Use an accessor function for general_symbol_info::language
[deliverable/binutils-gdb.git] / gdb / symtab.h
1 /* Symbol table definitions for GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #if !defined (SYMTAB_H)
21 #define SYMTAB_H 1
22
23 #include <array>
24 #include <vector>
25 #include <string>
26 #include <set>
27 #include "gdbsupport/gdb_vecs.h"
28 #include "gdbtypes.h"
29 #include "gdb_obstack.h"
30 #include "gdb_regex.h"
31 #include "gdbsupport/enum-flags.h"
32 #include "gdbsupport/function-view.h"
33 #include "gdbsupport/gdb_optional.h"
34 #include "gdbsupport/gdb_string_view.h"
35 #include "gdbsupport/next-iterator.h"
36 #include "completer.h"
37 #include "gdb-demangle.h"
38
39 /* Opaque declarations. */
40 struct ui_file;
41 struct frame_info;
42 struct symbol;
43 struct obstack;
44 struct objfile;
45 struct block;
46 struct blockvector;
47 struct axs_value;
48 struct agent_expr;
49 struct program_space;
50 struct language_defn;
51 struct common_block;
52 struct obj_section;
53 struct cmd_list_element;
54 class probe;
55 struct lookup_name_info;
56
57 /* How to match a lookup name against a symbol search name. */
58 enum class symbol_name_match_type
59 {
60 /* Wild matching. Matches unqualified symbol names in all
61 namespace/module/packages, etc. */
62 WILD,
63
64 /* Full matching. The lookup name indicates a fully-qualified name,
65 and only matches symbol search names in the specified
66 namespace/module/package. */
67 FULL,
68
69 /* Search name matching. This is like FULL, but the search name did
70 not come from the user; instead it is already a search name
71 retrieved from a search_name () call.
72 For Ada, this avoids re-encoding an already-encoded search name
73 (which would potentially incorrectly lowercase letters in the
74 linkage/search name that should remain uppercase). For C++, it
75 avoids trying to demangle a name we already know is
76 demangled. */
77 SEARCH_NAME,
78
79 /* Expression matching. The same as FULL matching in most
80 languages. The same as WILD matching in Ada. */
81 EXPRESSION,
82 };
83
84 /* Hash the given symbol search name according to LANGUAGE's
85 rules. */
86 extern unsigned int search_name_hash (enum language language,
87 const char *search_name);
88
89 /* Ada-specific bits of a lookup_name_info object. This is lazily
90 constructed on demand. */
91
92 class ada_lookup_name_info final
93 {
94 public:
95 /* Construct. */
96 explicit ada_lookup_name_info (const lookup_name_info &lookup_name);
97
98 /* Compare SYMBOL_SEARCH_NAME with our lookup name, using MATCH_TYPE
99 as name match type. Returns true if there's a match, false
100 otherwise. If non-NULL, store the matching results in MATCH. */
101 bool matches (const char *symbol_search_name,
102 symbol_name_match_type match_type,
103 completion_match_result *comp_match_res) const;
104
105 /* The Ada-encoded lookup name. */
106 const std::string &lookup_name () const
107 { return m_encoded_name; }
108
109 /* Return true if we're supposed to be doing a wild match look
110 up. */
111 bool wild_match_p () const
112 { return m_wild_match_p; }
113
114 /* Return true if we're looking up a name inside package
115 Standard. */
116 bool standard_p () const
117 { return m_standard_p; }
118
119 /* Return true if doing a verbatim match. */
120 bool verbatim_p () const
121 { return m_verbatim_p; }
122
123 private:
124 /* The Ada-encoded lookup name. */
125 std::string m_encoded_name;
126
127 /* Whether the user-provided lookup name was Ada encoded. If so,
128 then return encoded names in the 'matches' method's 'completion
129 match result' output. */
130 bool m_encoded_p : 1;
131
132 /* True if really doing wild matching. Even if the user requests
133 wild matching, some cases require full matching. */
134 bool m_wild_match_p : 1;
135
136 /* True if doing a verbatim match. This is true if the decoded
137 version of the symbol name is wrapped in '<'/'>'. This is an
138 escape hatch users can use to look up symbols the Ada encoding
139 does not understand. */
140 bool m_verbatim_p : 1;
141
142 /* True if the user specified a symbol name that is inside package
143 Standard. Symbol names inside package Standard are handled
144 specially. We always do a non-wild match of the symbol name
145 without the "standard__" prefix, and only search static and
146 global symbols. This was primarily introduced in order to allow
147 the user to specifically access the standard exceptions using,
148 for instance, Standard.Constraint_Error when Constraint_Error is
149 ambiguous (due to the user defining its own Constraint_Error
150 entity inside its program). */
151 bool m_standard_p : 1;
152 };
153
154 /* Language-specific bits of a lookup_name_info object, for languages
155 that do name searching using demangled names (C++/D/Go). This is
156 lazily constructed on demand. */
157
158 struct demangle_for_lookup_info final
159 {
160 public:
161 demangle_for_lookup_info (const lookup_name_info &lookup_name,
162 language lang);
163
164 /* The demangled lookup name. */
165 const std::string &lookup_name () const
166 { return m_demangled_name; }
167
168 private:
169 /* The demangled lookup name. */
170 std::string m_demangled_name;
171 };
172
173 /* Object that aggregates all information related to a symbol lookup
174 name. I.e., the name that is matched against the symbol's search
175 name. Caches per-language information so that it doesn't require
176 recomputing it for every symbol comparison, like for example the
177 Ada encoded name and the symbol's name hash for a given language.
178 The object is conceptually immutable once constructed, and thus has
179 no setters. This is to prevent some code path from tweaking some
180 property of the lookup name for some local reason and accidentally
181 altering the results of any continuing search(es).
182 lookup_name_info objects are generally passed around as a const
183 reference to reinforce that. (They're not passed around by value
184 because they're not small.) */
185 class lookup_name_info final
186 {
187 public:
188 /* Create a new object. */
189 lookup_name_info (std::string name,
190 symbol_name_match_type match_type,
191 bool completion_mode = false,
192 bool ignore_parameters = false)
193 : m_match_type (match_type),
194 m_completion_mode (completion_mode),
195 m_ignore_parameters (ignore_parameters),
196 m_name (std::move (name))
197 {}
198
199 /* Getters. See description of each corresponding field. */
200 symbol_name_match_type match_type () const { return m_match_type; }
201 bool completion_mode () const { return m_completion_mode; }
202 const std::string &name () const { return m_name; }
203 const bool ignore_parameters () const { return m_ignore_parameters; }
204
205 /* Return a version of this lookup name that is usable with
206 comparisons against symbols have no parameter info, such as
207 psymbols and GDB index symbols. */
208 lookup_name_info make_ignore_params () const
209 {
210 return lookup_name_info (m_name, m_match_type, m_completion_mode,
211 true /* ignore params */);
212 }
213
214 /* Get the search name hash for searches in language LANG. */
215 unsigned int search_name_hash (language lang) const
216 {
217 /* Only compute each language's hash once. */
218 if (!m_demangled_hashes_p[lang])
219 {
220 m_demangled_hashes[lang]
221 = ::search_name_hash (lang, language_lookup_name (lang).c_str ());
222 m_demangled_hashes_p[lang] = true;
223 }
224 return m_demangled_hashes[lang];
225 }
226
227 /* Get the search name for searches in language LANG. */
228 const std::string &language_lookup_name (language lang) const
229 {
230 switch (lang)
231 {
232 case language_ada:
233 return ada ().lookup_name ();
234 case language_cplus:
235 return cplus ().lookup_name ();
236 case language_d:
237 return d ().lookup_name ();
238 case language_go:
239 return go ().lookup_name ();
240 default:
241 return m_name;
242 }
243 }
244
245 /* Get the Ada-specific lookup info. */
246 const ada_lookup_name_info &ada () const
247 {
248 maybe_init (m_ada);
249 return *m_ada;
250 }
251
252 /* Get the C++-specific lookup info. */
253 const demangle_for_lookup_info &cplus () const
254 {
255 maybe_init (m_cplus, language_cplus);
256 return *m_cplus;
257 }
258
259 /* Get the D-specific lookup info. */
260 const demangle_for_lookup_info &d () const
261 {
262 maybe_init (m_d, language_d);
263 return *m_d;
264 }
265
266 /* Get the Go-specific lookup info. */
267 const demangle_for_lookup_info &go () const
268 {
269 maybe_init (m_go, language_go);
270 return *m_go;
271 }
272
273 /* Get a reference to a lookup_name_info object that matches any
274 symbol name. */
275 static const lookup_name_info &match_any ();
276
277 private:
278 /* Initialize FIELD, if not initialized yet. */
279 template<typename Field, typename... Args>
280 void maybe_init (Field &field, Args&&... args) const
281 {
282 if (!field)
283 field.emplace (*this, std::forward<Args> (args)...);
284 }
285
286 /* The lookup info as passed to the ctor. */
287 symbol_name_match_type m_match_type;
288 bool m_completion_mode;
289 bool m_ignore_parameters;
290 std::string m_name;
291
292 /* Language-specific info. These fields are filled lazily the first
293 time a lookup is done in the corresponding language. They're
294 mutable because lookup_name_info objects are typically passed
295 around by const reference (see intro), and they're conceptually
296 "cache" that can always be reconstructed from the non-mutable
297 fields. */
298 mutable gdb::optional<ada_lookup_name_info> m_ada;
299 mutable gdb::optional<demangle_for_lookup_info> m_cplus;
300 mutable gdb::optional<demangle_for_lookup_info> m_d;
301 mutable gdb::optional<demangle_for_lookup_info> m_go;
302
303 /* The demangled hashes. Stored in an array with one entry for each
304 possible language. The second array records whether we've
305 already computed the each language's hash. (These are separate
306 arrays instead of a single array of optional<unsigned> to avoid
307 alignment padding). */
308 mutable std::array<unsigned int, nr_languages> m_demangled_hashes;
309 mutable std::array<bool, nr_languages> m_demangled_hashes_p {};
310 };
311
312 /* Comparison function for completion symbol lookup.
313
314 Returns true if the symbol name matches against LOOKUP_NAME.
315
316 SYMBOL_SEARCH_NAME should be a symbol's "search" name.
317
318 On success and if non-NULL, COMP_MATCH_RES->match is set to point
319 to the symbol name as should be presented to the user as a
320 completion match list element. In most languages, this is the same
321 as the symbol's search name, but in some, like Ada, the display
322 name is dynamically computed within the comparison routine.
323
324 Also, on success and if non-NULL, COMP_MATCH_RES->match_for_lcd
325 points the part of SYMBOL_SEARCH_NAME that was considered to match
326 LOOKUP_NAME. E.g., in C++, in linespec/wild mode, if the symbol is
327 "foo::function()" and LOOKUP_NAME is "function(", MATCH_FOR_LCD
328 points to "function()" inside SYMBOL_SEARCH_NAME. */
329 typedef bool (symbol_name_matcher_ftype)
330 (const char *symbol_search_name,
331 const lookup_name_info &lookup_name,
332 completion_match_result *comp_match_res);
333
334 /* Some of the structures in this file are space critical.
335 The space-critical structures are:
336
337 struct general_symbol_info
338 struct symbol
339 struct partial_symbol
340
341 These structures are laid out to encourage good packing.
342 They use ENUM_BITFIELD and short int fields, and they order the
343 structure members so that fields less than a word are next
344 to each other so they can be packed together. */
345
346 /* Rearranged: used ENUM_BITFIELD and rearranged field order in
347 all the space critical structures (plus struct minimal_symbol).
