Multi-target support
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2020 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "gdbsupport/agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48 #include <algorithm>
49 #include "gdbsupport/byte-vector.h"
50 #include "terminal.h"
51 #include <unordered_map>
52
53 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
54
55 static void default_terminal_info (struct target_ops *, const char *, int);
56
57 static int default_watchpoint_addr_within_range (struct target_ops *,
58 CORE_ADDR, CORE_ADDR, int);
59
60 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
61 CORE_ADDR, int);
62
63 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
64
65 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
66 long lwp, long tid);
67
68 static int default_follow_fork (struct target_ops *self, int follow_child,
69 int detach_fork);
70
71 static void default_mourn_inferior (struct target_ops *self);
72
73 static int default_search_memory (struct target_ops *ops,
74 CORE_ADDR start_addr,
75 ULONGEST search_space_len,
76 const gdb_byte *pattern,
77 ULONGEST pattern_len,
78 CORE_ADDR *found_addrp);
79
80 static int default_verify_memory (struct target_ops *self,
81 const gdb_byte *data,
82 CORE_ADDR memaddr, ULONGEST size);
83
84 static void tcomplain (void) ATTRIBUTE_NORETURN;
85
86 static struct target_ops *find_default_run_target (const char *);
87
88 static int dummy_find_memory_regions (struct target_ops *self,
89 find_memory_region_ftype ignore1,
90 void *ignore2);
91
92 static char *dummy_make_corefile_notes (struct target_ops *self,
93 bfd *ignore1, int *ignore2);
94
95 static std::string default_pid_to_str (struct target_ops *ops, ptid_t ptid);
96
97 static enum exec_direction_kind default_execution_direction
98 (struct target_ops *self);
99
100 /* Mapping between target_info objects (which have address identity)
101 and corresponding open/factory function/callback. Each add_target
102 call adds one entry to this map, and registers a "target
103 TARGET_NAME" command that when invoked calls the factory registered
104 here. The target_info object is associated with the command via
105 the command's context. */
106 static std::unordered_map<const target_info *, target_open_ftype *>
107 target_factories;
108
109 /* The singleton debug target. */
110
111 static struct target_ops *the_debug_target;
112
113 /* Top of target stack. */
114 /* The target structure we are currently using to talk to a process
115 or file or whatever "inferior" we have. */
116
117 target_ops *
118 current_top_target ()
119 {
120 return current_inferior ()->top_target ();
121 }
122
123 /* Command list for target. */
124
125 static struct cmd_list_element *targetlist = NULL;
126
127 /* True if we should trust readonly sections from the
128 executable when reading memory. */
129
130 static bool trust_readonly = false;
131
132 /* Nonzero if we should show true memory content including
133 memory breakpoint inserted by gdb. */
134
135 static int show_memory_breakpoints = 0;
136
137 /* These globals control whether GDB attempts to perform these
138 operations; they are useful for targets that need to prevent
139 inadvertent disruption, such as in non-stop mode. */
140
141 bool may_write_registers = true;
142
143 bool may_write_memory = true;
144
145 bool may_insert_breakpoints = true;
146
147 bool may_insert_tracepoints = true;
148
149 bool may_insert_fast_tracepoints = true;
150
151 bool may_stop = true;
152
153 /* Non-zero if we want to see trace of target level stuff. */
154
155 static unsigned int targetdebug = 0;
156
157 static void
158 set_targetdebug (const char *args, int from_tty, struct cmd_list_element *c)
159 {
160 if (targetdebug)
161 push_target (the_debug_target);
162 else
163 unpush_target (the_debug_target);
164 }
165
166 static void
167 show_targetdebug (struct ui_file *file, int from_tty,
168 struct cmd_list_element *c, const char *value)
169 {
170 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
171 }
172
173 /* The user just typed 'target' without the name of a target. */
174
175 static void
176 target_command (const char *arg, int from_tty)
177 {
178 fputs_filtered ("Argument required (target name). Try `help target'\n",
179 gdb_stdout);
180 }
181
182 int
183 target_has_all_memory_1 (void)
184 {
185 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
186 if (t->has_all_memory ())
187 return 1;
188
189 return 0;
190 }
191
192 int
193 target_has_memory_1 (void)
194 {
195 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
196 if (t->has_memory ())
197 return 1;
198
199 return 0;
200 }
201
202 int
203 target_has_stack_1 (void)
204 {
205 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
206 if (t->has_stack ())
207 return 1;
208
209 return 0;
210 }
211
212 int
213 target_has_registers_1 (void)
214 {
215 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
216 if (t->has_registers ())
217 return 1;
218
219 return 0;
220 }
221
222 bool
223 target_has_execution_1 (inferior *inf)
224 {
225 for (target_ops *t = inf->top_target ();
226 t != nullptr;
227 t = inf->find_target_beneath (t))
228 if (t->has_execution (inf))
229 return true;
230
231 return false;
232 }
233
234 int
235 target_has_execution_current (void)
236 {
237 return target_has_execution_1 (current_inferior ());
238 }
239
240 /* This is used to implement the various target commands. */
241
242 static void
243 open_target (const char *args, int from_tty, struct cmd_list_element *command)
244 {
245 auto *ti = static_cast<target_info *> (get_cmd_context (command));
246 target_open_ftype *func = target_factories[ti];
247
248 if (targetdebug)
249 fprintf_unfiltered (gdb_stdlog, "-> %s->open (...)\n",
250 ti->shortname);
251
252 func (args, from_tty);
253
254 if (targetdebug)
255 fprintf_unfiltered (gdb_stdlog, "<- %s->open (%s, %d)\n",
256 ti->shortname, args, from_tty);
257 }
258
259 /* See target.h. */
260
261 void
262 add_target (const target_info &t, target_open_ftype *func,
263 completer_ftype *completer)
264 {
265 struct cmd_list_element *c;
266
267 auto &func_slot = target_factories[&t];
268 if (func_slot != nullptr)
269 internal_error (__FILE__, __LINE__,
270 _("target already added (\"%s\")."), t.shortname);
271 func_slot = func;
272
273 if (targetlist == NULL)
274 add_prefix_cmd ("target", class_run, target_command, _("\
275 Connect to a target machine or process.\n\
276 The first argument is the type or protocol of the target machine.\n\
277 Remaining arguments are interpreted by the target protocol. For more\n\
278 information on the arguments for a particular protocol, type\n\
279 `help target ' followed by the protocol name."),
280 &targetlist, "target ", 0, &cmdlist);
281 c = add_cmd (t.shortname, no_class, t.doc, &targetlist);
282 set_cmd_context (c, (void *) &t);
283 set_cmd_sfunc (c, open_target);
284 if (completer != NULL)
285 set_cmd_completer (c, completer);
286 }
287
288 /* See target.h. */
289
290 void
291 add_deprecated_target_alias (const target_info &tinfo, const char *alias)
292 {
293 struct cmd_list_element *c;
294 char *alt;
295
296 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
297 see PR cli/15104. */
298 c = add_cmd (alias, no_class, tinfo.doc, &targetlist);
299 set_cmd_sfunc (c, open_target);
300 set_cmd_context (c, (void *) &tinfo);
301 alt = xstrprintf ("target %s", tinfo.shortname);
302 deprecate_cmd (c, alt);
303 }
304
305 /* Stub functions */
306
307 void
308 target_kill (void)
309 {
310 current_top_target ()->kill ();
311 }
312
313 void
314 target_load (const char *arg, int from_tty)
315 {
316 target_dcache_invalidate ();
317 current_top_target ()->load (arg, from_tty);
318 }
319
320 /* Define it. */
321
322 target_terminal_state target_terminal::m_terminal_state
323 = target_terminal_state::is_ours;
324
325 /* See target/target.h. */
326
327 void
328 target_terminal::init (void)
329 {
330 current_top_target ()->terminal_init ();
331
332 m_terminal_state = target_terminal_state::is_ours;
333 }
334
335 /* See target/target.h. */
336
337 void
338 target_terminal::inferior (void)
339 {
340 struct ui *ui = current_ui;
341
342 /* A background resume (``run&'') should leave GDB in control of the
343 terminal. */
344 if (ui->prompt_state != PROMPT_BLOCKED)
345 return;
346
347 /* Since we always run the inferior in the main console (unless "set
348 inferior-tty" is in effect), when some UI other than the main one
349 calls target_terminal::inferior, then we leave the main UI's
350 terminal settings as is. */
351 if (ui != main_ui)
352 return;
353
354 /* If GDB is resuming the inferior in the foreground, install
355 inferior's terminal modes. */
356
357 struct inferior *inf = current_inferior ();
358
359 if (inf->terminal_state != target_terminal_state::is_inferior)
360 {
361 current_top_target ()->terminal_inferior ();
362 inf->terminal_state = target_terminal_state::is_inferior;
363 }
364
365 m_terminal_state = target_terminal_state::is_inferior;
366
367 /* If the user hit C-c before, pretend that it was hit right
368 here. */
369 if (check_quit_flag ())
370 target_pass_ctrlc ();
371 }
372
373 /* See target/target.h. */
374
375 void
376 target_terminal::restore_inferior (void)
377 {
378 struct ui *ui = current_ui;
379
380 /* See target_terminal::inferior(). */
381 if (ui->prompt_state != PROMPT_BLOCKED || ui != main_ui)
382 return;
383
384 /* Restore the terminal settings of inferiors that were in the
385 foreground but are now ours_for_output due to a temporary
386 target_target::ours_for_output() call. */
387
388 {
389 scoped_restore_current_inferior restore_inferior;
390
391 for (::inferior *inf : all_inferiors ())
392 {
393 if (inf->terminal_state == target_terminal_state::is_ours_for_output)
394 {
395 set_current_inferior (inf);
396 current_top_target ()->terminal_inferior ();
397 inf->terminal_state = target_terminal_state::is_inferior;
398 }
399 }
400 }
401
402 m_terminal_state = target_terminal_state::is_inferior;
403
404 /* If the user hit C-c before, pretend that it was hit right
405 here. */
406 if (check_quit_flag ())
407 target_pass_ctrlc ();
408 }
409
410 /* Switch terminal state to DESIRED_STATE, either is_ours, or
411 is_ours_for_output. */
412
413 static void
414 target_terminal_is_ours_kind (target_terminal_state desired_state)
415 {
416 scoped_restore_current_inferior restore_inferior;
417
418 /* Must do this in two passes. First, have all inferiors save the
419 current terminal settings. Then, after all inferiors have add a
420 chance to safely save the terminal settings, restore GDB's
421 terminal settings. */
422
423 for (inferior *inf : all_inferiors ())
424 {
425 if (inf->terminal_state == target_terminal_state::is_inferior)
426 {
427 set_current_inferior (inf);
428 current_top_target ()->terminal_save_inferior ();
429 }
430 }
431
432 for (inferior *inf : all_inferiors ())
433 {
434 /* Note we don't check is_inferior here like above because we
435 need to handle 'is_ours_for_output -> is_ours' too. Careful
436 to never transition from 'is_ours' to 'is_ours_for_output',
437 though. */
438 if (inf->terminal_state != target_terminal_state::is_ours
439 && inf->terminal_state != desired_state)
440 {
441 set_current_inferior (inf);
442 if (desired_state == target_terminal_state::is_ours)
443 current_top_target ()->terminal_ours ();
444 else if (desired_state == target_terminal_state::is_ours_for_output)
445 current_top_target ()->terminal_ours_for_output ();
446 else
447 gdb_assert_not_reached ("unhandled desired state");
448 inf->terminal_state = desired_state;
449 }
450 }
451 }
452
453 /* See target/target.h. */
454
455 void
456 target_terminal::ours ()
457 {
458 struct ui *ui = current_ui;
459
460 /* See target_terminal::inferior. */
461 if (ui != main_ui)
462 return;
463
464 if (m_terminal_state == target_terminal_state::is_ours)
465 return;
466
467 target_terminal_is_ours_kind (target_terminal_state::is_ours);
468 m_terminal_state = target_terminal_state::is_ours;
469 }
470
471 /* See target/target.h. */
472
473 void
474 target_terminal::ours_for_output ()
475 {
476 struct ui *ui = current_ui;
477
478 /* See target_terminal::inferior. */
479 if (ui != main_ui)
480 return;
481
482 if (!target_terminal::is_inferior ())
483 return;
484
485 target_terminal_is_ours_kind (target_terminal_state::is_ours_for_output);
486 target_terminal::m_terminal_state = target_terminal_state::is_ours_for_output;
487 }
488
489 /* See target/target.h. */
490
491 void
492 target_terminal::info (const char *arg, int from_tty)
493 {
494 current_top_target ()->terminal_info (arg, from_tty);
495 }
496
497 /* See target.h. */
498
499 bool
500 target_supports_terminal_ours (void)
501 {
502 /* The current top target is the target at the top of the target
503 stack of the current inferior. While normally there's always an
504 inferior, we must check for nullptr here because we can get here
505 very early during startup, before the initial inferior is first
506 created. */
507 inferior *inf = current_inferior ();
508
509 if (inf == nullptr)
510 return false;
511 return inf->top_target ()->supports_terminal_ours ();
512 }
513
514 static void
515 tcomplain (void)
516 {
517 error (_("You can't do that when your target is `%s'"),
518 current_top_target ()->shortname ());
519 }
520
521 void
522 noprocess (void)
523 {
524 error (_("You can't do that without a process to debug."));
525 }
526
527 static void
528 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
529 {
530 printf_unfiltered (_("No saved terminal information.\n"));
531 }
532
533 /* A default implementation for the to_get_ada_task_ptid target method.
