e8321d4bb8cbe5392626fe4504fff5d103fe8c5a
[deliverable/binutils-gdb.git] / gdb / symtab.h
1 /* Symbol table definitions for GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #if !defined (SYMTAB_H)
21 #define SYMTAB_H 1
22
23 #include <array>
24 #include <vector>
25 #include <string>
26 #include <set>
27 #include "gdbsupport/gdb_vecs.h"
28 #include "gdbtypes.h"
29 #include "gdb_obstack.h"
30 #include "gdb_regex.h"
31 #include "gdbsupport/enum-flags.h"
32 #include "gdbsupport/function-view.h"
33 #include "gdbsupport/gdb_optional.h"
34 #include "gdbsupport/gdb_string_view.h"
35 #include "gdbsupport/next-iterator.h"
36 #include "completer.h"
37 #include "gdb-demangle.h"
38
39 /* Opaque declarations. */
40 struct ui_file;
41 struct frame_info;
42 struct symbol;
43 struct obstack;
44 struct objfile;
45 struct block;
46 struct blockvector;
47 struct axs_value;
48 struct agent_expr;
49 struct program_space;
50 struct language_defn;
51 struct common_block;
52 struct obj_section;
53 struct cmd_list_element;
54 class probe;
55 struct lookup_name_info;
56
57 /* How to match a lookup name against a symbol search name. */
58 enum class symbol_name_match_type
59 {
60 /* Wild matching. Matches unqualified symbol names in all
61 namespace/module/packages, etc. */
62 WILD,
63
64 /* Full matching. The lookup name indicates a fully-qualified name,
65 and only matches symbol search names in the specified
66 namespace/module/package. */
67 FULL,
68
69 /* Search name matching. This is like FULL, but the search name did
70 not come from the user; instead it is already a search name
71 retrieved from a search_name () call.
72 For Ada, this avoids re-encoding an already-encoded search name
73 (which would potentially incorrectly lowercase letters in the
74 linkage/search name that should remain uppercase). For C++, it
75 avoids trying to demangle a name we already know is
76 demangled. */
77 SEARCH_NAME,
78
79 /* Expression matching. The same as FULL matching in most
80 languages. The same as WILD matching in Ada. */
81 EXPRESSION,
82 };
83
84 /* Hash the given symbol search name according to LANGUAGE's
85 rules. */
86 extern unsigned int search_name_hash (enum language language,
87 const char *search_name);
88
89 /* Ada-specific bits of a lookup_name_info object. This is lazily
90 constructed on demand. */
91
92 class ada_lookup_name_info final
93 {
94 public:
95 /* Construct. */
96 explicit ada_lookup_name_info (const lookup_name_info &lookup_name);
97
98 /* Compare SYMBOL_SEARCH_NAME with our lookup name, using MATCH_TYPE
99 as name match type. Returns true if there's a match, false
100 otherwise. If non-NULL, store the matching results in MATCH. */
101 bool matches (const char *symbol_search_name,
102 symbol_name_match_type match_type,
103 completion_match_result *comp_match_res) const;
104
105 /* The Ada-encoded lookup name. */
106 const std::string &lookup_name () const
107 { return m_encoded_name; }
108
109 /* Return true if we're supposed to be doing a wild match look
110 up. */
111 bool wild_match_p () const
112 { return m_wild_match_p; }
113
114 /* Return true if we're looking up a name inside package
115 Standard. */
116 bool standard_p () const
117 { return m_standard_p; }
118
119 /* Return true if doing a verbatim match. */
120 bool verbatim_p () const
121 { return m_verbatim_p; }
122
123 private:
124 /* The Ada-encoded lookup name. */
125 std::string m_encoded_name;
126
127 /* Whether the user-provided lookup name was Ada encoded. If so,
128 then return encoded names in the 'matches' method's 'completion
129 match result' output. */
130 bool m_encoded_p : 1;
131
132 /* True if really doing wild matching. Even if the user requests
133 wild matching, some cases require full matching. */
134 bool m_wild_match_p : 1;
135
136 /* True if doing a verbatim match. This is true if the decoded
137 version of the symbol name is wrapped in '<'/'>'. This is an
138 escape hatch users can use to look up symbols the Ada encoding
139 does not understand. */
140 bool m_verbatim_p : 1;
141
142 /* True if the user specified a symbol name that is inside package
143 Standard. Symbol names inside package Standard are handled
144 specially. We always do a non-wild match of the symbol name
145 without the "standard__" prefix, and only search static and
146 global symbols. This was primarily introduced in order to allow
147 the user to specifically access the standard exceptions using,
148 for instance, Standard.Constraint_Error when Constraint_Error is
149 ambiguous (due to the user defining its own Constraint_Error
150 entity inside its program). */
151 bool m_standard_p : 1;
152 };
153
154 /* Language-specific bits of a lookup_name_info object, for languages
155 that do name searching using demangled names (C++/D/Go). This is
156 lazily constructed on demand. */
157
158 struct demangle_for_lookup_info final
159 {
160 public:
161 demangle_for_lookup_info (const lookup_name_info &lookup_name,
162 language lang);
163
164 /* The demangled lookup name. */
165 const std::string &lookup_name () const
166 { return m_demangled_name; }
167
168 private:
169 /* The demangled lookup name. */
170 std::string m_demangled_name;
171 };
172
173 /* Object that aggregates all information related to a symbol lookup
174 name. I.e., the name that is matched against the symbol's search
175 name. Caches per-language information so that it doesn't require
176 recomputing it for every symbol comparison, like for example the
177 Ada encoded name and the symbol's name hash for a given language.
178 The object is conceptually immutable once constructed, and thus has
179 no setters. This is to prevent some code path from tweaking some
180 property of the lookup name for some local reason and accidentally
181 altering the results of any continuing search(es).
182 lookup_name_info objects are generally passed around as a const
183 reference to reinforce that. (They're not passed around by value
184 because they're not small.) */
185 class lookup_name_info final
186 {
187 public:
188 /* Create a new object. */
189 lookup_name_info (std::string name,
190 symbol_name_match_type match_type,
191 bool completion_mode = false,
192 bool ignore_parameters = false)
193 : m_match_type (match_type),
194 m_completion_mode (completion_mode),
195 m_ignore_parameters (ignore_parameters),
196 m_name (std::move (name))
197 {}
198
199 /* Getters. See description of each corresponding field. */
200 symbol_name_match_type match_type () const { return m_match_type; }
201 bool completion_mode () const { return m_completion_mode; }
202 const std::string &name () const { return m_name; }
203 const bool ignore_parameters () const { return m_ignore_parameters; }
204
205 /* Return a version of this lookup name that is usable with
206 comparisons against symbols have no parameter info, such as
207 psymbols and GDB index symbols. */
208 lookup_name_info make_ignore_params () const
209 {
210 return lookup_name_info (m_name, m_match_type, m_completion_mode,
211 true /* ignore params */);
212 }
213
214 /* Get the search name hash for searches in language LANG. */
215 unsigned int search_name_hash (language lang) const
216 {
217 /* Only compute each language's hash once. */
218 if (!m_demangled_hashes_p[lang])
219 {
220 m_demangled_hashes[lang]
221 = ::search_name_hash (lang, language_lookup_name (lang).c_str ());
222 m_demangled_hashes_p[lang] = true;
223 }
224 return m_demangled_hashes[lang];
225 }
226
227 /* Get the search name for searches in language LANG. */
228 const std::string &language_lookup_name (language lang) const
229 {
230 switch (lang)
231 {
232 case language_ada:
233 return ada ().lookup_name ();
234 case language_cplus:
235 return cplus ().lookup_name ();
236 case language_d:
237 return d ().lookup_name ();
238 case language_go:
239 return go ().lookup_name ();
240 default:
241 return m_name;
242 }
243 }
244
245 /* Get the Ada-specific lookup info. */
246 const ada_lookup_name_info &ada () const
247 {
248 maybe_init (m_ada);
249 return *m_ada;
250 }
251
252 /* Get the C++-specific lookup info. */
253 const demangle_for_lookup_info &cplus () const
254 {
255 maybe_init (m_cplus, language_cplus);
256 return *m_cplus;
257 }
258
259 /* Get the D-specific lookup info. */
260 const demangle_for_lookup_info &d () const
261 {
262 maybe_init (m_d, language_d);
263 return *m_d;
264 }
265
266 /* Get the Go-specific lookup info. */
267 const demangle_for_lookup_info &go () const
268 {
269 maybe_init (m_go, language_go);
270 return *m_go;
271 }
272
273 /* Get a reference to a lookup_name_info object that matches any
274 symbol name. */
275 static const lookup_name_info &match_any ();
276
277 private:
278 /* Initialize FIELD, if not initialized yet. */
279 template<typename Field, typename... Args>
280 void maybe_init (Field &field, Args&&... args) const
281 {
282 if (!field)
283 field.emplace (*this, std::forward<Args> (args)...);
284 }
285
286 /* The lookup info as passed to the ctor. */
287 symbol_name_match_type m_match_type;
288 bool m_completion_mode;
289 bool m_ignore_parameters;
290 std::string m_name;
291
292 /* Language-specific info. These fields are filled lazily the first
293 time a lookup is done in the corresponding language. They're
294 mutable because lookup_name_info objects are typically passed
295 around by const reference (see intro), and they're conceptually
296 "cache" that can always be reconstructed from the non-mutable
297 fields. */
298 mutable gdb::optional<ada_lookup_name_info> m_ada;
299 mutable gdb::optional<demangle_for_lookup_info> m_cplus;
300 mutable gdb::optional<demangle_for_lookup_info> m_d;
301 mutable gdb::optional<demangle_for_lookup_info> m_go;
302
303 /* The demangled hashes. Stored in an array with one entry for each
304 possible language. The second array records whether we've
305 already computed the each language's hash. (These are separate
306 arrays instead of a single array of optional<unsigned> to avoid
307 alignment padding). */
308 mutable std::array<unsigned int, nr_languages> m_demangled_hashes;
309 mutable std::array<bool, nr_languages> m_demangled_hashes_p {};
310 };
311
312 /* Comparison function for completion symbol lookup.
313
314 Returns true if the symbol name matches against LOOKUP_NAME.
315
316 SYMBOL_SEARCH_NAME should be a symbol's "search" name.
317
318 On success and if non-NULL, COMP_MATCH_RES->match is set to point
319 to the symbol name as should be presented to the user as a
320 completion match list element. In most languages, this is the same
321 as the symbol's search name, but in some, like Ada, the display
322 name is dynamically computed within the comparison routine.
323
324 Also, on success and if non-NULL, COMP_MATCH_RES->match_for_lcd
325 points the part of SYMBOL_SEARCH_NAME that was considered to match
326 LOOKUP_NAME. E.g., in C++, in linespec/wild mode, if the symbol is
327 "foo::function()" and LOOKUP_NAME is "function(", MATCH_FOR_LCD
328 points to "function()" inside SYMBOL_SEARCH_NAME. */
329 typedef bool (symbol_name_matcher_ftype)
330 (const char *symbol_search_name,
331 const lookup_name_info &lookup_name,
332 completion_match_result *comp_match_res);
333
334 /* Some of the structures in this file are space critical.
335 The space-critical structures are:
336
337 struct general_symbol_info
338 struct symbol
339 struct partial_symbol
340
341 These structures are laid out to encourage good packing.
342 They use ENUM_BITFIELD and short int fields, and they order the
343 structure members so that fields less than a word are next
344 to each other so they can be packed together. */
345
346 /* Rearranged: used ENUM_BITFIELD and rearranged field order in
347 all the space critical structures (plus struct minimal_symbol).
