the previous value.
1324 This is the value the "show" command prints. */
1325 new_symbol_cache_size = symbol_cache_size;
1326
1327 error (_("Symbol cache size is too large, max is %u."),
1328 MAX_SYMBOL_CACHE_SIZE);
1329 }
1330 symbol_cache_size = new_symbol_cache_size;
1331
1332 set_symbol_cache_size (symbol_cache_size);
1333 }
1334
1335 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1336 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1337 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1338 failed (and thus this one will too), or NULL if the symbol is not present
1339 in the cache.
1340 *BSC_PTR and *SLOT_PTR are set to the cache and slot of the symbol, which
1341 can be used to save the result of a full lookup attempt. */
1342
1343 static struct block_symbol
1344 symbol_cache_lookup (struct symbol_cache *cache,
1345 struct objfile *objfile_context, enum block_enum block,
1346 const char *name, domain_enum domain,
1347 struct block_symbol_cache **bsc_ptr,
1348 struct symbol_cache_slot **slot_ptr)
1349 {
1350 struct block_symbol_cache *bsc;
1351 unsigned int hash;
1352 struct symbol_cache_slot *slot;
1353
1354 if (block == GLOBAL_BLOCK)
1355 bsc = cache->global_symbols;
1356 else
1357 bsc = cache->static_symbols;
1358 if (bsc == NULL)
1359 {
1360 *bsc_ptr = NULL;
1361 *slot_ptr = NULL;
1362 return {};
1363 }
1364
1365 hash = hash_symbol_entry (objfile_context, name, domain);
1366 slot = bsc->symbols + hash % bsc->size;
1367
1368 *bsc_ptr = bsc;
1369 *slot_ptr = slot;
1370
1371 if (eq_symbol_entry (slot, objfile_context, name, domain))
1372 {
1373 if (symbol_lookup_debug)
1374 fprintf_unfiltered (gdb_stdlog,
1375 "%s block symbol cache hit%s for %s, %s\n",
1376 block == GLOBAL_BLOCK ? "Global" : "Static",
1377 slot->state == SYMBOL_SLOT_NOT_FOUND
1378 ? " (not found)" : "",
1379 name, domain_name (domain));
1380 ++bsc->hits;
1381 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1382 return SYMBOL_LOOKUP_FAILED;
1383 return slot->value.found;
1384 }
1385
1386 /* Symbol is not present in the cache. */
1387
1388 if (symbol_lookup_debug)
1389 {
1390 fprintf_unfiltered (gdb_stdlog,
1391 "%s block symbol cache miss for %s, %s\n",
1392 block == GLOBAL_BLOCK ? "Global" : "Static",
1393 name, domain_name (domain));
1394 }
1395 ++bsc->misses;
1396 return {};
1397 }
1398
1399 /* Mark SYMBOL as found in SLOT.
1400 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1401 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1402 necessarily the objfile the symbol was found in. */
1403
1404 static void
1405 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1406 struct symbol_cache_slot *slot,
1407 struct objfile *objfile_context,
1408 struct symbol *symbol,
1409 const struct block *block)
1410 {
1411 if (bsc == NULL)
1412 return;
1413 if (slot->state != SYMBOL_SLOT_UNUSED)
1414 {
1415 ++bsc->collisions;
1416 symbol_cache_clear_slot (slot);
1417 }
1418 slot->state = SYMBOL_SLOT_FOUND;
1419 slot->objfile_context = objfile_context;
1420 slot->value.found.symbol = symbol;
1421 slot->value.found.block = block;
1422 }
1423
1424 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1425 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1426 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1427
1428 static void
1429 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1430 struct symbol_cache_slot *slot,
1431 struct objfile *objfile_context,
1432 const char *name, domain_enum domain)
1433 {
1434 if (bsc == NULL)
1435 return;
1436 if (slot->state != SYMBOL_SLOT_UNUSED)
1437 {
1438 ++bsc->collisions;
1439 symbol_cache_clear_slot (slot);
1440 }
1441 slot->state = SYMBOL_SLOT_NOT_FOUND;
1442 slot->objfile_context = objfile_context;
1443 slot->value.not_found.name = xstrdup (name);
1444 slot->value.not_found.domain = domain;
1445 }
1446
1447 /* Flush the symbol cache of PSPACE. */
1448
1449 static void
1450 symbol_cache_flush (struct program_space *pspace)
1451 {
1452 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1453 int pass;
1454
1455 if (cache == NULL)
1456 return;
1457 if (cache->global_symbols == NULL)
1458 {
1459 gdb_assert (symbol_cache_size == 0);
1460 gdb_assert (cache->static_symbols == NULL);
1461 return;
1462 }
1463
1464 /* If the cache is untouched since the last flush, early exit.
1465 This is important for performance during the startup of a program linked
1466 with 100s (or 1000s) of shared libraries. */
1467 if (cache->global_symbols->misses == 0
1468 && cache->static_symbols->misses == 0)
1469 return;
1470
1471 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1472 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1473
1474 for (pass = 0; pass < 2; ++pass)
1475 {
1476 struct block_symbol_cache *bsc
1477 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1478 unsigned int i;
1479
1480 for (i = 0; i < bsc->size; ++i)
1481 symbol_cache_clear_slot (&bsc->symbols[i]);
1482 }
1483
1484 cache->global_symbols->hits = 0;
1485 cache->global_symbols->misses = 0;
1486 cache->global_symbols->collisions = 0;
1487 cache->static_symbols->hits = 0;
1488 cache->static_symbols->misses = 0;
1489 cache->static_symbols->collisions = 0;
1490 }
1491
1492 /* Dump CACHE. */
1493
1494 static void
1495 symbol_cache_dump (const struct symbol_cache *cache)
1496 {
1497 int pass;
1498
1499 if (cache->global_symbols == NULL)
1500 {
1501 printf_filtered (" <disabled>\n");
1502 return;
1503 }
1504
1505 for (pass = 0; pass < 2; ++pass)
1506 {
1507 const struct block_symbol_cache *bsc
1508 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1509 unsigned int i;
1510
1511 if (pass == 0)
1512 printf_filtered ("Global symbols:\n");
1513 else
1514 printf_filtered ("Static symbols:\n");
1515
1516 for (i = 0; i < bsc->size; ++i)
1517 {
1518 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1519
1520 QUIT;
1521
1522 switch (slot->state)
1523 {
1524 case SYMBOL_SLOT_UNUSED:
1525 break;
1526 case SYMBOL_SLOT_NOT_FOUND:
1527 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1528 host_address_to_string (slot->objfile_context),
1529 slot->value.not_found.name,
1530 domain_name (slot->value.not_found.domain));
1531 break;
1532 case SYMBOL_SLOT_FOUND:
1533 {
1534 struct symbol *found = slot->value.found.symbol;
1535 const struct objfile *context = slot->objfile_context;
1536
1537 printf_filtered (" [%4u] = %s, %s %s\n", i,
1538 host_address_to_string (context),
1539 found->print_name (),
1540 domain_name (SYMBOL_DOMAIN (found)));
1541 break;
1542 }
1543 }
1544 }
1545 }
1546 }
1547
1548 /* The "mt print symbol-cache" command. */
1549
1550 static void
1551 maintenance_print_symbol_cache (const char *args, int from_tty)
1552 {
1553 struct program_space *pspace;
1554
1555 ALL_PSPACES (pspace)
1556 {
1557 struct symbol_cache *cache;
1558
1559 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1560 pspace->num,
1561 pspace->symfile_object_file != NULL
1562 ? objfile_name (pspace->symfile_object_file)
1563 : "(no object file)");
1564
1565 /* If the cache hasn't been created yet, avoid creating one. */
1566 cache = symbol_cache_key.get (pspace);
1567 if (cache == NULL)
1568 printf_filtered (" <empty>\n");
1569 else
1570 symbol_cache_dump (cache);
1571 }
1572 }
1573
1574 /* The "mt flush-symbol-cache" command. */
1575
1576 static void
1577 maintenance_flush_symbol_cache (const char *args, int from_tty)
1578 {
1579 struct program_space *pspace;
1580
1581 ALL_PSPACES (pspace)
1582 {
1583 symbol_cache_flush (pspace);
1584 }
1585 }
1586
1587 /* Print usage statistics of CACHE. */
1588
1589 static void
1590 symbol_cache_stats (struct symbol_cache *cache)
1591 {
1592 int pass;
1593
1594 if (cache->global_symbols == NULL)
1595 {
1596 printf_filtered (" <disabled>\n");
1597 return;
1598 }
1599
1600 for (pass = 0; pass < 2; ++pass)
1601 {
1602 const struct block_symbol_cache *bsc
1603 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1604
1605 QUIT;
1606
1607 if (pass == 0)
1608 printf_filtered ("Global block cache stats:\n");
1609 else
1610 printf_filtered ("Static block cache stats:\n");
1611
1612 printf_filtered (" size: %u\n", bsc->size);
1613 printf_filtered (" hits: %u\n", bsc->hits);
1614 printf_filtered (" misses: %u\n", bsc->misses);
1615 printf_filtered (" collisions: %u\n", bsc->collisions);
1616 }
1617 }
1618
1619 /* The "mt print symbol-cache-statistics" command. */
1620
1621 static void
1622 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1623 {
1624 struct program_space *pspace;
1625
1626 ALL_PSPACES (pspace)
1627 {
1628 struct symbol_cache *cache;
1629
1630 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1631 pspace->num,
1632 pspace->symfile_object_file != NULL
1633 ? objfile_name (pspace->symfile_object_file)
1634 : "(no object file)");
1635
1636 /* If the cache hasn't been created yet, avoid creating one. */
1637 cache = symbol_cache_key.get (pspace);
1638 if (cache == NULL)
1639 printf_filtered (" empty, no stats available\n");
1640 else
1641 symbol_cache_stats (cache);
1642 }
1643 }
1644
1645 /* This module's 'new_objfile' observer. */
1646
1647 static void
1648 symtab_new_objfile_observer (struct objfile *objfile)
1649 {
1650 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1651 symbol_cache_flush (current_program_space);
1652 }
1653
1654 /* This module's 'free_objfile' observer. */
1655
1656 static void
1657 symtab_free_objfile_observer (struct objfile *objfile)
1658 {
1659 symbol_cache_flush (objfile->pspace);
1660 }
1661 \f
1662 /* Debug symbols usually don't have section information. We need to dig that
1663 out of the minimal symbols and stash that in the debug symbol. */
1664
1665 void
1666 fixup_section (struct general_symbol_info *ginfo,
1667 CORE_ADDR addr, struct objfile *objfile)
1668 {
1669 struct minimal_symbol *msym;
1670
1671 /* First, check whether a minimal symbol with the same name exists
1672 and points to the same address. The address check is required
1673 e.g. on PowerPC64, where the minimal symbol for a function will
1674 point to the function descriptor, while the debug symbol will
1675 point to the actual function code. */
1676 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->linkage_name (),
1677 objfile);
1678 if (msym)
1679 ginfo->section = MSYMBOL_SECTION (msym);
1680 else
1681 {
1682 /* Static, function-local variables do appear in the linker
1683 (minimal) symbols, but are frequently given names that won't
1684 be found via lookup_minimal_symbol(). E.g., it has been
1685 observed in frv-uclinux (ELF) executables that a static,
1686 function-local variable named "foo" might appear in the
1687 linker symbols as "foo.6" or "foo.3". Thus, there is no
1688 point in attempting to extend the lookup-by-name mechanism to
1689 handle this case due to the fact that there can be multiple
1690 names.
1691
1692 So, instead, search the section table when lookup by name has
1693 failed. The ``addr'' and ``endaddr'' fields may have already
1694 been relocated. If so, the relocation offset needs to be
1695 subtracted from these values when performing the comparison.
1696 We unconditionally subtract it, because, when no relocation
1697 has been performed, the value will simply be zero.
1698
1699 The address of the symbol whose section we're fixing up HAS
1700 NOT BEEN adjusted (relocated) yet. It can't have been since
1701 the section isn't yet known and knowing the section is
1702 necessary in order to add the correct relocation value. In
1703 other words, we wouldn't even be in this function (attempting
1704 to compute the section) if it were already known.
1705
1706 Note that it is possible to search the minimal symbols
1707 (subtracting the relocation value if necessary) to find the
1708 matching minimal symbol, but this is overkill and much less
1709 efficient. It is not necessary to find the matching minimal
1710 symbol, only its section.
1711
1712 Note that this technique (of doing a section table search)
1713 can fail when unrelocated section addresses overlap. For
1714 this reason, we still attempt a lookup by name prior to doing
1715 a search of the section table. */
1716
1717 struct obj_section *s;
1718 int fallback = -1;
1719
1720 ALL_OBJFILE_OSECTIONS (objfile, s)
1721 {
1722 int idx = s - objfile->sections;
1723 CORE_ADDR offset = objfile->section_offsets[idx];
1724
1725 if (fallback == -1)
1726 fallback = idx;
1727
1728 if (obj_section_addr (s) - offset <= addr
1729 && addr < obj_section_endaddr (s) - offset)
1730 {
1731 ginfo->section = idx;
1732 return;
1733 }
1734 }
1735
1736 /* If we didn't find the section, assume it is in the first
1737 section. If there is no allocated section, then it hardly
1738 matters what we pick, so just pick zero. */
1739 if (fallback == -1)
1740 ginfo->section = 0;
1741 else
1742 ginfo->section = fallback;
1743 }
1744 }
1745
1746 struct symbol *
1747 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1748 {
1749 CORE_ADDR addr;
1750
1751 if (!sym)
1752 return NULL;
1753
1754 if (!SYMBOL_OBJFILE_OWNED (sym))
1755 return sym;
1756
1757 /* We either have an OBJFILE, or we can get at it from the sym's
1758 symtab. Anything else is a bug. */
1759 gdb_assert (objfile || symbol_symtab (sym));
1760
1761 if (objfile == NULL)
1762 objfile = symbol_objfile (sym);
1763
1764 if (SYMBOL_OBJ_SECTION (objfile, sym))
1765 return sym;
1766
1767 /* We should have an objfile by now. */
1768 gdb_assert (objfile);
1769
1770 switch (SYMBOL_CLASS (sym))
1771 {
1772 case LOC_STATIC:
1773 case LOC_LABEL:
1774 addr = SYMBOL_VALUE_ADDRESS (sym);
1775 break;
1776 case LOC_BLOCK:
1777 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1778 break;
1779
1780 default:
1781 /* Nothing else will be listed in the minsyms -- no use looking
1782 it up. */
1783 return sym;
1784 }
1785
1786 fixup_section (sym, addr, objfile);
1787
1788 return sym;
1789 }
1790
1791 /* See symtab.h. */
1792
1793 demangle_for_lookup_info::demangle_for_lookup_info
1794 (const lookup_name_info &lookup_name, language lang)
1795 {
1796 demangle_result_storage storage;
1797
1798 if (lookup_name.ignore_parameters () && lang == language_cplus)
1799 {
1800 gdb::unique_xmalloc_ptr<char> without_params
1801 = cp_remove_params_if_any (lookup_name.name ().c_str (),
1802 lookup_name.completion_mode ());
1803
1804 if (without_params != NULL)
1805 {
1806 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1807 m_demangled_name = demangle_for_lookup (without_params.get (),
1808 lang, storage);
1809 return;
1810 }
1811 }
1812
1813 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1814 m_demangled_name = lookup_name.name ();
1815 else
1816 m_demangled_name = demangle_for_lookup (lookup_name.name ().c_str (),
1817 lang, storage);
1818 }
1819
1820 /* See symtab.h. */
1821
1822 const lookup_name_info &
1823 lookup_name_info::match_any ()
1824 {
1825 /* Lookup any symbol that "" would complete. I.e., this matches all
1826 symbol names. */
1827 static const lookup_name_info lookup_name ({}, symbol_name_match_type::FULL,
1828 true);
1829
1830 return lookup_name;
1831 }
1832
1833 /* Compute the demangled form of NAME as used by the various symbol
1834 lookup functions. The result can either be the input NAME
1835 directly, or a pointer to a buffer owned by the STORAGE object.
1836
1837 For Ada, this function just returns NAME, unmodified.
1838 Normally, Ada symbol lookups are performed using the encoded name
1839 rather than the demangled name, and so it might seem to make sense
1840 for this function to return an encoded version of NAME.
1841 Unfortunately, we cannot do this, because this function is used in
1842 circumstances where it is not appropriate to try to encode NAME.
1843 For instance, when displaying the frame info, we demangle the name
1844 of each parameter, and then perform a symbol lookup inside our
1845 function using that demangled name. In Ada, certain functions
1846 have internally-generated parameters whose name contain uppercase
1847 characters. Encoding those name would result in those uppercase
1848 characters to become lowercase, and thus cause the symbol lookup
1849 to fail. */
1850
1851 const char *
1852 demangle_for_lookup (const char *name, enum language lang,
1853 demangle_result_storage &storage)
1854 {
1855 /* If we are using C++, D, or Go, demangle the name before doing a
1856 lookup, so we can always binary search. */
1857 if (lang == language_cplus)
1858 {
1859 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1860 if (demangled_name != NULL)
1861 return storage.set_malloc_ptr (demangled_name);
1862
1863 /* If we were given a non-mangled name, canonicalize it
1864 according to the language (so far only for C++). */
1865 std::string canon = cp_canonicalize_string (name);
1866 if (!canon.empty ())
1867 return storage.swap_string (canon);
1868 }
1869 else if (lang == language_d)
1870 {
1871 char *demangled_name = d_demangle (name, 0);
1872 if (demangled_name != NULL)
1873 return storage.set_malloc_ptr (demangled_name);
1874 }
1875 else if (lang == language_go)
1876 {
1877 char *demangled_name = go_demangle (name, 0);
1878 if (demangled_name != NULL)
1879 return storage.set_malloc_ptr (demangled_name);
1880 }
1881
1882 return name;
1883 }
1884
1885 /* See symtab.h. */
1886
1887 unsigned int
1888 search_name_hash (enum language language, const char *search_name)
1889 {
1890 return language_def (language)->la_search_name_hash (search_name);
1891 }
1892
1893 /* See symtab.h.