534
535 This function builds the PTID by using both LWP and TID as part of
536 the PTID lwp and tid elements. The pid used is the pid of the
537 inferior_ptid. */
538
539 static ptid_t
540 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
541 {
542 return ptid_t (inferior_ptid.pid (), lwp, tid);
543 }
544
545 static enum exec_direction_kind
546 default_execution_direction (struct target_ops *self)
547 {
548 if (!target_can_execute_reverse)
549 return EXEC_FORWARD;
550 else if (!target_can_async_p ())
551 return EXEC_FORWARD;
552 else
553 gdb_assert_not_reached ("\
554 to_execution_direction must be implemented for reverse async");
555 }
556
557 /* See target.h. */
558
559 void
560 decref_target (target_ops *t)
561 {
562 t->decref ();
563 if (t->refcount () == 0)
564 target_close (t);
565 }
566
567 /* See target.h. */
568
569 void
570 target_stack::push (target_ops *t)
571 {
572 t->incref ();
573
574 strata stratum = t->stratum ();
575
576 /* If there's already a target at this stratum, remove it. */
577
578 if (m_stack[stratum] != NULL)
579 unpush (m_stack[stratum]);
580
581 /* Now add the new one. */
582 m_stack[stratum] = t;
583
584 if (m_top < stratum)
585 m_top = stratum;
586 }
587
588 /* See target.h. */
589
590 void
591 push_target (struct target_ops *t)
592 {
593 current_inferior ()->push_target (t);
594 }
595
596 /* See target.h. */
597
598 void
599 push_target (target_ops_up &&t)
600 {
601 current_inferior ()->push_target (t.get ());
602 t.release ();
603 }
604
605 /* See target.h. */
606
607 int
608 unpush_target (struct target_ops *t)
609 {
610 return current_inferior ()->unpush_target (t);
611 }
612
613 /* See target.h. */
614
615 bool
616 target_stack::unpush (target_ops *t)
617 {
618 gdb_assert (t != NULL);
619
620 strata stratum = t->stratum ();
621
622 if (stratum == dummy_stratum)
623 internal_error (__FILE__, __LINE__,
624 _("Attempt to unpush the dummy target"));
625
626 /* Look for the specified target. Note that a target can only occur
627 once in the target stack. */
628
629 if (m_stack[stratum] != t)
630 {
631 /* If T wasn't pushed, quit. Only open targets should be
632 closed. */
633 return false;
634 }
635
636 /* Unchain the target. */
637 m_stack[stratum] = NULL;
638
639 if (m_top == stratum)
640 m_top = t->beneath ()->stratum ();
641
642 /* Finally close the target, if there are no inferiors
643 referencing this target still. Note we do this after unchaining,
644 so any target method calls from within the target_close
645 implementation don't end up in T anymore. Do leave the target
646 open if we have are other inferiors referencing this target
647 still. */
648 decref_target (t);
649
650 return true;
651 }
652
653 /* Unpush TARGET and assert that it worked. */
654
655 static void
656 unpush_target_and_assert (struct target_ops *target)
657 {
658 if (!unpush_target (target))
659 {
660 fprintf_unfiltered (gdb_stderr,
661 "pop_all_targets couldn't find target %s\n",
662 target->shortname ());
663 internal_error (__FILE__, __LINE__,
664 _("failed internal consistency check"));
665 }
666 }
667
668 void
669 pop_all_targets_above (enum strata above_stratum)
670 {
671 while ((int) (current_top_target ()->stratum ()) > (int) above_stratum)
672 unpush_target_and_assert (current_top_target ());
673 }
674
675 /* See target.h. */
676
677 void
678 pop_all_targets_at_and_above (enum strata stratum)
679 {
680 while ((int) (current_top_target ()->stratum ()) >= (int) stratum)
681 unpush_target_and_assert (current_top_target ());
682 }
683
684 void
685 pop_all_targets (void)
686 {
687 pop_all_targets_above (dummy_stratum);
688 }
689
690 /* Return true if T is now pushed in the current inferior's target
691 stack. Return false otherwise. */
692
693 bool
694 target_is_pushed (target_ops *t)
695 {
696 return current_inferior ()->target_is_pushed (t);
697 }
698
699 /* Default implementation of to_get_thread_local_address. */
700
701 static void
702 generic_tls_error (void)
703 {
704 throw_error (TLS_GENERIC_ERROR,
705 _("Cannot find thread-local variables on this target"));
706 }
707
708 /* Using the objfile specified in OBJFILE, find the address for the
709 current thread's thread-local storage with offset OFFSET. */
710 CORE_ADDR
711 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
712 {
713 volatile CORE_ADDR addr = 0;
714 struct target_ops *target = current_top_target ();
715 struct gdbarch *gdbarch = target_gdbarch ();
716
717 if (gdbarch_fetch_tls_load_module_address_p (gdbarch))
718 {
719 ptid_t ptid = inferior_ptid;
720
721 try
722 {
723 CORE_ADDR lm_addr;
724
725 /* Fetch the load module address for this objfile. */
726 lm_addr = gdbarch_fetch_tls_load_module_address (gdbarch,
727 objfile);
728
729 if (gdbarch_get_thread_local_address_p (gdbarch))
730 addr = gdbarch_get_thread_local_address (gdbarch, ptid, lm_addr,
731 offset);
732 else
733 addr = target->get_thread_local_address (ptid, lm_addr, offset);
734 }
735 /* If an error occurred, print TLS related messages here. Otherwise,
736 throw the error to some higher catcher. */
737 catch (const gdb_exception &ex)
738 {
739 int objfile_is_library = (objfile->flags & OBJF_SHARED);
740
741 switch (ex.error)
742 {
743 case TLS_NO_LIBRARY_SUPPORT_ERROR:
744 error (_("Cannot find thread-local variables "
745 "in this thread library."));
746 break;
747 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
748 if (objfile_is_library)
749 error (_("Cannot find shared library `%s' in dynamic"
750 " linker's load module list"), objfile_name (objfile));
751 else
752 error (_("Cannot find executable file `%s' in dynamic"
753 " linker's load module list"), objfile_name (objfile));
754 break;
755 case TLS_NOT_ALLOCATED_YET_ERROR:
756 if (objfile_is_library)
757 error (_("The inferior has not yet allocated storage for"
758 " thread-local variables in\n"
759 "the shared library `%s'\n"
760 "for %s"),
761 objfile_name (objfile),
762 target_pid_to_str (ptid).c_str ());
763 else
764 error (_("The inferior has not yet allocated storage for"
765 " thread-local variables in\n"
766 "the executable `%s'\n"
767 "for %s"),
768 objfile_name (objfile),
769 target_pid_to_str (ptid).c_str ());
770 break;
771 case TLS_GENERIC_ERROR:
772 if (objfile_is_library)
773 error (_("Cannot find thread-local storage for %s, "
774 "shared library %s:\n%s"),
775 target_pid_to_str (ptid).c_str (),
776 objfile_name (objfile), ex.what ());
777 else
778 error (_("Cannot find thread-local storage for %s, "
779 "executable file %s:\n%s"),
780 target_pid_to_str (ptid).c_str (),
781 objfile_name (objfile), ex.what ());
782 break;
783 default:
784 throw;
785 break;
786 }
787 }
788 }
789 else
790 error (_("Cannot find thread-local variables on this target"));
791
792 return addr;
793 }
794
795 const char *
796 target_xfer_status_to_string (enum target_xfer_status status)
797 {
798 #define CASE(X) case X: return #X
799 switch (status)
800 {
801 CASE(TARGET_XFER_E_IO);
802 CASE(TARGET_XFER_UNAVAILABLE);
803 default:
804 return "<unknown>";
805 }
806 #undef CASE
807 };
808
809
810 #undef MIN
811 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
812
813 /* target_read_string -- read a null terminated string, up to LEN bytes,
814 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
815 Set *STRING to a pointer to malloc'd memory containing the data; the caller
816 is responsible for freeing it. Return the number of bytes successfully
817 read. */
818
819 int
820 target_read_string (CORE_ADDR memaddr, gdb::unique_xmalloc_ptr<char> *string,
821 int len, int *errnop)
822 {
823 int tlen, offset, i;
824 gdb_byte buf[4];
825 int errcode = 0;
826 char *buffer;
827 int buffer_allocated;
828 char *bufptr;
829 unsigned int nbytes_read = 0;
830
831 gdb_assert (string);
832
833 /* Small for testing. */
834 buffer_allocated = 4;
835 buffer = (char *) xmalloc (buffer_allocated);
836 bufptr = buffer;
837
838 while (len > 0)
839 {
840 tlen = MIN (len, 4 - (memaddr & 3));
841 offset = memaddr & 3;
842
843 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
844 if (errcode != 0)
845 {
846 /* The transfer request might have crossed the boundary to an
847 unallocated region of memory. Retry the transfer, requesting
848 a single byte. */
849 tlen = 1;
850 offset = 0;
851 errcode = target_read_memory (memaddr, buf, 1);
852 if (errcode != 0)
853 goto done;
854 }
855
856 if (bufptr - buffer + tlen > buffer_allocated)
857 {
858 unsigned int bytes;
859
860 bytes = bufptr - buffer;
861 buffer_allocated *= 2;
862 buffer = (char *) xrealloc (buffer, buffer_allocated);
863 bufptr = buffer + bytes;
864 }
865
866 for (i = 0; i < tlen; i++)
867 {
868 *bufptr++ = buf[i + offset];
869 if (buf[i + offset] == '\000')
870 {
871 nbytes_read += i + 1;
872 goto done;
873 }
874 }
875
876 memaddr += tlen;
877 len -= tlen;
878 nbytes_read += tlen;
879 }
880 done:
881 string->reset (buffer);
882 if (errnop != NULL)
883 *errnop = errcode;
884 return nbytes_read;
885 }
886
887 struct target_section_table *
888 target_get_section_table (struct target_ops *target)
889 {
890 return target->get_section_table ();
891 }
892
893 /* Find a section containing ADDR. */
894
895 struct target_section *
896 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
897 {
898 struct target_section_table *table = target_get_section_table (target);
899 struct target_section *secp;
900
901 if (table == NULL)
902 return NULL;
903
904 for (secp = table->sections; secp < table->sections_end; secp++)
905 {
906 if (addr >= secp->addr && addr < secp->endaddr)
907 return secp;
908 }
909 return NULL;
910 }
911
912
913 /* Helper for the memory xfer routines. Checks the attributes of the
914 memory region of MEMADDR against the read or write being attempted.
915 If the access is permitted returns true, otherwise returns false.
916 REGION_P is an optional output parameter. If not-NULL, it is
917 filled with a pointer to the memory region of MEMADDR. REG_LEN
918 returns LEN trimmed to the end of the region. This is how much the
919 caller can continue requesting, if the access is permitted. A
920 single xfer request must not straddle memory region boundaries. */
921
922 static int
923 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
924 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
925 struct mem_region **region_p)
926 {
927 struct mem_region *region;
928
929 region = lookup_mem_region (memaddr);
930
931 if (region_p != NULL)
932 *region_p = region;
933
934 switch (region->attrib.mode)
935 {
936 case MEM_RO:
937 if (writebuf != NULL)
938 return 0;
939 break;
940
941 case MEM_WO:
942 if (readbuf != NULL)
943 return 0;
944 break;
945
946 case MEM_FLASH:
947 /* We only support writing to flash during "load" for now. */
948 if (writebuf != NULL)
949 error (_("Writing to flash memory forbidden in this context"));
950 break;
951
952 case MEM_NONE:
953 return 0;
954 }
955
956 /* region->hi == 0 means there's no upper bound. */
957 if (memaddr + len < region->hi || region->hi == 0)
958 *reg_len = len;
959 else
960 *reg_len = region->hi - memaddr;
961
962 return 1;
963 }
964
965 /* Read memory from more than one valid target. A core file, for
966 instance, could have some of memory but delegate other bits to
967 the target below it. So, we must manually try all targets. */
968
969 enum target_xfer_status
970 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
971 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
972 ULONGEST *xfered_len)
973 {
974 enum target_xfer_status res;
975
976 do
977 {
978 res = ops->xfer_partial (TARGET_OBJECT_MEMORY, NULL,
979 readbuf, writebuf, memaddr, len,
980 xfered_len);
981 if (res == TARGET_XFER_OK)
982 break;
983
984 /* Stop if the target reports that the memory is not available. */
985 if (res == TARGET_XFER_UNAVAILABLE)
986 break;
987
988 /* We want to continue past core files to executables, but not
989 past a running target's memory. */
990 if (ops->has_all_memory ())
991 break;
992
993 ops = ops->beneath ();
994 }
995 while (ops != NULL);
996
997 /* The cache works at the raw memory level. Make sure the cache
998 gets updated with raw contents no matter what kind of memory
999 object was originally being written. Note we do write-through
1000 first, so that if it fails, we don't write to the cache contents
1001 that never made it to the target. */
1002 if (writebuf != NULL
1003 && inferior_ptid != null_ptid
1004 && target_dcache_init_p ()
1005 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1006 {
1007 DCACHE *dcache = target_dcache_get ();
1008
1009 /* Note that writing to an area of memory which wasn't present
1010 in the cache doesn't cause it to be loaded in. */
1011 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1012 }
1013
1014 return res;
1015 }
1016
1017 /* Perform a partial memory transfer.