348 Memory usage dropped from 99360768 bytes to 90001408 bytes.
349 I measured this with before-and-after tests of
350 "HEAD-old-gdb -readnow HEAD-old-gdb" and
351 "HEAD-new-gdb -readnow HEAD-old-gdb" on native i686-pc-linux-gnu,
352 red hat linux 8, with LD_LIBRARY_PATH=/usr/lib/debug,
353 typing "maint space 1" at the first command prompt.
354
355 Here is another measurement (from andrew c):
356 # no /usr/lib/debug, just plain glibc, like a normal user
357 gdb HEAD-old-gdb
358 (gdb) break internal_error
359 (gdb) run
360 (gdb) maint internal-error
361 (gdb) backtrace
362 (gdb) maint space 1
363
364 gdb gdb_6_0_branch 2003-08-19 space used: 8896512
365 gdb HEAD 2003-08-19 space used: 8904704
366 gdb HEAD 2003-08-21 space used: 8396800 (+symtab.h)
367 gdb HEAD 2003-08-21 space used: 8265728 (+gdbtypes.h)
368
369 The third line shows the savings from the optimizations in symtab.h.
370 The fourth line shows the savings from the optimizations in
371 gdbtypes.h. Both optimizations are in gdb HEAD now.
372
373 --chastain 2003-08-21 */
374
375 /* Define a structure for the information that is common to all symbol types,
376 including minimal symbols, partial symbols, and full symbols. In a
377 multilanguage environment, some language specific information may need to
378 be recorded along with each symbol. */
379
380 /* This structure is space critical. See space comments at the top. */
381
382 struct general_symbol_info
383 {
384 /* Short version as to when to use which name accessor:
385 Use natural_name () to refer to the name of the symbol in the original
386 source code. Use linkage_name () if you want to know what the linker
387 thinks the symbol's name is. Use print_name () for output. Use
388 demangled_name () if you specifically need to know whether natural_name ()
389 and linkage_name () are different. */
390
391 const char *linkage_name () const
392 { return name; }
393
394 /* Return SYMBOL's "natural" name, i.e. the name that it was called in
395 the original source code. In languages like C++ where symbols may
396 be mangled for ease of manipulation by the linker, this is the
397 demangled name. */
398 const char *natural_name () const;
399
400 /* Returns a version of the name of a symbol that is
401 suitable for output. In C++ this is the "demangled" form of the
402 name if demangle is on and the "mangled" form of the name if
403 demangle is off. In other languages this is just the symbol name.
404 The result should never be NULL. Don't use this for internal
405 purposes (e.g. storing in a hashtable): it's only suitable for output. */
406 const char *print_name () const
407 { return demangle ? natural_name () : linkage_name (); }
408
409 /* Return the demangled name for a symbol based on the language for
410 that symbol. If no demangled name exists, return NULL. */
411 const char *demangled_name () const;
412
413 /* Returns the name to be used when sorting and searching symbols.
414 In C++, we search for the demangled form of a name,
415 and so sort symbols accordingly. In Ada, however, we search by mangled
416 name. If there is no distinct demangled name, then this
417 returns the same value (same pointer) as linkage_name (). */
418 const char *search_name () const;
419
420 /* Set just the linkage name of a symbol; do not try to demangle
421 it. Used for constructs which do not have a mangled name,
422 e.g. struct tags. Unlike SYMBOL_SET_NAMES, linkage_name must
423 be terminated and either already on the objfile's obstack or
424 permanently allocated. */
425 void set_linkage_name (const char *linkage_name)
426 { name = linkage_name; }
427
428 enum language language () const
429 { return m_language; }
430
431 /* Name of the symbol. This is a required field. Storage for the
432 name is allocated on the objfile_obstack for the associated
433 objfile. For languages like C++ that make a distinction between
434 the mangled name and demangled name, this is the mangled
435 name. */
436
437 const char *name;
438
439 /* Value of the symbol. Which member of this union to use, and what
440 it means, depends on what kind of symbol this is and its
441 SYMBOL_CLASS. See comments there for more details. All of these
442 are in host byte order (though what they point to might be in
443 target byte order, e.g. LOC_CONST_BYTES). */
444
445 union
446 {
447 LONGEST ivalue;
448
449 const struct block *block;
450
451 const gdb_byte *bytes;
452
453 CORE_ADDR address;
454
455 /* A common block. Used with LOC_COMMON_BLOCK. */
456
457 const struct common_block *common_block;
458
459 /* For opaque typedef struct chain. */
460
461 struct symbol *chain;
462 }
463 value;
464
465 /* Since one and only one language can apply, wrap the language specific
466 information inside a union. */
467
468 union
469 {
470 /* A pointer to an obstack that can be used for storage associated
471 with this symbol. This is only used by Ada, and only when the
472 'ada_mangled' field is zero. */
473 struct obstack *obstack;
474
475 /* This is used by languages which wish to store a demangled name.
476 currently used by Ada, C++, and Objective C. */
477 const char *demangled_name;
478 }
479 language_specific;
480
481 /* Record the source code language that applies to this symbol.
482 This is used to select one of the fields from the language specific
483 union above. */
484
485 ENUM_BITFIELD(language) m_language : LANGUAGE_BITS;
486
487 /* This is only used by Ada. If set, then the 'demangled_name' field
488 of language_specific is valid. Otherwise, the 'obstack' field is
489 valid. */
490 unsigned int ada_mangled : 1;
491
492 /* Which section is this symbol in? This is an index into
493 section_offsets for this objfile. Negative means that the symbol
494 does not get relocated relative to a section. */
495
496 short section;
497 };
498
499 extern void symbol_set_demangled_name (struct general_symbol_info *,
500 const char *,
501 struct obstack *);
502
503 extern const char *symbol_get_demangled_name
504 (const struct general_symbol_info *);
505
506 extern CORE_ADDR symbol_overlayed_address (CORE_ADDR, struct obj_section *);
507
508 /* Return the address of SYM. The MAYBE_COPIED flag must be set on
509 SYM. If SYM appears in the main program's minimal symbols, then
510 that minsym's address is returned; otherwise, SYM's address is
511 returned. This should generally only be used via the
512 SYMBOL_VALUE_ADDRESS macro. */
513
514 extern CORE_ADDR get_symbol_address (const struct symbol *sym);
515
516 /* Note that these macros only work with symbol, not partial_symbol. */
517
518 #define SYMBOL_VALUE(symbol) (symbol)->value.ivalue
519 #define SYMBOL_VALUE_ADDRESS(symbol) \
520 (((symbol)->maybe_copied) ? get_symbol_address (symbol) \
521 : ((symbol)->value.address))
522 #define SET_SYMBOL_VALUE_ADDRESS(symbol, new_value) \
523 ((symbol)->value.address = (new_value))
524 #define SYMBOL_VALUE_BYTES(symbol) (symbol)->value.bytes
525 #define SYMBOL_VALUE_COMMON_BLOCK(symbol) (symbol)->value.common_block
526 #define SYMBOL_BLOCK_VALUE(symbol) (symbol)->value.block
527 #define SYMBOL_VALUE_CHAIN(symbol) (symbol)->value.chain
528 #define SYMBOL_SECTION(symbol) (symbol)->section
529 #define SYMBOL_OBJ_SECTION(objfile, symbol) \
530 (((symbol)->section >= 0) \
531 ? (&(((objfile)->sections)[(symbol)->section])) \
532 : NULL)
533
534 /* Initializes the language dependent portion of a symbol
535 depending upon the language for the symbol. */
536 #define SYMBOL_SET_LANGUAGE(symbol,language,obstack) \
537 (symbol_set_language ((symbol), (language), (obstack)))
538 extern void symbol_set_language (struct general_symbol_info *symbol,
539 enum language language,
540 struct obstack *obstack);
541
542 /* Try to determine the demangled name for a symbol, based on the
543 language of that symbol. If the language is set to language_auto,
544 it will attempt to find any demangling algorithm that works and
545 then set the language appropriately. The returned name is allocated
546 by the demangler and should be xfree'd. */
547
548 extern char *symbol_find_demangled_name (struct general_symbol_info *gsymbol,
549 const char *mangled);
550
551 /* Set the linkage and natural names of a symbol, by demangling
552 the linkage name. If linkage_name may not be nullterminated,
553 copy_name must be set to true. */
554 #define SYMBOL_SET_NAMES(symbol,linkage_name,copy_name,objfile) \
555 symbol_set_names ((symbol), linkage_name, copy_name, \
556 (objfile)->per_bfd)
557 extern void symbol_set_names (struct general_symbol_info *symbol,
558 gdb::string_view linkage_name, bool copy_name,
559 struct objfile_per_bfd_storage *per_bfd,
560 gdb::optional<hashval_t> hash
561 = gdb::optional<hashval_t> ());
562
563 /* Return true if NAME matches the "search" name of SYMBOL, according
564 to the symbol's language. */
565 #define SYMBOL_MATCHES_SEARCH_NAME(symbol, name) \
566 symbol_matches_search_name ((symbol), (name))
567
568 /* Helper for SYMBOL_MATCHES_SEARCH_NAME that works with both symbols
569 and psymbols. */
570 extern bool symbol_matches_search_name
571 (const struct general_symbol_info *gsymbol,
572 const lookup_name_info &name);
573
574 /* Compute the hash of the given symbol search name of a symbol of
575 language LANGUAGE. */
576 extern unsigned int search_name_hash (enum language language,
577 const char *search_name);
578
579 /* Classification types for a minimal symbol. These should be taken as
580 "advisory only", since if gdb can't easily figure out a
581 classification it simply selects mst_unknown. It may also have to
582 guess when it can't figure out which is a better match between two
583 types (mst_data versus mst_bss) for example. Since the minimal
584 symbol info is sometimes derived from the BFD library's view of a
585 file, we need to live with what information bfd supplies. */
586
587 enum minimal_symbol_type
588 {
589 mst_unknown = 0, /* Unknown type, the default */
590 mst_text, /* Generally executable instructions */
591
592 /* A GNU ifunc symbol, in the .text section. GDB uses to know
593 whether the user is setting a breakpoint on a GNU ifunc function,
594 and thus GDB needs to actually set the breakpoint on the target
595 function. It is also used to know whether the program stepped
596 into an ifunc resolver -- the resolver may get a separate
597 symbol/alias under a different name, but it'll have the same
598 address as the ifunc symbol. */
599 mst_text_gnu_ifunc, /* Executable code returning address
600 of executable code */
601
602 /* A GNU ifunc function descriptor symbol, in a data section
603 (typically ".opd"). Seen on architectures that use function
604 descriptors, like PPC64/ELFv1. In this case, this symbol's value
605 is the address of the descriptor. There'll be a corresponding
606 mst_text_gnu_ifunc synthetic symbol for the text/entry
607 address. */
608 mst_data_gnu_ifunc, /* Executable code returning address
609 of executable code */
610
611 mst_slot_got_plt, /* GOT entries for .plt sections */
612 mst_data, /* Generally initialized data */
613 mst_bss, /* Generally uninitialized data */
614 mst_abs, /* Generally absolute (nonrelocatable) */
615 /* GDB uses mst_solib_trampoline for the start address of a shared
616 library trampoline entry. Breakpoints for shared library functions
617 are put there if the shared library is not yet loaded.
618 After the shared library is loaded, lookup_minimal_symbol will
619 prefer the minimal symbol from the shared library (usually
620 a mst_text symbol) over the mst_solib_trampoline symbol, and the
621 breakpoints will be moved to their true address in the shared
622 library via breakpoint_re_set. */
623 mst_solib_trampoline, /* Shared library trampoline code */
624 /* For the mst_file* types, the names are only guaranteed to be unique
625 within a given .o file. */
626 mst_file_text, /* Static version of mst_text */
627 mst_file_data, /* Static version of mst_data */
628 mst_file_bss, /* Static version of mst_bss */
629 nr_minsym_types
630 };
631
632 /* The number of enum minimal_symbol_type values, with some padding for
633 reasonable growth. */
634 #define MINSYM_TYPE_BITS 4
635 gdb_static_assert (nr_minsym_types <= (1 << MINSYM_TYPE_BITS));
636
637 /* Define a simple structure used to hold some very basic information about
638 all defined global symbols (text, data, bss, abs, etc). The only required
639 information is the general_symbol_info.