1894
1895 This function (or rather its subordinates) have a bunch of loops and
1896 it would seem to be attractive to put in some QUIT's (though I'm not really
1897 sure whether it can run long enough to be really important). But there
1898 are a few calls for which it would appear to be bad news to quit
1899 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1900 that there is C++ code below which can error(), but that probably
1901 doesn't affect these calls since they are looking for a known
1902 variable and thus can probably assume it will never hit the C++
1903 code). */
1904
1905 struct block_symbol
1906 lookup_symbol_in_language (const char *name, const struct block *block,
1907 const domain_enum domain, enum language lang,
1908 struct field_of_this_result *is_a_field_of_this)
1909 {
1910 demangle_result_storage storage;
1911 const char *modified_name = demangle_for_lookup (name, lang, storage);
1912
1913 return lookup_symbol_aux (modified_name,
1914 symbol_name_match_type::FULL,
1915 block, domain, lang,
1916 is_a_field_of_this);
1917 }
1918
1919 /* See symtab.h. */
1920
1921 struct block_symbol
1922 lookup_symbol (const char *name, const struct block *block,
1923 domain_enum domain,
1924 struct field_of_this_result *is_a_field_of_this)
1925 {
1926 return lookup_symbol_in_language (name, block, domain,
1927 current_language->la_language,
1928 is_a_field_of_this);
1929 }
1930
1931 /* See symtab.h. */
1932
1933 struct block_symbol
1934 lookup_symbol_search_name (const char *search_name, const struct block *block,
1935 domain_enum domain)
1936 {
1937 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1938 block, domain, language_asm, NULL);
1939 }
1940
1941 /* See symtab.h. */
1942
1943 struct block_symbol
1944 lookup_language_this (const struct language_defn *lang,
1945 const struct block *block)
1946 {
1947 if (lang->la_name_of_this == NULL || block == NULL)
1948 return {};
1949
1950 if (symbol_lookup_debug > 1)
1951 {
1952 struct objfile *objfile = lookup_objfile_from_block (block);
1953
1954 fprintf_unfiltered (gdb_stdlog,
1955 "lookup_language_this (%s, %s (objfile %s))",
1956 lang->la_name, host_address_to_string (block),
1957 objfile_debug_name (objfile));
1958 }
1959
1960 while (block)
1961 {
1962 struct symbol *sym;
1963
1964 sym = block_lookup_symbol (block, lang->la_name_of_this,
1965 symbol_name_match_type::SEARCH_NAME,
1966 VAR_DOMAIN);
1967 if (sym != NULL)
1968 {
1969 if (symbol_lookup_debug > 1)
1970 {
1971 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1972 sym->print_name (),
1973 host_address_to_string (sym),
1974 host_address_to_string (block));
1975 }
1976 return (struct block_symbol) {sym, block};
1977 }
1978 if (BLOCK_FUNCTION (block))
1979 break;
1980 block = BLOCK_SUPERBLOCK (block);
1981 }
1982
1983 if (symbol_lookup_debug > 1)
1984 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1985 return {};
1986 }
1987
1988 /* Given TYPE, a structure/union,
1989 return 1 if the component named NAME from the ultimate target
1990 structure/union is defined, otherwise, return 0. */
1991
1992 static int
1993 check_field (struct type *type, const char *name,
1994 struct field_of_this_result *is_a_field_of_this)
1995 {
1996 int i;
1997
1998 /* The type may be a stub. */
1999 type = check_typedef (type);
2000
2001 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2002 {
2003 const char *t_field_name = TYPE_FIELD_NAME (type, i);
2004
2005 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2006 {
2007 is_a_field_of_this->type = type;
2008 is_a_field_of_this->field = &TYPE_FIELD (type, i);
2009 return 1;
2010 }
2011 }
2012
2013 /* C++: If it was not found as a data field, then try to return it
2014 as a pointer to a method. */
2015
2016 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2017 {
2018 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2019 {
2020 is_a_field_of_this->type = type;
2021 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
2022 return 1;
2023 }
2024 }
2025
2026 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2027 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
2028 return 1;
2029
2030 return 0;
2031 }
2032
2033 /* Behave like lookup_symbol except that NAME is the natural name
2034 (e.g., demangled name) of the symbol that we're looking for. */
2035
2036 static struct block_symbol
2037 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2038 const struct block *block,
2039 const domain_enum domain, enum language language,
2040 struct field_of_this_result *is_a_field_of_this)
2041 {
2042 struct block_symbol result;
2043 const struct language_defn *langdef;
2044
2045 if (symbol_lookup_debug)
2046 {
2047 struct objfile *objfile = lookup_objfile_from_block (block);
2048
2049 fprintf_unfiltered (gdb_stdlog,
2050 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2051 name, host_address_to_string (block),
2052 objfile != NULL
2053 ? objfile_debug_name (objfile) : "NULL",
2054 domain_name (domain), language_str (language));
2055 }
2056
2057 /* Make sure we do something sensible with is_a_field_of_this, since
2058 the callers that set this parameter to some non-null value will
2059 certainly use it later. If we don't set it, the contents of
2060 is_a_field_of_this are undefined. */
2061 if (is_a_field_of_this != NULL)
2062 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2063
2064 /* Search specified block and its superiors. Don't search
2065 STATIC_BLOCK or GLOBAL_BLOCK. */
2066
2067 result = lookup_local_symbol (name, match_type, block, domain, language);
2068 if (result.symbol != NULL)
2069 {
2070 if (symbol_lookup_debug)
2071 {
2072 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2073 host_address_to_string (result.symbol));
2074 }
2075 return result;
2076 }
2077
2078 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2079 check to see if NAME is a field of `this'. */
2080
2081 langdef = language_def (language);
2082
2083 /* Don't do this check if we are searching for a struct. It will
2084 not be found by check_field, but will be found by other
2085 means. */
2086 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2087 {
2088 result = lookup_language_this (langdef, block);
2089
2090 if (result.symbol)
2091 {
2092 struct type *t = result.symbol->type;
2093
2094 /* I'm not really sure that type of this can ever
2095 be typedefed; just be safe. */
2096 t = check_typedef (t);
2097 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2098 t = TYPE_TARGET_TYPE (t);
2099
2100 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2101 && TYPE_CODE (t) != TYPE_CODE_UNION)
2102 error (_("Internal error: `%s' is not an aggregate"),
2103 langdef->la_name_of_this);
2104
2105 if (check_field (t, name, is_a_field_of_this))
2106 {
2107 if (symbol_lookup_debug)
2108 {
2109 fprintf_unfiltered (gdb_stdlog,
2110 "lookup_symbol_aux (...) = NULL\n");
2111 }
2112 return {};
2113 }
2114 }
2115 }
2116
2117 /* Now do whatever is appropriate for LANGUAGE to look
2118 up static and global variables. */
2119
2120 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2121 if (result.symbol != NULL)
2122 {
2123 if (symbol_lookup_debug)
2124 {
2125 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2126 host_address_to_string (result.symbol));
2127 }
2128 return result;
2129 }
2130
2131 /* Now search all static file-level symbols. Not strictly correct,
2132 but more useful than an error. */
2133
2134 result = lookup_static_symbol (name, domain);
2135 if (symbol_lookup_debug)
2136 {
2137 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2138 result.symbol != NULL
2139 ? host_address_to_string (result.symbol)
2140 : "NULL");
2141 }
2142 return result;
2143 }
2144
2145 /* Check to see if the symbol is defined in BLOCK or its superiors.
2146 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2147
2148 static struct block_symbol
2149 lookup_local_symbol (const char *name,
2150 symbol_name_match_type match_type,
2151 const struct block *block,
2152 const domain_enum domain,
2153 enum language language)
2154 {
2155 struct symbol *sym;
2156 const struct block *static_block = block_static_block (block);
2157 const char *scope = block_scope (block);
2158
2159 /* Check if either no block is specified or it's a global block. */
2160
2161 if (static_block == NULL)
2162 return {};
2163
2164 while (block != static_block)
2165 {
2166 sym = lookup_symbol_in_block (name, match_type, block, domain);
2167 if (sym != NULL)
2168 return (struct block_symbol) {sym, block};
2169
2170 if (language == language_cplus || language == language_fortran)
2171 {
2172 struct block_symbol blocksym
2173 = cp_lookup_symbol_imports_or_template (scope, name, block,
2174 domain);
2175
2176 if (blocksym.symbol != NULL)
2177 return blocksym;
2178 }
2179
2180 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2181 break;
2182 block = BLOCK_SUPERBLOCK (block);
2183 }
2184
2185 /* We've reached the end of the function without finding a result. */
2186
2187 return {};
2188 }
2189
2190 /* See symtab.h. */
2191
2192 struct objfile *
2193 lookup_objfile_from_block (const struct block *block)
2194 {
2195 if (block == NULL)
2196 return NULL;
2197
2198 block = block_global_block (block);
2199 /* Look through all blockvectors. */
2200 for (objfile *obj : current_program_space->objfiles ())
2201 {
2202 for (compunit_symtab *cust : obj->compunits ())
2203 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2204 GLOBAL_BLOCK))
2205 {
2206 if (obj->separate_debug_objfile_backlink)
2207 obj = obj->separate_debug_objfile_backlink;
2208
2209 return obj;
2210 }
2211 }
2212
2213 return NULL;
2214 }
2215
2216 /* See symtab.h. */
2217
2218 struct symbol *
2219 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2220 const struct block *block,
2221 const domain_enum domain)
2222 {
2223 struct symbol *sym;
2224
2225 if (symbol_lookup_debug > 1)
2226 {
2227 struct objfile *objfile = lookup_objfile_from_block (block);
2228
2229 fprintf_unfiltered (gdb_stdlog,
2230 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2231 name, host_address_to_string (block),
2232 objfile_debug_name (objfile),
2233 domain_name (domain));
2234 }
2235
2236 sym = block_lookup_symbol (block, name, match_type, domain);
2237 if (sym)
2238 {
2239 if (symbol_lookup_debug > 1)
2240 {
2241 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2242 host_address_to_string (sym));
2243 }
2244 return fixup_symbol_section (sym, NULL);
2245 }
2246
2247 if (symbol_lookup_debug > 1)
2248 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2249 return NULL;
2250 }
2251
2252 /* See symtab.h. */
2253
2254 struct block_symbol
2255 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2256 enum block_enum block_index,
2257 const char *name,
2258 const domain_enum domain)
2259 {
2260 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2261
2262 for (objfile *objfile : main_objfile->separate_debug_objfiles ())
2263 {
2264 struct block_symbol result
2265 = lookup_symbol_in_objfile (objfile, block_index, name, domain);
2266
2267 if (result.symbol != nullptr)
2268 return result;
2269 }
2270
2271 return {};
2272 }
2273
2274 /* Check to see if the symbol is defined in one of the OBJFILE's
2275 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2276 depending on whether or not we want to search global symbols or
2277 static symbols. */
2278
2279 static struct block_symbol
2280 lookup_symbol_in_objfile_symtabs (struct objfile *objfile,
2281 enum block_enum block_index, const char *name,
2282 const domain_enum domain)
2283 {
2284 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2285
2286 if (symbol_lookup_debug > 1)
2287 {
2288 fprintf_unfiltered (gdb_stdlog,
2289 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2290 objfile_debug_name (objfile),
2291 block_index == GLOBAL_BLOCK
2292 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2293 name, domain_name (domain));
2294 }
2295
2296 for (compunit_symtab *cust : objfile->compunits ())
2297 {
2298 const struct blockvector *bv;
2299 const struct block *block;
2300 struct block_symbol result;
2301
2302 bv = COMPUNIT_BLOCKVECTOR (cust);
2303 block = BLOCKVECTOR_BLOCK (bv, block_index);
2304 result.symbol = block_lookup_symbol_primary (block, name, domain);
2305 result.block = block;
2306 if (result.symbol != NULL)
2307 {
2308 if (symbol_lookup_debug > 1)
2309 {
2310 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2311 host_address_to_string (result.symbol),
2312 host_address_to_string (block));
2313 }
2314 result.symbol = fixup_symbol_section (result.symbol, objfile);
2315 return result;
2316
2317 }
2318 }
2319
2320 if (symbol_lookup_debug > 1)
2321 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2322 return {};
2323 }
2324
2325 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2326 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2327 and all associated separate debug objfiles.
2328
2329 Normally we only look in OBJFILE, and not any separate debug objfiles
2330 because the outer loop will cause them to be searched too. This case is
2331 different. Here we're called from search_symbols where it will only
2332 call us for the objfile that contains a matching minsym. */
2333
2334 static struct block_symbol
2335 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2336 const char *linkage_name,
2337 domain_enum domain)
2338 {
2339 enum language lang = current_language->la_language;
2340 struct objfile *main_objfile;
2341
2342 demangle_result_storage storage;
2343 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2344
2345 if (objfile->separate_debug_objfile_backlink)
2346 main_objfile = objfile->separate_debug_objfile_backlink;
2347 else
2348 main_objfile = objfile;
2349
2350 for (::objfile *cur_objfile : main_objfile->separate_debug_objfiles ())
2351 {
2352 struct block_symbol result;
2353
2354 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2355 modified_name, domain);
2356 if (result.symbol == NULL)
2357 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2358 modified_name, domain);
2359 if (result.symbol != NULL)
2360 return result;
2361 }
2362
2363 return {};
2364 }
2365
2366 /* A helper function that throws an exception when a symbol was found
2367 in a psymtab but not in a symtab. */
2368
2369 static void ATTRIBUTE_NORETURN
2370 error_in_psymtab_expansion (enum block_enum block_index, const char *name,
2371 struct compunit_symtab *cust)
2372 {
2373 error (_("\
2374 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2375 %s may be an inlined function, or may be a template function\n \
2376 (if a template, try specifying an instantiation: %s<type>)."),
2377 block_index == GLOBAL_BLOCK ? "global" : "static",
2378 name,
2379 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2380 name, name);
2381 }
2382
2383 /* A helper function for various lookup routines that interfaces with
2384 the "quick" symbol table functions. */
2385
2386 static struct block_symbol
2387 lookup_symbol_via_quick_fns (struct objfile *objfile,
2388 enum block_enum block_index, const char *name,
2389 const domain_enum domain)
2390 {
2391 struct compunit_symtab *cust;
2392 const struct blockvector *bv;
2393 const struct block *block;
2394 struct block_symbol result;
2395
2396 if (!objfile->sf)
2397 return {};
2398
2399 if (symbol_lookup_debug > 1)
2400 {
2401 fprintf_unfiltered (gdb_stdlog,
2402 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2403 objfile_debug_name (objfile),
2404 block_index == GLOBAL_BLOCK
2405 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2406 name, domain_name (domain));
2407 }
2408
2409 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2410 if (cust == NULL)
2411 {
2412 if (symbol_lookup_debug > 1)
2413 {
2414 fprintf_unfiltered (gdb_stdlog,
2415 "lookup_symbol_via_quick_fns (...) = NULL\n");
2416 }
2417 return {};
2418 }
2419
2420 bv = COMPUNIT_BLOCKVECTOR (cust);
2421 block = BLOCKVECTOR_BLOCK (bv, block_index);
2422 result.symbol = block_lookup_symbol (block, name,
2423 symbol_name_match_type::FULL, domain);
2424 if (result.symbol == NULL)
2425 error_in_psymtab_expansion (block_index, name, cust);
2426
2427 if (symbol_lookup_debug > 1)
2428 {
2429 fprintf_unfiltered (gdb_stdlog,
2430 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2431 host_address_to_string (result.symbol),
2432 host_address_to_string (block));
2433 }
2434
2435 result.symbol = fixup_symbol_section (result.symbol, objfile);
2436 result.block = block;
2437 return result;
2438 }
2439
2440 /* See symtab.h. */
2441
2442 struct block_symbol
2443 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2444 const char *name,
2445 const struct block *block,
2446 const domain_enum domain)
2447 {
2448 struct block_symbol result;
2449
2450 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2451 the current objfile. Searching the current objfile first is useful
2452 for both matching user expectations as well as performance. */
2453
2454 result = lookup_symbol_in_static_block (name, block, domain);
2455 if (result.symbol != NULL)
2456 return result;
2457
2458 /* If we didn't find a definition for a builtin type in the static block,
2459 search for it now. This is actually the right thing to do and can be
2460 a massive performance win. E.g., when debugging a program with lots of
2461 shared libraries we could search all of them only to find out the
2462 builtin type isn't defined in any of them. This is common for types
2463 like "void". */
2464 if (domain == VAR_DOMAIN)
2465 {
2466 struct gdbarch *gdbarch;
2467
2468 if (block == NULL)
2469 gdbarch = target_gdbarch ();
2470 else
2471 gdbarch = block_gdbarch (block);
2472 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2473 gdbarch, name);
2474 result.block = NULL;
2475 if (result.symbol != NULL)
2476 return result;
2477 }
2478
2479 return lookup_global_symbol (name, block, domain);
2480 }
2481
2482 /* See symtab.h. */
2483
2484 struct block_symbol
2485 lookup_symbol_in_static_block (const char *name,
2486 const struct block *block,
2487 const domain_enum domain)
2488 {
2489 const struct block *static_block = block_static_block (block);
2490 struct symbol *sym;
2491
2492 if (static_block == NULL)
2493 return {};
2494
2495 if (symbol_lookup_debug)
2496 {
2497 struct objfile *objfile = lookup_objfile_from_block (static_block);
2498
2499 fprintf_unfiltered (gdb_stdlog,
2500 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2501 " %s)\n",
2502 name,
2503 host_address_to_string (block),
2504 objfile_debug_name (objfile),
2505 domain_name (domain));
2506 }
2507
2508 sym = lookup_symbol_in_block (name,
2509 symbol_name_match_type::FULL,
2510 static_block, domain);
2511 if (symbol_lookup_debug)
2512 {
2513 fprintf_unfiltered (gdb_stdlog,
2514 "lookup_symbol_in_static_block (...) = %s\n",
2515 sym != NULL ? host_address_to_string (sym) : "NULL");
2516 }
2517 return (struct block_symbol) {sym, static_block};
2518 }
2519
2520 /* Perform the standard symbol lookup of NAME in OBJFILE:
2521 1) First search expanded symtabs, and if not found
2522 2) Search the "quick" symtabs (partial or .gdb_index).
2523 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2524
2525 static struct block_symbol
2526 lookup_symbol_in_objfile (struct objfile *objfile, enum block_enum block_index,
2527 const char *name, const domain_enum domain)
2528 {
2529 struct block_symbol result;
2530
2531 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2532
2533 if (symbol_lookup_debug)
2534 {
2535 fprintf_unfiltered (gdb_stdlog,
2536 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2537 objfile_debug_name (objfile),
2538 block_index == GLOBAL_BLOCK
2539 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2540 name, domain_name (domain));
2541 }
2542
2543 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2544 name, domain);
2545 if (result.symbol != NULL)
2546 {
2547 if (symbol_lookup_debug)
2548 {
2549 fprintf_unfiltered (gdb_stdlog,
2550 "lookup_symbol_in_objfile (...) = %s"
2551 " (in symtabs)\n",
2552 host_address_to_string (result.symbol));
2553 }
2554 return result;
2555 }
2556
2557 result = lookup_symbol_via_quick_fns (objfile, block_index,
2558 name, domain);
2559 if (symbol_lookup_debug)
2560 {
2561 fprintf_unfiltered (gdb_stdlog,
2562 "lookup_symbol_in_objfile (...) = %s%s\n",
2563 result.symbol != NULL
2564 ? host_address_to_string (result.symbol)
2565 : "NULL",
2566 result.symbol != NULL ? " (via quick fns)" : "");
2567 }
2568 return result;
2569 }
2570
2571 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2572
2573 struct global_or_static_sym_lookup_data
2574 {
2575 /* The name of the symbol we are searching for. */
2576 const char *name;
2577
2578 /* The domain to use for our search. */
2579 domain_enum domain;
2580
2581 /* The block index in which to search. */
2582 enum block_enum block_index;
2583
2584 /* The field where the callback should store the symbol if found.
2585 It should be initialized to {NULL, NULL} before the search is started. */
2586 struct block_symbol result;
2587 };
2588
2589 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2590 It searches by name for a symbol in the block given by BLOCK_INDEX of the
2591 given OBJFILE. The arguments for the search are passed via CB_DATA, which
2592 in reality is a pointer to struct global_or_static_sym_lookup_data. */
2593
2594 static int
2595 lookup_symbol_global_or_static_iterator_cb (struct objfile *objfile,
2596 void *cb_data)
2597 {
2598 struct global_or_static_sym_lookup_data *data =
2599 (struct global_or_static_sym_lookup_data *) cb_data;
2600
2601 gdb_assert (data->result.symbol == NULL
2602 && data->result.block == NULL);
2603
2604 data->result = lookup_symbol_in_objfile (objfile, data->block_index,
2605 data->name, data->domain);
2606
2607 /* If we found a match, tell the iterator to stop. Otherwise,
2608 keep going. */
2609 return (data->result.symbol != NULL);
2610 }
2611
2612 /* This function contains the common code of lookup_{global,static}_symbol.
2613 OBJFILE is only used if BLOCK_INDEX is GLOBAL_SCOPE, in which case it is
2614 the objfile to start the lookup in. */
2615
2616 static struct block_symbol
2617 lookup_global_or_static_symbol (const char *name,
2618 enum block_enum block_index,
2619 struct objfile *objfile,
2620 const domain_enum domain)
2621 {
2622 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2623 struct block_symbol result;
2624 struct global_or_static_sym_lookup_data lookup_data;
2625 struct block_symbol_cache *bsc;
2626 struct symbol_cache_slot *slot;
2627
2628 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2629 gdb_assert (objfile == nullptr || block_index == GLOBAL_BLOCK);
2630
2631 /* First see if we can find the symbol in the cache.
2632 This works because we use the current objfile to qualify the lookup. */
2633 result = symbol_cache_lookup (cache, objfile, block_index, name, domain,
2634 &bsc, &slot);
2635 if (result.symbol != NULL)
2636 {
2637 if (SYMBOL_LOOKUP_FAILED_P (result))
2638 return {};
2639 return result;
2640 }
2641
2642 /* Do a global search (of global blocks, heh). */
2643 if (result.symbol == NULL)
2644 {
2645 memset (&lookup_data, 0, sizeof (lookup_data));
2646 lookup_data.name = name;
2647 lookup_data.block_index = block_index;
2648 lookup_data.domain = domain;
2649 gdbarch_iterate_over_objfiles_in_search_order
2650 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2651 lookup_symbol_global_or_static_iterator_cb, &lookup_data, objfile);
2652 result = lookup_data.result;
2653 }
2654
2655 if (result.symbol != NULL)
2656 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2657 else
2658 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2659
2660 return result;
2661 }
2662
2663 /* See symtab.h. */
2664
2665 struct block_symbol
2666 lookup_static_symbol (const char *name, const domain_enum domain)
2667 {
2668 return lookup_global_or_static_symbol (name, STATIC_BLOCK, nullptr, domain);
2669 }
2670
2671 /* See symtab.h. */
2672
2673 struct block_symbol
2674 lookup_global_symbol (const char *name,
2675 const struct block *block,
2676 const domain_enum domain)
2677 {
2678 /* If a block was passed in, we want to search the corresponding
2679 global block first. This yields "more expected" behavior, and is
2680 needed to support 'FILENAME'::VARIABLE lookups. */
2681 const struct block *global_block = block_global_block (block);
2682 if (global_block != nullptr)
2683 {
2684 symbol *sym = lookup_symbol_in_block (name,
2685 symbol_name_match_type::FULL,
2686 global_block, domain);
2687 if (sym != nullptr)
2688 return { sym, global_block };
2689 }
2690
2691 struct objfile *objfile = lookup_objfile_from_block (block);
2692 return lookup_global_or_static_symbol (name, GLOBAL_BLOCK, objfile, domain);
2693 }
2694
2695 bool
2696 symbol_matches_domain (enum language symbol_language,
2697 domain_enum symbol_domain,
2698 domain_enum domain)
2699 {
2700 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2701 Similarly, any Ada type declaration implicitly defines a typedef. */
2702 if (symbol_language == language_cplus
2703 || symbol_language == language_d
2704 || symbol_language == language_ada
2705 || symbol_language == language_rust)
2706 {
2707 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2708 && symbol_domain == STRUCT_DOMAIN)
2709 return true;
2710 }
2711 /* For all other languages, strict match is required. */
2712 return (symbol_domain == domain);
2713 }
2714
2715 /* See symtab.h. */
2716
2717 struct type *
2718 lookup_transparent_type (const char *name)
2719 {
2720 return current_language->la_lookup_transparent_type (name);
2721 }
2722
2723 /* A helper for basic_lookup_transparent_type that interfaces with the
2724 "quick" symbol table functions. */
2725
2726 static struct type *
2727 basic_lookup_transparent_type_quick (struct objfile *objfile,
2728 enum block_enum block_index,
2729 const char *name)
2730 {
2731 struct compunit_symtab *cust;
2732 const struct blockvector *bv;
2733 const struct block *block;
2734 struct symbol *sym;
2735
2736 if (!objfile->sf)
2737 return NULL;
2738 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2739 STRUCT_DOMAIN);
2740 if (cust == NULL)
2741 return NULL;
2742
2743 bv = COMPUNIT_BLOCKVECTOR (cust);
2744 block = BLOCKVECTOR_BLOCK (bv, block_index);
2745 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2746 block_find_non_opaque_type, NULL);
2747 if (sym == NULL)
2748 error_in_psymtab_expansion (block_index, name, cust);
2749 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2750 return SYMBOL_TYPE (sym);
2751 }
2752
2753 /* Subroutine of basic_lookup_transparent_type to simplify it.