348 Memory usage dropped from 99360768 bytes to 90001408 bytes.
349 I measured this with before-and-after tests of
350 "HEAD-old-gdb -readnow HEAD-old-gdb" and
351 "HEAD-new-gdb -readnow HEAD-old-gdb" on native i686-pc-linux-gnu,
352 red hat linux 8, with LD_LIBRARY_PATH=/usr/lib/debug,
353 typing "maint space 1" at the first command prompt.
354
355 Here is another measurement (from andrew c):
356 # no /usr/lib/debug, just plain glibc, like a normal user
357 gdb HEAD-old-gdb
358 (gdb) break internal_error
359 (gdb) run
360 (gdb) maint internal-error
361 (gdb) backtrace
362 (gdb) maint space 1
363
364 gdb gdb_6_0_branch 2003-08-19 space used: 8896512
365 gdb HEAD 2003-08-19 space used: 8904704
366 gdb HEAD 2003-08-21 space used: 8396800 (+symtab.h)
367 gdb HEAD 2003-08-21 space used: 8265728 (+gdbtypes.h)
368
369 The third line shows the savings from the optimizations in symtab.h.
370 The fourth line shows the savings from the optimizations in
371 gdbtypes.h. Both optimizations are in gdb HEAD now.
372
373 --chastain 2003-08-21 */
374
375 /* Define a structure for the information that is common to all symbol types,
376 including minimal symbols, partial symbols, and full symbols. In a
377 multilanguage environment, some language specific information may need to
378 be recorded along with each symbol. */
379
380 /* This structure is space critical. See space comments at the top. */
381
382 struct general_symbol_info
383 {
384 /* Short version as to when to use which name accessor:
385 Use natural_name () to refer to the name of the symbol in the original
386 source code. Use linkage_name () if you want to know what the linker
387 thinks the symbol's name is. Use print_name () for output. Use
388 demangled_name () if you specifically need to know whether natural_name ()
389 and linkage_name () are different. */
390
391 const char *linkage_name () const
392 { return name; }
393
394 /* Return SYMBOL's "natural" name, i.e. the name that it was called in
395 the original source code. In languages like C++ where symbols may
396 be mangled for ease of manipulation by the linker, this is the
397 demangled name. */
398 const char *natural_name () const;
399
400 /* Returns a version of the name of a symbol that is
401 suitable for output. In C++ this is the "demangled" form of the
402 name if demangle is on and the "mangled" form of the name if
403 demangle is off. In other languages this is just the symbol name.
404 The result should never be NULL. Don't use this for internal
405 purposes (e.g. storing in a hashtable): it's only suitable for output. */
406 const char *print_name () const
407 { return demangle ? natural_name () : linkage_name (); }
408
409 /* Return the demangled name for a symbol based on the language for
410 that symbol. If no demangled name exists, return NULL. */
411 const char *demangled_name () const;
412
413 /* Returns the name to be used when sorting and searching symbols.
414 In C++, we search for the demangled form of a name,
415 and so sort symbols accordingly. In Ada, however, we search by mangled
416 name. If there is no distinct demangled name, then this
417 returns the same value (same pointer) as linkage_name (). */
418 const char *search_name () const;
419
420 /* Set just the linkage name of a symbol; do not try to demangle
421 it. Used for constructs which do not have a mangled name,
422 e.g. struct tags. Unlike SYMBOL_SET_NAMES, linkage_name must
423 be terminated and either already on the objfile's obstack or
424 permanently allocated. */
425 void set_linkage_name (const char *linkage_name)
426 { name = linkage_name; }
427
428 /* Name of the symbol. This is a required field. Storage for the
429 name is allocated on the objfile_obstack for the associated
430 objfile. For languages like C++ that make a distinction between
431 the mangled name and demangled name, this is the mangled
432 name. */
433
434 const char *name;
435
436 /* Value of the symbol. Which member of this union to use, and what
437 it means, depends on what kind of symbol this is and its
438 SYMBOL_CLASS. See comments there for more details. All of these
439 are in host byte order (though what they point to might be in
440 target byte order, e.g. LOC_CONST_BYTES). */
441
442 union
443 {
444 LONGEST ivalue;
445
446 const struct block *block;
447
448 const gdb_byte *bytes;
449
450 CORE_ADDR address;
451
452 /* A common block. Used with LOC_COMMON_BLOCK. */
453
454 const struct common_block *common_block;
455
456 /* For opaque typedef struct chain. */
457
458 struct symbol *chain;
459 }
460 value;
461
462 /* Since one and only one language can apply, wrap the language specific
463 information inside a union. */
464
465 union
466 {
467 /* A pointer to an obstack that can be used for storage associated
468 with this symbol. This is only used by Ada, and only when the
469 'ada_mangled' field is zero. */
470 struct obstack *obstack;
471
472 /* This is used by languages which wish to store a demangled name.
473 currently used by Ada, C++, and Objective C. */
474 const char *demangled_name;
475 }
476 language_specific;
477
478 /* Record the source code language that applies to this symbol.
479 This is used to select one of the fields from the language specific
480 union above. */
481
482 ENUM_BITFIELD(language) language : LANGUAGE_BITS;
483
484 /* This is only used by Ada. If set, then the 'demangled_name' field
485 of language_specific is valid. Otherwise, the 'obstack' field is
486 valid. */
487 unsigned int ada_mangled : 1;
488
489 /* Which section is this symbol in? This is an index into
490 section_offsets for this objfile. Negative means that the symbol
491 does not get relocated relative to a section. */
492
493 short section;
494 };
495
496 extern void symbol_set_demangled_name (struct general_symbol_info *,
497 const char *,
498 struct obstack *);
499
500 extern const char *symbol_get_demangled_name
501 (const struct general_symbol_info *);
502
503 extern CORE_ADDR symbol_overlayed_address (CORE_ADDR, struct obj_section *);
504
505 /* Return the address of SYM. The MAYBE_COPIED flag must be set on
506 SYM. If SYM appears in the main program's minimal symbols, then
507 that minsym's address is returned; otherwise, SYM's address is
508 returned. This should generally only be used via the
509 SYMBOL_VALUE_ADDRESS macro. */
510
511 extern CORE_ADDR get_symbol_address (const struct symbol *sym);
512
513 /* Note that these macros only work with symbol, not partial_symbol. */
514
515 #define SYMBOL_VALUE(symbol) (symbol)->value.ivalue
516 #define SYMBOL_VALUE_ADDRESS(symbol) \
517 (((symbol)->maybe_copied) ? get_symbol_address (symbol) \
518 : ((symbol)->value.address))
519 #define SET_SYMBOL_VALUE_ADDRESS(symbol, new_value) \
520 ((symbol)->value.address = (new_value))
521 #define SYMBOL_VALUE_BYTES(symbol) (symbol)->value.bytes
522 #define SYMBOL_VALUE_COMMON_BLOCK(symbol) (symbol)->value.common_block
523 #define SYMBOL_BLOCK_VALUE(symbol) (symbol)->value.block
524 #define SYMBOL_VALUE_CHAIN(symbol) (symbol)->value.chain
525 #define SYMBOL_LANGUAGE(symbol) (symbol)->language
526 #define SYMBOL_SECTION(symbol) (symbol)->section
527 #define SYMBOL_OBJ_SECTION(objfile, symbol) \
528 (((symbol)->section >= 0) \
529 ? (&(((objfile)->sections)[(symbol)->section])) \
530 : NULL)
531
532 /* Initializes the language dependent portion of a symbol
533 depending upon the language for the symbol. */
534 #define SYMBOL_SET_LANGUAGE(symbol,language,obstack) \
535 (symbol_set_language ((symbol), (language), (obstack)))
536 extern void symbol_set_language (struct general_symbol_info *symbol,
537 enum language language,
538 struct obstack *obstack);
539
540 /* Try to determine the demangled name for a symbol, based on the
541 language of that symbol. If the language is set to language_auto,
542 it will attempt to find any demangling algorithm that works and
543 then set the language appropriately. The returned name is allocated
544 by the demangler and should be xfree'd. */
545
546 extern char *symbol_find_demangled_name (struct general_symbol_info *gsymbol,
547 const char *mangled);
548
549 /* Set the linkage and natural names of a symbol, by demangling
550 the linkage name. If linkage_name may not be nullterminated,
551 copy_name must be set to true. */
552 #define SYMBOL_SET_NAMES(symbol,linkage_name,copy_name,objfile) \
553 symbol_set_names ((symbol), linkage_name, copy_name, \
554 (objfile)->per_bfd)
555 extern void symbol_set_names (struct general_symbol_info *symbol,
556 gdb::string_view linkage_name, bool copy_name,
557 struct objfile_per_bfd_storage *per_bfd,
558 gdb::optional<hashval_t> hash
559 = gdb::optional<hashval_t> ());
560
561 /* Return true if NAME matches the "search" name of SYMBOL, according
562 to the symbol's language. */
563 #define SYMBOL_MATCHES_SEARCH_NAME(symbol, name) \
564 symbol_matches_search_name ((symbol), (name))
565
566 /* Helper for SYMBOL_MATCHES_SEARCH_NAME that works with both symbols
567 and psymbols. */
568 extern bool symbol_matches_search_name
569 (const struct general_symbol_info *gsymbol,
570 const lookup_name_info &name);
571
572 /* Compute the hash of the given symbol search name of a symbol of
573 language LANGUAGE. */
574 extern unsigned int search_name_hash (enum language language,
575 const char *search_name);
576
577 /* Classification types for a minimal symbol. These should be taken as
578 "advisory only", since if gdb can't easily figure out a
579 classification it simply selects mst_unknown. It may also have to
580 guess when it can't figure out which is a better match between two
581 types (mst_data versus mst_bss) for example. Since the minimal
582 symbol info is sometimes derived from the BFD library's view of a
583 file, we need to live with what information bfd supplies. */
584
585 enum minimal_symbol_type
586 {
587 mst_unknown = 0, /* Unknown type, the default */
588 mst_text, /* Generally executable instructions */
589
590 /* A GNU ifunc symbol, in the .text section. GDB uses to know
591 whether the user is setting a breakpoint on a GNU ifunc function,
592 and thus GDB needs to actually set the breakpoint on the target
593 function. It is also used to know whether the program stepped
594 into an ifunc resolver -- the resolver may get a separate
595 symbol/alias under a different name, but it'll have the same
596 address as the ifunc symbol. */
597 mst_text_gnu_ifunc, /* Executable code returning address
598 of executable code */
599
600 /* A GNU ifunc function descriptor symbol, in a data section
601 (typically ".opd"). Seen on architectures that use function
602 descriptors, like PPC64/ELFv1. In this case, this symbol's value
603 is the address of the descriptor. There'll be a corresponding
604 mst_text_gnu_ifunc synthetic symbol for the text/entry
605 address. */
606 mst_data_gnu_ifunc, /* Executable code returning address
607 of executable code */
608
609 mst_slot_got_plt, /* GOT entries for .plt sections */
610 mst_data, /* Generally initialized data */
611 mst_bss, /* Generally uninitialized data */
612 mst_abs, /* Generally absolute (nonrelocatable) */
613 /* GDB uses mst_solib_trampoline for the start address of a shared
614 library trampoline entry. Breakpoints for shared library functions
615 are put there if the shared library is not yet loaded.
616 After the shared library is loaded, lookup_minimal_symbol will
617 prefer the minimal symbol from the shared library (usually
618 a mst_text symbol) over the mst_solib_trampoline symbol, and the
619 breakpoints will be moved to their true address in the shared
620 library via breakpoint_re_set. */
621 mst_solib_trampoline, /* Shared library trampoline code */
622 /* For the mst_file* types, the names are only guaranteed to be unique
623 within a given .o file. */
624 mst_file_text, /* Static version of mst_text */
625 mst_file_data, /* Static version of mst_data */
626 mst_file_bss, /* Static version of mst_bss */
627 nr_minsym_types
628 };
629
630 /* The number of enum minimal_symbol_type values, with some padding for
631 reasonable growth. */
632 #define MINSYM_TYPE_BITS 4
633 gdb_static_assert (nr_minsym_types <= (1 << MINSYM_TYPE_BITS));
634
635 /* Define a simple structure used to hold some very basic information about
636 all defined global symbols (text, data, bss, abs, etc). The only required
637 information is the general_symbol_info.