640
641 In many cases, even if a file was compiled with no special options for
642 debugging at all, as long as was not stripped it will contain sufficient
643 information to build a useful minimal symbol table using this structure.
644 Even when a file contains enough debugging information to build a full
645 symbol table, these minimal symbols are still useful for quickly mapping
646 between names and addresses, and vice versa. They are also sometimes
647 used to figure out what full symbol table entries need to be read in. */
648
649 struct minimal_symbol : public general_symbol_info
650 {
651 /* Size of this symbol. dbx_end_psymtab in dbxread.c uses this
652 information to calculate the end of the partial symtab based on the
653 address of the last symbol plus the size of the last symbol. */
654
655 unsigned long size;
656
657 /* Which source file is this symbol in? Only relevant for mst_file_*. */
658 const char *filename;
659
660 /* Classification type for this minimal symbol. */
661
662 ENUM_BITFIELD(minimal_symbol_type) type : MINSYM_TYPE_BITS;
663
664 /* Non-zero if this symbol was created by gdb.
665 Such symbols do not appear in the output of "info var|fun". */
666 unsigned int created_by_gdb : 1;
667
668 /* Two flag bits provided for the use of the target. */
669 unsigned int target_flag_1 : 1;
670 unsigned int target_flag_2 : 1;
671
672 /* Nonzero iff the size of the minimal symbol has been set.
673 Symbol size information can sometimes not be determined, because
674 the object file format may not carry that piece of information. */
675 unsigned int has_size : 1;
676
677 /* For data symbols only, if this is set, then the symbol might be
678 subject to copy relocation. In this case, a minimal symbol
679 matching the symbol's linkage name is first looked for in the
680 main objfile. If found, then that address is used; otherwise the
681 address in this symbol is used. */
682
683 unsigned maybe_copied : 1;
684
685 /* Non-zero if this symbol ever had its demangled name set (even if
686 it was set to NULL). */
687 unsigned int name_set : 1;
688
689 /* Minimal symbols with the same hash key are kept on a linked
690 list. This is the link. */
691
692 struct minimal_symbol *hash_next;
693
694 /* Minimal symbols are stored in two different hash tables. This is
695 the `next' pointer for the demangled hash table. */
696
697 struct minimal_symbol *demangled_hash_next;
698
699 /* True if this symbol is of some data type. */
700
701 bool data_p () const;
702
703 /* True if MSYMBOL is of some text type. */
704
705 bool text_p () const;
706 };
707
708 /* Return the address of MINSYM, which comes from OBJF. The
709 MAYBE_COPIED flag must be set on MINSYM. If MINSYM appears in the
710 main program's minimal symbols, then that minsym's address is
711 returned; otherwise, MINSYM's address is returned. This should
712 generally only be used via the MSYMBOL_VALUE_ADDRESS macro. */
713
714 extern CORE_ADDR get_msymbol_address (struct objfile *objf,
715 const struct minimal_symbol *minsym);
716
717 #define MSYMBOL_TARGET_FLAG_1(msymbol) (msymbol)->target_flag_1
718 #define MSYMBOL_TARGET_FLAG_2(msymbol) (msymbol)->target_flag_2
719 #define MSYMBOL_SIZE(msymbol) ((msymbol)->size + 0)
720 #define SET_MSYMBOL_SIZE(msymbol, sz) \
721 do \
722 { \
723 (msymbol)->size = sz; \
724 (msymbol)->has_size = 1; \
725 } while (0)
726 #define MSYMBOL_HAS_SIZE(msymbol) ((msymbol)->has_size + 0)
727 #define MSYMBOL_TYPE(msymbol) (msymbol)->type
728
729 #define MSYMBOL_VALUE(symbol) (symbol)->value.ivalue
730 /* The unrelocated address of the minimal symbol. */
731 #define MSYMBOL_VALUE_RAW_ADDRESS(symbol) ((symbol)->value.address + 0)
732 /* The relocated address of the minimal symbol, using the section
733 offsets from OBJFILE. */
734 #define MSYMBOL_VALUE_ADDRESS(objfile, symbol) \
735 (((symbol)->maybe_copied) ? get_msymbol_address (objfile, symbol) \
736 : ((symbol)->value.address \
737 + ANOFFSET ((objfile)->section_offsets, ((symbol)->section))))
738 /* For a bound minsym, we can easily compute the address directly. */
739 #define BMSYMBOL_VALUE_ADDRESS(symbol) \
740 MSYMBOL_VALUE_ADDRESS ((symbol).objfile, (symbol).minsym)
741 #define SET_MSYMBOL_VALUE_ADDRESS(symbol, new_value) \
742 ((symbol)->value.address = (new_value))
743 #define MSYMBOL_VALUE_BYTES(symbol) (symbol)->value.bytes
744 #define MSYMBOL_BLOCK_VALUE(symbol) (symbol)->value.block
745 #define MSYMBOL_VALUE_CHAIN(symbol) (symbol)->value.chain
746 #define MSYMBOL_SECTION(symbol) (symbol)->section
747 #define MSYMBOL_OBJ_SECTION(objfile, symbol) \
748 (((symbol)->section >= 0) \
749 ? (&(((objfile)->sections)[(symbol)->section])) \
750 : NULL)
751
752 #include "minsyms.h"
753
754 \f
755
756 /* Represent one symbol name; a variable, constant, function or typedef. */
757
758 /* Different name domains for symbols. Looking up a symbol specifies a
759 domain and ignores symbol definitions in other name domains. */
760
761 typedef enum domain_enum_tag
762 {
763 /* UNDEF_DOMAIN is used when a domain has not been discovered or
764 none of the following apply. This usually indicates an error either
765 in the symbol information or in gdb's handling of symbols. */
766
767 UNDEF_DOMAIN,
768
769 /* VAR_DOMAIN is the usual domain. In C, this contains variables,
770 function names, typedef names and enum type values. */
771
772 VAR_DOMAIN,
773
774 /* STRUCT_DOMAIN is used in C to hold struct, union and enum type names.
775 Thus, if `struct foo' is used in a C program, it produces a symbol named
776 `foo' in the STRUCT_DOMAIN. */
777
778 STRUCT_DOMAIN,
779
780 /* MODULE_DOMAIN is used in Fortran to hold module type names. */
781
782 MODULE_DOMAIN,
783
784 /* LABEL_DOMAIN may be used for names of labels (for gotos). */
785
786 LABEL_DOMAIN,
787
788 /* Fortran common blocks. Their naming must be separate from VAR_DOMAIN.
789 They also always use LOC_COMMON_BLOCK. */
790 COMMON_BLOCK_DOMAIN,
791
792 /* This must remain last. */
793 NR_DOMAINS
794 } domain_enum;
795
796 /* The number of bits in a symbol used to represent the domain. */
797
798 #define SYMBOL_DOMAIN_BITS 3
799 gdb_static_assert (NR_DOMAINS <= (1 << SYMBOL_DOMAIN_BITS));
800
801 extern const char *domain_name (domain_enum);
802
803 /* Searching domains, used when searching for symbols. Element numbers are
804 hardcoded in GDB, check all enum uses before changing it. */
805
806 enum search_domain
807 {
808 /* Everything in VAR_DOMAIN minus FUNCTIONS_DOMAIN and
809 TYPES_DOMAIN. */
810 VARIABLES_DOMAIN = 0,
811
812 /* All functions -- for some reason not methods, though. */
813 FUNCTIONS_DOMAIN = 1,
814
815 /* All defined types */
816 TYPES_DOMAIN = 2,
817
818 /* All modules. */
819 MODULES_DOMAIN = 3,
820
821 /* Any type. */
822 ALL_DOMAIN = 4
823 };
824
825 extern const char *search_domain_name (enum search_domain);
826
827 /* An address-class says where to find the value of a symbol. */
828
829 enum address_class
830 {
831 /* Not used; catches errors. */
832
833 LOC_UNDEF,
834
835 /* Value is constant int SYMBOL_VALUE, host byteorder. */
836
837 LOC_CONST,
838
839 /* Value is at fixed address SYMBOL_VALUE_ADDRESS. */
840
841 LOC_STATIC,
842
843 /* Value is in register. SYMBOL_VALUE is the register number
844 in the original debug format. SYMBOL_REGISTER_OPS holds a
845 function that can be called to transform this into the
846 actual register number this represents in a specific target
847 architecture (gdbarch).
848
849 For some symbol formats (stabs, for some compilers at least),
850 the compiler generates two symbols, an argument and a register.
851 In some cases we combine them to a single LOC_REGISTER in symbol
852 reading, but currently not for all cases (e.g. it's passed on the
853 stack and then loaded into a register). */
854
855 LOC_REGISTER,
856
857 /* It's an argument; the value is at SYMBOL_VALUE offset in arglist. */
858
859 LOC_ARG,
860
861 /* Value address is at SYMBOL_VALUE offset in arglist. */
862
863 LOC_REF_ARG,
864
865 /* Value is in specified register. Just like LOC_REGISTER except the
866 register holds the address of the argument instead of the argument
867 itself. This is currently used for the passing of structs and unions
868 on sparc and hppa. It is also used for call by reference where the
869 address is in a register, at least by mipsread.c. */
870
871 LOC_REGPARM_ADDR,
872
873 /* Value is a local variable at SYMBOL_VALUE offset in stack frame. */
874
875 LOC_LOCAL,
876
877 /* Value not used; definition in SYMBOL_TYPE. Symbols in the domain
878 STRUCT_DOMAIN all have this class. */
879
880 LOC_TYPEDEF,
881
882 /* Value is address SYMBOL_VALUE_ADDRESS in the code. */
883
884 LOC_LABEL,
885
886 /* In a symbol table, value is SYMBOL_BLOCK_VALUE of a `struct block'.
887 In a partial symbol table, SYMBOL_VALUE_ADDRESS is the start address
888 of the block. Function names have this class. */
889
890 LOC_BLOCK,
891
892 /* Value is a constant byte-sequence pointed to by SYMBOL_VALUE_BYTES, in
893 target byte order. */
894
895 LOC_CONST_BYTES,
896
897 /* Value is at fixed address, but the address of the variable has
898 to be determined from the minimal symbol table whenever the
899 variable is referenced.
900 This happens if debugging information for a global symbol is
901 emitted and the corresponding minimal symbol is defined
902 in another object file or runtime common storage.
903 The linker might even remove the minimal symbol if the global
904 symbol is never referenced, in which case the symbol remains
905 unresolved.
906
907 GDB would normally find the symbol in the minimal symbol table if it will
908 not find it in the full symbol table. But a reference to an external
909 symbol in a local block shadowing other definition requires full symbol
910 without possibly having its address available for LOC_STATIC. Testcase
911 is provided as `gdb.dwarf2/dw2-unresolved.exp'.
912
913 This is also used for thread local storage (TLS) variables. In this case,
914 the address of the TLS variable must be determined when the variable is
915 referenced, from the MSYMBOL_VALUE_RAW_ADDRESS, which is the offset
916 of the TLS variable in the thread local storage of the shared
917 library/object. */
918
919 LOC_UNRESOLVED,
920
921 /* The variable does not actually exist in the program.