2754 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2755 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2756
2757 static struct type *
2758 basic_lookup_transparent_type_1 (struct objfile *objfile,
2759 enum block_enum block_index,
2760 const char *name)
2761 {
2762 const struct blockvector *bv;
2763 const struct block *block;
2764 const struct symbol *sym;
2765
2766 for (compunit_symtab *cust : objfile->compunits ())
2767 {
2768 bv = COMPUNIT_BLOCKVECTOR (cust);
2769 block = BLOCKVECTOR_BLOCK (bv, block_index);
2770 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2771 block_find_non_opaque_type, NULL);
2772 if (sym != NULL)
2773 {
2774 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2775 return SYMBOL_TYPE (sym);
2776 }
2777 }
2778
2779 return NULL;
2780 }
2781
2782 /* The standard implementation of lookup_transparent_type. This code
2783 was modeled on lookup_symbol -- the parts not relevant to looking
2784 up types were just left out. In particular it's assumed here that
2785 types are available in STRUCT_DOMAIN and only in file-static or
2786 global blocks. */
2787
2788 struct type *
2789 basic_lookup_transparent_type (const char *name)
2790 {
2791 struct type *t;
2792
2793 /* Now search all the global symbols. Do the symtab's first, then
2794 check the psymtab's. If a psymtab indicates the existence
2795 of the desired name as a global, then do psymtab-to-symtab
2796 conversion on the fly and return the found symbol. */
2797
2798 for (objfile *objfile : current_program_space->objfiles ())
2799 {
2800 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2801 if (t)
2802 return t;
2803 }
2804
2805 for (objfile *objfile : current_program_space->objfiles ())
2806 {
2807 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2808 if (t)
2809 return t;
2810 }
2811
2812 /* Now search the static file-level symbols.
2813 Not strictly correct, but more useful than an error.
2814 Do the symtab's first, then
2815 check the psymtab's. If a psymtab indicates the existence
2816 of the desired name as a file-level static, then do psymtab-to-symtab
2817 conversion on the fly and return the found symbol. */
2818
2819 for (objfile *objfile : current_program_space->objfiles ())
2820 {
2821 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2822 if (t)
2823 return t;
2824 }
2825
2826 for (objfile *objfile : current_program_space->objfiles ())
2827 {
2828 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2829 if (t)
2830 return t;
2831 }
2832
2833 return (struct type *) 0;
2834 }
2835
2836 /* See symtab.h. */
2837
2838 bool
2839 iterate_over_symbols (const struct block *block,
2840 const lookup_name_info &name,
2841 const domain_enum domain,
2842 gdb::function_view<symbol_found_callback_ftype> callback)
2843 {
2844 struct block_iterator iter;
2845 struct symbol *sym;
2846
2847 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2848 {
2849 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
2850 {
2851 struct block_symbol block_sym = {sym, block};
2852
2853 if (!callback (&block_sym))
2854 return false;
2855 }
2856 }
2857 return true;
2858 }
2859
2860 /* See symtab.h. */
2861
2862 bool
2863 iterate_over_symbols_terminated
2864 (const struct block *block,
2865 const lookup_name_info &name,
2866 const domain_enum domain,
2867 gdb::function_view<symbol_found_callback_ftype> callback)
2868 {
2869 if (!iterate_over_symbols (block, name, domain, callback))
2870 return false;
2871 struct block_symbol block_sym = {nullptr, block};
2872 return callback (&block_sym);
2873 }
2874
2875 /* Find the compunit symtab associated with PC and SECTION.
2876 This will read in debug info as necessary. */
2877
2878 struct compunit_symtab *
2879 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2880 {
2881 struct compunit_symtab *best_cust = NULL;
2882 CORE_ADDR distance = 0;
2883 struct bound_minimal_symbol msymbol;
2884
2885 /* If we know that this is not a text address, return failure. This is
2886 necessary because we loop based on the block's high and low code
2887 addresses, which do not include the data ranges, and because
2888 we call find_pc_sect_psymtab which has a similar restriction based
2889 on the partial_symtab's texthigh and textlow. */
2890 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2891 if (msymbol.minsym && msymbol.minsym->data_p ())
2892 return NULL;
2893
2894 /* Search all symtabs for the one whose file contains our address, and which
2895 is the smallest of all the ones containing the address. This is designed
2896 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2897 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2898 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2899
2900 This happens for native ecoff format, where code from included files
2901 gets its own symtab. The symtab for the included file should have
2902 been read in already via the dependency mechanism.
2903 It might be swifter to create several symtabs with the same name
2904 like xcoff does (I'm not sure).
2905
2906 It also happens for objfiles that have their functions reordered.
2907 For these, the symtab we are looking for is not necessarily read in. */
2908
2909 for (objfile *obj_file : current_program_space->objfiles ())
2910 {
2911 for (compunit_symtab *cust : obj_file->compunits ())
2912 {
2913 const struct block *b;
2914 const struct blockvector *bv;
2915
2916 bv = COMPUNIT_BLOCKVECTOR (cust);
2917 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2918
2919 if (BLOCK_START (b) <= pc
2920 && BLOCK_END (b) > pc
2921 && (distance == 0
2922 || BLOCK_END (b) - BLOCK_START (b) < distance))
2923 {
2924 /* For an objfile that has its functions reordered,
2925 find_pc_psymtab will find the proper partial symbol table
2926 and we simply return its corresponding symtab. */
2927 /* In order to better support objfiles that contain both
2928 stabs and coff debugging info, we continue on if a psymtab
2929 can't be found. */
2930 if ((obj_file->flags & OBJF_REORDERED) && obj_file->sf)
2931 {
2932 struct compunit_symtab *result;
2933
2934 result
2935 = obj_file->sf->qf->find_pc_sect_compunit_symtab (obj_file,
2936 msymbol,
2937 pc,
2938 section,
2939 0);
2940 if (result != NULL)
2941 return result;
2942 }
2943 if (section != 0)
2944 {
2945 struct block_iterator iter;
2946 struct symbol *sym = NULL;
2947
2948 ALL_BLOCK_SYMBOLS (b, iter, sym)
2949 {
2950 fixup_symbol_section (sym, obj_file);
2951 if (matching_obj_sections (SYMBOL_OBJ_SECTION (obj_file,
2952 sym),
2953 section))
2954 break;
2955 }
2956 if (sym == NULL)
2957 continue; /* No symbol in this symtab matches
2958 section. */
2959 }
2960 distance = BLOCK_END (b) - BLOCK_START (b);
2961 best_cust = cust;
2962 }
2963 }
2964 }
2965
2966 if (best_cust != NULL)
2967 return best_cust;
2968
2969 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2970
2971 for (objfile *objf : current_program_space->objfiles ())
2972 {
2973 struct compunit_symtab *result;
2974
2975 if (!objf->sf)
2976 continue;
2977 result = objf->sf->qf->find_pc_sect_compunit_symtab (objf,
2978 msymbol,
2979 pc, section,
2980 1);
2981 if (result != NULL)
2982 return result;
2983 }
2984
2985 return NULL;
2986 }
2987
2988 /* Find the compunit symtab associated with PC.
2989 This will read in debug info as necessary.
2990 Backward compatibility, no section. */
2991
2992 struct compunit_symtab *
2993 find_pc_compunit_symtab (CORE_ADDR pc)
2994 {
2995 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2996 }
2997
2998 /* See symtab.h. */
2999
3000 struct symbol *
3001 find_symbol_at_address (CORE_ADDR address)
3002 {
3003 for (objfile *objfile : current_program_space->objfiles ())
3004 {
3005 if (objfile->sf == NULL
3006 || objfile->sf->qf->find_compunit_symtab_by_address == NULL)
3007 continue;
3008
3009 struct compunit_symtab *symtab
3010 = objfile->sf->qf->find_compunit_symtab_by_address (objfile, address);
3011 if (symtab != NULL)
3012 {
3013 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
3014
3015 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
3016 {
3017 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
3018 struct block_iterator iter;
3019 struct symbol *sym;
3020
3021 ALL_BLOCK_SYMBOLS (b, iter, sym)
3022 {
3023 if (SYMBOL_CLASS (sym) == LOC_STATIC
3024 && SYMBOL_VALUE_ADDRESS (sym) == address)
3025 return sym;
3026 }
3027 }
3028 }
3029 }
3030
3031 return NULL;
3032 }
3033
3034 \f
3035
3036 /* Find the source file and line number for a given PC value and SECTION.
3037 Return a structure containing a symtab pointer, a line number,
3038 and a pc range for the entire source line.
3039 The value's .pc field is NOT the specified pc.
3040 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3041 use the line that ends there. Otherwise, in that case, the line
3042 that begins there is used. */
3043
3044 /* The big complication here is that a line may start in one file, and end just
3045 before the start of another file. This usually occurs when you #include
3046 code in the middle of a subroutine. To properly find the end of a line's PC
3047 range, we must search all symtabs associated with this compilation unit, and
3048 find the one whose first PC is closer than that of the next line in this
3049 symtab. */
3050
3051 struct symtab_and_line
3052 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3053 {
3054 struct compunit_symtab *cust;
3055 struct linetable *l;
3056 int len;
3057 struct linetable_entry *item;
3058 const struct blockvector *bv;
3059 struct bound_minimal_symbol msymbol;
3060
3061 /* Info on best line seen so far, and where it starts, and its file. */
3062
3063 struct linetable_entry *best = NULL;
3064 CORE_ADDR best_end = 0;
3065 struct symtab *best_symtab = 0;
3066
3067 /* Store here the first line number
3068 of a file which contains the line at the smallest pc after PC.
3069 If we don't find a line whose range contains PC,
3070 we will use a line one less than this,
3071 with a range from the start of that file to the first line's pc. */
3072 struct linetable_entry *alt = NULL;
3073
3074 /* Info on best line seen in this file. */
3075
3076 struct linetable_entry *prev;
3077
3078 /* If this pc is not from the current frame,
3079 it is the address of the end of a call instruction.
3080 Quite likely that is the start of the following statement.
3081 But what we want is the statement containing the instruction.
3082 Fudge the pc to make sure we get that. */
3083
3084 /* It's tempting to assume that, if we can't find debugging info for
3085 any function enclosing PC, that we shouldn't search for line
3086 number info, either. However, GAS can emit line number info for
3087 assembly files --- very helpful when debugging hand-written
3088 assembly code. In such a case, we'd have no debug info for the
3089 function, but we would have line info. */
3090
3091 if (notcurrent)
3092 pc -= 1;
3093
3094 /* elz: added this because this function returned the wrong
3095 information if the pc belongs to a stub (import/export)
3096 to call a shlib function. This stub would be anywhere between
3097 two functions in the target, and the line info was erroneously
3098 taken to be the one of the line before the pc. */
3099
3100 /* RT: Further explanation:
3101
3102 * We have stubs (trampolines) inserted between procedures.
3103 *
3104 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3105 * exists in the main image.
3106 *
3107 * In the minimal symbol table, we have a bunch of symbols
3108 * sorted by start address. The stubs are marked as "trampoline",
3109 * the others appear as text. E.g.:
3110 *
3111 * Minimal symbol table for main image
3112 * main: code for main (text symbol)
3113 * shr1: stub (trampoline symbol)
3114 * foo: code for foo (text symbol)
3115 * ...
3116 * Minimal symbol table for "shr1" image:
3117 * ...
3118 * shr1: code for shr1 (text symbol)
3119 * ...
3120 *
3121 * So the code below is trying to detect if we are in the stub
3122 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3123 * and if found, do the symbolization from the real-code address
3124 * rather than the stub address.
3125 *
3126 * Assumptions being made about the minimal symbol table:
3127 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3128 * if we're really in the trampoline.s If we're beyond it (say
3129 * we're in "foo" in the above example), it'll have a closer
3130 * symbol (the "foo" text symbol for example) and will not
3131 * return the trampoline.
3132 * 2. lookup_minimal_symbol_text() will find a real text symbol
3133 * corresponding to the trampoline, and whose address will
3134 * be different than the trampoline address. I put in a sanity
3135 * check for the address being the same, to avoid an
3136 * infinite recursion.
3137 */
3138 msymbol = lookup_minimal_symbol_by_pc (pc);
3139 if (msymbol.minsym != NULL)
3140 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3141 {
3142 struct bound_minimal_symbol mfunsym
3143 = lookup_minimal_symbol_text (msymbol.minsym->linkage_name (),
3144 NULL);
3145
3146 if (mfunsym.minsym == NULL)
3147 /* I eliminated this warning since it is coming out
3148 * in the following situation:
3149 * gdb shmain // test program with shared libraries
3150 * (gdb) break shr1 // function in shared lib
3151 * Warning: In stub for ...
3152 * In the above situation, the shared lib is not loaded yet,
3153 * so of course we can't find the real func/line info,
3154 * but the "break" still works, and the warning is annoying.
3155 * So I commented out the warning. RT */
3156 /* warning ("In stub for %s; unable to find real function/line info",
3157 msymbol->linkage_name ()); */
3158 ;
3159 /* fall through */
3160 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3161 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3162 /* Avoid infinite recursion */
3163 /* See above comment about why warning is commented out. */
3164 /* warning ("In stub for %s; unable to find real function/line info",
3165 msymbol->linkage_name ()); */
3166 ;
3167 /* fall through */
3168 else
3169 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3170 }
3171
3172 symtab_and_line val;
3173 val.pspace = current_program_space;
3174
3175 cust = find_pc_sect_compunit_symtab (pc, section);
3176 if (cust == NULL)
3177 {
3178 /* If no symbol information, return previous pc. */
3179 if (notcurrent)
3180 pc++;
3181 val.pc = pc;
3182 return val;
3183 }
3184
3185 bv = COMPUNIT_BLOCKVECTOR (cust);
3186
3187 /* Look at all the symtabs that share this blockvector.
3188 They all have the same apriori range, that we found was right;
3189 but they have different line tables. */
3190
3191 for (symtab *iter_s : compunit_filetabs (cust))
3192 {
3193 /* Find the best line in this symtab. */
3194 l = SYMTAB_LINETABLE (iter_s);
3195 if (!l)
3196 continue;
3197 len = l->nitems;
3198 if (len <= 0)
3199 {
3200 /* I think len can be zero if the symtab lacks line numbers
3201 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3202 I'm not sure which, and maybe it depends on the symbol
3203 reader). */
3204 continue;
3205 }
3206
3207 prev = NULL;
3208 item = l->item; /* Get first line info. */
3209
3210 /* Is this file's first line closer than the first lines of other files?
3211 If so, record this file, and its first line, as best alternate. */
3212 if (item->pc > pc && (!alt || item->pc < alt->pc))
3213 alt = item;
3214
3215 auto pc_compare = [](const CORE_ADDR & comp_pc,
3216 const struct linetable_entry & lhs)->bool
3217 {
3218 return comp_pc < lhs.pc;
3219 };
3220
3221 struct linetable_entry *first = item;
3222 struct linetable_entry *last = item + len;
3223 item = std::upper_bound (first, last, pc, pc_compare);
3224 if (item != first)
3225 prev = item - 1; /* Found a matching item. */
3226
3227 /* At this point, prev points at the line whose start addr is <= pc, and
3228 item points at the next line. If we ran off the end of the linetable
3229 (pc >= start of the last line), then prev == item. If pc < start of
3230 the first line, prev will not be set. */
3231
3232 /* Is this file's best line closer than the best in the other files?
3233 If so, record this file, and its best line, as best so far. Don't
3234 save prev if it represents the end of a function (i.e. line number
3235 0) instead of a real line. */
3236
3237 if (prev && prev->line && (!best || prev->pc > best->pc))
3238 {
3239 best = prev;
3240 best_symtab = iter_s;
3241
3242 /* Discard BEST_END if it's before the PC of the current BEST. */
3243 if (best_end <= best->pc)
3244 best_end = 0;
3245 }
3246
3247 /* If another line (denoted by ITEM) is in the linetable and its
3248 PC is after BEST's PC, but before the current BEST_END, then
3249 use ITEM's PC as the new best_end. */
3250 if (best && item < last && item->pc > best->pc
3251 && (best_end == 0 || best_end > item->pc))
3252 best_end = item->pc;
3253 }
3254
3255 if (!best_symtab)
3256 {
3257 /* If we didn't find any line number info, just return zeros.
3258 We used to return alt->line - 1 here, but that could be
3259 anywhere; if we don't have line number info for this PC,
3260 don't make some up. */
3261 val.pc = pc;
3262 }
3263 else if (best->line == 0)
3264 {
3265 /* If our best fit is in a range of PC's for which no line
3266 number info is available (line number is zero) then we didn't
3267 find any valid line information. */
3268 val.pc = pc;
3269 }
3270 else
3271 {
3272 val.symtab = best_symtab;
3273 val.line = best->line;
3274 val.pc = best->pc;
3275 if (best_end && (!alt || best_end < alt->pc))
3276 val.end = best_end;
3277 else if (alt)
3278 val.end = alt->pc;
3279 else
3280 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3281 }
3282 val.section = section;
3283 return val;
3284 }
3285
3286 /* Backward compatibility (no section). */
3287
3288 struct symtab_and_line
3289 find_pc_line (CORE_ADDR pc, int notcurrent)
3290 {
3291 struct obj_section *section;
3292
3293 section = find_pc_overlay (pc);
3294 if (pc_in_unmapped_range (pc, section))
3295 pc = overlay_mapped_address (pc, section);
3296 return find_pc_sect_line (pc, section, notcurrent);
3297 }
3298
3299 /* See symtab.h. */
3300
3301 struct symtab *
3302 find_pc_line_symtab (CORE_ADDR pc)
3303 {
3304 struct symtab_and_line sal;
3305
3306 /* This always passes zero for NOTCURRENT to find_pc_line.
3307 There are currently no callers that ever pass non-zero. */
3308 sal = find_pc_line (pc, 0);
3309 return sal.symtab;
3310 }
3311 \f
3312 /* Find line number LINE in any symtab whose name is the same as
3313 SYMTAB.
3314
3315 If found, return the symtab that contains the linetable in which it was
3316 found, set *INDEX to the index in the linetable of the best entry
3317 found, and set *EXACT_MATCH to true if the value returned is an
3318 exact match.
3319
3320 If not found, return NULL. */
3321
3322 struct symtab *
3323 find_line_symtab (struct symtab *sym_tab, int line,
3324 int *index, bool *exact_match)
3325 {
3326 int exact = 0; /* Initialized here to avoid a compiler warning. */
3327
3328 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3329 so far seen. */
3330
3331 int best_index;
3332 struct linetable *best_linetable;
3333 struct symtab *best_symtab;
3334
3335 /* First try looking it up in the given symtab. */
3336 best_linetable = SYMTAB_LINETABLE (sym_tab);
3337 best_symtab = sym_tab;
3338 best_index = find_line_common (best_linetable, line, &exact, 0);
3339 if (best_index < 0 || !exact)
3340 {
3341 /* Didn't find an exact match. So we better keep looking for
3342 another symtab with the same name. In the case of xcoff,
3343 multiple csects for one source file (produced by IBM's FORTRAN
3344 compiler) produce multiple symtabs (this is unavoidable
3345 assuming csects can be at arbitrary places in memory and that
3346 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3347
3348 /* BEST is the smallest linenumber > LINE so far seen,
3349 or 0 if none has been seen so far.
3350 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3351 int best;
3352
3353 if (best_index >= 0)
3354 best = best_linetable->item[best_index].line;
3355 else
3356 best = 0;
3357
3358 for (objfile *objfile : current_program_space->objfiles ())
3359 {
3360 if (objfile->sf)
3361 objfile->sf->qf->expand_symtabs_with_fullname
3362 (objfile, symtab_to_fullname (sym_tab));
3363 }
3364
3365 for (objfile *objfile : current_program_space->objfiles ())
3366 {
3367 for (compunit_symtab *cu : objfile->compunits ())
3368 {
3369 for (symtab *s : compunit_filetabs (cu))
3370 {
3371 struct linetable *l;
3372 int ind;
3373
3374 if (FILENAME_CMP (sym_tab->filename, s->filename) != 0)
3375 continue;
3376 if (FILENAME_CMP (symtab_to_fullname (sym_tab),
3377 symtab_to_fullname (s)) != 0)
3378 continue;
3379 l = SYMTAB_LINETABLE (s);
3380 ind = find_line_common (l, line, &exact, 0);
3381 if (ind >= 0)
3382 {
3383 if (exact)
3384 {
3385 best_index = ind;
3386 best_linetable = l;
3387 best_symtab = s;
3388 goto done;
3389 }
3390 if (best == 0 || l->item[ind].line < best)
3391 {
3392 best = l->item[ind].line;
3393 best_index = ind;
3394 best_linetable = l;
3395 best_symtab = s;
3396 }
3397 }
3398 }
3399 }
3400 }
3401 }
3402 done:
3403 if (best_index < 0)
3404 return NULL;
3405
3406 if (index)
3407 *index = best_index;
3408 if (exact_match)
3409 *exact_match = (exact != 0);
3410
3411 return best_symtab;
3412 }
3413
3414 /* Given SYMTAB, returns all the PCs function in the symtab that
3415 exactly match LINE. Returns an empty vector if there are no exact
3416 matches, but updates BEST_ITEM in this case. */
3417
3418 std::vector<CORE_ADDR>
3419 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3420 struct linetable_entry **best_item)
3421 {
3422 int start = 0;
3423 std::vector<CORE_ADDR> result;
3424
3425 /* First, collect all the PCs that are at this line. */
3426 while (1)
3427 {
3428 int was_exact;
3429 int idx;
3430
3431 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3432 start);
3433 if (idx < 0)
3434 break;
3435
3436 if (!was_exact)
3437 {
3438 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3439
3440 if (*best_item == NULL || item->line < (*best_item)->line)
3441 *best_item = item;
3442
3443 break;
3444 }
3445
3446 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3447 start = idx + 1;
3448 }
3449
3450 return result;
3451 }
3452
3453 \f
3454 /* Set the PC value for a given source file and line number and return true.
