Change section_offsets to a std::vector
[deliverable/binutils-gdb.git] / gdb / symtab.h
1 /* Symbol table definitions for GDB.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #if !defined (SYMTAB_H)
21 #define SYMTAB_H 1
22
23 #include <array>
24 #include <vector>
25 #include <string>
26 #include <set>
27 #include "gdbsupport/gdb_vecs.h"
28 #include "gdbtypes.h"
29 #include "gdb_obstack.h"
30 #include "gdb_regex.h"
31 #include "gdbsupport/enum-flags.h"
32 #include "gdbsupport/function-view.h"
33 #include "gdbsupport/gdb_optional.h"
34 #include "gdbsupport/gdb_string_view.h"
35 #include "gdbsupport/next-iterator.h"
36 #include "completer.h"
37 #include "gdb-demangle.h"
38
39 /* Opaque declarations. */
40 struct ui_file;
41 struct frame_info;
42 struct symbol;
43 struct obstack;
44 struct objfile;
45 struct block;
46 struct blockvector;
47 struct axs_value;
48 struct agent_expr;
49 struct program_space;
50 struct language_defn;
51 struct common_block;
52 struct obj_section;
53 struct cmd_list_element;
54 class probe;
55 struct lookup_name_info;
56
57 /* How to match a lookup name against a symbol search name. */
58 enum class symbol_name_match_type
59 {
60 /* Wild matching. Matches unqualified symbol names in all
61 namespace/module/packages, etc. */
62 WILD,
63
64 /* Full matching. The lookup name indicates a fully-qualified name,
65 and only matches symbol search names in the specified
66 namespace/module/package. */
67 FULL,
68
69 /* Search name matching. This is like FULL, but the search name did
70 not come from the user; instead it is already a search name
71 retrieved from a search_name () call.
72 For Ada, this avoids re-encoding an already-encoded search name
73 (which would potentially incorrectly lowercase letters in the
74 linkage/search name that should remain uppercase). For C++, it
75 avoids trying to demangle a name we already know is
76 demangled. */
77 SEARCH_NAME,
78
79 /* Expression matching. The same as FULL matching in most
80 languages. The same as WILD matching in Ada. */
81 EXPRESSION,
82 };
83
84 /* Hash the given symbol search name according to LANGUAGE's
85 rules. */
86 extern unsigned int search_name_hash (enum language language,
87 const char *search_name);
88
89 /* Ada-specific bits of a lookup_name_info object. This is lazily
90 constructed on demand. */
91
92 class ada_lookup_name_info final
93 {
94 public:
95 /* Construct. */
96 explicit ada_lookup_name_info (const lookup_name_info &lookup_name);
97
98 /* Compare SYMBOL_SEARCH_NAME with our lookup name, using MATCH_TYPE
99 as name match type. Returns true if there's a match, false
100 otherwise. If non-NULL, store the matching results in MATCH. */
101 bool matches (const char *symbol_search_name,
102 symbol_name_match_type match_type,
103 completion_match_result *comp_match_res) const;
104
105 /* The Ada-encoded lookup name. */
106 const std::string &lookup_name () const
107 { return m_encoded_name; }
108
109 /* Return true if we're supposed to be doing a wild match look
110 up. */
111 bool wild_match_p () const
112 { return m_wild_match_p; }
113
114 /* Return true if we're looking up a name inside package
115 Standard. */
116 bool standard_p () const
117 { return m_standard_p; }
118
119 /* Return true if doing a verbatim match. */
120 bool verbatim_p () const
121 { return m_verbatim_p; }
122
123 private:
124 /* The Ada-encoded lookup name. */
125 std::string m_encoded_name;
126
127 /* Whether the user-provided lookup name was Ada encoded. If so,
128 then return encoded names in the 'matches' method's 'completion
129 match result' output. */
130 bool m_encoded_p : 1;
131
132 /* True if really doing wild matching. Even if the user requests
133 wild matching, some cases require full matching. */
134 bool m_wild_match_p : 1;
135
136 /* True if doing a verbatim match. This is true if the decoded
137 version of the symbol name is wrapped in '<'/'>'. This is an
138 escape hatch users can use to look up symbols the Ada encoding
139 does not understand. */
140 bool m_verbatim_p : 1;
141
142 /* True if the user specified a symbol name that is inside package
143 Standard. Symbol names inside package Standard are handled
144 specially. We always do a non-wild match of the symbol name
145 without the "standard__" prefix, and only search static and
146 global symbols. This was primarily introduced in order to allow
147 the user to specifically access the standard exceptions using,
148 for instance, Standard.Constraint_Error when Constraint_Error is
149 ambiguous (due to the user defining its own Constraint_Error
150 entity inside its program). */
151 bool m_standard_p : 1;
152 };
153
154 /* Language-specific bits of a lookup_name_info object, for languages
155 that do name searching using demangled names (C++/D/Go). This is
156 lazily constructed on demand. */
157
158 struct demangle_for_lookup_info final
159 {
160 public:
161 demangle_for_lookup_info (const lookup_name_info &lookup_name,
162 language lang);
163
164 /* The demangled lookup name. */
165 const std::string &lookup_name () const
166 { return m_demangled_name; }
167
168 private:
169 /* The demangled lookup name. */
170 std::string m_demangled_name;
171 };
172
173 /* Object that aggregates all information related to a symbol lookup
174 name. I.e., the name that is matched against the symbol's search
175 name. Caches per-language information so that it doesn't require
176 recomputing it for every symbol comparison, like for example the
177 Ada encoded name and the symbol's name hash for a given language.
178 The object is conceptually immutable once constructed, and thus has
179 no setters. This is to prevent some code path from tweaking some
180 property of the lookup name for some local reason and accidentally
181 altering the results of any continuing search(es).
182 lookup_name_info objects are generally passed around as a const
183 reference to reinforce that. (They're not passed around by value
184 because they're not small.) */
185 class lookup_name_info final
186 {
187 public:
188 /* Create a new object. */
189 lookup_name_info (std::string name,
190 symbol_name_match_type match_type,
191 bool completion_mode = false,
192 bool ignore_parameters = false)
193 : m_match_type (match_type),
194 m_completion_mode (completion_mode),
195 m_ignore_parameters (ignore_parameters),
196 m_name (std::move (name))
197 {}
198
199 /* Getters. See description of each corresponding field. */
200 symbol_name_match_type match_type () const { return m_match_type; }
201 bool completion_mode () const { return m_completion_mode; }
202 const std::string &name () const { return m_name; }
203 const bool ignore_parameters () const { return m_ignore_parameters; }
204
205 /* Return a version of this lookup name that is usable with
206 comparisons against symbols have no parameter info, such as
207 psymbols and GDB index symbols. */
208 lookup_name_info make_ignore_params () const
209 {
210 return lookup_name_info (m_name, m_match_type, m_completion_mode,
211 true /* ignore params */);
212 }
213
214 /* Get the search name hash for searches in language LANG. */
215 unsigned int search_name_hash (language lang) const
216 {
217 /* Only compute each language's hash once. */
218 if (!m_demangled_hashes_p[lang])
219 {
220 m_demangled_hashes[lang]
221 = ::search_name_hash (lang, language_lookup_name (lang).c_str ());
222 m_demangled_hashes_p[lang] = true;
223 }
224 return m_demangled_hashes[lang];
225 }
226
227 /* Get the search name for searches in language LANG. */
228 const std::string &language_lookup_name (language lang) const
229 {
230 switch (lang)
231 {
232 case language_ada:
233 return ada ().lookup_name ();
234 case language_cplus:
235 return cplus ().lookup_name ();
236 case language_d:
237 return d ().lookup_name ();
238 case language_go:
239 return go ().lookup_name ();
240 default:
241 return m_name;
242 }
243 }
244
245 /* Get the Ada-specific lookup info. */
246 const ada_lookup_name_info &ada () const
247 {
248 maybe_init (m_ada);
249 return *m_ada;
250 }
251
252 /* Get the C++-specific lookup info. */
253 const demangle_for_lookup_info &cplus () const
254 {
255 maybe_init (m_cplus, language_cplus);
256 return *m_cplus;
257 }
258
259 /* Get the D-specific lookup info. */
260 const demangle_for_lookup_info &d () const
261 {
262 maybe_init (m_d, language_d);
263 return *m_d;
264 }
265
266 /* Get the Go-specific lookup info. */
267 const demangle_for_lookup_info &go () const
268 {
269 maybe_init (m_go, language_go);
270 return *m_go;
271 }
272
273 /* Get a reference to a lookup_name_info object that matches any
274 symbol name. */
275 static const lookup_name_info &match_any ();
276
277 private:
278 /* Initialize FIELD, if not initialized yet. */
279 template<typename Field, typename... Args>
280 void maybe_init (Field &field, Args&&... args) const
281 {
282 if (!field)
283 field.emplace (*this, std::forward<Args> (args)...);
284 }
285
286 /* The lookup info as passed to the ctor. */
287 symbol_name_match_type m_match_type;
288 bool m_completion_mode;
289 bool m_ignore_parameters;
290 std::string m_name;
291
292 /* Language-specific info. These fields are filled lazily the first
293 time a lookup is done in the corresponding language. They're
294 mutable because lookup_name_info objects are typically passed
295 around by const reference (see intro), and they're conceptually
296 "cache" that can always be reconstructed from the non-mutable
297 fields. */
298 mutable gdb::optional<ada_lookup_name_info> m_ada;
299 mutable gdb::optional<demangle_for_lookup_info> m_cplus;
300 mutable gdb::optional<demangle_for_lookup_info> m_d;
301 mutable gdb::optional<demangle_for_lookup_info> m_go;
302
303 /* The demangled hashes. Stored in an array with one entry for each
304 possible language. The second array records whether we've
305 already computed the each language's hash. (These are separate
306 arrays instead of a single array of optional<unsigned> to avoid
307 alignment padding). */
308 mutable std::array<unsigned int, nr_languages> m_demangled_hashes;
309 mutable std::array<bool, nr_languages> m_demangled_hashes_p {};
310 };
311
312 /* Comparison function for completion symbol lookup.
313
314 Returns true if the symbol name matches against LOOKUP_NAME.
315
316 SYMBOL_SEARCH_NAME should be a symbol's "search" name.
317
318 On success and if non-NULL, COMP_MATCH_RES->match is set to point
319 to the symbol name as should be presented to the user as a
320 completion match list element. In most languages, this is the same
321 as the symbol's search name, but in some, like Ada, the display
322 name is dynamically computed within the comparison routine.
323
324 Also, on success and if non-NULL, COMP_MATCH_RES->match_for_lcd
325 points the part of SYMBOL_SEARCH_NAME that was considered to match
326 LOOKUP_NAME. E.g., in C++, in linespec/wild mode, if the symbol is
327 "foo::function()" and LOOKUP_NAME is "function(", MATCH_FOR_LCD
328 points to "function()" inside SYMBOL_SEARCH_NAME. */
329 typedef bool (symbol_name_matcher_ftype)
330 (const char *symbol_search_name,
331 const lookup_name_info &lookup_name,
332 completion_match_result *comp_match_res);
333
334 /* Some of the structures in this file are space critical.
335 The space-critical structures are:
336
337 struct general_symbol_info
338 struct symbol
339 struct partial_symbol
340
341 These structures are laid out to encourage good packing.
342 They use ENUM_BITFIELD and short int fields, and they order the
343 structure members so that fields less than a word are next
344 to each other so they can be packed together. */
345
346 /* Rearranged: used ENUM_BITFIELD and rearranged field order in
347 all the space critical structures (plus struct minimal_symbol).