922 The value is ignored. */
923
924 LOC_OPTIMIZED_OUT,
925
926 /* The variable's address is computed by a set of location
927 functions (see "struct symbol_computed_ops" below). */
928 LOC_COMPUTED,
929
930 /* The variable uses general_symbol_info->value->common_block field.
931 It also always uses COMMON_BLOCK_DOMAIN. */
932 LOC_COMMON_BLOCK,
933
934 /* Not used, just notes the boundary of the enum. */
935 LOC_FINAL_VALUE
936 };
937
938 /* The number of bits needed for values in enum address_class, with some
939 padding for reasonable growth, and room for run-time registered address
940 classes. See symtab.c:MAX_SYMBOL_IMPLS.
941 This is a #define so that we can have a assertion elsewhere to
942 verify that we have reserved enough space for synthetic address
943 classes. */
944 #define SYMBOL_ACLASS_BITS 5
945 gdb_static_assert (LOC_FINAL_VALUE <= (1 << SYMBOL_ACLASS_BITS));
946
947 /* The methods needed to implement LOC_COMPUTED. These methods can
948 use the symbol's .aux_value for additional per-symbol information.
949
950 At present this is only used to implement location expressions. */
951
952 struct symbol_computed_ops
953 {
954
955 /* Return the value of the variable SYMBOL, relative to the stack
956 frame FRAME. If the variable has been optimized out, return
957 zero.
958
959 Iff `read_needs_frame (SYMBOL)' is not SYMBOL_NEEDS_FRAME, then
960 FRAME may be zero. */
961
962 struct value *(*read_variable) (struct symbol * symbol,
963 struct frame_info * frame);
964
965 /* Read variable SYMBOL like read_variable at (callee) FRAME's function
966 entry. SYMBOL should be a function parameter, otherwise
967 NO_ENTRY_VALUE_ERROR will be thrown. */
968 struct value *(*read_variable_at_entry) (struct symbol *symbol,
969 struct frame_info *frame);
970
971 /* Find the "symbol_needs_kind" value for the given symbol. This
972 value determines whether reading the symbol needs memory (e.g., a
973 global variable), just registers (a thread-local), or a frame (a
974 local variable). */
975 enum symbol_needs_kind (*get_symbol_read_needs) (struct symbol * symbol);
976
977 /* Write to STREAM a natural-language description of the location of
978 SYMBOL, in the context of ADDR. */
979 void (*describe_location) (struct symbol * symbol, CORE_ADDR addr,
980 struct ui_file * stream);
981
982 /* Non-zero if this symbol's address computation is dependent on PC. */
983 unsigned char location_has_loclist;
984
985 /* Tracepoint support. Append bytecodes to the tracepoint agent
986 expression AX that push the address of the object SYMBOL. Set
987 VALUE appropriately. Note --- for objects in registers, this
988 needn't emit any code; as long as it sets VALUE properly, then
989 the caller will generate the right code in the process of
990 treating this as an lvalue or rvalue. */
991
992 void (*tracepoint_var_ref) (struct symbol *symbol, struct agent_expr *ax,
993 struct axs_value *value);
994
995 /* Generate C code to compute the location of SYMBOL. The C code is
996 emitted to STREAM. GDBARCH is the current architecture and PC is
997 the PC at which SYMBOL's location should be evaluated.
998 REGISTERS_USED is a vector indexed by register number; the
999 generator function should set an element in this vector if the
1000 corresponding register is needed by the location computation.
1001 The generated C code must assign the location to a local
1002 variable; this variable's name is RESULT_NAME. */
1003
1004 void (*generate_c_location) (struct symbol *symbol, string_file *stream,
1005 struct gdbarch *gdbarch,
1006 unsigned char *registers_used,
1007 CORE_ADDR pc, const char *result_name);
1008
1009 };
1010
1011 /* The methods needed to implement LOC_BLOCK for inferior functions.
1012 These methods can use the symbol's .aux_value for additional
1013 per-symbol information. */
1014
1015 struct symbol_block_ops
1016 {
1017 /* Fill in *START and *LENGTH with DWARF block data of function
1018 FRAMEFUNC valid for inferior context address PC. Set *LENGTH to
1019 zero if such location is not valid for PC; *START is left
1020 uninitialized in such case. */
1021 void (*find_frame_base_location) (struct symbol *framefunc, CORE_ADDR pc,
1022 const gdb_byte **start, size_t *length);
1023
1024 /* Return the frame base address. FRAME is the frame for which we want to
1025 compute the base address while FRAMEFUNC is the symbol for the
1026 corresponding function. Return 0 on failure (FRAMEFUNC may not hold the
1027 information we need).
1028
1029 This method is designed to work with static links (nested functions
1030 handling). Static links are function properties whose evaluation returns
1031 the frame base address for the enclosing frame. However, there are
1032 multiple definitions for "frame base": the content of the frame base
1033 register, the CFA as defined by DWARF unwinding information, ...
1034
1035 So this specific method is supposed to compute the frame base address such
1036 as for nested functions, the static link computes the same address. For
1037 instance, considering DWARF debugging information, the static link is
1038 computed with DW_AT_static_link and this method must be used to compute
1039 the corresponding DW_AT_frame_base attribute. */
1040 CORE_ADDR (*get_frame_base) (struct symbol *framefunc,
1041 struct frame_info *frame);
1042 };
1043
1044 /* Functions used with LOC_REGISTER and LOC_REGPARM_ADDR. */
1045
1046 struct symbol_register_ops
1047 {
1048 int (*register_number) (struct symbol *symbol, struct gdbarch *gdbarch);
1049 };
1050
1051 /* Objects of this type are used to find the address class and the
1052 various computed ops vectors of a symbol. */
1053
1054 struct symbol_impl
1055 {
1056 enum address_class aclass;
1057
1058 /* Used with LOC_COMPUTED. */
1059 const struct symbol_computed_ops *ops_computed;
1060
1061 /* Used with LOC_BLOCK. */
1062 const struct symbol_block_ops *ops_block;
1063
1064 /* Used with LOC_REGISTER and LOC_REGPARM_ADDR. */
1065 const struct symbol_register_ops *ops_register;
1066 };
1067
1068 /* struct symbol has some subclasses. This enum is used to
1069 differentiate between them. */
1070
1071 enum symbol_subclass_kind
1072 {
1073 /* Plain struct symbol. */
1074 SYMBOL_NONE,
1075
1076 /* struct template_symbol. */
1077 SYMBOL_TEMPLATE,
1078
1079 /* struct rust_vtable_symbol. */
1080 SYMBOL_RUST_VTABLE
1081 };
1082
1083 /* This structure is space critical. See space comments at the top. */
1084
1085 struct symbol : public general_symbol_info, public allocate_on_obstack
1086 {
1087 symbol ()
1088 /* Class-initialization of bitfields is only allowed in C++20. */
1089 : domain (UNDEF_DOMAIN),
1090 aclass_index (0),
1091 is_objfile_owned (0),
1092 is_argument (0),
1093 is_inlined (0),
1094 maybe_copied (0),
1095 subclass (SYMBOL_NONE)
1096 {
1097 /* We can't use an initializer list for members of a base class, and
1098 general_symbol_info needs to stay a POD type. */
1099 name = nullptr;
1100 value.ivalue = 0;
1101 language_specific.obstack = nullptr;
1102 m_language = language_unknown;
1103 ada_mangled = 0;
1104 section = 0;
1105 /* GCC 4.8.5 (on CentOS 7) does not correctly compile class-
1106 initialization of unions, so we initialize it manually here. */
1107 owner.symtab = nullptr;
1108 }
1109
1110 /* Data type of value */
1111
1112 struct type *type = nullptr;
1113
1114 /* The owner of this symbol.
1115 Which one to use is defined by symbol.is_objfile_owned. */
1116
1117 union
1118 {
1119 /* The symbol table containing this symbol. This is the file associated
1120 with LINE. It can be NULL during symbols read-in but it is never NULL
1121 during normal operation. */
1122 struct symtab *symtab;
1123
1124 /* For types defined by the architecture. */
1125 struct gdbarch *arch;
1126 } owner;
1127
1128 /* Domain code. */
1129
1130 ENUM_BITFIELD(domain_enum_tag) domain : SYMBOL_DOMAIN_BITS;
1131
1132 /* Address class. This holds an index into the 'symbol_impls'
1133 table. The actual enum address_class value is stored there,
1134 alongside any per-class ops vectors. */
1135
1136 unsigned int aclass_index : SYMBOL_ACLASS_BITS;
1137
1138 /* If non-zero then symbol is objfile-owned, use owner.symtab.
1139 Otherwise symbol is arch-owned, use owner.arch. */
1140
1141 unsigned int is_objfile_owned : 1;
1142
1143 /* Whether this is an argument. */
1144
1145 unsigned is_argument : 1;
1146
1147 /* Whether this is an inlined function (class LOC_BLOCK only). */
1148 unsigned is_inlined : 1;
1149
1150 /* For LOC_STATIC only, if this is set, then the symbol might be
1151 subject to copy relocation. In this case, a minimal symbol
1152 matching the symbol's linkage name is first looked for in the
1153 main objfile. If found, then that address is used; otherwise the
1154 address in this symbol is used. */
1155
1156 unsigned maybe_copied : 1;
1157
1158 /* The concrete type of this symbol. */
1159
1160 ENUM_BITFIELD (symbol_subclass_kind) subclass : 2;
1161
1162 /* Line number of this symbol's definition, except for inlined
1163 functions. For an inlined function (class LOC_BLOCK and
1164 SYMBOL_INLINED set) this is the line number of the function's call
1165 site. Inlined function symbols are not definitions, and they are
1166 never found by symbol table lookup.
1167 If this symbol is arch-owned, LINE shall be zero.
1168
1169 FIXME: Should we really make the assumption that nobody will try
1170 to debug files longer than 64K lines? What about machine
1171 generated programs? */
1172
1173 unsigned short line = 0;
1174
1175 /* An arbitrary data pointer, allowing symbol readers to record
1176 additional information on a per-symbol basis. Note that this data
1177 must be allocated using the same obstack as the symbol itself. */
1178 /* So far it is only used by:
1179 LOC_COMPUTED: to find the location information
1180 LOC_BLOCK (DWARF2 function): information used internally by the
1181 DWARF 2 code --- specifically, the location expression for the frame
1182 base for this function. */
1183 /* FIXME drow/2003-02-21: For the LOC_BLOCK case, it might be better
1184 to add a magic symbol to the block containing this information,
1185 or to have a generic debug info annotation slot for symbols. */
1186
1187 void *aux_value = nullptr;
1188
1189 struct symbol *hash_next = nullptr;
1190 };
1191
1192 /* Several lookup functions return both a symbol and the block in which the
1193 symbol is found. This structure is used in these cases. */
1194
1195 struct block_symbol
1196 {
1197 /* The symbol that was found, or NULL if no symbol was found. */
1198 struct symbol *symbol;
1199
1200 /* If SYMBOL is not NULL, then this is the block in which the symbol is
1201 defined. */
1202 const struct block *block;
1203 };
1204
1205 extern const struct symbol_impl *symbol_impls;
1206
1207 /* Note: There is no accessor macro for symbol.owner because it is
1208 "private". */
1209
1210 #define SYMBOL_DOMAIN(symbol) (symbol)->domain
1211 #define SYMBOL_IMPL(symbol) (symbol_impls[(symbol)->aclass_index])
1212 #define SYMBOL_ACLASS_INDEX(symbol) (symbol)->aclass_index
1213 #define SYMBOL_CLASS(symbol) (SYMBOL_IMPL (symbol).aclass)
1214 #define SYMBOL_OBJFILE_OWNED(symbol) ((symbol)->is_objfile_owned)
1215 #define SYMBOL_IS_ARGUMENT(symbol) (symbol)->is_argument
1216 #define SYMBOL_INLINED(symbol) (symbol)->is_inlined
1217 #define SYMBOL_IS_CPLUS_TEMPLATE_FUNCTION(symbol) \
1218 (((symbol)->subclass) == SYMBOL_TEMPLATE)
1219 #define SYMBOL_TYPE(symbol) (symbol)->type
1220 #define SYMBOL_LINE(symbol) (symbol)->line
1221 #define SYMBOL_COMPUTED_OPS(symbol) (SYMBOL_IMPL (symbol).ops_computed)
1222 #define SYMBOL_BLOCK_OPS(symbol) (SYMBOL_IMPL (symbol).ops_block)
1223 #define SYMBOL_REGISTER_OPS(symbol) (SYMBOL_IMPL (symbol).ops_register)
1224 #define SYMBOL_LOCATION_BATON(symbol) (symbol)->aux_value
1225
1226 extern int register_symbol_computed_impl (enum address_class,
1227 const struct symbol_computed_ops *);
1228
1229 extern int register_symbol_block_impl (enum address_class aclass,
1230 const struct symbol_block_ops *ops);
1231
1232 extern int register_symbol_register_impl (enum address_class,
1233 const struct symbol_register_ops *);
1234
1235 /* Return the OBJFILE of SYMBOL.