3455 Returns false for invalid line number (and sets the PC to 0).
3456 The source file is specified with a struct symtab. */
3457
3458 bool
3459 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3460 {
3461 struct linetable *l;
3462 int ind;
3463
3464 *pc = 0;
3465 if (symtab == 0)
3466 return false;
3467
3468 symtab = find_line_symtab (symtab, line, &ind, NULL);
3469 if (symtab != NULL)
3470 {
3471 l = SYMTAB_LINETABLE (symtab);
3472 *pc = l->item[ind].pc;
3473 return true;
3474 }
3475 else
3476 return false;
3477 }
3478
3479 /* Find the range of pc values in a line.
3480 Store the starting pc of the line into *STARTPTR
3481 and the ending pc (start of next line) into *ENDPTR.
3482 Returns true to indicate success.
3483 Returns false if could not find the specified line. */
3484
3485 bool
3486 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3487 CORE_ADDR *endptr)
3488 {
3489 CORE_ADDR startaddr;
3490 struct symtab_and_line found_sal;
3491
3492 startaddr = sal.pc;
3493 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3494 return false;
3495
3496 /* This whole function is based on address. For example, if line 10 has
3497 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3498 "info line *0x123" should say the line goes from 0x100 to 0x200
3499 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3500 This also insures that we never give a range like "starts at 0x134
3501 and ends at 0x12c". */
3502
3503 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3504 if (found_sal.line != sal.line)
3505 {
3506 /* The specified line (sal) has zero bytes. */
3507 *startptr = found_sal.pc;
3508 *endptr = found_sal.pc;
3509 }
3510 else
3511 {
3512 *startptr = found_sal.pc;
3513 *endptr = found_sal.end;
3514 }
3515 return true;
3516 }
3517
3518 /* Given a line table and a line number, return the index into the line
3519 table for the pc of the nearest line whose number is >= the specified one.
3520 Return -1 if none is found. The value is >= 0 if it is an index.
3521 START is the index at which to start searching the line table.
3522
3523 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3524
3525 static int
3526 find_line_common (struct linetable *l, int lineno,
3527 int *exact_match, int start)
3528 {
3529 int i;
3530 int len;
3531
3532 /* BEST is the smallest linenumber > LINENO so far seen,
3533 or 0 if none has been seen so far.
3534 BEST_INDEX identifies the item for it. */
3535
3536 int best_index = -1;
3537 int best = 0;
3538
3539 *exact_match = 0;
3540
3541 if (lineno <= 0)
3542 return -1;
3543 if (l == 0)
3544 return -1;
3545
3546 len = l->nitems;
3547 for (i = start; i < len; i++)
3548 {
3549 struct linetable_entry *item = &(l->item[i]);
3550
3551 if (item->line == lineno)
3552 {
3553 /* Return the first (lowest address) entry which matches. */
3554 *exact_match = 1;
3555 return i;
3556 }
3557
3558 if (item->line > lineno && (best == 0 || item->line < best))
3559 {
3560 best = item->line;
3561 best_index = i;
3562 }
3563 }
3564
3565 /* If we got here, we didn't get an exact match. */
3566 return best_index;
3567 }
3568
3569 bool
3570 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3571 {
3572 struct symtab_and_line sal;
3573
3574 sal = find_pc_line (pc, 0);
3575 *startptr = sal.pc;
3576 *endptr = sal.end;
3577 return sal.symtab != 0;
3578 }
3579
3580 /* Helper for find_function_start_sal. Does most of the work, except
3581 setting the sal's symbol. */
3582
3583 static symtab_and_line
3584 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3585 bool funfirstline)
3586 {
3587 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3588
3589 if (funfirstline && sal.symtab != NULL
3590 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3591 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3592 {
3593 struct gdbarch *gdbarch = get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
3594
3595 sal.pc = func_addr;
3596 if (gdbarch_skip_entrypoint_p (gdbarch))
3597 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3598 return sal;
3599 }
3600
3601 /* We always should have a line for the function start address.
3602 If we don't, something is odd. Create a plain SAL referring
3603 just the PC and hope that skip_prologue_sal (if requested)
3604 can find a line number for after the prologue. */
3605 if (sal.pc < func_addr)
3606 {
3607 sal = {};
3608 sal.pspace = current_program_space;
3609 sal.pc = func_addr;
3610 sal.section = section;
3611 }
3612
3613 if (funfirstline)
3614 skip_prologue_sal (&sal);
3615
3616 return sal;
3617 }
3618
3619 /* See symtab.h. */
3620
3621 symtab_and_line
3622 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3623 bool funfirstline)
3624 {
3625 symtab_and_line sal
3626 = find_function_start_sal_1 (func_addr, section, funfirstline);
3627
3628 /* find_function_start_sal_1 does a linetable search, so it finds
3629 the symtab and linenumber, but not a symbol. Fill in the
3630 function symbol too. */
3631 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3632
3633 return sal;
3634 }
3635
3636 /* See symtab.h. */
3637
3638 symtab_and_line
3639 find_function_start_sal (symbol *sym, bool funfirstline)
3640 {
3641 fixup_symbol_section (sym, NULL);
3642 symtab_and_line sal
3643 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)),
3644 SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym),
3645 funfirstline);
3646 sal.symbol = sym;
3647 return sal;
3648 }
3649
3650
3651 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3652 address for that function that has an entry in SYMTAB's line info
3653 table. If such an entry cannot be found, return FUNC_ADDR
3654 unaltered. */
3655
3656 static CORE_ADDR
3657 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3658 {
3659 CORE_ADDR func_start, func_end;
3660 struct linetable *l;
3661 int i;
3662
3663 /* Give up if this symbol has no lineinfo table. */
3664 l = SYMTAB_LINETABLE (symtab);
3665 if (l == NULL)
3666 return func_addr;
3667
3668 /* Get the range for the function's PC values, or give up if we
3669 cannot, for some reason. */
3670 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3671 return func_addr;
3672
3673 /* Linetable entries are ordered by PC values, see the commentary in
3674 symtab.h where `struct linetable' is defined. Thus, the first
3675 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3676 address we are looking for. */
3677 for (i = 0; i < l->nitems; i++)
3678 {
3679 struct linetable_entry *item = &(l->item[i]);
3680
3681 /* Don't use line numbers of zero, they mark special entries in
3682 the table. See the commentary on symtab.h before the
3683 definition of struct linetable. */
3684 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3685 return item->pc;
3686 }
3687
3688 return func_addr;
3689 }
3690
3691 /* Adjust SAL to the first instruction past the function prologue.
3692 If the PC was explicitly specified, the SAL is not changed.
3693 If the line number was explicitly specified then the SAL can still be
3694 updated, unless the language for SAL is assembler, in which case the SAL
3695 will be left unchanged.
3696 If SAL is already past the prologue, then do nothing. */
3697
3698 void
3699 skip_prologue_sal (struct symtab_and_line *sal)
3700 {
3701 struct symbol *sym;
3702 struct symtab_and_line start_sal;
3703 CORE_ADDR pc, saved_pc;
3704 struct obj_section *section;
3705 const char *name;
3706 struct objfile *objfile;
3707 struct gdbarch *gdbarch;
3708 const struct block *b, *function_block;
3709 int force_skip, skip;
3710
3711 /* Do not change the SAL if PC was specified explicitly. */
3712 if (sal->explicit_pc)
3713 return;
3714
3715 /* In assembly code, if the user asks for a specific line then we should
3716 not adjust the SAL. The user already has instruction level
3717 visibility in this case, so selecting a line other than one requested
3718 is likely to be the wrong choice. */
3719 if (sal->symtab != nullptr
3720 && sal->explicit_line
3721 && SYMTAB_LANGUAGE (sal->symtab) == language_asm)
3722 return;
3723
3724 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3725
3726 switch_to_program_space_and_thread (sal->pspace);
3727
3728 sym = find_pc_sect_function (sal->pc, sal->section);
3729 if (sym != NULL)
3730 {
3731 fixup_symbol_section (sym, NULL);
3732
3733 objfile = symbol_objfile (sym);
3734 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
3735 section = SYMBOL_OBJ_SECTION (objfile, sym);
3736 name = sym->linkage_name ();
3737 }
3738 else
3739 {
3740 struct bound_minimal_symbol msymbol
3741 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3742
3743 if (msymbol.minsym == NULL)
3744 return;
3745
3746 objfile = msymbol.objfile;
3747 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3748 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3749 name = msymbol.minsym->linkage_name ();
3750 }
3751
3752 gdbarch = get_objfile_arch (objfile);
3753
3754 /* Process the prologue in two passes. In the first pass try to skip the
3755 prologue (SKIP is true) and verify there is a real need for it (indicated
3756 by FORCE_SKIP). If no such reason was found run a second pass where the
3757 prologue is not skipped (SKIP is false). */
3758
3759 skip = 1;
3760 force_skip = 1;
3761
3762 /* Be conservative - allow direct PC (without skipping prologue) only if we
3763 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3764 have to be set by the caller so we use SYM instead. */
3765 if (sym != NULL
3766 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3767 force_skip = 0;
3768
3769 saved_pc = pc;
3770 do
3771 {
3772 pc = saved_pc;
3773
3774 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3775 so that gdbarch_skip_prologue has something unique to work on. */
3776 if (section_is_overlay (section) && !section_is_mapped (section))
3777 pc = overlay_unmapped_address (pc, section);
3778
3779 /* Skip "first line" of function (which is actually its prologue). */
3780 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3781 if (gdbarch_skip_entrypoint_p (gdbarch))
3782 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3783 if (skip)
3784 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3785
3786 /* For overlays, map pc back into its mapped VMA range. */
3787 pc = overlay_mapped_address (pc, section);
3788
3789 /* Calculate line number. */
3790 start_sal = find_pc_sect_line (pc, section, 0);
3791
3792 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3793 line is still part of the same function. */
3794 if (skip && start_sal.pc != pc
3795 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3796 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3797 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3798 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3799 {
3800 /* First pc of next line */
3801 pc = start_sal.end;
3802 /* Recalculate the line number (might not be N+1). */
3803 start_sal = find_pc_sect_line (pc, section, 0);
3804 }
3805
3806 /* On targets with executable formats that don't have a concept of
3807 constructors (ELF with .init has, PE doesn't), gcc emits a call
3808 to `__main' in `main' between the prologue and before user
3809 code. */
3810 if (gdbarch_skip_main_prologue_p (gdbarch)
3811 && name && strcmp_iw (name, "main") == 0)
3812 {
3813 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3814 /* Recalculate the line number (might not be N+1). */
3815 start_sal = find_pc_sect_line (pc, section, 0);
3816 force_skip = 1;
3817 }
3818 }
3819 while (!force_skip && skip--);
3820
3821 /* If we still don't have a valid source line, try to find the first
3822 PC in the lineinfo table that belongs to the same function. This
3823 happens with COFF debug info, which does not seem to have an
3824 entry in lineinfo table for the code after the prologue which has
3825 no direct relation to source. For example, this was found to be
3826 the case with the DJGPP target using "gcc -gcoff" when the
3827 compiler inserted code after the prologue to make sure the stack
3828 is aligned. */
3829 if (!force_skip && sym && start_sal.symtab == NULL)
3830 {
3831 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3832 /* Recalculate the line number. */
3833 start_sal = find_pc_sect_line (pc, section, 0);
3834 }
3835
3836 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3837 forward SAL to the end of the prologue. */
3838 if (sal->pc >= pc)
3839 return;
3840
3841 sal->pc = pc;
3842 sal->section = section;
3843 sal->symtab = start_sal.symtab;
3844 sal->line = start_sal.line;
3845 sal->end = start_sal.end;
3846
3847 /* Check if we are now inside an inlined function. If we can,
3848 use the call site of the function instead. */
3849 b = block_for_pc_sect (sal->pc, sal->section);
3850 function_block = NULL;
3851 while (b != NULL)
3852 {
3853 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3854 function_block = b;
3855 else if (BLOCK_FUNCTION (b) != NULL)
3856 break;
3857 b = BLOCK_SUPERBLOCK (b);
3858 }
3859 if (function_block != NULL
3860 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3861 {
3862 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3863 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3864 }
3865 }
3866
3867 /* Given PC at the function's start address, attempt to find the
3868 prologue end using SAL information. Return zero if the skip fails.
3869
3870 A non-optimized prologue traditionally has one SAL for the function
3871 and a second for the function body. A single line function has
3872 them both pointing at the same line.
3873
3874 An optimized prologue is similar but the prologue may contain
3875 instructions (SALs) from the instruction body. Need to skip those
3876 while not getting into the function body.
3877
3878 The functions end point and an increasing SAL line are used as
3879 indicators of the prologue's endpoint.
3880
3881 This code is based on the function refine_prologue_limit
3882 (found in ia64). */
3883
3884 CORE_ADDR
3885 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3886 {
3887 struct symtab_and_line prologue_sal;
3888 CORE_ADDR start_pc;
3889 CORE_ADDR end_pc;
3890 const struct block *bl;
3891
3892 /* Get an initial range for the function. */
3893 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3894 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3895
3896 prologue_sal = find_pc_line (start_pc, 0);
3897 if (prologue_sal.line != 0)
3898 {
3899 /* For languages other than assembly, treat two consecutive line
3900 entries at the same address as a zero-instruction prologue.
3901 The GNU assembler emits separate line notes for each instruction
3902 in a multi-instruction macro, but compilers generally will not
3903 do this. */
3904 if (prologue_sal.symtab->language != language_asm)
3905 {
3906 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3907 int idx = 0;
3908
3909 /* Skip any earlier lines, and any end-of-sequence marker
3910 from a previous function. */
3911 while (linetable->item[idx].pc != prologue_sal.pc
3912 || linetable->item[idx].line == 0)
3913 idx++;
3914
3915 if (idx+1 < linetable->nitems
3916 && linetable->item[idx+1].line != 0
3917 && linetable->item[idx+1].pc == start_pc)
3918 return start_pc;
3919 }
3920
3921 /* If there is only one sal that covers the entire function,
3922 then it is probably a single line function, like
3923 "foo(){}". */
3924 if (prologue_sal.end >= end_pc)
3925 return 0;
3926
3927 while (prologue_sal.end < end_pc)
3928 {
3929 struct symtab_and_line sal;
3930
3931 sal = find_pc_line (prologue_sal.end, 0);
3932 if (sal.line == 0)
3933 break;
3934 /* Assume that a consecutive SAL for the same (or larger)
3935 line mark the prologue -> body transition. */
3936 if (sal.line >= prologue_sal.line)
3937 break;
3938 /* Likewise if we are in a different symtab altogether
3939 (e.g. within a file included via #include).  */
3940 if (sal.symtab != prologue_sal.symtab)
3941 break;
3942
3943 /* The line number is smaller. Check that it's from the
3944 same function, not something inlined. If it's inlined,
3945 then there is no point comparing the line numbers. */
3946 bl = block_for_pc (prologue_sal.end);
3947 while (bl)
3948 {
3949 if (block_inlined_p (bl))
3950 break;
3951 if (BLOCK_FUNCTION (bl))
3952 {
3953 bl = NULL;
3954 break;
3955 }
3956 bl = BLOCK_SUPERBLOCK (bl);
3957 }
3958 if (bl != NULL)
3959 break;
3960
3961 /* The case in which compiler's optimizer/scheduler has
3962 moved instructions into the prologue. We look ahead in
3963 the function looking for address ranges whose
3964 corresponding line number is less the first one that we
3965 found for the function. This is more conservative then
3966 refine_prologue_limit which scans a large number of SALs
3967 looking for any in the prologue. */
3968 prologue_sal = sal;
3969 }
3970 }
3971
3972 if (prologue_sal.end < end_pc)
3973 /* Return the end of this line, or zero if we could not find a
3974 line. */
3975 return prologue_sal.end;
3976 else
3977 /* Don't return END_PC, which is past the end of the function. */
3978 return prologue_sal.pc;
3979 }
3980
3981 /* See symtab.h. */
3982
3983 symbol *
3984 find_function_alias_target (bound_minimal_symbol msymbol)
3985 {
3986 CORE_ADDR func_addr;
3987 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
3988 return NULL;
3989
3990 symbol *sym = find_pc_function (func_addr);
3991 if (sym != NULL
3992 && SYMBOL_CLASS (sym) == LOC_BLOCK
3993 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
3994 return sym;
3995
3996 return NULL;
3997 }
3998
3999 \f
4000 /* If P is of the form "operator[ \t]+..." where `...' is
4001 some legitimate operator text, return a pointer to the
4002 beginning of the substring of the operator text.
4003 Otherwise, return "". */
4004
4005 static const char *
4006 operator_chars (const char *p, const char **end)
4007 {
4008 *end = "";
4009 if (!startswith (p, CP_OPERATOR_STR))
4010 return *end;
4011 p += CP_OPERATOR_LEN;
4012
4013 /* Don't get faked out by `operator' being part of a longer
4014 identifier. */
4015 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4016 return *end;
4017
4018 /* Allow some whitespace between `operator' and the operator symbol. */
4019 while (*p == ' ' || *p == '\t')
4020 p++;
4021
4022 /* Recognize 'operator TYPENAME'. */
4023
4024 if (isalpha (*p) || *p == '_' || *p == '$')
4025 {
4026 const char *q = p + 1;
4027
4028 while (isalnum (*q) || *q == '_' || *q == '$')
4029 q++;
4030 *end = q;
4031 return p;
4032 }
4033
4034 while (*p)
4035 switch (*p)
4036 {
4037 case '\\': /* regexp quoting */
4038 if (p[1] == '*')
4039 {
4040 if (p[2] == '=') /* 'operator\*=' */
4041 *end = p + 3;
4042 else /* 'operator\*' */
4043 *end = p + 2;
4044 return p;
4045 }
4046 else if (p[1] == '[')
4047 {
4048 if (p[2] == ']')
4049 error (_("mismatched quoting on brackets, "
4050 "try 'operator\\[\\]'"));
4051 else if (p[2] == '\\' && p[3] == ']')
4052 {
4053 *end = p + 4; /* 'operator\[\]' */
4054 return p;
4055 }
4056 else
4057 error (_("nothing is allowed between '[' and ']'"));
4058 }
4059 else
4060 {
4061 /* Gratuitous quote: skip it and move on. */
4062 p++;
4063 continue;
4064 }
4065 break;
4066 case '!':
4067 case '=':
4068 case '*':
4069 case '/':
4070 case '%':
4071 case '^':
4072 if (p[1] == '=')
4073 *end = p + 2;
4074 else
4075 *end = p + 1;
4076 return p;
4077 case '<':
4078 case '>':
4079 case '+':
4080 case '-':
4081 case '&':
4082 case '|':
4083 if (p[0] == '-' && p[1] == '>')
4084 {
4085 /* Struct pointer member operator 'operator->'. */
4086 if (p[2] == '*')
4087 {
4088 *end = p + 3; /* 'operator->*' */
4089 return p;
4090 }
4091 else if (p[2] == '\\')
4092 {
4093 *end = p + 4; /* Hopefully 'operator->\*' */
4094 return p;
4095 }
4096 else
4097 {
4098 *end = p + 2; /* 'operator->' */
4099 return p;
4100 }
4101 }
4102 if (p[1] == '=' || p[1] == p[0])
4103 *end = p + 2;
4104 else
4105 *end = p + 1;
4106 return p;
4107 case '~':
4108 case ',':
4109 *end = p + 1;
4110 return p;
4111 case '(':
4112 if (p[1] != ')')
4113 error (_("`operator ()' must be specified "
4114 "without whitespace in `()'"));
4115 *end = p + 2;
4116 return p;
4117 case '?':
4118 if (p[1] != ':')
4119 error (_("`operator ?:' must be specified "
4120 "without whitespace in `?:'"));
4121 *end = p + 2;
4122 return p;
4123 case '[':
4124 if (p[1] != ']')
4125 error (_("`operator []' must be specified "
4126 "without whitespace in `[]'"));
4127 *end = p + 2;
4128 return p;
4129 default:
4130 error (_("`operator %s' not supported"), p);
4131 break;
4132 }
4133
4134 *end = "";
4135 return *end;
4136 }
4137 \f
4138
4139 /* What part to match in a file name. */
4140
4141 struct filename_partial_match_opts
4142 {
4143 /* Only match the directory name part. */
4144 bool dirname = false;
4145
4146 /* Only match the basename part. */
4147 bool basename = false;
4148 };
4149
4150 /* Data structure to maintain printing state for output_source_filename. */
4151
4152 struct output_source_filename_data
4153 {
4154 /* Output only filenames matching REGEXP. */
4155 std::string regexp;
4156 gdb::optional<compiled_regex> c_regexp;
4157 /* Possibly only match a part of the filename. */
4158 filename_partial_match_opts partial_match;
4159
4160
4161 /* Cache of what we've seen so far. */
4162 struct filename_seen_cache *filename_seen_cache;
4163
4164 /* Flag of whether we're printing the first one. */
4165 int first;
4166 };
4167
4168 /* Slave routine for sources_info. Force line breaks at ,'s.