348 Memory usage dropped from 99360768 bytes to 90001408 bytes.
349 I measured this with before-and-after tests of
350 "HEAD-old-gdb -readnow HEAD-old-gdb" and
351 "HEAD-new-gdb -readnow HEAD-old-gdb" on native i686-pc-linux-gnu,
352 red hat linux 8, with LD_LIBRARY_PATH=/usr/lib/debug,
353 typing "maint space 1" at the first command prompt.
354
355 Here is another measurement (from andrew c):
356 # no /usr/lib/debug, just plain glibc, like a normal user
357 gdb HEAD-old-gdb
358 (gdb) break internal_error
359 (gdb) run
360 (gdb) maint internal-error
361 (gdb) backtrace
362 (gdb) maint space 1
363
364 gdb gdb_6_0_branch 2003-08-19 space used: 8896512
365 gdb HEAD 2003-08-19 space used: 8904704
366 gdb HEAD 2003-08-21 space used: 8396800 (+symtab.h)
367 gdb HEAD 2003-08-21 space used: 8265728 (+gdbtypes.h)
368
369 The third line shows the savings from the optimizations in symtab.h.
370 The fourth line shows the savings from the optimizations in
371 gdbtypes.h. Both optimizations are in gdb HEAD now.
372
373 --chastain 2003-08-21 */
374
375 /* Define a structure for the information that is common to all symbol types,
376 including minimal symbols, partial symbols, and full symbols. In a
377 multilanguage environment, some language specific information may need to
378 be recorded along with each symbol. */
379
380 /* This structure is space critical. See space comments at the top. */
381
382 struct general_symbol_info
383 {
384 /* Short version as to when to use which name accessor:
385 Use natural_name () to refer to the name of the symbol in the original
386 source code. Use linkage_name () if you want to know what the linker
387 thinks the symbol's name is. Use print_name () for output. Use
388 demangled_name () if you specifically need to know whether natural_name ()
389 and linkage_name () are different. */
390
391 const char *linkage_name () const
392 { return m_name; }
393
394 /* Return SYMBOL's "natural" name, i.e. the name that it was called in
395 the original source code. In languages like C++ where symbols may
396 be mangled for ease of manipulation by the linker, this is the
397 demangled name. */
398 const char *natural_name () const;
399
400 /* Returns a version of the name of a symbol that is
401 suitable for output. In C++ this is the "demangled" form of the
402 name if demangle is on and the "mangled" form of the name if
403 demangle is off. In other languages this is just the symbol name.
404 The result should never be NULL. Don't use this for internal
405 purposes (e.g. storing in a hashtable): it's only suitable for output. */
406 const char *print_name () const
407 { return demangle ? natural_name () : linkage_name (); }
408
409 /* Return the demangled name for a symbol based on the language for
410 that symbol. If no demangled name exists, return NULL. */
411 const char *demangled_name () const;
412
413 /* Returns the name to be used when sorting and searching symbols.
414 In C++, we search for the demangled form of a name,
415 and so sort symbols accordingly. In Ada, however, we search by mangled
416 name. If there is no distinct demangled name, then this
417 returns the same value (same pointer) as linkage_name (). */
418 const char *search_name () const;
419
420 /* Set just the linkage name of a symbol; do not try to demangle
421 it. Used for constructs which do not have a mangled name,
422 e.g. struct tags. Unlike compute_and_set_names, linkage_name must
423 be terminated and either already on the objfile's obstack or
424 permanently allocated. */
425 void set_linkage_name (const char *linkage_name)
426 { m_name = linkage_name; }
427
428 enum language language () const
429 { return m_language; }
430
431 /* Initializes the language dependent portion of a symbol
432 depending upon the language for the symbol. */
433 void set_language (enum language language, struct obstack *obstack);
434
435 /* Set the linkage and natural names of a symbol, by demangling
436 the linkage name. If linkage_name may not be nullterminated,
437 copy_name must be set to true. */
438 void compute_and_set_names (gdb::string_view linkage_name, bool copy_name,
439 struct objfile_per_bfd_storage *per_bfd,
440 gdb::optional<hashval_t> hash
441 = gdb::optional<hashval_t> ());
442
443 /* Name of the symbol. This is a required field. Storage for the
444 name is allocated on the objfile_obstack for the associated
445 objfile. For languages like C++ that make a distinction between
446 the mangled name and demangled name, this is the mangled
447 name. */
448
449 const char *m_name;
450
451 /* Value of the symbol. Which member of this union to use, and what
452 it means, depends on what kind of symbol this is and its
453 SYMBOL_CLASS. See comments there for more details. All of these
454 are in host byte order (though what they point to might be in
455 target byte order, e.g. LOC_CONST_BYTES). */
456
457 union
458 {
459 LONGEST ivalue;
460
461 const struct block *block;
462
463 const gdb_byte *bytes;
464
465 CORE_ADDR address;
466
467 /* A common block. Used with LOC_COMMON_BLOCK. */
468
469 const struct common_block *common_block;
470
471 /* For opaque typedef struct chain. */
472
473 struct symbol *chain;
474 }
475 value;
476
477 /* Since one and only one language can apply, wrap the language specific
478 information inside a union. */
479
480 union
481 {
482 /* A pointer to an obstack that can be used for storage associated
483 with this symbol. This is only used by Ada, and only when the
484 'ada_mangled' field is zero. */
485 struct obstack *obstack;
486
487 /* This is used by languages which wish to store a demangled name.
488 currently used by Ada, C++, and Objective C. */
489 const char *demangled_name;
490 }
491 language_specific;
492
493 /* Record the source code language that applies to this symbol.
494 This is used to select one of the fields from the language specific
495 union above. */
496
497 ENUM_BITFIELD(language) m_language : LANGUAGE_BITS;
498
499 /* This is only used by Ada. If set, then the 'demangled_name' field
500 of language_specific is valid. Otherwise, the 'obstack' field is
501 valid. */
502 unsigned int ada_mangled : 1;
503
504 /* Which section is this symbol in? This is an index into
505 section_offsets for this objfile. Negative means that the symbol
506 does not get relocated relative to a section. */
507
508 short section;
509 };
510
511 extern void symbol_set_demangled_name (struct general_symbol_info *,
512 const char *,
513 struct obstack *);
514
515 extern const char *symbol_get_demangled_name
516 (const struct general_symbol_info *);
517
518 extern CORE_ADDR symbol_overlayed_address (CORE_ADDR, struct obj_section *);
519
520 /* Return the address of SYM. The MAYBE_COPIED flag must be set on
521 SYM. If SYM appears in the main program's minimal symbols, then
522 that minsym's address is returned; otherwise, SYM's address is
523 returned. This should generally only be used via the
524 SYMBOL_VALUE_ADDRESS macro. */
525
526 extern CORE_ADDR get_symbol_address (const struct symbol *sym);
527
528 /* Note that these macros only work with symbol, not partial_symbol. */
529
530 #define SYMBOL_VALUE(symbol) (symbol)->value.ivalue
531 #define SYMBOL_VALUE_ADDRESS(symbol) \
532 (((symbol)->maybe_copied) ? get_symbol_address (symbol) \
533 : ((symbol)->value.address))
534 #define SET_SYMBOL_VALUE_ADDRESS(symbol, new_value) \
535 ((symbol)->value.address = (new_value))
536 #define SYMBOL_VALUE_BYTES(symbol) (symbol)->value.bytes
537 #define SYMBOL_VALUE_COMMON_BLOCK(symbol) (symbol)->value.common_block
538 #define SYMBOL_BLOCK_VALUE(symbol) (symbol)->value.block
539 #define SYMBOL_VALUE_CHAIN(symbol) (symbol)->value.chain
540 #define SYMBOL_SECTION(symbol) (symbol)->section
541 #define SYMBOL_OBJ_SECTION(objfile, symbol) \
542 (((symbol)->section >= 0) \
543 ? (&(((objfile)->sections)[(symbol)->section])) \
544 : NULL)
545
546 /* Try to determine the demangled name for a symbol, based on the
547 language of that symbol. If the language is set to language_auto,
548 it will attempt to find any demangling algorithm that works and
549 then set the language appropriately. The returned name is allocated
550 by the demangler and should be xfree'd. */
551
552 extern char *symbol_find_demangled_name (struct general_symbol_info *gsymbol,
553 const char *mangled);
554
555 /* Return true if NAME matches the "search" name of SYMBOL, according
556 to the symbol's language. */
557 #define SYMBOL_MATCHES_SEARCH_NAME(symbol, name) \
558 symbol_matches_search_name ((symbol), (name))
559
560 /* Helper for SYMBOL_MATCHES_SEARCH_NAME that works with both symbols
561 and psymbols. */
562 extern bool symbol_matches_search_name
563 (const struct general_symbol_info *gsymbol,
564 const lookup_name_info &name);
565
566 /* Compute the hash of the given symbol search name of a symbol of
567 language LANGUAGE. */
568 extern unsigned int search_name_hash (enum language language,
569 const char *search_name);
570
571 /* Classification types for a minimal symbol. These should be taken as
572 "advisory only", since if gdb can't easily figure out a
573 classification it simply selects mst_unknown. It may also have to
574 guess when it can't figure out which is a better match between two
575 types (mst_data versus mst_bss) for example. Since the minimal
576 symbol info is sometimes derived from the BFD library's view of a
577 file, we need to live with what information bfd supplies. */
578
579 enum minimal_symbol_type
580 {
581 mst_unknown = 0, /* Unknown type, the default */
582 mst_text, /* Generally executable instructions */
583
584 /* A GNU ifunc symbol, in the .text section. GDB uses to know
585 whether the user is setting a breakpoint on a GNU ifunc function,
586 and thus GDB needs to actually set the breakpoint on the target
587 function. It is also used to know whether the program stepped
588 into an ifunc resolver -- the resolver may get a separate
589 symbol/alias under a different name, but it'll have the same
590 address as the ifunc symbol. */
591 mst_text_gnu_ifunc, /* Executable code returning address
592 of executable code */
593
594 /* A GNU ifunc function descriptor symbol, in a data section
595 (typically ".opd"). Seen on architectures that use function
596 descriptors, like PPC64/ELFv1. In this case, this symbol's value
597 is the address of the descriptor. There'll be a corresponding
598 mst_text_gnu_ifunc synthetic symbol for the text/entry
599 address. */
600 mst_data_gnu_ifunc, /* Executable code returning address
601 of executable code */
602
603 mst_slot_got_plt, /* GOT entries for .plt sections */
604 mst_data, /* Generally initialized data */
605 mst_bss, /* Generally uninitialized data */
606 mst_abs, /* Generally absolute (nonrelocatable) */
607 /* GDB uses mst_solib_trampoline for the start address of a shared
608 library trampoline entry. Breakpoints for shared library functions
609 are put there if the shared library is not yet loaded.
610 After the shared library is loaded, lookup_minimal_symbol will
611 prefer the minimal symbol from the shared library (usually
612 a mst_text symbol) over the mst_solib_trampoline symbol, and the
613 breakpoints will be moved to their true address in the shared
614 library via breakpoint_re_set. */
615 mst_solib_trampoline, /* Shared library trampoline code */
616 /* For the mst_file* types, the names are only guaranteed to be unique
617 within a given .o file. */
618 mst_file_text, /* Static version of mst_text */
619 mst_file_data, /* Static version of mst_data */
620 mst_file_bss, /* Static version of mst_bss */
621 nr_minsym_types
622 };
623
624 /* The number of enum minimal_symbol_type values, with some padding for
625 reasonable growth. */
626 #define MINSYM_TYPE_BITS 4
627 gdb_static_assert (nr_minsym_types <= (1 << MINSYM_TYPE_BITS));
628
629 /* Define a simple structure used to hold some very basic information about
630 all defined global symbols (text, data, bss, abs, etc). The only required
631 information is the general_symbol_info.