1236 It is an error to call this if symbol.is_objfile_owned is false, which
1237 only happens for architecture-provided types. */
1238
1239 extern struct objfile *symbol_objfile (const struct symbol *symbol);
1240
1241 /* Return the ARCH of SYMBOL. */
1242
1243 extern struct gdbarch *symbol_arch (const struct symbol *symbol);
1244
1245 /* Return the SYMTAB of SYMBOL.
1246 It is an error to call this if symbol.is_objfile_owned is false, which
1247 only happens for architecture-provided types. */
1248
1249 extern struct symtab *symbol_symtab (const struct symbol *symbol);
1250
1251 /* Set the symtab of SYMBOL to SYMTAB.
1252 It is an error to call this if symbol.is_objfile_owned is false, which
1253 only happens for architecture-provided types. */
1254
1255 extern void symbol_set_symtab (struct symbol *symbol, struct symtab *symtab);
1256
1257 /* An instance of this type is used to represent a C++ template
1258 function. A symbol is really of this type iff
1259 SYMBOL_IS_CPLUS_TEMPLATE_FUNCTION is true. */
1260
1261 struct template_symbol : public symbol
1262 {
1263 /* The number of template arguments. */
1264 int n_template_arguments = 0;
1265
1266 /* The template arguments. This is an array with
1267 N_TEMPLATE_ARGUMENTS elements. */
1268 struct symbol **template_arguments = nullptr;
1269 };
1270
1271 /* A symbol that represents a Rust virtual table object. */
1272
1273 struct rust_vtable_symbol : public symbol
1274 {
1275 /* The concrete type for which this vtable was created; that is, in
1276 "impl Trait for Type", this is "Type". */
1277 struct type *concrete_type = nullptr;
1278 };
1279
1280 \f
1281 /* Each item represents a line-->pc (or the reverse) mapping. This is
1282 somewhat more wasteful of space than one might wish, but since only
1283 the files which are actually debugged are read in to core, we don't
1284 waste much space. */
1285
1286 struct linetable_entry
1287 {
1288 int line;
1289 CORE_ADDR pc;
1290 };
1291
1292 /* The order of entries in the linetable is significant. They should
1293 be sorted by increasing values of the pc field. If there is more than
1294 one entry for a given pc, then I'm not sure what should happen (and
1295 I not sure whether we currently handle it the best way).
1296
1297 Example: a C for statement generally looks like this
1298
1299 10 0x100 - for the init/test part of a for stmt.
1300 20 0x200
1301 30 0x300
1302 10 0x400 - for the increment part of a for stmt.
1303
1304 If an entry has a line number of zero, it marks the start of a PC
1305 range for which no line number information is available. It is
1306 acceptable, though wasteful of table space, for such a range to be
1307 zero length. */
1308
1309 struct linetable
1310 {
1311 int nitems;
1312
1313 /* Actually NITEMS elements. If you don't like this use of the
1314 `struct hack', you can shove it up your ANSI (seriously, if the
1315 committee tells us how to do it, we can probably go along). */
1316 struct linetable_entry item[1];
1317 };
1318
1319 /* How to relocate the symbols from each section in a symbol file.
1320 Each struct contains an array of offsets.
1321 The ordering and meaning of the offsets is file-type-dependent;
1322 typically it is indexed by section numbers or symbol types or
1323 something like that.
1324
1325 To give us flexibility in changing the internal representation
1326 of these offsets, the ANOFFSET macro must be used to insert and
1327 extract offset values in the struct. */
1328
1329 struct section_offsets
1330 {
1331 CORE_ADDR offsets[1]; /* As many as needed. */
1332 };
1333
1334 #define ANOFFSET(secoff, whichone) \
1335 ((whichone == -1) \
1336 ? (internal_error (__FILE__, __LINE__, \
1337 _("Section index is uninitialized")), -1) \
1338 : secoff->offsets[whichone])
1339
1340 /* The size of a section_offsets table for N sections. */
1341 #define SIZEOF_N_SECTION_OFFSETS(n) \
1342 (sizeof (struct section_offsets) \
1343 + sizeof (((struct section_offsets *) 0)->offsets) * ((n)-1))
1344
1345 /* Each source file or header is represented by a struct symtab.
1346 The name "symtab" is historical, another name for it is "filetab".
1347 These objects are chained through the `next' field. */
1348
1349 struct symtab
1350 {
1351 /* Unordered chain of all filetabs in the compunit, with the exception
1352 that the "main" source file is the first entry in the list. */
1353
1354 struct symtab *next;
1355
1356 /* Backlink to containing compunit symtab. */
1357
1358 struct compunit_symtab *compunit_symtab;
1359
1360 /* Table mapping core addresses to line numbers for this file.
1361 Can be NULL if none. Never shared between different symtabs. */
1362
1363 struct linetable *linetable;
1364
1365 /* Name of this source file. This pointer is never NULL. */
1366
1367 const char *filename;
1368
1369 /* Language of this source file. */
1370
1371 enum language language;
1372
1373 /* Full name of file as found by searching the source path.
1374 NULL if not yet known. */
1375
1376 char *fullname;
1377 };
1378
1379 #define SYMTAB_COMPUNIT(symtab) ((symtab)->compunit_symtab)
1380 #define SYMTAB_LINETABLE(symtab) ((symtab)->linetable)
1381 #define SYMTAB_LANGUAGE(symtab) ((symtab)->language)
1382 #define SYMTAB_BLOCKVECTOR(symtab) \
1383 COMPUNIT_BLOCKVECTOR (SYMTAB_COMPUNIT (symtab))
1384 #define SYMTAB_OBJFILE(symtab) \
1385 COMPUNIT_OBJFILE (SYMTAB_COMPUNIT (symtab))
1386 #define SYMTAB_PSPACE(symtab) (SYMTAB_OBJFILE (symtab)->pspace)
1387 #define SYMTAB_DIRNAME(symtab) \
1388 COMPUNIT_DIRNAME (SYMTAB_COMPUNIT (symtab))
1389
1390 /* Compunit symtabs contain the actual "symbol table", aka blockvector, as well
1391 as the list of all source files (what gdb has historically associated with
1392 the term "symtab").
1393 Additional information is recorded here that is common to all symtabs in a
1394 compilation unit (DWARF or otherwise).
1395
1396 Example:
1397 For the case of a program built out of these files:
1398
1399 foo.c
1400 foo1.h
1401 foo2.h
1402 bar.c
1403 foo1.h
1404 bar.h
1405
1406 This is recorded as:
1407
1408 objfile -> foo.c(cu) -> bar.c(cu) -> NULL
1409 | |
1410 v v
1411 foo.c bar.c
1412 | |
1413 v v
1414 foo1.h foo1.h
1415 | |
1416 v v
1417 foo2.h bar.h
1418 | |
1419 v v
1420 NULL NULL
1421
1422 where "foo.c(cu)" and "bar.c(cu)" are struct compunit_symtab objects,
1423 and the files foo.c, etc. are struct symtab objects. */
1424
1425 struct compunit_symtab
1426 {
1427 /* Unordered chain of all compunit symtabs of this objfile. */
1428 struct compunit_symtab *next;
1429
1430 /* Object file from which this symtab information was read. */
1431 struct objfile *objfile;
1432
1433 /* Name of the symtab.
1434 This is *not* intended to be a usable filename, and is
1435 for debugging purposes only. */
1436 const char *name;
1437
1438 /* Unordered list of file symtabs, except that by convention the "main"
1439 source file (e.g., .c, .cc) is guaranteed to be first.
1440 Each symtab is a file, either the "main" source file (e.g., .c, .cc)
1441 or header (e.g., .h). */
1442 struct symtab *filetabs;
1443
1444 /* Last entry in FILETABS list.
1445 Subfiles are added to the end of the list so they accumulate in order,
1446 with the main source subfile living at the front.
1447 The main reason is so that the main source file symtab is at the head
1448 of the list, and the rest appear in order for debugging convenience. */
1449 struct symtab *last_filetab;
1450
1451 /* Non-NULL string that identifies the format of the debugging information,
1452 such as "stabs", "dwarf 1", "dwarf 2", "coff", etc. This is mostly useful
1453 for automated testing of gdb but may also be information that is
1454 useful to the user. */
1455 const char *debugformat;
1456
1457 /* String of producer version information, or NULL if we don't know. */
1458 const char *producer;
1459
1460 /* Directory in which it was compiled, or NULL if we don't know. */
1461 const char *dirname;
1462
1463 /* List of all symbol scope blocks for this symtab. It is shared among
1464 all symtabs in a given compilation unit. */
1465 const struct blockvector *blockvector;
1466
1467 /* Section in objfile->section_offsets for the blockvector and
1468 the linetable. Probably always SECT_OFF_TEXT. */
1469 int block_line_section;
1470
1471 /* Symtab has been compiled with both optimizations and debug info so that
1472 GDB may stop skipping prologues as variables locations are valid already
1473 at function entry points. */
1474 unsigned int locations_valid : 1;
1475
1476 /* DWARF unwinder for this CU is valid even for epilogues (PC at the return
1477 instruction). This is supported by GCC since 4.5.0. */
1478 unsigned int epilogue_unwind_valid : 1;
1479
1480 /* struct call_site entries for this compilation unit or NULL. */
1481 htab_t call_site_htab;
1482
1483 /* The macro table for this symtab. Like the blockvector, this
1484 is shared between different symtabs in a given compilation unit.