4169 NAME is the name to print.
4170 DATA contains the state for printing and watching for duplicates. */
4171
4172 static void
4173 output_source_filename (const char *name,
4174 struct output_source_filename_data *data)
4175 {
4176 /* Since a single source file can result in several partial symbol
4177 tables, we need to avoid printing it more than once. Note: if
4178 some of the psymtabs are read in and some are not, it gets
4179 printed both under "Source files for which symbols have been
4180 read" and "Source files for which symbols will be read in on
4181 demand". I consider this a reasonable way to deal with the
4182 situation. I'm not sure whether this can also happen for
4183 symtabs; it doesn't hurt to check. */
4184
4185 /* Was NAME already seen? */
4186 if (data->filename_seen_cache->seen (name))
4187 {
4188 /* Yes; don't print it again. */
4189 return;
4190 }
4191
4192 /* Does it match data->regexp? */
4193 if (data->c_regexp.has_value ())
4194 {
4195 const char *to_match;
4196 std::string dirname;
4197
4198 if (data->partial_match.dirname)
4199 {
4200 dirname = ldirname (name);
4201 to_match = dirname.c_str ();
4202 }
4203 else if (data->partial_match.basename)
4204 to_match = lbasename (name);
4205 else
4206 to_match = name;
4207
4208 if (data->c_regexp->exec (to_match, 0, NULL, 0) != 0)
4209 return;
4210 }
4211
4212 /* Print it and reset *FIRST. */
4213 if (! data->first)
4214 printf_filtered (", ");
4215 data->first = 0;
4216
4217 wrap_here ("");
4218 fputs_styled (name, file_name_style.style (), gdb_stdout);
4219 }
4220
4221 /* A callback for map_partial_symbol_filenames. */
4222
4223 static void
4224 output_partial_symbol_filename (const char *filename, const char *fullname,
4225 void *data)
4226 {
4227 output_source_filename (fullname ? fullname : filename,
4228 (struct output_source_filename_data *) data);
4229 }
4230
4231 using isrc_flag_option_def
4232 = gdb::option::flag_option_def<filename_partial_match_opts>;
4233
4234 static const gdb::option::option_def info_sources_option_defs[] = {
4235
4236 isrc_flag_option_def {
4237 "dirname",
4238 [] (filename_partial_match_opts *opts) { return &opts->dirname; },
4239 N_("Show only the files having a dirname matching REGEXP."),
4240 },
4241
4242 isrc_flag_option_def {
4243 "basename",
4244 [] (filename_partial_match_opts *opts) { return &opts->basename; },
4245 N_("Show only the files having a basename matching REGEXP."),
4246 },
4247
4248 };
4249
4250 /* Create an option_def_group for the "info sources" options, with
4251 ISRC_OPTS as context. */
4252
4253 static inline gdb::option::option_def_group
4254 make_info_sources_options_def_group (filename_partial_match_opts *isrc_opts)
4255 {
4256 return {{info_sources_option_defs}, isrc_opts};
4257 }
4258
4259 /* Prints the header message for the source files that will be printed
4260 with the matching info present in DATA. SYMBOL_MSG is a message
4261 that tells what will or has been done with the symbols of the
4262 matching source files. */
4263
4264 static void
4265 print_info_sources_header (const char *symbol_msg,
4266 const struct output_source_filename_data *data)
4267 {
4268 puts_filtered (symbol_msg);
4269 if (!data->regexp.empty ())
4270 {
4271 if (data->partial_match.dirname)
4272 printf_filtered (_("(dirname matching regular expression \"%s\")"),
4273 data->regexp.c_str ());
4274 else if (data->partial_match.basename)
4275 printf_filtered (_("(basename matching regular expression \"%s\")"),
4276 data->regexp.c_str ());
4277 else
4278 printf_filtered (_("(filename matching regular expression \"%s\")"),
4279 data->regexp.c_str ());
4280 }
4281 puts_filtered ("\n");
4282 }
4283
4284 /* Completer for "info sources". */
4285
4286 static void
4287 info_sources_command_completer (cmd_list_element *ignore,
4288 completion_tracker &tracker,
4289 const char *text, const char *word)
4290 {
4291 const auto group = make_info_sources_options_def_group (nullptr);
4292 if (gdb::option::complete_options
4293 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
4294 return;
4295 }
4296
4297 static void
4298 info_sources_command (const char *args, int from_tty)
4299 {
4300 struct output_source_filename_data data;
4301
4302 if (!have_full_symbols () && !have_partial_symbols ())
4303 {
4304 error (_("No symbol table is loaded. Use the \"file\" command."));
4305 }
4306
4307 filename_seen_cache filenames_seen;
4308
4309 auto group = make_info_sources_options_def_group (&data.partial_match);
4310
4311 gdb::option::process_options
4312 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group);
4313
4314 if (args != NULL && *args != '\000')
4315 data.regexp = args;
4316
4317 data.filename_seen_cache = &filenames_seen;
4318 data.first = 1;
4319
4320 if (data.partial_match.dirname && data.partial_match.basename)
4321 error (_("You cannot give both -basename and -dirname to 'info sources'."));
4322 if ((data.partial_match.dirname || data.partial_match.basename)
4323 && data.regexp.empty ())
4324 error (_("Missing REGEXP for 'info sources'."));
4325
4326 if (data.regexp.empty ())
4327 data.c_regexp.reset ();
4328 else
4329 {
4330 int cflags = REG_NOSUB;
4331 #ifdef HAVE_CASE_INSENSITIVE_FILE_SYSTEM
4332 cflags |= REG_ICASE;
4333 #endif
4334 data.c_regexp.emplace (data.regexp.c_str (), cflags,
4335 _("Invalid regexp"));
4336 }
4337
4338 print_info_sources_header
4339 (_("Source files for which symbols have been read in:\n"), &data);
4340
4341 for (objfile *objfile : current_program_space->objfiles ())
4342 {
4343 for (compunit_symtab *cu : objfile->compunits ())
4344 {
4345 for (symtab *s : compunit_filetabs (cu))
4346 {
4347 const char *fullname = symtab_to_fullname (s);
4348
4349 output_source_filename (fullname, &data);
4350 }
4351 }
4352 }
4353 printf_filtered ("\n\n");
4354
4355 print_info_sources_header
4356 (_("Source files for which symbols will be read in on demand:\n"), &data);
4357
4358 filenames_seen.clear ();
4359 data.first = 1;
4360 map_symbol_filenames (output_partial_symbol_filename, &data,
4361 1 /*need_fullname*/);
4362 printf_filtered ("\n");
4363 }
4364
4365 /* Compare FILE against all the entries of FILENAMES. If BASENAMES is
4366 true compare only lbasename of FILENAMES. */
4367
4368 static bool
4369 file_matches (const char *file, const std::vector<const char *> &filenames,
4370 bool basenames)
4371 {
4372 if (filenames.empty ())
4373 return true;
4374
4375 for (const char *name : filenames)
4376 {
4377 name = (basenames ? lbasename (name) : name);
4378 if (compare_filenames_for_search (file, name))
4379 return true;
4380 }
4381
4382 return false;
4383 }
4384
4385 /* Helper function for std::sort on symbol_search objects. Can only sort
4386 symbols, not minimal symbols. */
4387
4388 int
4389 symbol_search::compare_search_syms (const symbol_search &sym_a,
4390 const symbol_search &sym_b)
4391 {
4392 int c;
4393
4394 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4395 symbol_symtab (sym_b.symbol)->filename);
4396 if (c != 0)
4397 return c;
4398
4399 if (sym_a.block != sym_b.block)
4400 return sym_a.block - sym_b.block;
4401
4402 return strcmp (sym_a.symbol->print_name (), sym_b.symbol->print_name ());
4403 }
4404
4405 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4406 If SYM has no symbol_type or symbol_name, returns false. */
4407
4408 bool
4409 treg_matches_sym_type_name (const compiled_regex &treg,
4410 const struct symbol *sym)
4411 {
4412 struct type *sym_type;
4413 std::string printed_sym_type_name;
4414
4415 if (symbol_lookup_debug > 1)
4416 {
4417 fprintf_unfiltered (gdb_stdlog,
4418 "treg_matches_sym_type_name\n sym %s\n",
4419 sym->natural_name ());
4420 }
4421
4422 sym_type = SYMBOL_TYPE (sym);
4423 if (sym_type == NULL)
4424 return false;
4425
4426 {
4427 scoped_switch_to_sym_language_if_auto l (sym);
4428
4429 printed_sym_type_name = type_to_string (sym_type);
4430 }
4431
4432
4433 if (symbol_lookup_debug > 1)
4434 {
4435 fprintf_unfiltered (gdb_stdlog,
4436 " sym_type_name %s\n",
4437 printed_sym_type_name.c_str ());
4438 }
4439
4440
4441 if (printed_sym_type_name.empty ())
4442 return false;
4443
4444 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4445 }
4446
4447 /* See symtab.h. */
4448
4449 bool
4450 global_symbol_searcher::is_suitable_msymbol
4451 (const enum search_domain kind, const minimal_symbol *msymbol)
4452 {
4453 switch (MSYMBOL_TYPE (msymbol))
4454 {
4455 case mst_data:
4456 case mst_bss:
4457 case mst_file_data:
4458 case mst_file_bss:
4459 return kind == VARIABLES_DOMAIN;
4460 case mst_text:
4461 case mst_file_text:
4462 case mst_solib_trampoline:
4463 case mst_text_gnu_ifunc:
4464 return kind == FUNCTIONS_DOMAIN;
4465 default:
4466 return false;
4467 }
4468 }
4469
4470 /* See symtab.h. */
4471
4472 bool
4473 global_symbol_searcher::expand_symtabs
4474 (objfile *objfile, const gdb::optional<compiled_regex> &preg) const
4475 {
4476 enum search_domain kind = m_kind;
4477 bool found_msymbol = false;
4478
4479 if (objfile->sf)
4480 objfile->sf->qf->expand_symtabs_matching
4481 (objfile,
4482 [&] (const char *filename, bool basenames)
4483 {
4484 return file_matches (filename, filenames, basenames);
4485 },
4486 lookup_name_info::match_any (),
4487 [&] (const char *symname)
4488 {
4489 return (!preg.has_value ()
4490 || preg->exec (symname, 0, NULL, 0) == 0);
4491 },
4492 NULL,
4493 kind);
4494
4495 /* Here, we search through the minimal symbol tables for functions and
4496 variables that match, and force their symbols to be read. This is in
4497 particular necessary for demangled variable names, which are no longer
4498 put into the partial symbol tables. The symbol will then be found
4499 during the scan of symtabs later.
4500
4501 For functions, find_pc_symtab should succeed if we have debug info for
4502 the function, for variables we have to call
4503 lookup_symbol_in_objfile_from_linkage_name to determine if the
4504 variable has debug info. If the lookup fails, set found_msymbol so
4505 that we will rescan to print any matching symbols without debug info.
4506 We only search the objfile the msymbol came from, we no longer search
4507 all objfiles. In large programs (1000s of shared libs) searching all
4508 objfiles is not worth the pain. */
4509 if (filenames.empty ()
4510 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4511 {
4512 for (minimal_symbol *msymbol : objfile->msymbols ())
4513 {
4514 QUIT;
4515
4516 if (msymbol->created_by_gdb)
4517 continue;
4518
4519 if (is_suitable_msymbol (kind, msymbol))
4520 {
4521 if (!preg.has_value ()
4522 || preg->exec (msymbol->natural_name (), 0,
4523 NULL, 0) == 0)
4524 {
4525 /* An important side-effect of these lookup functions is
4526 to expand the symbol table if msymbol is found, later
4527 in the process we will add matching symbols or
4528 msymbols to the results list, and that requires that
4529 the symbols tables are expanded. */
4530 if (kind == FUNCTIONS_DOMAIN
4531 ? (find_pc_compunit_symtab
4532 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4533 == NULL)
4534 : (lookup_symbol_in_objfile_from_linkage_name
4535 (objfile, msymbol->linkage_name (),
4536 VAR_DOMAIN)
4537 .symbol == NULL))
4538 found_msymbol = true;
4539 }
4540 }
4541 }
4542 }
4543
4544 return found_msymbol;
4545 }
4546
4547 /* See symtab.h. */
4548
4549 bool
4550 global_symbol_searcher::add_matching_symbols
4551 (objfile *objfile,
4552 const gdb::optional<compiled_regex> &preg,
4553 const gdb::optional<compiled_regex> &treg,
4554 std::set<symbol_search> *result_set) const
4555 {
4556 enum search_domain kind = m_kind;
4557
4558 /* Add matching symbols (if not already present). */
4559 for (compunit_symtab *cust : objfile->compunits ())
4560 {
4561 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
4562
4563 for (block_enum block : { GLOBAL_BLOCK, STATIC_BLOCK })
4564 {
4565 struct block_iterator iter;
4566 struct symbol *sym;
4567 const struct block *b = BLOCKVECTOR_BLOCK (bv, block);
4568
4569 ALL_BLOCK_SYMBOLS (b, iter, sym)
4570 {
4571 struct symtab *real_symtab = symbol_symtab (sym);
4572
4573 QUIT;
4574
4575 /* Check first sole REAL_SYMTAB->FILENAME. It does
4576 not need to be a substring of symtab_to_fullname as
4577 it may contain "./" etc. */
4578 if ((file_matches (real_symtab->filename, filenames, false)
4579 || ((basenames_may_differ
4580 || file_matches (lbasename (real_symtab->filename),
4581 filenames, true))
4582 && file_matches (symtab_to_fullname (real_symtab),
4583 filenames, false)))
4584 && ((!preg.has_value ()
4585 || preg->exec (sym->natural_name (), 0,
4586 NULL, 0) == 0)
4587 && ((kind == VARIABLES_DOMAIN
4588 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4589 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4590 && SYMBOL_CLASS (sym) != LOC_BLOCK
4591 /* LOC_CONST can be used for more than
4592 just enums, e.g., c++ static const
4593 members. We only want to skip enums
4594 here. */
4595 && !(SYMBOL_CLASS (sym) == LOC_CONST
4596 && (TYPE_CODE (SYMBOL_TYPE (sym))
4597 == TYPE_CODE_ENUM))
4598 && (!treg.has_value ()
4599 || treg_matches_sym_type_name (*treg, sym)))
4600 || (kind == FUNCTIONS_DOMAIN
4601 && SYMBOL_CLASS (sym) == LOC_BLOCK
4602 && (!treg.has_value ()
4603 || treg_matches_sym_type_name (*treg,
4604 sym)))
4605 || (kind == TYPES_DOMAIN
4606 && SYMBOL_CLASS (sym) == LOC_TYPEDEF
4607 && SYMBOL_DOMAIN (sym) != MODULE_DOMAIN)
4608 || (kind == MODULES_DOMAIN
4609 && SYMBOL_DOMAIN (sym) == MODULE_DOMAIN
4610 && SYMBOL_LINE (sym) != 0))))
4611 {
4612 if (result_set->size () < m_max_search_results)
4613 {
4614 /* Match, insert if not already in the results. */
4615 symbol_search ss (block, sym);
4616 if (result_set->find (ss) == result_set->end ())
4617 result_set->insert (ss);
4618 }
4619 else
4620 return false;
4621 }
4622 }
4623 }
4624 }
4625
4626 return true;
4627 }
4628
4629 /* See symtab.h. */
4630
4631 bool
4632 global_symbol_searcher::add_matching_msymbols
4633 (objfile *objfile, const gdb::optional<compiled_regex> &preg,
4634 std::vector<symbol_search> *results) const
4635 {
4636 enum search_domain kind = m_kind;
4637
4638 for (minimal_symbol *msymbol : objfile->msymbols ())
4639 {
4640 QUIT;
4641
4642 if (msymbol->created_by_gdb)
4643 continue;
4644
4645 if (is_suitable_msymbol (kind, msymbol))
4646 {
4647 if (!preg.has_value ()
4648 || preg->exec (msymbol->natural_name (), 0,
4649 NULL, 0) == 0)
4650 {
4651 /* For functions we can do a quick check of whether the
4652 symbol might be found via find_pc_symtab. */
4653 if (kind != FUNCTIONS_DOMAIN
4654 || (find_pc_compunit_symtab
4655 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4656 == NULL))
4657 {
4658 if (lookup_symbol_in_objfile_from_linkage_name
4659 (objfile, msymbol->linkage_name (),
4660 VAR_DOMAIN).symbol == NULL)
4661 {
4662 /* Matching msymbol, add it to the results list. */
4663 if (results->size () < m_max_search_results)
4664 results->emplace_back (GLOBAL_BLOCK, msymbol, objfile);
4665 else
4666 return false;
4667 }
4668 }
4669 }
4670 }
4671 }
4672
4673 return true;
4674 }
4675
4676 /* See symtab.h. */
4677
4678 std::vector<symbol_search>
4679 global_symbol_searcher::search () const
4680 {
4681 gdb::optional<compiled_regex> preg;
4682 gdb::optional<compiled_regex> treg;
4683
4684 gdb_assert (m_kind != ALL_DOMAIN);
4685
4686 if (m_symbol_name_regexp != NULL)
4687 {
4688 const char *symbol_name_regexp = m_symbol_name_regexp;
4689
4690 /* Make sure spacing is right for C++ operators.
4691 This is just a courtesy to make the matching less sensitive
4692 to how many spaces the user leaves between 'operator'
4693 and <TYPENAME> or <OPERATOR>. */
4694 const char *opend;
4695 const char *opname = operator_chars (symbol_name_regexp, &opend);
4696
4697 if (*opname)
4698 {
4699 int fix = -1; /* -1 means ok; otherwise number of
4700 spaces needed. */
4701
4702 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4703 {
4704 /* There should 1 space between 'operator' and 'TYPENAME'. */
4705 if (opname[-1] != ' ' || opname[-2] == ' ')
4706 fix = 1;
4707 }
4708 else
4709 {
4710 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4711 if (opname[-1] == ' ')
4712 fix = 0;
4713 }
4714 /* If wrong number of spaces, fix it. */
4715 if (fix >= 0)
4716 {
4717 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4718
4719 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4720 symbol_name_regexp = tmp;
4721 }
4722 }
4723
4724 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4725 ? REG_ICASE : 0);
4726 preg.emplace (symbol_name_regexp, cflags,
4727 _("Invalid regexp"));
4728 }
4729
4730 if (m_symbol_type_regexp != NULL)
4731 {
4732 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4733 ? REG_ICASE : 0);
4734 treg.emplace (m_symbol_type_regexp, cflags,
4735 _("Invalid regexp"));
4736 }
4737
4738 bool found_msymbol = false;
4739 std::set<symbol_search> result_set;
4740 for (objfile *objfile : current_program_space->objfiles ())
4741 {
4742 /* Expand symtabs within objfile that possibly contain matching
4743 symbols. */
4744 found_msymbol |= expand_symtabs (objfile, preg);
4745
4746 /* Find matching symbols within OBJFILE and add them in to the
4747 RESULT_SET set. Use a set here so that we can easily detect
4748 duplicates as we go, and can therefore track how many unique
4749 matches we have found so far. */
4750 if (!add_matching_symbols (objfile, preg, treg, &result_set))
4751 break;
4752 }
4753
4754 /* Convert the result set into a sorted result list, as std::set is
4755 defined to be sorted then no explicit call to std::sort is needed. */
4756 std::vector<symbol_search> result (result_set.begin (), result_set.end ());
4757
4758 /* If there are no debug symbols, then add matching minsyms. But if the
4759 user wants to see symbols matching a type regexp, then never give a
4760 minimal symbol, as we assume that a minimal symbol does not have a
4761 type. */
4762 if ((found_msymbol || (filenames.empty () && m_kind == VARIABLES_DOMAIN))
4763 && !m_exclude_minsyms
4764 && !treg.has_value ())
4765 {
4766 gdb_assert (m_kind == VARIABLES_DOMAIN || m_kind == FUNCTIONS_DOMAIN);
4767 for (objfile *objfile : current_program_space->objfiles ())
4768 if (!add_matching_msymbols (objfile, preg, &result))
4769 break;
4770 }
4771
4772 return result;
4773 }
4774
4775 /* See symtab.h. */
4776
4777 std::string
4778 symbol_to_info_string (struct symbol *sym, int block,
4779 enum search_domain kind)
4780 {
4781 std::string str;
4782
4783 gdb_assert (block == GLOBAL_BLOCK || block == STATIC_BLOCK);
4784
4785 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4786 str += "static ";
4787
4788 /* Typedef that is not a C++ class. */
4789 if (kind == TYPES_DOMAIN
4790 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4791 {
4792 string_file tmp_stream;
4793
4794 /* FIXME: For C (and C++) we end up with a difference in output here
4795 between how a typedef is printed, and non-typedefs are printed.
4796 The TYPEDEF_PRINT code places a ";" at the end in an attempt to
4797 appear C-like, while TYPE_PRINT doesn't.
