Remove ALL_COMPUNITS
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "fnmatch.h"
45 #include "hashtab.h"
46 #include "typeprint.h"
47
48 #include "gdb_obstack.h"
49 #include "block.h"
50 #include "dictionary.h"
51
52 #include <sys/types.h>
53 #include <fcntl.h>
54 #include <sys/stat.h>
55 #include <ctype.h>
56 #include "cp-abi.h"
57 #include "cp-support.h"
58 #include "observable.h"
59 #include "solist.h"
60 #include "macrotab.h"
61 #include "macroscope.h"
62
63 #include "parser-defs.h"
64 #include "completer.h"
65 #include "progspace-and-thread.h"
66 #include "common/gdb_optional.h"
67 #include "filename-seen-cache.h"
68 #include "arch-utils.h"
69 #include <algorithm>
70 #include "common/pathstuff.h"
71
72 /* Forward declarations for local functions. */
73
74 static void rbreak_command (const char *, int);
75
76 static int find_line_common (struct linetable *, int, int *, int);
77
78 static struct block_symbol
79 lookup_symbol_aux (const char *name,
80 symbol_name_match_type match_type,
81 const struct block *block,
82 const domain_enum domain,
83 enum language language,
84 struct field_of_this_result *);
85
86 static
87 struct block_symbol lookup_local_symbol (const char *name,
88 symbol_name_match_type match_type,
89 const struct block *block,
90 const domain_enum domain,
91 enum language language);
92
93 static struct block_symbol
94 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
95 const char *name, const domain_enum domain);
96
97 /* See symtab.h. */
98 const struct block_symbol null_block_symbol = { NULL, NULL };
99
100 /* Program space key for finding name and language of "main". */
101
102 static const struct program_space_data *main_progspace_key;
103
104 /* Type of the data stored on the program space. */
105
106 struct main_info
107 {
108 /* Name of "main". */
109
110 char *name_of_main;
111
112 /* Language of "main". */
113
114 enum language language_of_main;
115 };
116
117 /* Program space key for finding its symbol cache. */
118
119 static const struct program_space_data *symbol_cache_key;
120
121 /* The default symbol cache size.
122 There is no extra cpu cost for large N (except when flushing the cache,
123 which is rare). The value here is just a first attempt. A better default
124 value may be higher or lower. A prime number can make up for a bad hash
125 computation, so that's why the number is what it is. */
126 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
127
128 /* The maximum symbol cache size.
129 There's no method to the decision of what value to use here, other than
130 there's no point in allowing a user typo to make gdb consume all memory. */
131 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
132
133 /* symbol_cache_lookup returns this if a previous lookup failed to find the
134 symbol in any objfile. */
135 #define SYMBOL_LOOKUP_FAILED \
136 ((struct block_symbol) {(struct symbol *) 1, NULL})
137 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
138
139 /* Recording lookups that don't find the symbol is just as important, if not
140 more so, than recording found symbols. */
141
142 enum symbol_cache_slot_state
143 {
144 SYMBOL_SLOT_UNUSED,
145 SYMBOL_SLOT_NOT_FOUND,
146 SYMBOL_SLOT_FOUND
147 };
148
149 struct symbol_cache_slot
150 {
151 enum symbol_cache_slot_state state;
152
153 /* The objfile that was current when the symbol was looked up.
154 This is only needed for global blocks, but for simplicity's sake
155 we allocate the space for both. If data shows the extra space used
156 for static blocks is a problem, we can split things up then.
157
158 Global blocks need cache lookup to include the objfile context because
159 we need to account for gdbarch_iterate_over_objfiles_in_search_order
160 which can traverse objfiles in, effectively, any order, depending on
161 the current objfile, thus affecting which symbol is found. Normally,
162 only the current objfile is searched first, and then the rest are
163 searched in recorded order; but putting cache lookup inside
164 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
165 Instead we just make the current objfile part of the context of
166 cache lookup. This means we can record the same symbol multiple times,
167 each with a different "current objfile" that was in effect when the
168 lookup was saved in the cache, but cache space is pretty cheap. */
169 const struct objfile *objfile_context;
170
171 union
172 {
173 struct block_symbol found;
174 struct
175 {
176 char *name;
177 domain_enum domain;
178 } not_found;
179 } value;
180 };
181
182 /* Symbols don't specify global vs static block.
183 So keep them in separate caches. */
184
185 struct block_symbol_cache
186 {
187 unsigned int hits;
188 unsigned int misses;
189 unsigned int collisions;
190
191 /* SYMBOLS is a variable length array of this size.
192 One can imagine that in general one cache (global/static) should be a
193 fraction of the size of the other, but there's no data at the moment
194 on which to decide. */
195 unsigned int size;
196
197 struct symbol_cache_slot symbols[1];
198 };
199
200 /* The symbol cache.
201
202 Searching for symbols in the static and global blocks over multiple objfiles
203 again and again can be slow, as can searching very big objfiles. This is a
204 simple cache to improve symbol lookup performance, which is critical to
205 overall gdb performance.
206
207 Symbols are hashed on the name, its domain, and block.
208 They are also hashed on their objfile for objfile-specific lookups. */
209
210 struct symbol_cache
211 {
212 struct block_symbol_cache *global_symbols;
213 struct block_symbol_cache *static_symbols;
214 };
215
216 /* When non-zero, print debugging messages related to symtab creation. */
217 unsigned int symtab_create_debug = 0;
218
219 /* When non-zero, print debugging messages related to symbol lookup. */
220 unsigned int symbol_lookup_debug = 0;
221
222 /* The size of the cache is staged here. */
223 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
224
225 /* The current value of the symbol cache size.
226 This is saved so that if the user enters a value too big we can restore
227 the original value from here. */
228 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
229
230 /* Non-zero if a file may be known by two different basenames.
231 This is the uncommon case, and significantly slows down gdb.
232 Default set to "off" to not slow down the common case. */
233 int basenames_may_differ = 0;
234
235 /* Allow the user to configure the debugger behavior with respect
236 to multiple-choice menus when more than one symbol matches during
237 a symbol lookup. */
238
239 const char multiple_symbols_ask[] = "ask";
240 const char multiple_symbols_all[] = "all";
241 const char multiple_symbols_cancel[] = "cancel";
242 static const char *const multiple_symbols_modes[] =
243 {
244 multiple_symbols_ask,
245 multiple_symbols_all,
246 multiple_symbols_cancel,
247 NULL
248 };
249 static const char *multiple_symbols_mode = multiple_symbols_all;
250
251 /* Read-only accessor to AUTO_SELECT_MODE. */
252
253 const char *
254 multiple_symbols_select_mode (void)
255 {
256 return multiple_symbols_mode;
257 }
258
259 /* Return the name of a domain_enum. */
260
261 const char *
262 domain_name (domain_enum e)
263 {
264 switch (e)
265 {
266 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
267 case VAR_DOMAIN: return "VAR_DOMAIN";
268 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
269 case MODULE_DOMAIN: return "MODULE_DOMAIN";
270 case LABEL_DOMAIN: return "LABEL_DOMAIN";
271 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
272 default: gdb_assert_not_reached ("bad domain_enum");
273 }
274 }
275
276 /* Return the name of a search_domain . */
277
278 const char *
279 search_domain_name (enum search_domain e)
280 {
281 switch (e)
282 {
283 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
284 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
285 case TYPES_DOMAIN: return "TYPES_DOMAIN";
286 case ALL_DOMAIN: return "ALL_DOMAIN";
287 default: gdb_assert_not_reached ("bad search_domain");
288 }
289 }
290
291 /* See symtab.h. */
292
293 struct symtab *
294 compunit_primary_filetab (const struct compunit_symtab *cust)
295 {
296 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
297
298 /* The primary file symtab is the first one in the list. */
299 return COMPUNIT_FILETABS (cust);
300 }
301
302 /* See symtab.h. */
303
304 enum language
305 compunit_language (const struct compunit_symtab *cust)
306 {
307 struct symtab *symtab = compunit_primary_filetab (cust);
308
309 /* The language of the compunit symtab is the language of its primary
310 source file. */
311 return SYMTAB_LANGUAGE (symtab);
312 }
313
314 /* See whether FILENAME matches SEARCH_NAME using the rule that we
315 advertise to the user. (The manual's description of linespecs
316 describes what we advertise). Returns true if they match, false
317 otherwise. */
318
319 int
320 compare_filenames_for_search (const char *filename, const char *search_name)
321 {
322 int len = strlen (filename);
323 size_t search_len = strlen (search_name);
324
325 if (len < search_len)
326 return 0;
327
328 /* The tail of FILENAME must match. */
329 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
330 return 0;
331
332 /* Either the names must completely match, or the character
333 preceding the trailing SEARCH_NAME segment of FILENAME must be a
334 directory separator.
335
336 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
337 cannot match FILENAME "/path//dir/file.c" - as user has requested
338 absolute path. The sama applies for "c:\file.c" possibly
339 incorrectly hypothetically matching "d:\dir\c:\file.c".
340
341 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
342 compatible with SEARCH_NAME "file.c". In such case a compiler had
343 to put the "c:file.c" name into debug info. Such compatibility
344 works only on GDB built for DOS host. */
345 return (len == search_len
346 || (!IS_ABSOLUTE_PATH (search_name)
347 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
348 || (HAS_DRIVE_SPEC (filename)
349 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
350 }
351
352 /* Same as compare_filenames_for_search, but for glob-style patterns.
353 Heads up on the order of the arguments. They match the order of
354 compare_filenames_for_search, but it's the opposite of the order of
355 arguments to gdb_filename_fnmatch. */
356
357 int
358 compare_glob_filenames_for_search (const char *filename,
359 const char *search_name)
360 {
361 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
362 all /s have to be explicitly specified. */
363 int file_path_elements = count_path_elements (filename);
364 int search_path_elements = count_path_elements (search_name);
365
366 if (search_path_elements > file_path_elements)
367 return 0;
368
369 if (IS_ABSOLUTE_PATH (search_name))
370 {
371 return (search_path_elements == file_path_elements
372 && gdb_filename_fnmatch (search_name, filename,
373 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
374 }
375
376 {
377 const char *file_to_compare
378 = strip_leading_path_elements (filename,
379 file_path_elements - search_path_elements);
380
381 return gdb_filename_fnmatch (search_name, file_to_compare,
382 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
383 }
384 }
385
386 /* Check for a symtab of a specific name by searching some symtabs.
387 This is a helper function for callbacks of iterate_over_symtabs.
388
389 If NAME is not absolute, then REAL_PATH is NULL
390 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
391
392 The return value, NAME, REAL_PATH and CALLBACK are identical to the
393 `map_symtabs_matching_filename' method of quick_symbol_functions.
394
395 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
396 Each symtab within the specified compunit symtab is also searched.
397 AFTER_LAST is one past the last compunit symtab to search; NULL means to
398 search until the end of the list. */
399
400 bool
401 iterate_over_some_symtabs (const char *name,
402 const char *real_path,
403 struct compunit_symtab *first,
404 struct compunit_symtab *after_last,
405 gdb::function_view<bool (symtab *)> callback)
406 {
407 struct compunit_symtab *cust;
408 struct symtab *s;
409 const char* base_name = lbasename (name);
410
411 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
412 {
413 ALL_COMPUNIT_FILETABS (cust, s)
414 {
415 if (compare_filenames_for_search (s->filename, name))
416 {
417 if (callback (s))
418 return true;
419 continue;
420 }
421
422 /* Before we invoke realpath, which can get expensive when many
423 files are involved, do a quick comparison of the basenames. */
424 if (! basenames_may_differ
425 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
426 continue;
427
428 if (compare_filenames_for_search (symtab_to_fullname (s), name))
429 {
430 if (callback (s))
431 return true;
432 continue;
433 }
434
435 /* If the user gave us an absolute path, try to find the file in
436 this symtab and use its absolute path. */
437 if (real_path != NULL)
438 {
439 const char *fullname = symtab_to_fullname (s);
440
441 gdb_assert (IS_ABSOLUTE_PATH (real_path));
442 gdb_assert (IS_ABSOLUTE_PATH (name));
443 if (FILENAME_CMP (real_path, fullname) == 0)
444 {
445 if (callback (s))
446 return true;
447 continue;
448 }
449 }
450 }
451 }
452
453 return false;
454 }
455
456 /* Check for a symtab of a specific name; first in symtabs, then in
457 psymtabs. *If* there is no '/' in the name, a match after a '/'
458 in the symtab filename will also work.
459
460 Calls CALLBACK with each symtab that is found. If CALLBACK returns
461 true, the search stops. */
462
463 void
464 iterate_over_symtabs (const char *name,
465 gdb::function_view<bool (symtab *)> callback)
466 {
467 gdb::unique_xmalloc_ptr<char> real_path;
468
469 /* Here we are interested in canonicalizing an absolute path, not
470 absolutizing a relative path. */
471 if (IS_ABSOLUTE_PATH (name))
472 {
473 real_path = gdb_realpath (name);
474 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
475 }
476
477 for (objfile *objfile : all_objfiles (current_program_space))
478 {
479 if (iterate_over_some_symtabs (name, real_path.get (),
480 objfile->compunit_symtabs, NULL,
481 callback))
482 return;
483 }
484
485 /* Same search rules as above apply here, but now we look thru the
486 psymtabs. */
487
488 for (objfile *objfile : all_objfiles (current_program_space))
489 {
490 if (objfile->sf
491 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
492 name,
493 real_path.get (),
494 callback))
495 return;
496 }
497 }
498
499 /* A wrapper for iterate_over_symtabs that returns the first matching
500 symtab, or NULL. */
501
502 struct symtab *
503 lookup_symtab (const char *name)
504 {
505 struct symtab *result = NULL;
506
507 iterate_over_symtabs (name, [&] (symtab *symtab)
508 {
509 result = symtab;
510 return true;
511 });
512
513 return result;
514 }
515
516 \f
517 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
518 full method name, which consist of the class name (from T), the unadorned
519 method name from METHOD_ID, and the signature for the specific overload,
520 specified by SIGNATURE_ID. Note that this function is g++ specific. */
521
522 char *
523 gdb_mangle_name (struct type *type, int method_id, int signature_id)
524 {
525 int mangled_name_len;
526 char *mangled_name;
527 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
528 struct fn_field *method = &f[signature_id];
529 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
530 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
531 const char *newname = TYPE_NAME (type);
532
533 /* Does the form of physname indicate that it is the full mangled name
534 of a constructor (not just the args)? */
535 int is_full_physname_constructor;
536
537 int is_constructor;
538 int is_destructor = is_destructor_name (physname);
539 /* Need a new type prefix. */
540 const char *const_prefix = method->is_const ? "C" : "";
541 const char *volatile_prefix = method->is_volatile ? "V" : "";
542 char buf[20];
543 int len = (newname == NULL ? 0 : strlen (newname));
544
545 /* Nothing to do if physname already contains a fully mangled v3 abi name
546 or an operator name. */
547 if ((physname[0] == '_' && physname[1] == 'Z')
548 || is_operator_name (field_name))
549 return xstrdup (physname);
550
551 is_full_physname_constructor = is_constructor_name (physname);
552
553 is_constructor = is_full_physname_constructor
554 || (newname && strcmp (field_name, newname) == 0);
555
556 if (!is_destructor)
557 is_destructor = (startswith (physname, "__dt"));
558
559 if (is_destructor || is_full_physname_constructor)
560 {
561 mangled_name = (char *) xmalloc (strlen (physname) + 1);
562 strcpy (mangled_name, physname);
563 return mangled_name;
564 }
565
566 if (len == 0)
567 {
568 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
569 }
570 else if (physname[0] == 't' || physname[0] == 'Q')
571 {
572 /* The physname for template and qualified methods already includes
573 the class name. */
574 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
575 newname = NULL;
576 len = 0;
577 }
578 else
579 {
580 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
581 volatile_prefix, len);
582 }
583 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
584 + strlen (buf) + len + strlen (physname) + 1);
585
586 mangled_name = (char *) xmalloc (mangled_name_len);
587 if (is_constructor)
588 mangled_name[0] = '\0';
589 else
590 strcpy (mangled_name, field_name);
591
592 strcat (mangled_name, buf);
593 /* If the class doesn't have a name, i.e. newname NULL, then we just
594 mangle it using 0 for the length of the class. Thus it gets mangled
595 as something starting with `::' rather than `classname::'. */
596 if (newname != NULL)
597 strcat (mangled_name, newname);
598
599 strcat (mangled_name, physname);
600 return (mangled_name);
601 }
602
603 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
604 correctly allocated. */
605
606 void
607 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
608 const char *name,
609 struct obstack *obstack)
610 {
611 if (gsymbol->language == language_ada)
612 {
613 if (name == NULL)
614 {
615 gsymbol->ada_mangled = 0;
616 gsymbol->language_specific.obstack = obstack;
617 }
618 else
619 {
620 gsymbol->ada_mangled = 1;
621 gsymbol->language_specific.demangled_name = name;
622 }
623 }
624 else
625 gsymbol->language_specific.demangled_name = name;
626 }
627
628 /* Return the demangled name of GSYMBOL. */
629
630 const char *
631 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
632 {
633 if (gsymbol->language == language_ada)
634 {
635 if (!gsymbol->ada_mangled)
636 return NULL;
637 /* Fall through. */
638 }
639
640 return gsymbol->language_specific.demangled_name;
641 }
642
643 \f
644 /* Initialize the language dependent portion of a symbol
645 depending upon the language for the symbol. */
646
647 void
648 symbol_set_language (struct general_symbol_info *gsymbol,
649 enum language language,
650 struct obstack *obstack)
651 {
652 gsymbol->language = language;
653 if (gsymbol->language == language_cplus
654 || gsymbol->language == language_d
655 || gsymbol->language == language_go
656 || gsymbol->language == language_objc
657 || gsymbol->language == language_fortran)
658 {
659 symbol_set_demangled_name (gsymbol, NULL, obstack);
660 }
661 else if (gsymbol->language == language_ada)
662 {
663 gdb_assert (gsymbol->ada_mangled == 0);
664 gsymbol->language_specific.obstack = obstack;
665 }
666 else
667 {
668 memset (&gsymbol->language_specific, 0,
669 sizeof (gsymbol->language_specific));
670 }
671 }
672
673 /* Functions to initialize a symbol's mangled name. */
674
675 /* Objects of this type are stored in the demangled name hash table. */
676 struct demangled_name_entry
677 {
678 const char *mangled;
679 char demangled[1];
680 };
681
682 /* Hash function for the demangled name hash. */
683
684 static hashval_t
685 hash_demangled_name_entry (const void *data)
686 {
687 const struct demangled_name_entry *e
688 = (const struct demangled_name_entry *) data;
689
690 return htab_hash_string (e->mangled);
691 }
692
693 /* Equality function for the demangled name hash. */
694
695 static int
696 eq_demangled_name_entry (const void *a, const void *b)
697 {
698 const struct demangled_name_entry *da
699 = (const struct demangled_name_entry *) a;
700 const struct demangled_name_entry *db
701 = (const struct demangled_name_entry *) b;
702
703 return strcmp (da->mangled, db->mangled) == 0;
704 }
705
706 /* Create the hash table used for demangled names. Each hash entry is
707 a pair of strings; one for the mangled name and one for the demangled
708 name. The entry is hashed via just the mangled name. */
709
710 static void
711 create_demangled_names_hash (struct objfile *objfile)
712 {
713 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
714 The hash table code will round this up to the next prime number.
715 Choosing a much larger table size wastes memory, and saves only about
716 1% in symbol reading. */
717
718 objfile->per_bfd->demangled_names_hash = htab_create_alloc
719 (256, hash_demangled_name_entry, eq_demangled_name_entry,
720 NULL, xcalloc, xfree);
721 }
722
723 /* Try to determine the demangled name for a symbol, based on the
724 language of that symbol. If the language is set to language_auto,
725 it will attempt to find any demangling algorithm that works and
726 then set the language appropriately. The returned name is allocated
727 by the demangler and should be xfree'd. */
728
729 static char *
730 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
731 const char *mangled)
732 {
733 char *demangled = NULL;
734 int i;
735
736 if (gsymbol->language == language_unknown)
737 gsymbol->language = language_auto;
738
739 if (gsymbol->language != language_auto)
740 {
741 const struct language_defn *lang = language_def (gsymbol->language);
742
743 language_sniff_from_mangled_name (lang, mangled, &demangled);
744 return demangled;
745 }
746
747 for (i = language_unknown; i < nr_languages; ++i)
748 {
749 enum language l = (enum language) i;
750 const struct language_defn *lang = language_def (l);
751
752 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
753 {
754 gsymbol->language = l;
755 return demangled;
756 }
757 }
758
759 return NULL;
760 }
761
762 /* Set both the mangled and demangled (if any) names for GSYMBOL based
763 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
764 objfile's obstack; but if COPY_NAME is 0 and if NAME is
765 NUL-terminated, then this function assumes that NAME is already
766 correctly saved (either permanently or with a lifetime tied to the
767 objfile), and it will not be copied.
768
769 The hash table corresponding to OBJFILE is used, and the memory
770 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
771 so the pointer can be discarded after calling this function. */
772
773 void
774 symbol_set_names (struct general_symbol_info *gsymbol,
775 const char *linkage_name, int len, int copy_name,
776 struct objfile *objfile)
777 {
778 struct demangled_name_entry **slot;
779 /* A 0-terminated copy of the linkage name. */
780 const char *linkage_name_copy;
781 struct demangled_name_entry entry;
782 struct objfile_per_bfd_storage *per_bfd = objfile->per_bfd;
783
784 if (gsymbol->language == language_ada)
785 {
786 /* In Ada, we do the symbol lookups using the mangled name, so
787 we can save some space by not storing the demangled name. */
788 if (!copy_name)
789 gsymbol->name = linkage_name;
790 else
791 {
792 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
793 len + 1);
794
795 memcpy (name, linkage_name, len);
796 name[len] = '\0';
797 gsymbol->name = name;
798 }
799 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
800
801 return;
802 }
803
804 if (per_bfd->demangled_names_hash == NULL)
805 create_demangled_names_hash (objfile);
806
807 if (linkage_name[len] != '\0')
808 {
809 char *alloc_name;
810
811 alloc_name = (char *) alloca (len + 1);
812 memcpy (alloc_name, linkage_name, len);
813 alloc_name[len] = '\0';
814
815 linkage_name_copy = alloc_name;
816 }
817 else
818 linkage_name_copy = linkage_name;
819
820 /* Set the symbol language. */
821 char *demangled_name_ptr
822 = symbol_find_demangled_name (gsymbol, linkage_name_copy);
823 gdb::unique_xmalloc_ptr<char> demangled_name (demangled_name_ptr);
824
825 entry.mangled = linkage_name_copy;
826 slot = ((struct demangled_name_entry **)
827 htab_find_slot (per_bfd->demangled_names_hash,
828 &entry, INSERT));
829
830 /* If this name is not in the hash table, add it. */
831 if (*slot == NULL
832 /* A C version of the symbol may have already snuck into the table.
833 This happens to, e.g., main.init (__go_init_main). Cope. */
834 || (gsymbol->language == language_go
835 && (*slot)->demangled[0] == '\0'))
836 {
837 int demangled_len = demangled_name ? strlen (demangled_name.get ()) : 0;
838
839 /* Suppose we have demangled_name==NULL, copy_name==0, and
840 linkage_name_copy==linkage_name. In this case, we already have the
841 mangled name saved, and we don't have a demangled name. So,
842 you might think we could save a little space by not recording
843 this in the hash table at all.