1018 For docs see target.h, to_xfer_partial. */
1019
1020 static enum target_xfer_status
1021 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1022 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1023 ULONGEST len, ULONGEST *xfered_len)
1024 {
1025 enum target_xfer_status res;
1026 ULONGEST reg_len;
1027 struct mem_region *region;
1028 struct inferior *inf;
1029
1030 /* For accesses to unmapped overlay sections, read directly from
1031 files. Must do this first, as MEMADDR may need adjustment. */
1032 if (readbuf != NULL && overlay_debugging)
1033 {
1034 struct obj_section *section = find_pc_overlay (memaddr);
1035
1036 if (pc_in_unmapped_range (memaddr, section))
1037 {
1038 struct target_section_table *table
1039 = target_get_section_table (ops);
1040 const char *section_name = section->the_bfd_section->name;
1041
1042 memaddr = overlay_mapped_address (memaddr, section);
1043 return section_table_xfer_memory_partial (readbuf, writebuf,
1044 memaddr, len, xfered_len,
1045 table->sections,
1046 table->sections_end,
1047 section_name);
1048 }
1049 }
1050
1051 /* Try the executable files, if "trust-readonly-sections" is set. */
1052 if (readbuf != NULL && trust_readonly)
1053 {
1054 struct target_section *secp;
1055 struct target_section_table *table;
1056
1057 secp = target_section_by_addr (ops, memaddr);
1058 if (secp != NULL
1059 && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
1060 {
1061 table = target_get_section_table (ops);
1062 return section_table_xfer_memory_partial (readbuf, writebuf,
1063 memaddr, len, xfered_len,
1064 table->sections,
1065 table->sections_end,
1066 NULL);
1067 }
1068 }
1069
1070 /* Try GDB's internal data cache. */
1071
1072 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1073 &region))
1074 return TARGET_XFER_E_IO;
1075
1076 if (inferior_ptid != null_ptid)
1077 inf = current_inferior ();
1078 else
1079 inf = NULL;
1080
1081 if (inf != NULL
1082 && readbuf != NULL
1083 /* The dcache reads whole cache lines; that doesn't play well
1084 with reading from a trace buffer, because reading outside of
1085 the collected memory range fails. */
1086 && get_traceframe_number () == -1
1087 && (region->attrib.cache
1088 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1089 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1090 {
1091 DCACHE *dcache = target_dcache_get_or_init ();
1092
1093 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1094 reg_len, xfered_len);
1095 }
1096
1097 /* If none of those methods found the memory we wanted, fall back
1098 to a target partial transfer. Normally a single call to
1099 to_xfer_partial is enough; if it doesn't recognize an object
1100 it will call the to_xfer_partial of the next target down.
1101 But for memory this won't do. Memory is the only target
1102 object which can be read from more than one valid target.
1103 A core file, for instance, could have some of memory but
1104 delegate other bits to the target below it. So, we must
1105 manually try all targets. */
1106
1107 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1108 xfered_len);
1109
1110 /* If we still haven't got anything, return the last error. We
1111 give up. */
1112 return res;
1113 }
1114
1115 /* Perform a partial memory transfer. For docs see target.h,
1116 to_xfer_partial. */
1117
1118 static enum target_xfer_status
1119 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1120 gdb_byte *readbuf, const gdb_byte *writebuf,
1121 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1122 {
1123 enum target_xfer_status res;
1124
1125 /* Zero length requests are ok and require no work. */
1126 if (len == 0)
1127 return TARGET_XFER_EOF;
1128
1129 memaddr = address_significant (target_gdbarch (), memaddr);
1130
1131 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1132 breakpoint insns, thus hiding out from higher layers whether
1133 there are software breakpoints inserted in the code stream. */
1134 if (readbuf != NULL)
1135 {
1136 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1137 xfered_len);
1138
1139 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1140 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1141 }
1142 else
1143 {
1144 /* A large write request is likely to be partially satisfied
1145 by memory_xfer_partial_1. We will continually malloc
1146 and free a copy of the entire write request for breakpoint
1147 shadow handling even though we only end up writing a small
1148 subset of it. Cap writes to a limit specified by the target
1149 to mitigate this. */
1150 len = std::min (ops->get_memory_xfer_limit (), len);
1151
1152 gdb::byte_vector buf (writebuf, writebuf + len);
1153 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1154 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1155 xfered_len);
1156 }
1157
1158 return res;
1159 }
1160
1161 scoped_restore_tmpl<int>
1162 make_scoped_restore_show_memory_breakpoints (int show)
1163 {
1164 return make_scoped_restore (&show_memory_breakpoints, show);
1165 }
1166
1167 /* For docs see target.h, to_xfer_partial. */
1168
1169 enum target_xfer_status
1170 target_xfer_partial (struct target_ops *ops,
1171 enum target_object object, const char *annex,
1172 gdb_byte *readbuf, const gdb_byte *writebuf,
1173 ULONGEST offset, ULONGEST len,
1174 ULONGEST *xfered_len)
1175 {
1176 enum target_xfer_status retval;
1177
1178 /* Transfer is done when LEN is zero. */
1179 if (len == 0)
1180 return TARGET_XFER_EOF;
1181
1182 if (writebuf && !may_write_memory)
1183 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1184 core_addr_to_string_nz (offset), plongest (len));
1185
1186 *xfered_len = 0;
1187
1188 /* If this is a memory transfer, let the memory-specific code
1189 have a look at it instead. Memory transfers are more
1190 complicated. */
1191 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1192 || object == TARGET_OBJECT_CODE_MEMORY)
1193 retval = memory_xfer_partial (ops, object, readbuf,
1194 writebuf, offset, len, xfered_len);
1195 else if (object == TARGET_OBJECT_RAW_MEMORY)
1196 {
1197 /* Skip/avoid accessing the target if the memory region
1198 attributes block the access. Check this here instead of in
1199 raw_memory_xfer_partial as otherwise we'd end up checking
1200 this twice in the case of the memory_xfer_partial path is
1201 taken; once before checking the dcache, and another in the
1202 tail call to raw_memory_xfer_partial. */
1203 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1204 NULL))
1205 return TARGET_XFER_E_IO;
1206
1207 /* Request the normal memory object from other layers. */
1208 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1209 xfered_len);
1210 }
1211 else
1212 retval = ops->xfer_partial (object, annex, readbuf,
1213 writebuf, offset, len, xfered_len);
1214
1215 if (targetdebug)
1216 {
1217 const unsigned char *myaddr = NULL;
1218
1219 fprintf_unfiltered (gdb_stdlog,
1220 "%s:target_xfer_partial "
1221 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1222 ops->shortname (),
1223 (int) object,
1224 (annex ? annex : "(null)"),
1225 host_address_to_string (readbuf),
1226 host_address_to_string (writebuf),
1227 core_addr_to_string_nz (offset),
1228 pulongest (len), retval,
1229 pulongest (*xfered_len));
1230
1231 if (readbuf)
1232 myaddr = readbuf;
1233 if (writebuf)
1234 myaddr = writebuf;
1235 if (retval == TARGET_XFER_OK && myaddr != NULL)
1236 {
1237 int i;
1238
1239 fputs_unfiltered (", bytes =", gdb_stdlog);
1240 for (i = 0; i < *xfered_len; i++)
1241 {
1242 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1243 {
1244 if (targetdebug < 2 && i > 0)
1245 {
1246 fprintf_unfiltered (gdb_stdlog, " ...");
1247 break;
1248 }
1249 fprintf_unfiltered (gdb_stdlog, "\n");
1250 }
1251
1252 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1253 }
1254 }
1255
1256 fputc_unfiltered ('\n', gdb_stdlog);
1257 }
1258
1259 /* Check implementations of to_xfer_partial update *XFERED_LEN
1260 properly. Do assertion after printing debug messages, so that we
1261 can find more clues on assertion failure from debugging messages. */
1262 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1263 gdb_assert (*xfered_len > 0);
1264
1265 return retval;
1266 }
1267
1268 /* Read LEN bytes of target memory at address MEMADDR, placing the
1269 results in GDB's memory at MYADDR. Returns either 0 for success or
1270 -1 if any error occurs.
1271
1272 If an error occurs, no guarantee is made about the contents of the data at
1273 MYADDR. In particular, the caller should not depend upon partial reads
1274 filling the buffer with good data. There is no way for the caller to know
1275 how much good data might have been transfered anyway. Callers that can
1276 deal with partial reads should call target_read (which will retry until
1277 it makes no progress, and then return how much was transferred). */
1278
1279 int
1280 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1281 {
1282 if (target_read (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1283 myaddr, memaddr, len) == len)
1284 return 0;
1285 else
1286 return -1;
1287 }
1288
1289 /* See target/target.h. */
1290
1291 int
1292 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1293 {
1294 gdb_byte buf[4];
1295 int r;
1296
1297 r = target_read_memory (memaddr, buf, sizeof buf);
1298 if (r != 0)
1299 return r;
1300 *result = extract_unsigned_integer (buf, sizeof buf,
1301 gdbarch_byte_order (target_gdbarch ()));
1302 return 0;
1303 }
1304
1305 /* Like target_read_memory, but specify explicitly that this is a read
1306 from the target's raw memory. That is, this read bypasses the
1307 dcache, breakpoint shadowing, etc. */
1308
1309 int
1310 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1311 {
1312 if (target_read (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1313 myaddr, memaddr, len) == len)
1314 return 0;
1315 else
1316 return -1;
1317 }
1318
1319 /* Like target_read_memory, but specify explicitly that this is a read from
1320 the target's stack. This may trigger different cache behavior. */
1321
1322 int
1323 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1324 {
1325 if (target_read (current_top_target (), TARGET_OBJECT_STACK_MEMORY, NULL,
1326 myaddr, memaddr, len) == len)
1327 return 0;
1328 else
1329 return -1;
1330 }
1331
1332 /* Like target_read_memory, but specify explicitly that this is a read from
1333 the target's code. This may trigger different cache behavior. */
1334
1335 int
1336 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1337 {
1338 if (target_read (current_top_target (), TARGET_OBJECT_CODE_MEMORY, NULL,
1339 myaddr, memaddr, len) == len)
1340 return 0;
1341 else
1342 return -1;
1343 }
1344
1345 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1346 Returns either 0 for success or -1 if any error occurs. If an
1347 error occurs, no guarantee is made about how much data got written.
1348 Callers that can deal with partial writes should call
1349 target_write. */
1350
1351 int
1352 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1353 {
1354 if (target_write (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1355 myaddr, memaddr, len) == len)
1356 return 0;
1357 else
1358 return -1;
1359 }
1360
1361 /* Write LEN bytes from MYADDR to target raw memory at address
1362 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1363 If an error occurs, no guarantee is made about how much data got
1364 written. Callers that can deal with partial writes should call
1365 target_write. */
1366
1367 int
1368 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1369 {
1370 if (target_write (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1371 myaddr, memaddr, len) == len)
1372 return 0;
1373 else
1374 return -1;
1375 }
1376
1377 /* Fetch the target's memory map. */
1378
1379 std::vector<mem_region>
1380 target_memory_map (void)
1381 {
1382 std::vector<mem_region> result = current_top_target ()->memory_map ();
1383 if (result.empty ())
1384 return result;
1385
1386 std::sort (result.begin (), result.end ());
1387
1388 /* Check that regions do not overlap. Simultaneously assign
1389 a numbering for the "mem" commands to use to refer to
1390 each region. */
1391 mem_region *last_one = NULL;
1392 for (size_t ix = 0; ix < result.size (); ix++)
1393 {
1394 mem_region *this_one = &result[ix];
1395 this_one->number = ix;
1396
1397 if (last_one != NULL && last_one->hi > this_one->lo)
1398 {
1399 warning (_("Overlapping regions in memory map: ignoring"));
1400 return std::vector<mem_region> ();
1401 }
1402
1403 last_one = this_one;
1404 }
1405
1406 return result;
1407 }
1408
1409 void
1410 target_flash_erase (ULONGEST address, LONGEST length)
1411 {
1412 current_top_target ()->flash_erase (address, length);
1413 }
1414
1415 void
1416 target_flash_done (void)
1417 {
1418 current_top_target ()->flash_done ();
1419 }
1420
1421 static void
1422 show_trust_readonly (struct ui_file *file, int from_tty,
1423 struct cmd_list_element *c, const char *value)
1424 {
1425 fprintf_filtered (file,
1426 _("Mode for reading from readonly sections is %s.\n"),
1427 value);
1428 }
1429
1430 /* Target vector read/write partial wrapper functions. */
1431
1432 static enum target_xfer_status
1433 target_read_partial (struct target_ops *ops,
1434 enum target_object object,
1435 const char *annex, gdb_byte *buf,
1436 ULONGEST offset, ULONGEST len,
1437 ULONGEST *xfered_len)
1438 {
1439 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1440 xfered_len);
1441 }
1442
1443 static enum target_xfer_status
1444 target_write_partial (struct target_ops *ops,
1445 enum target_object object,
1446 const char *annex, const gdb_byte *buf,
1447 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1448 {
1449 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1450 xfered_len);
1451 }
1452
1453 /* Wrappers to perform the full transfer. */
1454
1455 /* For docs on target_read see target.h. */
1456
1457 LONGEST
1458 target_read (struct target_ops *ops,
1459 enum target_object object,
1460 const char *annex, gdb_byte *buf,
1461 ULONGEST offset, LONGEST len)
1462 {
1463 LONGEST xfered_total = 0;
1464 int unit_size = 1;
1465
1466 /* If we are reading from a memory object, find the length of an addressable
1467 unit for that architecture. */
1468 if (object == TARGET_OBJECT_MEMORY
1469 || object == TARGET_OBJECT_STACK_MEMORY
1470 || object == TARGET_OBJECT_CODE_MEMORY
1471 || object == TARGET_OBJECT_RAW_MEMORY)
1472 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1473
1474 while (xfered_total < len)
1475 {
1476 ULONGEST xfered_partial;
1477 enum target_xfer_status status;
1478
1479 status = target_read_partial (ops, object, annex,
1480 buf + xfered_total * unit_size,
1481 offset + xfered_total, len - xfered_total,
1482 &xfered_partial);
1483
1484 /* Call an observer, notifying them of the xfer progress? */
1485 if (status == TARGET_XFER_EOF)
1486 return xfered_total;
1487 else if (status == TARGET_XFER_OK)
1488 {
1489 xfered_total += xfered_partial;
1490 QUIT;
1491 }
1492 else
1493 return TARGET_XFER_E_IO;
1494
1495 }
1496 return len;
1497 }
1498
1499 /* Assuming that the entire [begin, end) range of memory cannot be
1500 read, try to read whatever subrange is possible to read.