4798
4799 For the struct printing case below, things are worse, we force
4800 printing of the ";" in this function, which is going to be wrong
4801 for languages that don't require a ";" between statements. */
4802 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_TYPEDEF)
4803 typedef_print (SYMBOL_TYPE (sym), sym, &tmp_stream);
4804 else
4805 type_print (SYMBOL_TYPE (sym), "", &tmp_stream, -1);
4806 str += tmp_stream.string ();
4807 }
4808 /* variable, func, or typedef-that-is-c++-class. */
4809 else if (kind < TYPES_DOMAIN
4810 || (kind == TYPES_DOMAIN
4811 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4812 {
4813 string_file tmp_stream;
4814
4815 type_print (SYMBOL_TYPE (sym),
4816 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4817 ? "" : sym->print_name ()),
4818 &tmp_stream, 0);
4819
4820 str += tmp_stream.string ();
4821 str += ";";
4822 }
4823 /* Printing of modules is currently done here, maybe at some future
4824 point we might want a language specific method to print the module
4825 symbol so that we can customise the output more. */
4826 else if (kind == MODULES_DOMAIN)
4827 str += sym->print_name ();
4828
4829 return str;
4830 }
4831
4832 /* Helper function for symbol info commands, for example 'info functions',
4833 'info variables', etc. KIND is the kind of symbol we searched for, and
4834 BLOCK is the type of block the symbols was found in, either GLOBAL_BLOCK
4835 or STATIC_BLOCK. SYM is the symbol we found. If LAST is not NULL,
4836 print file and line number information for the symbol as well. Skip
4837 printing the filename if it matches LAST. */
4838
4839 static void
4840 print_symbol_info (enum search_domain kind,
4841 struct symbol *sym,
4842 int block, const char *last)
4843 {
4844 scoped_switch_to_sym_language_if_auto l (sym);
4845 struct symtab *s = symbol_symtab (sym);
4846
4847 if (last != NULL)
4848 {
4849 const char *s_filename = symtab_to_filename_for_display (s);
4850
4851 if (filename_cmp (last, s_filename) != 0)
4852 {
4853 printf_filtered (_("\nFile %ps:\n"),
4854 styled_string (file_name_style.style (),
4855 s_filename));
4856 }
4857
4858 if (SYMBOL_LINE (sym) != 0)
4859 printf_filtered ("%d:\t", SYMBOL_LINE (sym));
4860 else
4861 puts_filtered ("\t");
4862 }
4863
4864 std::string str = symbol_to_info_string (sym, block, kind);
4865 printf_filtered ("%s\n", str.c_str ());
4866 }
4867
4868 /* This help function for symtab_symbol_info() prints information
4869 for non-debugging symbols to gdb_stdout. */
4870
4871 static void
4872 print_msymbol_info (struct bound_minimal_symbol msymbol)
4873 {
4874 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4875 char *tmp;
4876
4877 if (gdbarch_addr_bit (gdbarch) <= 32)
4878 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4879 & (CORE_ADDR) 0xffffffff,
4880 8);
4881 else
4882 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4883 16);
4884
4885 ui_file_style sym_style = (msymbol.minsym->text_p ()
4886 ? function_name_style.style ()
4887 : ui_file_style ());
4888
4889 printf_filtered (_("%ps %ps\n"),
4890 styled_string (address_style.style (), tmp),
4891 styled_string (sym_style, msymbol.minsym->print_name ()));
4892 }
4893
4894 /* This is the guts of the commands "info functions", "info types", and
4895 "info variables". It calls search_symbols to find all matches and then
4896 print_[m]symbol_info to print out some useful information about the
4897 matches. */
4898
4899 static void
4900 symtab_symbol_info (bool quiet, bool exclude_minsyms,
4901 const char *regexp, enum search_domain kind,
4902 const char *t_regexp, int from_tty)
4903 {
4904 static const char * const classnames[] =
4905 {"variable", "function", "type", "module"};
4906 const char *last_filename = "";
4907 int first = 1;
4908
4909 gdb_assert (kind != ALL_DOMAIN);
4910
4911 if (regexp != nullptr && *regexp == '\0')
4912 regexp = nullptr;
4913
4914 global_symbol_searcher spec (kind, regexp);
4915 spec.set_symbol_type_regexp (t_regexp);
4916 spec.set_exclude_minsyms (exclude_minsyms);
4917 std::vector<symbol_search> symbols = spec.search ();
4918
4919 if (!quiet)
4920 {
4921 if (regexp != NULL)
4922 {
4923 if (t_regexp != NULL)
4924 printf_filtered
4925 (_("All %ss matching regular expression \"%s\""
4926 " with type matching regular expression \"%s\":\n"),
4927 classnames[kind], regexp, t_regexp);
4928 else
4929 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4930 classnames[kind], regexp);
4931 }
4932 else
4933 {
4934 if (t_regexp != NULL)
4935 printf_filtered
4936 (_("All defined %ss"
4937 " with type matching regular expression \"%s\" :\n"),
4938 classnames[kind], t_regexp);
4939 else
4940 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4941 }
4942 }
4943
4944 for (const symbol_search &p : symbols)
4945 {
4946 QUIT;
4947
4948 if (p.msymbol.minsym != NULL)
4949 {
4950 if (first)
4951 {
4952 if (!quiet)
4953 printf_filtered (_("\nNon-debugging symbols:\n"));
4954 first = 0;
4955 }
4956 print_msymbol_info (p.msymbol);
4957 }
4958 else
4959 {
4960 print_symbol_info (kind,
4961 p.symbol,
4962 p.block,
4963 last_filename);
4964 last_filename
4965 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
4966 }
4967 }
4968 }
4969
4970 /* Structure to hold the values of the options used by the 'info variables'
4971 and 'info functions' commands. These correspond to the -q, -t, and -n
4972 options. */
4973
4974 struct info_print_options
4975 {
4976 bool quiet = false;
4977 bool exclude_minsyms = false;
4978 char *type_regexp = nullptr;
4979
4980 ~info_print_options ()
4981 {
4982 xfree (type_regexp);
4983 }
4984 };
4985
4986 /* The options used by the 'info variables' and 'info functions'
4987 commands. */
4988
4989 static const gdb::option::option_def info_print_options_defs[] = {
4990 gdb::option::boolean_option_def<info_print_options> {
4991 "q",
4992 [] (info_print_options *opt) { return &opt->quiet; },
4993 nullptr, /* show_cmd_cb */
4994 nullptr /* set_doc */
4995 },
4996
4997 gdb::option::boolean_option_def<info_print_options> {
4998 "n",
4999 [] (info_print_options *opt) { return &opt->exclude_minsyms; },
5000 nullptr, /* show_cmd_cb */
5001 nullptr /* set_doc */
5002 },
5003
5004 gdb::option::string_option_def<info_print_options> {
5005 "t",
5006 [] (info_print_options *opt) { return &opt->type_regexp; },
5007 nullptr, /* show_cmd_cb */
5008 nullptr /* set_doc */
5009 }
5010 };
5011
5012 /* Returns the option group used by 'info variables' and 'info
5013 functions'. */
5014
5015 static gdb::option::option_def_group
5016 make_info_print_options_def_group (info_print_options *opts)
5017 {
5018 return {{info_print_options_defs}, opts};
5019 }
5020
5021 /* Command completer for 'info variables' and 'info functions'. */
5022
5023 static void
5024 info_print_command_completer (struct cmd_list_element *ignore,
5025 completion_tracker &tracker,
5026 const char *text, const char * /* word */)
5027 {
5028 const auto group
5029 = make_info_print_options_def_group (nullptr);
5030 if (gdb::option::complete_options
5031 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5032 return;
5033
5034 const char *word = advance_to_expression_complete_word_point (tracker, text);
5035 symbol_completer (ignore, tracker, text, word);
5036 }
5037
5038 /* Implement the 'info variables' command. */
5039
5040 static void
5041 info_variables_command (const char *args, int from_tty)
5042 {
5043 info_print_options opts;
5044 auto grp = make_info_print_options_def_group (&opts);
5045 gdb::option::process_options
5046 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5047 if (args != nullptr && *args == '\0')
5048 args = nullptr;
5049
5050 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args, VARIABLES_DOMAIN,
5051 opts.type_regexp, from_tty);
5052 }
5053
5054 /* Implement the 'info functions' command. */
5055
5056 static void
5057 info_functions_command (const char *args, int from_tty)
5058 {
5059 info_print_options opts;
5060 auto grp = make_info_print_options_def_group (&opts);
5061 gdb::option::process_options
5062 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5063 if (args != nullptr && *args == '\0')
5064 args = nullptr;
5065
5066 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args,
5067 FUNCTIONS_DOMAIN, opts.type_regexp, from_tty);
5068 }
5069
5070 /* Holds the -q option for the 'info types' command. */
5071
5072 struct info_types_options
5073 {
5074 bool quiet = false;
5075 };
5076
5077 /* The options used by the 'info types' command. */
5078
5079 static const gdb::option::option_def info_types_options_defs[] = {
5080 gdb::option::boolean_option_def<info_types_options> {
5081 "q",
5082 [] (info_types_options *opt) { return &opt->quiet; },
5083 nullptr, /* show_cmd_cb */
5084 nullptr /* set_doc */
5085 }
5086 };
5087
5088 /* Returns the option group used by 'info types'. */
5089
5090 static gdb::option::option_def_group
5091 make_info_types_options_def_group (info_types_options *opts)
5092 {
5093 return {{info_types_options_defs}, opts};
5094 }
5095
5096 /* Implement the 'info types' command. */
5097
5098 static void
5099 info_types_command (const char *args, int from_tty)
5100 {
5101 info_types_options opts;
5102
5103 auto grp = make_info_types_options_def_group (&opts);
5104 gdb::option::process_options
5105 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5106 if (args != nullptr && *args == '\0')
5107 args = nullptr;
5108 symtab_symbol_info (opts.quiet, false, args, TYPES_DOMAIN, NULL, from_tty);
5109 }
5110
5111 /* Command completer for 'info types' command. */
5112
5113 static void
5114 info_types_command_completer (struct cmd_list_element *ignore,
5115 completion_tracker &tracker,
5116 const char *text, const char * /* word */)
5117 {
5118 const auto group
5119 = make_info_types_options_def_group (nullptr);
5120 if (gdb::option::complete_options
5121 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5122 return;
5123
5124 const char *word = advance_to_expression_complete_word_point (tracker, text);
5125 symbol_completer (ignore, tracker, text, word);
5126 }
5127
5128 /* Implement the 'info modules' command. */
5129
5130 static void
5131 info_modules_command (const char *args, int from_tty)
5132 {
5133 info_types_options opts;
5134
5135 auto grp = make_info_types_options_def_group (&opts);
5136 gdb::option::process_options
5137 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5138 if (args != nullptr && *args == '\0')
5139 args = nullptr;
5140 symtab_symbol_info (opts.quiet, true, args, MODULES_DOMAIN, NULL,
5141 from_tty);
5142 }
5143
5144 static void
5145 rbreak_command (const char *regexp, int from_tty)
5146 {
5147 std::string string;
5148 const char *file_name = nullptr;
5149
5150 if (regexp != nullptr)
5151 {
5152 const char *colon = strchr (regexp, ':');
5153
5154 if (colon && *(colon + 1) != ':')
5155 {
5156 int colon_index;
5157 char *local_name;
5158
5159 colon_index = colon - regexp;
5160 local_name = (char *) alloca (colon_index + 1);
5161 memcpy (local_name, regexp, colon_index);
5162 local_name[colon_index--] = 0;
5163 while (isspace (local_name[colon_index]))
5164 local_name[colon_index--] = 0;
5165 file_name = local_name;
5166 regexp = skip_spaces (colon + 1);
5167 }
5168 }
5169
5170 global_symbol_searcher spec (FUNCTIONS_DOMAIN, regexp);
5171 if (file_name != nullptr)
5172 spec.filenames.push_back (file_name);
5173 std::vector<symbol_search> symbols = spec.search ();
5174
5175 scoped_rbreak_breakpoints finalize;
5176 for (const symbol_search &p : symbols)
5177 {
5178 if (p.msymbol.minsym == NULL)
5179 {
5180 struct symtab *symtab = symbol_symtab (p.symbol);
5181 const char *fullname = symtab_to_fullname (symtab);
5182
5183 string = string_printf ("%s:'%s'", fullname,
5184 p.symbol->linkage_name ());
5185 break_command (&string[0], from_tty);
5186 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
5187 }
5188 else
5189 {
5190 string = string_printf ("'%s'",
5191 p.msymbol.minsym->linkage_name ());
5192
5193 break_command (&string[0], from_tty);
5194 printf_filtered ("<function, no debug info> %s;\n",
5195 p.msymbol.minsym->print_name ());
5196 }
5197 }
5198 }
5199 \f
5200
5201 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
5202
5203 static int
5204 compare_symbol_name (const char *symbol_name, language symbol_language,
5205 const lookup_name_info &lookup_name,
5206 completion_match_result &match_res)
5207 {
5208 const language_defn *lang = language_def (symbol_language);
5209
5210 symbol_name_matcher_ftype *name_match
5211 = get_symbol_name_matcher (lang, lookup_name);
5212
5213 return name_match (symbol_name, lookup_name, &match_res);
5214 }
5215
5216 /* See symtab.h. */
5217
5218 void
5219 completion_list_add_name (completion_tracker &tracker,
5220 language symbol_language,
5221 const char *symname,
5222 const lookup_name_info &lookup_name,
5223 const char *text, const char *word)
5224 {
5225 completion_match_result &match_res
5226 = tracker.reset_completion_match_result ();
5227
5228 /* Clip symbols that cannot match. */
5229 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
5230 return;
5231
5232 /* Refresh SYMNAME from the match string. It's potentially
5233 different depending on language. (E.g., on Ada, the match may be
5234 the encoded symbol name wrapped in "<>"). */
5235 symname = match_res.match.match ();
5236 gdb_assert (symname != NULL);
5237
5238 /* We have a match for a completion, so add SYMNAME to the current list
5239 of matches. Note that the name is moved to freshly malloc'd space. */
5240
5241 {
5242 gdb::unique_xmalloc_ptr<char> completion
5243 = make_completion_match_str (symname, text, word);
5244
5245 /* Here we pass the match-for-lcd object to add_completion. Some
5246 languages match the user text against substrings of symbol
5247 names in some cases. E.g., in C++, "b push_ba" completes to
5248 "std::vector::push_back", "std::string::push_back", etc., and
5249 in this case we want the completion lowest common denominator
5250 to be "push_back" instead of "std::". */
5251 tracker.add_completion (std::move (completion),
5252 &match_res.match_for_lcd, text, word);
5253 }
5254 }
5255
5256 /* completion_list_add_name wrapper for struct symbol. */
5257
5258 static void
5259 completion_list_add_symbol (completion_tracker &tracker,
5260 symbol *sym,
5261 const lookup_name_info &lookup_name,
5262 const char *text, const char *word)
5263 {
5264 completion_list_add_name (tracker, sym->language (),
5265 sym->natural_name (),
5266 lookup_name, text, word);
5267 }
5268
5269 /* completion_list_add_name wrapper for struct minimal_symbol. */
5270
5271 static void
5272 completion_list_add_msymbol (completion_tracker &tracker,
5273 minimal_symbol *sym,
5274 const lookup_name_info &lookup_name,
5275 const char *text, const char *word)
5276 {
5277 completion_list_add_name (tracker, sym->language (),
5278 sym->natural_name (),
5279 lookup_name, text, word);
5280 }
5281
5282
5283 /* ObjC: In case we are completing on a selector, look as the msymbol
5284 again and feed all the selectors into the mill. */
5285
5286 static void
5287 completion_list_objc_symbol (completion_tracker &tracker,
5288 struct minimal_symbol *msymbol,
5289 const lookup_name_info &lookup_name,
5290 const char *text, const char *word)
5291 {
5292 static char *tmp = NULL;
5293 static unsigned int tmplen = 0;
5294
5295 const char *method, *category, *selector;
5296 char *tmp2 = NULL;
5297
5298 method = msymbol->natural_name ();
5299
5300 /* Is it a method? */
5301 if ((method[0] != '-') && (method[0] != '+'))
5302 return;
5303
5304 if (text[0] == '[')
5305 /* Complete on shortened method method. */
5306 completion_list_add_name (tracker, language_objc,
5307 method + 1,
5308 lookup_name,
5309 text, word);
5310
5311 while ((strlen (method) + 1) >= tmplen)
5312 {
5313 if (tmplen == 0)
5314 tmplen = 1024;
5315 else
5316 tmplen *= 2;
5317 tmp = (char *) xrealloc (tmp, tmplen);
5318 }
5319 selector = strchr (method, ' ');
5320 if (selector != NULL)
5321 selector++;
5322
5323 category = strchr (method, '(');
5324
5325 if ((category != NULL) && (selector != NULL))
5326 {
5327 memcpy (tmp, method, (category - method));
5328 tmp[category - method] = ' ';
5329 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5330 completion_list_add_name (tracker, language_objc, tmp,
5331 lookup_name, text, word);
5332 if (text[0] == '[')
5333 completion_list_add_name (tracker, language_objc, tmp + 1,
5334 lookup_name, text, word);
5335 }
5336
5337 if (selector != NULL)
5338 {
5339 /* Complete on selector only. */
5340 strcpy (tmp, selector);
5341 tmp2 = strchr (tmp, ']');
5342 if (tmp2 != NULL)
5343 *tmp2 = '\0';
5344
5345 completion_list_add_name (tracker, language_objc, tmp,
5346 lookup_name, text, word);
5347 }
5348 }
5349
5350 /* Break the non-quoted text based on the characters which are in
5351 symbols. FIXME: This should probably be language-specific. */
5352
5353 static const char *
5354 language_search_unquoted_string (const char *text, const char *p)
5355 {
5356 for (; p > text; --p)
5357 {
5358 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5359 continue;
5360 else
5361 {
5362 if ((current_language->la_language == language_objc))
5363 {
5364 if (p[-1] == ':') /* Might be part of a method name. */
5365 continue;
5366 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5367 p -= 2; /* Beginning of a method name. */
5368 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5369 { /* Might be part of a method name. */
5370 const char *t = p;
5371
5372 /* Seeing a ' ' or a '(' is not conclusive evidence
5373 that we are in the middle of a method name. However,
5374 finding "-[" or "+[" should be pretty un-ambiguous.