844
845 It turns out that it is actually important to still save such
846 an entry in the hash table, because storing this name gives
847 us better bcache hit rates for partial symbols. */
848 if (!copy_name && linkage_name_copy == linkage_name)
849 {
850 *slot
851 = ((struct demangled_name_entry *)
852 obstack_alloc (&per_bfd->storage_obstack,
853 offsetof (struct demangled_name_entry, demangled)
854 + demangled_len + 1));
855 (*slot)->mangled = linkage_name;
856 }
857 else
858 {
859 char *mangled_ptr;
860
861 /* If we must copy the mangled name, put it directly after
862 the demangled name so we can have a single
863 allocation. */
864 *slot
865 = ((struct demangled_name_entry *)
866 obstack_alloc (&per_bfd->storage_obstack,
867 offsetof (struct demangled_name_entry, demangled)
868 + len + demangled_len + 2));
869 mangled_ptr = &((*slot)->demangled[demangled_len + 1]);
870 strcpy (mangled_ptr, linkage_name_copy);
871 (*slot)->mangled = mangled_ptr;
872 }
873
874 if (demangled_name != NULL)
875 strcpy ((*slot)->demangled, demangled_name.get());
876 else
877 (*slot)->demangled[0] = '\0';
878 }
879
880 gsymbol->name = (*slot)->mangled;
881 if ((*slot)->demangled[0] != '\0')
882 symbol_set_demangled_name (gsymbol, (*slot)->demangled,
883 &per_bfd->storage_obstack);
884 else
885 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
886 }
887
888 /* Return the source code name of a symbol. In languages where
889 demangling is necessary, this is the demangled name. */
890
891 const char *
892 symbol_natural_name (const struct general_symbol_info *gsymbol)
893 {
894 switch (gsymbol->language)
895 {
896 case language_cplus:
897 case language_d:
898 case language_go:
899 case language_objc:
900 case language_fortran:
901 if (symbol_get_demangled_name (gsymbol) != NULL)
902 return symbol_get_demangled_name (gsymbol);
903 break;
904 case language_ada:
905 return ada_decode_symbol (gsymbol);
906 default:
907 break;
908 }
909 return gsymbol->name;
910 }
911
912 /* Return the demangled name for a symbol based on the language for
913 that symbol. If no demangled name exists, return NULL. */
914
915 const char *
916 symbol_demangled_name (const struct general_symbol_info *gsymbol)
917 {
918 const char *dem_name = NULL;
919
920 switch (gsymbol->language)
921 {
922 case language_cplus:
923 case language_d:
924 case language_go:
925 case language_objc:
926 case language_fortran:
927 dem_name = symbol_get_demangled_name (gsymbol);
928 break;
929 case language_ada:
930 dem_name = ada_decode_symbol (gsymbol);
931 break;
932 default:
933 break;
934 }
935 return dem_name;
936 }
937
938 /* Return the search name of a symbol---generally the demangled or
939 linkage name of the symbol, depending on how it will be searched for.
940 If there is no distinct demangled name, then returns the same value
941 (same pointer) as SYMBOL_LINKAGE_NAME. */
942
943 const char *
944 symbol_search_name (const struct general_symbol_info *gsymbol)
945 {
946 if (gsymbol->language == language_ada)
947 return gsymbol->name;
948 else
949 return symbol_natural_name (gsymbol);
950 }
951
952 /* See symtab.h. */
953
954 bool
955 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
956 const lookup_name_info &name)
957 {
958 symbol_name_matcher_ftype *name_match
959 = get_symbol_name_matcher (language_def (gsymbol->language), name);
960 return name_match (symbol_search_name (gsymbol), name, NULL);
961 }
962
963 \f
964
965 /* Return 1 if the two sections are the same, or if they could
966 plausibly be copies of each other, one in an original object
967 file and another in a separated debug file. */
968
969 int
970 matching_obj_sections (struct obj_section *obj_first,
971 struct obj_section *obj_second)
972 {
973 asection *first = obj_first? obj_first->the_bfd_section : NULL;
974 asection *second = obj_second? obj_second->the_bfd_section : NULL;
975 struct objfile *obj;
976
977 /* If they're the same section, then they match. */
978 if (first == second)
979 return 1;
980
981 /* If either is NULL, give up. */
982 if (first == NULL || second == NULL)
983 return 0;
984
985 /* This doesn't apply to absolute symbols. */
986 if (first->owner == NULL || second->owner == NULL)
987 return 0;
988
989 /* If they're in the same object file, they must be different sections. */
990 if (first->owner == second->owner)
991 return 0;
992
993 /* Check whether the two sections are potentially corresponding. They must
994 have the same size, address, and name. We can't compare section indexes,
995 which would be more reliable, because some sections may have been
996 stripped. */
997 if (bfd_get_section_size (first) != bfd_get_section_size (second))
998 return 0;
999
1000 /* In-memory addresses may start at a different offset, relativize them. */
1001 if (bfd_get_section_vma (first->owner, first)
1002 - bfd_get_start_address (first->owner)
1003 != bfd_get_section_vma (second->owner, second)
1004 - bfd_get_start_address (second->owner))
1005 return 0;
1006
1007 if (bfd_get_section_name (first->owner, first) == NULL
1008 || bfd_get_section_name (second->owner, second) == NULL
1009 || strcmp (bfd_get_section_name (first->owner, first),
1010 bfd_get_section_name (second->owner, second)) != 0)
1011 return 0;
1012
1013 /* Otherwise check that they are in corresponding objfiles. */
1014
1015 for (objfile *objfile : all_objfiles (current_program_space))
1016 if (objfile->obfd == first->owner)
1017 {
1018 obj = objfile;
1019 break;
1020 }
1021 gdb_assert (obj != NULL);
1022
1023 if (obj->separate_debug_objfile != NULL
1024 && obj->separate_debug_objfile->obfd == second->owner)
1025 return 1;
1026 if (obj->separate_debug_objfile_backlink != NULL
1027 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1028 return 1;
1029
1030 return 0;
1031 }
1032
1033 /* See symtab.h. */
1034
1035 void
1036 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1037 {
1038 struct bound_minimal_symbol msymbol;
1039
1040 /* If we know that this is not a text address, return failure. This is
1041 necessary because we loop based on texthigh and textlow, which do
1042 not include the data ranges. */
1043 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1044 if (msymbol.minsym
1045 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
1046 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
1047 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
1048 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
1049 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
1050 return;
1051
1052 for (objfile *objfile : all_objfiles (current_program_space))
1053 {
1054 struct compunit_symtab *cust = NULL;
1055
1056 if (objfile->sf)
1057 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1058 pc, section, 0);
1059 if (cust)
1060 return;
1061 }
1062 }
1063 \f
1064 /* Hash function for the symbol cache. */
1065
1066 static unsigned int
1067 hash_symbol_entry (const struct objfile *objfile_context,
1068 const char *name, domain_enum domain)
1069 {
1070 unsigned int hash = (uintptr_t) objfile_context;
1071
1072 if (name != NULL)
1073 hash += htab_hash_string (name);
1074
1075 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1076 to map to the same slot. */
1077 if (domain == STRUCT_DOMAIN)
1078 hash += VAR_DOMAIN * 7;
1079 else
1080 hash += domain * 7;
1081
1082 return hash;
1083 }
1084
1085 /* Equality function for the symbol cache. */
1086
1087 static int
1088 eq_symbol_entry (const struct symbol_cache_slot *slot,
1089 const struct objfile *objfile_context,
1090 const char *name, domain_enum domain)
1091 {
1092 const char *slot_name;
1093 domain_enum slot_domain;
1094
1095 if (slot->state == SYMBOL_SLOT_UNUSED)
1096 return 0;
1097
1098 if (slot->objfile_context != objfile_context)
1099 return 0;
1100
1101 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1102 {
1103 slot_name = slot->value.not_found.name;
1104 slot_domain = slot->value.not_found.domain;
1105 }
1106 else
1107 {
1108 slot_name = SYMBOL_SEARCH_NAME (slot->value.found.symbol);
1109 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1110 }
1111
1112 /* NULL names match. */
1113 if (slot_name == NULL && name == NULL)
1114 {
1115 /* But there's no point in calling symbol_matches_domain in the
1116 SYMBOL_SLOT_FOUND case. */
1117 if (slot_domain != domain)
1118 return 0;
1119 }
1120 else if (slot_name != NULL && name != NULL)
1121 {
1122 /* It's important that we use the same comparison that was done
1123 the first time through. If the slot records a found symbol,
1124 then this means using the symbol name comparison function of
1125 the symbol's language with SYMBOL_SEARCH_NAME. See
1126 dictionary.c. It also means using symbol_matches_domain for
1127 found symbols. See block.c.
1128
1129 If the slot records a not-found symbol, then require a precise match.
1130 We could still be lax with whitespace like strcmp_iw though. */
1131
1132 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1133 {
1134 if (strcmp (slot_name, name) != 0)
1135 return 0;
1136 if (slot_domain != domain)
1137 return 0;
1138 }
1139 else
1140 {
1141 struct symbol *sym = slot->value.found.symbol;
1142 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1143
1144 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1145 return 0;
1146
1147 if (!symbol_matches_domain (SYMBOL_LANGUAGE (sym),
1148 slot_domain, domain))
1149 return 0;
1150 }
1151 }
1152 else
1153 {
1154 /* Only one name is NULL. */
1155 return 0;
1156 }
1157
1158 return 1;
1159 }
1160
1161 /* Given a cache of size SIZE, return the size of the struct (with variable
1162 length array) in bytes. */
1163
1164 static size_t
1165 symbol_cache_byte_size (unsigned int size)
1166 {
1167 return (sizeof (struct block_symbol_cache)
1168 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1169 }
1170
1171 /* Resize CACHE. */
1172
1173 static void
1174 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1175 {
1176 /* If there's no change in size, don't do anything.
1177 All caches have the same size, so we can just compare with the size
1178 of the global symbols cache. */
1179 if ((cache->global_symbols != NULL
1180 && cache->global_symbols->size == new_size)
1181 || (cache->global_symbols == NULL
1182 && new_size == 0))
1183 return;
1184
1185 xfree (cache->global_symbols);
1186 xfree (cache->static_symbols);
1187
1188 if (new_size == 0)
1189 {
1190 cache->global_symbols = NULL;
1191 cache->static_symbols = NULL;
1192 }
1193 else
1194 {
1195 size_t total_size = symbol_cache_byte_size (new_size);
1196
1197 cache->global_symbols
1198 = (struct block_symbol_cache *) xcalloc (1, total_size);
1199 cache->static_symbols
1200 = (struct block_symbol_cache *) xcalloc (1, total_size);
1201 cache->global_symbols->size = new_size;
1202 cache->static_symbols->size = new_size;
1203 }
1204 }
1205
1206 /* Make a symbol cache of size SIZE. */
1207
1208 static struct symbol_cache *
1209 make_symbol_cache (unsigned int size)
1210 {
1211 struct symbol_cache *cache;
1212
1213 cache = XCNEW (struct symbol_cache);
1214 resize_symbol_cache (cache, symbol_cache_size);
1215 return cache;
1216 }
1217
1218 /* Free the space used by CACHE. */
1219
1220 static void
1221 free_symbol_cache (struct symbol_cache *cache)
1222 {
1223 xfree (cache->global_symbols);
1224 xfree (cache->static_symbols);
1225 xfree (cache);
1226 }
1227
1228 /* Return the symbol cache of PSPACE.
1229 Create one if it doesn't exist yet. */
1230
1231 static struct symbol_cache *
1232 get_symbol_cache (struct program_space *pspace)
1233 {
1234 struct symbol_cache *cache
1235 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1236
1237 if (cache == NULL)
1238 {
1239 cache = make_symbol_cache (symbol_cache_size);
1240 set_program_space_data (pspace, symbol_cache_key, cache);
1241 }
1242
1243 return cache;
1244 }
1245
1246 /* Delete the symbol cache of PSPACE.
1247 Called when PSPACE is destroyed. */
1248
1249 static void
1250 symbol_cache_cleanup (struct program_space *pspace, void *data)
1251 {
1252 struct symbol_cache *cache = (struct symbol_cache *) data;
1253
1254 free_symbol_cache (cache);
1255 }
1256
1257 /* Set the size of the symbol cache in all program spaces. */
1258
1259 static void
1260 set_symbol_cache_size (unsigned int new_size)
1261 {
1262 struct program_space *pspace;
1263
1264 ALL_PSPACES (pspace)
1265 {
1266 struct symbol_cache *cache
1267 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1268
1269 /* The pspace could have been created but not have a cache yet. */
1270 if (cache != NULL)
1271 resize_symbol_cache (cache, new_size);
1272 }
1273 }
1274
1275 /* Called when symbol-cache-size is set. */
1276
1277 static void
1278 set_symbol_cache_size_handler (const char *args, int from_tty,
1279 struct cmd_list_element *c)
1280 {
1281 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1282 {
1283 /* Restore the previous value.
1284 This is the value the "show" command prints. */
1285 new_symbol_cache_size = symbol_cache_size;
1286
1287 error (_("Symbol cache size is too large, max is %u."),
1288 MAX_SYMBOL_CACHE_SIZE);
1289 }
1290 symbol_cache_size = new_symbol_cache_size;
1291
1292 set_symbol_cache_size (symbol_cache_size);
1293 }
1294
1295 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1296 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1297 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1298 failed (and thus this one will too), or NULL if the symbol is not present
1299 in the cache.
1300 If the symbol is not present in the cache, then *BSC_PTR and *SLOT_PTR are
1301 set to the cache and slot of the symbol to save the result of a full lookup
1302 attempt. */
1303
1304 static struct block_symbol
1305 symbol_cache_lookup (struct symbol_cache *cache,
1306 struct objfile *objfile_context, int block,
1307 const char *name, domain_enum domain,
1308 struct block_symbol_cache **bsc_ptr,
1309 struct symbol_cache_slot **slot_ptr)
1310 {
1311 struct block_symbol_cache *bsc;
1312 unsigned int hash;
1313 struct symbol_cache_slot *slot;
1314
1315 if (block == GLOBAL_BLOCK)
1316 bsc = cache->global_symbols;
1317 else
1318 bsc = cache->static_symbols;
1319 if (bsc == NULL)
1320 {
1321 *bsc_ptr = NULL;
1322 *slot_ptr = NULL;
1323 return (struct block_symbol) {NULL, NULL};
1324 }
1325
1326 hash = hash_symbol_entry (objfile_context, name, domain);
1327 slot = bsc->symbols + hash % bsc->size;
1328
1329 if (eq_symbol_entry (slot, objfile_context, name, domain))
1330 {
1331 if (symbol_lookup_debug)
1332 fprintf_unfiltered (gdb_stdlog,
1333 "%s block symbol cache hit%s for %s, %s\n",
1334 block == GLOBAL_BLOCK ? "Global" : "Static",
1335 slot->state == SYMBOL_SLOT_NOT_FOUND
1336 ? " (not found)" : "",
1337 name, domain_name (domain));
1338 ++bsc->hits;
1339 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1340 return SYMBOL_LOOKUP_FAILED;
1341 return slot->value.found;
1342 }
1343
1344 /* Symbol is not present in the cache. */
1345
1346 *bsc_ptr = bsc;
1347 *slot_ptr = slot;
1348
1349 if (symbol_lookup_debug)
1350 {
1351 fprintf_unfiltered (gdb_stdlog,
1352 "%s block symbol cache miss for %s, %s\n",
1353 block == GLOBAL_BLOCK ? "Global" : "Static",
1354 name, domain_name (domain));
1355 }
1356 ++bsc->misses;
1357 return (struct block_symbol) {NULL, NULL};
1358 }
1359
1360 /* Clear out SLOT. */
1361
1362 static void
1363 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
1364 {
1365 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1366 xfree (slot->value.not_found.name);
1367 slot->state = SYMBOL_SLOT_UNUSED;
1368 }
1369
1370 /* Mark SYMBOL as found in SLOT.
1371 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1372 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1373 necessarily the objfile the symbol was found in. */
1374
1375 static void
1376 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1377 struct symbol_cache_slot *slot,
1378 struct objfile *objfile_context,
1379 struct symbol *symbol,
1380 const struct block *block)
1381 {
1382 if (bsc == NULL)
1383 return;
1384 if (slot->state != SYMBOL_SLOT_UNUSED)
1385 {
1386 ++bsc->collisions;
1387 symbol_cache_clear_slot (slot);
1388 }
1389 slot->state = SYMBOL_SLOT_FOUND;
1390 slot->objfile_context = objfile_context;
1391 slot->value.found.symbol = symbol;
1392 slot->value.found.block = block;
1393 }
1394
1395 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1396 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1397 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1398
1399 static void
1400 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1401 struct symbol_cache_slot *slot,
1402 struct objfile *objfile_context,
1403 const char *name, domain_enum domain)
1404 {
1405 if (bsc == NULL)
1406 return;
1407 if (slot->state != SYMBOL_SLOT_UNUSED)
1408 {
1409 ++bsc->collisions;
1410 symbol_cache_clear_slot (slot);
1411 }
1412 slot->state = SYMBOL_SLOT_NOT_FOUND;
1413 slot->objfile_context = objfile_context;
1414 slot->value.not_found.name = xstrdup (name);
1415 slot->value.not_found.domain = domain;
1416 }
1417
1418 /* Flush the symbol cache of PSPACE. */
1419
1420 static void
1421 symbol_cache_flush (struct program_space *pspace)
1422 {
1423 struct symbol_cache *cache
1424 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1425 int pass;
1426
1427 if (cache == NULL)
1428 return;
1429 if (cache->global_symbols == NULL)
1430 {
1431 gdb_assert (symbol_cache_size == 0);
1432 gdb_assert (cache->static_symbols == NULL);
1433 return;
1434 }
1435
1436 /* If the cache is untouched since the last flush, early exit.
1437 This is important for performance during the startup of a program linked
1438 with 100s (or 1000s) of shared libraries. */
1439 if (cache->global_symbols->misses == 0
1440 && cache->static_symbols->misses == 0)
1441 return;
1442
1443 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1444 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1445
1446 for (pass = 0; pass < 2; ++pass)
1447 {
1448 struct block_symbol_cache *bsc
1449 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1450 unsigned int i;
1451
1452 for (i = 0; i < bsc->size; ++i)
1453 symbol_cache_clear_slot (&bsc->symbols[i]);
1454 }
1455
1456 cache->global_symbols->hits = 0;
1457 cache->global_symbols->misses = 0;
1458 cache->global_symbols->collisions = 0;
1459 cache->static_symbols->hits = 0;
1460 cache->static_symbols->misses = 0;
1461 cache->static_symbols->collisions = 0;
1462 }
1463
1464 /* Dump CACHE. */
1465
1466 static void
1467 symbol_cache_dump (const struct symbol_cache *cache)
1468 {
1469 int pass;
1470
1471 if (cache->global_symbols == NULL)
1472 {
1473 printf_filtered (" <disabled>\n");
1474 return;
1475 }
1476
1477 for (pass = 0; pass < 2; ++pass)
1478 {
1479 const struct block_symbol_cache *bsc
1480 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1481 unsigned int i;
1482
1483 if (pass == 0)
1484 printf_filtered ("Global symbols:\n");
1485 else
1486 printf_filtered ("Static symbols:\n");
1487
1488 for (i = 0; i < bsc->size; ++i)
1489 {
1490 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1491
1492 QUIT;
1493
1494 switch (slot->state)
1495 {
1496 case SYMBOL_SLOT_UNUSED:
1497 break;
1498 case SYMBOL_SLOT_NOT_FOUND:
1499 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1500 host_address_to_string (slot->objfile_context),
1501 slot->value.not_found.name,
1502 domain_name (slot->value.not_found.domain));
1503 break;
1504 case SYMBOL_SLOT_FOUND:
1505 {
1506 struct symbol *found = slot->value.found.symbol;
1507 const struct objfile *context = slot->objfile_context;
1508
1509 printf_filtered (" [%4u] = %s, %s %s\n", i,
1510 host_address_to_string (context),
1511 SYMBOL_PRINT_NAME (found),
1512 domain_name (SYMBOL_DOMAIN (found)));
1513 break;
1514 }
1515 }
1516 }
1517 }
1518 }
1519
1520 /* The "mt print symbol-cache" command. */
1521
1522 static void
1523 maintenance_print_symbol_cache (const char *args, int from_tty)
1524 {
1525 struct program_space *pspace;
1526
1527 ALL_PSPACES (pspace)
1528 {
1529 struct symbol_cache *cache;
1530
1531 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1532 pspace->num,
1533 pspace->symfile_object_file != NULL
1534 ? objfile_name (pspace->symfile_object_file)
1535 : "(no object file)");
1536
1537 /* If the cache hasn't been created yet, avoid creating one. */
1538 cache
1539 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1540 if (cache == NULL)
1541 printf_filtered (" <empty>\n");
1542 else
1543 symbol_cache_dump (cache);
1544 }
1545 }
1546
1547 /* The "mt flush-symbol-cache" command. */
1548
1549 static void
1550 maintenance_flush_symbol_cache (const char *args, int from_tty)
1551 {
1552 struct program_space *pspace;
1553
1554 ALL_PSPACES (pspace)
1555 {
1556 symbol_cache_flush (pspace);
1557 }
1558 }
1559
1560 /* Print usage statistics of CACHE. */
1561
1562 static void
1563 symbol_cache_stats (struct symbol_cache *cache)
1564 {
1565 int pass;
1566
1567 if (cache->global_symbols == NULL)
1568 {
1569 printf_filtered (" <disabled>\n");
1570 return;
1571 }
1572
1573 for (pass = 0; pass < 2; ++pass)
1574 {
1575 const struct block_symbol_cache *bsc
1576 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1577
1578 QUIT;
1579
1580 if (pass == 0)
1581 printf_filtered ("Global block cache stats:\n");
1582 else
1583 printf_filtered ("Static block cache stats:\n");
1584
1585 printf_filtered (" size: %u\n", bsc->size);
1586 printf_filtered (" hits: %u\n", bsc->hits);
1587 printf_filtered (" misses: %u\n", bsc->misses);
1588 printf_filtered (" collisions: %u\n", bsc->collisions);
1589 }
1590 }
1591
1592 /* The "mt print symbol-cache-statistics" command. */
1593
1594 static void
1595 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1596 {
1597 struct program_space *pspace;
1598
1599 ALL_PSPACES (pspace)
1600 {
1601 struct symbol_cache *cache;
1602
1603 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1604 pspace->num,
1605 pspace->symfile_object_file != NULL
1606 ? objfile_name (pspace->symfile_object_file)
1607 : "(no object file)");
1608
1609 /* If the cache hasn't been created yet, avoid creating one. */
1610 cache
1611 = (struct symbol_cache *) program_space_data (pspace, symbol_cache_key);
1612 if (cache == NULL)
1613 printf_filtered (" empty, no stats available\n");
1614 else
1615 symbol_cache_stats (cache);
1616 }
1617 }
1618
1619 /* This module's 'new_objfile' observer. */
1620
1621 static void
1622 symtab_new_objfile_observer (struct objfile *objfile)
1623 {
1624 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1625 symbol_cache_flush (current_program_space);
1626 }
1627
1628 /* This module's 'free_objfile' observer. */
1629
1630 static void
1631 symtab_free_objfile_observer (struct objfile *objfile)
1632 {
1633 symbol_cache_flush (objfile->pspace);
1634 }
1635 \f
1636 /* Debug symbols usually don't have section information. We need to dig that
1637 out of the minimal symbols and stash that in the debug symbol. */
1638
1639 void
1640 fixup_section (struct general_symbol_info *ginfo,
1641 CORE_ADDR addr, struct objfile *objfile)
1642 {
1643 struct minimal_symbol *msym;
1644
1645 /* First, check whether a minimal symbol with the same name exists
1646 and points to the same address. The address check is required
1647 e.g. on PowerPC64, where the minimal symbol for a function will
1648 point to the function descriptor, while the debug symbol will
1649 point to the actual function code. */
1650 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1651 if (msym)
1652 ginfo->section = MSYMBOL_SECTION (msym);
1653 else
1654 {
1655 /* Static, function-local variables do appear in the linker
1656 (minimal) symbols, but are frequently given names that won't
1657 be found via lookup_minimal_symbol(). E.g., it has been
1658 observed in frv-uclinux (ELF) executables that a static,
1659 function-local variable named "foo" might appear in the
1660 linker symbols as "foo.6" or "foo.3". Thus, there is no
1661 point in attempting to extend the lookup-by-name mechanism to
1662 handle this case due to the fact that there can be multiple
1663 names.