638
639 In many cases, even if a file was compiled with no special options for
640 debugging at all, as long as was not stripped it will contain sufficient
641 information to build a useful minimal symbol table using this structure.
642 Even when a file contains enough debugging information to build a full
643 symbol table, these minimal symbols are still useful for quickly mapping
644 between names and addresses, and vice versa. They are also sometimes
645 used to figure out what full symbol table entries need to be read in. */
646
647 struct minimal_symbol : public general_symbol_info
648 {
649 /* Size of this symbol. dbx_end_psymtab in dbxread.c uses this
650 information to calculate the end of the partial symtab based on the
651 address of the last symbol plus the size of the last symbol. */
652
653 unsigned long size;
654
655 /* Which source file is this symbol in? Only relevant for mst_file_*. */
656 const char *filename;
657
658 /* Classification type for this minimal symbol. */
659
660 ENUM_BITFIELD(minimal_symbol_type) type : MINSYM_TYPE_BITS;
661
662 /* Non-zero if this symbol was created by gdb.
663 Such symbols do not appear in the output of "info var|fun". */
664 unsigned int created_by_gdb : 1;
665
666 /* Two flag bits provided for the use of the target. */
667 unsigned int target_flag_1 : 1;
668 unsigned int target_flag_2 : 1;
669
670 /* Nonzero iff the size of the minimal symbol has been set.
671 Symbol size information can sometimes not be determined, because
672 the object file format may not carry that piece of information. */
673 unsigned int has_size : 1;
674
675 /* For data symbols only, if this is set, then the symbol might be
676 subject to copy relocation. In this case, a minimal symbol
677 matching the symbol's linkage name is first looked for in the
678 main objfile. If found, then that address is used; otherwise the
679 address in this symbol is used. */
680
681 unsigned maybe_copied : 1;
682
683 /* Non-zero if this symbol ever had its demangled name set (even if
684 it was set to NULL). */
685 unsigned int name_set : 1;
686
687 /* Minimal symbols with the same hash key are kept on a linked
688 list. This is the link. */
689
690 struct minimal_symbol *hash_next;
691
692 /* Minimal symbols are stored in two different hash tables. This is
693 the `next' pointer for the demangled hash table. */
694
695 struct minimal_symbol *demangled_hash_next;
696
697 /* True if this symbol is of some data type. */
698
699 bool data_p () const;
700
701 /* True if MSYMBOL is of some text type. */
702
703 bool text_p () const;
704 };
705
706 /* Return the address of MINSYM, which comes from OBJF. The
707 MAYBE_COPIED flag must be set on MINSYM. If MINSYM appears in the
708 main program's minimal symbols, then that minsym's address is
709 returned; otherwise, MINSYM's address is returned. This should
710 generally only be used via the MSYMBOL_VALUE_ADDRESS macro. */
711
712 extern CORE_ADDR get_msymbol_address (struct objfile *objf,
713 const struct minimal_symbol *minsym);
714
715 #define MSYMBOL_TARGET_FLAG_1(msymbol) (msymbol)->target_flag_1
716 #define MSYMBOL_TARGET_FLAG_2(msymbol) (msymbol)->target_flag_2
717 #define MSYMBOL_SIZE(msymbol) ((msymbol)->size + 0)
718 #define SET_MSYMBOL_SIZE(msymbol, sz) \
719 do \
720 { \
721 (msymbol)->size = sz; \
722 (msymbol)->has_size = 1; \
723 } while (0)
724 #define MSYMBOL_HAS_SIZE(msymbol) ((msymbol)->has_size + 0)
725 #define MSYMBOL_TYPE(msymbol) (msymbol)->type
726
727 #define MSYMBOL_VALUE(symbol) (symbol)->value.ivalue
728 /* The unrelocated address of the minimal symbol. */
729 #define MSYMBOL_VALUE_RAW_ADDRESS(symbol) ((symbol)->value.address + 0)
730 /* The relocated address of the minimal symbol, using the section
731 offsets from OBJFILE. */
732 #define MSYMBOL_VALUE_ADDRESS(objfile, symbol) \
733 (((symbol)->maybe_copied) ? get_msymbol_address (objfile, symbol) \
734 : ((symbol)->value.address \
735 + ANOFFSET ((objfile)->section_offsets, ((symbol)->section))))
736 /* For a bound minsym, we can easily compute the address directly. */
737 #define BMSYMBOL_VALUE_ADDRESS(symbol) \
738 MSYMBOL_VALUE_ADDRESS ((symbol).objfile, (symbol).minsym)
739 #define SET_MSYMBOL_VALUE_ADDRESS(symbol, new_value) \
740 ((symbol)->value.address = (new_value))
741 #define MSYMBOL_VALUE_BYTES(symbol) (symbol)->value.bytes
742 #define MSYMBOL_BLOCK_VALUE(symbol) (symbol)->value.block
743 #define MSYMBOL_VALUE_CHAIN(symbol) (symbol)->value.chain
744 #define MSYMBOL_LANGUAGE(symbol) (symbol)->language
745 #define MSYMBOL_SECTION(symbol) (symbol)->section
746 #define MSYMBOL_OBJ_SECTION(objfile, symbol) \
747 (((symbol)->section >= 0) \
748 ? (&(((objfile)->sections)[(symbol)->section])) \
749 : NULL)
750
751 #include "minsyms.h"
752
753 \f
754
755 /* Represent one symbol name; a variable, constant, function or typedef. */
756
757 /* Different name domains for symbols. Looking up a symbol specifies a
758 domain and ignores symbol definitions in other name domains. */
759
760 typedef enum domain_enum_tag
761 {
762 /* UNDEF_DOMAIN is used when a domain has not been discovered or
763 none of the following apply. This usually indicates an error either
764 in the symbol information or in gdb's handling of symbols. */
765
766 UNDEF_DOMAIN,
767
768 /* VAR_DOMAIN is the usual domain. In C, this contains variables,
769 function names, typedef names and enum type values. */
770
771 VAR_DOMAIN,
772
773 /* STRUCT_DOMAIN is used in C to hold struct, union and enum type names.
774 Thus, if `struct foo' is used in a C program, it produces a symbol named
775 `foo' in the STRUCT_DOMAIN. */
776
777 STRUCT_DOMAIN,
778
779 /* MODULE_DOMAIN is used in Fortran to hold module type names. */
780
781 MODULE_DOMAIN,
782
783 /* LABEL_DOMAIN may be used for names of labels (for gotos). */
784
785 LABEL_DOMAIN,
786
787 /* Fortran common blocks. Their naming must be separate from VAR_DOMAIN.
788 They also always use LOC_COMMON_BLOCK. */
789 COMMON_BLOCK_DOMAIN,
790
791 /* This must remain last. */
792 NR_DOMAINS
793 } domain_enum;
794
795 /* The number of bits in a symbol used to represent the domain. */
796
797 #define SYMBOL_DOMAIN_BITS 3
798 gdb_static_assert (NR_DOMAINS <= (1 << SYMBOL_DOMAIN_BITS));
799
800 extern const char *domain_name (domain_enum);
801
802 /* Searching domains, used when searching for symbols. Element numbers are
803 hardcoded in GDB, check all enum uses before changing it. */
804
805 enum search_domain
806 {
807 /* Everything in VAR_DOMAIN minus FUNCTIONS_DOMAIN and
808 TYPES_DOMAIN. */
809 VARIABLES_DOMAIN = 0,
810
811 /* All functions -- for some reason not methods, though. */
812 FUNCTIONS_DOMAIN = 1,
813
814 /* All defined types */
815 TYPES_DOMAIN = 2,
816
817 /* All modules. */
818 MODULES_DOMAIN = 3,
819
820 /* Any type. */
821 ALL_DOMAIN = 4
822 };
823
824 extern const char *search_domain_name (enum search_domain);
825
826 /* An address-class says where to find the value of a symbol. */
827
828 enum address_class
829 {
830 /* Not used; catches errors. */
831
832 LOC_UNDEF,
833
834 /* Value is constant int SYMBOL_VALUE, host byteorder. */
835
836 LOC_CONST,
837
838 /* Value is at fixed address SYMBOL_VALUE_ADDRESS. */
839
840 LOC_STATIC,
841
842 /* Value is in register. SYMBOL_VALUE is the register number
843 in the original debug format. SYMBOL_REGISTER_OPS holds a
844 function that can be called to transform this into the
845 actual register number this represents in a specific target
846 architecture (gdbarch).
847
848 For some symbol formats (stabs, for some compilers at least),
849 the compiler generates two symbols, an argument and a register.
850 In some cases we combine them to a single LOC_REGISTER in symbol
851 reading, but currently not for all cases (e.g. it's passed on the
852 stack and then loaded into a register). */
853
854 LOC_REGISTER,
855
856 /* It's an argument; the value is at SYMBOL_VALUE offset in arglist. */
857
858 LOC_ARG,
859
860 /* Value address is at SYMBOL_VALUE offset in arglist. */
861
862 LOC_REF_ARG,
863
864 /* Value is in specified register. Just like LOC_REGISTER except the
865 register holds the address of the argument instead of the argument
866 itself. This is currently used for the passing of structs and unions
867 on sparc and hppa. It is also used for call by reference where the
868 address is in a register, at least by mipsread.c. */
869
870 LOC_REGPARM_ADDR,
871
872 /* Value is a local variable at SYMBOL_VALUE offset in stack frame. */
873
874 LOC_LOCAL,
875
876 /* Value not used; definition in SYMBOL_TYPE. Symbols in the domain
877 STRUCT_DOMAIN all have this class. */
878
879 LOC_TYPEDEF,
880
881 /* Value is address SYMBOL_VALUE_ADDRESS in the code. */
882
883 LOC_LABEL,
884
885 /* In a symbol table, value is SYMBOL_BLOCK_VALUE of a `struct block'.
886 In a partial symbol table, SYMBOL_VALUE_ADDRESS is the start address
887 of the block. Function names have this class. */
888
889 LOC_BLOCK,
890
891 /* Value is a constant byte-sequence pointed to by SYMBOL_VALUE_BYTES, in
892 target byte order. */
893
894 LOC_CONST_BYTES,
895
896 /* Value is at fixed address, but the address of the variable has
897 to be determined from the minimal symbol table whenever the
898 variable is referenced.
899 This happens if debugging information for a global symbol is
900 emitted and the corresponding minimal symbol is defined
901 in another object file or runtime common storage.
902 The linker might even remove the minimal symbol if the global
903 symbol is never referenced, in which case the symbol remains
904 unresolved.
905
906 GDB would normally find the symbol in the minimal symbol table if it will
907 not find it in the full symbol table. But a reference to an external
908 symbol in a local block shadowing other definition requires full symbol
909 without possibly having its address available for LOC_STATIC. Testcase
910 is provided as `gdb.dwarf2/dw2-unresolved.exp'.
911
912 This is also used for thread local storage (TLS) variables. In this case,
913 the address of the TLS variable must be determined when the variable is
914 referenced, from the MSYMBOL_VALUE_RAW_ADDRESS, which is the offset
915 of the TLS variable in the thread local storage of the shared
916 library/object. */
917
918 LOC_UNRESOLVED,
919
920 /* The variable does not actually exist in the program.