5375 Unfortunately we have to find it now to decide. */
5376
5377 while (t > text)
5378 if (isalnum (t[-1]) || t[-1] == '_' ||
5379 t[-1] == ' ' || t[-1] == ':' ||
5380 t[-1] == '(' || t[-1] == ')')
5381 --t;
5382 else
5383 break;
5384
5385 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5386 p = t - 2; /* Method name detected. */
5387 /* Else we leave with p unchanged. */
5388 }
5389 }
5390 break;
5391 }
5392 }
5393 return p;
5394 }
5395
5396 static void
5397 completion_list_add_fields (completion_tracker &tracker,
5398 struct symbol *sym,
5399 const lookup_name_info &lookup_name,
5400 const char *text, const char *word)
5401 {
5402 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5403 {
5404 struct type *t = SYMBOL_TYPE (sym);
5405 enum type_code c = TYPE_CODE (t);
5406 int j;
5407
5408 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5409 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5410 if (TYPE_FIELD_NAME (t, j))
5411 completion_list_add_name (tracker, sym->language (),
5412 TYPE_FIELD_NAME (t, j),
5413 lookup_name, text, word);
5414 }
5415 }
5416
5417 /* See symtab.h. */
5418
5419 bool
5420 symbol_is_function_or_method (symbol *sym)
5421 {
5422 switch (TYPE_CODE (SYMBOL_TYPE (sym)))
5423 {
5424 case TYPE_CODE_FUNC:
5425 case TYPE_CODE_METHOD:
5426 return true;
5427 default:
5428 return false;
5429 }
5430 }
5431
5432 /* See symtab.h. */
5433
5434 bool
5435 symbol_is_function_or_method (minimal_symbol *msymbol)
5436 {
5437 switch (MSYMBOL_TYPE (msymbol))
5438 {
5439 case mst_text:
5440 case mst_text_gnu_ifunc:
5441 case mst_solib_trampoline:
5442 case mst_file_text:
5443 return true;
5444 default:
5445 return false;
5446 }
5447 }
5448
5449 /* See symtab.h. */
5450
5451 bound_minimal_symbol
5452 find_gnu_ifunc (const symbol *sym)
5453 {
5454 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
5455 return {};
5456
5457 lookup_name_info lookup_name (sym->search_name (),
5458 symbol_name_match_type::SEARCH_NAME);
5459 struct objfile *objfile = symbol_objfile (sym);
5460
5461 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
5462 minimal_symbol *ifunc = NULL;
5463
5464 iterate_over_minimal_symbols (objfile, lookup_name,
5465 [&] (minimal_symbol *minsym)
5466 {
5467 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc
5468 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5469 {
5470 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
5471 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5472 {
5473 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5474 msym_addr
5475 = gdbarch_convert_from_func_ptr_addr (gdbarch,
5476 msym_addr,
5477 current_top_target ());
5478 }
5479 if (msym_addr == address)
5480 {
5481 ifunc = minsym;
5482 return true;
5483 }
5484 }
5485 return false;
5486 });
5487
5488 if (ifunc != NULL)
5489 return {ifunc, objfile};
5490 return {};
5491 }
5492
5493 /* Add matching symbols from SYMTAB to the current completion list. */
5494
5495 static void
5496 add_symtab_completions (struct compunit_symtab *cust,
5497 completion_tracker &tracker,
5498 complete_symbol_mode mode,
5499 const lookup_name_info &lookup_name,
5500 const char *text, const char *word,
5501 enum type_code code)
5502 {
5503 struct symbol *sym;
5504 const struct block *b;
5505 struct block_iterator iter;
5506 int i;
5507
5508 if (cust == NULL)
5509 return;
5510
5511 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5512 {
5513 QUIT;
5514 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5515 ALL_BLOCK_SYMBOLS (b, iter, sym)
5516 {
5517 if (completion_skip_symbol (mode, sym))
5518 continue;
5519
5520 if (code == TYPE_CODE_UNDEF
5521 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5522 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5523 completion_list_add_symbol (tracker, sym,
5524 lookup_name,
5525 text, word);
5526 }
5527 }
5528 }
5529
5530 void
5531 default_collect_symbol_completion_matches_break_on
5532 (completion_tracker &tracker, complete_symbol_mode mode,
5533 symbol_name_match_type name_match_type,
5534 const char *text, const char *word,
5535 const char *break_on, enum type_code code)
5536 {
5537 /* Problem: All of the symbols have to be copied because readline
5538 frees them. I'm not going to worry about this; hopefully there
5539 won't be that many. */
5540
5541 struct symbol *sym;
5542 const struct block *b;
5543 const struct block *surrounding_static_block, *surrounding_global_block;
5544 struct block_iterator iter;
5545 /* The symbol we are completing on. Points in same buffer as text. */
5546 const char *sym_text;
5547
5548 /* Now look for the symbol we are supposed to complete on. */
5549 if (mode == complete_symbol_mode::LINESPEC)
5550 sym_text = text;
5551 else
5552 {
5553 const char *p;
5554 char quote_found;
5555 const char *quote_pos = NULL;
5556
5557 /* First see if this is a quoted string. */
5558 quote_found = '\0';
5559 for (p = text; *p != '\0'; ++p)
5560 {
5561 if (quote_found != '\0')
5562 {
5563 if (*p == quote_found)
5564 /* Found close quote. */
5565 quote_found = '\0';
5566 else if (*p == '\\' && p[1] == quote_found)
5567 /* A backslash followed by the quote character
5568 doesn't end the string. */
5569 ++p;
5570 }
5571 else if (*p == '\'' || *p == '"')
5572 {
5573 quote_found = *p;
5574 quote_pos = p;
5575 }
5576 }
5577 if (quote_found == '\'')
5578 /* A string within single quotes can be a symbol, so complete on it. */
5579 sym_text = quote_pos + 1;
5580 else if (quote_found == '"')
5581 /* A double-quoted string is never a symbol, nor does it make sense
5582 to complete it any other way. */
5583 {
5584 return;
5585 }
5586 else
5587 {
5588 /* It is not a quoted string. Break it based on the characters
5589 which are in symbols. */
5590 while (p > text)
5591 {
5592 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5593 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5594 --p;
5595 else
5596 break;
5597 }
5598 sym_text = p;
5599 }
5600 }
5601
5602 lookup_name_info lookup_name (sym_text, name_match_type, true);
5603
5604 /* At this point scan through the misc symbol vectors and add each
5605 symbol you find to the list. Eventually we want to ignore
5606 anything that isn't a text symbol (everything else will be
5607 handled by the psymtab code below). */
5608
5609 if (code == TYPE_CODE_UNDEF)
5610 {
5611 for (objfile *objfile : current_program_space->objfiles ())
5612 {
5613 for (minimal_symbol *msymbol : objfile->msymbols ())
5614 {
5615 QUIT;
5616
5617 if (completion_skip_symbol (mode, msymbol))
5618 continue;
5619
5620 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5621 sym_text, word);
5622
5623 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5624 sym_text, word);
5625 }
5626 }
5627 }
5628
5629 /* Add completions for all currently loaded symbol tables. */
5630 for (objfile *objfile : current_program_space->objfiles ())
5631 {
5632 for (compunit_symtab *cust : objfile->compunits ())
5633 add_symtab_completions (cust, tracker, mode, lookup_name,
5634 sym_text, word, code);
5635 }
5636
5637 /* Look through the partial symtabs for all symbols which begin by
5638 matching SYM_TEXT. Expand all CUs that you find to the list. */
5639 expand_symtabs_matching (NULL,
5640 lookup_name,
5641 NULL,
5642 [&] (compunit_symtab *symtab) /* expansion notify */
5643 {
5644 add_symtab_completions (symtab,
5645 tracker, mode, lookup_name,
5646 sym_text, word, code);
5647 },
5648 ALL_DOMAIN);
5649
5650 /* Search upwards from currently selected frame (so that we can
5651 complete on local vars). Also catch fields of types defined in
5652 this places which match our text string. Only complete on types
5653 visible from current context. */
5654
5655 b = get_selected_block (0);
5656 surrounding_static_block = block_static_block (b);
5657 surrounding_global_block = block_global_block (b);
5658 if (surrounding_static_block != NULL)
5659 while (b != surrounding_static_block)
5660 {
5661 QUIT;
5662
5663 ALL_BLOCK_SYMBOLS (b, iter, sym)
5664 {
5665 if (code == TYPE_CODE_UNDEF)
5666 {
5667 completion_list_add_symbol (tracker, sym, lookup_name,
5668 sym_text, word);
5669 completion_list_add_fields (tracker, sym, lookup_name,
5670 sym_text, word);
5671 }
5672 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5673 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5674 completion_list_add_symbol (tracker, sym, lookup_name,
5675 sym_text, word);
5676 }
5677
5678 /* Stop when we encounter an enclosing function. Do not stop for
5679 non-inlined functions - the locals of the enclosing function
5680 are in scope for a nested function. */
5681 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5682 break;
5683 b = BLOCK_SUPERBLOCK (b);
5684 }
5685
5686 /* Add fields from the file's types; symbols will be added below. */
5687
5688 if (code == TYPE_CODE_UNDEF)
5689 {
5690 if (surrounding_static_block != NULL)
5691 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5692 completion_list_add_fields (tracker, sym, lookup_name,
5693 sym_text, word);
5694
5695 if (surrounding_global_block != NULL)
5696 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5697 completion_list_add_fields (tracker, sym, lookup_name,
5698 sym_text, word);
5699 }
5700
5701 /* Skip macros if we are completing a struct tag -- arguable but
5702 usually what is expected. */
5703 if (current_language->la_macro_expansion == macro_expansion_c
5704 && code == TYPE_CODE_UNDEF)
5705 {
5706 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5707
5708 /* This adds a macro's name to the current completion list. */
5709 auto add_macro_name = [&] (const char *macro_name,
5710 const macro_definition *,
5711 macro_source_file *,
5712 int)
5713 {
5714 completion_list_add_name (tracker, language_c, macro_name,
5715 lookup_name, sym_text, word);
5716 };
5717
5718 /* Add any macros visible in the default scope. Note that this
5719 may yield the occasional wrong result, because an expression
5720 might be evaluated in a scope other than the default. For
5721 example, if the user types "break file:line if <TAB>", the
5722 resulting expression will be evaluated at "file:line" -- but
5723 at there does not seem to be a way to detect this at
5724 completion time. */
5725 scope = default_macro_scope ();
5726 if (scope)
5727 macro_for_each_in_scope (scope->file, scope->line,
5728 add_macro_name);
5729
5730 /* User-defined macros are always visible. */
5731 macro_for_each (macro_user_macros, add_macro_name);
5732 }
5733 }
5734
5735 void
5736 default_collect_symbol_completion_matches (completion_tracker &tracker,
5737 complete_symbol_mode mode,
5738 symbol_name_match_type name_match_type,
5739 const char *text, const char *word,
5740 enum type_code code)
5741 {
5742 return default_collect_symbol_completion_matches_break_on (tracker, mode,
5743 name_match_type,
5744 text, word, "",
5745 code);
5746 }
5747
5748 /* Collect all symbols (regardless of class) which begin by matching
5749 TEXT. */
5750
5751 void
5752 collect_symbol_completion_matches (completion_tracker &tracker,
5753 complete_symbol_mode mode,
5754 symbol_name_match_type name_match_type,
5755 const char *text, const char *word)
5756 {
5757 current_language->la_collect_symbol_completion_matches (tracker, mode,
5758 name_match_type,
5759 text, word,
5760 TYPE_CODE_UNDEF);
5761 }
5762
5763 /* Like collect_symbol_completion_matches, but only collect
5764 STRUCT_DOMAIN symbols whose type code is CODE. */
5765
5766 void
5767 collect_symbol_completion_matches_type (completion_tracker &tracker,
5768 const char *text, const char *word,
5769 enum type_code code)
5770 {
5771 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5772 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5773
5774 gdb_assert (code == TYPE_CODE_UNION
5775 || code == TYPE_CODE_STRUCT
5776 || code == TYPE_CODE_ENUM);
5777 current_language->la_collect_symbol_completion_matches (tracker, mode,
5778 name_match_type,
5779 text, word, code);
5780 }
5781
5782 /* Like collect_symbol_completion_matches, but collects a list of
5783 symbols defined in all source files named SRCFILE. */
5784
5785 void
5786 collect_file_symbol_completion_matches (completion_tracker &tracker,
5787 complete_symbol_mode mode,
5788 symbol_name_match_type name_match_type,
5789 const char *text, const char *word,
5790 const char *srcfile)
5791 {
5792 /* The symbol we are completing on. Points in same buffer as text. */
5793 const char *sym_text;
5794
5795 /* Now look for the symbol we are supposed to complete on.
5796 FIXME: This should be language-specific. */
5797 if (mode == complete_symbol_mode::LINESPEC)
5798 sym_text = text;
5799 else
5800 {
5801 const char *p;
5802 char quote_found;
5803 const char *quote_pos = NULL;
5804
5805 /* First see if this is a quoted string. */
5806 quote_found = '\0';
5807 for (p = text; *p != '\0'; ++p)
5808 {
5809 if (quote_found != '\0')
5810 {
5811 if (*p == quote_found)
5812 /* Found close quote. */
5813 quote_found = '\0';
5814 else if (*p == '\\' && p[1] == quote_found)
5815 /* A backslash followed by the quote character
5816 doesn't end the string. */
5817 ++p;
5818 }
5819 else if (*p == '\'' || *p == '"')
5820 {
5821 quote_found = *p;
5822 quote_pos = p;
5823 }
5824 }
5825 if (quote_found == '\'')
5826 /* A string within single quotes can be a symbol, so complete on it. */
5827 sym_text = quote_pos + 1;
5828 else if (quote_found == '"')
5829 /* A double-quoted string is never a symbol, nor does it make sense
5830 to complete it any other way. */
5831 {
5832 return;
5833 }
5834 else
5835 {
5836 /* Not a quoted string. */
5837 sym_text = language_search_unquoted_string (text, p);
5838 }
5839 }
5840
5841 lookup_name_info lookup_name (sym_text, name_match_type, true);
5842
5843 /* Go through symtabs for SRCFILE and check the externs and statics
5844 for symbols which match. */
5845 iterate_over_symtabs (srcfile, [&] (symtab *s)
5846 {
5847 add_symtab_completions (SYMTAB_COMPUNIT (s),
5848 tracker, mode, lookup_name,
5849 sym_text, word, TYPE_CODE_UNDEF);
5850 return false;
5851 });
5852 }
5853
5854 /* A helper function for make_source_files_completion_list. It adds
5855 another file name to a list of possible completions, growing the
5856 list as necessary. */
5857
5858 static void
5859 add_filename_to_list (const char *fname, const char *text, const char *word,
5860 completion_list *list)
5861 {
5862 list->emplace_back (make_completion_match_str (fname, text, word));
5863 }
5864
5865 static int
5866 not_interesting_fname (const char *fname)
5867 {
5868 static const char *illegal_aliens[] = {
5869 "_globals_", /* inserted by coff_symtab_read */
5870 NULL
5871 };
5872 int i;
5873
5874 for (i = 0; illegal_aliens[i]; i++)
5875 {
5876 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5877 return 1;
5878 }
5879 return 0;
5880 }
5881
5882 /* An object of this type is passed as the user_data argument to
5883 map_partial_symbol_filenames. */
5884 struct add_partial_filename_data
5885 {
5886 struct filename_seen_cache *filename_seen_cache;
5887 const char *text;
5888 const char *word;
5889 int text_len;
5890 completion_list *list;
5891 };
5892
5893 /* A callback for map_partial_symbol_filenames. */
5894
5895 static void
5896 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5897 void *user_data)
5898 {
5899 struct add_partial_filename_data *data
5900 = (struct add_partial_filename_data *) user_data;
5901
5902 if (not_interesting_fname (filename))
5903 return;
5904 if (!data->filename_seen_cache->seen (filename)
5905 && filename_ncmp (filename, data->text, data->text_len) == 0)
5906 {
5907 /* This file matches for a completion; add it to the
5908 current list of matches. */
5909 add_filename_to_list (filename, data->text, data->word, data->list);
5910 }
5911 else
5912 {
5913 const char *base_name = lbasename (filename);
5914
5915 if (base_name != filename
5916 && !data->filename_seen_cache->seen (base_name)
5917 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5918 add_filename_to_list (base_name, data->text, data->word, data->list);
5919 }
5920 }
5921
5922 /* Return a list of all source files whose names begin with matching
5923 TEXT. The file names are looked up in the symbol tables of this
5924 program. */
5925
5926 completion_list
5927 make_source_files_completion_list (const char *text, const char *word)
5928 {
5929 size_t text_len = strlen (text);
5930 completion_list list;
5931 const char *base_name;
5932 struct add_partial_filename_data datum;
5933
5934 if (!have_full_symbols () && !have_partial_symbols ())
5935 return list;
5936
5937 filename_seen_cache filenames_seen;
5938
5939 for (objfile *objfile : current_program_space->objfiles ())
5940 {
5941 for (compunit_symtab *cu : objfile->compunits ())
5942 {
5943 for (symtab *s : compunit_filetabs (cu))
5944 {
5945 if (not_interesting_fname (s->filename))
5946 continue;
5947 if (!filenames_seen.seen (s->filename)
5948 && filename_ncmp (s->filename, text, text_len) == 0)
5949 {
5950 /* This file matches for a completion; add it to the current
5951 list of matches. */
5952 add_filename_to_list (s->filename, text, word, &list);
5953 }
5954 else
5955 {
5956 /* NOTE: We allow the user to type a base name when the
5957 debug info records leading directories, but not the other
5958 way around. This is what subroutines of breakpoint
5959 command do when they parse file names. */
5960 base_name = lbasename (s->filename);
5961 if (base_name != s->filename
5962 && !filenames_seen.seen (base_name)
5963 && filename_ncmp (base_name, text, text_len) == 0)
5964 add_filename_to_list (base_name, text, word, &list);
5965 }
5966 }
5967 }
5968 }
5969
5970 datum.filename_seen_cache = &filenames_seen;
5971 datum.text = text;
5972 datum.word = word;
5973 datum.text_len = text_len;
5974 datum.list = &list;
5975 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5976 0 /*need_fullname*/);
5977
5978 return list;
5979 }
5980 \f
5981 /* Track MAIN */
5982
5983 /* Return the "main_info" object for the current program space. If
5984 the object has not yet been created, create it and fill in some
5985 default values. */
5986
5987 static struct main_info *
5988 get_main_info (void)
5989 {
5990 struct main_info *info = main_progspace_key.get (current_program_space);
5991
5992 if (info == NULL)
5993 {
5994 /* It may seem strange to store the main name in the progspace
5995 and also in whatever objfile happens to see a main name in
5996 its debug info. The reason for this is mainly historical:
5997 gdb returned "main" as the name even if no function named
5998 "main" was defined the program; and this approach lets us
5999 keep compatibility. */
6000 info = main_progspace_key.emplace (current_program_space);
6001 }
6002
6003 return info;
6004 }
6005
6006 static void
6007 set_main_name (const char *name, enum language lang)
6008 {
6009 struct main_info *info = get_main_info ();
6010
6011 if (info->name_of_main != NULL)
6012 {
6013 xfree (info->name_of_main);
6014 info->name_of_main = NULL;
6015 info->language_of_main = language_unknown;
6016 }
6017 if (name != NULL)
6018 {
6019 info->name_of_main = xstrdup (name);
6020 info->language_of_main = lang;
6021 }
6022 }
6023
6024 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
6025 accordingly. */
6026
6027 static void
6028 find_main_name (void)
6029 {
6030 const char *new_main_name;
6031
6032 /* First check the objfiles to see whether a debuginfo reader has
6033 picked up the appropriate main name. Historically the main name
6034 was found in a more or less random way; this approach instead
6035 relies on the order of objfile creation -- which still isn't
6036 guaranteed to get the correct answer, but is just probably more
6037 accurate. */
6038 for (objfile *objfile : current_program_space->objfiles ())
6039 {
6040 if (objfile->per_bfd->name_of_main != NULL)
6041 {
6042 set_main_name (objfile->per_bfd->name_of_main,
6043 objfile->per_bfd->language_of_main);
6044 return;
6045 }
6046 }
6047
6048 /* Try to see if the main procedure is in Ada. */
6049 /* FIXME: brobecker/2005-03-07: Another way of doing this would
6050 be to add a new method in the language vector, and call this
6051 method for each language until one of them returns a non-empty
6052 name. This would allow us to remove this hard-coded call to
6053 an Ada function. It is not clear that this is a better approach
6054 at this point, because all methods need to be written in a way
6055 such that false positives never be returned. For instance, it is
6056 important that a method does not return a wrong name for the main
6057 procedure if the main procedure is actually written in a different
6058 language. It is easy to guaranty this with Ada, since we use a
6059 special symbol generated only when the main in Ada to find the name
6060 of the main procedure. It is difficult however to see how this can
6061 be guarantied for languages such as C, for instance. This suggests
6062 that order of call for these methods becomes important, which means
6063 a more complicated approach. */
6064 new_main_name = ada_main_name ();
6065 if (new_main_name != NULL)
6066 {
6067 set_main_name (new_main_name, language_ada);
6068 return;
6069 }
6070
6071 new_main_name = d_main_name ();
6072 if (new_main_name != NULL)
6073 {
6074 set_main_name (new_main_name, language_d);
6075 return;
6076 }
6077
6078 new_main_name = go_main_name ();
6079 if (new_main_name != NULL)
6080 {
6081 set_main_name (new_main_name, language_go);
6082 return;
6083 }
6084
6085 new_main_name = pascal_main_name ();
6086 if (new_main_name != NULL)
6087 {
6088 set_main_name (new_main_name, language_pascal);
6089 return;
6090 }
6091
6092 /* The languages above didn't identify the name of the main procedure.