1664
1665 So, instead, search the section table when lookup by name has
1666 failed. The ``addr'' and ``endaddr'' fields may have already
1667 been relocated. If so, the relocation offset (i.e. the
1668 ANOFFSET value) needs to be subtracted from these values when
1669 performing the comparison. We unconditionally subtract it,
1670 because, when no relocation has been performed, the ANOFFSET
1671 value will simply be zero.
1672
1673 The address of the symbol whose section we're fixing up HAS
1674 NOT BEEN adjusted (relocated) yet. It can't have been since
1675 the section isn't yet known and knowing the section is
1676 necessary in order to add the correct relocation value. In
1677 other words, we wouldn't even be in this function (attempting
1678 to compute the section) if it were already known.
1679
1680 Note that it is possible to search the minimal symbols
1681 (subtracting the relocation value if necessary) to find the
1682 matching minimal symbol, but this is overkill and much less
1683 efficient. It is not necessary to find the matching minimal
1684 symbol, only its section.
1685
1686 Note that this technique (of doing a section table search)
1687 can fail when unrelocated section addresses overlap. For
1688 this reason, we still attempt a lookup by name prior to doing
1689 a search of the section table. */
1690
1691 struct obj_section *s;
1692 int fallback = -1;
1693
1694 ALL_OBJFILE_OSECTIONS (objfile, s)
1695 {
1696 int idx = s - objfile->sections;
1697 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1698
1699 if (fallback == -1)
1700 fallback = idx;
1701
1702 if (obj_section_addr (s) - offset <= addr
1703 && addr < obj_section_endaddr (s) - offset)
1704 {
1705 ginfo->section = idx;
1706 return;
1707 }
1708 }
1709
1710 /* If we didn't find the section, assume it is in the first
1711 section. If there is no allocated section, then it hardly
1712 matters what we pick, so just pick zero. */
1713 if (fallback == -1)
1714 ginfo->section = 0;
1715 else
1716 ginfo->section = fallback;
1717 }
1718 }
1719
1720 struct symbol *
1721 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1722 {
1723 CORE_ADDR addr;
1724
1725 if (!sym)
1726 return NULL;
1727
1728 if (!SYMBOL_OBJFILE_OWNED (sym))
1729 return sym;
1730
1731 /* We either have an OBJFILE, or we can get at it from the sym's
1732 symtab. Anything else is a bug. */
1733 gdb_assert (objfile || symbol_symtab (sym));
1734
1735 if (objfile == NULL)
1736 objfile = symbol_objfile (sym);
1737
1738 if (SYMBOL_OBJ_SECTION (objfile, sym))
1739 return sym;
1740
1741 /* We should have an objfile by now. */
1742 gdb_assert (objfile);
1743
1744 switch (SYMBOL_CLASS (sym))
1745 {
1746 case LOC_STATIC:
1747 case LOC_LABEL:
1748 addr = SYMBOL_VALUE_ADDRESS (sym);
1749 break;
1750 case LOC_BLOCK:
1751 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1752 break;
1753
1754 default:
1755 /* Nothing else will be listed in the minsyms -- no use looking
1756 it up. */
1757 return sym;
1758 }
1759
1760 fixup_section (&sym->ginfo, addr, objfile);
1761
1762 return sym;
1763 }
1764
1765 /* See symtab.h. */
1766
1767 demangle_for_lookup_info::demangle_for_lookup_info
1768 (const lookup_name_info &lookup_name, language lang)
1769 {
1770 demangle_result_storage storage;
1771
1772 if (lookup_name.ignore_parameters () && lang == language_cplus)
1773 {
1774 gdb::unique_xmalloc_ptr<char> without_params
1775 = cp_remove_params_if_any (lookup_name.name ().c_str (),
1776 lookup_name.completion_mode ());
1777
1778 if (without_params != NULL)
1779 {
1780 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1781 m_demangled_name = demangle_for_lookup (without_params.get (),
1782 lang, storage);
1783 return;
1784 }
1785 }
1786
1787 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1788 m_demangled_name = lookup_name.name ();
1789 else
1790 m_demangled_name = demangle_for_lookup (lookup_name.name ().c_str (),
1791 lang, storage);
1792 }
1793
1794 /* See symtab.h. */
1795
1796 const lookup_name_info &
1797 lookup_name_info::match_any ()
1798 {
1799 /* Lookup any symbol that "" would complete. I.e., this matches all
1800 symbol names. */
1801 static const lookup_name_info lookup_name ({}, symbol_name_match_type::FULL,
1802 true);
1803
1804 return lookup_name;
1805 }
1806
1807 /* Compute the demangled form of NAME as used by the various symbol
1808 lookup functions. The result can either be the input NAME
1809 directly, or a pointer to a buffer owned by the STORAGE object.
1810
1811 For Ada, this function just returns NAME, unmodified.
1812 Normally, Ada symbol lookups are performed using the encoded name
1813 rather than the demangled name, and so it might seem to make sense
1814 for this function to return an encoded version of NAME.
1815 Unfortunately, we cannot do this, because this function is used in
1816 circumstances where it is not appropriate to try to encode NAME.
1817 For instance, when displaying the frame info, we demangle the name
1818 of each parameter, and then perform a symbol lookup inside our
1819 function using that demangled name. In Ada, certain functions
1820 have internally-generated parameters whose name contain uppercase
1821 characters. Encoding those name would result in those uppercase
1822 characters to become lowercase, and thus cause the symbol lookup
1823 to fail. */
1824
1825 const char *
1826 demangle_for_lookup (const char *name, enum language lang,
1827 demangle_result_storage &storage)
1828 {
1829 /* If we are using C++, D, or Go, demangle the name before doing a
1830 lookup, so we can always binary search. */
1831 if (lang == language_cplus)
1832 {
1833 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1834 if (demangled_name != NULL)
1835 return storage.set_malloc_ptr (demangled_name);
1836
1837 /* If we were given a non-mangled name, canonicalize it
1838 according to the language (so far only for C++). */
1839 std::string canon = cp_canonicalize_string (name);
1840 if (!canon.empty ())
1841 return storage.swap_string (canon);
1842 }
1843 else if (lang == language_d)
1844 {
1845 char *demangled_name = d_demangle (name, 0);
1846 if (demangled_name != NULL)
1847 return storage.set_malloc_ptr (demangled_name);
1848 }
1849 else if (lang == language_go)
1850 {
1851 char *demangled_name = go_demangle (name, 0);
1852 if (demangled_name != NULL)
1853 return storage.set_malloc_ptr (demangled_name);
1854 }
1855
1856 return name;
1857 }
1858
1859 /* See symtab.h. */
1860
1861 unsigned int
1862 search_name_hash (enum language language, const char *search_name)
1863 {
1864 return language_def (language)->la_search_name_hash (search_name);
1865 }
1866
1867 /* See symtab.h.
1868
1869 This function (or rather its subordinates) have a bunch of loops and
1870 it would seem to be attractive to put in some QUIT's (though I'm not really
1871 sure whether it can run long enough to be really important). But there
1872 are a few calls for which it would appear to be bad news to quit
1873 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1874 that there is C++ code below which can error(), but that probably
1875 doesn't affect these calls since they are looking for a known
1876 variable and thus can probably assume it will never hit the C++
1877 code). */
1878
1879 struct block_symbol
1880 lookup_symbol_in_language (const char *name, const struct block *block,
1881 const domain_enum domain, enum language lang,
1882 struct field_of_this_result *is_a_field_of_this)
1883 {
1884 demangle_result_storage storage;
1885 const char *modified_name = demangle_for_lookup (name, lang, storage);
1886
1887 return lookup_symbol_aux (modified_name,
1888 symbol_name_match_type::FULL,
1889 block, domain, lang,
1890 is_a_field_of_this);
1891 }
1892
1893 /* See symtab.h. */
1894
1895 struct block_symbol
1896 lookup_symbol (const char *name, const struct block *block,
1897 domain_enum domain,
1898 struct field_of_this_result *is_a_field_of_this)
1899 {
1900 return lookup_symbol_in_language (name, block, domain,
1901 current_language->la_language,
1902 is_a_field_of_this);
1903 }
1904
1905 /* See symtab.h. */
1906
1907 struct block_symbol
1908 lookup_symbol_search_name (const char *search_name, const struct block *block,
1909 domain_enum domain)
1910 {
1911 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1912 block, domain, language_asm, NULL);
1913 }
1914
1915 /* See symtab.h. */
1916
1917 struct block_symbol
1918 lookup_language_this (const struct language_defn *lang,
1919 const struct block *block)
1920 {
1921 if (lang->la_name_of_this == NULL || block == NULL)
1922 return (struct block_symbol) {NULL, NULL};
1923
1924 if (symbol_lookup_debug > 1)
1925 {
1926 struct objfile *objfile = lookup_objfile_from_block (block);
1927
1928 fprintf_unfiltered (gdb_stdlog,
1929 "lookup_language_this (%s, %s (objfile %s))",
1930 lang->la_name, host_address_to_string (block),
1931 objfile_debug_name (objfile));
1932 }
1933
1934 while (block)
1935 {
1936 struct symbol *sym;
1937
1938 sym = block_lookup_symbol (block, lang->la_name_of_this,
1939 symbol_name_match_type::SEARCH_NAME,
1940 VAR_DOMAIN);
1941 if (sym != NULL)
1942 {
1943 if (symbol_lookup_debug > 1)
1944 {
1945 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1946 SYMBOL_PRINT_NAME (sym),
1947 host_address_to_string (sym),
1948 host_address_to_string (block));
1949 }
1950 return (struct block_symbol) {sym, block};
1951 }
1952 if (BLOCK_FUNCTION (block))
1953 break;
1954 block = BLOCK_SUPERBLOCK (block);
1955 }
1956
1957 if (symbol_lookup_debug > 1)
1958 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1959 return (struct block_symbol) {NULL, NULL};
1960 }
1961
1962 /* Given TYPE, a structure/union,
1963 return 1 if the component named NAME from the ultimate target
1964 structure/union is defined, otherwise, return 0. */
1965
1966 static int
1967 check_field (struct type *type, const char *name,
1968 struct field_of_this_result *is_a_field_of_this)
1969 {
1970 int i;
1971
1972 /* The type may be a stub. */
1973 type = check_typedef (type);
1974
1975 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
1976 {
1977 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1978
1979 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1980 {
1981 is_a_field_of_this->type = type;
1982 is_a_field_of_this->field = &TYPE_FIELD (type, i);
1983 return 1;
1984 }
1985 }
1986
1987 /* C++: If it was not found as a data field, then try to return it
1988 as a pointer to a method. */
1989
1990 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
1991 {
1992 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
1993 {
1994 is_a_field_of_this->type = type;
1995 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
1996 return 1;
1997 }
1998 }
1999
2000 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2001 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
2002 return 1;
2003
2004 return 0;
2005 }
2006
2007 /* Behave like lookup_symbol except that NAME is the natural name
2008 (e.g., demangled name) of the symbol that we're looking for. */
2009
2010 static struct block_symbol
2011 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2012 const struct block *block,
2013 const domain_enum domain, enum language language,
2014 struct field_of_this_result *is_a_field_of_this)
2015 {
2016 struct block_symbol result;
2017 const struct language_defn *langdef;
2018
2019 if (symbol_lookup_debug)
2020 {
2021 struct objfile *objfile = lookup_objfile_from_block (block);
2022
2023 fprintf_unfiltered (gdb_stdlog,
2024 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2025 name, host_address_to_string (block),
2026 objfile != NULL
2027 ? objfile_debug_name (objfile) : "NULL",
2028 domain_name (domain), language_str (language));
2029 }
2030
2031 /* Make sure we do something sensible with is_a_field_of_this, since
2032 the callers that set this parameter to some non-null value will
2033 certainly use it later. If we don't set it, the contents of
2034 is_a_field_of_this are undefined. */
2035 if (is_a_field_of_this != NULL)
2036 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2037
2038 /* Search specified block and its superiors. Don't search
2039 STATIC_BLOCK or GLOBAL_BLOCK. */
2040
2041 result = lookup_local_symbol (name, match_type, block, domain, language);
2042 if (result.symbol != NULL)
2043 {
2044 if (symbol_lookup_debug)
2045 {
2046 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2047 host_address_to_string (result.symbol));
2048 }
2049 return result;
2050 }
2051
2052 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2053 check to see if NAME is a field of `this'. */
2054
2055 langdef = language_def (language);
2056
2057 /* Don't do this check if we are searching for a struct. It will
2058 not be found by check_field, but will be found by other
2059 means. */
2060 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2061 {
2062 result = lookup_language_this (langdef, block);
2063
2064 if (result.symbol)
2065 {
2066 struct type *t = result.symbol->type;
2067
2068 /* I'm not really sure that type of this can ever
2069 be typedefed; just be safe. */
2070 t = check_typedef (t);
2071 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2072 t = TYPE_TARGET_TYPE (t);
2073
2074 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2075 && TYPE_CODE (t) != TYPE_CODE_UNION)
2076 error (_("Internal error: `%s' is not an aggregate"),
2077 langdef->la_name_of_this);
2078
2079 if (check_field (t, name, is_a_field_of_this))
2080 {
2081 if (symbol_lookup_debug)
2082 {
2083 fprintf_unfiltered (gdb_stdlog,
2084 "lookup_symbol_aux (...) = NULL\n");
2085 }
2086 return (struct block_symbol) {NULL, NULL};
2087 }
2088 }
2089 }
2090
2091 /* Now do whatever is appropriate for LANGUAGE to look
2092 up static and global variables. */
2093
2094 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2095 if (result.symbol != NULL)
2096 {
2097 if (symbol_lookup_debug)
2098 {
2099 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2100 host_address_to_string (result.symbol));
2101 }
2102 return result;
2103 }
2104
2105 /* Now search all static file-level symbols. Not strictly correct,
2106 but more useful than an error. */
2107
2108 result = lookup_static_symbol (name, domain);
2109 if (symbol_lookup_debug)
2110 {
2111 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2112 result.symbol != NULL
2113 ? host_address_to_string (result.symbol)
2114 : "NULL");
2115 }
2116 return result;
2117 }
2118
2119 /* Check to see if the symbol is defined in BLOCK or its superiors.
2120 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2121
2122 static struct block_symbol
2123 lookup_local_symbol (const char *name,
2124 symbol_name_match_type match_type,
2125 const struct block *block,
2126 const domain_enum domain,
2127 enum language language)
2128 {
2129 struct symbol *sym;
2130 const struct block *static_block = block_static_block (block);
2131 const char *scope = block_scope (block);
2132
2133 /* Check if either no block is specified or it's a global block. */
2134
2135 if (static_block == NULL)
2136 return (struct block_symbol) {NULL, NULL};
2137
2138 while (block != static_block)
2139 {
2140 sym = lookup_symbol_in_block (name, match_type, block, domain);
2141 if (sym != NULL)
2142 return (struct block_symbol) {sym, block};
2143
2144 if (language == language_cplus || language == language_fortran)
2145 {
2146 struct block_symbol blocksym
2147 = cp_lookup_symbol_imports_or_template (scope, name, block,
2148 domain);
2149
2150 if (blocksym.symbol != NULL)
2151 return blocksym;
2152 }
2153
2154 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2155 break;
2156 block = BLOCK_SUPERBLOCK (block);
2157 }
2158
2159 /* We've reached the end of the function without finding a result. */
2160
2161 return (struct block_symbol) {NULL, NULL};
2162 }
2163
2164 /* See symtab.h. */
2165
2166 struct objfile *
2167 lookup_objfile_from_block (const struct block *block)
2168 {
2169 if (block == NULL)
2170 return NULL;
2171
2172 block = block_global_block (block);
2173 /* Look through all blockvectors. */
2174 for (objfile *obj : all_objfiles (current_program_space))
2175 {
2176 for (compunit_symtab *cust : objfile_compunits (obj))
2177 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2178 GLOBAL_BLOCK))
2179 {
2180 if (obj->separate_debug_objfile_backlink)
2181 obj = obj->separate_debug_objfile_backlink;
2182
2183 return obj;
2184 }
2185 }
2186
2187 return NULL;
2188 }
2189
2190 /* See symtab.h. */
2191
2192 struct symbol *
2193 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2194 const struct block *block,
2195 const domain_enum domain)
2196 {
2197 struct symbol *sym;
2198
2199 if (symbol_lookup_debug > 1)
2200 {
2201 struct objfile *objfile = lookup_objfile_from_block (block);
2202
2203 fprintf_unfiltered (gdb_stdlog,
2204 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2205 name, host_address_to_string (block),
2206 objfile_debug_name (objfile),
2207 domain_name (domain));
2208 }
2209
2210 sym = block_lookup_symbol (block, name, match_type, domain);
2211 if (sym)
2212 {
2213 if (symbol_lookup_debug > 1)
2214 {
2215 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2216 host_address_to_string (sym));
2217 }
2218 return fixup_symbol_section (sym, NULL);
2219 }
2220
2221 if (symbol_lookup_debug > 1)
2222 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2223 return NULL;
2224 }
2225
2226 /* See symtab.h. */
2227
2228 struct block_symbol
2229 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2230 const char *name,
2231 const domain_enum domain)
2232 {
2233 struct objfile *objfile;
2234
2235 for (objfile = main_objfile;
2236 objfile;
2237 objfile = objfile_separate_debug_iterate (main_objfile, objfile))
2238 {
2239 struct block_symbol result
2240 = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK, name, domain);
2241
2242 if (result.symbol != NULL)
2243 return result;
2244 }
2245
2246 return (struct block_symbol) {NULL, NULL};
2247 }
2248
2249 /* Check to see if the symbol is defined in one of the OBJFILE's
2250 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2251 depending on whether or not we want to search global symbols or
2252 static symbols. */
2253
2254 static struct block_symbol
2255 lookup_symbol_in_objfile_symtabs (struct objfile *objfile, int block_index,
2256 const char *name, const domain_enum domain)
2257 {
2258 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2259
2260 if (symbol_lookup_debug > 1)
2261 {
2262 fprintf_unfiltered (gdb_stdlog,
2263 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2264 objfile_debug_name (objfile),
2265 block_index == GLOBAL_BLOCK
2266 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2267 name, domain_name (domain));
2268 }
2269
2270 for (compunit_symtab *cust : objfile_compunits (objfile))
2271 {
2272 const struct blockvector *bv;
2273 const struct block *block;
2274 struct block_symbol result;
2275
2276 bv = COMPUNIT_BLOCKVECTOR (cust);
2277 block = BLOCKVECTOR_BLOCK (bv, block_index);
2278 result.symbol = block_lookup_symbol_primary (block, name, domain);
2279 result.block = block;
2280 if (result.symbol != NULL)
2281 {
2282 if (symbol_lookup_debug > 1)
2283 {
2284 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2285 host_address_to_string (result.symbol),
2286 host_address_to_string (block));
2287 }
2288 result.symbol = fixup_symbol_section (result.symbol, objfile);
2289 return result;
2290
2291 }
2292 }
2293
2294 if (symbol_lookup_debug > 1)
2295 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2296 return (struct block_symbol) {NULL, NULL};
2297 }
2298
2299 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2300 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2301 and all associated separate debug objfiles.