1485 It's debatable whether it *should* be shared among all the symtabs in
1486 the given compilation unit, but it currently is. */
1487 struct macro_table *macro_table;
1488
1489 /* If non-NULL, then this points to a NULL-terminated vector of
1490 included compunits. When searching the static or global
1491 block of this compunit, the corresponding block of all
1492 included compunits will also be searched. Note that this
1493 list must be flattened -- the symbol reader is responsible for
1494 ensuring that this vector contains the transitive closure of all
1495 included compunits. */
1496 struct compunit_symtab **includes;
1497
1498 /* If this is an included compunit, this points to one includer
1499 of the table. This user is considered the canonical compunit
1500 containing this one. An included compunit may itself be
1501 included by another. */
1502 struct compunit_symtab *user;
1503 };
1504
1505 #define COMPUNIT_OBJFILE(cust) ((cust)->objfile)
1506 #define COMPUNIT_FILETABS(cust) ((cust)->filetabs)
1507 #define COMPUNIT_DEBUGFORMAT(cust) ((cust)->debugformat)
1508 #define COMPUNIT_PRODUCER(cust) ((cust)->producer)
1509 #define COMPUNIT_DIRNAME(cust) ((cust)->dirname)
1510 #define COMPUNIT_BLOCKVECTOR(cust) ((cust)->blockvector)
1511 #define COMPUNIT_BLOCK_LINE_SECTION(cust) ((cust)->block_line_section)
1512 #define COMPUNIT_LOCATIONS_VALID(cust) ((cust)->locations_valid)
1513 #define COMPUNIT_EPILOGUE_UNWIND_VALID(cust) ((cust)->epilogue_unwind_valid)
1514 #define COMPUNIT_CALL_SITE_HTAB(cust) ((cust)->call_site_htab)
1515 #define COMPUNIT_MACRO_TABLE(cust) ((cust)->macro_table)
1516
1517 /* A range adapter to allowing iterating over all the file tables
1518 within a compunit. */
1519
1520 struct compunit_filetabs : public next_adapter<struct symtab>
1521 {
1522 compunit_filetabs (struct compunit_symtab *cu)
1523 : next_adapter<struct symtab> (cu->filetabs)
1524 {
1525 }
1526 };
1527
1528 /* Return the primary symtab of CUST. */
1529
1530 extern struct symtab *
1531 compunit_primary_filetab (const struct compunit_symtab *cust);
1532
1533 /* Return the language of CUST. */
1534
1535 extern enum language compunit_language (const struct compunit_symtab *cust);
1536
1537 \f
1538
1539 /* The virtual function table is now an array of structures which have the
1540 form { int16 offset, delta; void *pfn; }.
1541
1542 In normal virtual function tables, OFFSET is unused.
1543 DELTA is the amount which is added to the apparent object's base
1544 address in order to point to the actual object to which the
1545 virtual function should be applied.
1546 PFN is a pointer to the virtual function.
1547
1548 Note that this macro is g++ specific (FIXME). */
1549
1550 #define VTBL_FNADDR_OFFSET 2
1551
1552 /* External variables and functions for the objects described above. */
1553
1554 /* True if we are nested inside psymtab_to_symtab. */
1555
1556 extern int currently_reading_symtab;
1557
1558 /* symtab.c lookup functions */
1559
1560 extern const char multiple_symbols_ask[];
1561 extern const char multiple_symbols_all[];
1562 extern const char multiple_symbols_cancel[];
1563
1564 const char *multiple_symbols_select_mode (void);
1565
1566 bool symbol_matches_domain (enum language symbol_language,
1567 domain_enum symbol_domain,
1568 domain_enum domain);
1569
1570 /* lookup a symbol table by source file name. */
1571
1572 extern struct symtab *lookup_symtab (const char *);
1573
1574 /* An object of this type is passed as the 'is_a_field_of_this'
1575 argument to lookup_symbol and lookup_symbol_in_language. */
1576
1577 struct field_of_this_result
1578 {
1579 /* The type in which the field was found. If this is NULL then the
1580 symbol was not found in 'this'. If non-NULL, then one of the
1581 other fields will be non-NULL as well. */
1582
1583 struct type *type;
1584
1585 /* If the symbol was found as an ordinary field of 'this', then this
1586 is non-NULL and points to the particular field. */
1587
1588 struct field *field;
1589
1590 /* If the symbol was found as a function field of 'this', then this
1591 is non-NULL and points to the particular field. */
1592
1593 struct fn_fieldlist *fn_field;
1594 };
1595
1596 /* Find the definition for a specified symbol name NAME
1597 in domain DOMAIN in language LANGUAGE, visible from lexical block BLOCK
1598 if non-NULL or from global/static blocks if BLOCK is NULL.
1599 Returns the struct symbol pointer, or NULL if no symbol is found.
1600 C++: if IS_A_FIELD_OF_THIS is non-NULL on entry, check to see if
1601 NAME is a field of the current implied argument `this'. If so fill in the
1602 fields of IS_A_FIELD_OF_THIS, otherwise the fields are set to NULL.
1603 The symbol's section is fixed up if necessary. */
1604
1605 extern struct block_symbol
1606 lookup_symbol_in_language (const char *,
1607 const struct block *,
1608 const domain_enum,
1609 enum language,
1610 struct field_of_this_result *);
1611
1612 /* Same as lookup_symbol_in_language, but using the current language. */
1613
1614 extern struct block_symbol lookup_symbol (const char *,
1615 const struct block *,
1616 const domain_enum,
1617 struct field_of_this_result *);
1618
1619 /* Find the definition for a specified symbol search name in domain
1620 DOMAIN, visible from lexical block BLOCK if non-NULL or from
1621 global/static blocks if BLOCK is NULL. The passed-in search name
1622 should not come from the user; instead it should already be a
1623 search name as retrieved from a search_name () call. See definition of
1624 symbol_name_match_type::SEARCH_NAME. Returns the struct symbol
1625 pointer, or NULL if no symbol is found. The symbol's section is
1626 fixed up if necessary. */
1627
1628 extern struct block_symbol lookup_symbol_search_name (const char *search_name,
1629 const struct block *block,
1630 domain_enum domain);
1631
1632 /* A default version of lookup_symbol_nonlocal for use by languages
1633 that can't think of anything better to do.
1634 This implements the C lookup rules. */
1635
1636 extern struct block_symbol
1637 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
1638 const char *,
1639 const struct block *,
1640 const domain_enum);
1641
1642 /* Some helper functions for languages that need to write their own
1643 lookup_symbol_nonlocal functions. */
1644
1645 /* Lookup a symbol in the static block associated to BLOCK, if there
1646 is one; do nothing if BLOCK is NULL or a global block.
1647 Upon success fixes up the symbol's section if necessary. */
1648
1649 extern struct block_symbol
1650 lookup_symbol_in_static_block (const char *name,
1651 const struct block *block,
1652 const domain_enum domain);
1653
1654 /* Search all static file-level symbols for NAME from DOMAIN.
1655 Upon success fixes up the symbol's section if necessary. */
1656
1657 extern struct block_symbol lookup_static_symbol (const char *name,
1658 const domain_enum domain);
1659
1660 /* Lookup a symbol in all files' global blocks.
1661
1662 If BLOCK is non-NULL then it is used for two things:
1663 1) If a target-specific lookup routine for libraries exists, then use the
1664 routine for the objfile of BLOCK, and
1665 2) The objfile of BLOCK is used to assist in determining the search order
1666 if the target requires it.
1667 See gdbarch_iterate_over_objfiles_in_search_order.
1668
1669 Upon success fixes up the symbol's section if necessary. */
1670
1671 extern struct block_symbol
1672 lookup_global_symbol (const char *name,
1673 const struct block *block,
1674 const domain_enum domain);
1675
1676 /* Lookup a symbol in block BLOCK.
1677 Upon success fixes up the symbol's section if necessary. */
1678
1679 extern struct symbol *
1680 lookup_symbol_in_block (const char *name,
1681 symbol_name_match_type match_type,
1682 const struct block *block,
1683 const domain_enum domain);
1684
1685 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1686 found, or NULL if not found. */
1687
1688 extern struct block_symbol
1689 lookup_language_this (const struct language_defn *lang,
1690 const struct block *block);
1691
1692 /* Lookup a [struct, union, enum] by name, within a specified block. */
1693
1694 extern struct type *lookup_struct (const char *, const struct block *);
1695
1696 extern struct type *lookup_union (const char *, const struct block *);
1697
1698 extern struct type *lookup_enum (const char *, const struct block *);
1699
1700 /* from blockframe.c: */
1701
1702 /* lookup the function symbol corresponding to the address. The
1703 return value will not be an inlined function; the containing
1704 function will be returned instead. */
1705
1706 extern struct symbol *find_pc_function (CORE_ADDR);
1707
1708 /* lookup the function corresponding to the address and section. The
1709 return value will not be an inlined function; the containing
1710 function will be returned instead. */
1711
1712 extern struct symbol *find_pc_sect_function (CORE_ADDR, struct obj_section *);
1713
1714 /* lookup the function symbol corresponding to the address and
1715 section. The return value will be the closest enclosing function,
1716 which might be an inline function. */
1717
1718 extern struct symbol *find_pc_sect_containing_function
1719 (CORE_ADDR pc, struct obj_section *section);
1720
1721 /* Find the symbol at the given address. Returns NULL if no symbol
1722 found. Only exact matches for ADDRESS are considered. */
1723
1724 extern struct symbol *find_symbol_at_address (CORE_ADDR);
1725
1726 /* Finds the "function" (text symbol) that is smaller than PC but
1727 greatest of all of the potential text symbols in SECTION. Sets
1728 *NAME and/or *ADDRESS conditionally if that pointer is non-null.
1729 If ENDADDR is non-null, then set *ENDADDR to be the end of the
1730 function (exclusive). If the optional parameter BLOCK is non-null,
1731 then set *BLOCK to the address of the block corresponding to the
1732 function symbol, if such a symbol could be found during the lookup;
1733 nullptr is used as a return value for *BLOCK if no block is found.
1734 This function either succeeds or fails (not halfway succeeds). If
1735 it succeeds, it sets *NAME, *ADDRESS, and *ENDADDR to real
1736 information and returns true. If it fails, it sets *NAME, *ADDRESS
1737 and *ENDADDR to zero and returns false.
1738
1739 If the function in question occupies non-contiguous ranges,
1740 *ADDRESS and *ENDADDR are (subject to the conditions noted above) set
1741 to the start and end of the range in which PC is found. Thus
1742 *ADDRESS <= PC < *ENDADDR with no intervening gaps (in which ranges
1743 from other functions might be found).
1744
1745 This property allows find_pc_partial_function to be used (as it had
1746 been prior to the introduction of non-contiguous range support) by
1747 various tdep files for finding a start address and limit address
1748 for prologue analysis. This still isn't ideal, however, because we
1749 probably shouldn't be doing prologue analysis (in which
1750 instructions are scanned to determine frame size and stack layout)
1751 for any range that doesn't contain the entry pc. Moreover, a good
1752 argument can be made that prologue analysis ought to be performed
1753 starting from the entry pc even when PC is within some other range.
1754 This might suggest that *ADDRESS and *ENDADDR ought to be set to the
1755 limits of the entry pc range, but that will cause the
1756 *ADDRESS <= PC < *ENDADDR condition to be violated; many of the
1757 callers of find_pc_partial_function expect this condition to hold.
1758
1759 Callers which require the start and/or end addresses for the range
1760 containing the entry pc should instead call
1761 find_function_entry_range_from_pc. */
1762
1763 extern bool find_pc_partial_function (CORE_ADDR pc, const char **name,
1764 CORE_ADDR *address, CORE_ADDR *endaddr,
1765 const struct block **block = nullptr);
1766
1767 /* Like find_pc_partial_function, above, but *ADDRESS and *ENDADDR are
1768 set to start and end addresses of the range containing the entry pc.
1769
1770 Note that it is not necessarily the case that (for non-NULL ADDRESS
1771 and ENDADDR arguments) the *ADDRESS <= PC < *ENDADDR condition will
1772 hold.