1501
1502 The function returns, in RESULT, either zero or one memory block.
1503 If there's a readable subrange at the beginning, it is completely
1504 read and returned. Any further readable subrange will not be read.
1505 Otherwise, if there's a readable subrange at the end, it will be
1506 completely read and returned. Any readable subranges before it
1507 (obviously, not starting at the beginning), will be ignored. In
1508 other cases -- either no readable subrange, or readable subrange(s)
1509 that is neither at the beginning, or end, nothing is returned.
1510
1511 The purpose of this function is to handle a read across a boundary
1512 of accessible memory in a case when memory map is not available.
1513 The above restrictions are fine for this case, but will give
1514 incorrect results if the memory is 'patchy'. However, supporting
1515 'patchy' memory would require trying to read every single byte,
1516 and it seems unacceptable solution. Explicit memory map is
1517 recommended for this case -- and target_read_memory_robust will
1518 take care of reading multiple ranges then. */
1519
1520 static void
1521 read_whatever_is_readable (struct target_ops *ops,
1522 const ULONGEST begin, const ULONGEST end,
1523 int unit_size,
1524 std::vector<memory_read_result> *result)
1525 {
1526 ULONGEST current_begin = begin;
1527 ULONGEST current_end = end;
1528 int forward;
1529 ULONGEST xfered_len;
1530
1531 /* If we previously failed to read 1 byte, nothing can be done here. */
1532 if (end - begin <= 1)
1533 return;
1534
1535 gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
1536
1537 /* Check that either first or the last byte is readable, and give up
1538 if not. This heuristic is meant to permit reading accessible memory
1539 at the boundary of accessible region. */
1540 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1541 buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
1542 {
1543 forward = 1;
1544 ++current_begin;
1545 }
1546 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1547 buf.get () + (end - begin) - 1, end - 1, 1,
1548 &xfered_len) == TARGET_XFER_OK)
1549 {
1550 forward = 0;
1551 --current_end;
1552 }
1553 else
1554 return;
1555
1556 /* Loop invariant is that the [current_begin, current_end) was previously
1557 found to be not readable as a whole.
1558
1559 Note loop condition -- if the range has 1 byte, we can't divide the range
1560 so there's no point trying further. */
1561 while (current_end - current_begin > 1)
1562 {
1563 ULONGEST first_half_begin, first_half_end;
1564 ULONGEST second_half_begin, second_half_end;
1565 LONGEST xfer;
1566 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1567
1568 if (forward)
1569 {
1570 first_half_begin = current_begin;
1571 first_half_end = middle;
1572 second_half_begin = middle;
1573 second_half_end = current_end;
1574 }
1575 else
1576 {
1577 first_half_begin = middle;
1578 first_half_end = current_end;
1579 second_half_begin = current_begin;
1580 second_half_end = middle;
1581 }
1582
1583 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1584 buf.get () + (first_half_begin - begin) * unit_size,
1585 first_half_begin,
1586 first_half_end - first_half_begin);
1587
1588 if (xfer == first_half_end - first_half_begin)
1589 {
1590 /* This half reads up fine. So, the error must be in the
1591 other half. */
1592 current_begin = second_half_begin;
1593 current_end = second_half_end;
1594 }
1595 else
1596 {
1597 /* This half is not readable. Because we've tried one byte, we
1598 know some part of this half if actually readable. Go to the next
1599 iteration to divide again and try to read.
1600
1601 We don't handle the other half, because this function only tries
1602 to read a single readable subrange. */
1603 current_begin = first_half_begin;
1604 current_end = first_half_end;
1605 }
1606 }
1607
1608 if (forward)
1609 {
1610 /* The [begin, current_begin) range has been read. */
1611 result->emplace_back (begin, current_end, std::move (buf));
1612 }
1613 else
1614 {
1615 /* The [current_end, end) range has been read. */
1616 LONGEST region_len = end - current_end;
1617
1618 gdb::unique_xmalloc_ptr<gdb_byte> data
1619 ((gdb_byte *) xmalloc (region_len * unit_size));
1620 memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
1621 region_len * unit_size);
1622 result->emplace_back (current_end, end, std::move (data));
1623 }
1624 }
1625
1626 std::vector<memory_read_result>
1627 read_memory_robust (struct target_ops *ops,
1628 const ULONGEST offset, const LONGEST len)
1629 {
1630 std::vector<memory_read_result> result;
1631 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1632
1633 LONGEST xfered_total = 0;
1634 while (xfered_total < len)
1635 {
1636 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1637 LONGEST region_len;
1638
1639 /* If there is no explicit region, a fake one should be created. */
1640 gdb_assert (region);
1641
1642 if (region->hi == 0)
1643 region_len = len - xfered_total;
1644 else
1645 region_len = region->hi - offset;
1646
1647 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1648 {
1649 /* Cannot read this region. Note that we can end up here only
1650 if the region is explicitly marked inaccessible, or
1651 'inaccessible-by-default' is in effect. */
1652 xfered_total += region_len;
1653 }
1654 else
1655 {
1656 LONGEST to_read = std::min (len - xfered_total, region_len);
1657 gdb::unique_xmalloc_ptr<gdb_byte> buffer
1658 ((gdb_byte *) xmalloc (to_read * unit_size));
1659
1660 LONGEST xfered_partial =
1661 target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
1662 offset + xfered_total, to_read);
1663 /* Call an observer, notifying them of the xfer progress? */
1664 if (xfered_partial <= 0)
1665 {
1666 /* Got an error reading full chunk. See if maybe we can read
1667 some subrange. */
1668 read_whatever_is_readable (ops, offset + xfered_total,
1669 offset + xfered_total + to_read,
1670 unit_size, &result);
1671 xfered_total += to_read;
1672 }
1673 else
1674 {
1675 result.emplace_back (offset + xfered_total,
1676 offset + xfered_total + xfered_partial,
1677 std::move (buffer));
1678 xfered_total += xfered_partial;
1679 }
1680 QUIT;
1681 }
1682 }
1683
1684 return result;
1685 }
1686
1687
1688 /* An alternative to target_write with progress callbacks. */
1689
1690 LONGEST
1691 target_write_with_progress (struct target_ops *ops,
1692 enum target_object object,
1693 const char *annex, const gdb_byte *buf,
1694 ULONGEST offset, LONGEST len,
1695 void (*progress) (ULONGEST, void *), void *baton)
1696 {
1697 LONGEST xfered_total = 0;
1698 int unit_size = 1;
1699
1700 /* If we are writing to a memory object, find the length of an addressable
1701 unit for that architecture. */
1702 if (object == TARGET_OBJECT_MEMORY
1703 || object == TARGET_OBJECT_STACK_MEMORY
1704 || object == TARGET_OBJECT_CODE_MEMORY
1705 || object == TARGET_OBJECT_RAW_MEMORY)
1706 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1707
1708 /* Give the progress callback a chance to set up. */
1709 if (progress)
1710 (*progress) (0, baton);
1711
1712 while (xfered_total < len)
1713 {
1714 ULONGEST xfered_partial;
1715 enum target_xfer_status status;
1716
1717 status = target_write_partial (ops, object, annex,
1718 buf + xfered_total * unit_size,
1719 offset + xfered_total, len - xfered_total,
1720 &xfered_partial);
1721
1722 if (status != TARGET_XFER_OK)
1723 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1724
1725 if (progress)
1726 (*progress) (xfered_partial, baton);
1727
1728 xfered_total += xfered_partial;
1729 QUIT;
1730 }
1731 return len;
1732 }
1733
1734 /* For docs on target_write see target.h. */
1735
1736 LONGEST
1737 target_write (struct target_ops *ops,
1738 enum target_object object,
1739 const char *annex, const gdb_byte *buf,
1740 ULONGEST offset, LONGEST len)
1741 {
1742 return target_write_with_progress (ops, object, annex, buf, offset, len,
1743 NULL, NULL);
1744 }
1745
1746 /* Help for target_read_alloc and target_read_stralloc. See their comments
1747 for details. */
1748
1749 template <typename T>
1750 gdb::optional<gdb::def_vector<T>>
1751 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1752 const char *annex)
1753 {
1754 gdb::def_vector<T> buf;
1755 size_t buf_pos = 0;
1756 const int chunk = 4096;
1757
1758 /* This function does not have a length parameter; it reads the
1759 entire OBJECT). Also, it doesn't support objects fetched partly
1760 from one target and partly from another (in a different stratum,
1761 e.g. a core file and an executable). Both reasons make it
1762 unsuitable for reading memory. */
1763 gdb_assert (object != TARGET_OBJECT_MEMORY);
1764
1765 /* Start by reading up to 4K at a time. The target will throttle
1766 this number down if necessary. */
1767 while (1)
1768 {
1769 ULONGEST xfered_len;
1770 enum target_xfer_status status;
1771
1772 buf.resize (buf_pos + chunk);
1773
1774 status = target_read_partial (ops, object, annex,
1775 (gdb_byte *) &buf[buf_pos],
1776 buf_pos, chunk,
1777 &xfered_len);
1778
1779 if (status == TARGET_XFER_EOF)
1780 {
1781 /* Read all there was. */
1782 buf.resize (buf_pos);
1783 return buf;
1784 }
1785 else if (status != TARGET_XFER_OK)
1786 {
1787 /* An error occurred. */
1788 return {};
1789 }
1790
1791 buf_pos += xfered_len;
1792
1793 QUIT;
1794 }
1795 }
1796
1797 /* See target.h */
1798
1799 gdb::optional<gdb::byte_vector>
1800 target_read_alloc (struct target_ops *ops, enum target_object object,
1801 const char *annex)
1802 {
1803 return target_read_alloc_1<gdb_byte> (ops, object, annex);
1804 }
1805
1806 /* See target.h. */
1807
1808 gdb::optional<gdb::char_vector>
1809 target_read_stralloc (struct target_ops *ops, enum target_object object,
1810 const char *annex)
1811 {
1812 gdb::optional<gdb::char_vector> buf
1813 = target_read_alloc_1<char> (ops, object, annex);
1814
1815 if (!buf)
1816 return {};
1817
1818 if (buf->empty () || buf->back () != '\0')
1819 buf->push_back ('\0');
1820
1821 /* Check for embedded NUL bytes; but allow trailing NULs. */
1822 for (auto it = std::find (buf->begin (), buf->end (), '\0');
1823 it != buf->end (); it++)
1824 if (*it != '\0')
1825 {
1826 warning (_("target object %d, annex %s, "
1827 "contained unexpected null characters"),
1828 (int) object, annex ? annex : "(none)");
1829 break;
1830 }
1831
1832 return buf;
1833 }
1834
1835 /* Memory transfer methods. */
1836
1837 void
1838 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1839 LONGEST len)
1840 {
1841 /* This method is used to read from an alternate, non-current
1842 target. This read must bypass the overlay support (as symbols
1843 don't match this target), and GDB's internal cache (wrong cache
1844 for this target). */
1845 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1846 != len)
1847 memory_error (TARGET_XFER_E_IO, addr);
1848 }
1849
1850 ULONGEST
1851 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1852 int len, enum bfd_endian byte_order)
1853 {
1854 gdb_byte buf[sizeof (ULONGEST)];
1855
1856 gdb_assert (len <= sizeof (buf));
1857 get_target_memory (ops, addr, buf, len);
1858 return extract_unsigned_integer (buf, len, byte_order);
1859 }
1860
1861 /* See target.h. */
1862
1863 int
1864 target_insert_breakpoint (struct gdbarch *gdbarch,
1865 struct bp_target_info *bp_tgt)
1866 {
1867 if (!may_insert_breakpoints)
1868 {
1869 warning (_("May not insert breakpoints"));
1870 return 1;
1871 }
1872
1873 return current_top_target ()->insert_breakpoint (gdbarch, bp_tgt);
1874 }
1875
1876 /* See target.h. */
1877
1878 int
1879 target_remove_breakpoint (struct gdbarch *gdbarch,
1880 struct bp_target_info *bp_tgt,
1881 enum remove_bp_reason reason)
1882 {
1883 /* This is kind of a weird case to handle, but the permission might
1884 have been changed after breakpoints were inserted - in which case
1885 we should just take the user literally and assume that any
1886 breakpoints should be left in place. */
1887 if (!may_insert_breakpoints)
1888 {
1889 warning (_("May not remove breakpoints"));
1890 return 1;
1891 }
1892
1893 return current_top_target ()->remove_breakpoint (gdbarch, bp_tgt, reason);
1894 }
1895
1896 static void
1897 info_target_command (const char *args, int from_tty)
1898 {
1899 int has_all_mem = 0;
1900
1901 if (symfile_objfile != NULL)
1902 printf_unfiltered (_("Symbols from \"%s\".\n"),
1903 objfile_name (symfile_objfile));
1904
1905 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
1906 {
1907 if (!t->has_memory ())
1908 continue;
1909
1910 if ((int) (t->stratum ()) <= (int) dummy_stratum)
1911 continue;
1912 if (has_all_mem)
1913 printf_unfiltered (_("\tWhile running this, "
1914 "GDB does not access memory from...\n"));
1915 printf_unfiltered ("%s:\n", t->longname ());
1916 t->files_info ();
1917 has_all_mem = t->has_all_memory ();
1918 }
1919 }
1920
1921 /* This function is called before any new inferior is created, e.g.