2302
2303 Normally we only look in OBJFILE, and not any separate debug objfiles
2304 because the outer loop will cause them to be searched too. This case is
2305 different. Here we're called from search_symbols where it will only
2306 call us for the the objfile that contains a matching minsym. */
2307
2308 static struct block_symbol
2309 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2310 const char *linkage_name,
2311 domain_enum domain)
2312 {
2313 enum language lang = current_language->la_language;
2314 struct objfile *main_objfile, *cur_objfile;
2315
2316 demangle_result_storage storage;
2317 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2318
2319 if (objfile->separate_debug_objfile_backlink)
2320 main_objfile = objfile->separate_debug_objfile_backlink;
2321 else
2322 main_objfile = objfile;
2323
2324 for (cur_objfile = main_objfile;
2325 cur_objfile;
2326 cur_objfile = objfile_separate_debug_iterate (main_objfile, cur_objfile))
2327 {
2328 struct block_symbol result;
2329
2330 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2331 modified_name, domain);
2332 if (result.symbol == NULL)
2333 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2334 modified_name, domain);
2335 if (result.symbol != NULL)
2336 return result;
2337 }
2338
2339 return (struct block_symbol) {NULL, NULL};
2340 }
2341
2342 /* A helper function that throws an exception when a symbol was found
2343 in a psymtab but not in a symtab. */
2344
2345 static void ATTRIBUTE_NORETURN
2346 error_in_psymtab_expansion (int block_index, const char *name,
2347 struct compunit_symtab *cust)
2348 {
2349 error (_("\
2350 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2351 %s may be an inlined function, or may be a template function\n \
2352 (if a template, try specifying an instantiation: %s<type>)."),
2353 block_index == GLOBAL_BLOCK ? "global" : "static",
2354 name,
2355 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2356 name, name);
2357 }
2358
2359 /* A helper function for various lookup routines that interfaces with
2360 the "quick" symbol table functions. */
2361
2362 static struct block_symbol
2363 lookup_symbol_via_quick_fns (struct objfile *objfile, int block_index,
2364 const char *name, const domain_enum domain)
2365 {
2366 struct compunit_symtab *cust;
2367 const struct blockvector *bv;
2368 const struct block *block;
2369 struct block_symbol result;
2370
2371 if (!objfile->sf)
2372 return (struct block_symbol) {NULL, NULL};
2373
2374 if (symbol_lookup_debug > 1)
2375 {
2376 fprintf_unfiltered (gdb_stdlog,
2377 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2378 objfile_debug_name (objfile),
2379 block_index == GLOBAL_BLOCK
2380 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2381 name, domain_name (domain));
2382 }
2383
2384 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2385 if (cust == NULL)
2386 {
2387 if (symbol_lookup_debug > 1)
2388 {
2389 fprintf_unfiltered (gdb_stdlog,
2390 "lookup_symbol_via_quick_fns (...) = NULL\n");
2391 }
2392 return (struct block_symbol) {NULL, NULL};
2393 }
2394
2395 bv = COMPUNIT_BLOCKVECTOR (cust);
2396 block = BLOCKVECTOR_BLOCK (bv, block_index);
2397 result.symbol = block_lookup_symbol (block, name,
2398 symbol_name_match_type::FULL, domain);
2399 if (result.symbol == NULL)
2400 error_in_psymtab_expansion (block_index, name, cust);
2401
2402 if (symbol_lookup_debug > 1)
2403 {
2404 fprintf_unfiltered (gdb_stdlog,
2405 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2406 host_address_to_string (result.symbol),
2407 host_address_to_string (block));
2408 }
2409
2410 result.symbol = fixup_symbol_section (result.symbol, objfile);
2411 result.block = block;
2412 return result;
2413 }
2414
2415 /* See symtab.h. */
2416
2417 struct block_symbol
2418 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2419 const char *name,
2420 const struct block *block,
2421 const domain_enum domain)
2422 {
2423 struct block_symbol result;
2424
2425 /* NOTE: carlton/2003-05-19: The comments below were written when
2426 this (or what turned into this) was part of lookup_symbol_aux;
2427 I'm much less worried about these questions now, since these
2428 decisions have turned out well, but I leave these comments here
2429 for posterity. */
2430
2431 /* NOTE: carlton/2002-12-05: There is a question as to whether or
2432 not it would be appropriate to search the current global block
2433 here as well. (That's what this code used to do before the
2434 is_a_field_of_this check was moved up.) On the one hand, it's
2435 redundant with the lookup in all objfiles search that happens
2436 next. On the other hand, if decode_line_1 is passed an argument
2437 like filename:var, then the user presumably wants 'var' to be
2438 searched for in filename. On the third hand, there shouldn't be
2439 multiple global variables all of which are named 'var', and it's
2440 not like decode_line_1 has ever restricted its search to only
2441 global variables in a single filename. All in all, only
2442 searching the static block here seems best: it's correct and it's
2443 cleanest. */
2444
2445 /* NOTE: carlton/2002-12-05: There's also a possible performance
2446 issue here: if you usually search for global symbols in the
2447 current file, then it would be slightly better to search the
2448 current global block before searching all the symtabs. But there
2449 are other factors that have a much greater effect on performance
2450 than that one, so I don't think we should worry about that for
2451 now. */
2452
2453 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2454 the current objfile. Searching the current objfile first is useful
2455 for both matching user expectations as well as performance. */
2456
2457 result = lookup_symbol_in_static_block (name, block, domain);
2458 if (result.symbol != NULL)
2459 return result;
2460
2461 /* If we didn't find a definition for a builtin type in the static block,
2462 search for it now. This is actually the right thing to do and can be
2463 a massive performance win. E.g., when debugging a program with lots of
2464 shared libraries we could search all of them only to find out the
2465 builtin type isn't defined in any of them. This is common for types
2466 like "void". */
2467 if (domain == VAR_DOMAIN)
2468 {
2469 struct gdbarch *gdbarch;
2470
2471 if (block == NULL)
2472 gdbarch = target_gdbarch ();
2473 else
2474 gdbarch = block_gdbarch (block);
2475 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2476 gdbarch, name);
2477 result.block = NULL;
2478 if (result.symbol != NULL)
2479 return result;
2480 }
2481
2482 return lookup_global_symbol (name, block, domain);
2483 }
2484
2485 /* See symtab.h. */
2486
2487 struct block_symbol
2488 lookup_symbol_in_static_block (const char *name,
2489 const struct block *block,
2490 const domain_enum domain)
2491 {
2492 const struct block *static_block = block_static_block (block);
2493 struct symbol *sym;
2494
2495 if (static_block == NULL)
2496 return (struct block_symbol) {NULL, NULL};
2497
2498 if (symbol_lookup_debug)
2499 {
2500 struct objfile *objfile = lookup_objfile_from_block (static_block);
2501
2502 fprintf_unfiltered (gdb_stdlog,
2503 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2504 " %s)\n",
2505 name,
2506 host_address_to_string (block),
2507 objfile_debug_name (objfile),
2508 domain_name (domain));
2509 }
2510
2511 sym = lookup_symbol_in_block (name,
2512 symbol_name_match_type::FULL,
2513 static_block, domain);
2514 if (symbol_lookup_debug)
2515 {
2516 fprintf_unfiltered (gdb_stdlog,
2517 "lookup_symbol_in_static_block (...) = %s\n",
2518 sym != NULL ? host_address_to_string (sym) : "NULL");
2519 }
2520 return (struct block_symbol) {sym, static_block};
2521 }
2522
2523 /* Perform the standard symbol lookup of NAME in OBJFILE:
2524 1) First search expanded symtabs, and if not found
2525 2) Search the "quick" symtabs (partial or .gdb_index).
2526 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2527
2528 static struct block_symbol
2529 lookup_symbol_in_objfile (struct objfile *objfile, int block_index,
2530 const char *name, const domain_enum domain)
2531 {
2532 struct block_symbol result;
2533
2534 if (symbol_lookup_debug)
2535 {
2536 fprintf_unfiltered (gdb_stdlog,
2537 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2538 objfile_debug_name (objfile),
2539 block_index == GLOBAL_BLOCK
2540 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2541 name, domain_name (domain));
2542 }
2543
2544 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2545 name, domain);
2546 if (result.symbol != NULL)
2547 {
2548 if (symbol_lookup_debug)
2549 {
2550 fprintf_unfiltered (gdb_stdlog,
2551 "lookup_symbol_in_objfile (...) = %s"
2552 " (in symtabs)\n",
2553 host_address_to_string (result.symbol));
2554 }
2555 return result;
2556 }
2557
2558 result = lookup_symbol_via_quick_fns (objfile, block_index,
2559 name, domain);
2560 if (symbol_lookup_debug)
2561 {
2562 fprintf_unfiltered (gdb_stdlog,
2563 "lookup_symbol_in_objfile (...) = %s%s\n",
2564 result.symbol != NULL
2565 ? host_address_to_string (result.symbol)
2566 : "NULL",
2567 result.symbol != NULL ? " (via quick fns)" : "");
2568 }
2569 return result;
2570 }
2571
2572 /* See symtab.h. */
2573
2574 struct block_symbol
2575 lookup_static_symbol (const char *name, const domain_enum domain)
2576 {
2577 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2578 struct block_symbol result;
2579 struct block_symbol_cache *bsc;
2580 struct symbol_cache_slot *slot;
2581
2582 /* Lookup in STATIC_BLOCK is not current-objfile-dependent, so just pass
2583 NULL for OBJFILE_CONTEXT. */
2584 result = symbol_cache_lookup (cache, NULL, STATIC_BLOCK, name, domain,
2585 &bsc, &slot);
2586 if (result.symbol != NULL)
2587 {
2588 if (SYMBOL_LOOKUP_FAILED_P (result))
2589 return (struct block_symbol) {NULL, NULL};
2590 return result;
2591 }
2592
2593 for (objfile *objfile : all_objfiles (current_program_space))
2594 {
2595 result = lookup_symbol_in_objfile (objfile, STATIC_BLOCK, name, domain);
2596 if (result.symbol != NULL)
2597 {
2598 /* Still pass NULL for OBJFILE_CONTEXT here. */
2599 symbol_cache_mark_found (bsc, slot, NULL, result.symbol,
2600 result.block);
2601 return result;
2602 }
2603 }
2604
2605 /* Still pass NULL for OBJFILE_CONTEXT here. */
2606 symbol_cache_mark_not_found (bsc, slot, NULL, name, domain);
2607 return (struct block_symbol) {NULL, NULL};
2608 }
2609
2610 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2611
2612 struct global_sym_lookup_data
2613 {
2614 /* The name of the symbol we are searching for. */
2615 const char *name;
2616
2617 /* The domain to use for our search. */
2618 domain_enum domain;
2619
2620 /* The field where the callback should store the symbol if found.
2621 It should be initialized to {NULL, NULL} before the search is started. */
2622 struct block_symbol result;
2623 };
2624
2625 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2626 It searches by name for a symbol in the GLOBAL_BLOCK of the given
2627 OBJFILE. The arguments for the search are passed via CB_DATA,
2628 which in reality is a pointer to struct global_sym_lookup_data. */
2629
2630 static int
2631 lookup_symbol_global_iterator_cb (struct objfile *objfile,
2632 void *cb_data)
2633 {
2634 struct global_sym_lookup_data *data =
2635 (struct global_sym_lookup_data *) cb_data;
2636
2637 gdb_assert (data->result.symbol == NULL
2638 && data->result.block == NULL);
2639
2640 data->result = lookup_symbol_in_objfile (objfile, GLOBAL_BLOCK,
2641 data->name, data->domain);
2642
2643 /* If we found a match, tell the iterator to stop. Otherwise,
2644 keep going. */
2645 return (data->result.symbol != NULL);
2646 }
2647
2648 /* See symtab.h. */
2649
2650 struct block_symbol
2651 lookup_global_symbol (const char *name,
2652 const struct block *block,
2653 const domain_enum domain)
2654 {
2655 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2656 struct block_symbol result;
2657 struct objfile *objfile;
2658 struct global_sym_lookup_data lookup_data;
2659 struct block_symbol_cache *bsc;
2660 struct symbol_cache_slot *slot;
2661
2662 objfile = lookup_objfile_from_block (block);
2663
2664 /* First see if we can find the symbol in the cache.
2665 This works because we use the current objfile to qualify the lookup. */
2666 result = symbol_cache_lookup (cache, objfile, GLOBAL_BLOCK, name, domain,
2667 &bsc, &slot);
2668 if (result.symbol != NULL)
2669 {
2670 if (SYMBOL_LOOKUP_FAILED_P (result))
2671 return (struct block_symbol) {NULL, NULL};
2672 return result;
2673 }
2674
2675 /* Call library-specific lookup procedure. */
2676 if (objfile != NULL)
2677 result = solib_global_lookup (objfile, name, domain);
2678
2679 /* If that didn't work go a global search (of global blocks, heh). */
2680 if (result.symbol == NULL)
2681 {
2682 memset (&lookup_data, 0, sizeof (lookup_data));
2683 lookup_data.name = name;
2684 lookup_data.domain = domain;
2685 gdbarch_iterate_over_objfiles_in_search_order
2686 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2687 lookup_symbol_global_iterator_cb, &lookup_data, objfile);
2688 result = lookup_data.result;
2689 }
2690
2691 if (result.symbol != NULL)
2692 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2693 else
2694 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2695
2696 return result;
2697 }
2698
2699 int
2700 symbol_matches_domain (enum language symbol_language,
2701 domain_enum symbol_domain,
2702 domain_enum domain)
2703 {
2704 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2705 Similarly, any Ada type declaration implicitly defines a typedef. */
2706 if (symbol_language == language_cplus
2707 || symbol_language == language_d
2708 || symbol_language == language_ada
2709 || symbol_language == language_rust)
2710 {
2711 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2712 && symbol_domain == STRUCT_DOMAIN)
2713 return 1;
2714 }
2715 /* For all other languages, strict match is required. */
2716 return (symbol_domain == domain);
2717 }
2718
2719 /* See symtab.h. */
2720
2721 struct type *
2722 lookup_transparent_type (const char *name)
2723 {
2724 return current_language->la_lookup_transparent_type (name);
2725 }
2726
2727 /* A helper for basic_lookup_transparent_type that interfaces with the
2728 "quick" symbol table functions. */
2729
2730 static struct type *
2731 basic_lookup_transparent_type_quick (struct objfile *objfile, int block_index,
2732 const char *name)
2733 {
2734 struct compunit_symtab *cust;
2735 const struct blockvector *bv;
2736 struct block *block;
2737 struct symbol *sym;
2738
2739 if (!objfile->sf)
2740 return NULL;
2741 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2742 STRUCT_DOMAIN);
2743 if (cust == NULL)
2744 return NULL;
2745
2746 bv = COMPUNIT_BLOCKVECTOR (cust);
2747 block = BLOCKVECTOR_BLOCK (bv, block_index);
2748 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2749 block_find_non_opaque_type, NULL);
2750 if (sym == NULL)
2751 error_in_psymtab_expansion (block_index, name, cust);
2752 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2753 return SYMBOL_TYPE (sym);
2754 }
2755
2756 /* Subroutine of basic_lookup_transparent_type to simplify it.
2757 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2758 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2759
2760 static struct type *
2761 basic_lookup_transparent_type_1 (struct objfile *objfile, int block_index,
2762 const char *name)
2763 {
2764 const struct blockvector *bv;
2765 const struct block *block;
2766 const struct symbol *sym;
2767
2768 for (compunit_symtab *cust : objfile_compunits (objfile))
2769 {
2770 bv = COMPUNIT_BLOCKVECTOR (cust);
2771 block = BLOCKVECTOR_BLOCK (bv, block_index);
2772 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2773 block_find_non_opaque_type, NULL);
2774 if (sym != NULL)
2775 {
2776 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2777 return SYMBOL_TYPE (sym);
2778 }
2779 }
2780
2781 return NULL;
2782 }
2783
2784 /* The standard implementation of lookup_transparent_type. This code
2785 was modeled on lookup_symbol -- the parts not relevant to looking
2786 up types were just left out. In particular it's assumed here that
2787 types are available in STRUCT_DOMAIN and only in file-static or
2788 global blocks. */
2789
2790 struct type *
2791 basic_lookup_transparent_type (const char *name)
2792 {
2793 struct type *t;
2794
2795 /* Now search all the global symbols. Do the symtab's first, then
2796 check the psymtab's. If a psymtab indicates the existence
2797 of the desired name as a global, then do psymtab-to-symtab
2798 conversion on the fly and return the found symbol. */
2799
2800 for (objfile *objfile : all_objfiles (current_program_space))
2801 {
2802 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2803 if (t)
2804 return t;
2805 }
2806
2807 for (objfile *objfile : all_objfiles (current_program_space))
2808 {
2809 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2810 if (t)
2811 return t;
2812 }
2813
2814 /* Now search the static file-level symbols.
2815 Not strictly correct, but more useful than an error.
2816 Do the symtab's first, then
2817 check the psymtab's. If a psymtab indicates the existence
2818 of the desired name as a file-level static, then do psymtab-to-symtab
2819 conversion on the fly and return the found symbol. */
2820
2821 for (objfile *objfile : all_objfiles (current_program_space))
2822 {
2823 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2824 if (t)
2825 return t;
2826 }
2827
2828 for (objfile *objfile : all_objfiles (current_program_space))
2829 {
2830 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2831 if (t)
2832 return t;
2833 }
2834
2835 return (struct type *) 0;
2836 }
2837
2838 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2839
2840 For each symbol that matches, CALLBACK is called. The symbol is
2841 passed to the callback.
2842
2843 If CALLBACK returns false, the iteration ends. Otherwise, the
2844 search continues. */
2845
2846 void
2847 iterate_over_symbols (const struct block *block,
2848 const lookup_name_info &name,
2849 const domain_enum domain,
2850 gdb::function_view<symbol_found_callback_ftype> callback)
2851 {
2852 struct block_iterator iter;
2853 struct symbol *sym;
2854
2855 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2856 {
2857 if (symbol_matches_domain (SYMBOL_LANGUAGE (sym),
2858 SYMBOL_DOMAIN (sym), domain))
2859 {
2860 struct block_symbol block_sym = {sym, block};
2861
2862 if (!callback (&block_sym))
2863 return;
2864 }
2865 }
2866 }
2867
2868 /* Find the compunit symtab associated with PC and SECTION.
2869 This will read in debug info as necessary. */
2870
2871 struct compunit_symtab *
2872 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2873 {
2874 struct compunit_symtab *best_cust = NULL;
2875 CORE_ADDR distance = 0;
2876 struct bound_minimal_symbol msymbol;
2877
2878 /* If we know that this is not a text address, return failure. This is
2879 necessary because we loop based on the block's high and low code
2880 addresses, which do not include the data ranges, and because
2881 we call find_pc_sect_psymtab which has a similar restriction based
2882 on the partial_symtab's texthigh and textlow. */
2883 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2884 if (msymbol.minsym
2885 && (MSYMBOL_TYPE (msymbol.minsym) == mst_data
2886 || MSYMBOL_TYPE (msymbol.minsym) == mst_bss
2887 || MSYMBOL_TYPE (msymbol.minsym) == mst_abs
2888 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_data
2889 || MSYMBOL_TYPE (msymbol.minsym) == mst_file_bss))
2890 return NULL;
2891
2892 /* Search all symtabs for the one whose file contains our address, and which
2893 is the smallest of all the ones containing the address. This is designed
2894 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2895 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2896 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2897
2898 This happens for native ecoff format, where code from included files
2899 gets its own symtab. The symtab for the included file should have
2900 been read in already via the dependency mechanism.
2901 It might be swifter to create several symtabs with the same name
2902 like xcoff does (I'm not sure).
2903
2904 It also happens for objfiles that have their functions reordered.
2905 For these, the symtab we are looking for is not necessarily read in. */
2906
2907 for (objfile *obj_file : all_objfiles (current_program_space))
2908 {
2909 for (compunit_symtab *cust : objfile_compunits (obj_file))
2910 {
2911 struct block *b;
2912 const struct blockvector *bv;
2913
2914 bv = COMPUNIT_BLOCKVECTOR (cust);
2915 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2916
2917 if (BLOCK_START (b) <= pc
2918 && BLOCK_END (b) > pc
2919 && (distance == 0
2920 || BLOCK_END (b) - BLOCK_START (b) < distance))
2921 {
2922 /* For an objfile that has its functions reordered,
2923 find_pc_psymtab will find the proper partial symbol table
2924 and we simply return its corresponding symtab. */
2925 /* In order to better support objfiles that contain both
2926 stabs and coff debugging info, we continue on if a psymtab
2927 can't be found. */
2928 if ((obj_file->flags & OBJF_REORDERED) && obj_file->sf)
2929 {
2930 struct compunit_symtab *result;
2931
2932 result
2933 = obj_file->sf->qf->find_pc_sect_compunit_symtab (obj_file,
2934 msymbol,
2935 pc,
2936 section,
2937 0);
2938 if (result != NULL)
2939 return result;
2940 }
2941 if (section != 0)
2942 {
2943 struct block_iterator iter;
2944 struct symbol *sym = NULL;
2945
2946 ALL_BLOCK_SYMBOLS (b, iter, sym)
2947 {
2948 fixup_symbol_section (sym, obj_file);
2949 if (matching_obj_sections (SYMBOL_OBJ_SECTION (obj_file,
2950 sym),
2951 section))
2952 break;
2953 }
2954 if (sym == NULL)
2955 continue; /* No symbol in this symtab matches
2956 section. */
2957 }
2958 distance = BLOCK_END (b) - BLOCK_START (b);
2959 best_cust = cust;
2960 }
2961 }
2962 }
2963
2964 if (best_cust != NULL)
2965 return best_cust;
2966
2967 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2968
2969 for (objfile *objf : all_objfiles (current_program_space))
2970 {
2971 struct compunit_symtab *result;
2972
2973 if (!objf->sf)
2974 continue;
2975 result = objf->sf->qf->find_pc_sect_compunit_symtab (objf,
2976 msymbol,
2977 pc, section,
2978 1);
2979 if (result != NULL)
2980 return result;
2981 }
2982
2983 return NULL;
2984 }
2985
2986 /* Find the compunit symtab associated with PC.
2987 This will read in debug info as necessary.
2988 Backward compatibility, no section. */
2989
2990 struct compunit_symtab *
2991 find_pc_compunit_symtab (CORE_ADDR pc)
2992 {
2993 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2994 }
2995
2996 /* See symtab.h. */
2997
2998 struct symbol *
2999 find_symbol_at_address (CORE_ADDR address)
3000 {
3001 for (objfile *objfile : all_objfiles (current_program_space))
3002 {
3003 if (objfile->sf == NULL
3004 || objfile->sf->qf->find_compunit_symtab_by_address == NULL)
3005 continue;
3006
3007 struct compunit_symtab *symtab
3008 = objfile->sf->qf->find_compunit_symtab_by_address (objfile, address);
3009 if (symtab != NULL)
3010 {
3011 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
3012
3013 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
3014 {
3015 struct block *b = BLOCKVECTOR_BLOCK (bv, i);
3016 struct block_iterator iter;
3017 struct symbol *sym;
3018
3019 ALL_BLOCK_SYMBOLS (b, iter, sym)
3020 {
3021 if (SYMBOL_CLASS (sym) == LOC_STATIC
3022 && SYMBOL_VALUE_ADDRESS (sym) == address)
3023 return sym;
3024 }
3025 }
3026 }
3027 }
3028
3029 return NULL;
3030 }
3031
3032 \f
3033
3034 /* Find the source file and line number for a given PC value and SECTION.
3035 Return a structure containing a symtab pointer, a line number,
3036 and a pc range for the entire source line.
3037 The value's .pc field is NOT the specified pc.
3038 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3039 use the line that ends there. Otherwise, in that case, the line
3040 that begins there is used. */
3041
3042 /* The big complication here is that a line may start in one file, and end just
3043 before the start of another file. This usually occurs when you #include
3044 code in the middle of a subroutine. To properly find the end of a line's PC
3045 range, we must search all symtabs associated with this compilation unit, and
3046 find the one whose first PC is closer than that of the next line in this
3047 symtab. */
3048
3049 struct symtab_and_line
3050 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3051 {
3052 struct compunit_symtab *cust;
3053 struct symtab *iter_s;
3054 struct linetable *l;
3055 int len;
3056 struct linetable_entry *item;
3057 const struct blockvector *bv;
3058 struct bound_minimal_symbol msymbol;
3059
3060 /* Info on best line seen so far, and where it starts, and its file. */
3061
3062 struct linetable_entry *best = NULL;
3063 CORE_ADDR best_end = 0;
3064 struct symtab *best_symtab = 0;
3065
3066 /* Store here the first line number
3067 of a file which contains the line at the smallest pc after PC.
3068 If we don't find a line whose range contains PC,
3069 we will use a line one less than this,
3070 with a range from the start of that file to the first line's pc. */
3071 struct linetable_entry *alt = NULL;
3072
3073 /* Info on best line seen in this file. */
3074
3075 struct linetable_entry *prev;
3076
3077 /* If this pc is not from the current frame,
3078 it is the address of the end of a call instruction.
3079 Quite likely that is the start of the following statement.
3080 But what we want is the statement containing the instruction.
3081 Fudge the pc to make sure we get that. */
3082
3083 /* It's tempting to assume that, if we can't find debugging info for
3084 any function enclosing PC, that we shouldn't search for line
3085 number info, either. However, GAS can emit line number info for
3086 assembly files --- very helpful when debugging hand-written
3087 assembly code. In such a case, we'd have no debug info for the
3088 function, but we would have line info. */
3089
3090 if (notcurrent)
3091 pc -= 1;
3092
3093 /* elz: added this because this function returned the wrong
3094 information if the pc belongs to a stub (import/export)
3095 to call a shlib function. This stub would be anywhere between
3096 two functions in the target, and the line info was erroneously
3097 taken to be the one of the line before the pc. */
3098
3099 /* RT: Further explanation:
3100
3101 * We have stubs (trampolines) inserted between procedures.
3102 *
3103 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3104 * exists in the main image.
3105 *
3106 * In the minimal symbol table, we have a bunch of symbols
3107 * sorted by start address. The stubs are marked as "trampoline",
3108 * the others appear as text. E.g.:
3109 *
3110 * Minimal symbol table for main image
3111 * main: code for main (text symbol)
3112 * shr1: stub (trampoline symbol)
3113 * foo: code for foo (text symbol)
3114 * ...
3115 * Minimal symbol table for "shr1" image:
3116 * ...
3117 * shr1: code for shr1 (text symbol)
3118 * ...
3119 *
3120 * So the code below is trying to detect if we are in the stub
3121 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3122 * and if found, do the symbolization from the real-code address
3123 * rather than the stub address.
3124 *
3125 * Assumptions being made about the minimal symbol table:
3126 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3127 * if we're really in the trampoline.s If we're beyond it (say
3128 * we're in "foo" in the above example), it'll have a closer
3129 * symbol (the "foo" text symbol for example) and will not
3130 * return the trampoline.