921 The value is ignored. */
922
923 LOC_OPTIMIZED_OUT,
924
925 /* The variable's address is computed by a set of location
926 functions (see "struct symbol_computed_ops" below). */
927 LOC_COMPUTED,
928
929 /* The variable uses general_symbol_info->value->common_block field.
930 It also always uses COMMON_BLOCK_DOMAIN. */
931 LOC_COMMON_BLOCK,
932
933 /* Not used, just notes the boundary of the enum. */
934 LOC_FINAL_VALUE
935 };
936
937 /* The number of bits needed for values in enum address_class, with some
938 padding for reasonable growth, and room for run-time registered address
939 classes. See symtab.c:MAX_SYMBOL_IMPLS.
940 This is a #define so that we can have a assertion elsewhere to
941 verify that we have reserved enough space for synthetic address
942 classes. */
943 #define SYMBOL_ACLASS_BITS 5
944 gdb_static_assert (LOC_FINAL_VALUE <= (1 << SYMBOL_ACLASS_BITS));
945
946 /* The methods needed to implement LOC_COMPUTED. These methods can
947 use the symbol's .aux_value for additional per-symbol information.
948
949 At present this is only used to implement location expressions. */
950
951 struct symbol_computed_ops
952 {
953
954 /* Return the value of the variable SYMBOL, relative to the stack
955 frame FRAME. If the variable has been optimized out, return
956 zero.
957
958 Iff `read_needs_frame (SYMBOL)' is not SYMBOL_NEEDS_FRAME, then
959 FRAME may be zero. */
960
961 struct value *(*read_variable) (struct symbol * symbol,
962 struct frame_info * frame);
963
964 /* Read variable SYMBOL like read_variable at (callee) FRAME's function
965 entry. SYMBOL should be a function parameter, otherwise
966 NO_ENTRY_VALUE_ERROR will be thrown. */
967 struct value *(*read_variable_at_entry) (struct symbol *symbol,
968 struct frame_info *frame);
969
970 /* Find the "symbol_needs_kind" value for the given symbol. This
971 value determines whether reading the symbol needs memory (e.g., a
972 global variable), just registers (a thread-local), or a frame (a
973 local variable). */
974 enum symbol_needs_kind (*get_symbol_read_needs) (struct symbol * symbol);
975
976 /* Write to STREAM a natural-language description of the location of
977 SYMBOL, in the context of ADDR. */
978 void (*describe_location) (struct symbol * symbol, CORE_ADDR addr,
979 struct ui_file * stream);
980
981 /* Non-zero if this symbol's address computation is dependent on PC. */
982 unsigned char location_has_loclist;
983
984 /* Tracepoint support. Append bytecodes to the tracepoint agent
985 expression AX that push the address of the object SYMBOL. Set
986 VALUE appropriately. Note --- for objects in registers, this
987 needn't emit any code; as long as it sets VALUE properly, then
988 the caller will generate the right code in the process of
989 treating this as an lvalue or rvalue. */
990
991 void (*tracepoint_var_ref) (struct symbol *symbol, struct agent_expr *ax,
992 struct axs_value *value);
993
994 /* Generate C code to compute the location of SYMBOL. The C code is
995 emitted to STREAM. GDBARCH is the current architecture and PC is
996 the PC at which SYMBOL's location should be evaluated.
997 REGISTERS_USED is a vector indexed by register number; the
998 generator function should set an element in this vector if the
999 corresponding register is needed by the location computation.
1000 The generated C code must assign the location to a local
1001 variable; this variable's name is RESULT_NAME. */
1002
1003 void (*generate_c_location) (struct symbol *symbol, string_file *stream,
1004 struct gdbarch *gdbarch,
1005 unsigned char *registers_used,
1006 CORE_ADDR pc, const char *result_name);
1007
1008 };
1009
1010 /* The methods needed to implement LOC_BLOCK for inferior functions.
1011 These methods can use the symbol's .aux_value for additional
1012 per-symbol information. */
1013
1014 struct symbol_block_ops
1015 {
1016 /* Fill in *START and *LENGTH with DWARF block data of function
1017 FRAMEFUNC valid for inferior context address PC. Set *LENGTH to
1018 zero if such location is not valid for PC; *START is left
1019 uninitialized in such case. */
1020 void (*find_frame_base_location) (struct symbol *framefunc, CORE_ADDR pc,
1021 const gdb_byte **start, size_t *length);
1022
1023 /* Return the frame base address. FRAME is the frame for which we want to
1024 compute the base address while FRAMEFUNC is the symbol for the
1025 corresponding function. Return 0 on failure (FRAMEFUNC may not hold the
1026 information we need).
1027
1028 This method is designed to work with static links (nested functions
1029 handling). Static links are function properties whose evaluation returns
1030 the frame base address for the enclosing frame. However, there are
1031 multiple definitions for "frame base": the content of the frame base
1032 register, the CFA as defined by DWARF unwinding information, ...
1033
1034 So this specific method is supposed to compute the frame base address such
1035 as for nested functions, the static link computes the same address. For
1036 instance, considering DWARF debugging information, the static link is
1037 computed with DW_AT_static_link and this method must be used to compute
1038 the corresponding DW_AT_frame_base attribute. */
1039 CORE_ADDR (*get_frame_base) (struct symbol *framefunc,
1040 struct frame_info *frame);
1041 };
1042
1043 /* Functions used with LOC_REGISTER and LOC_REGPARM_ADDR. */
1044
1045 struct symbol_register_ops
1046 {
1047 int (*register_number) (struct symbol *symbol, struct gdbarch *gdbarch);
1048 };
1049
1050 /* Objects of this type are used to find the address class and the
1051 various computed ops vectors of a symbol. */
1052
1053 struct symbol_impl
1054 {
1055 enum address_class aclass;
1056
1057 /* Used with LOC_COMPUTED. */
1058 const struct symbol_computed_ops *ops_computed;
1059
1060 /* Used with LOC_BLOCK. */
1061 const struct symbol_block_ops *ops_block;
1062
1063 /* Used with LOC_REGISTER and LOC_REGPARM_ADDR. */
1064 const struct symbol_register_ops *ops_register;
1065 };
1066
1067 /* struct symbol has some subclasses. This enum is used to
1068 differentiate between them. */
1069
1070 enum symbol_subclass_kind
1071 {
1072 /* Plain struct symbol. */
1073 SYMBOL_NONE,
1074
1075 /* struct template_symbol. */
1076 SYMBOL_TEMPLATE,
1077
1078 /* struct rust_vtable_symbol. */
1079 SYMBOL_RUST_VTABLE
1080 };
1081
1082 /* This structure is space critical. See space comments at the top. */
1083
1084 struct symbol : public general_symbol_info, public allocate_on_obstack
1085 {
1086 symbol ()
1087 /* Class-initialization of bitfields is only allowed in C++20. */
1088 : domain (UNDEF_DOMAIN),
1089 aclass_index (0),
1090 is_objfile_owned (0),
1091 is_argument (0),
1092 is_inlined (0),
1093 maybe_copied (0),
1094 subclass (SYMBOL_NONE)
1095 {
1096 /* We can't use an initializer list for members of a base class, and
1097 general_symbol_info needs to stay a POD type. */
1098 name = nullptr;
1099 value.ivalue = 0;
1100 language_specific.obstack = nullptr;
1101 language = language_unknown;
1102 ada_mangled = 0;
1103 section = 0;
1104 /* GCC 4.8.5 (on CentOS 7) does not correctly compile class-
1105 initialization of unions, so we initialize it manually here. */
1106 owner.symtab = nullptr;
1107 }
1108
1109 /* Data type of value */
1110
1111 struct type *type = nullptr;
1112
1113 /* The owner of this symbol.
1114 Which one to use is defined by symbol.is_objfile_owned. */
1115
1116 union
1117 {
1118 /* The symbol table containing this symbol. This is the file associated
1119 with LINE. It can be NULL during symbols read-in but it is never NULL
1120 during normal operation. */
1121 struct symtab *symtab;
1122
1123 /* For types defined by the architecture. */
1124 struct gdbarch *arch;
1125 } owner;
1126
1127 /* Domain code. */
1128
1129 ENUM_BITFIELD(domain_enum_tag) domain : SYMBOL_DOMAIN_BITS;
1130
1131 /* Address class. This holds an index into the 'symbol_impls'
1132 table. The actual enum address_class value is stored there,
1133 alongside any per-class ops vectors. */
1134
1135 unsigned int aclass_index : SYMBOL_ACLASS_BITS;
1136
1137 /* If non-zero then symbol is objfile-owned, use owner.symtab.
1138 Otherwise symbol is arch-owned, use owner.arch. */
1139
1140 unsigned int is_objfile_owned : 1;
1141
1142 /* Whether this is an argument. */
1143
1144 unsigned is_argument : 1;
1145
1146 /* Whether this is an inlined function (class LOC_BLOCK only). */
1147 unsigned is_inlined : 1;
1148
1149 /* For LOC_STATIC only, if this is set, then the symbol might be
1150 subject to copy relocation. In this case, a minimal symbol
1151 matching the symbol's linkage name is first looked for in the
1152 main objfile. If found, then that address is used; otherwise the
1153 address in this symbol is used. */
1154
1155 unsigned maybe_copied : 1;
1156
1157 /* The concrete type of this symbol. */
1158
1159 ENUM_BITFIELD (symbol_subclass_kind) subclass : 2;
1160
1161 /* Line number of this symbol's definition, except for inlined
1162 functions. For an inlined function (class LOC_BLOCK and
1163 SYMBOL_INLINED set) this is the line number of the function's call
1164 site. Inlined function symbols are not definitions, and they are
1165 never found by symbol table lookup.
1166 If this symbol is arch-owned, LINE shall be zero.
1167
1168 FIXME: Should we really make the assumption that nobody will try
1169 to debug files longer than 64K lines? What about machine
1170 generated programs? */
1171
1172 unsigned short line = 0;
1173
1174 /* An arbitrary data pointer, allowing symbol readers to record
1175 additional information on a per-symbol basis. Note that this data
1176 must be allocated using the same obstack as the symbol itself. */
1177 /* So far it is only used by:
1178 LOC_COMPUTED: to find the location information
1179 LOC_BLOCK (DWARF2 function): information used internally by the
1180 DWARF 2 code --- specifically, the location expression for the frame
1181 base for this function. */
1182 /* FIXME drow/2003-02-21: For the LOC_BLOCK case, it might be better
1183 to add a magic symbol to the block containing this information,
1184 or to have a generic debug info annotation slot for symbols. */
1185
1186 void *aux_value = nullptr;
1187
1188 struct symbol *hash_next = nullptr;
1189 };
1190
1191 /* Several lookup functions return both a symbol and the block in which the
1192 symbol is found. This structure is used in these cases. */
1193
1194 struct block_symbol
1195 {
1196 /* The symbol that was found, or NULL if no symbol was found. */
1197 struct symbol *symbol;
1198
1199 /* If SYMBOL is not NULL, then this is the block in which the symbol is
1200 defined. */
1201 const struct block *block;
1202 };
1203
1204 extern const struct symbol_impl *symbol_impls;
1205
1206 /* Note: There is no accessor macro for symbol.owner because it is
1207 "private". */
1208
1209 #define SYMBOL_DOMAIN(symbol) (symbol)->domain
1210 #define SYMBOL_IMPL(symbol) (symbol_impls[(symbol)->aclass_index])
1211 #define SYMBOL_ACLASS_INDEX(symbol) (symbol)->aclass_index
1212 #define SYMBOL_CLASS(symbol) (SYMBOL_IMPL (symbol).aclass)
1213 #define SYMBOL_OBJFILE_OWNED(symbol) ((symbol)->is_objfile_owned)
1214 #define SYMBOL_IS_ARGUMENT(symbol) (symbol)->is_argument
1215 #define SYMBOL_INLINED(symbol) (symbol)->is_inlined
1216 #define SYMBOL_IS_CPLUS_TEMPLATE_FUNCTION(symbol) \
1217 (((symbol)->subclass) == SYMBOL_TEMPLATE)
1218 #define SYMBOL_TYPE(symbol) (symbol)->type
1219 #define SYMBOL_LINE(symbol) (symbol)->line
1220 #define SYMBOL_COMPUTED_OPS(symbol) (SYMBOL_IMPL (symbol).ops_computed)
1221 #define SYMBOL_BLOCK_OPS(symbol) (SYMBOL_IMPL (symbol).ops_block)
1222 #define SYMBOL_REGISTER_OPS(symbol) (SYMBOL_IMPL (symbol).ops_register)
1223 #define SYMBOL_LOCATION_BATON(symbol) (symbol)->aux_value
1224
1225 extern int register_symbol_computed_impl (enum address_class,
1226 const struct symbol_computed_ops *);
1227
1228 extern int register_symbol_block_impl (enum address_class aclass,
1229 const struct symbol_block_ops *ops);
1230
1231 extern int register_symbol_register_impl (enum address_class,
1232 const struct symbol_register_ops *);
1233
1234 /* Return the OBJFILE of SYMBOL.