1922 by running a program, attaching, or connecting to a target.
1923 It cleans up any state from previous invocations which might
1924 change between runs. This is a subset of what target_preopen
1925 resets (things which might change between targets). */
1926
1927 void
1928 target_pre_inferior (int from_tty)
1929 {
1930 /* Clear out solib state. Otherwise the solib state of the previous
1931 inferior might have survived and is entirely wrong for the new
1932 target. This has been observed on GNU/Linux using glibc 2.3. How
1933 to reproduce:
1934
1935 bash$ ./foo&
1936 [1] 4711
1937 bash$ ./foo&
1938 [1] 4712
1939 bash$ gdb ./foo
1940 [...]
1941 (gdb) attach 4711
1942 (gdb) detach
1943 (gdb) attach 4712
1944 Cannot access memory at address 0xdeadbeef
1945 */
1946
1947 /* In some OSs, the shared library list is the same/global/shared
1948 across inferiors. If code is shared between processes, so are
1949 memory regions and features. */
1950 if (!gdbarch_has_global_solist (target_gdbarch ()))
1951 {
1952 no_shared_libraries (NULL, from_tty);
1953
1954 invalidate_target_mem_regions ();
1955
1956 target_clear_description ();
1957 }
1958
1959 /* attach_flag may be set if the previous process associated with
1960 the inferior was attached to. */
1961 current_inferior ()->attach_flag = 0;
1962
1963 current_inferior ()->highest_thread_num = 0;
1964
1965 agent_capability_invalidate ();
1966 }
1967
1968 /* This is to be called by the open routine before it does
1969 anything. */
1970
1971 void
1972 target_preopen (int from_tty)
1973 {
1974 dont_repeat ();
1975
1976 if (current_inferior ()->pid != 0)
1977 {
1978 if (!from_tty
1979 || !target_has_execution
1980 || query (_("A program is being debugged already. Kill it? ")))
1981 {
1982 /* Core inferiors actually should be detached, not
1983 killed. */
1984 if (target_has_execution)
1985 target_kill ();
1986 else
1987 target_detach (current_inferior (), 0);
1988 }
1989 else
1990 error (_("Program not killed."));
1991 }
1992
1993 /* Calling target_kill may remove the target from the stack. But if
1994 it doesn't (which seems like a win for UDI), remove it now. */
1995 /* Leave the exec target, though. The user may be switching from a
1996 live process to a core of the same program. */
1997 pop_all_targets_above (file_stratum);
1998
1999 target_pre_inferior (from_tty);
2000 }
2001
2002 /* See target.h. */
2003
2004 void
2005 target_detach (inferior *inf, int from_tty)
2006 {
2007 /* After we have detached, we will clear the register cache for this inferior
2008 by calling registers_changed_ptid. We must save the pid_ptid before
2009 detaching, as the target detach method will clear inf->pid. */
2010 ptid_t save_pid_ptid = ptid_t (inf->pid);
2011
2012 /* As long as some to_detach implementations rely on the current_inferior
2013 (either directly, or indirectly, like through target_gdbarch or by
2014 reading memory), INF needs to be the current inferior. When that
2015 requirement will become no longer true, then we can remove this
2016 assertion. */
2017 gdb_assert (inf == current_inferior ());
2018
2019 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2020 /* Don't remove global breakpoints here. They're removed on
2021 disconnection from the target. */
2022 ;
2023 else
2024 /* If we're in breakpoints-always-inserted mode, have to remove
2025 breakpoints before detaching. */
2026 remove_breakpoints_inf (current_inferior ());
2027
2028 prepare_for_detach ();
2029
2030 /* Hold a strong reference because detaching may unpush the
2031 target. */
2032 auto proc_target_ref = target_ops_ref::new_reference (inf->process_target ());
2033
2034 current_top_target ()->detach (inf, from_tty);
2035
2036 process_stratum_target *proc_target
2037 = as_process_stratum_target (proc_target_ref.get ());
2038
2039 registers_changed_ptid (proc_target, save_pid_ptid);
2040
2041 /* We have to ensure we have no frame cache left. Normally,
2042 registers_changed_ptid (save_pid_ptid) calls reinit_frame_cache when
2043 inferior_ptid matches save_pid_ptid, but in our case, it does not
2044 call it, as inferior_ptid has been reset. */
2045 reinit_frame_cache ();
2046 }
2047
2048 void
2049 target_disconnect (const char *args, int from_tty)
2050 {
2051 /* If we're in breakpoints-always-inserted mode or if breakpoints
2052 are global across processes, we have to remove them before
2053 disconnecting. */
2054 remove_breakpoints ();
2055
2056 current_top_target ()->disconnect (args, from_tty);
2057 }
2058
2059 /* See target/target.h. */
2060
2061 ptid_t
2062 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2063 {
2064 return current_top_target ()->wait (ptid, status, options);
2065 }
2066
2067 /* See target.h. */
2068
2069 ptid_t
2070 default_target_wait (struct target_ops *ops,
2071 ptid_t ptid, struct target_waitstatus *status,
2072 int options)
2073 {
2074 status->kind = TARGET_WAITKIND_IGNORE;
2075 return minus_one_ptid;
2076 }
2077
2078 std::string
2079 target_pid_to_str (ptid_t ptid)
2080 {
2081 return current_top_target ()->pid_to_str (ptid);
2082 }
2083
2084 const char *
2085 target_thread_name (struct thread_info *info)
2086 {
2087 gdb_assert (info->inf == current_inferior ());
2088
2089 return current_top_target ()->thread_name (info);
2090 }
2091
2092 struct thread_info *
2093 target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
2094 int handle_len,
2095 struct inferior *inf)
2096 {
2097 return current_top_target ()->thread_handle_to_thread_info (thread_handle,
2098 handle_len, inf);
2099 }
2100
2101 /* See target.h. */
2102
2103 gdb::byte_vector
2104 target_thread_info_to_thread_handle (struct thread_info *tip)
2105 {
2106 return current_top_target ()->thread_info_to_thread_handle (tip);
2107 }
2108
2109 void
2110 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2111 {
2112 process_stratum_target *curr_target = current_inferior ()->process_target ();
2113
2114 target_dcache_invalidate ();
2115
2116 current_top_target ()->resume (ptid, step, signal);
2117
2118 registers_changed_ptid (curr_target, ptid);
2119 /* We only set the internal executing state here. The user/frontend
2120 running state is set at a higher level. This also clears the
2121 thread's stop_pc as side effect. */
2122 set_executing (curr_target, ptid, 1);
2123 clear_inline_frame_state (curr_target, ptid);
2124 }
2125
2126 /* If true, target_commit_resume is a nop. */
2127 static int defer_target_commit_resume;
2128
2129 /* See target.h. */
2130
2131 void
2132 target_commit_resume (void)
2133 {
2134 if (defer_target_commit_resume)
2135 return;
2136
2137 current_top_target ()->commit_resume ();
2138 }
2139
2140 /* See target.h. */
2141
2142 scoped_restore_tmpl<int>
2143 make_scoped_defer_target_commit_resume ()
2144 {
2145 return make_scoped_restore (&defer_target_commit_resume, 1);
2146 }
2147
2148 void
2149 target_pass_signals (gdb::array_view<const unsigned char> pass_signals)
2150 {
2151 current_top_target ()->pass_signals (pass_signals);
2152 }
2153
2154 void
2155 target_program_signals (gdb::array_view<const unsigned char> program_signals)
2156 {
2157 current_top_target ()->program_signals (program_signals);
2158 }
2159
2160 static int
2161 default_follow_fork (struct target_ops *self, int follow_child,
2162 int detach_fork)
2163 {
2164 /* Some target returned a fork event, but did not know how to follow it. */
2165 internal_error (__FILE__, __LINE__,
2166 _("could not find a target to follow fork"));
2167 }
2168
2169 /* Look through the list of possible targets for a target that can
2170 follow forks. */
2171
2172 int
2173 target_follow_fork (int follow_child, int detach_fork)
2174 {
2175 return current_top_target ()->follow_fork (follow_child, detach_fork);
2176 }
2177
2178 /* Target wrapper for follow exec hook. */
2179
2180 void
2181 target_follow_exec (struct inferior *inf, const char *execd_pathname)
2182 {
2183 current_top_target ()->follow_exec (inf, execd_pathname);
2184 }
2185
2186 static void
2187 default_mourn_inferior (struct target_ops *self)
2188 {
2189 internal_error (__FILE__, __LINE__,
2190 _("could not find a target to follow mourn inferior"));
2191 }
2192
2193 void
2194 target_mourn_inferior (ptid_t ptid)
2195 {
2196 gdb_assert (ptid == inferior_ptid);
2197 current_top_target ()->mourn_inferior ();
2198
2199 /* We no longer need to keep handles on any of the object files.
2200 Make sure to release them to avoid unnecessarily locking any
2201 of them while we're not actually debugging. */
2202 bfd_cache_close_all ();
2203 }
2204
2205 /* Look for a target which can describe architectural features, starting
2206 from TARGET. If we find one, return its description. */
2207
2208 const struct target_desc *
2209 target_read_description (struct target_ops *target)
2210 {
2211 return target->read_description ();
2212 }
2213
2214 /* This implements a basic search of memory, reading target memory and
2215 performing the search here (as opposed to performing the search in on the
2216 target side with, for example, gdbserver). */
2217
2218 int
2219 simple_search_memory (struct target_ops *ops,
2220 CORE_ADDR start_addr, ULONGEST search_space_len,
2221 const gdb_byte *pattern, ULONGEST pattern_len,
2222 CORE_ADDR *found_addrp)
2223 {
2224 /* NOTE: also defined in find.c testcase. */
2225 #define SEARCH_CHUNK_SIZE 16000
2226 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2227 /* Buffer to hold memory contents for searching. */
2228 unsigned search_buf_size;
2229
2230 search_buf_size = chunk_size + pattern_len - 1;
2231
2232 /* No point in trying to allocate a buffer larger than the search space. */
2233 if (search_space_len < search_buf_size)
2234 search_buf_size = search_space_len;
2235
2236 gdb::byte_vector search_buf (search_buf_size);
2237
2238 /* Prime the search buffer. */
2239
2240 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2241 search_buf.data (), start_addr, search_buf_size)
2242 != search_buf_size)
2243 {
2244 warning (_("Unable to access %s bytes of target "
2245 "memory at %s, halting search."),
2246 pulongest (search_buf_size), hex_string (start_addr));
2247 return -1;
2248 }
2249
2250 /* Perform the search.
2251
2252 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2253 When we've scanned N bytes we copy the trailing bytes to the start and
2254 read in another N bytes. */
2255
2256 while (search_space_len >= pattern_len)
2257 {
2258 gdb_byte *found_ptr;
2259 unsigned nr_search_bytes
2260 = std::min (search_space_len, (ULONGEST) search_buf_size);
2261
2262 found_ptr = (gdb_byte *) memmem (search_buf.data (), nr_search_bytes,
2263 pattern, pattern_len);
2264
2265 if (found_ptr != NULL)
2266 {
2267 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf.data ());
2268
2269 *found_addrp = found_addr;
2270 return 1;
2271 }
2272
2273 /* Not found in this chunk, skip to next chunk. */
2274
2275 /* Don't let search_space_len wrap here, it's unsigned. */
2276 if (search_space_len >= chunk_size)
2277 search_space_len -= chunk_size;
2278 else
2279 search_space_len = 0;
2280
2281 if (search_space_len >= pattern_len)
2282 {
2283 unsigned keep_len = search_buf_size - chunk_size;
2284 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2285 int nr_to_read;
2286
2287 /* Copy the trailing part of the previous iteration to the front
2288 of the buffer for the next iteration. */
2289 gdb_assert (keep_len == pattern_len - 1);
2290 memcpy (&search_buf[0], &search_buf[chunk_size], keep_len);
2291
2292 nr_to_read = std::min (search_space_len - keep_len,
2293 (ULONGEST) chunk_size);
2294
2295 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2296 &search_buf[keep_len], read_addr,
2297 nr_to_read) != nr_to_read)
2298 {
2299 warning (_("Unable to access %s bytes of target "
2300 "memory at %s, halting search."),
2301 plongest (nr_to_read),
2302 hex_string (read_addr));
2303 return -1;
2304 }
2305
2306 start_addr += chunk_size;
2307 }
2308 }
2309
2310 /* Not found. */
2311
2312 return 0;
2313 }
2314
2315 /* Default implementation of memory-searching. */
2316
2317 static int
2318 default_search_memory (struct target_ops *self,
2319 CORE_ADDR start_addr, ULONGEST search_space_len,
2320 const gdb_byte *pattern, ULONGEST pattern_len,
2321 CORE_ADDR *found_addrp)
2322 {
2323 /* Start over from the top of the target stack. */
2324 return simple_search_memory (current_top_target (),
2325 start_addr, search_space_len,
2326 pattern, pattern_len, found_addrp);
2327 }
2328
2329 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2330 sequence of bytes in PATTERN with length PATTERN_LEN.
2331
2332 The result is 1 if found, 0 if not found, and -1 if there was an error
2333 requiring halting of the search (e.g. memory read error).