3131 * 2. lookup_minimal_symbol_text() will find a real text symbol
3132 * corresponding to the trampoline, and whose address will
3133 * be different than the trampoline address. I put in a sanity
3134 * check for the address being the same, to avoid an
3135 * infinite recursion.
3136 */
3137 msymbol = lookup_minimal_symbol_by_pc (pc);
3138 if (msymbol.minsym != NULL)
3139 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3140 {
3141 struct bound_minimal_symbol mfunsym
3142 = lookup_minimal_symbol_text (MSYMBOL_LINKAGE_NAME (msymbol.minsym),
3143 NULL);
3144
3145 if (mfunsym.minsym == NULL)
3146 /* I eliminated this warning since it is coming out
3147 * in the following situation:
3148 * gdb shmain // test program with shared libraries
3149 * (gdb) break shr1 // function in shared lib
3150 * Warning: In stub for ...
3151 * In the above situation, the shared lib is not loaded yet,
3152 * so of course we can't find the real func/line info,
3153 * but the "break" still works, and the warning is annoying.
3154 * So I commented out the warning. RT */
3155 /* warning ("In stub for %s; unable to find real function/line info",
3156 SYMBOL_LINKAGE_NAME (msymbol)); */
3157 ;
3158 /* fall through */
3159 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3160 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3161 /* Avoid infinite recursion */
3162 /* See above comment about why warning is commented out. */
3163 /* warning ("In stub for %s; unable to find real function/line info",
3164 SYMBOL_LINKAGE_NAME (msymbol)); */
3165 ;
3166 /* fall through */
3167 else
3168 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3169 }
3170
3171 symtab_and_line val;
3172 val.pspace = current_program_space;
3173
3174 cust = find_pc_sect_compunit_symtab (pc, section);
3175 if (cust == NULL)
3176 {
3177 /* If no symbol information, return previous pc. */
3178 if (notcurrent)
3179 pc++;
3180 val.pc = pc;
3181 return val;
3182 }
3183
3184 bv = COMPUNIT_BLOCKVECTOR (cust);
3185
3186 /* Look at all the symtabs that share this blockvector.
3187 They all have the same apriori range, that we found was right;
3188 but they have different line tables. */
3189
3190 ALL_COMPUNIT_FILETABS (cust, iter_s)
3191 {
3192 /* Find the best line in this symtab. */
3193 l = SYMTAB_LINETABLE (iter_s);
3194 if (!l)
3195 continue;
3196 len = l->nitems;
3197 if (len <= 0)
3198 {
3199 /* I think len can be zero if the symtab lacks line numbers
3200 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3201 I'm not sure which, and maybe it depends on the symbol
3202 reader). */
3203 continue;
3204 }
3205
3206 prev = NULL;
3207 item = l->item; /* Get first line info. */
3208
3209 /* Is this file's first line closer than the first lines of other files?
3210 If so, record this file, and its first line, as best alternate. */
3211 if (item->pc > pc && (!alt || item->pc < alt->pc))
3212 alt = item;
3213
3214 auto pc_compare = [](const CORE_ADDR & comp_pc,
3215 const struct linetable_entry & lhs)->bool
3216 {
3217 return comp_pc < lhs.pc;
3218 };
3219
3220 struct linetable_entry *first = item;
3221 struct linetable_entry *last = item + len;
3222 item = std::upper_bound (first, last, pc, pc_compare);
3223 if (item != first)
3224 prev = item - 1; /* Found a matching item. */
3225
3226 /* At this point, prev points at the line whose start addr is <= pc, and
3227 item points at the next line. If we ran off the end of the linetable
3228 (pc >= start of the last line), then prev == item. If pc < start of
3229 the first line, prev will not be set. */
3230
3231 /* Is this file's best line closer than the best in the other files?
3232 If so, record this file, and its best line, as best so far. Don't
3233 save prev if it represents the end of a function (i.e. line number
3234 0) instead of a real line. */
3235
3236 if (prev && prev->line && (!best || prev->pc > best->pc))
3237 {
3238 best = prev;
3239 best_symtab = iter_s;
3240
3241 /* Discard BEST_END if it's before the PC of the current BEST. */
3242 if (best_end <= best->pc)
3243 best_end = 0;
3244 }
3245
3246 /* If another line (denoted by ITEM) is in the linetable and its
3247 PC is after BEST's PC, but before the current BEST_END, then
3248 use ITEM's PC as the new best_end. */
3249 if (best && item < last && item->pc > best->pc
3250 && (best_end == 0 || best_end > item->pc))
3251 best_end = item->pc;
3252 }
3253
3254 if (!best_symtab)
3255 {
3256 /* If we didn't find any line number info, just return zeros.
3257 We used to return alt->line - 1 here, but that could be
3258 anywhere; if we don't have line number info for this PC,
3259 don't make some up. */
3260 val.pc = pc;
3261 }
3262 else if (best->line == 0)
3263 {
3264 /* If our best fit is in a range of PC's for which no line
3265 number info is available (line number is zero) then we didn't
3266 find any valid line information. */
3267 val.pc = pc;
3268 }
3269 else
3270 {
3271 val.symtab = best_symtab;
3272 val.line = best->line;
3273 val.pc = best->pc;
3274 if (best_end && (!alt || best_end < alt->pc))
3275 val.end = best_end;
3276 else if (alt)
3277 val.end = alt->pc;
3278 else
3279 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3280 }
3281 val.section = section;
3282 return val;
3283 }
3284
3285 /* Backward compatibility (no section). */
3286
3287 struct symtab_and_line
3288 find_pc_line (CORE_ADDR pc, int notcurrent)
3289 {
3290 struct obj_section *section;
3291
3292 section = find_pc_overlay (pc);
3293 if (pc_in_unmapped_range (pc, section))
3294 pc = overlay_mapped_address (pc, section);
3295 return find_pc_sect_line (pc, section, notcurrent);
3296 }
3297
3298 /* See symtab.h. */
3299
3300 struct symtab *
3301 find_pc_line_symtab (CORE_ADDR pc)
3302 {
3303 struct symtab_and_line sal;
3304
3305 /* This always passes zero for NOTCURRENT to find_pc_line.
3306 There are currently no callers that ever pass non-zero. */
3307 sal = find_pc_line (pc, 0);
3308 return sal.symtab;
3309 }
3310 \f
3311 /* Find line number LINE in any symtab whose name is the same as
3312 SYMTAB.
3313
3314 If found, return the symtab that contains the linetable in which it was
3315 found, set *INDEX to the index in the linetable of the best entry
3316 found, and set *EXACT_MATCH nonzero if the value returned is an
3317 exact match.
3318
3319 If not found, return NULL. */
3320
3321 struct symtab *
3322 find_line_symtab (struct symtab *symtab, int line,
3323 int *index, int *exact_match)
3324 {
3325 int exact = 0; /* Initialized here to avoid a compiler warning. */
3326
3327 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3328 so far seen. */
3329
3330 int best_index;
3331 struct linetable *best_linetable;
3332 struct symtab *best_symtab;
3333
3334 /* First try looking it up in the given symtab. */
3335 best_linetable = SYMTAB_LINETABLE (symtab);
3336 best_symtab = symtab;
3337 best_index = find_line_common (best_linetable, line, &exact, 0);
3338 if (best_index < 0 || !exact)
3339 {
3340 /* Didn't find an exact match. So we better keep looking for
3341 another symtab with the same name. In the case of xcoff,
3342 multiple csects for one source file (produced by IBM's FORTRAN
3343 compiler) produce multiple symtabs (this is unavoidable
3344 assuming csects can be at arbitrary places in memory and that
3345 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3346
3347 /* BEST is the smallest linenumber > LINE so far seen,
3348 or 0 if none has been seen so far.
3349 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3350 int best;
3351
3352 struct symtab *s;
3353
3354 if (best_index >= 0)
3355 best = best_linetable->item[best_index].line;
3356 else
3357 best = 0;
3358
3359 for (objfile *objfile : all_objfiles (current_program_space))
3360 {
3361 if (objfile->sf)
3362 objfile->sf->qf->expand_symtabs_with_fullname
3363 (objfile, symtab_to_fullname (symtab));
3364 }
3365
3366 struct objfile *objfile;
3367 ALL_FILETABS (objfile, cu, s)
3368 {
3369 struct linetable *l;
3370 int ind;
3371
3372 if (FILENAME_CMP (symtab->filename, s->filename) != 0)
3373 continue;
3374 if (FILENAME_CMP (symtab_to_fullname (symtab),
3375 symtab_to_fullname (s)) != 0)
3376 continue;
3377 l = SYMTAB_LINETABLE (s);
3378 ind = find_line_common (l, line, &exact, 0);
3379 if (ind >= 0)
3380 {
3381 if (exact)
3382 {
3383 best_index = ind;
3384 best_linetable = l;
3385 best_symtab = s;
3386 goto done;
3387 }
3388 if (best == 0 || l->item[ind].line < best)
3389 {
3390 best = l->item[ind].line;
3391 best_index = ind;
3392 best_linetable = l;
3393 best_symtab = s;
3394 }
3395 }
3396 }
3397 }
3398 done:
3399 if (best_index < 0)
3400 return NULL;
3401
3402 if (index)
3403 *index = best_index;
3404 if (exact_match)
3405 *exact_match = exact;
3406
3407 return best_symtab;
3408 }
3409
3410 /* Given SYMTAB, returns all the PCs function in the symtab that
3411 exactly match LINE. Returns an empty vector if there are no exact
3412 matches, but updates BEST_ITEM in this case. */
3413
3414 std::vector<CORE_ADDR>
3415 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3416 struct linetable_entry **best_item)
3417 {
3418 int start = 0;
3419 std::vector<CORE_ADDR> result;
3420
3421 /* First, collect all the PCs that are at this line. */
3422 while (1)
3423 {
3424 int was_exact;
3425 int idx;
3426
3427 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3428 start);
3429 if (idx < 0)
3430 break;
3431
3432 if (!was_exact)
3433 {
3434 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3435
3436 if (*best_item == NULL || item->line < (*best_item)->line)
3437 *best_item = item;
3438
3439 break;
3440 }
3441
3442 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3443 start = idx + 1;
3444 }
3445
3446 return result;
3447 }
3448
3449 \f
3450 /* Set the PC value for a given source file and line number and return true.
3451 Returns zero for invalid line number (and sets the PC to 0).
3452 The source file is specified with a struct symtab. */
3453
3454 int
3455 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3456 {
3457 struct linetable *l;
3458 int ind;
3459
3460 *pc = 0;
3461 if (symtab == 0)
3462 return 0;
3463
3464 symtab = find_line_symtab (symtab, line, &ind, NULL);
3465 if (symtab != NULL)
3466 {
3467 l = SYMTAB_LINETABLE (symtab);
3468 *pc = l->item[ind].pc;
3469 return 1;
3470 }
3471 else
3472 return 0;
3473 }
3474
3475 /* Find the range of pc values in a line.
3476 Store the starting pc of the line into *STARTPTR
3477 and the ending pc (start of next line) into *ENDPTR.
3478 Returns 1 to indicate success.
3479 Returns 0 if could not find the specified line. */
3480
3481 int
3482 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3483 CORE_ADDR *endptr)
3484 {
3485 CORE_ADDR startaddr;
3486 struct symtab_and_line found_sal;
3487
3488 startaddr = sal.pc;
3489 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3490 return 0;
3491
3492 /* This whole function is based on address. For example, if line 10 has
3493 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3494 "info line *0x123" should say the line goes from 0x100 to 0x200
3495 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3496 This also insures that we never give a range like "starts at 0x134
3497 and ends at 0x12c". */
3498
3499 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3500 if (found_sal.line != sal.line)
3501 {
3502 /* The specified line (sal) has zero bytes. */
3503 *startptr = found_sal.pc;
3504 *endptr = found_sal.pc;
3505 }
3506 else
3507 {
3508 *startptr = found_sal.pc;
3509 *endptr = found_sal.end;
3510 }
3511 return 1;
3512 }
3513
3514 /* Given a line table and a line number, return the index into the line
3515 table for the pc of the nearest line whose number is >= the specified one.
3516 Return -1 if none is found. The value is >= 0 if it is an index.
3517 START is the index at which to start searching the line table.
3518
3519 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3520
3521 static int
3522 find_line_common (struct linetable *l, int lineno,
3523 int *exact_match, int start)
3524 {
3525 int i;
3526 int len;
3527
3528 /* BEST is the smallest linenumber > LINENO so far seen,
3529 or 0 if none has been seen so far.
3530 BEST_INDEX identifies the item for it. */
3531
3532 int best_index = -1;
3533 int best = 0;
3534
3535 *exact_match = 0;
3536
3537 if (lineno <= 0)
3538 return -1;
3539 if (l == 0)
3540 return -1;
3541
3542 len = l->nitems;
3543 for (i = start; i < len; i++)
3544 {
3545 struct linetable_entry *item = &(l->item[i]);
3546
3547 if (item->line == lineno)
3548 {
3549 /* Return the first (lowest address) entry which matches. */
3550 *exact_match = 1;
3551 return i;
3552 }
3553
3554 if (item->line > lineno && (best == 0 || item->line < best))
3555 {
3556 best = item->line;
3557 best_index = i;
3558 }
3559 }
3560
3561 /* If we got here, we didn't get an exact match. */
3562 return best_index;
3563 }
3564
3565 int
3566 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3567 {
3568 struct symtab_and_line sal;
3569
3570 sal = find_pc_line (pc, 0);
3571 *startptr = sal.pc;
3572 *endptr = sal.end;
3573 return sal.symtab != 0;
3574 }
3575
3576 /* Helper for find_function_start_sal. Does most of the work, except
3577 setting the sal's symbol. */
3578
3579 static symtab_and_line
3580 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3581 bool funfirstline)
3582 {
3583 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3584
3585 if (funfirstline && sal.symtab != NULL
3586 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3587 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3588 {
3589 struct gdbarch *gdbarch = get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
3590
3591 sal.pc = func_addr;
3592 if (gdbarch_skip_entrypoint_p (gdbarch))
3593 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3594 return sal;
3595 }
3596
3597 /* We always should have a line for the function start address.
3598 If we don't, something is odd. Create a plain SAL referring
3599 just the PC and hope that skip_prologue_sal (if requested)
3600 can find a line number for after the prologue. */
3601 if (sal.pc < func_addr)
3602 {
3603 sal = {};
3604 sal.pspace = current_program_space;
3605 sal.pc = func_addr;
3606 sal.section = section;
3607 }
3608
3609 if (funfirstline)
3610 skip_prologue_sal (&sal);
3611
3612 return sal;
3613 }
3614
3615 /* See symtab.h. */
3616
3617 symtab_and_line
3618 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3619 bool funfirstline)
3620 {
3621 symtab_and_line sal
3622 = find_function_start_sal_1 (func_addr, section, funfirstline);
3623
3624 /* find_function_start_sal_1 does a linetable search, so it finds
3625 the symtab and linenumber, but not a symbol. Fill in the
3626 function symbol too. */
3627 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3628
3629 return sal;
3630 }
3631
3632 /* See symtab.h. */
3633
3634 symtab_and_line
3635 find_function_start_sal (symbol *sym, bool funfirstline)
3636 {
3637 fixup_symbol_section (sym, NULL);
3638 symtab_and_line sal
3639 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)),
3640 SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym),
3641 funfirstline);
3642 sal.symbol = sym;
3643 return sal;
3644 }
3645
3646
3647 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3648 address for that function that has an entry in SYMTAB's line info
3649 table. If such an entry cannot be found, return FUNC_ADDR
3650 unaltered. */
3651
3652 static CORE_ADDR
3653 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3654 {
3655 CORE_ADDR func_start, func_end;
3656 struct linetable *l;
3657 int i;
3658
3659 /* Give up if this symbol has no lineinfo table. */
3660 l = SYMTAB_LINETABLE (symtab);
3661 if (l == NULL)
3662 return func_addr;
3663
3664 /* Get the range for the function's PC values, or give up if we
3665 cannot, for some reason. */
3666 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3667 return func_addr;
3668
3669 /* Linetable entries are ordered by PC values, see the commentary in
3670 symtab.h where `struct linetable' is defined. Thus, the first
3671 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3672 address we are looking for. */
3673 for (i = 0; i < l->nitems; i++)
3674 {
3675 struct linetable_entry *item = &(l->item[i]);
3676
3677 /* Don't use line numbers of zero, they mark special entries in
3678 the table. See the commentary on symtab.h before the
3679 definition of struct linetable. */
3680 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3681 return item->pc;
3682 }
3683
3684 return func_addr;
3685 }
3686
3687 /* Adjust SAL to the first instruction past the function prologue.
3688 If the PC was explicitly specified, the SAL is not changed.
3689 If the line number was explicitly specified, at most the SAL's PC
3690 is updated. If SAL is already past the prologue, then do nothing. */
3691
3692 void
3693 skip_prologue_sal (struct symtab_and_line *sal)
3694 {
3695 struct symbol *sym;
3696 struct symtab_and_line start_sal;
3697 CORE_ADDR pc, saved_pc;
3698 struct obj_section *section;
3699 const char *name;
3700 struct objfile *objfile;
3701 struct gdbarch *gdbarch;
3702 const struct block *b, *function_block;
3703 int force_skip, skip;
3704
3705 /* Do not change the SAL if PC was specified explicitly. */
3706 if (sal->explicit_pc)
3707 return;
3708
3709 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3710
3711 switch_to_program_space_and_thread (sal->pspace);
3712
3713 sym = find_pc_sect_function (sal->pc, sal->section);
3714 if (sym != NULL)
3715 {
3716 fixup_symbol_section (sym, NULL);
3717
3718 objfile = symbol_objfile (sym);
3719 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
3720 section = SYMBOL_OBJ_SECTION (objfile, sym);
3721 name = SYMBOL_LINKAGE_NAME (sym);
3722 }
3723 else
3724 {
3725 struct bound_minimal_symbol msymbol
3726 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3727
3728 if (msymbol.minsym == NULL)
3729 return;
3730
3731 objfile = msymbol.objfile;
3732 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3733 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3734 name = MSYMBOL_LINKAGE_NAME (msymbol.minsym);
3735 }
3736
3737 gdbarch = get_objfile_arch (objfile);
3738
3739 /* Process the prologue in two passes. In the first pass try to skip the
3740 prologue (SKIP is true) and verify there is a real need for it (indicated
3741 by FORCE_SKIP). If no such reason was found run a second pass where the
3742 prologue is not skipped (SKIP is false). */
3743
3744 skip = 1;
3745 force_skip = 1;
3746
3747 /* Be conservative - allow direct PC (without skipping prologue) only if we
3748 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3749 have to be set by the caller so we use SYM instead. */
3750 if (sym != NULL
3751 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3752 force_skip = 0;
3753
3754 saved_pc = pc;
3755 do
3756 {
3757 pc = saved_pc;
3758
3759 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3760 so that gdbarch_skip_prologue has something unique to work on. */
3761 if (section_is_overlay (section) && !section_is_mapped (section))
3762 pc = overlay_unmapped_address (pc, section);
3763
3764 /* Skip "first line" of function (which is actually its prologue). */
3765 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3766 if (gdbarch_skip_entrypoint_p (gdbarch))
3767 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3768 if (skip)
3769 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3770
3771 /* For overlays, map pc back into its mapped VMA range. */
3772 pc = overlay_mapped_address (pc, section);
3773
3774 /* Calculate line number. */
3775 start_sal = find_pc_sect_line (pc, section, 0);
3776
3777 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3778 line is still part of the same function. */
3779 if (skip && start_sal.pc != pc
3780 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3781 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3782 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3783 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3784 {
3785 /* First pc of next line */
3786 pc = start_sal.end;
3787 /* Recalculate the line number (might not be N+1). */
3788 start_sal = find_pc_sect_line (pc, section, 0);
3789 }
3790
3791 /* On targets with executable formats that don't have a concept of
3792 constructors (ELF with .init has, PE doesn't), gcc emits a call
3793 to `__main' in `main' between the prologue and before user
3794 code. */
3795 if (gdbarch_skip_main_prologue_p (gdbarch)
3796 && name && strcmp_iw (name, "main") == 0)
3797 {
3798 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3799 /* Recalculate the line number (might not be N+1). */
3800 start_sal = find_pc_sect_line (pc, section, 0);
3801 force_skip = 1;
3802 }
3803 }
3804 while (!force_skip && skip--);
3805
3806 /* If we still don't have a valid source line, try to find the first
3807 PC in the lineinfo table that belongs to the same function. This
3808 happens with COFF debug info, which does not seem to have an
3809 entry in lineinfo table for the code after the prologue which has
3810 no direct relation to source. For example, this was found to be
3811 the case with the DJGPP target using "gcc -gcoff" when the
3812 compiler inserted code after the prologue to make sure the stack
3813 is aligned. */
3814 if (!force_skip && sym && start_sal.symtab == NULL)
3815 {
3816 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3817 /* Recalculate the line number. */
3818 start_sal = find_pc_sect_line (pc, section, 0);
3819 }
3820
3821 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3822 forward SAL to the end of the prologue. */
3823 if (sal->pc >= pc)
3824 return;
3825
3826 sal->pc = pc;
3827 sal->section = section;
3828
3829 /* Unless the explicit_line flag was set, update the SAL line
3830 and symtab to correspond to the modified PC location. */
3831 if (sal->explicit_line)
3832 return;
3833
3834 sal->symtab = start_sal.symtab;
3835 sal->line = start_sal.line;
3836 sal->end = start_sal.end;
3837
3838 /* Check if we are now inside an inlined function. If we can,
3839 use the call site of the function instead. */
3840 b = block_for_pc_sect (sal->pc, sal->section);
3841 function_block = NULL;
3842 while (b != NULL)
3843 {
3844 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3845 function_block = b;
3846 else if (BLOCK_FUNCTION (b) != NULL)
3847 break;
3848 b = BLOCK_SUPERBLOCK (b);
3849 }
3850 if (function_block != NULL
3851 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3852 {
3853 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3854 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3855 }
3856 }
3857
3858 /* Given PC at the function's start address, attempt to find the
3859 prologue end using SAL information. Return zero if the skip fails.
3860
3861 A non-optimized prologue traditionally has one SAL for the function
3862 and a second for the function body. A single line function has
3863 them both pointing at the same line.
3864
3865 An optimized prologue is similar but the prologue may contain
3866 instructions (SALs) from the instruction body. Need to skip those
3867 while not getting into the function body.
3868
3869 The functions end point and an increasing SAL line are used as
3870 indicators of the prologue's endpoint.
3871
3872 This code is based on the function refine_prologue_limit
3873 (found in ia64). */
3874
3875 CORE_ADDR
3876 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3877 {
3878 struct symtab_and_line prologue_sal;
3879 CORE_ADDR start_pc;
3880 CORE_ADDR end_pc;
3881 const struct block *bl;
3882
3883 /* Get an initial range for the function. */
3884 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3885 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3886
3887 prologue_sal = find_pc_line (start_pc, 0);
3888 if (prologue_sal.line != 0)
3889 {
3890 /* For languages other than assembly, treat two consecutive line
3891 entries at the same address as a zero-instruction prologue.