1235 It is an error to call this if symbol.is_objfile_owned is false, which
1236 only happens for architecture-provided types. */
1237
1238 extern struct objfile *symbol_objfile (const struct symbol *symbol);
1239
1240 /* Return the ARCH of SYMBOL. */
1241
1242 extern struct gdbarch *symbol_arch (const struct symbol *symbol);
1243
1244 /* Return the SYMTAB of SYMBOL.
1245 It is an error to call this if symbol.is_objfile_owned is false, which
1246 only happens for architecture-provided types. */
1247
1248 extern struct symtab *symbol_symtab (const struct symbol *symbol);
1249
1250 /* Set the symtab of SYMBOL to SYMTAB.
1251 It is an error to call this if symbol.is_objfile_owned is false, which
1252 only happens for architecture-provided types. */
1253
1254 extern void symbol_set_symtab (struct symbol *symbol, struct symtab *symtab);
1255
1256 /* An instance of this type is used to represent a C++ template
1257 function. A symbol is really of this type iff
1258 SYMBOL_IS_CPLUS_TEMPLATE_FUNCTION is true. */
1259
1260 struct template_symbol : public symbol
1261 {
1262 /* The number of template arguments. */
1263 int n_template_arguments = 0;
1264
1265 /* The template arguments. This is an array with
1266 N_TEMPLATE_ARGUMENTS elements. */
1267 struct symbol **template_arguments = nullptr;
1268 };
1269
1270 /* A symbol that represents a Rust virtual table object. */
1271
1272 struct rust_vtable_symbol : public symbol
1273 {
1274 /* The concrete type for which this vtable was created; that is, in
1275 "impl Trait for Type", this is "Type". */
1276 struct type *concrete_type = nullptr;
1277 };
1278
1279 \f
1280 /* Each item represents a line-->pc (or the reverse) mapping. This is
1281 somewhat more wasteful of space than one might wish, but since only
1282 the files which are actually debugged are read in to core, we don't
1283 waste much space. */
1284
1285 struct linetable_entry
1286 {
1287 int line;
1288 CORE_ADDR pc;
1289 };
1290
1291 /* The order of entries in the linetable is significant. They should
1292 be sorted by increasing values of the pc field. If there is more than
1293 one entry for a given pc, then I'm not sure what should happen (and
1294 I not sure whether we currently handle it the best way).
1295
1296 Example: a C for statement generally looks like this
1297
1298 10 0x100 - for the init/test part of a for stmt.
1299 20 0x200
1300 30 0x300
1301 10 0x400 - for the increment part of a for stmt.
1302
1303 If an entry has a line number of zero, it marks the start of a PC
1304 range for which no line number information is available. It is
1305 acceptable, though wasteful of table space, for such a range to be
1306 zero length. */
1307
1308 struct linetable
1309 {
1310 int nitems;
1311
1312 /* Actually NITEMS elements. If you don't like this use of the
1313 `struct hack', you can shove it up your ANSI (seriously, if the
1314 committee tells us how to do it, we can probably go along). */
1315 struct linetable_entry item[1];
1316 };
1317
1318 /* How to relocate the symbols from each section in a symbol file.
1319 Each struct contains an array of offsets.
1320 The ordering and meaning of the offsets is file-type-dependent;
1321 typically it is indexed by section numbers or symbol types or
1322 something like that.
1323
1324 To give us flexibility in changing the internal representation
1325 of these offsets, the ANOFFSET macro must be used to insert and
1326 extract offset values in the struct. */
1327
1328 struct section_offsets
1329 {
1330 CORE_ADDR offsets[1]; /* As many as needed. */
1331 };
1332
1333 #define ANOFFSET(secoff, whichone) \
1334 ((whichone == -1) \
1335 ? (internal_error (__FILE__, __LINE__, \
1336 _("Section index is uninitialized")), -1) \
1337 : secoff->offsets[whichone])
1338
1339 /* The size of a section_offsets table for N sections. */
1340 #define SIZEOF_N_SECTION_OFFSETS(n) \
1341 (sizeof (struct section_offsets) \
1342 + sizeof (((struct section_offsets *) 0)->offsets) * ((n)-1))
1343
1344 /* Each source file or header is represented by a struct symtab.
1345 The name "symtab" is historical, another name for it is "filetab".
1346 These objects are chained through the `next' field. */
1347
1348 struct symtab
1349 {
1350 /* Unordered chain of all filetabs in the compunit, with the exception
1351 that the "main" source file is the first entry in the list. */
1352
1353 struct symtab *next;
1354
1355 /* Backlink to containing compunit symtab. */
1356
1357 struct compunit_symtab *compunit_symtab;
1358
1359 /* Table mapping core addresses to line numbers for this file.
1360 Can be NULL if none. Never shared between different symtabs. */
1361
1362 struct linetable *linetable;
1363
1364 /* Name of this source file. This pointer is never NULL. */
1365
1366 const char *filename;
1367
1368 /* Language of this source file. */
1369
1370 enum language language;
1371
1372 /* Full name of file as found by searching the source path.
1373 NULL if not yet known. */
1374
1375 char *fullname;
1376 };
1377
1378 #define SYMTAB_COMPUNIT(symtab) ((symtab)->compunit_symtab)
1379 #define SYMTAB_LINETABLE(symtab) ((symtab)->linetable)
1380 #define SYMTAB_LANGUAGE(symtab) ((symtab)->language)
1381 #define SYMTAB_BLOCKVECTOR(symtab) \
1382 COMPUNIT_BLOCKVECTOR (SYMTAB_COMPUNIT (symtab))
1383 #define SYMTAB_OBJFILE(symtab) \
1384 COMPUNIT_OBJFILE (SYMTAB_COMPUNIT (symtab))
1385 #define SYMTAB_PSPACE(symtab) (SYMTAB_OBJFILE (symtab)->pspace)
1386 #define SYMTAB_DIRNAME(symtab) \
1387 COMPUNIT_DIRNAME (SYMTAB_COMPUNIT (symtab))
1388
1389 /* Compunit symtabs contain the actual "symbol table", aka blockvector, as well
1390 as the list of all source files (what gdb has historically associated with
1391 the term "symtab").
1392 Additional information is recorded here that is common to all symtabs in a
1393 compilation unit (DWARF or otherwise).
1394
1395 Example:
1396 For the case of a program built out of these files:
1397
1398 foo.c
1399 foo1.h
1400 foo2.h
1401 bar.c
1402 foo1.h
1403 bar.h
1404
1405 This is recorded as:
1406
1407 objfile -> foo.c(cu) -> bar.c(cu) -> NULL
1408 | |
1409 v v
1410 foo.c bar.c
1411 | |
1412 v v
1413 foo1.h foo1.h
1414 | |
1415 v v
1416 foo2.h bar.h
1417 | |
1418 v v
1419 NULL NULL
1420
1421 where "foo.c(cu)" and "bar.c(cu)" are struct compunit_symtab objects,
1422 and the files foo.c, etc. are struct symtab objects. */
1423
1424 struct compunit_symtab
1425 {
1426 /* Unordered chain of all compunit symtabs of this objfile. */
1427 struct compunit_symtab *next;
1428
1429 /* Object file from which this symtab information was read. */
1430 struct objfile *objfile;
1431
1432 /* Name of the symtab.
1433 This is *not* intended to be a usable filename, and is
1434 for debugging purposes only. */
1435 const char *name;
1436
1437 /* Unordered list of file symtabs, except that by convention the "main"
1438 source file (e.g., .c, .cc) is guaranteed to be first.
1439 Each symtab is a file, either the "main" source file (e.g., .c, .cc)
1440 or header (e.g., .h). */
1441 struct symtab *filetabs;
1442
1443 /* Last entry in FILETABS list.
1444 Subfiles are added to the end of the list so they accumulate in order,
1445 with the main source subfile living at the front.
1446 The main reason is so that the main source file symtab is at the head
1447 of the list, and the rest appear in order for debugging convenience. */
1448 struct symtab *last_filetab;
1449
1450 /* Non-NULL string that identifies the format of the debugging information,
1451 such as "stabs", "dwarf 1", "dwarf 2", "coff", etc. This is mostly useful
1452 for automated testing of gdb but may also be information that is
1453 useful to the user. */
1454 const char *debugformat;
1455
1456 /* String of producer version information, or NULL if we don't know. */
1457 const char *producer;
1458
1459 /* Directory in which it was compiled, or NULL if we don't know. */
1460 const char *dirname;
1461
1462 /* List of all symbol scope blocks for this symtab. It is shared among
1463 all symtabs in a given compilation unit. */
1464 const struct blockvector *blockvector;
1465
1466 /* Section in objfile->section_offsets for the blockvector and
1467 the linetable. Probably always SECT_OFF_TEXT. */
1468 int block_line_section;
1469
1470 /* Symtab has been compiled with both optimizations and debug info so that
1471 GDB may stop skipping prologues as variables locations are valid already
1472 at function entry points. */
1473 unsigned int locations_valid : 1;
1474
1475 /* DWARF unwinder for this CU is valid even for epilogues (PC at the return
1476 instruction). This is supported by GCC since 4.5.0. */
1477 unsigned int epilogue_unwind_valid : 1;
1478
1479 /* struct call_site entries for this compilation unit or NULL. */
1480 htab_t call_site_htab;
1481
1482 /* The macro table for this symtab. Like the blockvector, this
1483 is shared between different symtabs in a given compilation unit.