632
633 In many cases, even if a file was compiled with no special options for
634 debugging at all, as long as was not stripped it will contain sufficient
635 information to build a useful minimal symbol table using this structure.
636 Even when a file contains enough debugging information to build a full
637 symbol table, these minimal symbols are still useful for quickly mapping
638 between names and addresses, and vice versa. They are also sometimes
639 used to figure out what full symbol table entries need to be read in. */
640
641 struct minimal_symbol : public general_symbol_info
642 {
643 /* Size of this symbol. dbx_end_psymtab in dbxread.c uses this
644 information to calculate the end of the partial symtab based on the
645 address of the last symbol plus the size of the last symbol. */
646
647 unsigned long size;
648
649 /* Which source file is this symbol in? Only relevant for mst_file_*. */
650 const char *filename;
651
652 /* Classification type for this minimal symbol. */
653
654 ENUM_BITFIELD(minimal_symbol_type) type : MINSYM_TYPE_BITS;
655
656 /* Non-zero if this symbol was created by gdb.
657 Such symbols do not appear in the output of "info var|fun". */
658 unsigned int created_by_gdb : 1;
659
660 /* Two flag bits provided for the use of the target. */
661 unsigned int target_flag_1 : 1;
662 unsigned int target_flag_2 : 1;
663
664 /* Nonzero iff the size of the minimal symbol has been set.
665 Symbol size information can sometimes not be determined, because
666 the object file format may not carry that piece of information. */
667 unsigned int has_size : 1;
668
669 /* For data symbols only, if this is set, then the symbol might be
670 subject to copy relocation. In this case, a minimal symbol
671 matching the symbol's linkage name is first looked for in the
672 main objfile. If found, then that address is used; otherwise the
673 address in this symbol is used. */
674
675 unsigned maybe_copied : 1;
676
677 /* Non-zero if this symbol ever had its demangled name set (even if
678 it was set to NULL). */
679 unsigned int name_set : 1;
680
681 /* Minimal symbols with the same hash key are kept on a linked
682 list. This is the link. */
683
684 struct minimal_symbol *hash_next;
685
686 /* Minimal symbols are stored in two different hash tables. This is
687 the `next' pointer for the demangled hash table. */
688
689 struct minimal_symbol *demangled_hash_next;
690
691 /* True if this symbol is of some data type. */
692
693 bool data_p () const;
694
695 /* True if MSYMBOL is of some text type. */
696
697 bool text_p () const;
698 };
699
700 /* Return the address of MINSYM, which comes from OBJF. The
701 MAYBE_COPIED flag must be set on MINSYM. If MINSYM appears in the
702 main program's minimal symbols, then that minsym's address is
703 returned; otherwise, MINSYM's address is returned. This should
704 generally only be used via the MSYMBOL_VALUE_ADDRESS macro. */
705
706 extern CORE_ADDR get_msymbol_address (struct objfile *objf,
707 const struct minimal_symbol *minsym);
708
709 #define MSYMBOL_TARGET_FLAG_1(msymbol) (msymbol)->target_flag_1
710 #define MSYMBOL_TARGET_FLAG_2(msymbol) (msymbol)->target_flag_2
711 #define MSYMBOL_SIZE(msymbol) ((msymbol)->size + 0)
712 #define SET_MSYMBOL_SIZE(msymbol, sz) \
713 do \
714 { \
715 (msymbol)->size = sz; \
716 (msymbol)->has_size = 1; \
717 } while (0)
718 #define MSYMBOL_HAS_SIZE(msymbol) ((msymbol)->has_size + 0)
719 #define MSYMBOL_TYPE(msymbol) (msymbol)->type
720
721 #define MSYMBOL_VALUE(symbol) (symbol)->value.ivalue
722 /* The unrelocated address of the minimal symbol. */
723 #define MSYMBOL_VALUE_RAW_ADDRESS(symbol) ((symbol)->value.address + 0)
724 /* The relocated address of the minimal symbol, using the section
725 offsets from OBJFILE. */
726 #define MSYMBOL_VALUE_ADDRESS(objfile, symbol) \
727 (((symbol)->maybe_copied) ? get_msymbol_address (objfile, symbol) \
728 : ((symbol)->value.address \
729 + (objfile)->section_offsets[(symbol)->section]))
730 /* For a bound minsym, we can easily compute the address directly. */
731 #define BMSYMBOL_VALUE_ADDRESS(symbol) \
732 MSYMBOL_VALUE_ADDRESS ((symbol).objfile, (symbol).minsym)
733 #define SET_MSYMBOL_VALUE_ADDRESS(symbol, new_value) \
734 ((symbol)->value.address = (new_value))
735 #define MSYMBOL_VALUE_BYTES(symbol) (symbol)->value.bytes
736 #define MSYMBOL_BLOCK_VALUE(symbol) (symbol)->value.block
737 #define MSYMBOL_VALUE_CHAIN(symbol) (symbol)->value.chain
738 #define MSYMBOL_SECTION(symbol) (symbol)->section
739 #define MSYMBOL_OBJ_SECTION(objfile, symbol) \
740 (((symbol)->section >= 0) \
741 ? (&(((objfile)->sections)[(symbol)->section])) \
742 : NULL)
743
744 #include "minsyms.h"
745
746 \f
747
748 /* Represent one symbol name; a variable, constant, function or typedef. */
749
750 /* Different name domains for symbols. Looking up a symbol specifies a
751 domain and ignores symbol definitions in other name domains. */
752
753 typedef enum domain_enum_tag
754 {
755 /* UNDEF_DOMAIN is used when a domain has not been discovered or
756 none of the following apply. This usually indicates an error either
757 in the symbol information or in gdb's handling of symbols. */
758
759 UNDEF_DOMAIN,
760
761 /* VAR_DOMAIN is the usual domain. In C, this contains variables,
762 function names, typedef names and enum type values. */
763
764 VAR_DOMAIN,
765
766 /* STRUCT_DOMAIN is used in C to hold struct, union and enum type names.
767 Thus, if `struct foo' is used in a C program, it produces a symbol named
768 `foo' in the STRUCT_DOMAIN. */
769
770 STRUCT_DOMAIN,
771
772 /* MODULE_DOMAIN is used in Fortran to hold module type names. */
773
774 MODULE_DOMAIN,
775
776 /* LABEL_DOMAIN may be used for names of labels (for gotos). */
777
778 LABEL_DOMAIN,
779
780 /* Fortran common blocks. Their naming must be separate from VAR_DOMAIN.
781 They also always use LOC_COMMON_BLOCK. */
782 COMMON_BLOCK_DOMAIN,
783
784 /* This must remain last. */
785 NR_DOMAINS
786 } domain_enum;
787
788 /* The number of bits in a symbol used to represent the domain. */
789
790 #define SYMBOL_DOMAIN_BITS 3
791 gdb_static_assert (NR_DOMAINS <= (1 << SYMBOL_DOMAIN_BITS));
792
793 extern const char *domain_name (domain_enum);
794
795 /* Searching domains, used when searching for symbols. Element numbers are
796 hardcoded in GDB, check all enum uses before changing it. */
797
798 enum search_domain
799 {
800 /* Everything in VAR_DOMAIN minus FUNCTIONS_DOMAIN and
801 TYPES_DOMAIN. */
802 VARIABLES_DOMAIN = 0,
803
804 /* All functions -- for some reason not methods, though. */
805 FUNCTIONS_DOMAIN = 1,
806
807 /* All defined types */
808 TYPES_DOMAIN = 2,
809
810 /* All modules. */
811 MODULES_DOMAIN = 3,
812
813 /* Any type. */
814 ALL_DOMAIN = 4
815 };
816
817 extern const char *search_domain_name (enum search_domain);
818
819 /* An address-class says where to find the value of a symbol. */
820
821 enum address_class
822 {
823 /* Not used; catches errors. */
824
825 LOC_UNDEF,
826
827 /* Value is constant int SYMBOL_VALUE, host byteorder. */
828
829 LOC_CONST,
830
831 /* Value is at fixed address SYMBOL_VALUE_ADDRESS. */
832
833 LOC_STATIC,
834
835 /* Value is in register. SYMBOL_VALUE is the register number
836 in the original debug format. SYMBOL_REGISTER_OPS holds a
837 function that can be called to transform this into the
838 actual register number this represents in a specific target
839 architecture (gdbarch).
840
841 For some symbol formats (stabs, for some compilers at least),
842 the compiler generates two symbols, an argument and a register.
843 In some cases we combine them to a single LOC_REGISTER in symbol
844 reading, but currently not for all cases (e.g. it's passed on the
845 stack and then loaded into a register). */
846
847 LOC_REGISTER,
848
849 /* It's an argument; the value is at SYMBOL_VALUE offset in arglist. */
850
851 LOC_ARG,
852
853 /* Value address is at SYMBOL_VALUE offset in arglist. */
854
855 LOC_REF_ARG,
856
857 /* Value is in specified register. Just like LOC_REGISTER except the
858 register holds the address of the argument instead of the argument
859 itself. This is currently used for the passing of structs and unions
860 on sparc and hppa. It is also used for call by reference where the
861 address is in a register, at least by mipsread.c. */
862
863 LOC_REGPARM_ADDR,
864
865 /* Value is a local variable at SYMBOL_VALUE offset in stack frame. */
866
867 LOC_LOCAL,
868
869 /* Value not used; definition in SYMBOL_TYPE. Symbols in the domain
870 STRUCT_DOMAIN all have this class. */
871
872 LOC_TYPEDEF,
873
874 /* Value is address SYMBOL_VALUE_ADDRESS in the code. */
875
876 LOC_LABEL,
877
878 /* In a symbol table, value is SYMBOL_BLOCK_VALUE of a `struct block'.
879 In a partial symbol table, SYMBOL_VALUE_ADDRESS is the start address
880 of the block. Function names have this class. */
881
882 LOC_BLOCK,
883
884 /* Value is a constant byte-sequence pointed to by SYMBOL_VALUE_BYTES, in
885 target byte order. */
886
887 LOC_CONST_BYTES,
888
889 /* Value is at fixed address, but the address of the variable has
890 to be determined from the minimal symbol table whenever the
891 variable is referenced.
892 This happens if debugging information for a global symbol is
893 emitted and the corresponding minimal symbol is defined
894 in another object file or runtime common storage.
895 The linker might even remove the minimal symbol if the global
896 symbol is never referenced, in which case the symbol remains
897 unresolved.
898
899 GDB would normally find the symbol in the minimal symbol table if it will
900 not find it in the full symbol table. But a reference to an external
901 symbol in a local block shadowing other definition requires full symbol
902 without possibly having its address available for LOC_STATIC. Testcase
903 is provided as `gdb.dwarf2/dw2-unresolved.exp'.
904
905 This is also used for thread local storage (TLS) variables. In this case,
906 the address of the TLS variable must be determined when the variable is
907 referenced, from the MSYMBOL_VALUE_RAW_ADDRESS, which is the offset
908 of the TLS variable in the thread local storage of the shared
909 library/object. */
910
911 LOC_UNRESOLVED,
912
913 /* The variable does not actually exist in the program.