3892 The GNU assembler emits separate line notes for each instruction
3893 in a multi-instruction macro, but compilers generally will not
3894 do this. */
3895 if (prologue_sal.symtab->language != language_asm)
3896 {
3897 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3898 int idx = 0;
3899
3900 /* Skip any earlier lines, and any end-of-sequence marker
3901 from a previous function. */
3902 while (linetable->item[idx].pc != prologue_sal.pc
3903 || linetable->item[idx].line == 0)
3904 idx++;
3905
3906 if (idx+1 < linetable->nitems
3907 && linetable->item[idx+1].line != 0
3908 && linetable->item[idx+1].pc == start_pc)
3909 return start_pc;
3910 }
3911
3912 /* If there is only one sal that covers the entire function,
3913 then it is probably a single line function, like
3914 "foo(){}". */
3915 if (prologue_sal.end >= end_pc)
3916 return 0;
3917
3918 while (prologue_sal.end < end_pc)
3919 {
3920 struct symtab_and_line sal;
3921
3922 sal = find_pc_line (prologue_sal.end, 0);
3923 if (sal.line == 0)
3924 break;
3925 /* Assume that a consecutive SAL for the same (or larger)
3926 line mark the prologue -> body transition. */
3927 if (sal.line >= prologue_sal.line)
3928 break;
3929 /* Likewise if we are in a different symtab altogether
3930 (e.g. within a file included via #include).  */
3931 if (sal.symtab != prologue_sal.symtab)
3932 break;
3933
3934 /* The line number is smaller. Check that it's from the
3935 same function, not something inlined. If it's inlined,
3936 then there is no point comparing the line numbers. */
3937 bl = block_for_pc (prologue_sal.end);
3938 while (bl)
3939 {
3940 if (block_inlined_p (bl))
3941 break;
3942 if (BLOCK_FUNCTION (bl))
3943 {
3944 bl = NULL;
3945 break;
3946 }
3947 bl = BLOCK_SUPERBLOCK (bl);
3948 }
3949 if (bl != NULL)
3950 break;
3951
3952 /* The case in which compiler's optimizer/scheduler has
3953 moved instructions into the prologue. We look ahead in
3954 the function looking for address ranges whose
3955 corresponding line number is less the first one that we
3956 found for the function. This is more conservative then
3957 refine_prologue_limit which scans a large number of SALs
3958 looking for any in the prologue. */
3959 prologue_sal = sal;
3960 }
3961 }
3962
3963 if (prologue_sal.end < end_pc)
3964 /* Return the end of this line, or zero if we could not find a
3965 line. */
3966 return prologue_sal.end;
3967 else
3968 /* Don't return END_PC, which is past the end of the function. */
3969 return prologue_sal.pc;
3970 }
3971
3972 /* See symtab.h. */
3973
3974 symbol *
3975 find_function_alias_target (bound_minimal_symbol msymbol)
3976 {
3977 CORE_ADDR func_addr;
3978 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
3979 return NULL;
3980
3981 symbol *sym = find_pc_function (func_addr);
3982 if (sym != NULL
3983 && SYMBOL_CLASS (sym) == LOC_BLOCK
3984 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
3985 return sym;
3986
3987 return NULL;
3988 }
3989
3990 \f
3991 /* If P is of the form "operator[ \t]+..." where `...' is
3992 some legitimate operator text, return a pointer to the
3993 beginning of the substring of the operator text.
3994 Otherwise, return "". */
3995
3996 static const char *
3997 operator_chars (const char *p, const char **end)
3998 {
3999 *end = "";
4000 if (!startswith (p, CP_OPERATOR_STR))
4001 return *end;
4002 p += CP_OPERATOR_LEN;
4003
4004 /* Don't get faked out by `operator' being part of a longer
4005 identifier. */
4006 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4007 return *end;
4008
4009 /* Allow some whitespace between `operator' and the operator symbol. */
4010 while (*p == ' ' || *p == '\t')
4011 p++;
4012
4013 /* Recognize 'operator TYPENAME'. */
4014
4015 if (isalpha (*p) || *p == '_' || *p == '$')
4016 {
4017 const char *q = p + 1;
4018
4019 while (isalnum (*q) || *q == '_' || *q == '$')
4020 q++;
4021 *end = q;
4022 return p;
4023 }
4024
4025 while (*p)
4026 switch (*p)
4027 {
4028 case '\\': /* regexp quoting */
4029 if (p[1] == '*')
4030 {
4031 if (p[2] == '=') /* 'operator\*=' */
4032 *end = p + 3;
4033 else /* 'operator\*' */
4034 *end = p + 2;
4035 return p;
4036 }
4037 else if (p[1] == '[')
4038 {
4039 if (p[2] == ']')
4040 error (_("mismatched quoting on brackets, "
4041 "try 'operator\\[\\]'"));
4042 else if (p[2] == '\\' && p[3] == ']')
4043 {
4044 *end = p + 4; /* 'operator\[\]' */
4045 return p;
4046 }
4047 else
4048 error (_("nothing is allowed between '[' and ']'"));
4049 }
4050 else
4051 {
4052 /* Gratuitous qoute: skip it and move on. */
4053 p++;
4054 continue;
4055 }
4056 break;
4057 case '!':
4058 case '=':
4059 case '*':
4060 case '/':
4061 case '%':
4062 case '^':
4063 if (p[1] == '=')
4064 *end = p + 2;
4065 else
4066 *end = p + 1;
4067 return p;
4068 case '<':
4069 case '>':
4070 case '+':
4071 case '-':
4072 case '&':
4073 case '|':
4074 if (p[0] == '-' && p[1] == '>')
4075 {
4076 /* Struct pointer member operator 'operator->'. */
4077 if (p[2] == '*')
4078 {
4079 *end = p + 3; /* 'operator->*' */
4080 return p;
4081 }
4082 else if (p[2] == '\\')
4083 {
4084 *end = p + 4; /* Hopefully 'operator->\*' */
4085 return p;
4086 }
4087 else
4088 {
4089 *end = p + 2; /* 'operator->' */
4090 return p;
4091 }
4092 }
4093 if (p[1] == '=' || p[1] == p[0])
4094 *end = p + 2;
4095 else
4096 *end = p + 1;
4097 return p;
4098 case '~':
4099 case ',':
4100 *end = p + 1;
4101 return p;
4102 case '(':
4103 if (p[1] != ')')
4104 error (_("`operator ()' must be specified "
4105 "without whitespace in `()'"));
4106 *end = p + 2;
4107 return p;
4108 case '?':
4109 if (p[1] != ':')
4110 error (_("`operator ?:' must be specified "
4111 "without whitespace in `?:'"));
4112 *end = p + 2;
4113 return p;
4114 case '[':
4115 if (p[1] != ']')
4116 error (_("`operator []' must be specified "
4117 "without whitespace in `[]'"));
4118 *end = p + 2;
4119 return p;
4120 default:
4121 error (_("`operator %s' not supported"), p);
4122 break;
4123 }
4124
4125 *end = "";
4126 return *end;
4127 }
4128 \f
4129
4130 /* Data structure to maintain printing state for output_source_filename. */
4131
4132 struct output_source_filename_data
4133 {
4134 /* Cache of what we've seen so far. */
4135 struct filename_seen_cache *filename_seen_cache;
4136
4137 /* Flag of whether we're printing the first one. */
4138 int first;
4139 };
4140
4141 /* Slave routine for sources_info. Force line breaks at ,'s.
4142 NAME is the name to print.
4143 DATA contains the state for printing and watching for duplicates. */
4144
4145 static void
4146 output_source_filename (const char *name,
4147 struct output_source_filename_data *data)
4148 {
4149 /* Since a single source file can result in several partial symbol
4150 tables, we need to avoid printing it more than once. Note: if
4151 some of the psymtabs are read in and some are not, it gets
4152 printed both under "Source files for which symbols have been
4153 read" and "Source files for which symbols will be read in on
4154 demand". I consider this a reasonable way to deal with the
4155 situation. I'm not sure whether this can also happen for
4156 symtabs; it doesn't hurt to check. */
4157
4158 /* Was NAME already seen? */
4159 if (data->filename_seen_cache->seen (name))
4160 {
4161 /* Yes; don't print it again. */
4162 return;
4163 }
4164
4165 /* No; print it and reset *FIRST. */
4166 if (! data->first)
4167 printf_filtered (", ");
4168 data->first = 0;
4169
4170 wrap_here ("");
4171 fputs_filtered (name, gdb_stdout);
4172 }
4173
4174 /* A callback for map_partial_symbol_filenames. */
4175
4176 static void
4177 output_partial_symbol_filename (const char *filename, const char *fullname,
4178 void *data)
4179 {
4180 output_source_filename (fullname ? fullname : filename,
4181 (struct output_source_filename_data *) data);
4182 }
4183
4184 static void
4185 info_sources_command (const char *ignore, int from_tty)
4186 {
4187 struct symtab *s;
4188 struct objfile *objfile;
4189 struct output_source_filename_data data;
4190
4191 if (!have_full_symbols () && !have_partial_symbols ())
4192 {
4193 error (_("No symbol table is loaded. Use the \"file\" command."));
4194 }
4195
4196 filename_seen_cache filenames_seen;
4197
4198 data.filename_seen_cache = &filenames_seen;
4199
4200 printf_filtered ("Source files for which symbols have been read in:\n\n");
4201
4202 data.first = 1;
4203 ALL_FILETABS (objfile, cu, s)
4204 {
4205 const char *fullname = symtab_to_fullname (s);
4206
4207 output_source_filename (fullname, &data);
4208 }
4209 printf_filtered ("\n\n");
4210
4211 printf_filtered ("Source files for which symbols "
4212 "will be read in on demand:\n\n");
4213
4214 filenames_seen.clear ();
4215 data.first = 1;
4216 map_symbol_filenames (output_partial_symbol_filename, &data,
4217 1 /*need_fullname*/);
4218 printf_filtered ("\n");
4219 }
4220
4221 /* Compare FILE against all the NFILES entries of FILES. If BASENAMES is
4222 non-zero compare only lbasename of FILES. */
4223
4224 static int
4225 file_matches (const char *file, const char *files[], int nfiles, int basenames)
4226 {
4227 int i;
4228
4229 if (file != NULL && nfiles != 0)
4230 {
4231 for (i = 0; i < nfiles; i++)
4232 {
4233 if (compare_filenames_for_search (file, (basenames
4234 ? lbasename (files[i])
4235 : files[i])))
4236 return 1;
4237 }
4238 }
4239 else if (nfiles == 0)
4240 return 1;
4241 return 0;
4242 }
4243
4244 /* Helper function for sort_search_symbols_remove_dups and qsort. Can only
4245 sort symbols, not minimal symbols. */
4246
4247 int
4248 symbol_search::compare_search_syms (const symbol_search &sym_a,
4249 const symbol_search &sym_b)
4250 {
4251 int c;
4252
4253 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4254 symbol_symtab (sym_b.symbol)->filename);
4255 if (c != 0)
4256 return c;
4257
4258 if (sym_a.block != sym_b.block)
4259 return sym_a.block - sym_b.block;
4260
4261 return strcmp (SYMBOL_PRINT_NAME (sym_a.symbol),
4262 SYMBOL_PRINT_NAME (sym_b.symbol));
4263 }
4264
4265 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4266 If SYM has no symbol_type or symbol_name, returns false. */
4267
4268 bool
4269 treg_matches_sym_type_name (const compiled_regex &treg,
4270 const struct symbol *sym)
4271 {
4272 struct type *sym_type;
4273 std::string printed_sym_type_name;
4274
4275 if (symbol_lookup_debug > 1)
4276 {
4277 fprintf_unfiltered (gdb_stdlog,
4278 "treg_matches_sym_type_name\n sym %s\n",
4279 SYMBOL_NATURAL_NAME (sym));
4280 }
4281
4282 sym_type = SYMBOL_TYPE (sym);
4283 if (sym_type == NULL)
4284 return false;
4285
4286 {
4287 scoped_switch_to_sym_language_if_auto l (sym);
4288
4289 printed_sym_type_name = type_to_string (sym_type);
4290 }
4291
4292
4293 if (symbol_lookup_debug > 1)
4294 {
4295 fprintf_unfiltered (gdb_stdlog,
4296 " sym_type_name %s\n",
4297 printed_sym_type_name.c_str ());
4298 }
4299
4300
4301 if (printed_sym_type_name.empty ())
4302 return false;
4303
4304 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4305 }
4306
4307
4308 /* Sort the symbols in RESULT and remove duplicates. */
4309
4310 static void
4311 sort_search_symbols_remove_dups (std::vector<symbol_search> *result)
4312 {
4313 std::sort (result->begin (), result->end ());
4314 result->erase (std::unique (result->begin (), result->end ()),
4315 result->end ());
4316 }
4317
4318 /* Search the symbol table for matches to the regular expression REGEXP,
4319 returning the results.
4320
4321 Only symbols of KIND are searched:
4322 VARIABLES_DOMAIN - search all symbols, excluding functions, type names,
4323 and constants (enums).
4324 if T_REGEXP is not NULL, only returns var that have
4325 a type matching regular expression T_REGEXP.
4326 FUNCTIONS_DOMAIN - search all functions
4327 TYPES_DOMAIN - search all type names
4328 ALL_DOMAIN - an internal error for this function
4329
4330 Within each file the results are sorted locally; each symtab's global and
4331 static blocks are separately alphabetized.
4332 Duplicate entries are removed. */
4333
4334 std::vector<symbol_search>
4335 search_symbols (const char *regexp, enum search_domain kind,
4336 const char *t_regexp,
4337 int nfiles, const char *files[])
4338 {
4339 const struct blockvector *bv;
4340 struct block *b;
4341 int i = 0;
4342 struct block_iterator iter;
4343 struct symbol *sym;
4344 int found_misc = 0;
4345 static const enum minimal_symbol_type types[]
4346 = {mst_data, mst_text, mst_abs};
4347 static const enum minimal_symbol_type types2[]
4348 = {mst_bss, mst_file_text, mst_abs};
4349 static const enum minimal_symbol_type types3[]
4350 = {mst_file_data, mst_solib_trampoline, mst_abs};
4351 static const enum minimal_symbol_type types4[]
4352 = {mst_file_bss, mst_text_gnu_ifunc, mst_abs};
4353 enum minimal_symbol_type ourtype;
4354 enum minimal_symbol_type ourtype2;
4355 enum minimal_symbol_type ourtype3;
4356 enum minimal_symbol_type ourtype4;
4357 std::vector<symbol_search> result;
4358 gdb::optional<compiled_regex> preg;
4359 gdb::optional<compiled_regex> treg;
4360
4361 gdb_assert (kind <= TYPES_DOMAIN);
4362
4363 ourtype = types[kind];
4364 ourtype2 = types2[kind];
4365 ourtype3 = types3[kind];
4366 ourtype4 = types4[kind];
4367
4368 if (regexp != NULL)
4369 {
4370 /* Make sure spacing is right for C++ operators.
4371 This is just a courtesy to make the matching less sensitive
4372 to how many spaces the user leaves between 'operator'
4373 and <TYPENAME> or <OPERATOR>. */
4374 const char *opend;
4375 const char *opname = operator_chars (regexp, &opend);
4376
4377 if (*opname)
4378 {
4379 int fix = -1; /* -1 means ok; otherwise number of
4380 spaces needed. */
4381
4382 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4383 {
4384 /* There should 1 space between 'operator' and 'TYPENAME'. */
4385 if (opname[-1] != ' ' || opname[-2] == ' ')
4386 fix = 1;
4387 }
4388 else
4389 {
4390 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4391 if (opname[-1] == ' ')
4392 fix = 0;
4393 }
4394 /* If wrong number of spaces, fix it. */
4395 if (fix >= 0)
4396 {
4397 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4398
4399 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4400 regexp = tmp;
4401 }
4402 }
4403
4404 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4405 ? REG_ICASE : 0);
4406 preg.emplace (regexp, cflags, _("Invalid regexp"));
4407 }
4408
4409 if (t_regexp != NULL)
4410 {
4411 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4412 ? REG_ICASE : 0);
4413 treg.emplace (t_regexp, cflags, _("Invalid regexp"));
4414 }
4415
4416 /* Search through the partial symtabs *first* for all symbols
4417 matching the regexp. That way we don't have to reproduce all of
4418 the machinery below. */
4419 expand_symtabs_matching ([&] (const char *filename, bool basenames)
4420 {
4421 return file_matches (filename, files, nfiles,
4422 basenames);
4423 },
4424 lookup_name_info::match_any (),
4425 [&] (const char *symname)
4426 {
4427 return (!preg.has_value ()
4428 || preg->exec (symname,
4429 0, NULL, 0) == 0);
4430 },
4431 NULL,
4432 kind);
4433
4434 /* Here, we search through the minimal symbol tables for functions
4435 and variables that match, and force their symbols to be read.
4436 This is in particular necessary for demangled variable names,
4437 which are no longer put into the partial symbol tables.
4438 The symbol will then be found during the scan of symtabs below.
4439
4440 For functions, find_pc_symtab should succeed if we have debug info
4441 for the function, for variables we have to call
4442 lookup_symbol_in_objfile_from_linkage_name to determine if the variable
4443 has debug info.
4444 If the lookup fails, set found_misc so that we will rescan to print
4445 any matching symbols without debug info.