2334 If the pattern is found the address is recorded in FOUND_ADDRP. */
2335
2336 int
2337 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2338 const gdb_byte *pattern, ULONGEST pattern_len,
2339 CORE_ADDR *found_addrp)
2340 {
2341 return current_top_target ()->search_memory (start_addr, search_space_len,
2342 pattern, pattern_len, found_addrp);
2343 }
2344
2345 /* Look through the currently pushed targets. If none of them will
2346 be able to restart the currently running process, issue an error
2347 message. */
2348
2349 void
2350 target_require_runnable (void)
2351 {
2352 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2353 {
2354 /* If this target knows how to create a new program, then
2355 assume we will still be able to after killing the current
2356 one. Either killing and mourning will not pop T, or else
2357 find_default_run_target will find it again. */
2358 if (t->can_create_inferior ())
2359 return;
2360
2361 /* Do not worry about targets at certain strata that can not
2362 create inferiors. Assume they will be pushed again if
2363 necessary, and continue to the process_stratum. */
2364 if (t->stratum () > process_stratum)
2365 continue;
2366
2367 error (_("The \"%s\" target does not support \"run\". "
2368 "Try \"help target\" or \"continue\"."),
2369 t->shortname ());
2370 }
2371
2372 /* This function is only called if the target is running. In that
2373 case there should have been a process_stratum target and it
2374 should either know how to create inferiors, or not... */
2375 internal_error (__FILE__, __LINE__, _("No targets found"));
2376 }
2377
2378 /* Whether GDB is allowed to fall back to the default run target for
2379 "run", "attach", etc. when no target is connected yet. */
2380 static bool auto_connect_native_target = true;
2381
2382 static void
2383 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2384 struct cmd_list_element *c, const char *value)
2385 {
2386 fprintf_filtered (file,
2387 _("Whether GDB may automatically connect to the "
2388 "native target is %s.\n"),
2389 value);
2390 }
2391
2392 /* A pointer to the target that can respond to "run" or "attach".
2393 Native targets are always singletons and instantiated early at GDB
2394 startup. */
2395 static target_ops *the_native_target;
2396
2397 /* See target.h. */
2398
2399 void
2400 set_native_target (target_ops *target)
2401 {
2402 if (the_native_target != NULL)
2403 internal_error (__FILE__, __LINE__,
2404 _("native target already set (\"%s\")."),
2405 the_native_target->longname ());
2406
2407 the_native_target = target;
2408 }
2409
2410 /* See target.h. */
2411
2412 target_ops *
2413 get_native_target ()
2414 {
2415 return the_native_target;
2416 }
2417
2418 /* Look through the list of possible targets for a target that can
2419 execute a run or attach command without any other data. This is
2420 used to locate the default process stratum.
2421
2422 If DO_MESG is not NULL, the result is always valid (error() is
2423 called for errors); else, return NULL on error. */
2424
2425 static struct target_ops *
2426 find_default_run_target (const char *do_mesg)
2427 {
2428 if (auto_connect_native_target && the_native_target != NULL)
2429 return the_native_target;
2430
2431 if (do_mesg != NULL)
2432 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2433 return NULL;
2434 }
2435
2436 /* See target.h. */
2437
2438 struct target_ops *
2439 find_attach_target (void)
2440 {
2441 /* If a target on the current stack can attach, use it. */
2442 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2443 {
2444 if (t->can_attach ())
2445 return t;
2446 }
2447
2448 /* Otherwise, use the default run target for attaching. */
2449 return find_default_run_target ("attach");
2450 }
2451
2452 /* See target.h. */
2453
2454 struct target_ops *
2455 find_run_target (void)
2456 {
2457 /* If a target on the current stack can run, use it. */
2458 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2459 {
2460 if (t->can_create_inferior ())
2461 return t;
2462 }
2463
2464 /* Otherwise, use the default run target. */
2465 return find_default_run_target ("run");
2466 }
2467
2468 bool
2469 target_ops::info_proc (const char *args, enum info_proc_what what)
2470 {
2471 return false;
2472 }
2473
2474 /* Implement the "info proc" command. */
2475
2476 int
2477 target_info_proc (const char *args, enum info_proc_what what)
2478 {
2479 struct target_ops *t;
2480
2481 /* If we're already connected to something that can get us OS
2482 related data, use it. Otherwise, try using the native
2483 target. */
2484 t = find_target_at (process_stratum);
2485 if (t == NULL)
2486 t = find_default_run_target (NULL);
2487
2488 for (; t != NULL; t = t->beneath ())
2489 {
2490 if (t->info_proc (args, what))
2491 {
2492 if (targetdebug)
2493 fprintf_unfiltered (gdb_stdlog,
2494 "target_info_proc (\"%s\", %d)\n", args, what);
2495
2496 return 1;
2497 }
2498 }
2499
2500 return 0;
2501 }
2502
2503 static int
2504 find_default_supports_disable_randomization (struct target_ops *self)
2505 {
2506 struct target_ops *t;
2507
2508 t = find_default_run_target (NULL);
2509 if (t != NULL)
2510 return t->supports_disable_randomization ();
2511 return 0;
2512 }
2513
2514 int
2515 target_supports_disable_randomization (void)
2516 {
2517 return current_top_target ()->supports_disable_randomization ();
2518 }
2519
2520 /* See target/target.h. */
2521
2522 int
2523 target_supports_multi_process (void)
2524 {
2525 return current_top_target ()->supports_multi_process ();
2526 }
2527
2528 /* See target.h. */
2529
2530 gdb::optional<gdb::char_vector>
2531 target_get_osdata (const char *type)
2532 {
2533 struct target_ops *t;
2534
2535 /* If we're already connected to something that can get us OS
2536 related data, use it. Otherwise, try using the native
2537 target. */
2538 t = find_target_at (process_stratum);
2539 if (t == NULL)
2540 t = find_default_run_target ("get OS data");
2541
2542 if (!t)
2543 return {};
2544
2545 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2546 }
2547
2548 /* Determine the current address space of thread PTID. */
2549
2550 struct address_space *
2551 target_thread_address_space (ptid_t ptid)
2552 {
2553 struct address_space *aspace;
2554
2555 aspace = current_top_target ()->thread_address_space (ptid);
2556 gdb_assert (aspace != NULL);
2557
2558 return aspace;
2559 }
2560
2561 /* See target.h. */
2562
2563 target_ops *
2564 target_ops::beneath () const
2565 {
2566 return current_inferior ()->find_target_beneath (this);
2567 }
2568
2569 void
2570 target_ops::close ()
2571 {
2572 }
2573
2574 bool
2575 target_ops::can_attach ()
2576 {
2577 return 0;
2578 }
2579
2580 void
2581 target_ops::attach (const char *, int)
2582 {
2583 gdb_assert_not_reached ("target_ops::attach called");
2584 }
2585
2586 bool
2587 target_ops::can_create_inferior ()
2588 {
2589 return 0;
2590 }
2591
2592 void
2593 target_ops::create_inferior (const char *, const std::string &,
2594 char **, int)
2595 {
2596 gdb_assert_not_reached ("target_ops::create_inferior called");
2597 }
2598
2599 bool
2600 target_ops::can_run ()
2601 {
2602 return false;
2603 }
2604
2605 int
2606 target_can_run ()
2607 {
2608 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2609 {
2610 if (t->can_run ())
2611 return 1;
2612 }
2613
2614 return 0;
2615 }
2616
2617 /* Target file operations. */
2618
2619 static struct target_ops *
2620 default_fileio_target (void)
2621 {
2622 struct target_ops *t;
2623
2624 /* If we're already connected to something that can perform
2625 file I/O, use it. Otherwise, try using the native target. */
2626 t = find_target_at (process_stratum);
2627 if (t != NULL)
2628 return t;
2629 return find_default_run_target ("file I/O");
2630 }
2631
2632 /* File handle for target file operations. */
2633
2634 struct fileio_fh_t
2635 {
2636 /* The target on which this file is open. NULL if the target is
2637 meanwhile closed while the handle is open. */
2638 target_ops *target;
2639
2640 /* The file descriptor on the target. */
2641 int target_fd;
2642
2643 /* Check whether this fileio_fh_t represents a closed file. */
2644 bool is_closed ()
2645 {
2646 return target_fd < 0;
2647 }
2648 };
2649
2650 /* Vector of currently open file handles. The value returned by
2651 target_fileio_open and passed as the FD argument to other
2652 target_fileio_* functions is an index into this vector. This
2653 vector's entries are never freed; instead, files are marked as
2654 closed, and the handle becomes available for reuse. */
2655 static std::vector<fileio_fh_t> fileio_fhandles;
2656
2657 /* Index into fileio_fhandles of the lowest handle that might be
2658 closed. This permits handle reuse without searching the whole
2659 list each time a new file is opened. */
2660 static int lowest_closed_fd;
2661
2662 /* Invalidate the target associated with open handles that were open
2663 on target TARG, since we're about to close (and maybe destroy) the
2664 target. The handles remain open from the client's perspective, but
2665 trying to do anything with them other than closing them will fail
2666 with EIO. */
2667
2668 static void
2669 fileio_handles_invalidate_target (target_ops *targ)
2670 {
2671 for (fileio_fh_t &fh : fileio_fhandles)
2672 if (fh.target == targ)
2673 fh.target = NULL;
2674 }
2675
2676 /* Acquire a target fileio file descriptor. */
2677
2678 static int
2679 acquire_fileio_fd (target_ops *target, int target_fd)
2680 {
2681 /* Search for closed handles to reuse. */
2682 for (; lowest_closed_fd < fileio_fhandles.size (); lowest_closed_fd++)
2683 {
2684 fileio_fh_t &fh = fileio_fhandles[lowest_closed_fd];
2685
2686 if (fh.is_closed ())
2687 break;
2688 }
2689
2690 /* Push a new handle if no closed handles were found. */
2691 if (lowest_closed_fd == fileio_fhandles.size ())
2692 fileio_fhandles.push_back (fileio_fh_t {target, target_fd});
2693 else
2694 fileio_fhandles[lowest_closed_fd] = {target, target_fd};
2695
2696 /* Should no longer be marked closed. */
2697 gdb_assert (!fileio_fhandles[lowest_closed_fd].is_closed ());
2698
2699 /* Return its index, and start the next lookup at
2700 the next index. */
2701 return lowest_closed_fd++;
2702 }
2703
2704 /* Release a target fileio file descriptor. */
2705
2706 static void
2707 release_fileio_fd (int fd, fileio_fh_t *fh)
2708 {
2709 fh->target_fd = -1;
2710 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2711 }
2712
2713 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2714
2715 static fileio_fh_t *
2716 fileio_fd_to_fh (int fd)
2717 {
2718 return &fileio_fhandles[fd];
2719 }
2720
2721
2722 /* Default implementations of file i/o methods. We don't want these
2723 to delegate automatically, because we need to know which target
2724 supported the method, in order to call it directly from within
2725 pread/pwrite, etc. */
2726
2727 int
2728 target_ops::fileio_open (struct inferior *inf, const char *filename,
2729 int flags, int mode, int warn_if_slow,
2730 int *target_errno)
2731 {
2732 *target_errno = FILEIO_ENOSYS;
2733 return -1;
2734 }
2735
2736 int
2737 target_ops::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2738 ULONGEST offset, int *target_errno)
2739 {
2740 *target_errno = FILEIO_ENOSYS;
2741 return -1;
2742 }
2743
2744 int
2745 target_ops::fileio_pread (int fd, gdb_byte *read_buf, int len,
2746 ULONGEST offset, int *target_errno)
2747 {
2748 *target_errno = FILEIO_ENOSYS;
2749 return -1;
2750 }
2751
2752 int
2753 target_ops::fileio_fstat (int fd, struct stat *sb, int *target_errno)
2754 {
2755 *target_errno = FILEIO_ENOSYS;
2756 return -1;
2757 }
2758
2759 int
2760 target_ops::fileio_close (int fd, int *target_errno)
2761 {
2762 *target_errno = FILEIO_ENOSYS;
2763 return -1;
2764 }
2765
2766 int
2767 target_ops::fileio_unlink (struct inferior *inf, const char *filename,
2768 int *target_errno)
2769 {
2770 *target_errno = FILEIO_ENOSYS;
2771 return -1;
2772 }
2773
2774 gdb::optional<std::string>
2775 target_ops::fileio_readlink (struct inferior *inf, const char *filename,
2776 int *target_errno)
2777 {
2778 *target_errno = FILEIO_ENOSYS;
2779 return {};
2780 }
2781
2782 /* Helper for target_fileio_open and
2783 target_fileio_open_warn_if_slow. */
2784
2785 static int
2786 target_fileio_open_1 (struct inferior *inf, const char *filename,
2787 int flags, int mode, int warn_if_slow,
2788 int *target_errno)
2789 {
2790 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2791 {
2792 int fd = t->fileio_open (inf, filename, flags, mode,
2793 warn_if_slow, target_errno);
2794
2795 if (fd == -1 && *target_errno == FILEIO_ENOSYS)
2796 continue;
2797