914 The value is ignored. */
915
916 LOC_OPTIMIZED_OUT,
917
918 /* The variable's address is computed by a set of location
919 functions (see "struct symbol_computed_ops" below). */
920 LOC_COMPUTED,
921
922 /* The variable uses general_symbol_info->value->common_block field.
923 It also always uses COMMON_BLOCK_DOMAIN. */
924 LOC_COMMON_BLOCK,
925
926 /* Not used, just notes the boundary of the enum. */
927 LOC_FINAL_VALUE
928 };
929
930 /* The number of bits needed for values in enum address_class, with some
931 padding for reasonable growth, and room for run-time registered address
932 classes. See symtab.c:MAX_SYMBOL_IMPLS.
933 This is a #define so that we can have a assertion elsewhere to
934 verify that we have reserved enough space for synthetic address
935 classes. */
936 #define SYMBOL_ACLASS_BITS 5
937 gdb_static_assert (LOC_FINAL_VALUE <= (1 << SYMBOL_ACLASS_BITS));
938
939 /* The methods needed to implement LOC_COMPUTED. These methods can
940 use the symbol's .aux_value for additional per-symbol information.
941
942 At present this is only used to implement location expressions. */
943
944 struct symbol_computed_ops
945 {
946
947 /* Return the value of the variable SYMBOL, relative to the stack
948 frame FRAME. If the variable has been optimized out, return
949 zero.
950
951 Iff `read_needs_frame (SYMBOL)' is not SYMBOL_NEEDS_FRAME, then
952 FRAME may be zero. */
953
954 struct value *(*read_variable) (struct symbol * symbol,
955 struct frame_info * frame);
956
957 /* Read variable SYMBOL like read_variable at (callee) FRAME's function
958 entry. SYMBOL should be a function parameter, otherwise
959 NO_ENTRY_VALUE_ERROR will be thrown. */
960 struct value *(*read_variable_at_entry) (struct symbol *symbol,
961 struct frame_info *frame);
962
963 /* Find the "symbol_needs_kind" value for the given symbol. This
964 value determines whether reading the symbol needs memory (e.g., a
965 global variable), just registers (a thread-local), or a frame (a
966 local variable). */
967 enum symbol_needs_kind (*get_symbol_read_needs) (struct symbol * symbol);
968
969 /* Write to STREAM a natural-language description of the location of
970 SYMBOL, in the context of ADDR. */
971 void (*describe_location) (struct symbol * symbol, CORE_ADDR addr,
972 struct ui_file * stream);
973
974 /* Non-zero if this symbol's address computation is dependent on PC. */
975 unsigned char location_has_loclist;
976
977 /* Tracepoint support. Append bytecodes to the tracepoint agent
978 expression AX that push the address of the object SYMBOL. Set
979 VALUE appropriately. Note --- for objects in registers, this
980 needn't emit any code; as long as it sets VALUE properly, then
981 the caller will generate the right code in the process of
982 treating this as an lvalue or rvalue. */
983
984 void (*tracepoint_var_ref) (struct symbol *symbol, struct agent_expr *ax,
985 struct axs_value *value);
986
987 /* Generate C code to compute the location of SYMBOL. The C code is
988 emitted to STREAM. GDBARCH is the current architecture and PC is
989 the PC at which SYMBOL's location should be evaluated.
990 REGISTERS_USED is a vector indexed by register number; the
991 generator function should set an element in this vector if the
992 corresponding register is needed by the location computation.
993 The generated C code must assign the location to a local
994 variable; this variable's name is RESULT_NAME. */
995
996 void (*generate_c_location) (struct symbol *symbol, string_file *stream,
997 struct gdbarch *gdbarch,
998 unsigned char *registers_used,
999 CORE_ADDR pc, const char *result_name);
1000
1001 };
1002
1003 /* The methods needed to implement LOC_BLOCK for inferior functions.
1004 These methods can use the symbol's .aux_value for additional
1005 per-symbol information. */
1006
1007 struct symbol_block_ops
1008 {
1009 /* Fill in *START and *LENGTH with DWARF block data of function
1010 FRAMEFUNC valid for inferior context address PC. Set *LENGTH to
1011 zero if such location is not valid for PC; *START is left
1012 uninitialized in such case. */
1013 void (*find_frame_base_location) (struct symbol *framefunc, CORE_ADDR pc,
1014 const gdb_byte **start, size_t *length);
1015
1016 /* Return the frame base address. FRAME is the frame for which we want to
1017 compute the base address while FRAMEFUNC is the symbol for the
1018 corresponding function. Return 0 on failure (FRAMEFUNC may not hold the
1019 information we need).
1020
1021 This method is designed to work with static links (nested functions
1022 handling). Static links are function properties whose evaluation returns
1023 the frame base address for the enclosing frame. However, there are
1024 multiple definitions for "frame base": the content of the frame base
1025 register, the CFA as defined by DWARF unwinding information, ...
1026
1027 So this specific method is supposed to compute the frame base address such
1028 as for nested functions, the static link computes the same address. For
1029 instance, considering DWARF debugging information, the static link is
1030 computed with DW_AT_static_link and this method must be used to compute
1031 the corresponding DW_AT_frame_base attribute. */
1032 CORE_ADDR (*get_frame_base) (struct symbol *framefunc,
1033 struct frame_info *frame);
1034 };
1035
1036 /* Functions used with LOC_REGISTER and LOC_REGPARM_ADDR. */
1037
1038 struct symbol_register_ops
1039 {
1040 int (*register_number) (struct symbol *symbol, struct gdbarch *gdbarch);
1041 };
1042
1043 /* Objects of this type are used to find the address class and the
1044 various computed ops vectors of a symbol. */
1045
1046 struct symbol_impl
1047 {
1048 enum address_class aclass;
1049
1050 /* Used with LOC_COMPUTED. */
1051 const struct symbol_computed_ops *ops_computed;
1052
1053 /* Used with LOC_BLOCK. */
1054 const struct symbol_block_ops *ops_block;
1055
1056 /* Used with LOC_REGISTER and LOC_REGPARM_ADDR. */
1057 const struct symbol_register_ops *ops_register;
1058 };
1059
1060 /* struct symbol has some subclasses. This enum is used to
1061 differentiate between them. */
1062
1063 enum symbol_subclass_kind
1064 {
1065 /* Plain struct symbol. */
1066 SYMBOL_NONE,
1067
1068 /* struct template_symbol. */
1069 SYMBOL_TEMPLATE,
1070
1071 /* struct rust_vtable_symbol. */
1072 SYMBOL_RUST_VTABLE
1073 };
1074
1075 /* This structure is space critical. See space comments at the top. */
1076
1077 struct symbol : public general_symbol_info, public allocate_on_obstack
1078 {
1079 symbol ()
1080 /* Class-initialization of bitfields is only allowed in C++20. */
1081 : domain (UNDEF_DOMAIN),
1082 aclass_index (0),
1083 is_objfile_owned (0),
1084 is_argument (0),
1085 is_inlined (0),
1086 maybe_copied (0),
1087 subclass (SYMBOL_NONE)
1088 {
1089 /* We can't use an initializer list for members of a base class, and
1090 general_symbol_info needs to stay a POD type. */
1091 m_name = nullptr;
1092 value.ivalue = 0;
1093 language_specific.obstack = nullptr;
1094 m_language = language_unknown;
1095 ada_mangled = 0;
1096 section = 0;
1097 /* GCC 4.8.5 (on CentOS 7) does not correctly compile class-
1098 initialization of unions, so we initialize it manually here. */
1099 owner.symtab = nullptr;
1100 }
1101
1102 /* Data type of value */
1103
1104 struct type *type = nullptr;
1105
1106 /* The owner of this symbol.
1107 Which one to use is defined by symbol.is_objfile_owned. */
1108
1109 union
1110 {
1111 /* The symbol table containing this symbol. This is the file associated
1112 with LINE. It can be NULL during symbols read-in but it is never NULL
1113 during normal operation. */
1114 struct symtab *symtab;
1115
1116 /* For types defined by the architecture. */
1117 struct gdbarch *arch;
1118 } owner;
1119
1120 /* Domain code. */
1121
1122 ENUM_BITFIELD(domain_enum_tag) domain : SYMBOL_DOMAIN_BITS;
1123
1124 /* Address class. This holds an index into the 'symbol_impls'
1125 table. The actual enum address_class value is stored there,
1126 alongside any per-class ops vectors. */
1127
1128 unsigned int aclass_index : SYMBOL_ACLASS_BITS;
1129
1130 /* If non-zero then symbol is objfile-owned, use owner.symtab.
1131 Otherwise symbol is arch-owned, use owner.arch. */
1132
1133 unsigned int is_objfile_owned : 1;
1134
1135 /* Whether this is an argument. */
1136
1137 unsigned is_argument : 1;
1138
1139 /* Whether this is an inlined function (class LOC_BLOCK only). */
1140 unsigned is_inlined : 1;
1141
1142 /* For LOC_STATIC only, if this is set, then the symbol might be
1143 subject to copy relocation. In this case, a minimal symbol
1144 matching the symbol's linkage name is first looked for in the
1145 main objfile. If found, then that address is used; otherwise the
1146 address in this symbol is used. */
1147
1148 unsigned maybe_copied : 1;
1149
1150 /* The concrete type of this symbol. */
1151
1152 ENUM_BITFIELD (symbol_subclass_kind) subclass : 2;
1153
1154 /* Line number of this symbol's definition, except for inlined
1155 functions. For an inlined function (class LOC_BLOCK and
1156 SYMBOL_INLINED set) this is the line number of the function's call
1157 site. Inlined function symbols are not definitions, and they are
1158 never found by symbol table lookup.
1159 If this symbol is arch-owned, LINE shall be zero.
1160
1161 FIXME: Should we really make the assumption that nobody will try
1162 to debug files longer than 64K lines? What about machine
1163 generated programs? */
1164
1165 unsigned short line = 0;
1166
1167 /* An arbitrary data pointer, allowing symbol readers to record
1168 additional information on a per-symbol basis. Note that this data
1169 must be allocated using the same obstack as the symbol itself. */
1170 /* So far it is only used by:
1171 LOC_COMPUTED: to find the location information
1172 LOC_BLOCK (DWARF2 function): information used internally by the
1173 DWARF 2 code --- specifically, the location expression for the frame
1174 base for this function. */
1175 /* FIXME drow/2003-02-21: For the LOC_BLOCK case, it might be better
1176 to add a magic symbol to the block containing this information,
1177 or to have a generic debug info annotation slot for symbols. */
1178
1179 void *aux_value = nullptr;
1180
1181 struct symbol *hash_next = nullptr;
1182 };
1183
1184 /* Several lookup functions return both a symbol and the block in which the
1185 symbol is found. This structure is used in these cases. */
1186
1187 struct block_symbol
1188 {
1189 /* The symbol that was found, or NULL if no symbol was found. */
1190 struct symbol *symbol;
1191
1192 /* If SYMBOL is not NULL, then this is the block in which the symbol is
1193 defined. */
1194 const struct block *block;
1195 };
1196
1197 extern const struct symbol_impl *symbol_impls;
1198
1199 /* Note: There is no accessor macro for symbol.owner because it is
1200 "private". */
1201
1202 #define SYMBOL_DOMAIN(symbol) (symbol)->domain
1203 #define SYMBOL_IMPL(symbol) (symbol_impls[(symbol)->aclass_index])
1204 #define SYMBOL_ACLASS_INDEX(symbol) (symbol)->aclass_index
1205 #define SYMBOL_CLASS(symbol) (SYMBOL_IMPL (symbol).aclass)
1206 #define SYMBOL_OBJFILE_OWNED(symbol) ((symbol)->is_objfile_owned)
1207 #define SYMBOL_IS_ARGUMENT(symbol) (symbol)->is_argument
1208 #define SYMBOL_INLINED(symbol) (symbol)->is_inlined
1209 #define SYMBOL_IS_CPLUS_TEMPLATE_FUNCTION(symbol) \
1210 (((symbol)->subclass) == SYMBOL_TEMPLATE)
1211 #define SYMBOL_TYPE(symbol) (symbol)->type
1212 #define SYMBOL_LINE(symbol) (symbol)->line
1213 #define SYMBOL_COMPUTED_OPS(symbol) (SYMBOL_IMPL (symbol).ops_computed)
1214 #define SYMBOL_BLOCK_OPS(symbol) (SYMBOL_IMPL (symbol).ops_block)
1215 #define SYMBOL_REGISTER_OPS(symbol) (SYMBOL_IMPL (symbol).ops_register)
1216 #define SYMBOL_LOCATION_BATON(symbol) (symbol)->aux_value
1217
1218 extern int register_symbol_computed_impl (enum address_class,
1219 const struct symbol_computed_ops *);
1220
1221 extern int register_symbol_block_impl (enum address_class aclass,
1222 const struct symbol_block_ops *ops);
1223
1224 extern int register_symbol_register_impl (enum address_class,
1225 const struct symbol_register_ops *);
1226
1227 /* Return the OBJFILE of SYMBOL.