1484 It's debatable whether it *should* be shared among all the symtabs in
1485 the given compilation unit, but it currently is. */
1486 struct macro_table *macro_table;
1487
1488 /* If non-NULL, then this points to a NULL-terminated vector of
1489 included compunits. When searching the static or global
1490 block of this compunit, the corresponding block of all
1491 included compunits will also be searched. Note that this
1492 list must be flattened -- the symbol reader is responsible for
1493 ensuring that this vector contains the transitive closure of all
1494 included compunits. */
1495 struct compunit_symtab **includes;
1496
1497 /* If this is an included compunit, this points to one includer
1498 of the table. This user is considered the canonical compunit
1499 containing this one. An included compunit may itself be
1500 included by another. */
1501 struct compunit_symtab *user;
1502 };
1503
1504 #define COMPUNIT_OBJFILE(cust) ((cust)->objfile)
1505 #define COMPUNIT_FILETABS(cust) ((cust)->filetabs)
1506 #define COMPUNIT_DEBUGFORMAT(cust) ((cust)->debugformat)
1507 #define COMPUNIT_PRODUCER(cust) ((cust)->producer)
1508 #define COMPUNIT_DIRNAME(cust) ((cust)->dirname)
1509 #define COMPUNIT_BLOCKVECTOR(cust) ((cust)->blockvector)
1510 #define COMPUNIT_BLOCK_LINE_SECTION(cust) ((cust)->block_line_section)
1511 #define COMPUNIT_LOCATIONS_VALID(cust) ((cust)->locations_valid)
1512 #define COMPUNIT_EPILOGUE_UNWIND_VALID(cust) ((cust)->epilogue_unwind_valid)
1513 #define COMPUNIT_CALL_SITE_HTAB(cust) ((cust)->call_site_htab)
1514 #define COMPUNIT_MACRO_TABLE(cust) ((cust)->macro_table)
1515
1516 /* A range adapter to allowing iterating over all the file tables
1517 within a compunit. */
1518
1519 struct compunit_filetabs : public next_adapter<struct symtab>
1520 {
1521 compunit_filetabs (struct compunit_symtab *cu)
1522 : next_adapter<struct symtab> (cu->filetabs)
1523 {
1524 }
1525 };
1526
1527 /* Return the primary symtab of CUST. */
1528
1529 extern struct symtab *
1530 compunit_primary_filetab (const struct compunit_symtab *cust);
1531
1532 /* Return the language of CUST. */
1533
1534 extern enum language compunit_language (const struct compunit_symtab *cust);
1535
1536 \f
1537
1538 /* The virtual function table is now an array of structures which have the
1539 form { int16 offset, delta; void *pfn; }.
1540
1541 In normal virtual function tables, OFFSET is unused.
1542 DELTA is the amount which is added to the apparent object's base
1543 address in order to point to the actual object to which the
1544 virtual function should be applied.
1545 PFN is a pointer to the virtual function.
1546
1547 Note that this macro is g++ specific (FIXME). */
1548
1549 #define VTBL_FNADDR_OFFSET 2
1550
1551 /* External variables and functions for the objects described above. */
1552
1553 /* True if we are nested inside psymtab_to_symtab. */
1554
1555 extern int currently_reading_symtab;
1556
1557 /* symtab.c lookup functions */
1558
1559 extern const char multiple_symbols_ask[];
1560 extern const char multiple_symbols_all[];
1561 extern const char multiple_symbols_cancel[];
1562
1563 const char *multiple_symbols_select_mode (void);
1564
1565 bool symbol_matches_domain (enum language symbol_language,
1566 domain_enum symbol_domain,
1567 domain_enum domain);
1568
1569 /* lookup a symbol table by source file name. */
1570
1571 extern struct symtab *lookup_symtab (const char *);
1572
1573 /* An object of this type is passed as the 'is_a_field_of_this'
1574 argument to lookup_symbol and lookup_symbol_in_language. */
1575
1576 struct field_of_this_result
1577 {
1578 /* The type in which the field was found. If this is NULL then the
1579 symbol was not found in 'this'. If non-NULL, then one of the
1580 other fields will be non-NULL as well. */
1581
1582 struct type *type;
1583
1584 /* If the symbol was found as an ordinary field of 'this', then this
1585 is non-NULL and points to the particular field. */
1586
1587 struct field *field;
1588
1589 /* If the symbol was found as a function field of 'this', then this
1590 is non-NULL and points to the particular field. */
1591
1592 struct fn_fieldlist *fn_field;
1593 };
1594
1595 /* Find the definition for a specified symbol name NAME
1596 in domain DOMAIN in language LANGUAGE, visible from lexical block BLOCK
1597 if non-NULL or from global/static blocks if BLOCK is NULL.
1598 Returns the struct symbol pointer, or NULL if no symbol is found.
1599 C++: if IS_A_FIELD_OF_THIS is non-NULL on entry, check to see if
1600 NAME is a field of the current implied argument `this'. If so fill in the
1601 fields of IS_A_FIELD_OF_THIS, otherwise the fields are set to NULL.
1602 The symbol's section is fixed up if necessary. */
1603
1604 extern struct block_symbol
1605 lookup_symbol_in_language (const char *,
1606 const struct block *,
1607 const domain_enum,
1608 enum language,
1609 struct field_of_this_result *);
1610
1611 /* Same as lookup_symbol_in_language, but using the current language. */
1612
1613 extern struct block_symbol lookup_symbol (const char *,
1614 const struct block *,
1615 const domain_enum,
1616 struct field_of_this_result *);
1617
1618 /* Find the definition for a specified symbol search name in domain
1619 DOMAIN, visible from lexical block BLOCK if non-NULL or from
1620 global/static blocks if BLOCK is NULL. The passed-in search name
1621 should not come from the user; instead it should already be a
1622 search name as retrieved from a search_name () call. See definition of
1623 symbol_name_match_type::SEARCH_NAME. Returns the struct symbol
1624 pointer, or NULL if no symbol is found. The symbol's section is
1625 fixed up if necessary. */
1626
1627 extern struct block_symbol lookup_symbol_search_name (const char *search_name,
1628 const struct block *block,
1629 domain_enum domain);
1630
1631 /* A default version of lookup_symbol_nonlocal for use by languages
1632 that can't think of anything better to do.
1633 This implements the C lookup rules. */
1634
1635 extern struct block_symbol
1636 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
1637 const char *,
1638 const struct block *,
1639 const domain_enum);
1640
1641 /* Some helper functions for languages that need to write their own
1642 lookup_symbol_nonlocal functions. */
1643
1644 /* Lookup a symbol in the static block associated to BLOCK, if there
1645 is one; do nothing if BLOCK is NULL or a global block.
1646 Upon success fixes up the symbol's section if necessary. */
1647
1648 extern struct block_symbol
1649 lookup_symbol_in_static_block (const char *name,
1650 const struct block *block,
1651 const domain_enum domain);
1652
1653 /* Search all static file-level symbols for NAME from DOMAIN.
1654 Upon success fixes up the symbol's section if necessary. */
1655
1656 extern struct block_symbol lookup_static_symbol (const char *name,
1657 const domain_enum domain);
1658
1659 /* Lookup a symbol in all files' global blocks.
1660
1661 If BLOCK is non-NULL then it is used for two things:
1662 1) If a target-specific lookup routine for libraries exists, then use the
1663 routine for the objfile of BLOCK, and
1664 2) The objfile of BLOCK is used to assist in determining the search order
1665 if the target requires it.
1666 See gdbarch_iterate_over_objfiles_in_search_order.
1667
1668 Upon success fixes up the symbol's section if necessary. */
1669
1670 extern struct block_symbol
1671 lookup_global_symbol (const char *name,
1672 const struct block *block,
1673 const domain_enum domain);
1674
1675 /* Lookup a symbol in block BLOCK.
1676 Upon success fixes up the symbol's section if necessary. */
1677
1678 extern struct symbol *
1679 lookup_symbol_in_block (const char *name,
1680 symbol_name_match_type match_type,
1681 const struct block *block,
1682 const domain_enum domain);
1683
1684 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1685 found, or NULL if not found. */
1686
1687 extern struct block_symbol
1688 lookup_language_this (const struct language_defn *lang,
1689 const struct block *block);
1690
1691 /* Lookup a [struct, union, enum] by name, within a specified block. */
1692
1693 extern struct type *lookup_struct (const char *, const struct block *);
1694
1695 extern struct type *lookup_union (const char *, const struct block *);
1696
1697 extern struct type *lookup_enum (const char *, const struct block *);
1698
1699 /* from blockframe.c: */
1700
1701 /* lookup the function symbol corresponding to the address. The
1702 return value will not be an inlined function; the containing
1703 function will be returned instead. */
1704
1705 extern struct symbol *find_pc_function (CORE_ADDR);
1706
1707 /* lookup the function corresponding to the address and section. The
1708 return value will not be an inlined function; the containing
1709 function will be returned instead. */
1710
1711 extern struct symbol *find_pc_sect_function (CORE_ADDR, struct obj_section *);
1712
1713 /* lookup the function symbol corresponding to the address and
1714 section. The return value will be the closest enclosing function,
1715 which might be an inline function. */
1716
1717 extern struct symbol *find_pc_sect_containing_function
1718 (CORE_ADDR pc, struct obj_section *section);
1719
1720 /* Find the symbol at the given address. Returns NULL if no symbol
1721 found. Only exact matches for ADDRESS are considered. */
1722
1723 extern struct symbol *find_symbol_at_address (CORE_ADDR);
1724
1725 /* Finds the "function" (text symbol) that is smaller than PC but
1726 greatest of all of the potential text symbols in SECTION. Sets
1727 *NAME and/or *ADDRESS conditionally if that pointer is non-null.
1728 If ENDADDR is non-null, then set *ENDADDR to be the end of the
1729 function (exclusive). If the optional parameter BLOCK is non-null,
1730 then set *BLOCK to the address of the block corresponding to the
1731 function symbol, if such a symbol could be found during the lookup;
1732 nullptr is used as a return value for *BLOCK if no block is found.
1733 This function either succeeds or fails (not halfway succeeds). If
1734 it succeeds, it sets *NAME, *ADDRESS, and *ENDADDR to real
1735 information and returns true. If it fails, it sets *NAME, *ADDRESS
1736 and *ENDADDR to zero and returns false.
1737
1738 If the function in question occupies non-contiguous ranges,
1739 *ADDRESS and *ENDADDR are (subject to the conditions noted above) set
1740 to the start and end of the range in which PC is found. Thus
1741 *ADDRESS <= PC < *ENDADDR with no intervening gaps (in which ranges
1742 from other functions might be found).
1743
1744 This property allows find_pc_partial_function to be used (as it had
1745 been prior to the introduction of non-contiguous range support) by
1746 various tdep files for finding a start address and limit address
1747 for prologue analysis. This still isn't ideal, however, because we
1748 probably shouldn't be doing prologue analysis (in which
1749 instructions are scanned to determine frame size and stack layout)
1750 for any range that doesn't contain the entry pc. Moreover, a good
1751 argument can be made that prologue analysis ought to be performed
1752 starting from the entry pc even when PC is within some other range.
1753 This might suggest that *ADDRESS and *ENDADDR ought to be set to the
1754 limits of the entry pc range, but that will cause the
1755 *ADDRESS <= PC < *ENDADDR condition to be violated; many of the
1756 callers of find_pc_partial_function expect this condition to hold.
1757
1758 Callers which require the start and/or end addresses for the range
1759 containing the entry pc should instead call
1760 find_function_entry_range_from_pc. */
1761
1762 extern bool find_pc_partial_function (CORE_ADDR pc, const char **name,
1763 CORE_ADDR *address, CORE_ADDR *endaddr,
1764 const struct block **block = nullptr);
1765
1766 /* Like find_pc_partial_function, above, but *ADDRESS and *ENDADDR are
1767 set to start and end addresses of the range containing the entry pc.
1768
1769 Note that it is not necessarily the case that (for non-NULL ADDRESS
1770 and ENDADDR arguments) the *ADDRESS <= PC < *ENDADDR condition will
1771 hold.