2798 if (fd < 0)
2799 fd = -1;
2800 else
2801 fd = acquire_fileio_fd (t, fd);
2802
2803 if (targetdebug)
2804 fprintf_unfiltered (gdb_stdlog,
2805 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2806 " = %d (%d)\n",
2807 inf == NULL ? 0 : inf->num,
2808 filename, flags, mode,
2809 warn_if_slow, fd,
2810 fd != -1 ? 0 : *target_errno);
2811 return fd;
2812 }
2813
2814 *target_errno = FILEIO_ENOSYS;
2815 return -1;
2816 }
2817
2818 /* See target.h. */
2819
2820 int
2821 target_fileio_open (struct inferior *inf, const char *filename,
2822 int flags, int mode, int *target_errno)
2823 {
2824 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2825 target_errno);
2826 }
2827
2828 /* See target.h. */
2829
2830 int
2831 target_fileio_open_warn_if_slow (struct inferior *inf,
2832 const char *filename,
2833 int flags, int mode, int *target_errno)
2834 {
2835 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2836 target_errno);
2837 }
2838
2839 /* See target.h. */
2840
2841 int
2842 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2843 ULONGEST offset, int *target_errno)
2844 {
2845 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2846 int ret = -1;
2847
2848 if (fh->is_closed ())
2849 *target_errno = EBADF;
2850 else if (fh->target == NULL)
2851 *target_errno = EIO;
2852 else
2853 ret = fh->target->fileio_pwrite (fh->target_fd, write_buf,
2854 len, offset, target_errno);
2855
2856 if (targetdebug)
2857 fprintf_unfiltered (gdb_stdlog,
2858 "target_fileio_pwrite (%d,...,%d,%s) "
2859 "= %d (%d)\n",
2860 fd, len, pulongest (offset),
2861 ret, ret != -1 ? 0 : *target_errno);
2862 return ret;
2863 }
2864
2865 /* See target.h. */
2866
2867 int
2868 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2869 ULONGEST offset, int *target_errno)
2870 {
2871 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2872 int ret = -1;
2873
2874 if (fh->is_closed ())
2875 *target_errno = EBADF;
2876 else if (fh->target == NULL)
2877 *target_errno = EIO;
2878 else
2879 ret = fh->target->fileio_pread (fh->target_fd, read_buf,
2880 len, offset, target_errno);
2881
2882 if (targetdebug)
2883 fprintf_unfiltered (gdb_stdlog,
2884 "target_fileio_pread (%d,...,%d,%s) "
2885 "= %d (%d)\n",
2886 fd, len, pulongest (offset),
2887 ret, ret != -1 ? 0 : *target_errno);
2888 return ret;
2889 }
2890
2891 /* See target.h. */
2892
2893 int
2894 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2895 {
2896 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2897 int ret = -1;
2898
2899 if (fh->is_closed ())
2900 *target_errno = EBADF;
2901 else if (fh->target == NULL)
2902 *target_errno = EIO;
2903 else
2904 ret = fh->target->fileio_fstat (fh->target_fd, sb, target_errno);
2905
2906 if (targetdebug)
2907 fprintf_unfiltered (gdb_stdlog,
2908 "target_fileio_fstat (%d) = %d (%d)\n",
2909 fd, ret, ret != -1 ? 0 : *target_errno);
2910 return ret;
2911 }
2912
2913 /* See target.h. */
2914
2915 int
2916 target_fileio_close (int fd, int *target_errno)
2917 {
2918 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2919 int ret = -1;
2920
2921 if (fh->is_closed ())
2922 *target_errno = EBADF;
2923 else
2924 {
2925 if (fh->target != NULL)
2926 ret = fh->target->fileio_close (fh->target_fd,
2927 target_errno);
2928 else
2929 ret = 0;
2930 release_fileio_fd (fd, fh);
2931 }
2932
2933 if (targetdebug)
2934 fprintf_unfiltered (gdb_stdlog,
2935 "target_fileio_close (%d) = %d (%d)\n",
2936 fd, ret, ret != -1 ? 0 : *target_errno);
2937 return ret;
2938 }
2939
2940 /* See target.h. */
2941
2942 int
2943 target_fileio_unlink (struct inferior *inf, const char *filename,
2944 int *target_errno)
2945 {
2946 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2947 {
2948 int ret = t->fileio_unlink (inf, filename, target_errno);
2949
2950 if (ret == -1 && *target_errno == FILEIO_ENOSYS)
2951 continue;
2952
2953 if (targetdebug)
2954 fprintf_unfiltered (gdb_stdlog,
2955 "target_fileio_unlink (%d,%s)"
2956 " = %d (%d)\n",
2957 inf == NULL ? 0 : inf->num, filename,
2958 ret, ret != -1 ? 0 : *target_errno);
2959 return ret;
2960 }
2961
2962 *target_errno = FILEIO_ENOSYS;
2963 return -1;
2964 }
2965
2966 /* See target.h. */
2967
2968 gdb::optional<std::string>
2969 target_fileio_readlink (struct inferior *inf, const char *filename,
2970 int *target_errno)
2971 {
2972 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2973 {
2974 gdb::optional<std::string> ret
2975 = t->fileio_readlink (inf, filename, target_errno);
2976
2977 if (!ret.has_value () && *target_errno == FILEIO_ENOSYS)
2978 continue;
2979
2980 if (targetdebug)
2981 fprintf_unfiltered (gdb_stdlog,
2982 "target_fileio_readlink (%d,%s)"
2983 " = %s (%d)\n",
2984 inf == NULL ? 0 : inf->num,
2985 filename, ret ? ret->c_str () : "(nil)",
2986 ret ? 0 : *target_errno);
2987 return ret;
2988 }
2989
2990 *target_errno = FILEIO_ENOSYS;
2991 return {};
2992 }
2993
2994 /* Like scoped_fd, but specific to target fileio. */
2995
2996 class scoped_target_fd
2997 {
2998 public:
2999 explicit scoped_target_fd (int fd) noexcept
3000 : m_fd (fd)
3001 {
3002 }
3003
3004 ~scoped_target_fd ()
3005 {
3006 if (m_fd >= 0)
3007 {
3008 int target_errno;
3009
3010 target_fileio_close (m_fd, &target_errno);
3011 }
3012 }
3013
3014 DISABLE_COPY_AND_ASSIGN (scoped_target_fd);
3015
3016 int get () const noexcept
3017 {
3018 return m_fd;
3019 }
3020
3021 private:
3022 int m_fd;
3023 };
3024
3025 /* Read target file FILENAME, in the filesystem as seen by INF. If
3026 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3027 remote targets, the remote stub). Store the result in *BUF_P and
3028 return the size of the transferred data. PADDING additional bytes
3029 are available in *BUF_P. This is a helper function for
3030 target_fileio_read_alloc; see the declaration of that function for
3031 more information. */
3032
3033 static LONGEST
3034 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3035 gdb_byte **buf_p, int padding)
3036 {
3037 size_t buf_alloc, buf_pos;
3038 gdb_byte *buf;
3039 LONGEST n;
3040 int target_errno;
3041
3042 scoped_target_fd fd (target_fileio_open (inf, filename, FILEIO_O_RDONLY,
3043 0700, &target_errno));
3044 if (fd.get () == -1)
3045 return -1;
3046
3047 /* Start by reading up to 4K at a time. The target will throttle
3048 this number down if necessary. */
3049 buf_alloc = 4096;
3050 buf = (gdb_byte *) xmalloc (buf_alloc);
3051 buf_pos = 0;
3052 while (1)
3053 {
3054 n = target_fileio_pread (fd.get (), &buf[buf_pos],
3055 buf_alloc - buf_pos - padding, buf_pos,
3056 &target_errno);
3057 if (n < 0)
3058 {
3059 /* An error occurred. */
3060 xfree (buf);
3061 return -1;
3062 }
3063 else if (n == 0)
3064 {
3065 /* Read all there was. */
3066 if (buf_pos == 0)
3067 xfree (buf);
3068 else
3069 *buf_p = buf;
3070 return buf_pos;
3071 }
3072
3073 buf_pos += n;
3074
3075 /* If the buffer is filling up, expand it. */
3076 if (buf_alloc < buf_pos * 2)
3077 {
3078 buf_alloc *= 2;
3079 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3080 }
3081
3082 QUIT;
3083 }
3084 }
3085
3086 /* See target.h. */
3087
3088 LONGEST
3089 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3090 gdb_byte **buf_p)
3091 {
3092 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3093 }
3094
3095 /* See target.h. */
3096
3097 gdb::unique_xmalloc_ptr<char>
3098 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3099 {
3100 gdb_byte *buffer;
3101 char *bufstr;
3102 LONGEST i, transferred;
3103
3104 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3105 bufstr = (char *) buffer;
3106
3107 if (transferred < 0)
3108 return gdb::unique_xmalloc_ptr<char> (nullptr);
3109
3110 if (transferred == 0)
3111 return make_unique_xstrdup ("");
3112
3113 bufstr[transferred] = 0;
3114
3115 /* Check for embedded NUL bytes; but allow trailing NULs. */
3116 for (i = strlen (bufstr); i < transferred; i++)
3117 if (bufstr[i] != 0)
3118 {
3119 warning (_("target file %s "
3120 "contained unexpected null characters"),
3121 filename);
3122 break;
3123 }
3124
3125 return gdb::unique_xmalloc_ptr<char> (bufstr);
3126 }
3127
3128
3129 static int
3130 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3131 CORE_ADDR addr, int len)
3132 {
3133 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3134 }
3135
3136 static int
3137 default_watchpoint_addr_within_range (struct target_ops *target,
3138 CORE_ADDR addr,
3139 CORE_ADDR start, int length)
3140 {
3141 return addr >= start && addr < start + length;
3142 }
3143
3144 /* See target.h. */
3145
3146 target_ops *
3147 target_stack::find_beneath (const target_ops *t) const
3148 {
3149 /* Look for a non-empty slot at stratum levels beneath T's. */
3150 for (int stratum = t->stratum () - 1; stratum >= 0; --stratum)
3151 if (m_stack[stratum] != NULL)
3152 return m_stack[stratum];
3153
3154 return NULL;
3155 }
3156
3157 /* See target.h. */
3158
3159 struct target_ops *
3160 find_target_at (enum strata stratum)
3161 {
3162 return current_inferior ()->target_at (stratum);
3163 }
3164
3165 \f
3166
3167 /* See target.h */
3168
3169 void
3170 target_announce_detach (int from_tty)
3171 {
3172 pid_t pid;
3173 const char *exec_file;
3174
3175 if (!from_tty)
3176 return;
3177
3178 exec_file = get_exec_file (0);
3179 if (exec_file == NULL)
3180 exec_file = "";
3181
3182 pid = inferior_ptid.pid ();
3183 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3184 target_pid_to_str (ptid_t (pid)).c_str ());
3185 }
3186
3187 /* The inferior process has died. Long live the inferior! */
3188
3189 void
3190 generic_mourn_inferior (void)
3191 {
3192 inferior *inf = current_inferior ();
3193
3194 inferior_ptid = null_ptid;
3195
3196 /* Mark breakpoints uninserted in case something tries to delete a
3197 breakpoint while we delete the inferior's threads (which would
3198 fail, since the inferior is long gone). */
3199 mark_breakpoints_out ();
3200
3201 if (inf->pid != 0)
3202 exit_inferior (inf);
3203
3204 /* Note this wipes step-resume breakpoints, so needs to be done
3205 after exit_inferior, which ends up referencing the step-resume
3206 breakpoints through clear_thread_inferior_resources. */
3207 breakpoint_init_inferior (inf_exited);
3208
3209 registers_changed ();
3210
3211 reopen_exec_file ();
3212 reinit_frame_cache ();
3213
3214 if (deprecated_detach_hook)
3215 deprecated_detach_hook ();
3216 }
3217 \f
3218 /* Convert a normal process ID to a string. Returns the string in a
3219 static buffer. */
3220
3221 std::string
3222 normal_pid_to_str (ptid_t ptid)
3223 {
3224 return string_printf ("process %d", ptid.pid ());
3225 }
3226
3227 static std::string
3228 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3229 {
3230 return normal_pid_to_str (ptid);
3231 }
3232
3233 /* Error-catcher for target_find_memory_regions. */
3234 static int
3235 dummy_find_memory_regions (struct target_ops *self,
3236 find_memory_region_ftype ignore1, void *ignore2)
3237 {
3238 error (_("Command not implemented for this target."));
3239 return 0;
3240 }
3241
3242 /* Error-catcher for target_make_corefile_notes. */
3243 static char *
3244 dummy_make_corefile_notes (struct target_ops *self,
3245 bfd *ignore1, int *ignore2)
3246 {
3247 error (_("Command not implemented for this target."));
3248 return NULL;
3249 }
3250
3251 #include "target-delegates.c"
3252
3253 /* The initial current target, so that there is always a semi-valid
3254 current target. */
3255
3256 static dummy_target the_dummy_target;
3257
3258 /* See target.h. */
3259
3260 target_ops *
3261 get_dummy_target ()
3262 {
3263 return &the_dummy_target;
3264 }
3265
3266 static const target_info dummy_target_info = {
3267 "None",
3268 N_("None"),
3269 ""
3270 };
3271
3272 strata
3273 dummy_target::stratum () const
3274 {
3275 return dummy_stratum;
3276 }
3277
3278 strata
3279 debug_target::stratum () const
3280 {
3281 return debug_stratum;
3282 }
3283
3284 const target_info &
3285 dummy_target::info () const
3286 {
3287 return dummy_target_info;
3288 }
3289
3290 const target_info &
3291 debug_target::info () const
3292 {
3293 return beneath ()->info ();
3294 }
3295
3296 \f
3297
3298 void
3299 target_close (struct target_ops *targ)
3300 {
3301 gdb_assert (!target_is_pushed (targ));
3302
3303 fileio_handles_invalidate_target (targ);
3304
3305 targ->close ();
3306
3307 if (targetdebug)
3308 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3309 }
3310
3311 int
3312 target_thread_alive (ptid_t ptid)
3313 {
3314 return current_top_target ()->thread_alive (ptid);
3315 }
3316
3317 void
3318 target_update_thread_list (void)
3319 {
3320 current_top_target ()->update_thread_list ();
3321 }
3322
3323 void
3324 target_stop (ptid_t ptid)