6093 Fallback to "main". */
6094 set_main_name ("main", language_unknown);
6095 }
6096
6097 /* See symtab.h. */
6098
6099 const char *
6100 main_name ()
6101 {
6102 struct main_info *info = get_main_info ();
6103
6104 if (info->name_of_main == NULL)
6105 find_main_name ();
6106
6107 return info->name_of_main;
6108 }
6109
6110 /* Return the language of the main function. If it is not known,
6111 return language_unknown. */
6112
6113 enum language
6114 main_language (void)
6115 {
6116 struct main_info *info = get_main_info ();
6117
6118 if (info->name_of_main == NULL)
6119 find_main_name ();
6120
6121 return info->language_of_main;
6122 }
6123
6124 /* Handle ``executable_changed'' events for the symtab module. */
6125
6126 static void
6127 symtab_observer_executable_changed (void)
6128 {
6129 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
6130 set_main_name (NULL, language_unknown);
6131 }
6132
6133 /* Return 1 if the supplied producer string matches the ARM RealView
6134 compiler (armcc). */
6135
6136 bool
6137 producer_is_realview (const char *producer)
6138 {
6139 static const char *const arm_idents[] = {
6140 "ARM C Compiler, ADS",
6141 "Thumb C Compiler, ADS",
6142 "ARM C++ Compiler, ADS",
6143 "Thumb C++ Compiler, ADS",
6144 "ARM/Thumb C/C++ Compiler, RVCT",
6145 "ARM C/C++ Compiler, RVCT"
6146 };
6147 int i;
6148
6149 if (producer == NULL)
6150 return false;
6151
6152 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
6153 if (startswith (producer, arm_idents[i]))
6154 return true;
6155
6156 return false;
6157 }
6158
6159 \f
6160
6161 /* The next index to hand out in response to a registration request. */
6162
6163 static int next_aclass_value = LOC_FINAL_VALUE;
6164
6165 /* The maximum number of "aclass" registrations we support. This is
6166 constant for convenience. */
6167 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6168
6169 /* The objects representing the various "aclass" values. The elements
6170 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6171 elements are those registered at gdb initialization time. */
6172
6173 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
6174
6175 /* The globally visible pointer. This is separate from 'symbol_impl'
6176 so that it can be const. */
6177
6178 const struct symbol_impl *symbol_impls = &symbol_impl[0];
6179
6180 /* Make sure we saved enough room in struct symbol. */
6181
6182 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6183
6184 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6185 is the ops vector associated with this index. This returns the new
6186 index, which should be used as the aclass_index field for symbols
6187 of this type. */
6188
6189 int
6190 register_symbol_computed_impl (enum address_class aclass,
6191 const struct symbol_computed_ops *ops)
6192 {
6193 int result = next_aclass_value++;
6194
6195 gdb_assert (aclass == LOC_COMPUTED);
6196 gdb_assert (result < MAX_SYMBOL_IMPLS);
6197 symbol_impl[result].aclass = aclass;
6198 symbol_impl[result].ops_computed = ops;
6199
6200 /* Sanity check OPS. */
6201 gdb_assert (ops != NULL);
6202 gdb_assert (ops->tracepoint_var_ref != NULL);
6203 gdb_assert (ops->describe_location != NULL);
6204 gdb_assert (ops->get_symbol_read_needs != NULL);
6205 gdb_assert (ops->read_variable != NULL);
6206
6207 return result;
6208 }
6209
6210 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6211 OPS is the ops vector associated with this index. This returns the
6212 new index, which should be used as the aclass_index field for symbols
6213 of this type. */
6214
6215 int
6216 register_symbol_block_impl (enum address_class aclass,
6217 const struct symbol_block_ops *ops)
6218 {
6219 int result = next_aclass_value++;
6220
6221 gdb_assert (aclass == LOC_BLOCK);
6222 gdb_assert (result < MAX_SYMBOL_IMPLS);
6223 symbol_impl[result].aclass = aclass;
6224 symbol_impl[result].ops_block = ops;
6225
6226 /* Sanity check OPS. */
6227 gdb_assert (ops != NULL);
6228 gdb_assert (ops->find_frame_base_location != NULL);
6229
6230 return result;
6231 }
6232
6233 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6234 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6235 this index. This returns the new index, which should be used as
6236 the aclass_index field for symbols of this type. */
6237
6238 int
6239 register_symbol_register_impl (enum address_class aclass,
6240 const struct symbol_register_ops *ops)
6241 {
6242 int result = next_aclass_value++;
6243
6244 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6245 gdb_assert (result < MAX_SYMBOL_IMPLS);
6246 symbol_impl[result].aclass = aclass;
6247 symbol_impl[result].ops_register = ops;
6248
6249 return result;
6250 }
6251
6252 /* Initialize elements of 'symbol_impl' for the constants in enum
6253 address_class. */
6254
6255 static void
6256 initialize_ordinary_address_classes (void)
6257 {
6258 int i;
6259
6260 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6261 symbol_impl[i].aclass = (enum address_class) i;
6262 }
6263
6264 \f
6265
6266 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
6267
6268 void
6269 initialize_objfile_symbol (struct symbol *sym)
6270 {
6271 SYMBOL_OBJFILE_OWNED (sym) = 1;
6272 SYMBOL_SECTION (sym) = -1;
6273 }
6274
6275 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
6276 obstack. */
6277
6278 struct symbol *
6279 allocate_symbol (struct objfile *objfile)
6280 {
6281 struct symbol *result = new (&objfile->objfile_obstack) symbol ();
6282
6283 initialize_objfile_symbol (result);
6284
6285 return result;
6286 }
6287
6288 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
6289 obstack. */
6290
6291 struct template_symbol *
6292 allocate_template_symbol (struct objfile *objfile)
6293 {
6294 struct template_symbol *result;
6295
6296 result = new (&objfile->objfile_obstack) template_symbol ();
6297 initialize_objfile_symbol (result);
6298
6299 return result;
6300 }
6301
6302 /* See symtab.h. */
6303
6304 struct objfile *
6305 symbol_objfile (const struct symbol *symbol)
6306 {
6307 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6308 return SYMTAB_OBJFILE (symbol->owner.symtab);
6309 }
6310
6311 /* See symtab.h. */
6312
6313 struct gdbarch *
6314 symbol_arch (const struct symbol *symbol)
6315 {
6316 if (!SYMBOL_OBJFILE_OWNED (symbol))
6317 return symbol->owner.arch;
6318 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
6319 }
6320
6321 /* See symtab.h. */
6322
6323 struct symtab *
6324 symbol_symtab (const struct symbol *symbol)
6325 {
6326 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6327 return symbol->owner.symtab;
6328 }
6329
6330 /* See symtab.h. */
6331
6332 void
6333 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6334 {
6335 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6336 symbol->owner.symtab = symtab;
6337 }
6338
6339 /* See symtab.h. */
6340
6341 CORE_ADDR
6342 get_symbol_address (const struct symbol *sym)
6343 {
6344 gdb_assert (sym->maybe_copied);
6345 gdb_assert (SYMBOL_CLASS (sym) == LOC_STATIC);
6346
6347 const char *linkage_name = sym->linkage_name ();
6348
6349 for (objfile *objfile : current_program_space->objfiles ())
6350 {
6351 bound_minimal_symbol minsym
6352 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6353 if (minsym.minsym != nullptr)
6354 return BMSYMBOL_VALUE_ADDRESS (minsym);
6355 }
6356 return sym->value.address;
6357 }
6358
6359 /* See symtab.h. */
6360
6361 CORE_ADDR
6362 get_msymbol_address (struct objfile *objf, const struct minimal_symbol *minsym)
6363 {
6364 gdb_assert (minsym->maybe_copied);
6365 gdb_assert ((objf->flags & OBJF_MAINLINE) == 0);
6366
6367 const char *linkage_name = minsym->linkage_name ();
6368
6369 for (objfile *objfile : current_program_space->objfiles ())
6370 {
6371 if ((objfile->flags & OBJF_MAINLINE) != 0)
6372 {
6373 bound_minimal_symbol found
6374 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6375 if (found.minsym != nullptr)
6376 return BMSYMBOL_VALUE_ADDRESS (found);
6377 }
6378 }
6379 return minsym->value.address + objf->section_offsets[minsym->section];
6380 }
6381
6382 \f
6383
6384 /* Hold the sub-commands of 'info module'. */
6385
6386 static struct cmd_list_element *info_module_cmdlist = NULL;
6387
6388 /* Implement the 'info module' command, just displays some help text for
6389 the available sub-commands. */
6390
6391 static void
6392 info_module_command (const char *args, int from_tty)
6393 {
6394 help_list (info_module_cmdlist, "info module ", class_info, gdb_stdout);
6395 }
6396
6397 /* See symtab.h. */
6398
6399 std::vector<module_symbol_search>
6400 search_module_symbols (const char *module_regexp, const char *regexp,
6401 const char *type_regexp, search_domain kind)
6402 {
6403 std::vector<module_symbol_search> results;
6404
6405 /* Search for all modules matching MODULE_REGEXP. */
6406 global_symbol_searcher spec1 (MODULES_DOMAIN, module_regexp);
6407 spec1.set_exclude_minsyms (true);
6408 std::vector<symbol_search> modules = spec1.search ();
6409
6410 /* Now search for all symbols of the required KIND matching the required
6411 regular expressions. We figure out which ones are in which modules
6412 below. */
6413 global_symbol_searcher spec2 (kind, regexp);
6414 spec2.set_symbol_type_regexp (type_regexp);
6415 spec2.set_exclude_minsyms (true);
6416 std::vector<symbol_search> symbols = spec2.search ();
6417
6418 /* Now iterate over all MODULES, checking to see which items from
6419 SYMBOLS are in each module. */
6420 for (const symbol_search &p : modules)
6421 {
6422 QUIT;
6423
6424 /* This is a module. */
6425 gdb_assert (p.symbol != nullptr);
6426
6427 std::string prefix = p.symbol->print_name ();
6428 prefix += "::";
6429
6430 for (const symbol_search &q : symbols)
6431 {
6432 if (q.symbol == nullptr)
6433 continue;
6434
6435 if (strncmp (q.symbol->print_name (), prefix.c_str (),
6436 prefix.size ()) != 0)
6437 continue;
6438
6439 results.push_back ({p, q});
6440 }
6441 }
6442
6443 return results;
6444 }
6445
6446 /* Implement the core of both 'info module functions' and 'info module
6447 variables'. */
6448
6449 static void
6450 info_module_subcommand (bool quiet, const char *module_regexp,
6451 const char *regexp, const char *type_regexp,
6452 search_domain kind)
6453 {
6454 /* Print a header line. Don't build the header line bit by bit as this
6455 prevents internationalisation. */
6456 if (!quiet)
6457 {
6458 if (module_regexp == nullptr)
6459 {
6460 if (type_regexp == nullptr)
6461 {
6462 if (regexp == nullptr)
6463 printf_filtered ((kind == VARIABLES_DOMAIN
6464 ? _("All variables in all modules:")
6465 : _("All functions in all modules:")));
6466 else
6467 printf_filtered
6468 ((kind == VARIABLES_DOMAIN
6469 ? _("All variables matching regular expression"
6470 " \"%s\" in all modules:")
6471 : _("All functions matching regular expression"
6472 " \"%s\" in all modules:")),
6473 regexp);
6474 }
6475 else
6476 {
6477 if (regexp == nullptr)
6478 printf_filtered
6479 ((kind == VARIABLES_DOMAIN
6480 ? _("All variables with type matching regular "
6481 "expression \"%s\" in all modules:")
6482 : _("All functions with type matching regular "
6483 "expression \"%s\" in all modules:")),
6484 type_regexp);
6485 else
6486 printf_filtered
6487 ((kind == VARIABLES_DOMAIN
6488 ? _("All variables matching regular expression "
6489 "\"%s\",\n\twith type matching regular "
6490 "expression \"%s\" in all modules:")
6491 : _("All functions matching regular expression "
6492 "\"%s\",\n\twith type matching regular "
6493 "expression \"%s\" in all modules:")),
6494 regexp, type_regexp);
6495 }
6496 }
6497 else
6498 {
6499 if (type_regexp == nullptr)
6500 {
6501 if (regexp == nullptr)
6502 printf_filtered
6503 ((kind == VARIABLES_DOMAIN
6504 ? _("All variables in all modules matching regular "
6505 "expression \"%s\":")
6506 : _("All functions in all modules matching regular "
6507 "expression \"%s\":")),
6508 module_regexp);
6509 else
6510 printf_filtered
6511 ((kind == VARIABLES_DOMAIN
6512 ? _("All variables matching regular expression "
6513 "\"%s\",\n\tin all modules matching regular "
6514 "expression \"%s\":")
6515 : _("All functions matching regular expression "
6516 "\"%s\",\n\tin all modules matching regular "
6517 "expression \"%s\":")),
6518 regexp, module_regexp);
6519 }
6520 else
6521 {
6522 if (regexp == nullptr)
6523 printf_filtered
6524 ((kind == VARIABLES_DOMAIN
6525 ? _("All variables with type matching regular "
6526 "expression \"%s\"\n\tin all modules matching "
6527 "regular expression \"%s\":")
6528 : _("All functions with type matching regular "
6529 "expression \"%s\"\n\tin all modules matching "
6530 "regular expression \"%s\":")),
6531 type_regexp, module_regexp);
6532 else
6533 printf_filtered
6534 ((kind == VARIABLES_DOMAIN
6535 ? _("All variables matching regular expression "
6536 "\"%s\",\n\twith type matching regular expression "
6537 "\"%s\",\n\tin all modules matching regular "
6538 "expression \"%s\":")
6539 : _("All functions matching regular expression "
6540 "\"%s\",\n\twith type matching regular expression "
6541 "\"%s\",\n\tin all modules matching regular "
6542 "expression \"%s\":")),
6543 regexp, type_regexp, module_regexp);
6544 }
6545 }
6546 printf_filtered ("\n");
6547 }
6548
6549 /* Find all symbols of type KIND matching the given regular expressions
6550 along with the symbols for the modules in which those symbols
6551 reside. */
6552 std::vector<module_symbol_search> module_symbols
6553 = search_module_symbols (module_regexp, regexp, type_regexp, kind);
6554
6555 std::sort (module_symbols.begin (), module_symbols.end (),
6556 [] (const module_symbol_search &a, const module_symbol_search &b)
6557 {
6558 if (a.first < b.first)
6559 return true;
6560 else if (a.first == b.first)
6561 return a.second < b.second;
6562 else
6563 return false;
6564 });
6565
6566 const char *last_filename = "";
6567 const symbol *last_module_symbol = nullptr;
6568 for (const module_symbol_search &ms : module_symbols)
6569 {
6570 const symbol_search &p = ms.first;
6571 const symbol_search &q = ms.second;
6572
6573 gdb_assert (q.symbol != nullptr);
6574
6575 if (last_module_symbol != p.symbol)
6576 {
6577 printf_filtered ("\n");
6578 printf_filtered (_("Module \"%s\":\n"), p.symbol->print_name ());
6579 last_module_symbol = p.symbol;
6580 last_filename = "";
6581 }
6582
6583 print_symbol_info (FUNCTIONS_DOMAIN, q.symbol, q.block,
6584 last_filename);
6585 last_filename
6586 = symtab_to_filename_for_display (symbol_symtab (q.symbol));
6587 }
6588 }
6589
6590 /* Hold the option values for the 'info module .....' sub-commands. */
6591
6592 struct info_modules_var_func_options
6593 {
6594 bool quiet = false;
6595 char *type_regexp = nullptr;
6596 char *module_regexp = nullptr;
6597
6598 ~info_modules_var_func_options ()
6599 {
6600 xfree (type_regexp);
6601 xfree (module_regexp);
6602 }
6603 };
6604
6605 /* The options used by 'info module variables' and 'info module functions'
6606 commands. */
6607
6608 static const gdb::option::option_def info_modules_var_func_options_defs [] = {
6609 gdb::option::boolean_option_def<info_modules_var_func_options> {
6610 "q",
6611 [] (info_modules_var_func_options *opt) { return &opt->quiet; },
6612 nullptr, /* show_cmd_cb */
6613 nullptr /* set_doc */
6614 },
6615
6616 gdb::option::string_option_def<info_modules_var_func_options> {
6617 "t",
6618 [] (info_modules_var_func_options *opt) { return &opt->type_regexp; },
6619 nullptr, /* show_cmd_cb */
6620 nullptr /* set_doc */
6621 },
6622
6623 gdb::option::string_option_def<info_modules_var_func_options> {
6624 "m",
6625 [] (info_modules_var_func_options *opt) { return &opt->module_regexp; },
6626 nullptr, /* show_cmd_cb */
6627 nullptr /* set_doc */
6628 }
6629 };
6630
6631 /* Return the option group used by the 'info module ...' sub-commands. */
6632
6633 static inline gdb::option::option_def_group
6634 make_info_modules_var_func_options_def_group
6635 (info_modules_var_func_options *opts)
6636 {
6637 return {{info_modules_var_func_options_defs}, opts};
6638 }
6639
6640 /* Implements the 'info module functions' command. */
6641
6642 static void
6643 info_module_functions_command (const char *args, int from_tty)
6644 {
6645 info_modules_var_func_options opts;
6646 auto grp = make_info_modules_var_func_options_def_group (&opts);
6647 gdb::option::process_options
6648 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6649 if (args != nullptr && *args == '\0')
6650 args = nullptr;
6651
6652 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6653 opts.type_regexp, FUNCTIONS_DOMAIN);
6654 }
6655
6656 /* Implements the 'info module variables' command. */
6657
6658 static void
6659 info_module_variables_command (const char *args, int from_tty)
6660 {
6661 info_modules_var_func_options opts;
6662 auto grp = make_info_modules_var_func_options_def_group (&opts);
6663 gdb::option::process_options
6664 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6665 if (args != nullptr && *args == '\0')
6666 args = nullptr;
6667
6668 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6669 opts.type_regexp, VARIABLES_DOMAIN);
6670 }
6671
6672 /* Command completer for 'info module ...' sub-commands. */
6673
6674 static void
6675 info_module_var_func_command_completer (struct cmd_list_element *ignore,
6676 completion_tracker &tracker,
6677 const char *text,
6678 const char * /* word */)
6679 {
6680
6681 const auto group = make_info_modules_var_func_options_def_group (nullptr);
6682 if (gdb::option::complete_options
6683 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
6684 return;
6685
6686 const char *word = advance_to_expression_complete_word_point (tracker, text);
6687 symbol_completer (ignore, tracker, text, word);
6688 }
6689
6690 \f
6691
6692 void
6693 _initialize_symtab (void)
6694 {
6695 cmd_list_element *c;
6696
6697 initialize_ordinary_address_classes ();
6698
6699 c = add_info ("variables", info_variables_command,
6700 info_print_args_help (_("\
6701 All global and static variable names or those matching REGEXPs.\n\
6702 Usage: info variables [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6703 Prints the global and static variables.\n"),
6704 _("global and static variables"),
6705 true));
6706 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6707 if (dbx_commands)
6708 {
6709 c = add_com ("whereis", class_info, info_variables_command,
6710 info_print_args_help (_("\
6711 All global and static variable names, or those matching REGEXPs.\n\
6712 Usage: whereis [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6713 Prints the global and static variables.\n"),
6714 _("global and static variables"),
6715 true));
6716 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6717 }
6718
6719 c = add_info ("functions", info_functions_command,
6720 info_print_args_help (_("\
6721 All function names or those matching REGEXPs.\n\
6722 Usage: info functions [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6723 Prints the functions.\n"),
6724 _("functions"),
6725 true));
6726 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6727
6728 c = add_info ("types", info_types_command, _("\
6729 All type names, or those matching REGEXP.\n\
6730 Usage: info types [-q] [REGEXP]\n\
6731 Print information about all types matching REGEXP, or all types if no\n\
6732 REGEXP is given. The optional flag -q disables printing of headers."));
6733 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6734
6735 const auto info_sources_opts = make_info_sources_options_def_group (nullptr);
6736
6737 static std::string info_sources_help
6738 = gdb::option::build_help (_("\
6739 All source files in the program or those matching REGEXP.\n\
6740 Usage: info sources [OPTION]... [REGEXP]\n\
6741 By default, REGEXP is used to match anywhere in the filename.\n\
6742 \n\
6743 Options:\n\
6744 %OPTIONS%"),
6745 info_sources_opts);
6746
6747 c = add_info ("sources", info_sources_command, info_sources_help.c_str ());
6748 set_cmd_completer_handle_brkchars (c, info_sources_command_completer);
6749
6750 c = add_info ("modules", info_modules_command,
6751 _("All module names, or those matching REGEXP."));
6752 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6753
6754 add_prefix_cmd ("module", class_info, info_module_command, _("\
6755 Print information about modules."),
6756 &info_module_cmdlist, "info module ",
6757 0, &infolist);
6758
6759 c = add_cmd ("functions", class_info, info_module_functions_command, _("\
6760 Display functions arranged by modules.\n\
6761 Usage: info module functions [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6762 Print a summary of all functions within each Fortran module, grouped by\n\
6763 module and file. For each function the line on which the function is\n\
6764 defined is given along with the type signature and name of the function.\n\
6765 \n\
6766 If REGEXP is provided then only functions whose name matches REGEXP are\n\
6767 listed. If MODREGEXP is provided then only functions in modules matching\n\
6768 MODREGEXP are listed. If TYPEREGEXP is given then only functions whose\n\
6769 type signature matches TYPEREGEXP are listed.\n\
6770 \n\
6771 The -q flag suppresses printing some header information."),
6772 &info_module_cmdlist);
6773 set_cmd_completer_handle_brkchars
6774 (c, info_module_var_func_command_completer);
6775
6776 c = add_cmd ("variables", class_info, info_module_variables_command, _("\
6777 Display variables arranged by modules.\n\
6778 Usage: info module variables [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6779 Print a summary of all variables within each Fortran module, grouped by\n\
6780 module and file. For each variable the line on which the variable is\n\
6781 defined is given along with the type and name of the variable.\n\
6782 \n\
6783 If REGEXP is provided then only variables whose name matches REGEXP are\n\
6784 listed. If MODREGEXP is provided then only variables in modules matching\n\
6785 MODREGEXP are listed. If TYPEREGEXP is given then only variables whose\n\
6786 type matches TYPEREGEXP are listed.\n\
6787 \n\
6788 The -q flag suppresses printing some header information."),
6789 &info_module_cmdlist);
6790 set_cmd_completer_handle_brkchars
6791 (c, info_module_var_func_command_completer);
6792
6793 add_com ("rbreak", class_breakpoint, rbreak_command,
6794 _("Set a breakpoint for all functions matching REGEXP."));
6795
6796 add_setshow_enum_cmd ("multiple-symbols", no_class,
6797 multiple_symbols_modes, &multiple_symbols_mode,
6798 _("\
6799 Set how the debugger handles ambiguities in expressions."), _("\
6800 Show how the debugger handles ambiguities in expressions."), _("\
6801 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6802 NULL, NULL, &setlist, &showlist);
6803
6804 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6805 &basenames_may_differ, _("\
6806 Set whether a source file may have multiple base names."), _("\
6807 Show whether a source file may have multiple base names."), _("\
6808 (A \"base name\" is the name of a file with the directory part removed.\n\
6809 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6810 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6811 before comparing them. Canonicalization is an expensive operation,\n\
6812 but it allows the same file be known by more than one base name.\n\
6813 If not set (the default), all source files are assumed to have just\n\
6814 one base name, and gdb will do file name comparisons more efficiently."),
6815 NULL, NULL,
6816 &setlist, &showlist);
6817
6818 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6819 _("Set debugging of symbol table creation."),
6820 _("Show debugging of symbol table creation."), _("\
6821 When enabled (non-zero), debugging messages are printed when building\n\
6822 symbol tables. A value of 1 (one) normally provides enough information.\n\
6823 A value greater than 1 provides more verbose information."),
6824 NULL,
6825 NULL,
6826 &setdebuglist, &showdebuglist);
6827
6828 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6829 _("\
6830 Set debugging of symbol lookup."), _("\
6831 Show debugging of symbol lookup."), _("\
6832 When enabled (non-zero), symbol lookups are logged."),
6833 NULL, NULL,
6834 &setdebuglist, &showdebuglist);
6835
6836 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6837 &new_symbol_cache_size,
6838 _("Set the size of the symbol cache."),
6839 _("Show the size of the symbol cache."), _("\
6840 The size of the symbol cache.\n\
6841 If zero then the symbol cache is disabled."),
6842 set_symbol_cache_size_handler, NULL,
6843 &maintenance_set_cmdlist,
6844 &maintenance_show_cmdlist);
6845
6846 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6847 _("Dump the symbol cache for each program space."),
6848 &maintenanceprintlist);
6849
6850 add_cmd ("symbol-cache-statistics", class_maintenance,
6851 maintenance_print_symbol_cache_statistics,
6852 _("Print symbol cache statistics for each program space."),
6853 &maintenanceprintlist);
6854
6855 add_cmd ("flush-symbol-cache", class_maintenance,
6856 maintenance_flush_symbol_cache,
6857 _("Flush the symbol cache for each program space."),
6858 &maintenancelist);
6859
6860 gdb::observers::executable_changed.attach (symtab_observer_executable_changed);
6861 gdb::observers::new_objfile.attach (symtab_new_objfile_observer);
6862 gdb::observers::free_objfile.attach (symtab_free_objfile_observer);
6863 }
This page took 0.257734 seconds and 4 git commands to generate.