1228 It is an error to call this if symbol.is_objfile_owned is false, which
1229 only happens for architecture-provided types. */
1230
1231 extern struct objfile *symbol_objfile (const struct symbol *symbol);
1232
1233 /* Return the ARCH of SYMBOL. */
1234
1235 extern struct gdbarch *symbol_arch (const struct symbol *symbol);
1236
1237 /* Return the SYMTAB of SYMBOL.
1238 It is an error to call this if symbol.is_objfile_owned is false, which
1239 only happens for architecture-provided types. */
1240
1241 extern struct symtab *symbol_symtab (const struct symbol *symbol);
1242
1243 /* Set the symtab of SYMBOL to SYMTAB.
1244 It is an error to call this if symbol.is_objfile_owned is false, which
1245 only happens for architecture-provided types. */
1246
1247 extern void symbol_set_symtab (struct symbol *symbol, struct symtab *symtab);
1248
1249 /* An instance of this type is used to represent a C++ template
1250 function. A symbol is really of this type iff
1251 SYMBOL_IS_CPLUS_TEMPLATE_FUNCTION is true. */
1252
1253 struct template_symbol : public symbol
1254 {
1255 /* The number of template arguments. */
1256 int n_template_arguments = 0;
1257
1258 /* The template arguments. This is an array with
1259 N_TEMPLATE_ARGUMENTS elements. */
1260 struct symbol **template_arguments = nullptr;
1261 };
1262
1263 /* A symbol that represents a Rust virtual table object. */
1264
1265 struct rust_vtable_symbol : public symbol
1266 {
1267 /* The concrete type for which this vtable was created; that is, in
1268 "impl Trait for Type", this is "Type". */
1269 struct type *concrete_type = nullptr;
1270 };
1271
1272 \f
1273 /* Each item represents a line-->pc (or the reverse) mapping. This is
1274 somewhat more wasteful of space than one might wish, but since only
1275 the files which are actually debugged are read in to core, we don't
1276 waste much space. */
1277
1278 struct linetable_entry
1279 {
1280 int line;
1281 CORE_ADDR pc;
1282 };
1283
1284 /* The order of entries in the linetable is significant. They should
1285 be sorted by increasing values of the pc field. If there is more than
1286 one entry for a given pc, then I'm not sure what should happen (and
1287 I not sure whether we currently handle it the best way).
1288
1289 Example: a C for statement generally looks like this
1290
1291 10 0x100 - for the init/test part of a for stmt.
1292 20 0x200
1293 30 0x300
1294 10 0x400 - for the increment part of a for stmt.
1295
1296 If an entry has a line number of zero, it marks the start of a PC
1297 range for which no line number information is available. It is
1298 acceptable, though wasteful of table space, for such a range to be
1299 zero length. */
1300
1301 struct linetable
1302 {
1303 int nitems;
1304
1305 /* Actually NITEMS elements. If you don't like this use of the
1306 `struct hack', you can shove it up your ANSI (seriously, if the
1307 committee tells us how to do it, we can probably go along). */
1308 struct linetable_entry item[1];
1309 };
1310
1311 /* How to relocate the symbols from each section in a symbol file.
1312 The ordering and meaning of the offsets is file-type-dependent;
1313 typically it is indexed by section numbers or symbol types or
1314 something like that. */
1315
1316 typedef std::vector<CORE_ADDR> section_offsets;
1317
1318 /* Each source file or header is represented by a struct symtab.
1319 The name "symtab" is historical, another name for it is "filetab".
1320 These objects are chained through the `next' field. */
1321
1322 struct symtab
1323 {
1324 /* Unordered chain of all filetabs in the compunit, with the exception
1325 that the "main" source file is the first entry in the list. */
1326
1327 struct symtab *next;
1328
1329 /* Backlink to containing compunit symtab. */
1330
1331 struct compunit_symtab *compunit_symtab;
1332
1333 /* Table mapping core addresses to line numbers for this file.
1334 Can be NULL if none. Never shared between different symtabs. */
1335
1336 struct linetable *linetable;
1337
1338 /* Name of this source file. This pointer is never NULL. */
1339
1340 const char *filename;
1341
1342 /* Language of this source file. */
1343
1344 enum language language;
1345
1346 /* Full name of file as found by searching the source path.
1347 NULL if not yet known. */
1348
1349 char *fullname;
1350 };
1351
1352 #define SYMTAB_COMPUNIT(symtab) ((symtab)->compunit_symtab)
1353 #define SYMTAB_LINETABLE(symtab) ((symtab)->linetable)
1354 #define SYMTAB_LANGUAGE(symtab) ((symtab)->language)
1355 #define SYMTAB_BLOCKVECTOR(symtab) \
1356 COMPUNIT_BLOCKVECTOR (SYMTAB_COMPUNIT (symtab))
1357 #define SYMTAB_OBJFILE(symtab) \
1358 COMPUNIT_OBJFILE (SYMTAB_COMPUNIT (symtab))
1359 #define SYMTAB_PSPACE(symtab) (SYMTAB_OBJFILE (symtab)->pspace)
1360 #define SYMTAB_DIRNAME(symtab) \
1361 COMPUNIT_DIRNAME (SYMTAB_COMPUNIT (symtab))
1362
1363 /* Compunit symtabs contain the actual "symbol table", aka blockvector, as well
1364 as the list of all source files (what gdb has historically associated with
1365 the term "symtab").
1366 Additional information is recorded here that is common to all symtabs in a
1367 compilation unit (DWARF or otherwise).
1368
1369 Example:
1370 For the case of a program built out of these files:
1371
1372 foo.c
1373 foo1.h
1374 foo2.h
1375 bar.c
1376 foo1.h
1377 bar.h
1378
1379 This is recorded as:
1380
1381 objfile -> foo.c(cu) -> bar.c(cu) -> NULL
1382 | |
1383 v v
1384 foo.c bar.c
1385 | |
1386 v v
1387 foo1.h foo1.h
1388 | |
1389 v v
1390 foo2.h bar.h
1391 | |
1392 v v
1393 NULL NULL
1394
1395 where "foo.c(cu)" and "bar.c(cu)" are struct compunit_symtab objects,
1396 and the files foo.c, etc. are struct symtab objects. */
1397
1398 struct compunit_symtab
1399 {
1400 /* Unordered chain of all compunit symtabs of this objfile. */
1401 struct compunit_symtab *next;
1402
1403 /* Object file from which this symtab information was read. */
1404 struct objfile *objfile;
1405
1406 /* Name of the symtab.
1407 This is *not* intended to be a usable filename, and is
1408 for debugging purposes only. */
1409 const char *name;
1410
1411 /* Unordered list of file symtabs, except that by convention the "main"
1412 source file (e.g., .c, .cc) is guaranteed to be first.
1413 Each symtab is a file, either the "main" source file (e.g., .c, .cc)
1414 or header (e.g., .h). */
1415 struct symtab *filetabs;
1416
1417 /* Last entry in FILETABS list.
1418 Subfiles are added to the end of the list so they accumulate in order,
1419 with the main source subfile living at the front.
1420 The main reason is so that the main source file symtab is at the head
1421 of the list, and the rest appear in order for debugging convenience. */
1422 struct symtab *last_filetab;
1423
1424 /* Non-NULL string that identifies the format of the debugging information,
1425 such as "stabs", "dwarf 1", "dwarf 2", "coff", etc. This is mostly useful
1426 for automated testing of gdb but may also be information that is
1427 useful to the user. */
1428 const char *debugformat;
1429
1430 /* String of producer version information, or NULL if we don't know. */
1431 const char *producer;
1432
1433 /* Directory in which it was compiled, or NULL if we don't know. */
1434 const char *dirname;
1435
1436 /* List of all symbol scope blocks for this symtab. It is shared among
1437 all symtabs in a given compilation unit. */
1438 const struct blockvector *blockvector;
1439
1440 /* Section in objfile->section_offsets for the blockvector and
1441 the linetable. Probably always SECT_OFF_TEXT. */
1442 int block_line_section;
1443
1444 /* Symtab has been compiled with both optimizations and debug info so that
1445 GDB may stop skipping prologues as variables locations are valid already
1446 at function entry points. */
1447 unsigned int locations_valid : 1;
1448
1449 /* DWARF unwinder for this CU is valid even for epilogues (PC at the return
1450 instruction). This is supported by GCC since 4.5.0. */
1451 unsigned int epilogue_unwind_valid : 1;
1452
1453 /* struct call_site entries for this compilation unit or NULL. */
1454 htab_t call_site_htab;
1455
1456 /* The macro table for this symtab. Like the blockvector, this
1457 is shared between different symtabs in a given compilation unit.
1458 It's debatable whether it *should* be shared among all the symtabs in
1459 the given compilation unit, but it currently is. */
1460 struct macro_table *macro_table;
1461
1462 /* If non-NULL, then this points to a NULL-terminated vector of
1463 included compunits. When searching the static or global
1464 block of this compunit, the corresponding block of all
1465 included compunits will also be searched. Note that this
1466 list must be flattened -- the symbol reader is responsible for
1467 ensuring that this vector contains the transitive closure of all
1468 included compunits. */
1469 struct compunit_symtab **includes;
1470
1471 /* If this is an included compunit, this points to one includer
1472 of the table. This user is considered the canonical compunit
1473 containing this one. An included compunit may itself be
1474 included by another. */
1475 struct compunit_symtab *user;
1476 };
1477
1478 #define COMPUNIT_OBJFILE(cust) ((cust)->objfile)
1479 #define COMPUNIT_FILETABS(cust) ((cust)->filetabs)
1480 #define COMPUNIT_DEBUGFORMAT(cust) ((cust)->debugformat)
1481 #define COMPUNIT_PRODUCER(cust) ((cust)->producer)
1482 #define COMPUNIT_DIRNAME(cust) ((cust)->dirname)
1483 #define COMPUNIT_BLOCKVECTOR(cust) ((cust)->blockvector)
1484 #define COMPUNIT_BLOCK_LINE_SECTION(cust) ((cust)->block_line_section)
1485 #define COMPUNIT_LOCATIONS_VALID(cust) ((cust)->locations_valid)
1486 #define COMPUNIT_EPILOGUE_UNWIND_VALID(cust) ((cust)->epilogue_unwind_valid)
1487 #define COMPUNIT_CALL_SITE_HTAB(cust) ((cust)->call_site_htab)
1488 #define COMPUNIT_MACRO_TABLE(cust) ((cust)->macro_table)
1489
1490 /* A range adapter to allowing iterating over all the file tables
1491 within a compunit. */
1492
1493 struct compunit_filetabs : public next_adapter<struct symtab>
1494 {
1495 compunit_filetabs (struct compunit_symtab *cu)
1496 : next_adapter<struct symtab> (cu->filetabs)
1497 {
1498 }
1499 };
1500
1501 /* Return the primary symtab of CUST. */
1502
1503 extern struct symtab *
1504 compunit_primary_filetab (const struct compunit_symtab *cust);
1505
1506 /* Return the language of CUST. */
1507
1508 extern enum language compunit_language (const struct compunit_symtab *cust);
1509
1510 \f
1511
1512 /* The virtual function table is now an array of structures which have the
1513 form { int16 offset, delta; void *pfn; }.