1772
1773 See comment for find_pc_partial_function, above, for further
1774 explanation. */
1775
1776 extern bool find_function_entry_range_from_pc (CORE_ADDR pc,
1777 const char **name,
1778 CORE_ADDR *address,
1779 CORE_ADDR *endaddr);
1780
1781 /* Return the type of a function with its first instruction exactly at
1782 the PC address. Return NULL otherwise. */
1783
1784 extern struct type *find_function_type (CORE_ADDR pc);
1785
1786 /* See if we can figure out the function's actual type from the type
1787 that the resolver returns. RESOLVER_FUNADDR is the address of the
1788 ifunc resolver. */
1789
1790 extern struct type *find_gnu_ifunc_target_type (CORE_ADDR resolver_funaddr);
1791
1792 /* Find the GNU ifunc minimal symbol that matches SYM. */
1793 extern bound_minimal_symbol find_gnu_ifunc (const symbol *sym);
1794
1795 extern void clear_pc_function_cache (void);
1796
1797 /* Expand symtab containing PC, SECTION if not already expanded. */
1798
1799 extern void expand_symtab_containing_pc (CORE_ADDR, struct obj_section *);
1800
1801 /* lookup full symbol table by address. */
1802
1803 extern struct compunit_symtab *find_pc_compunit_symtab (CORE_ADDR);
1804
1805 /* lookup full symbol table by address and section. */
1806
1807 extern struct compunit_symtab *
1808 find_pc_sect_compunit_symtab (CORE_ADDR, struct obj_section *);
1809
1810 extern bool find_pc_line_pc_range (CORE_ADDR, CORE_ADDR *, CORE_ADDR *);
1811
1812 extern void reread_symbols (void);
1813
1814 /* Look up a type named NAME in STRUCT_DOMAIN in the current language.
1815 The type returned must not be opaque -- i.e., must have at least one field
1816 defined. */
1817
1818 extern struct type *lookup_transparent_type (const char *);
1819
1820 extern struct type *basic_lookup_transparent_type (const char *);
1821
1822 /* Macro for name of symbol to indicate a file compiled with gcc. */
1823 #ifndef GCC_COMPILED_FLAG_SYMBOL
1824 #define GCC_COMPILED_FLAG_SYMBOL "gcc_compiled."
1825 #endif
1826
1827 /* Macro for name of symbol to indicate a file compiled with gcc2. */
1828 #ifndef GCC2_COMPILED_FLAG_SYMBOL
1829 #define GCC2_COMPILED_FLAG_SYMBOL "gcc2_compiled."
1830 #endif
1831
1832 extern bool in_gnu_ifunc_stub (CORE_ADDR pc);
1833
1834 /* Functions for resolving STT_GNU_IFUNC symbols which are implemented only
1835 for ELF symbol files. */
1836
1837 struct gnu_ifunc_fns
1838 {
1839 /* See elf_gnu_ifunc_resolve_addr for its real implementation. */
1840 CORE_ADDR (*gnu_ifunc_resolve_addr) (struct gdbarch *gdbarch, CORE_ADDR pc);
1841
1842 /* See elf_gnu_ifunc_resolve_name for its real implementation. */
1843 bool (*gnu_ifunc_resolve_name) (const char *function_name,
1844 CORE_ADDR *function_address_p);
1845
1846 /* See elf_gnu_ifunc_resolver_stop for its real implementation. */
1847 void (*gnu_ifunc_resolver_stop) (struct breakpoint *b);
1848
1849 /* See elf_gnu_ifunc_resolver_return_stop for its real implementation. */
1850 void (*gnu_ifunc_resolver_return_stop) (struct breakpoint *b);
1851 };
1852
1853 #define gnu_ifunc_resolve_addr gnu_ifunc_fns_p->gnu_ifunc_resolve_addr
1854 #define gnu_ifunc_resolve_name gnu_ifunc_fns_p->gnu_ifunc_resolve_name
1855 #define gnu_ifunc_resolver_stop gnu_ifunc_fns_p->gnu_ifunc_resolver_stop
1856 #define gnu_ifunc_resolver_return_stop \
1857 gnu_ifunc_fns_p->gnu_ifunc_resolver_return_stop
1858
1859 extern const struct gnu_ifunc_fns *gnu_ifunc_fns_p;
1860
1861 extern CORE_ADDR find_solib_trampoline_target (struct frame_info *, CORE_ADDR);
1862
1863 struct symtab_and_line
1864 {
1865 /* The program space of this sal. */
1866 struct program_space *pspace = NULL;
1867
1868 struct symtab *symtab = NULL;
1869 struct symbol *symbol = NULL;
1870 struct obj_section *section = NULL;
1871 struct minimal_symbol *msymbol = NULL;
1872 /* Line number. Line numbers start at 1 and proceed through symtab->nlines.
1873 0 is never a valid line number; it is used to indicate that line number
1874 information is not available. */
1875 int line = 0;
1876
1877 CORE_ADDR pc = 0;
1878 CORE_ADDR end = 0;
1879 bool explicit_pc = false;
1880 bool explicit_line = false;
1881
1882 /* The probe associated with this symtab_and_line. */
1883 probe *prob = NULL;
1884 /* If PROBE is not NULL, then this is the objfile in which the probe
1885 originated. */
1886 struct objfile *objfile = NULL;
1887 };
1888
1889 \f
1890
1891 /* Given a pc value, return line number it is in. Second arg nonzero means
1892 if pc is on the boundary use the previous statement's line number. */
1893
1894 extern struct symtab_and_line find_pc_line (CORE_ADDR, int);
1895
1896 /* Same function, but specify a section as well as an address. */
1897
1898 extern struct symtab_and_line find_pc_sect_line (CORE_ADDR,
1899 struct obj_section *, int);
1900
1901 /* Wrapper around find_pc_line to just return the symtab. */
1902
1903 extern struct symtab *find_pc_line_symtab (CORE_ADDR);
1904
1905 /* Given a symtab and line number, return the pc there. */
1906
1907 extern bool find_line_pc (struct symtab *, int, CORE_ADDR *);
1908
1909 extern bool find_line_pc_range (struct symtab_and_line, CORE_ADDR *,
1910 CORE_ADDR *);
1911
1912 extern void resolve_sal_pc (struct symtab_and_line *);
1913
1914 /* solib.c */
1915
1916 extern void clear_solib (void);
1917
1918 /* The reason we're calling into a completion match list collector
1919 function. */
1920 enum class complete_symbol_mode
1921 {
1922 /* Completing an expression. */
1923 EXPRESSION,
1924
1925 /* Completing a linespec. */
1926 LINESPEC,
1927 };
1928
1929 extern void default_collect_symbol_completion_matches_break_on
1930 (completion_tracker &tracker,
1931 complete_symbol_mode mode,
1932 symbol_name_match_type name_match_type,
1933 const char *text, const char *word, const char *break_on,
1934 enum type_code code);
1935 extern void default_collect_symbol_completion_matches
1936 (completion_tracker &tracker,
1937 complete_symbol_mode,
1938 symbol_name_match_type name_match_type,
1939 const char *,
1940 const char *,
1941 enum type_code);
1942 extern void collect_symbol_completion_matches
1943 (completion_tracker &tracker,
1944 complete_symbol_mode mode,
1945 symbol_name_match_type name_match_type,
1946 const char *, const char *);
1947 extern void collect_symbol_completion_matches_type (completion_tracker &tracker,
1948 const char *, const char *,
1949 enum type_code);
1950
1951 extern void collect_file_symbol_completion_matches
1952 (completion_tracker &tracker,
1953 complete_symbol_mode,
1954 symbol_name_match_type name_match_type,
1955 const char *, const char *, const char *);
1956
1957 extern completion_list
1958 make_source_files_completion_list (const char *, const char *);
1959
1960 /* Return whether SYM is a function/method, as opposed to a data symbol. */
1961
1962 extern bool symbol_is_function_or_method (symbol *sym);
1963
1964 /* Return whether MSYMBOL is a function/method, as opposed to a data
1965 symbol */
1966
1967 extern bool symbol_is_function_or_method (minimal_symbol *msymbol);
1968
1969 /* Return whether SYM should be skipped in completion mode MODE. In
1970 linespec mode, we're only interested in functions/methods. */
1971
1972 template<typename Symbol>
1973 static bool
1974 completion_skip_symbol (complete_symbol_mode mode, Symbol *sym)
1975 {
1976 return (mode == complete_symbol_mode::LINESPEC
1977 && !symbol_is_function_or_method (sym));
1978 }
1979
1980 /* symtab.c */
1981
1982 bool matching_obj_sections (struct obj_section *, struct obj_section *);
1983
1984 extern struct symtab *find_line_symtab (struct symtab *, int, int *, bool *);
1985
1986 /* Given a function symbol SYM, find the symtab and line for the start
1987 of the function. If FUNFIRSTLINE is true, we want the first line
1988 of real code inside the function. */
1989 extern symtab_and_line find_function_start_sal (symbol *sym, bool
1990 funfirstline);
1991
1992 /* Same, but start with a function address/section instead of a
1993 symbol. */
1994 extern symtab_and_line find_function_start_sal (CORE_ADDR func_addr,
1995 obj_section *section,
1996 bool funfirstline);
1997
1998 extern void skip_prologue_sal (struct symtab_and_line *);
1999
2000 /* symtab.c */
2001
2002 extern CORE_ADDR skip_prologue_using_sal (struct gdbarch *gdbarch,
2003 CORE_ADDR func_addr);
2004
2005 extern struct symbol *fixup_symbol_section (struct symbol *,
2006 struct objfile *);
2007
2008 /* If MSYMBOL is an text symbol, look for a function debug symbol with
2009 the same address. Returns NULL if not found. This is necessary in
2010 case a function is an alias to some other function, because debug
2011 information is only emitted for the alias target function's
2012 definition, not for the alias. */
2013 extern symbol *find_function_alias_target (bound_minimal_symbol msymbol);
2014
2015 /* Symbol searching */
2016
2017 /* When using the symbol_searcher struct to search for symbols, a vector of
2018 the following structs is returned. */
2019 struct symbol_search
2020 {
2021 symbol_search (int block_, struct symbol *symbol_)
2022 : block (block_),
2023 symbol (symbol_)
2024 {
2025 msymbol.minsym = nullptr;
2026 msymbol.objfile = nullptr;
2027 }
2028
2029 symbol_search (int block_, struct minimal_symbol *minsym,
2030 struct objfile *objfile)
2031 : block (block_),
2032 symbol (nullptr)
2033 {
2034 msymbol.minsym = minsym;
2035 msymbol.objfile = objfile;
2036 }
2037
2038 bool operator< (const symbol_search &other) const
2039 {
2040 return compare_search_syms (*this, other) < 0;
2041 }
2042
2043 bool operator== (const symbol_search &other) const
2044 {
2045 return compare_search_syms (*this, other) == 0;
2046 }
2047
2048 /* The block in which the match was found. Could be, for example,
2049 STATIC_BLOCK or GLOBAL_BLOCK. */
2050 int block;
2051
2052 /* Information describing what was found.
2053
2054 If symbol is NOT NULL, then information was found for this match. */
2055 struct symbol *symbol;
2056
2057 /* If msymbol is non-null, then a match was made on something for
2058 which only minimal_symbols exist. */
2059 struct bound_minimal_symbol msymbol;
2060
2061 private:
2062
2063 static int compare_search_syms (const symbol_search &sym_a,
2064 const symbol_search &sym_b);
2065 };
2066
2067 /* In order to search for global symbols of a particular kind matching
2068 particular regular expressions, create an instance of this structure and
2069 call the SEARCH member function. */
2070 class global_symbol_searcher
2071 {
2072 public:
2073
2074 /* Constructor. */
2075 global_symbol_searcher (enum search_domain kind,
2076 const char *symbol_name_regexp)
2077 : m_kind (kind),
2078 m_symbol_name_regexp (symbol_name_regexp)
2079 {
2080 /* The symbol searching is designed to only find one kind of thing. */
2081 gdb_assert (m_kind != ALL_DOMAIN);
2082 }
2083
2084 /* Set the optional regexp that matches against the symbol type. */
2085 void set_symbol_type_regexp (const char *regexp)
2086 {
2087 m_symbol_type_regexp = regexp;
2088 }
2089
2090 /* Set the flag to exclude minsyms from the search results. */
2091 void set_exclude_minsyms (bool exclude_minsyms)
2092 {
2093 m_exclude_minsyms = exclude_minsyms;
2094 }
2095
2096 /* Set the maximum number of search results to be returned. */
2097 void set_max_search_results (size_t max_search_results)
2098 {
2099 m_max_search_results = max_search_results;
2100 }
2101
2102 /* Search the symbols from all objfiles in the current program space
2103 looking for matches as defined by the current state of this object.