1773
1774 See comment for find_pc_partial_function, above, for further
1775 explanation. */
1776
1777 extern bool find_function_entry_range_from_pc (CORE_ADDR pc,
1778 const char **name,
1779 CORE_ADDR *address,
1780 CORE_ADDR *endaddr);
1781
1782 /* Return the type of a function with its first instruction exactly at
1783 the PC address. Return NULL otherwise. */
1784
1785 extern struct type *find_function_type (CORE_ADDR pc);
1786
1787 /* See if we can figure out the function's actual type from the type
1788 that the resolver returns. RESOLVER_FUNADDR is the address of the
1789 ifunc resolver. */
1790
1791 extern struct type *find_gnu_ifunc_target_type (CORE_ADDR resolver_funaddr);
1792
1793 /* Find the GNU ifunc minimal symbol that matches SYM. */
1794 extern bound_minimal_symbol find_gnu_ifunc (const symbol *sym);
1795
1796 extern void clear_pc_function_cache (void);
1797
1798 /* Expand symtab containing PC, SECTION if not already expanded. */
1799
1800 extern void expand_symtab_containing_pc (CORE_ADDR, struct obj_section *);
1801
1802 /* lookup full symbol table by address. */
1803
1804 extern struct compunit_symtab *find_pc_compunit_symtab (CORE_ADDR);
1805
1806 /* lookup full symbol table by address and section. */
1807
1808 extern struct compunit_symtab *
1809 find_pc_sect_compunit_symtab (CORE_ADDR, struct obj_section *);
1810
1811 extern bool find_pc_line_pc_range (CORE_ADDR, CORE_ADDR *, CORE_ADDR *);
1812
1813 extern void reread_symbols (void);
1814
1815 /* Look up a type named NAME in STRUCT_DOMAIN in the current language.
1816 The type returned must not be opaque -- i.e., must have at least one field
1817 defined. */
1818
1819 extern struct type *lookup_transparent_type (const char *);
1820
1821 extern struct type *basic_lookup_transparent_type (const char *);
1822
1823 /* Macro for name of symbol to indicate a file compiled with gcc. */
1824 #ifndef GCC_COMPILED_FLAG_SYMBOL
1825 #define GCC_COMPILED_FLAG_SYMBOL "gcc_compiled."
1826 #endif
1827
1828 /* Macro for name of symbol to indicate a file compiled with gcc2. */
1829 #ifndef GCC2_COMPILED_FLAG_SYMBOL
1830 #define GCC2_COMPILED_FLAG_SYMBOL "gcc2_compiled."
1831 #endif
1832
1833 extern bool in_gnu_ifunc_stub (CORE_ADDR pc);
1834
1835 /* Functions for resolving STT_GNU_IFUNC symbols which are implemented only
1836 for ELF symbol files. */
1837
1838 struct gnu_ifunc_fns
1839 {
1840 /* See elf_gnu_ifunc_resolve_addr for its real implementation. */
1841 CORE_ADDR (*gnu_ifunc_resolve_addr) (struct gdbarch *gdbarch, CORE_ADDR pc);
1842
1843 /* See elf_gnu_ifunc_resolve_name for its real implementation. */
1844 bool (*gnu_ifunc_resolve_name) (const char *function_name,
1845 CORE_ADDR *function_address_p);
1846
1847 /* See elf_gnu_ifunc_resolver_stop for its real implementation. */
1848 void (*gnu_ifunc_resolver_stop) (struct breakpoint *b);
1849
1850 /* See elf_gnu_ifunc_resolver_return_stop for its real implementation. */
1851 void (*gnu_ifunc_resolver_return_stop) (struct breakpoint *b);
1852 };
1853
1854 #define gnu_ifunc_resolve_addr gnu_ifunc_fns_p->gnu_ifunc_resolve_addr
1855 #define gnu_ifunc_resolve_name gnu_ifunc_fns_p->gnu_ifunc_resolve_name
1856 #define gnu_ifunc_resolver_stop gnu_ifunc_fns_p->gnu_ifunc_resolver_stop
1857 #define gnu_ifunc_resolver_return_stop \
1858 gnu_ifunc_fns_p->gnu_ifunc_resolver_return_stop
1859
1860 extern const struct gnu_ifunc_fns *gnu_ifunc_fns_p;
1861
1862 extern CORE_ADDR find_solib_trampoline_target (struct frame_info *, CORE_ADDR);
1863
1864 struct symtab_and_line
1865 {
1866 /* The program space of this sal. */
1867 struct program_space *pspace = NULL;
1868
1869 struct symtab *symtab = NULL;
1870 struct symbol *symbol = NULL;
1871 struct obj_section *section = NULL;
1872 struct minimal_symbol *msymbol = NULL;
1873 /* Line number. Line numbers start at 1 and proceed through symtab->nlines.
1874 0 is never a valid line number; it is used to indicate that line number
1875 information is not available. */
1876 int line = 0;
1877
1878 CORE_ADDR pc = 0;
1879 CORE_ADDR end = 0;
1880 bool explicit_pc = false;
1881 bool explicit_line = false;
1882
1883 /* The probe associated with this symtab_and_line. */
1884 probe *prob = NULL;
1885 /* If PROBE is not NULL, then this is the objfile in which the probe
1886 originated. */
1887 struct objfile *objfile = NULL;
1888 };
1889
1890 \f
1891
1892 /* Given a pc value, return line number it is in. Second arg nonzero means
1893 if pc is on the boundary use the previous statement's line number. */
1894
1895 extern struct symtab_and_line find_pc_line (CORE_ADDR, int);
1896
1897 /* Same function, but specify a section as well as an address. */
1898
1899 extern struct symtab_and_line find_pc_sect_line (CORE_ADDR,
1900 struct obj_section *, int);
1901
1902 /* Wrapper around find_pc_line to just return the symtab. */
1903
1904 extern struct symtab *find_pc_line_symtab (CORE_ADDR);
1905
1906 /* Given a symtab and line number, return the pc there. */
1907
1908 extern bool find_line_pc (struct symtab *, int, CORE_ADDR *);
1909
1910 extern bool find_line_pc_range (struct symtab_and_line, CORE_ADDR *,
1911 CORE_ADDR *);
1912
1913 extern void resolve_sal_pc (struct symtab_and_line *);
1914
1915 /* solib.c */
1916
1917 extern void clear_solib (void);
1918
1919 /* The reason we're calling into a completion match list collector
1920 function. */
1921 enum class complete_symbol_mode
1922 {
1923 /* Completing an expression. */
1924 EXPRESSION,
1925
1926 /* Completing a linespec. */
1927 LINESPEC,
1928 };
1929
1930 extern void default_collect_symbol_completion_matches_break_on
1931 (completion_tracker &tracker,
1932 complete_symbol_mode mode,
1933 symbol_name_match_type name_match_type,
1934 const char *text, const char *word, const char *break_on,
1935 enum type_code code);
1936 extern void default_collect_symbol_completion_matches
1937 (completion_tracker &tracker,
1938 complete_symbol_mode,
1939 symbol_name_match_type name_match_type,
1940 const char *,
1941 const char *,
1942 enum type_code);
1943 extern void collect_symbol_completion_matches
1944 (completion_tracker &tracker,
1945 complete_symbol_mode mode,
1946 symbol_name_match_type name_match_type,
1947 const char *, const char *);
1948 extern void collect_symbol_completion_matches_type (completion_tracker &tracker,
1949 const char *, const char *,
1950 enum type_code);
1951
1952 extern void collect_file_symbol_completion_matches
1953 (completion_tracker &tracker,
1954 complete_symbol_mode,
1955 symbol_name_match_type name_match_type,
1956 const char *, const char *, const char *);
1957
1958 extern completion_list
1959 make_source_files_completion_list (const char *, const char *);
1960
1961 /* Return whether SYM is a function/method, as opposed to a data symbol. */
1962
1963 extern bool symbol_is_function_or_method (symbol *sym);
1964
1965 /* Return whether MSYMBOL is a function/method, as opposed to a data
1966 symbol */
1967
1968 extern bool symbol_is_function_or_method (minimal_symbol *msymbol);
1969
1970 /* Return whether SYM should be skipped in completion mode MODE. In
1971 linespec mode, we're only interested in functions/methods. */
1972
1973 template<typename Symbol>
1974 static bool
1975 completion_skip_symbol (complete_symbol_mode mode, Symbol *sym)
1976 {
1977 return (mode == complete_symbol_mode::LINESPEC
1978 && !symbol_is_function_or_method (sym));
1979 }
1980
1981 /* symtab.c */
1982
1983 bool matching_obj_sections (struct obj_section *, struct obj_section *);
1984
1985 extern struct symtab *find_line_symtab (struct symtab *, int, int *, bool *);
1986
1987 /* Given a function symbol SYM, find the symtab and line for the start
1988 of the function. If FUNFIRSTLINE is true, we want the first line
1989 of real code inside the function. */
1990 extern symtab_and_line find_function_start_sal (symbol *sym, bool
1991 funfirstline);
1992
1993 /* Same, but start with a function address/section instead of a
1994 symbol. */
1995 extern symtab_and_line find_function_start_sal (CORE_ADDR func_addr,
1996 obj_section *section,
1997 bool funfirstline);
1998
1999 extern void skip_prologue_sal (struct symtab_and_line *);
2000
2001 /* symtab.c */
2002
2003 extern CORE_ADDR skip_prologue_using_sal (struct gdbarch *gdbarch,
2004 CORE_ADDR func_addr);
2005
2006 extern struct symbol *fixup_symbol_section (struct symbol *,
2007 struct objfile *);
2008
2009 /* If MSYMBOL is an text symbol, look for a function debug symbol with
2010 the same address. Returns NULL if not found. This is necessary in
2011 case a function is an alias to some other function, because debug
2012 information is only emitted for the alias target function's
2013 definition, not for the alias. */
2014 extern symbol *find_function_alias_target (bound_minimal_symbol msymbol);
2015
2016 /* Symbol searching */
2017
2018 /* When using the symbol_searcher struct to search for symbols, a vector of
2019 the following structs is returned. */
2020 struct symbol_search
2021 {
2022 symbol_search (int block_, struct symbol *symbol_)
2023 : block (block_),
2024 symbol (symbol_)
2025 {
2026 msymbol.minsym = nullptr;
2027 msymbol.objfile = nullptr;
2028 }
2029
2030 symbol_search (int block_, struct minimal_symbol *minsym,
2031 struct objfile *objfile)
2032 : block (block_),
2033 symbol (nullptr)
2034 {
2035 msymbol.minsym = minsym;
2036 msymbol.objfile = objfile;
2037 }
2038
2039 bool operator< (const symbol_search &other) const
2040 {
2041 return compare_search_syms (*this, other) < 0;
2042 }
2043
2044 bool operator== (const symbol_search &other) const
2045 {
2046 return compare_search_syms (*this, other) == 0;
2047 }
2048
2049 /* The block in which the match was found. Could be, for example,
2050 STATIC_BLOCK or GLOBAL_BLOCK. */
2051 int block;
2052
2053 /* Information describing what was found.
2054
2055 If symbol is NOT NULL, then information was found for this match. */
2056 struct symbol *symbol;
2057
2058 /* If msymbol is non-null, then a match was made on something for
2059 which only minimal_symbols exist. */
2060 struct bound_minimal_symbol msymbol;
2061
2062 private:
2063
2064 static int compare_search_syms (const symbol_search &sym_a,
2065 const symbol_search &sym_b);
2066 };
2067
2068 /* In order to search for global symbols of a particular kind matching
2069 particular regular expressions, create an instance of this structure and
2070 call the SEARCH member function. */
2071 class global_symbol_searcher
2072 {
2073 public:
2074
2075 /* Constructor. */
2076 global_symbol_searcher (enum search_domain kind,
2077 const char *symbol_name_regexp)
2078 : m_kind (kind),
2079 m_symbol_name_regexp (symbol_name_regexp)
2080 {
2081 /* The symbol searching is designed to only find one kind of thing. */
2082 gdb_assert (m_kind != ALL_DOMAIN);
2083 }
2084
2085 /* Set the optional regexp that matches against the symbol type. */
2086 void set_symbol_type_regexp (const char *regexp)
2087 {
2088 m_symbol_type_regexp = regexp;
2089 }
2090
2091 /* Set the flag to exclude minsyms from the search results. */
2092 void set_exclude_minsyms (bool exclude_minsyms)
2093 {
2094 m_exclude_minsyms = exclude_minsyms;
2095 }
2096
2097 /* Set the maximum number of search results to be returned. */
2098 void set_max_search_results (size_t max_search_results)
2099 {
2100 m_max_search_results = max_search_results;
2101 }
2102
2103 /* Search the symbols from all objfiles in the current program space
2104 looking for matches as defined by the current state of this object.