4446 We only search the objfile the msymbol came from, we no longer search
4447 all objfiles. In large programs (1000s of shared libs) searching all
4448 objfiles is not worth the pain. */
4449
4450 if (nfiles == 0 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4451 {
4452 for (objfile *objfile : all_objfiles (current_program_space))
4453 {
4454 for (minimal_symbol *msymbol : objfile_msymbols (objfile))
4455 {
4456 QUIT;
4457
4458 if (msymbol->created_by_gdb)
4459 continue;
4460
4461 if (MSYMBOL_TYPE (msymbol) == ourtype
4462 || MSYMBOL_TYPE (msymbol) == ourtype2
4463 || MSYMBOL_TYPE (msymbol) == ourtype3
4464 || MSYMBOL_TYPE (msymbol) == ourtype4)
4465 {
4466 if (!preg.has_value ()
4467 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4468 NULL, 0) == 0)
4469 {
4470 /* Note: An important side-effect of these
4471 lookup functions is to expand the symbol
4472 table if msymbol is found, for the benefit of
4473 the next loop on compunits. */
4474 if (kind == FUNCTIONS_DOMAIN
4475 ? (find_pc_compunit_symtab
4476 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4477 == NULL)
4478 : (lookup_symbol_in_objfile_from_linkage_name
4479 (objfile, MSYMBOL_LINKAGE_NAME (msymbol),
4480 VAR_DOMAIN)
4481 .symbol == NULL))
4482 found_misc = 1;
4483 }
4484 }
4485 }
4486 }
4487 }
4488
4489 for (objfile *objfile : all_objfiles (current_program_space))
4490 {
4491 for (compunit_symtab *cust : objfile_compunits (objfile))
4492 {
4493 bv = COMPUNIT_BLOCKVECTOR (cust);
4494 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
4495 {
4496 b = BLOCKVECTOR_BLOCK (bv, i);
4497 ALL_BLOCK_SYMBOLS (b, iter, sym)
4498 {
4499 struct symtab *real_symtab = symbol_symtab (sym);
4500
4501 QUIT;
4502
4503 /* Check first sole REAL_SYMTAB->FILENAME. It does
4504 not need to be a substring of symtab_to_fullname as
4505 it may contain "./" etc. */
4506 if ((file_matches (real_symtab->filename, files, nfiles, 0)
4507 || ((basenames_may_differ
4508 || file_matches (lbasename (real_symtab->filename),
4509 files, nfiles, 1))
4510 && file_matches (symtab_to_fullname (real_symtab),
4511 files, nfiles, 0)))
4512 && ((!preg.has_value ()
4513 || preg->exec (SYMBOL_NATURAL_NAME (sym), 0,
4514 NULL, 0) == 0)
4515 && ((kind == VARIABLES_DOMAIN
4516 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4517 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4518 && SYMBOL_CLASS (sym) != LOC_BLOCK
4519 /* LOC_CONST can be used for more than
4520 just enums, e.g., c++ static const
4521 members. We only want to skip enums
4522 here. */
4523 && !(SYMBOL_CLASS (sym) == LOC_CONST
4524 && (TYPE_CODE (SYMBOL_TYPE (sym))
4525 == TYPE_CODE_ENUM))
4526 && (!treg.has_value ()
4527 || treg_matches_sym_type_name (*treg, sym)))
4528 || (kind == FUNCTIONS_DOMAIN
4529 && SYMBOL_CLASS (sym) == LOC_BLOCK
4530 && (!treg.has_value ()
4531 || treg_matches_sym_type_name (*treg,
4532 sym)))
4533 || (kind == TYPES_DOMAIN
4534 && SYMBOL_CLASS (sym) == LOC_TYPEDEF))))
4535 {
4536 /* match */
4537 result.emplace_back (i, sym);
4538 }
4539 }
4540 }
4541 }
4542 }
4543
4544 if (!result.empty ())
4545 sort_search_symbols_remove_dups (&result);
4546
4547 /* If there are no eyes, avoid all contact. I mean, if there are
4548 no debug symbols, then add matching minsyms. But if the user wants
4549 to see symbols matching a type regexp, then never give a minimal symbol,
4550 as we assume that a minimal symbol does not have a type. */
4551
4552 if ((found_misc || (nfiles == 0 && kind != FUNCTIONS_DOMAIN))
4553 && !treg.has_value ())
4554 {
4555 for (objfile *objfile : all_objfiles (current_program_space))
4556 {
4557 for (minimal_symbol *msymbol : objfile_msymbols (objfile))
4558 {
4559 QUIT;
4560
4561 if (msymbol->created_by_gdb)
4562 continue;
4563
4564 if (MSYMBOL_TYPE (msymbol) == ourtype
4565 || MSYMBOL_TYPE (msymbol) == ourtype2
4566 || MSYMBOL_TYPE (msymbol) == ourtype3
4567 || MSYMBOL_TYPE (msymbol) == ourtype4)
4568 {
4569 if (!preg.has_value ()
4570 || preg->exec (MSYMBOL_NATURAL_NAME (msymbol), 0,
4571 NULL, 0) == 0)
4572 {
4573 /* For functions we can do a quick check of whether the
4574 symbol might be found via find_pc_symtab. */
4575 if (kind != FUNCTIONS_DOMAIN
4576 || (find_pc_compunit_symtab
4577 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4578 == NULL))
4579 {
4580 if (lookup_symbol_in_objfile_from_linkage_name
4581 (objfile, MSYMBOL_LINKAGE_NAME (msymbol),
4582 VAR_DOMAIN)
4583 .symbol == NULL)
4584 {
4585 /* match */
4586 result.emplace_back (i, msymbol, objfile);
4587 }
4588 }
4589 }
4590 }
4591 }
4592 }
4593 }
4594
4595 return result;
4596 }
4597
4598 /* Helper function for symtab_symbol_info, this function uses
4599 the data returned from search_symbols() to print information
4600 regarding the match to gdb_stdout. If LAST is not NULL,
4601 print file and line number information for the symbol as
4602 well. Skip printing the filename if it matches LAST. */
4603
4604 static void
4605 print_symbol_info (enum search_domain kind,
4606 struct symbol *sym,
4607 int block, const char *last)
4608 {
4609 scoped_switch_to_sym_language_if_auto l (sym);
4610 struct symtab *s = symbol_symtab (sym);
4611
4612 if (last != NULL)
4613 {
4614 const char *s_filename = symtab_to_filename_for_display (s);
4615
4616 if (filename_cmp (last, s_filename) != 0)
4617 {
4618 fputs_filtered ("\nFile ", gdb_stdout);
4619 fputs_filtered (s_filename, gdb_stdout);
4620 fputs_filtered (":\n", gdb_stdout);
4621 }
4622
4623 if (SYMBOL_LINE (sym) != 0)
4624 printf_filtered ("%d:\t", SYMBOL_LINE (sym));
4625 else
4626 puts_filtered ("\t");
4627 }
4628
4629 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4630 printf_filtered ("static ");
4631
4632 /* Typedef that is not a C++ class. */
4633 if (kind == TYPES_DOMAIN
4634 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4635 typedef_print (SYMBOL_TYPE (sym), sym, gdb_stdout);
4636 /* variable, func, or typedef-that-is-c++-class. */
4637 else if (kind < TYPES_DOMAIN
4638 || (kind == TYPES_DOMAIN
4639 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4640 {
4641 type_print (SYMBOL_TYPE (sym),
4642 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4643 ? "" : SYMBOL_PRINT_NAME (sym)),
4644 gdb_stdout, 0);
4645
4646 printf_filtered (";\n");
4647 }
4648 }
4649
4650 /* This help function for symtab_symbol_info() prints information
4651 for non-debugging symbols to gdb_stdout. */
4652
4653 static void
4654 print_msymbol_info (struct bound_minimal_symbol msymbol)
4655 {
4656 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4657 char *tmp;
4658
4659 if (gdbarch_addr_bit (gdbarch) <= 32)
4660 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4661 & (CORE_ADDR) 0xffffffff,
4662 8);
4663 else
4664 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4665 16);
4666 printf_filtered ("%s %s\n",
4667 tmp, MSYMBOL_PRINT_NAME (msymbol.minsym));
4668 }
4669
4670 /* This is the guts of the commands "info functions", "info types", and
4671 "info variables". It calls search_symbols to find all matches and then
4672 print_[m]symbol_info to print out some useful information about the
4673 matches. */
4674
4675 static void
4676 symtab_symbol_info (bool quiet,
4677 const char *regexp, enum search_domain kind,
4678 const char *t_regexp, int from_tty)
4679 {
4680 static const char * const classnames[] =
4681 {"variable", "function", "type"};
4682 const char *last_filename = "";
4683 int first = 1;
4684
4685 gdb_assert (kind <= TYPES_DOMAIN);
4686
4687 /* Must make sure that if we're interrupted, symbols gets freed. */
4688 std::vector<symbol_search> symbols = search_symbols (regexp, kind,
4689 t_regexp, 0, NULL);
4690
4691 if (!quiet)
4692 {
4693 if (regexp != NULL)
4694 {
4695 if (t_regexp != NULL)
4696 printf_filtered
4697 (_("All %ss matching regular expression \"%s\""
4698 " with type matching regulation expression \"%s\":\n"),
4699 classnames[kind], regexp, t_regexp);
4700 else
4701 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4702 classnames[kind], regexp);
4703 }
4704 else
4705 {
4706 if (t_regexp != NULL)
4707 printf_filtered
4708 (_("All defined %ss"
4709 " with type matching regulation expression \"%s\" :\n"),
4710 classnames[kind], t_regexp);
4711 else
4712 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4713 }
4714 }
4715
4716 for (const symbol_search &p : symbols)
4717 {
4718 QUIT;
4719
4720 if (p.msymbol.minsym != NULL)
4721 {
4722 if (first)
4723 {
4724 if (!quiet)
4725 printf_filtered (_("\nNon-debugging symbols:\n"));
4726 first = 0;
4727 }
4728 print_msymbol_info (p.msymbol);
4729 }
4730 else
4731 {
4732 print_symbol_info (kind,
4733 p.symbol,
4734 p.block,
4735 last_filename);
4736 last_filename
4737 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
4738 }
4739 }
4740 }
4741
4742 static void
4743 info_variables_command (const char *args, int from_tty)
4744 {
4745 std::string regexp;
4746 std::string t_regexp;
4747 bool quiet = false;
4748
4749 while (args != NULL
4750 && extract_info_print_args (&args, &quiet, &regexp, &t_regexp))
4751 ;
4752
4753 if (args != NULL)
4754 report_unrecognized_option_error ("info variables", args);
4755
4756 symtab_symbol_info (quiet,
4757 regexp.empty () ? NULL : regexp.c_str (),
4758 VARIABLES_DOMAIN,
4759 t_regexp.empty () ? NULL : t_regexp.c_str (),
4760 from_tty);
4761 }
4762
4763
4764 static void
4765 info_functions_command (const char *args, int from_tty)
4766 {
4767 std::string regexp;
4768 std::string t_regexp;
4769 bool quiet = false;
4770
4771 while (args != NULL
4772 && extract_info_print_args (&args, &quiet, &regexp, &t_regexp))
4773 ;
4774
4775 if (args != NULL)
4776 report_unrecognized_option_error ("info functions", args);
4777
4778 symtab_symbol_info (quiet,
4779 regexp.empty () ? NULL : regexp.c_str (),
4780 FUNCTIONS_DOMAIN,
4781 t_regexp.empty () ? NULL : t_regexp.c_str (),
4782 from_tty);
4783 }
4784
4785
4786 static void
4787 info_types_command (const char *regexp, int from_tty)
4788 {
4789 symtab_symbol_info (false, regexp, TYPES_DOMAIN, NULL, from_tty);
4790 }
4791
4792 /* Breakpoint all functions matching regular expression. */
4793
4794 void
4795 rbreak_command_wrapper (char *regexp, int from_tty)
4796 {
4797 rbreak_command (regexp, from_tty);
4798 }
4799
4800 static void
4801 rbreak_command (const char *regexp, int from_tty)
4802 {
4803 std::string string;
4804 const char **files = NULL;
4805 const char *file_name;
4806 int nfiles = 0;
4807
4808 if (regexp)
4809 {
4810 const char *colon = strchr (regexp, ':');
4811
4812 if (colon && *(colon + 1) != ':')
4813 {
4814 int colon_index;
4815 char *local_name;
4816
4817 colon_index = colon - regexp;
4818 local_name = (char *) alloca (colon_index + 1);
4819 memcpy (local_name, regexp, colon_index);
4820 local_name[colon_index--] = 0;
4821 while (isspace (local_name[colon_index]))
4822 local_name[colon_index--] = 0;
4823 file_name = local_name;
4824 files = &file_name;
4825 nfiles = 1;
4826 regexp = skip_spaces (colon + 1);
4827 }
4828 }
4829
4830 std::vector<symbol_search> symbols = search_symbols (regexp,
4831 FUNCTIONS_DOMAIN,
4832 NULL,
4833 nfiles, files);
4834
4835 scoped_rbreak_breakpoints finalize;
4836 for (const symbol_search &p : symbols)
4837 {
4838 if (p.msymbol.minsym == NULL)
4839 {
4840 struct symtab *symtab = symbol_symtab (p.symbol);
4841 const char *fullname = symtab_to_fullname (symtab);
4842
4843 string = string_printf ("%s:'%s'", fullname,
4844 SYMBOL_LINKAGE_NAME (p.symbol));
4845 break_command (&string[0], from_tty);
4846 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
4847 }
4848 else
4849 {
4850 string = string_printf ("'%s'",
4851 MSYMBOL_LINKAGE_NAME (p.msymbol.minsym));
4852
4853 break_command (&string[0], from_tty);
4854 printf_filtered ("<function, no debug info> %s;\n",
4855 MSYMBOL_PRINT_NAME (p.msymbol.minsym));
4856 }
4857 }
4858 }
4859 \f
4860
4861 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
4862
4863 static int
4864 compare_symbol_name (const char *symbol_name, language symbol_language,
4865 const lookup_name_info &lookup_name,
4866 completion_match_result &match_res)
4867 {
4868 const language_defn *lang = language_def (symbol_language);
4869
4870 symbol_name_matcher_ftype *name_match
4871 = get_symbol_name_matcher (lang, lookup_name);
4872
4873 return name_match (symbol_name, lookup_name, &match_res);
4874 }
4875
4876 /* See symtab.h. */
4877
4878 void
4879 completion_list_add_name (completion_tracker &tracker,
4880 language symbol_language,
4881 const char *symname,
4882 const lookup_name_info &lookup_name,
4883 const char *text, const char *word)
4884 {
4885 completion_match_result &match_res
4886 = tracker.reset_completion_match_result ();
4887
4888 /* Clip symbols that cannot match. */
4889 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
4890 return;
4891
4892 /* Refresh SYMNAME from the match string. It's potentially
4893 different depending on language. (E.g., on Ada, the match may be
4894 the encoded symbol name wrapped in "<>"). */
4895 symname = match_res.match.match ();
4896 gdb_assert (symname != NULL);
4897
4898 /* We have a match for a completion, so add SYMNAME to the current list
4899 of matches. Note that the name is moved to freshly malloc'd space. */
4900
4901 {
4902 gdb::unique_xmalloc_ptr<char> completion
4903 = make_completion_match_str (symname, text, word);
4904
4905 /* Here we pass the match-for-lcd object to add_completion. Some
4906 languages match the user text against substrings of symbol
4907 names in some cases. E.g., in C++, "b push_ba" completes to
4908 "std::vector::push_back", "std::string::push_back", etc., and
4909 in this case we want the completion lowest common denominator
4910 to be "push_back" instead of "std::". */
4911 tracker.add_completion (std::move (completion),
4912 &match_res.match_for_lcd, text, word);
4913 }
4914 }
4915
4916 /* completion_list_add_name wrapper for struct symbol. */
4917
4918 static void
4919 completion_list_add_symbol (completion_tracker &tracker,
4920 symbol *sym,
4921 const lookup_name_info &lookup_name,
4922 const char *text, const char *word)
4923 {
4924 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
4925 SYMBOL_NATURAL_NAME (sym),
4926 lookup_name, text, word);
4927 }
4928
4929 /* completion_list_add_name wrapper for struct minimal_symbol. */
4930
4931 static void
4932 completion_list_add_msymbol (completion_tracker &tracker,
4933 minimal_symbol *sym,
4934 const lookup_name_info &lookup_name,
4935 const char *text, const char *word)
4936 {
4937 completion_list_add_name (tracker, MSYMBOL_LANGUAGE (sym),
4938 MSYMBOL_NATURAL_NAME (sym),
4939 lookup_name, text, word);
4940 }
4941
4942
4943 /* ObjC: In case we are completing on a selector, look as the msymbol
4944 again and feed all the selectors into the mill. */
4945
4946 static void
4947 completion_list_objc_symbol (completion_tracker &tracker,
4948 struct minimal_symbol *msymbol,
4949 const lookup_name_info &lookup_name,
4950 const char *text, const char *word)
4951 {
4952 static char *tmp = NULL;
4953 static unsigned int tmplen = 0;
4954
4955 const char *method, *category, *selector;
4956 char *tmp2 = NULL;
4957
4958 method = MSYMBOL_NATURAL_NAME (msymbol);
4959
4960 /* Is it a method? */
4961 if ((method[0] != '-') && (method[0] != '+'))
4962 return;
4963
4964 if (text[0] == '[')
4965 /* Complete on shortened method method. */
4966 completion_list_add_name (tracker, language_objc,
4967 method + 1,
4968 lookup_name,
4969 text, word);
4970
4971 while ((strlen (method) + 1) >= tmplen)
4972 {
4973 if (tmplen == 0)
4974 tmplen = 1024;
4975 else
4976 tmplen *= 2;
4977 tmp = (char *) xrealloc (tmp, tmplen);
4978 }
4979 selector = strchr (method, ' ');
4980 if (selector != NULL)
4981 selector++;
4982
4983 category = strchr (method, '(');
4984
4985 if ((category != NULL) && (selector != NULL))
4986 {
4987 memcpy (tmp, method, (category - method));
4988 tmp[category - method] = ' ';
4989 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
4990 completion_list_add_name (tracker, language_objc, tmp,
4991 lookup_name, text, word);
4992 if (text[0] == '[')
4993 completion_list_add_name (tracker, language_objc, tmp + 1,
4994 lookup_name, text, word);
4995 }
4996
4997 if (selector != NULL)
4998 {
4999 /* Complete on selector only. */
5000 strcpy (tmp, selector);
5001 tmp2 = strchr (tmp, ']');
5002 if (tmp2 != NULL)
5003 *tmp2 = '\0';
5004
5005 completion_list_add_name (tracker, language_objc, tmp,
5006 lookup_name, text, word);
5007 }
5008 }
5009
5010 /* Break the non-quoted text based on the characters which are in
5011 symbols. FIXME: This should probably be language-specific. */
5012
5013 static const char *
5014 language_search_unquoted_string (const char *text, const char *p)
5015 {
5016 for (; p > text; --p)
5017 {
5018 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5019 continue;
5020 else
5021 {
5022 if ((current_language->la_language == language_objc))
5023 {
5024 if (p[-1] == ':') /* Might be part of a method name. */
5025 continue;
5026 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5027 p -= 2; /* Beginning of a method name. */
5028 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5029 { /* Might be part of a method name. */
5030 const char *t = p;
5031
5032 /* Seeing a ' ' or a '(' is not conclusive evidence
5033 that we are in the middle of a method name. However,
5034 finding "-[" or "+[" should be pretty un-ambiguous.
5035 Unfortunately we have to find it now to decide. */
5036
5037 while (t > text)
5038 if (isalnum (t[-1]) || t[-1] == '_' ||
5039 t[-1] == ' ' || t[-1] == ':' ||
5040 t[-1] == '(' || t[-1] == ')')
5041 --t;
5042 else
5043 break;
5044
5045 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5046 p = t - 2; /* Method name detected. */
5047 /* Else we leave with p unchanged. */
5048 }
5049 }
5050 break;
5051 }
5052 }
5053 return p;
5054 }
5055
5056 static void
5057 completion_list_add_fields (completion_tracker &tracker,
5058 struct symbol *sym,
5059 const lookup_name_info &lookup_name,
5060 const char *text, const char *word)
5061 {
5062 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5063 {
5064 struct type *t = SYMBOL_TYPE (sym);
5065 enum type_code c = TYPE_CODE (t);
5066 int j;
5067
5068 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5069 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5070 if (TYPE_FIELD_NAME (t, j))
5071 completion_list_add_name (tracker, SYMBOL_LANGUAGE (sym),
5072 TYPE_FIELD_NAME (t, j),
5073 lookup_name, text, word);
5074 }
5075 }
5076
5077 /* See symtab.h. */
5078
5079 bool
5080 symbol_is_function_or_method (symbol *sym)
5081 {
5082 switch (TYPE_CODE (SYMBOL_TYPE (sym)))
5083 {
5084 case TYPE_CODE_FUNC:
5085 case TYPE_CODE_METHOD:
5086 return true;
5087 default:
5088 return false;
5089 }
5090 }
5091
5092 /* See symtab.h. */
5093
5094 bool
5095 symbol_is_function_or_method (minimal_symbol *msymbol)
5096 {
5097 switch (MSYMBOL_TYPE (msymbol))
5098 {
5099 case mst_text:
5100 case mst_text_gnu_ifunc:
5101 case mst_solib_trampoline:
5102 case mst_file_text:
5103 return true;
5104 default:
5105 return false;
5106 }
5107 }
5108
5109 /* See symtab.h. */
5110
5111 bound_minimal_symbol
5112 find_gnu_ifunc (const symbol *sym)
5113 {
5114 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
5115 return {};
5116
5117 lookup_name_info lookup_name (SYMBOL_SEARCH_NAME (sym),
5118 symbol_name_match_type::SEARCH_NAME);
5119 struct objfile *objfile = symbol_objfile (sym);
5120
5121 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
5122 minimal_symbol *ifunc = NULL;
5123
5124 iterate_over_minimal_symbols (objfile, lookup_name,
5125 [&] (minimal_symbol *minsym)
5126 {
5127 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc
5128 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5129 {
5130 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
5131 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5132 {
5133 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5134 msym_addr
5135 = gdbarch_convert_from_func_ptr_addr (gdbarch,
5136 msym_addr,
5137 current_top_target ());
5138 }
5139 if (msym_addr == address)
5140 {
5141 ifunc = minsym;
5142 return true;
5143 }
5144 }
5145 return false;
5146 });
5147
5148 if (ifunc != NULL)
5149 return {ifunc, objfile};
5150 return {};
5151 }
5152
5153 /* Add matching symbols from SYMTAB to the current completion list. */
5154
5155 static void
5156 add_symtab_completions (struct compunit_symtab *cust,
5157 completion_tracker &tracker,
5158 complete_symbol_mode mode,
5159 const lookup_name_info &lookup_name,
5160 const char *text, const char *word,
5161 enum type_code code)
5162 {
5163 struct symbol *sym;
5164 const struct block *b;
5165 struct block_iterator iter;
5166 int i;
5167
5168 if (cust == NULL)
5169 return;
5170
5171 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5172 {
5173 QUIT;
5174 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5175 ALL_BLOCK_SYMBOLS (b, iter, sym)
5176 {
5177 if (completion_skip_symbol (mode, sym))
5178 continue;
5179
5180 if (code == TYPE_CODE_UNDEF
5181 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5182 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5183 completion_list_add_symbol (tracker, sym,
5184 lookup_name,
5185 text, word);
5186 }
5187 }
5188 }
5189
5190 void
5191 default_collect_symbol_completion_matches_break_on
5192 (completion_tracker &tracker, complete_symbol_mode mode,
5193 symbol_name_match_type name_match_type,
5194 const char *text, const char *word,
5195 const char *break_on, enum type_code code)
5196 {
5197 /* Problem: All of the symbols have to be copied because readline
5198 frees them. I'm not going to worry about this; hopefully there
5199 won't be that many. */
5200
5201 struct symbol *sym;
5202 const struct block *b;
5203 const struct block *surrounding_static_block, *surrounding_global_block;
5204 struct block_iterator iter;
5205 /* The symbol we are completing on. Points in same buffer as text. */
5206 const char *sym_text;
5207
5208 /* Now look for the symbol we are supposed to complete on. */
5209 if (mode == complete_symbol_mode::LINESPEC)
5210 sym_text = text;
5211 else
5212 {
5213 const char *p;
5214 char quote_found;
5215 const char *quote_pos = NULL;
5216
5217 /* First see if this is a quoted string. */
5218 quote_found = '\0';
5219 for (p = text; *p != '\0'; ++p)
5220 {
5221 if (quote_found != '\0')
5222 {
5223 if (*p == quote_found)
5224 /* Found close quote. */
5225 quote_found = '\0';
5226 else if (*p == '\\' && p[1] == quote_found)
5227 /* A backslash followed by the quote character
5228 doesn't end the string. */
5229 ++p;
5230 }
5231 else if (*p == '\'' || *p == '"')
5232 {
5233 quote_found = *p;
5234 quote_pos = p;
5235 }
5236 }
5237 if (quote_found == '\'')
5238 /* A string within single quotes can be a symbol, so complete on it. */
5239 sym_text = quote_pos + 1;
5240 else if (quote_found == '"')
5241 /* A double-quoted string is never a symbol, nor does it make sense
5242 to complete it any other way. */
5243 {
5244 return;
5245 }
5246 else
5247 {
5248 /* It is not a quoted string. Break it based on the characters
5249 which are in symbols. */
5250 while (p > text)
5251 {
5252 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5253 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5254 --p;
5255 else
5256 break;
5257 }
5258 sym_text = p;
5259 }
5260 }
5261
5262 lookup_name_info lookup_name (sym_text, name_match_type, true);
5263
5264 /* At this point scan through the misc symbol vectors and add each
5265 symbol you find to the list. Eventually we want to ignore
5266 anything that isn't a text symbol (everything else will be
5267 handled by the psymtab code below). */
5268
5269 if (code == TYPE_CODE_UNDEF)
5270 {
5271 for (objfile *objfile : all_objfiles (current_program_space))
5272 {
5273 for (minimal_symbol *msymbol : objfile_msymbols (objfile))
5274 {
5275 QUIT;
5276
5277 if (completion_skip_symbol (mode, msymbol))
5278 continue;
5279
5280 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5281 sym_text, word);
5282
5283 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5284 sym_text, word);
5285 }
5286 }
5287 }
5288
5289 /* Add completions for all currently loaded symbol tables. */
5290 for (objfile *objfile : all_objfiles (current_program_space))
5291 {
5292 for (compunit_symtab *cust : objfile_compunits (objfile))
5293 add_symtab_completions (cust, tracker, mode, lookup_name,
5294 sym_text, word, code);
5295 }
5296
5297 /* Look through the partial symtabs for all symbols which begin by
5298 matching SYM_TEXT. Expand all CUs that you find to the list. */
5299 expand_symtabs_matching (NULL,
5300 lookup_name,
5301 NULL,
5302 [&] (compunit_symtab *symtab) /* expansion notify */
5303 {
5304 add_symtab_completions (symtab,
5305 tracker, mode, lookup_name,
5306 sym_text, word, code);
5307 },
5308 ALL_DOMAIN);
5309
5310 /* Search upwards from currently selected frame (so that we can
5311 complete on local vars). Also catch fields of types defined in
5312 this places which match our text string. Only complete on types
5313 visible from current context. */
5314
5315 b = get_selected_block (0);
5316 surrounding_static_block = block_static_block (b);
5317 surrounding_global_block = block_global_block (b);
5318 if (surrounding_static_block != NULL)
5319 while (b != surrounding_static_block)
5320 {
5321 QUIT;
5322
5323 ALL_BLOCK_SYMBOLS (b, iter, sym)
5324 {
5325 if (code == TYPE_CODE_UNDEF)
5326 {
5327 completion_list_add_symbol (tracker, sym, lookup_name,
5328 sym_text, word);
5329 completion_list_add_fields (tracker, sym, lookup_name,
5330 sym_text, word);
5331 }
5332 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5333 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5334 completion_list_add_symbol (tracker, sym, lookup_name,
5335 sym_text, word);
5336 }
5337
5338 /* Stop when we encounter an enclosing function. Do not stop for
5339 non-inlined functions - the locals of the enclosing function
5340 are in scope for a nested function. */
5341 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5342 break;
5343 b = BLOCK_SUPERBLOCK (b);
5344 }
5345
5346 /* Add fields from the file's types; symbols will be added below. */
5347
5348 if (code == TYPE_CODE_UNDEF)
5349 {
5350 if (surrounding_static_block != NULL)
5351 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5352 completion_list_add_fields (tracker, sym, lookup_name,
5353 sym_text, word);
5354
5355 if (surrounding_global_block != NULL)
5356 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5357 completion_list_add_fields (tracker, sym, lookup_name,
5358 sym_text, word);
5359 }
5360
5361 /* Skip macros if we are completing a struct tag -- arguable but
5362 usually what is expected. */
5363 if (current_language->la_macro_expansion == macro_expansion_c
5364 && code == TYPE_CODE_UNDEF)
5365 {
5366 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5367
5368 /* This adds a macro's name to the current completion list. */
5369 auto add_macro_name = [&] (const char *macro_name,
5370 const macro_definition *,
5371 macro_source_file *,
5372 int)
5373 {
5374 completion_list_add_name (tracker, language_c, macro_name,
5375 lookup_name, sym_text, word);
5376 };
5377
5378 /* Add any macros visible in the default scope. Note that this
5379 may yield the occasional wrong result, because an expression
5380 might be evaluated in a scope other than the default. For
5381 example, if the user types "break file:line if <TAB>", the
5382 resulting expression will be evaluated at "file:line" -- but
5383 at there does not seem to be a way to detect this at
5384 completion time. */
5385 scope = default_macro_scope ();
5386 if (scope)
5387 macro_for_each_in_scope (scope->file, scope->line,
5388 add_macro_name);
5389
5390 /* User-defined macros are always visible. */
5391 macro_for_each (macro_user_macros, add_macro_name);
5392 }
5393 }
5394
5395 void
5396 default_collect_symbol_completion_matches (completion_tracker &tracker,
5397 complete_symbol_mode mode,
5398 symbol_name_match_type name_match_type,
5399 const char *text, const char *word,
5400 enum type_code code)
5401 {
5402 return default_collect_symbol_completion_matches_break_on (tracker, mode,
5403 name_match_type,
5404 text, word, "",
5405 code);
5406 }
5407
5408 /* Collect all symbols (regardless of class) which begin by matching
5409 TEXT. */
5410
5411 void
5412 collect_symbol_completion_matches (completion_tracker &tracker,
5413 complete_symbol_mode mode,
5414 symbol_name_match_type name_match_type,
5415 const char *text, const char *word)
5416 {
5417 current_language->la_collect_symbol_completion_matches (tracker, mode,
5418 name_match_type,
5419 text, word,
5420 TYPE_CODE_UNDEF);
5421 }
5422
5423 /* Like collect_symbol_completion_matches, but only collect
5424 STRUCT_DOMAIN symbols whose type code is CODE. */
5425
5426 void
5427 collect_symbol_completion_matches_type (completion_tracker &tracker,
5428 const char *text, const char *word,
5429 enum type_code code)
5430 {
5431 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5432 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5433
5434 gdb_assert (code == TYPE_CODE_UNION
5435 || code == TYPE_CODE_STRUCT
5436 || code == TYPE_CODE_ENUM);
5437 current_language->la_collect_symbol_completion_matches (tracker, mode,
5438 name_match_type,
5439 text, word, code);
5440 }
5441
5442 /* Like collect_symbol_completion_matches, but collects a list of
5443 symbols defined in all source files named SRCFILE. */
5444
5445 void
5446 collect_file_symbol_completion_matches (completion_tracker &tracker,
5447 complete_symbol_mode mode,
5448 symbol_name_match_type name_match_type,
5449 const char *text, const char *word,
5450 const char *srcfile)
5451 {
5452 /* The symbol we are completing on. Points in same buffer as text. */
5453 const char *sym_text;
5454
5455 /* Now look for the symbol we are supposed to complete on.