1514
1515 In normal virtual function tables, OFFSET is unused.
1516 DELTA is the amount which is added to the apparent object's base
1517 address in order to point to the actual object to which the
1518 virtual function should be applied.
1519 PFN is a pointer to the virtual function.
1520
1521 Note that this macro is g++ specific (FIXME). */
1522
1523 #define VTBL_FNADDR_OFFSET 2
1524
1525 /* External variables and functions for the objects described above. */
1526
1527 /* True if we are nested inside psymtab_to_symtab. */
1528
1529 extern int currently_reading_symtab;
1530
1531 /* symtab.c lookup functions */
1532
1533 extern const char multiple_symbols_ask[];
1534 extern const char multiple_symbols_all[];
1535 extern const char multiple_symbols_cancel[];
1536
1537 const char *multiple_symbols_select_mode (void);
1538
1539 bool symbol_matches_domain (enum language symbol_language,
1540 domain_enum symbol_domain,
1541 domain_enum domain);
1542
1543 /* lookup a symbol table by source file name. */
1544
1545 extern struct symtab *lookup_symtab (const char *);
1546
1547 /* An object of this type is passed as the 'is_a_field_of_this'
1548 argument to lookup_symbol and lookup_symbol_in_language. */
1549
1550 struct field_of_this_result
1551 {
1552 /* The type in which the field was found. If this is NULL then the
1553 symbol was not found in 'this'. If non-NULL, then one of the
1554 other fields will be non-NULL as well. */
1555
1556 struct type *type;
1557
1558 /* If the symbol was found as an ordinary field of 'this', then this
1559 is non-NULL and points to the particular field. */
1560
1561 struct field *field;
1562
1563 /* If the symbol was found as a function field of 'this', then this
1564 is non-NULL and points to the particular field. */
1565
1566 struct fn_fieldlist *fn_field;
1567 };
1568
1569 /* Find the definition for a specified symbol name NAME
1570 in domain DOMAIN in language LANGUAGE, visible from lexical block BLOCK
1571 if non-NULL or from global/static blocks if BLOCK is NULL.
1572 Returns the struct symbol pointer, or NULL if no symbol is found.
1573 C++: if IS_A_FIELD_OF_THIS is non-NULL on entry, check to see if
1574 NAME is a field of the current implied argument `this'. If so fill in the
1575 fields of IS_A_FIELD_OF_THIS, otherwise the fields are set to NULL.
1576 The symbol's section is fixed up if necessary. */
1577
1578 extern struct block_symbol
1579 lookup_symbol_in_language (const char *,
1580 const struct block *,
1581 const domain_enum,
1582 enum language,
1583 struct field_of_this_result *);
1584
1585 /* Same as lookup_symbol_in_language, but using the current language. */
1586
1587 extern struct block_symbol lookup_symbol (const char *,
1588 const struct block *,
1589 const domain_enum,
1590 struct field_of_this_result *);
1591
1592 /* Find the definition for a specified symbol search name in domain
1593 DOMAIN, visible from lexical block BLOCK if non-NULL or from
1594 global/static blocks if BLOCK is NULL. The passed-in search name
1595 should not come from the user; instead it should already be a
1596 search name as retrieved from a search_name () call. See definition of
1597 symbol_name_match_type::SEARCH_NAME. Returns the struct symbol
1598 pointer, or NULL if no symbol is found. The symbol's section is
1599 fixed up if necessary. */
1600
1601 extern struct block_symbol lookup_symbol_search_name (const char *search_name,
1602 const struct block *block,
1603 domain_enum domain);
1604
1605 /* A default version of lookup_symbol_nonlocal for use by languages
1606 that can't think of anything better to do.
1607 This implements the C lookup rules. */
1608
1609 extern struct block_symbol
1610 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
1611 const char *,
1612 const struct block *,
1613 const domain_enum);
1614
1615 /* Some helper functions for languages that need to write their own
1616 lookup_symbol_nonlocal functions. */
1617
1618 /* Lookup a symbol in the static block associated to BLOCK, if there
1619 is one; do nothing if BLOCK is NULL or a global block.
1620 Upon success fixes up the symbol's section if necessary. */
1621
1622 extern struct block_symbol
1623 lookup_symbol_in_static_block (const char *name,
1624 const struct block *block,
1625 const domain_enum domain);
1626
1627 /* Search all static file-level symbols for NAME from DOMAIN.
1628 Upon success fixes up the symbol's section if necessary. */
1629
1630 extern struct block_symbol lookup_static_symbol (const char *name,
1631 const domain_enum domain);
1632
1633 /* Lookup a symbol in all files' global blocks.
1634
1635 If BLOCK is non-NULL then it is used for two things:
1636 1) If a target-specific lookup routine for libraries exists, then use the
1637 routine for the objfile of BLOCK, and
1638 2) The objfile of BLOCK is used to assist in determining the search order
1639 if the target requires it.
1640 See gdbarch_iterate_over_objfiles_in_search_order.
1641
1642 Upon success fixes up the symbol's section if necessary. */
1643
1644 extern struct block_symbol
1645 lookup_global_symbol (const char *name,
1646 const struct block *block,
1647 const domain_enum domain);
1648
1649 /* Lookup a symbol in block BLOCK.
1650 Upon success fixes up the symbol's section if necessary. */
1651
1652 extern struct symbol *
1653 lookup_symbol_in_block (const char *name,
1654 symbol_name_match_type match_type,
1655 const struct block *block,
1656 const domain_enum domain);
1657
1658 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1659 found, or NULL if not found. */
1660
1661 extern struct block_symbol
1662 lookup_language_this (const struct language_defn *lang,
1663 const struct block *block);
1664
1665 /* Lookup a [struct, union, enum] by name, within a specified block. */
1666
1667 extern struct type *lookup_struct (const char *, const struct block *);
1668
1669 extern struct type *lookup_union (const char *, const struct block *);
1670
1671 extern struct type *lookup_enum (const char *, const struct block *);
1672
1673 /* from blockframe.c: */
1674
1675 /* lookup the function symbol corresponding to the address. The
1676 return value will not be an inlined function; the containing
1677 function will be returned instead. */
1678
1679 extern struct symbol *find_pc_function (CORE_ADDR);
1680
1681 /* lookup the function corresponding to the address and section. The
1682 return value will not be an inlined function; the containing
1683 function will be returned instead. */
1684
1685 extern struct symbol *find_pc_sect_function (CORE_ADDR, struct obj_section *);
1686
1687 /* lookup the function symbol corresponding to the address and
1688 section. The return value will be the closest enclosing function,
1689 which might be an inline function. */
1690
1691 extern struct symbol *find_pc_sect_containing_function
1692 (CORE_ADDR pc, struct obj_section *section);
1693
1694 /* Find the symbol at the given address. Returns NULL if no symbol
1695 found. Only exact matches for ADDRESS are considered. */
1696
1697 extern struct symbol *find_symbol_at_address (CORE_ADDR);
1698
1699 /* Finds the "function" (text symbol) that is smaller than PC but
1700 greatest of all of the potential text symbols in SECTION. Sets
1701 *NAME and/or *ADDRESS conditionally if that pointer is non-null.
1702 If ENDADDR is non-null, then set *ENDADDR to be the end of the
1703 function (exclusive). If the optional parameter BLOCK is non-null,
1704 then set *BLOCK to the address of the block corresponding to the
1705 function symbol, if such a symbol could be found during the lookup;
1706 nullptr is used as a return value for *BLOCK if no block is found.
1707 This function either succeeds or fails (not halfway succeeds). If
1708 it succeeds, it sets *NAME, *ADDRESS, and *ENDADDR to real
1709 information and returns true. If it fails, it sets *NAME, *ADDRESS
1710 and *ENDADDR to zero and returns false.
1711
1712 If the function in question occupies non-contiguous ranges,
1713 *ADDRESS and *ENDADDR are (subject to the conditions noted above) set
1714 to the start and end of the range in which PC is found. Thus
1715 *ADDRESS <= PC < *ENDADDR with no intervening gaps (in which ranges
1716 from other functions might be found).
1717
1718 This property allows find_pc_partial_function to be used (as it had
1719 been prior to the introduction of non-contiguous range support) by
1720 various tdep files for finding a start address and limit address
1721 for prologue analysis. This still isn't ideal, however, because we
1722 probably shouldn't be doing prologue analysis (in which
1723 instructions are scanned to determine frame size and stack layout)
1724 for any range that doesn't contain the entry pc. Moreover, a good
1725 argument can be made that prologue analysis ought to be performed
1726 starting from the entry pc even when PC is within some other range.
1727 This might suggest that *ADDRESS and *ENDADDR ought to be set to the
1728 limits of the entry pc range, but that will cause the
1729 *ADDRESS <= PC < *ENDADDR condition to be violated; many of the
1730 callers of find_pc_partial_function expect this condition to hold.
1731
1732 Callers which require the start and/or end addresses for the range
1733 containing the entry pc should instead call
1734 find_function_entry_range_from_pc. */
1735
1736 extern bool find_pc_partial_function (CORE_ADDR pc, const char **name,
1737 CORE_ADDR *address, CORE_ADDR *endaddr,
1738 const struct block **block = nullptr);
1739
1740 /* Like find_pc_partial_function, above, but *ADDRESS and *ENDADDR are
1741 set to start and end addresses of the range containing the entry pc.
1742
1743 Note that it is not necessarily the case that (for non-NULL ADDRESS
1744 and ENDADDR arguments) the *ADDRESS <= PC < *ENDADDR condition will
1745 hold.
1746
1747 See comment for find_pc_partial_function, above, for further
1748 explanation. */
1749
1750 extern bool find_function_entry_range_from_pc (CORE_ADDR pc,
1751 const char **name,
1752 CORE_ADDR *address,
1753 CORE_ADDR *endaddr);
1754
1755 /* Return the type of a function with its first instruction exactly at
1756 the PC address. Return NULL otherwise. */
1757
1758 extern struct type *find_function_type (CORE_ADDR pc);
1759
1760 /* See if we can figure out the function's actual type from the type
1761 that the resolver returns. RESOLVER_FUNADDR is the address of the
1762 ifunc resolver. */
1763
1764 extern struct type *find_gnu_ifunc_target_type (CORE_ADDR resolver_funaddr);
1765
1766 /* Find the GNU ifunc minimal symbol that matches SYM. */
1767 extern bound_minimal_symbol find_gnu_ifunc (const symbol *sym);
1768
1769 extern void clear_pc_function_cache (void);
1770
1771 /* Expand symtab containing PC, SECTION if not already expanded. */
1772
1773 extern void expand_symtab_containing_pc (CORE_ADDR, struct obj_section *);
1774
1775 /* lookup full symbol table by address. */
1776
1777 extern struct compunit_symtab *find_pc_compunit_symtab (CORE_ADDR);
1778
1779 /* lookup full symbol table by address and section. */
1780
1781 extern struct compunit_symtab *
1782 find_pc_sect_compunit_symtab (CORE_ADDR, struct obj_section *);
1783
1784 extern bool find_pc_line_pc_range (CORE_ADDR, CORE_ADDR *, CORE_ADDR *);
1785
1786 extern void reread_symbols (void);
1787
1788 /* Look up a type named NAME in STRUCT_DOMAIN in the current language.