2104
2105 Within each file the results are sorted locally; each symtab's global
2106 and static blocks are separately alphabetized. Duplicate entries are
2107 removed. */
2108 std::vector<symbol_search> search () const;
2109
2110 /* The set of source files to search in for matching symbols. This is
2111 currently public so that it can be populated after this object has
2112 been constructed. */
2113 std::vector<const char *> filenames;
2114
2115 private:
2116 /* The kind of symbols are we searching for.
2117 VARIABLES_DOMAIN - Search all symbols, excluding functions, type
2118 names, and constants (enums).
2119 FUNCTIONS_DOMAIN - Search all functions..
2120 TYPES_DOMAIN - Search all type names.
2121 MODULES_DOMAIN - Search all Fortran modules.
2122 ALL_DOMAIN - Not valid for this function. */
2123 enum search_domain m_kind;
2124
2125 /* Regular expression to match against the symbol name. */
2126 const char *m_symbol_name_regexp = nullptr;
2127
2128 /* Regular expression to match against the symbol type. */
2129 const char *m_symbol_type_regexp = nullptr;
2130
2131 /* When this flag is false then minsyms that match M_SYMBOL_REGEXP will
2132 be included in the results, otherwise they are excluded. */
2133 bool m_exclude_minsyms = false;
2134
2135 /* Maximum number of search results. We currently impose a hard limit
2136 of SIZE_MAX, there is no "unlimited". */
2137 size_t m_max_search_results = SIZE_MAX;
2138
2139 /* Expand symtabs in OBJFILE that match PREG, are of type M_KIND. Return
2140 true if any msymbols were seen that we should later consider adding to
2141 the results list. */
2142 bool expand_symtabs (objfile *objfile,
2143 const gdb::optional<compiled_regex> &preg) const;
2144
2145 /* Add symbols from symtabs in OBJFILE that match PREG, and TREG, and are
2146 of type M_KIND, to the results set RESULTS_SET. Return false if we
2147 stop adding results early due to having already found too many results
2148 (based on M_MAX_SEARCH_RESULTS limit), otherwise return true.
2149 Returning true does not indicate that any results were added, just
2150 that we didn't _not_ add a result due to reaching MAX_SEARCH_RESULTS. */
2151 bool add_matching_symbols (objfile *objfile,
2152 const gdb::optional<compiled_regex> &preg,
2153 const gdb::optional<compiled_regex> &treg,
2154 std::set<symbol_search> *result_set) const;
2155
2156 /* Add msymbols from OBJFILE that match PREG and M_KIND, to the results
2157 vector RESULTS. Return false if we stop adding results early due to
2158 having already found too many results (based on max search results
2159 limit M_MAX_SEARCH_RESULTS), otherwise return true. Returning true
2160 does not indicate that any results were added, just that we didn't
2161 _not_ add a result due to reaching MAX_SEARCH_RESULTS. */
2162 bool add_matching_msymbols (objfile *objfile,
2163 const gdb::optional<compiled_regex> &preg,
2164 std::vector<symbol_search> *results) const;
2165
2166 /* Return true if MSYMBOL is of type KIND. */
2167 static bool is_suitable_msymbol (const enum search_domain kind,
2168 const minimal_symbol *msymbol);
2169 };
2170
2171 /* When searching for Fortran symbols within modules (functions/variables)
2172 we return a vector of this type. The first item in the pair is the
2173 module symbol, and the second item is the symbol for the function or
2174 variable we found. */
2175 typedef std::pair<symbol_search, symbol_search> module_symbol_search;
2176
2177 /* Searches the symbols to find function and variables symbols (depending
2178 on KIND) within Fortran modules. The MODULE_REGEXP matches against the
2179 name of the module, REGEXP matches against the name of the symbol within
2180 the module, and TYPE_REGEXP matches against the type of the symbol
2181 within the module. */
2182 extern std::vector<module_symbol_search> search_module_symbols
2183 (const char *module_regexp, const char *regexp,
2184 const char *type_regexp, search_domain kind);
2185
2186 /* Convert a global or static symbol SYM (based on BLOCK, which should be
2187 either GLOBAL_BLOCK or STATIC_BLOCK) into a string for use in 'info'
2188 type commands (e.g. 'info variables', 'info functions', etc). KIND is
2189 the type of symbol that was searched for which gave us SYM. */
2190
2191 extern std::string symbol_to_info_string (struct symbol *sym, int block,
2192 enum search_domain kind);
2193
2194 extern bool treg_matches_sym_type_name (const compiled_regex &treg,
2195 const struct symbol *sym);
2196
2197 /* The name of the ``main'' function. */
2198 extern const char *main_name ();
2199 extern enum language main_language (void);
2200
2201 /* Lookup symbol NAME from DOMAIN in MAIN_OBJFILE's global or static blocks,
2202 as specified by BLOCK_INDEX.
2203 This searches MAIN_OBJFILE as well as any associated separate debug info
2204 objfiles of MAIN_OBJFILE.
2205 BLOCK_INDEX can be GLOBAL_BLOCK or STATIC_BLOCK.
2206 Upon success fixes up the symbol's section if necessary. */
2207
2208 extern struct block_symbol
2209 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2210 enum block_enum block_index,
2211 const char *name,
2212 const domain_enum domain);
2213
2214 /* Return 1 if the supplied producer string matches the ARM RealView
2215 compiler (armcc). */
2216 bool producer_is_realview (const char *producer);
2217
2218 void fixup_section (struct general_symbol_info *ginfo,
2219 CORE_ADDR addr, struct objfile *objfile);
2220
2221 /* Look up objfile containing BLOCK. */
2222
2223 struct objfile *lookup_objfile_from_block (const struct block *block);
2224
2225 extern unsigned int symtab_create_debug;
2226
2227 extern unsigned int symbol_lookup_debug;
2228
2229 extern bool basenames_may_differ;
2230
2231 bool compare_filenames_for_search (const char *filename,
2232 const char *search_name);
2233
2234 bool compare_glob_filenames_for_search (const char *filename,
2235 const char *search_name);
2236
2237 bool iterate_over_some_symtabs (const char *name,
2238 const char *real_path,
2239 struct compunit_symtab *first,
2240 struct compunit_symtab *after_last,
2241 gdb::function_view<bool (symtab *)> callback);
2242
2243 void iterate_over_symtabs (const char *name,
2244 gdb::function_view<bool (symtab *)> callback);
2245
2246
2247 std::vector<CORE_ADDR> find_pcs_for_symtab_line
2248 (struct symtab *symtab, int line, struct linetable_entry **best_entry);
2249
2250 /* Prototype for callbacks for LA_ITERATE_OVER_SYMBOLS. The callback
2251 is called once per matching symbol SYM. The callback should return
2252 true to indicate that LA_ITERATE_OVER_SYMBOLS should continue
2253 iterating, or false to indicate that the iteration should end. */
2254
2255 typedef bool (symbol_found_callback_ftype) (struct block_symbol *bsym);
2256
2257 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2258
2259 For each symbol that matches, CALLBACK is called. The symbol is
2260 passed to the callback.
2261
2262 If CALLBACK returns false, the iteration ends and this function
2263 returns false. Otherwise, the search continues, and the function
2264 eventually returns true. */
2265
2266 bool iterate_over_symbols (const struct block *block,
2267 const lookup_name_info &name,
2268 const domain_enum domain,
2269 gdb::function_view<symbol_found_callback_ftype> callback);
2270
2271 /* Like iterate_over_symbols, but if all calls to CALLBACK return
2272 true, then calls CALLBACK one additional time with a block_symbol
2273 that has a valid block but a NULL symbol. */
2274
2275 bool iterate_over_symbols_terminated
2276 (const struct block *block,
2277 const lookup_name_info &name,
2278 const domain_enum domain,
2279 gdb::function_view<symbol_found_callback_ftype> callback);
2280
2281 /* Storage type used by demangle_for_lookup. demangle_for_lookup
2282 either returns a const char * pointer that points to either of the
2283 fields of this type, or a pointer to the input NAME. This is done
2284 this way because the underlying functions that demangle_for_lookup
2285 calls either return a std::string (e.g., cp_canonicalize_string) or
2286 a malloc'ed buffer (libiberty's demangled), and we want to avoid
2287 unnecessary reallocation/string copying. */
2288 class demangle_result_storage
2289 {
2290 public:
2291
2292 /* Swap the std::string storage with STR, and return a pointer to
2293 the beginning of the new string. */
2294 const char *swap_string (std::string &str)
2295 {
2296 std::swap (m_string, str);
2297 return m_string.c_str ();
2298 }
2299
2300 /* Set the malloc storage to now point at PTR. Any previous malloc
2301 storage is released. */
2302 const char *set_malloc_ptr (char *ptr)
2303 {
2304 m_malloc.reset (ptr);
2305 return ptr;
2306 }
2307
2308 private:
2309
2310 /* The storage. */
2311 std::string m_string;
2312 gdb::unique_xmalloc_ptr<char> m_malloc;
2313 };
2314
2315 const char *
2316 demangle_for_lookup (const char *name, enum language lang,
2317 demangle_result_storage &storage);
2318
2319 struct symbol *allocate_symbol (struct objfile *);
2320
2321 void initialize_objfile_symbol (struct symbol *);
2322
2323 struct template_symbol *allocate_template_symbol (struct objfile *);
2324
2325 /* Test to see if the symbol of language SYMBOL_LANGUAGE specified by
2326 SYMNAME (which is already demangled for C++ symbols) matches
2327 SYM_TEXT in the first SYM_TEXT_LEN characters. If so, add it to
2328 the current completion list. */
2329 void completion_list_add_name (completion_tracker &tracker,
2330 language symbol_language,
2331 const char *symname,
2332 const lookup_name_info &lookup_name,
2333 const char *text, const char *word);
2334
2335 /* A simple symbol searching class. */
2336
2337 class symbol_searcher
2338 {
2339 public:
2340 /* Returns the symbols found for the search. */
2341 const std::vector<block_symbol> &
2342 matching_symbols () const
2343 {
2344 return m_symbols;
2345 }
2346
2347 /* Returns the minimal symbols found for the search. */
2348 const std::vector<bound_minimal_symbol> &
2349 matching_msymbols () const
2350 {
2351 return m_minimal_symbols;
2352 }
2353
2354 /* Search for all symbols named NAME in LANGUAGE with DOMAIN, restricting
2355 search to FILE_SYMTABS and SEARCH_PSPACE, both of which may be NULL
2356 to search all symtabs and program spaces. */
2357 void find_all_symbols (const std::string &name,
2358 const struct language_defn *language,
2359 enum search_domain search_domain,
2360 std::vector<symtab *> *search_symtabs,
2361 struct program_space *search_pspace);
2362
2363 /* Reset this object to perform another search. */
2364 void reset ()
2365 {
2366 m_symbols.clear ();
2367 m_minimal_symbols.clear ();
2368 }
2369
2370 private:
2371 /* Matching debug symbols. */
2372 std::vector<block_symbol> m_symbols;
2373
2374 /* Matching non-debug symbols. */
2375 std::vector<bound_minimal_symbol> m_minimal_symbols;
2376 };
2377
2378 #endif /* !defined(SYMTAB_H) */
This page took 0.073171 seconds and 3 git commands to generate.