5456 FIXME: This should be language-specific. */
5457 if (mode == complete_symbol_mode::LINESPEC)
5458 sym_text = text;
5459 else
5460 {
5461 const char *p;
5462 char quote_found;
5463 const char *quote_pos = NULL;
5464
5465 /* First see if this is a quoted string. */
5466 quote_found = '\0';
5467 for (p = text; *p != '\0'; ++p)
5468 {
5469 if (quote_found != '\0')
5470 {
5471 if (*p == quote_found)
5472 /* Found close quote. */
5473 quote_found = '\0';
5474 else if (*p == '\\' && p[1] == quote_found)
5475 /* A backslash followed by the quote character
5476 doesn't end the string. */
5477 ++p;
5478 }
5479 else if (*p == '\'' || *p == '"')
5480 {
5481 quote_found = *p;
5482 quote_pos = p;
5483 }
5484 }
5485 if (quote_found == '\'')
5486 /* A string within single quotes can be a symbol, so complete on it. */
5487 sym_text = quote_pos + 1;
5488 else if (quote_found == '"')
5489 /* A double-quoted string is never a symbol, nor does it make sense
5490 to complete it any other way. */
5491 {
5492 return;
5493 }
5494 else
5495 {
5496 /* Not a quoted string. */
5497 sym_text = language_search_unquoted_string (text, p);
5498 }
5499 }
5500
5501 lookup_name_info lookup_name (sym_text, name_match_type, true);
5502
5503 /* Go through symtabs for SRCFILE and check the externs and statics
5504 for symbols which match. */
5505 iterate_over_symtabs (srcfile, [&] (symtab *s)
5506 {
5507 add_symtab_completions (SYMTAB_COMPUNIT (s),
5508 tracker, mode, lookup_name,
5509 sym_text, word, TYPE_CODE_UNDEF);
5510 return false;
5511 });
5512 }
5513
5514 /* A helper function for make_source_files_completion_list. It adds
5515 another file name to a list of possible completions, growing the
5516 list as necessary. */
5517
5518 static void
5519 add_filename_to_list (const char *fname, const char *text, const char *word,
5520 completion_list *list)
5521 {
5522 list->emplace_back (make_completion_match_str (fname, text, word));
5523 }
5524
5525 static int
5526 not_interesting_fname (const char *fname)
5527 {
5528 static const char *illegal_aliens[] = {
5529 "_globals_", /* inserted by coff_symtab_read */
5530 NULL
5531 };
5532 int i;
5533
5534 for (i = 0; illegal_aliens[i]; i++)
5535 {
5536 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5537 return 1;
5538 }
5539 return 0;
5540 }
5541
5542 /* An object of this type is passed as the user_data argument to
5543 map_partial_symbol_filenames. */
5544 struct add_partial_filename_data
5545 {
5546 struct filename_seen_cache *filename_seen_cache;
5547 const char *text;
5548 const char *word;
5549 int text_len;
5550 completion_list *list;
5551 };
5552
5553 /* A callback for map_partial_symbol_filenames. */
5554
5555 static void
5556 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5557 void *user_data)
5558 {
5559 struct add_partial_filename_data *data
5560 = (struct add_partial_filename_data *) user_data;
5561
5562 if (not_interesting_fname (filename))
5563 return;
5564 if (!data->filename_seen_cache->seen (filename)
5565 && filename_ncmp (filename, data->text, data->text_len) == 0)
5566 {
5567 /* This file matches for a completion; add it to the
5568 current list of matches. */
5569 add_filename_to_list (filename, data->text, data->word, data->list);
5570 }
5571 else
5572 {
5573 const char *base_name = lbasename (filename);
5574
5575 if (base_name != filename
5576 && !data->filename_seen_cache->seen (base_name)
5577 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5578 add_filename_to_list (base_name, data->text, data->word, data->list);
5579 }
5580 }
5581
5582 /* Return a list of all source files whose names begin with matching
5583 TEXT. The file names are looked up in the symbol tables of this
5584 program. */
5585
5586 completion_list
5587 make_source_files_completion_list (const char *text, const char *word)
5588 {
5589 struct symtab *s;
5590 struct objfile *objfile;
5591 size_t text_len = strlen (text);
5592 completion_list list;
5593 const char *base_name;
5594 struct add_partial_filename_data datum;
5595
5596 if (!have_full_symbols () && !have_partial_symbols ())
5597 return list;
5598
5599 filename_seen_cache filenames_seen;
5600
5601 ALL_FILETABS (objfile, cu, s)
5602 {
5603 if (not_interesting_fname (s->filename))
5604 continue;
5605 if (!filenames_seen.seen (s->filename)
5606 && filename_ncmp (s->filename, text, text_len) == 0)
5607 {
5608 /* This file matches for a completion; add it to the current
5609 list of matches. */
5610 add_filename_to_list (s->filename, text, word, &list);
5611 }
5612 else
5613 {
5614 /* NOTE: We allow the user to type a base name when the
5615 debug info records leading directories, but not the other
5616 way around. This is what subroutines of breakpoint
5617 command do when they parse file names. */
5618 base_name = lbasename (s->filename);
5619 if (base_name != s->filename
5620 && !filenames_seen.seen (base_name)
5621 && filename_ncmp (base_name, text, text_len) == 0)
5622 add_filename_to_list (base_name, text, word, &list);
5623 }
5624 }
5625
5626 datum.filename_seen_cache = &filenames_seen;
5627 datum.text = text;
5628 datum.word = word;
5629 datum.text_len = text_len;
5630 datum.list = &list;
5631 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5632 0 /*need_fullname*/);
5633
5634 return list;
5635 }
5636 \f
5637 /* Track MAIN */
5638
5639 /* Return the "main_info" object for the current program space. If
5640 the object has not yet been created, create it and fill in some
5641 default values. */
5642
5643 static struct main_info *
5644 get_main_info (void)
5645 {
5646 struct main_info *info
5647 = (struct main_info *) program_space_data (current_program_space,
5648 main_progspace_key);
5649
5650 if (info == NULL)
5651 {
5652 /* It may seem strange to store the main name in the progspace
5653 and also in whatever objfile happens to see a main name in
5654 its debug info. The reason for this is mainly historical:
5655 gdb returned "main" as the name even if no function named
5656 "main" was defined the program; and this approach lets us
5657 keep compatibility. */
5658 info = XCNEW (struct main_info);
5659 info->language_of_main = language_unknown;
5660 set_program_space_data (current_program_space, main_progspace_key,
5661 info);
5662 }
5663
5664 return info;
5665 }
5666
5667 /* A cleanup to destroy a struct main_info when a progspace is
5668 destroyed. */
5669
5670 static void
5671 main_info_cleanup (struct program_space *pspace, void *data)
5672 {
5673 struct main_info *info = (struct main_info *) data;
5674
5675 if (info != NULL)
5676 xfree (info->name_of_main);
5677 xfree (info);
5678 }
5679
5680 static void
5681 set_main_name (const char *name, enum language lang)
5682 {
5683 struct main_info *info = get_main_info ();
5684
5685 if (info->name_of_main != NULL)
5686 {
5687 xfree (info->name_of_main);
5688 info->name_of_main = NULL;
5689 info->language_of_main = language_unknown;
5690 }
5691 if (name != NULL)
5692 {
5693 info->name_of_main = xstrdup (name);
5694 info->language_of_main = lang;
5695 }
5696 }
5697
5698 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
5699 accordingly. */
5700
5701 static void
5702 find_main_name (void)
5703 {
5704 const char *new_main_name;
5705
5706 /* First check the objfiles to see whether a debuginfo reader has
5707 picked up the appropriate main name. Historically the main name
5708 was found in a more or less random way; this approach instead
5709 relies on the order of objfile creation -- which still isn't
5710 guaranteed to get the correct answer, but is just probably more
5711 accurate. */
5712 for (objfile *objfile : all_objfiles (current_program_space))
5713 {
5714 if (objfile->per_bfd->name_of_main != NULL)
5715 {
5716 set_main_name (objfile->per_bfd->name_of_main,
5717 objfile->per_bfd->language_of_main);
5718 return;
5719 }
5720 }
5721
5722 /* Try to see if the main procedure is in Ada. */
5723 /* FIXME: brobecker/2005-03-07: Another way of doing this would
5724 be to add a new method in the language vector, and call this
5725 method for each language until one of them returns a non-empty
5726 name. This would allow us to remove this hard-coded call to
5727 an Ada function. It is not clear that this is a better approach
5728 at this point, because all methods need to be written in a way
5729 such that false positives never be returned. For instance, it is
5730 important that a method does not return a wrong name for the main
5731 procedure if the main procedure is actually written in a different
5732 language. It is easy to guaranty this with Ada, since we use a
5733 special symbol generated only when the main in Ada to find the name
5734 of the main procedure. It is difficult however to see how this can
5735 be guarantied for languages such as C, for instance. This suggests
5736 that order of call for these methods becomes important, which means
5737 a more complicated approach. */
5738 new_main_name = ada_main_name ();
5739 if (new_main_name != NULL)
5740 {
5741 set_main_name (new_main_name, language_ada);
5742 return;
5743 }
5744
5745 new_main_name = d_main_name ();
5746 if (new_main_name != NULL)
5747 {
5748 set_main_name (new_main_name, language_d);
5749 return;
5750 }
5751
5752 new_main_name = go_main_name ();
5753 if (new_main_name != NULL)
5754 {
5755 set_main_name (new_main_name, language_go);
5756 return;
5757 }
5758
5759 new_main_name = pascal_main_name ();
5760 if (new_main_name != NULL)
5761 {
5762 set_main_name (new_main_name, language_pascal);
5763 return;
5764 }
5765
5766 /* The languages above didn't identify the name of the main procedure.
5767 Fallback to "main". */
5768 set_main_name ("main", language_unknown);
5769 }
5770
5771 char *
5772 main_name (void)
5773 {
5774 struct main_info *info = get_main_info ();
5775
5776 if (info->name_of_main == NULL)
5777 find_main_name ();
5778
5779 return info->name_of_main;
5780 }
5781
5782 /* Return the language of the main function. If it is not known,
5783 return language_unknown. */
5784
5785 enum language
5786 main_language (void)
5787 {
5788 struct main_info *info = get_main_info ();
5789
5790 if (info->name_of_main == NULL)
5791 find_main_name ();
5792
5793 return info->language_of_main;
5794 }
5795
5796 /* Handle ``executable_changed'' events for the symtab module. */
5797
5798 static void
5799 symtab_observer_executable_changed (void)
5800 {
5801 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
5802 set_main_name (NULL, language_unknown);
5803 }
5804
5805 /* Return 1 if the supplied producer string matches the ARM RealView
5806 compiler (armcc). */
5807
5808 int
5809 producer_is_realview (const char *producer)
5810 {
5811 static const char *const arm_idents[] = {
5812 "ARM C Compiler, ADS",
5813 "Thumb C Compiler, ADS",
5814 "ARM C++ Compiler, ADS",
5815 "Thumb C++ Compiler, ADS",
5816 "ARM/Thumb C/C++ Compiler, RVCT",
5817 "ARM C/C++ Compiler, RVCT"
5818 };
5819 int i;
5820
5821 if (producer == NULL)
5822 return 0;
5823
5824 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
5825 if (startswith (producer, arm_idents[i]))
5826 return 1;
5827
5828 return 0;
5829 }
5830
5831 \f
5832
5833 /* The next index to hand out in response to a registration request. */
5834
5835 static int next_aclass_value = LOC_FINAL_VALUE;
5836
5837 /* The maximum number of "aclass" registrations we support. This is
5838 constant for convenience. */
5839 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
5840
5841 /* The objects representing the various "aclass" values. The elements
5842 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
5843 elements are those registered at gdb initialization time. */
5844
5845 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
5846
5847 /* The globally visible pointer. This is separate from 'symbol_impl'
5848 so that it can be const. */
5849
5850 const struct symbol_impl *symbol_impls = &symbol_impl[0];
5851
5852 /* Make sure we saved enough room in struct symbol. */
5853
5854 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
5855
5856 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
5857 is the ops vector associated with this index. This returns the new
5858 index, which should be used as the aclass_index field for symbols
5859 of this type. */
5860
5861 int
5862 register_symbol_computed_impl (enum address_class aclass,
5863 const struct symbol_computed_ops *ops)
5864 {
5865 int result = next_aclass_value++;
5866
5867 gdb_assert (aclass == LOC_COMPUTED);
5868 gdb_assert (result < MAX_SYMBOL_IMPLS);
5869 symbol_impl[result].aclass = aclass;
5870 symbol_impl[result].ops_computed = ops;
5871
5872 /* Sanity check OPS. */
5873 gdb_assert (ops != NULL);
5874 gdb_assert (ops->tracepoint_var_ref != NULL);
5875 gdb_assert (ops->describe_location != NULL);
5876 gdb_assert (ops->get_symbol_read_needs != NULL);
5877 gdb_assert (ops->read_variable != NULL);
5878
5879 return result;
5880 }
5881
5882 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
5883 OPS is the ops vector associated with this index. This returns the
5884 new index, which should be used as the aclass_index field for symbols
5885 of this type. */
5886
5887 int
5888 register_symbol_block_impl (enum address_class aclass,
5889 const struct symbol_block_ops *ops)
5890 {
5891 int result = next_aclass_value++;
5892
5893 gdb_assert (aclass == LOC_BLOCK);
5894 gdb_assert (result < MAX_SYMBOL_IMPLS);
5895 symbol_impl[result].aclass = aclass;
5896 symbol_impl[result].ops_block = ops;
5897
5898 /* Sanity check OPS. */
5899 gdb_assert (ops != NULL);
5900 gdb_assert (ops->find_frame_base_location != NULL);
5901
5902 return result;
5903 }
5904
5905 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
5906 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
5907 this index. This returns the new index, which should be used as
5908 the aclass_index field for symbols of this type. */
5909
5910 int
5911 register_symbol_register_impl (enum address_class aclass,
5912 const struct symbol_register_ops *ops)
5913 {
5914 int result = next_aclass_value++;
5915
5916 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
5917 gdb_assert (result < MAX_SYMBOL_IMPLS);
5918 symbol_impl[result].aclass = aclass;
5919 symbol_impl[result].ops_register = ops;
5920
5921 return result;
5922 }
5923
5924 /* Initialize elements of 'symbol_impl' for the constants in enum
5925 address_class. */
5926
5927 static void
5928 initialize_ordinary_address_classes (void)
5929 {
5930 int i;
5931
5932 for (i = 0; i < LOC_FINAL_VALUE; ++i)
5933 symbol_impl[i].aclass = (enum address_class) i;
5934 }
5935
5936 \f
5937
5938 /* Helper function to initialize the fields of an objfile-owned symbol.
5939 It assumed that *SYM is already all zeroes. */
5940
5941 static void
5942 initialize_objfile_symbol_1 (struct symbol *sym)
5943 {
5944 SYMBOL_OBJFILE_OWNED (sym) = 1;
5945 SYMBOL_SECTION (sym) = -1;
5946 }
5947
5948 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
5949
5950 void
5951 initialize_objfile_symbol (struct symbol *sym)
5952 {
5953 memset (sym, 0, sizeof (*sym));
5954 initialize_objfile_symbol_1 (sym);
5955 }
5956
5957 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
5958 obstack. */
5959
5960 struct symbol *
5961 allocate_symbol (struct objfile *objfile)
5962 {
5963 struct symbol *result;
5964
5965 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct symbol);
5966 initialize_objfile_symbol_1 (result);
5967
5968 return result;
5969 }
5970
5971 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
5972 obstack. */
5973
5974 struct template_symbol *
5975 allocate_template_symbol (struct objfile *objfile)
5976 {
5977 struct template_symbol *result;
5978
5979 result = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct template_symbol);
5980 initialize_objfile_symbol_1 (result);
5981
5982 return result;
5983 }
5984
5985 /* See symtab.h. */
5986
5987 struct objfile *
5988 symbol_objfile (const struct symbol *symbol)
5989 {
5990 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
5991 return SYMTAB_OBJFILE (symbol->owner.symtab);
5992 }
5993
5994 /* See symtab.h. */
5995
5996 struct gdbarch *
5997 symbol_arch (const struct symbol *symbol)
5998 {
5999 if (!SYMBOL_OBJFILE_OWNED (symbol))
6000 return symbol->owner.arch;
6001 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
6002 }
6003
6004 /* See symtab.h. */
6005
6006 struct symtab *
6007 symbol_symtab (const struct symbol *symbol)
6008 {
6009 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6010 return symbol->owner.symtab;
6011 }
6012
6013 /* See symtab.h. */
6014
6015 void
6016 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6017 {
6018 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6019 symbol->owner.symtab = symtab;
6020 }
6021
6022 \f
6023
6024 void
6025 _initialize_symtab (void)
6026 {
6027 initialize_ordinary_address_classes ();
6028
6029 main_progspace_key
6030 = register_program_space_data_with_cleanup (NULL, main_info_cleanup);
6031
6032 symbol_cache_key
6033 = register_program_space_data_with_cleanup (NULL, symbol_cache_cleanup);
6034
6035 add_info ("variables", info_variables_command,
6036 info_print_args_help (_("\
6037 All global and static variable names or those matching REGEXPs.\n\
6038 Usage: info variables [-q] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6039 Prints the global and static variables.\n"),
6040 _("global and static variables")));
6041 if (dbx_commands)
6042 add_com ("whereis", class_info, info_variables_command,
6043 info_print_args_help (_("\
6044 All global and static variable names, or those matching REGEXPs.\n\
6045 Usage: whereis [-q] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6046 Prints the global and static variables.\n"),
6047 _("global and static variables")));
6048
6049 add_info ("functions", info_functions_command,
6050 info_print_args_help (_("\
6051 All function names or those matching REGEXPs.\n\
6052 Usage: info functions [-q] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6053 Prints the functions.\n"),
6054 _("functions")));
6055
6056 /* FIXME: This command has at least the following problems:
6057 1. It prints builtin types (in a very strange and confusing fashion).
6058 2. It doesn't print right, e.g. with
6059 typedef struct foo *FOO
6060 type_print prints "FOO" when we want to make it (in this situation)
6061 print "struct foo *".
6062 I also think "ptype" or "whatis" is more likely to be useful (but if
6063 there is much disagreement "info types" can be fixed). */
6064 add_info ("types", info_types_command,
6065 _("All type names, or those matching REGEXP."));
6066
6067 add_info ("sources", info_sources_command,
6068 _("Source files in the program."));
6069
6070 add_com ("rbreak", class_breakpoint, rbreak_command,
6071 _("Set a breakpoint for all functions matching REGEXP."));
6072
6073 add_setshow_enum_cmd ("multiple-symbols", no_class,
6074 multiple_symbols_modes, &multiple_symbols_mode,
6075 _("\
6076 Set the debugger behavior when more than one symbol are possible matches\n\
6077 in an expression."), _("\
6078 Show how the debugger handles ambiguities in expressions."), _("\
6079 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6080 NULL, NULL, &setlist, &showlist);
6081
6082 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6083 &basenames_may_differ, _("\
6084 Set whether a source file may have multiple base names."), _("\
6085 Show whether a source file may have multiple base names."), _("\
6086 (A \"base name\" is the name of a file with the directory part removed.\n\
6087 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6088 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6089 before comparing them. Canonicalization is an expensive operation,\n\
6090 but it allows the same file be known by more than one base name.\n\
6091 If not set (the default), all source files are assumed to have just\n\
6092 one base name, and gdb will do file name comparisons more efficiently."),
6093 NULL, NULL,
6094 &setlist, &showlist);
6095
6096 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6097 _("Set debugging of symbol table creation."),
6098 _("Show debugging of symbol table creation."), _("\
6099 When enabled (non-zero), debugging messages are printed when building\n\
6100 symbol tables. A value of 1 (one) normally provides enough information.\n\
6101 A value greater than 1 provides more verbose information."),
6102 NULL,
6103 NULL,
6104 &setdebuglist, &showdebuglist);
6105
6106 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6107 _("\
6108 Set debugging of symbol lookup."), _("\
6109 Show debugging of symbol lookup."), _("\
6110 When enabled (non-zero), symbol lookups are logged."),
6111 NULL, NULL,
6112 &setdebuglist, &showdebuglist);
6113
6114 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6115 &new_symbol_cache_size,
6116 _("Set the size of the symbol cache."),
6117 _("Show the size of the symbol cache."), _("\
6118 The size of the symbol cache.\n\
6119 If zero then the symbol cache is disabled."),
6120 set_symbol_cache_size_handler, NULL,
6121 &maintenance_set_cmdlist,
6122 &maintenance_show_cmdlist);
6123
6124 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6125 _("Dump the symbol cache for each program space."),
6126 &maintenanceprintlist);
6127
6128 add_cmd ("symbol-cache-statistics", class_maintenance,
6129 maintenance_print_symbol_cache_statistics,
6130 _("Print symbol cache statistics for each program space."),
6131 &maintenanceprintlist);
6132
6133 add_cmd ("flush-symbol-cache", class_maintenance,
6134 maintenance_flush_symbol_cache,
6135 _("Flush the symbol cache for each program space."),
6136 &maintenancelist);
6137
6138 gdb::observers::executable_changed.attach (symtab_observer_executable_changed);
6139 gdb::observers::new_objfile.attach (symtab_new_objfile_observer);
6140 gdb::observers::free_objfile.attach (symtab_free_objfile_observer);
6141 }
This page took 0.155255 seconds and 5 git commands to generate.