1789 The type returned must not be opaque -- i.e., must have at least one field
1790 defined. */
1791
1792 extern struct type *lookup_transparent_type (const char *);
1793
1794 extern struct type *basic_lookup_transparent_type (const char *);
1795
1796 /* Macro for name of symbol to indicate a file compiled with gcc. */
1797 #ifndef GCC_COMPILED_FLAG_SYMBOL
1798 #define GCC_COMPILED_FLAG_SYMBOL "gcc_compiled."
1799 #endif
1800
1801 /* Macro for name of symbol to indicate a file compiled with gcc2. */
1802 #ifndef GCC2_COMPILED_FLAG_SYMBOL
1803 #define GCC2_COMPILED_FLAG_SYMBOL "gcc2_compiled."
1804 #endif
1805
1806 extern bool in_gnu_ifunc_stub (CORE_ADDR pc);
1807
1808 /* Functions for resolving STT_GNU_IFUNC symbols which are implemented only
1809 for ELF symbol files. */
1810
1811 struct gnu_ifunc_fns
1812 {
1813 /* See elf_gnu_ifunc_resolve_addr for its real implementation. */
1814 CORE_ADDR (*gnu_ifunc_resolve_addr) (struct gdbarch *gdbarch, CORE_ADDR pc);
1815
1816 /* See elf_gnu_ifunc_resolve_name for its real implementation. */
1817 bool (*gnu_ifunc_resolve_name) (const char *function_name,
1818 CORE_ADDR *function_address_p);
1819
1820 /* See elf_gnu_ifunc_resolver_stop for its real implementation. */
1821 void (*gnu_ifunc_resolver_stop) (struct breakpoint *b);
1822
1823 /* See elf_gnu_ifunc_resolver_return_stop for its real implementation. */
1824 void (*gnu_ifunc_resolver_return_stop) (struct breakpoint *b);
1825 };
1826
1827 #define gnu_ifunc_resolve_addr gnu_ifunc_fns_p->gnu_ifunc_resolve_addr
1828 #define gnu_ifunc_resolve_name gnu_ifunc_fns_p->gnu_ifunc_resolve_name
1829 #define gnu_ifunc_resolver_stop gnu_ifunc_fns_p->gnu_ifunc_resolver_stop
1830 #define gnu_ifunc_resolver_return_stop \
1831 gnu_ifunc_fns_p->gnu_ifunc_resolver_return_stop
1832
1833 extern const struct gnu_ifunc_fns *gnu_ifunc_fns_p;
1834
1835 extern CORE_ADDR find_solib_trampoline_target (struct frame_info *, CORE_ADDR);
1836
1837 struct symtab_and_line
1838 {
1839 /* The program space of this sal. */
1840 struct program_space *pspace = NULL;
1841
1842 struct symtab *symtab = NULL;
1843 struct symbol *symbol = NULL;
1844 struct obj_section *section = NULL;
1845 struct minimal_symbol *msymbol = NULL;
1846 /* Line number. Line numbers start at 1 and proceed through symtab->nlines.
1847 0 is never a valid line number; it is used to indicate that line number
1848 information is not available. */
1849 int line = 0;
1850
1851 CORE_ADDR pc = 0;
1852 CORE_ADDR end = 0;
1853 bool explicit_pc = false;
1854 bool explicit_line = false;
1855
1856 /* The probe associated with this symtab_and_line. */
1857 probe *prob = NULL;
1858 /* If PROBE is not NULL, then this is the objfile in which the probe
1859 originated. */
1860 struct objfile *objfile = NULL;
1861 };
1862
1863 \f
1864
1865 /* Given a pc value, return line number it is in. Second arg nonzero means
1866 if pc is on the boundary use the previous statement's line number. */
1867
1868 extern struct symtab_and_line find_pc_line (CORE_ADDR, int);
1869
1870 /* Same function, but specify a section as well as an address. */
1871
1872 extern struct symtab_and_line find_pc_sect_line (CORE_ADDR,
1873 struct obj_section *, int);
1874
1875 /* Wrapper around find_pc_line to just return the symtab. */
1876
1877 extern struct symtab *find_pc_line_symtab (CORE_ADDR);
1878
1879 /* Given a symtab and line number, return the pc there. */
1880
1881 extern bool find_line_pc (struct symtab *, int, CORE_ADDR *);
1882
1883 extern bool find_line_pc_range (struct symtab_and_line, CORE_ADDR *,
1884 CORE_ADDR *);
1885
1886 extern void resolve_sal_pc (struct symtab_and_line *);
1887
1888 /* solib.c */
1889
1890 extern void clear_solib (void);
1891
1892 /* The reason we're calling into a completion match list collector
1893 function. */
1894 enum class complete_symbol_mode
1895 {
1896 /* Completing an expression. */
1897 EXPRESSION,
1898
1899 /* Completing a linespec. */
1900 LINESPEC,
1901 };
1902
1903 extern void default_collect_symbol_completion_matches_break_on
1904 (completion_tracker &tracker,
1905 complete_symbol_mode mode,
1906 symbol_name_match_type name_match_type,
1907 const char *text, const char *word, const char *break_on,
1908 enum type_code code);
1909 extern void default_collect_symbol_completion_matches
1910 (completion_tracker &tracker,
1911 complete_symbol_mode,
1912 symbol_name_match_type name_match_type,
1913 const char *,
1914 const char *,
1915 enum type_code);
1916 extern void collect_symbol_completion_matches
1917 (completion_tracker &tracker,
1918 complete_symbol_mode mode,
1919 symbol_name_match_type name_match_type,
1920 const char *, const char *);
1921 extern void collect_symbol_completion_matches_type (completion_tracker &tracker,
1922 const char *, const char *,
1923 enum type_code);
1924
1925 extern void collect_file_symbol_completion_matches
1926 (completion_tracker &tracker,
1927 complete_symbol_mode,
1928 symbol_name_match_type name_match_type,
1929 const char *, const char *, const char *);
1930
1931 extern completion_list
1932 make_source_files_completion_list (const char *, const char *);
1933
1934 /* Return whether SYM is a function/method, as opposed to a data symbol. */
1935
1936 extern bool symbol_is_function_or_method (symbol *sym);
1937
1938 /* Return whether MSYMBOL is a function/method, as opposed to a data
1939 symbol */
1940
1941 extern bool symbol_is_function_or_method (minimal_symbol *msymbol);
1942
1943 /* Return whether SYM should be skipped in completion mode MODE. In
1944 linespec mode, we're only interested in functions/methods. */
1945
1946 template<typename Symbol>
1947 static bool
1948 completion_skip_symbol (complete_symbol_mode mode, Symbol *sym)
1949 {
1950 return (mode == complete_symbol_mode::LINESPEC
1951 && !symbol_is_function_or_method (sym));
1952 }
1953
1954 /* symtab.c */
1955
1956 bool matching_obj_sections (struct obj_section *, struct obj_section *);
1957
1958 extern struct symtab *find_line_symtab (struct symtab *, int, int *, bool *);
1959
1960 /* Given a function symbol SYM, find the symtab and line for the start
1961 of the function. If FUNFIRSTLINE is true, we want the first line
1962 of real code inside the function. */
1963 extern symtab_and_line find_function_start_sal (symbol *sym, bool
1964 funfirstline);
1965
1966 /* Same, but start with a function address/section instead of a
1967 symbol. */
1968 extern symtab_and_line find_function_start_sal (CORE_ADDR func_addr,
1969 obj_section *section,
1970 bool funfirstline);
1971
1972 extern void skip_prologue_sal (struct symtab_and_line *);
1973
1974 /* symtab.c */
1975
1976 extern CORE_ADDR skip_prologue_using_sal (struct gdbarch *gdbarch,
1977 CORE_ADDR func_addr);
1978
1979 extern struct symbol *fixup_symbol_section (struct symbol *,
1980 struct objfile *);
1981
1982 /* If MSYMBOL is an text symbol, look for a function debug symbol with
1983 the same address. Returns NULL if not found. This is necessary in
1984 case a function is an alias to some other function, because debug
1985 information is only emitted for the alias target function's
1986 definition, not for the alias. */
1987 extern symbol *find_function_alias_target (bound_minimal_symbol msymbol);
1988
1989 /* Symbol searching */
1990
1991 /* When using the symbol_searcher struct to search for symbols, a vector of
1992 the following structs is returned. */
1993 struct symbol_search
1994 {
1995 symbol_search (int block_, struct symbol *symbol_)
1996 : block (block_),
1997 symbol (symbol_)
1998 {
1999 msymbol.minsym = nullptr;
2000 msymbol.objfile = nullptr;
2001 }
2002
2003 symbol_search (int block_, struct minimal_symbol *minsym,
2004 struct objfile *objfile)
2005 : block (block_),
2006 symbol (nullptr)
2007 {
2008 msymbol.minsym = minsym;
2009 msymbol.objfile = objfile;
2010 }
2011
2012 bool operator< (const symbol_search &other) const
2013 {
2014 return compare_search_syms (*this, other) < 0;
2015 }
2016
2017 bool operator== (const symbol_search &other) const
2018 {
2019 return compare_search_syms (*this, other) == 0;
2020 }
2021
2022 /* The block in which the match was found. Could be, for example,
2023 STATIC_BLOCK or GLOBAL_BLOCK. */
2024 int block;
2025
2026 /* Information describing what was found.
2027
2028 If symbol is NOT NULL, then information was found for this match. */
2029 struct symbol *symbol;
2030
2031 /* If msymbol is non-null, then a match was made on something for
2032 which only minimal_symbols exist. */
2033 struct bound_minimal_symbol msymbol;
2034
2035 private:
2036
2037 static int compare_search_syms (const symbol_search &sym_a,
2038 const symbol_search &sym_b);
2039 };
2040
2041 /* In order to search for global symbols of a particular kind matching
2042 particular regular expressions, create an instance of this structure and
2043 call the SEARCH member function. */
2044 class global_symbol_searcher
2045 {
2046 public:
2047
2048 /* Constructor. */
2049 global_symbol_searcher (enum search_domain kind,
2050 const char *symbol_name_regexp)
2051 : m_kind (kind),
2052 m_symbol_name_regexp (symbol_name_regexp)
2053 {
2054 /* The symbol searching is designed to only find one kind of thing. */
2055 gdb_assert (m_kind != ALL_DOMAIN);
2056 }
2057
2058 /* Set the optional regexp that matches against the symbol type. */
2059 void set_symbol_type_regexp (const char *regexp)
2060 {
2061 m_symbol_type_regexp = regexp;
2062 }
2063
2064 /* Set the flag to exclude minsyms from the search results. */
2065 void set_exclude_minsyms (bool exclude_minsyms)
2066 {
2067 m_exclude_minsyms = exclude_minsyms;
2068 }
2069
2070 /* Set the maximum number of search results to be returned. */
2071 void set_max_search_results (size_t max_search_results)
2072 {
2073 m_max_search_results = max_search_results;
2074 }
2075
2076 /* Search the symbols from all objfiles in the current program space
2077 looking for matches as defined by the current state of this object.