2105
2106 Within each file the results are sorted locally; each symtab's global
2107 and static blocks are separately alphabetized. Duplicate entries are
2108 removed. */
2109 std::vector<symbol_search> search () const;
2110
2111 /* The set of source files to search in for matching symbols. This is
2112 currently public so that it can be populated after this object has
2113 been constructed. */
2114 std::vector<const char *> filenames;
2115
2116 private:
2117 /* The kind of symbols are we searching for.
2118 VARIABLES_DOMAIN - Search all symbols, excluding functions, type
2119 names, and constants (enums).
2120 FUNCTIONS_DOMAIN - Search all functions..
2121 TYPES_DOMAIN - Search all type names.
2122 MODULES_DOMAIN - Search all Fortran modules.
2123 ALL_DOMAIN - Not valid for this function. */
2124 enum search_domain m_kind;
2125
2126 /* Regular expression to match against the symbol name. */
2127 const char *m_symbol_name_regexp = nullptr;
2128
2129 /* Regular expression to match against the symbol type. */
2130 const char *m_symbol_type_regexp = nullptr;
2131
2132 /* When this flag is false then minsyms that match M_SYMBOL_REGEXP will
2133 be included in the results, otherwise they are excluded. */
2134 bool m_exclude_minsyms = false;
2135
2136 /* Maximum number of search results. We currently impose a hard limit
2137 of SIZE_MAX, there is no "unlimited". */
2138 size_t m_max_search_results = SIZE_MAX;
2139
2140 /* Expand symtabs in OBJFILE that match PREG, are of type M_KIND. Return
2141 true if any msymbols were seen that we should later consider adding to
2142 the results list. */
2143 bool expand_symtabs (objfile *objfile,
2144 const gdb::optional<compiled_regex> &preg) const;
2145
2146 /* Add symbols from symtabs in OBJFILE that match PREG, and TREG, and are
2147 of type M_KIND, to the results set RESULTS_SET. Return false if we
2148 stop adding results early due to having already found too many results
2149 (based on M_MAX_SEARCH_RESULTS limit), otherwise return true.
2150 Returning true does not indicate that any results were added, just
2151 that we didn't _not_ add a result due to reaching MAX_SEARCH_RESULTS. */
2152 bool add_matching_symbols (objfile *objfile,
2153 const gdb::optional<compiled_regex> &preg,
2154 const gdb::optional<compiled_regex> &treg,
2155 std::set<symbol_search> *result_set) const;
2156
2157 /* Add msymbols from OBJFILE that match PREG and M_KIND, to the results
2158 vector RESULTS. Return false if we stop adding results early due to
2159 having already found too many results (based on max search results
2160 limit M_MAX_SEARCH_RESULTS), otherwise return true. Returning true
2161 does not indicate that any results were added, just that we didn't
2162 _not_ add a result due to reaching MAX_SEARCH_RESULTS. */
2163 bool add_matching_msymbols (objfile *objfile,
2164 const gdb::optional<compiled_regex> &preg,
2165 std::vector<symbol_search> *results) const;
2166
2167 /* Return true if MSYMBOL is of type KIND. */
2168 static bool is_suitable_msymbol (const enum search_domain kind,
2169 const minimal_symbol *msymbol);
2170 };
2171
2172 /* When searching for Fortran symbols within modules (functions/variables)
2173 we return a vector of this type. The first item in the pair is the
2174 module symbol, and the second item is the symbol for the function or
2175 variable we found. */
2176 typedef std::pair<symbol_search, symbol_search> module_symbol_search;
2177
2178 /* Searches the symbols to find function and variables symbols (depending
2179 on KIND) within Fortran modules. The MODULE_REGEXP matches against the
2180 name of the module, REGEXP matches against the name of the symbol within
2181 the module, and TYPE_REGEXP matches against the type of the symbol
2182 within the module. */
2183 extern std::vector<module_symbol_search> search_module_symbols
2184 (const char *module_regexp, const char *regexp,
2185 const char *type_regexp, search_domain kind);
2186
2187 /* Convert a global or static symbol SYM (based on BLOCK, which should be
2188 either GLOBAL_BLOCK or STATIC_BLOCK) into a string for use in 'info'
2189 type commands (e.g. 'info variables', 'info functions', etc). KIND is
2190 the type of symbol that was searched for which gave us SYM. */
2191
2192 extern std::string symbol_to_info_string (struct symbol *sym, int block,
2193 enum search_domain kind);
2194
2195 extern bool treg_matches_sym_type_name (const compiled_regex &treg,
2196 const struct symbol *sym);
2197
2198 /* The name of the ``main'' function. */
2199 extern const char *main_name ();
2200 extern enum language main_language (void);
2201
2202 /* Lookup symbol NAME from DOMAIN in MAIN_OBJFILE's global or static blocks,
2203 as specified by BLOCK_INDEX.
2204 This searches MAIN_OBJFILE as well as any associated separate debug info
2205 objfiles of MAIN_OBJFILE.
2206 BLOCK_INDEX can be GLOBAL_BLOCK or STATIC_BLOCK.
2207 Upon success fixes up the symbol's section if necessary. */
2208
2209 extern struct block_symbol
2210 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2211 enum block_enum block_index,
2212 const char *name,
2213 const domain_enum domain);
2214
2215 /* Return 1 if the supplied producer string matches the ARM RealView
2216 compiler (armcc). */
2217 bool producer_is_realview (const char *producer);
2218
2219 void fixup_section (struct general_symbol_info *ginfo,
2220 CORE_ADDR addr, struct objfile *objfile);
2221
2222 /* Look up objfile containing BLOCK. */
2223
2224 struct objfile *lookup_objfile_from_block (const struct block *block);
2225
2226 extern unsigned int symtab_create_debug;
2227
2228 extern unsigned int symbol_lookup_debug;
2229
2230 extern bool basenames_may_differ;
2231
2232 bool compare_filenames_for_search (const char *filename,
2233 const char *search_name);
2234
2235 bool compare_glob_filenames_for_search (const char *filename,
2236 const char *search_name);
2237
2238 bool iterate_over_some_symtabs (const char *name,
2239 const char *real_path,
2240 struct compunit_symtab *first,
2241 struct compunit_symtab *after_last,
2242 gdb::function_view<bool (symtab *)> callback);
2243
2244 void iterate_over_symtabs (const char *name,
2245 gdb::function_view<bool (symtab *)> callback);
2246
2247
2248 std::vector<CORE_ADDR> find_pcs_for_symtab_line
2249 (struct symtab *symtab, int line, struct linetable_entry **best_entry);
2250
2251 /* Prototype for callbacks for LA_ITERATE_OVER_SYMBOLS. The callback
2252 is called once per matching symbol SYM. The callback should return
2253 true to indicate that LA_ITERATE_OVER_SYMBOLS should continue
2254 iterating, or false to indicate that the iteration should end. */
2255
2256 typedef bool (symbol_found_callback_ftype) (struct block_symbol *bsym);
2257
2258 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2259
2260 For each symbol that matches, CALLBACK is called. The symbol is
2261 passed to the callback.
2262
2263 If CALLBACK returns false, the iteration ends and this function
2264 returns false. Otherwise, the search continues, and the function
2265 eventually returns true. */
2266
2267 bool iterate_over_symbols (const struct block *block,
2268 const lookup_name_info &name,
2269 const domain_enum domain,
2270 gdb::function_view<symbol_found_callback_ftype> callback);
2271
2272 /* Like iterate_over_symbols, but if all calls to CALLBACK return
2273 true, then calls CALLBACK one additional time with a block_symbol
2274 that has a valid block but a NULL symbol. */
2275
2276 bool iterate_over_symbols_terminated
2277 (const struct block *block,
2278 const lookup_name_info &name,
2279 const domain_enum domain,
2280 gdb::function_view<symbol_found_callback_ftype> callback);
2281
2282 /* Storage type used by demangle_for_lookup. demangle_for_lookup
2283 either returns a const char * pointer that points to either of the
2284 fields of this type, or a pointer to the input NAME. This is done
2285 this way because the underlying functions that demangle_for_lookup
2286 calls either return a std::string (e.g., cp_canonicalize_string) or
2287 a malloc'ed buffer (libiberty's demangled), and we want to avoid
2288 unnecessary reallocation/string copying. */
2289 class demangle_result_storage
2290 {
2291 public:
2292
2293 /* Swap the std::string storage with STR, and return a pointer to
2294 the beginning of the new string. */
2295 const char *swap_string (std::string &str)
2296 {
2297 std::swap (m_string, str);
2298 return m_string.c_str ();
2299 }
2300
2301 /* Set the malloc storage to now point at PTR. Any previous malloc
2302 storage is released. */
2303 const char *set_malloc_ptr (char *ptr)
2304 {
2305 m_malloc.reset (ptr);
2306 return ptr;
2307 }
2308
2309 private:
2310
2311 /* The storage. */
2312 std::string m_string;
2313 gdb::unique_xmalloc_ptr<char> m_malloc;
2314 };
2315
2316 const char *
2317 demangle_for_lookup (const char *name, enum language lang,
2318 demangle_result_storage &storage);
2319
2320 struct symbol *allocate_symbol (struct objfile *);
2321
2322 void initialize_objfile_symbol (struct symbol *);
2323
2324 struct template_symbol *allocate_template_symbol (struct objfile *);
2325
2326 /* Test to see if the symbol of language SYMBOL_LANGUAGE specified by
2327 SYMNAME (which is already demangled for C++ symbols) matches
2328 SYM_TEXT in the first SYM_TEXT_LEN characters. If so, add it to
2329 the current completion list. */
2330 void completion_list_add_name (completion_tracker &tracker,
2331 language symbol_language,
2332 const char *symname,
2333 const lookup_name_info &lookup_name,
2334 const char *text, const char *word);
2335
2336 /* A simple symbol searching class. */
2337
2338 class symbol_searcher
2339 {
2340 public:
2341 /* Returns the symbols found for the search. */
2342 const std::vector<block_symbol> &
2343 matching_symbols () const
2344 {
2345 return m_symbols;
2346 }
2347
2348 /* Returns the minimal symbols found for the search. */
2349 const std::vector<bound_minimal_symbol> &
2350 matching_msymbols () const
2351 {
2352 return m_minimal_symbols;
2353 }
2354
2355 /* Search for all symbols named NAME in LANGUAGE with DOMAIN, restricting
2356 search to FILE_SYMTABS and SEARCH_PSPACE, both of which may be NULL
2357 to search all symtabs and program spaces. */
2358 void find_all_symbols (const std::string &name,
2359 const struct language_defn *language,
2360 enum search_domain search_domain,
2361 std::vector<symtab *> *search_symtabs,
2362 struct program_space *search_pspace);
2363
2364 /* Reset this object to perform another search. */
2365 void reset ()
2366 {
2367 m_symbols.clear ();
2368 m_minimal_symbols.clear ();
2369 }
2370
2371 private:
2372 /* Matching debug symbols. */
2373 std::vector<block_symbol> m_symbols;
2374
2375 /* Matching non-debug symbols. */
2376 std::vector<bound_minimal_symbol> m_minimal_symbols;
2377 };
2378
2379 #endif /* !defined(SYMTAB_H) */
This page took 0.078469 seconds and 4 git commands to generate.