2078
2079 Within each file the results are sorted locally; each symtab's global
2080 and static blocks are separately alphabetized. Duplicate entries are
2081 removed. */
2082 std::vector<symbol_search> search () const;
2083
2084 /* The set of source files to search in for matching symbols. This is
2085 currently public so that it can be populated after this object has
2086 been constructed. */
2087 std::vector<const char *> filenames;
2088
2089 private:
2090 /* The kind of symbols are we searching for.
2091 VARIABLES_DOMAIN - Search all symbols, excluding functions, type
2092 names, and constants (enums).
2093 FUNCTIONS_DOMAIN - Search all functions..
2094 TYPES_DOMAIN - Search all type names.
2095 MODULES_DOMAIN - Search all Fortran modules.
2096 ALL_DOMAIN - Not valid for this function. */
2097 enum search_domain m_kind;
2098
2099 /* Regular expression to match against the symbol name. */
2100 const char *m_symbol_name_regexp = nullptr;
2101
2102 /* Regular expression to match against the symbol type. */
2103 const char *m_symbol_type_regexp = nullptr;
2104
2105 /* When this flag is false then minsyms that match M_SYMBOL_REGEXP will
2106 be included in the results, otherwise they are excluded. */
2107 bool m_exclude_minsyms = false;
2108
2109 /* Maximum number of search results. We currently impose a hard limit
2110 of SIZE_MAX, there is no "unlimited". */
2111 size_t m_max_search_results = SIZE_MAX;
2112
2113 /* Expand symtabs in OBJFILE that match PREG, are of type M_KIND. Return
2114 true if any msymbols were seen that we should later consider adding to
2115 the results list. */
2116 bool expand_symtabs (objfile *objfile,
2117 const gdb::optional<compiled_regex> &preg) const;
2118
2119 /* Add symbols from symtabs in OBJFILE that match PREG, and TREG, and are
2120 of type M_KIND, to the results set RESULTS_SET. Return false if we
2121 stop adding results early due to having already found too many results
2122 (based on M_MAX_SEARCH_RESULTS limit), otherwise return true.
2123 Returning true does not indicate that any results were added, just
2124 that we didn't _not_ add a result due to reaching MAX_SEARCH_RESULTS. */
2125 bool add_matching_symbols (objfile *objfile,
2126 const gdb::optional<compiled_regex> &preg,
2127 const gdb::optional<compiled_regex> &treg,
2128 std::set<symbol_search> *result_set) const;
2129
2130 /* Add msymbols from OBJFILE that match PREG and M_KIND, to the results
2131 vector RESULTS. Return false if we stop adding results early due to
2132 having already found too many results (based on max search results
2133 limit M_MAX_SEARCH_RESULTS), otherwise return true. Returning true
2134 does not indicate that any results were added, just that we didn't
2135 _not_ add a result due to reaching MAX_SEARCH_RESULTS. */
2136 bool add_matching_msymbols (objfile *objfile,
2137 const gdb::optional<compiled_regex> &preg,
2138 std::vector<symbol_search> *results) const;
2139
2140 /* Return true if MSYMBOL is of type KIND. */
2141 static bool is_suitable_msymbol (const enum search_domain kind,
2142 const minimal_symbol *msymbol);
2143 };
2144
2145 /* When searching for Fortran symbols within modules (functions/variables)
2146 we return a vector of this type. The first item in the pair is the
2147 module symbol, and the second item is the symbol for the function or
2148 variable we found. */
2149 typedef std::pair<symbol_search, symbol_search> module_symbol_search;
2150
2151 /* Searches the symbols to find function and variables symbols (depending
2152 on KIND) within Fortran modules. The MODULE_REGEXP matches against the
2153 name of the module, REGEXP matches against the name of the symbol within
2154 the module, and TYPE_REGEXP matches against the type of the symbol
2155 within the module. */
2156 extern std::vector<module_symbol_search> search_module_symbols
2157 (const char *module_regexp, const char *regexp,
2158 const char *type_regexp, search_domain kind);
2159
2160 /* Convert a global or static symbol SYM (based on BLOCK, which should be
2161 either GLOBAL_BLOCK or STATIC_BLOCK) into a string for use in 'info'
2162 type commands (e.g. 'info variables', 'info functions', etc). KIND is
2163 the type of symbol that was searched for which gave us SYM. */
2164
2165 extern std::string symbol_to_info_string (struct symbol *sym, int block,
2166 enum search_domain kind);
2167
2168 extern bool treg_matches_sym_type_name (const compiled_regex &treg,
2169 const struct symbol *sym);
2170
2171 /* The name of the ``main'' function. */
2172 extern const char *main_name ();
2173 extern enum language main_language (void);
2174
2175 /* Lookup symbol NAME from DOMAIN in MAIN_OBJFILE's global or static blocks,
2176 as specified by BLOCK_INDEX.
2177 This searches MAIN_OBJFILE as well as any associated separate debug info
2178 objfiles of MAIN_OBJFILE.
2179 BLOCK_INDEX can be GLOBAL_BLOCK or STATIC_BLOCK.
2180 Upon success fixes up the symbol's section if necessary. */
2181
2182 extern struct block_symbol
2183 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2184 enum block_enum block_index,
2185 const char *name,
2186 const domain_enum domain);
2187
2188 /* Return 1 if the supplied producer string matches the ARM RealView
2189 compiler (armcc). */
2190 bool producer_is_realview (const char *producer);
2191
2192 void fixup_section (struct general_symbol_info *ginfo,
2193 CORE_ADDR addr, struct objfile *objfile);
2194
2195 /* Look up objfile containing BLOCK. */
2196
2197 struct objfile *lookup_objfile_from_block (const struct block *block);
2198
2199 extern unsigned int symtab_create_debug;
2200
2201 extern unsigned int symbol_lookup_debug;
2202
2203 extern bool basenames_may_differ;
2204
2205 bool compare_filenames_for_search (const char *filename,
2206 const char *search_name);
2207
2208 bool compare_glob_filenames_for_search (const char *filename,
2209 const char *search_name);
2210
2211 bool iterate_over_some_symtabs (const char *name,
2212 const char *real_path,
2213 struct compunit_symtab *first,
2214 struct compunit_symtab *after_last,
2215 gdb::function_view<bool (symtab *)> callback);
2216
2217 void iterate_over_symtabs (const char *name,
2218 gdb::function_view<bool (symtab *)> callback);
2219
2220
2221 std::vector<CORE_ADDR> find_pcs_for_symtab_line
2222 (struct symtab *symtab, int line, struct linetable_entry **best_entry);
2223
2224 /* Prototype for callbacks for LA_ITERATE_OVER_SYMBOLS. The callback
2225 is called once per matching symbol SYM. The callback should return
2226 true to indicate that LA_ITERATE_OVER_SYMBOLS should continue
2227 iterating, or false to indicate that the iteration should end. */
2228
2229 typedef bool (symbol_found_callback_ftype) (struct block_symbol *bsym);
2230
2231 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2232
2233 For each symbol that matches, CALLBACK is called. The symbol is
2234 passed to the callback.
2235
2236 If CALLBACK returns false, the iteration ends and this function
2237 returns false. Otherwise, the search continues, and the function
2238 eventually returns true. */
2239
2240 bool iterate_over_symbols (const struct block *block,
2241 const lookup_name_info &name,
2242 const domain_enum domain,
2243 gdb::function_view<symbol_found_callback_ftype> callback);
2244
2245 /* Like iterate_over_symbols, but if all calls to CALLBACK return
2246 true, then calls CALLBACK one additional time with a block_symbol
2247 that has a valid block but a NULL symbol. */
2248
2249 bool iterate_over_symbols_terminated
2250 (const struct block *block,
2251 const lookup_name_info &name,
2252 const domain_enum domain,
2253 gdb::function_view<symbol_found_callback_ftype> callback);
2254
2255 /* Storage type used by demangle_for_lookup. demangle_for_lookup
2256 either returns a const char * pointer that points to either of the
2257 fields of this type, or a pointer to the input NAME. This is done
2258 this way because the underlying functions that demangle_for_lookup
2259 calls either return a std::string (e.g., cp_canonicalize_string) or
2260 a malloc'ed buffer (libiberty's demangled), and we want to avoid
2261 unnecessary reallocation/string copying. */
2262 class demangle_result_storage
2263 {
2264 public:
2265
2266 /* Swap the std::string storage with STR, and return a pointer to
2267 the beginning of the new string. */
2268 const char *swap_string (std::string &str)
2269 {
2270 std::swap (m_string, str);
2271 return m_string.c_str ();
2272 }
2273
2274 /* Set the malloc storage to now point at PTR. Any previous malloc
2275 storage is released. */
2276 const char *set_malloc_ptr (char *ptr)
2277 {
2278 m_malloc.reset (ptr);
2279 return ptr;
2280 }
2281
2282 private:
2283
2284 /* The storage. */
2285 std::string m_string;
2286 gdb::unique_xmalloc_ptr<char> m_malloc;
2287 };
2288
2289 const char *
2290 demangle_for_lookup (const char *name, enum language lang,
2291 demangle_result_storage &storage);
2292
2293 struct symbol *allocate_symbol (struct objfile *);
2294
2295 void initialize_objfile_symbol (struct symbol *);
2296
2297 struct template_symbol *allocate_template_symbol (struct objfile *);
2298
2299 /* Test to see if the symbol of language SYMBOL_LANGUAGE specified by
2300 SYMNAME (which is already demangled for C++ symbols) matches
2301 SYM_TEXT in the first SYM_TEXT_LEN characters. If so, add it to
2302 the current completion list. */
2303 void completion_list_add_name (completion_tracker &tracker,
2304 language symbol_language,
2305 const char *symname,
2306 const lookup_name_info &lookup_name,
2307 const char *text, const char *word);
2308
2309 /* A simple symbol searching class. */
2310
2311 class symbol_searcher
2312 {
2313 public:
2314 /* Returns the symbols found for the search. */
2315 const std::vector<block_symbol> &
2316 matching_symbols () const
2317 {
2318 return m_symbols;
2319 }
2320
2321 /* Returns the minimal symbols found for the search. */
2322 const std::vector<bound_minimal_symbol> &
2323 matching_msymbols () const
2324 {
2325 return m_minimal_symbols;
2326 }
2327
2328 /* Search for all symbols named NAME in LANGUAGE with DOMAIN, restricting
2329 search to FILE_SYMTABS and SEARCH_PSPACE, both of which may be NULL
2330 to search all symtabs and program spaces. */
2331 void find_all_symbols (const std::string &name,
2332 const struct language_defn *language,
2333 enum search_domain search_domain,
2334 std::vector<symtab *> *search_symtabs,
2335 struct program_space *search_pspace);
2336
2337 /* Reset this object to perform another search. */
2338 void reset ()
2339 {
2340 m_symbols.clear ();
2341 m_minimal_symbols.clear ();
2342 }
2343
2344 private:
2345 /* Matching debug symbols. */
2346 std::vector<block_symbol> m_symbols;
2347
2348 /* Matching non-debug symbols. */
2349 std::vector<bound_minimal_symbol> m_minimal_symbols;
2350 };
2351
2352 #endif /* !defined(SYMTAB_H) */
This page took 0.120247 seconds and 4 git commands to generate.