3325 {
3326 if (!may_stop)
3327 {
3328 warning (_("May not interrupt or stop the target, ignoring attempt"));
3329 return;
3330 }
3331
3332 current_top_target ()->stop (ptid);
3333 }
3334
3335 void
3336 target_interrupt ()
3337 {
3338 if (!may_stop)
3339 {
3340 warning (_("May not interrupt or stop the target, ignoring attempt"));
3341 return;
3342 }
3343
3344 current_top_target ()->interrupt ();
3345 }
3346
3347 /* See target.h. */
3348
3349 void
3350 target_pass_ctrlc (void)
3351 {
3352 /* Pass the Ctrl-C to the first target that has a thread
3353 running. */
3354 for (inferior *inf : all_inferiors ())
3355 {
3356 target_ops *proc_target = inf->process_target ();
3357 if (proc_target == NULL)
3358 continue;
3359
3360 for (thread_info *thr : inf->threads ())
3361 {
3362 /* A thread can be THREAD_STOPPED and executing, while
3363 running an infcall. */
3364 if (thr->state == THREAD_RUNNING || thr->executing)
3365 {
3366 /* We can get here quite deep in target layers. Avoid
3367 switching thread context or anything that would
3368 communicate with the target (e.g., to fetch
3369 registers), or flushing e.g., the frame cache. We
3370 just switch inferior in order to be able to call
3371 through the target_stack. */
3372 scoped_restore_current_inferior restore_inferior;
3373 set_current_inferior (inf);
3374 current_top_target ()->pass_ctrlc ();
3375 return;
3376 }
3377 }
3378 }
3379 }
3380
3381 /* See target.h. */
3382
3383 void
3384 default_target_pass_ctrlc (struct target_ops *ops)
3385 {
3386 target_interrupt ();
3387 }
3388
3389 /* See target/target.h. */
3390
3391 void
3392 target_stop_and_wait (ptid_t ptid)
3393 {
3394 struct target_waitstatus status;
3395 bool was_non_stop = non_stop;
3396
3397 non_stop = true;
3398 target_stop (ptid);
3399
3400 memset (&status, 0, sizeof (status));
3401 target_wait (ptid, &status, 0);
3402
3403 non_stop = was_non_stop;
3404 }
3405
3406 /* See target/target.h. */
3407
3408 void
3409 target_continue_no_signal (ptid_t ptid)
3410 {
3411 target_resume (ptid, 0, GDB_SIGNAL_0);
3412 }
3413
3414 /* See target/target.h. */
3415
3416 void
3417 target_continue (ptid_t ptid, enum gdb_signal signal)
3418 {
3419 target_resume (ptid, 0, signal);
3420 }
3421
3422 /* Concatenate ELEM to LIST, a comma-separated list. */
3423
3424 static void
3425 str_comma_list_concat_elem (std::string *list, const char *elem)
3426 {
3427 if (!list->empty ())
3428 list->append (", ");
3429
3430 list->append (elem);
3431 }
3432
3433 /* Helper for target_options_to_string. If OPT is present in
3434 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3435 OPT is removed from TARGET_OPTIONS. */
3436
3437 static void
3438 do_option (int *target_options, std::string *ret,
3439 int opt, const char *opt_str)
3440 {
3441 if ((*target_options & opt) != 0)
3442 {
3443 str_comma_list_concat_elem (ret, opt_str);
3444 *target_options &= ~opt;
3445 }
3446 }
3447
3448 /* See target.h. */
3449
3450 std::string
3451 target_options_to_string (int target_options)
3452 {
3453 std::string ret;
3454
3455 #define DO_TARG_OPTION(OPT) \
3456 do_option (&target_options, &ret, OPT, #OPT)
3457
3458 DO_TARG_OPTION (TARGET_WNOHANG);
3459
3460 if (target_options != 0)
3461 str_comma_list_concat_elem (&ret, "unknown???");
3462
3463 return ret;
3464 }
3465
3466 void
3467 target_fetch_registers (struct regcache *regcache, int regno)
3468 {
3469 current_top_target ()->fetch_registers (regcache, regno);
3470 if (targetdebug)
3471 regcache->debug_print_register ("target_fetch_registers", regno);
3472 }
3473
3474 void
3475 target_store_registers (struct regcache *regcache, int regno)
3476 {
3477 if (!may_write_registers)
3478 error (_("Writing to registers is not allowed (regno %d)"), regno);
3479
3480 current_top_target ()->store_registers (regcache, regno);
3481 if (targetdebug)
3482 {
3483 regcache->debug_print_register ("target_store_registers", regno);
3484 }
3485 }
3486
3487 int
3488 target_core_of_thread (ptid_t ptid)
3489 {
3490 return current_top_target ()->core_of_thread (ptid);
3491 }
3492
3493 int
3494 simple_verify_memory (struct target_ops *ops,
3495 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3496 {
3497 LONGEST total_xfered = 0;
3498
3499 while (total_xfered < size)
3500 {
3501 ULONGEST xfered_len;
3502 enum target_xfer_status status;
3503 gdb_byte buf[1024];
3504 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3505
3506 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3507 buf, NULL, lma + total_xfered, howmuch,
3508 &xfered_len);
3509 if (status == TARGET_XFER_OK
3510 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3511 {
3512 total_xfered += xfered_len;
3513 QUIT;
3514 }
3515 else
3516 return 0;
3517 }
3518 return 1;
3519 }
3520
3521 /* Default implementation of memory verification. */
3522
3523 static int
3524 default_verify_memory (struct target_ops *self,
3525 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3526 {
3527 /* Start over from the top of the target stack. */
3528 return simple_verify_memory (current_top_target (),
3529 data, memaddr, size);
3530 }
3531
3532 int
3533 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3534 {
3535 return current_top_target ()->verify_memory (data, memaddr, size);
3536 }
3537
3538 /* The documentation for this function is in its prototype declaration in
3539 target.h. */
3540
3541 int
3542 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3543 enum target_hw_bp_type rw)
3544 {
3545 return current_top_target ()->insert_mask_watchpoint (addr, mask, rw);
3546 }
3547
3548 /* The documentation for this function is in its prototype declaration in
3549 target.h. */
3550
3551 int
3552 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3553 enum target_hw_bp_type rw)
3554 {
3555 return current_top_target ()->remove_mask_watchpoint (addr, mask, rw);
3556 }
3557
3558 /* The documentation for this function is in its prototype declaration
3559 in target.h. */
3560
3561 int
3562 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3563 {
3564 return current_top_target ()->masked_watch_num_registers (addr, mask);
3565 }
3566
3567 /* The documentation for this function is in its prototype declaration
3568 in target.h. */
3569
3570 int
3571 target_ranged_break_num_registers (void)
3572 {
3573 return current_top_target ()->ranged_break_num_registers ();
3574 }
3575
3576 /* See target.h. */
3577
3578 struct btrace_target_info *
3579 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3580 {
3581 return current_top_target ()->enable_btrace (ptid, conf);
3582 }
3583
3584 /* See target.h. */
3585
3586 void
3587 target_disable_btrace (struct btrace_target_info *btinfo)
3588 {
3589 current_top_target ()->disable_btrace (btinfo);
3590 }
3591
3592 /* See target.h. */
3593
3594 void
3595 target_teardown_btrace (struct btrace_target_info *btinfo)
3596 {
3597 current_top_target ()->teardown_btrace (btinfo);
3598 }
3599
3600 /* See target.h. */
3601
3602 enum btrace_error
3603 target_read_btrace (struct btrace_data *btrace,
3604 struct btrace_target_info *btinfo,
3605 enum btrace_read_type type)
3606 {
3607 return current_top_target ()->read_btrace (btrace, btinfo, type);
3608 }
3609
3610 /* See target.h. */
3611
3612 const struct btrace_config *
3613 target_btrace_conf (const struct btrace_target_info *btinfo)
3614 {
3615 return current_top_target ()->btrace_conf (btinfo);
3616 }
3617
3618 /* See target.h. */
3619
3620 void
3621 target_stop_recording (void)
3622 {
3623 current_top_target ()->stop_recording ();
3624 }
3625
3626 /* See target.h. */
3627
3628 void
3629 target_save_record (const char *filename)
3630 {
3631 current_top_target ()->save_record (filename);
3632 }
3633
3634 /* See target.h. */
3635
3636 int
3637 target_supports_delete_record ()
3638 {
3639 return current_top_target ()->supports_delete_record ();
3640 }
3641
3642 /* See target.h. */
3643
3644 void
3645 target_delete_record (void)
3646 {
3647 current_top_target ()->delete_record ();
3648 }
3649
3650 /* See target.h. */
3651
3652 enum record_method
3653 target_record_method (ptid_t ptid)
3654 {
3655 return current_top_target ()->record_method (ptid);
3656 }
3657
3658 /* See target.h. */
3659
3660 int
3661 target_record_is_replaying (ptid_t ptid)
3662 {
3663 return current_top_target ()->record_is_replaying (ptid);
3664 }
3665
3666 /* See target.h. */
3667
3668 int
3669 target_record_will_replay (ptid_t ptid, int dir)
3670 {
3671 return current_top_target ()->record_will_replay (ptid, dir);
3672 }
3673
3674 /* See target.h. */
3675
3676 void
3677 target_record_stop_replaying (void)
3678 {
3679 current_top_target ()->record_stop_replaying ();
3680 }
3681
3682 /* See target.h. */
3683
3684 void
3685 target_goto_record_begin (void)
3686 {
3687 current_top_target ()->goto_record_begin ();
3688 }
3689
3690 /* See target.h. */
3691
3692 void
3693 target_goto_record_end (void)
3694 {
3695 current_top_target ()->goto_record_end ();
3696 }
3697
3698 /* See target.h. */
3699
3700 void
3701 target_goto_record (ULONGEST insn)
3702 {
3703 current_top_target ()->goto_record (insn);
3704 }
3705
3706 /* See target.h. */
3707
3708 void
3709 target_insn_history (int size, gdb_disassembly_flags flags)
3710 {
3711 current_top_target ()->insn_history (size, flags);
3712 }
3713
3714 /* See target.h. */
3715
3716 void
3717 target_insn_history_from (ULONGEST from, int size,
3718 gdb_disassembly_flags flags)
3719 {
3720 current_top_target ()->insn_history_from (from, size, flags);
3721 }
3722
3723 /* See target.h. */
3724
3725 void
3726 target_insn_history_range (ULONGEST begin, ULONGEST end,
3727 gdb_disassembly_flags flags)
3728 {
3729 current_top_target ()->insn_history_range (begin, end, flags);
3730 }
3731
3732 /* See target.h. */
3733
3734 void
3735 target_call_history (int size, record_print_flags flags)
3736 {
3737 current_top_target ()->call_history (size, flags);
3738 }
3739
3740 /* See target.h. */
3741
3742 void
3743 target_call_history_from (ULONGEST begin, int size, record_print_flags flags)
3744 {
3745 current_top_target ()->call_history_from (begin, size, flags);
3746 }
3747
3748 /* See target.h. */
3749
3750 void
3751 target_call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
3752 {
3753 current_top_target ()->call_history_range (begin, end, flags);
3754 }
3755
3756 /* See target.h. */
3757
3758 const struct frame_unwind *
3759 target_get_unwinder (void)
3760 {
3761 return current_top_target ()->get_unwinder ();
3762 }
3763
3764 /* See target.h. */
3765
3766 const struct frame_unwind *
3767 target_get_tailcall_unwinder (void)
3768 {
3769 return current_top_target ()->get_tailcall_unwinder ();
3770 }
3771
3772 /* See target.h. */
3773
3774 void
3775 target_prepare_to_generate_core (void)
3776 {
3777 current_top_target ()->prepare_to_generate_core ();
3778 }
3779
3780 /* See target.h. */
3781
3782 void
3783 target_done_generating_core (void)
3784 {
3785 current_top_target ()->done_generating_core ();
3786 }
3787
3788 \f
3789
3790 static char targ_desc[] =
3791 "Names of targets and files being debugged.\nShows the entire \
3792 stack of targets currently in use (including the exec-file,\n\
3793 core-file, and process, if any), as well as the symbol file name.";
3794
3795 static void
3796 default_rcmd (struct target_ops *self, const char *command,
3797 struct ui_file *output)
3798 {
3799 error (_("\"monitor\" command not supported by this target."));
3800 }
3801
3802 static void
3803 do_monitor_command (const char *cmd, int from_tty)
3804 {
3805 target_rcmd (cmd, gdb_stdtarg);
3806 }
3807
3808 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
3809 ignored. */
3810
3811 void
3812 flash_erase_command (const char *cmd, int from_tty)
3813 {
3814 /* Used to communicate termination of flash operations to the target. */
3815 bool found_flash_region = false;
3816 struct gdbarch *gdbarch = target_gdbarch ();
3817
3818 std::vector<mem_region> mem_regions = target_memory_map ();
3819
3820 /* Iterate over all memory regions. */
3821 for (const mem_region &m : mem_regions)
3822 {
3823 /* Is this a flash memory region? */
3824 if (m.attrib.mode == MEM_FLASH)
3825 {
3826 found_flash_region = true;
3827 target_flash_erase (m.lo, m.hi - m.lo);
3828
3829 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
3830
3831 current_uiout->message (_("Erasing flash memory region at address "));
3832 current_uiout->field_core_addr ("address", gdbarch, m.lo);
3833 current_uiout->message (", size = ");
3834 current_uiout->field_string ("size", hex_string (m.hi - m.lo));
3835 current_uiout->message ("\n");
3836 }
3837 }
3838
3839 /* Did we do any flash operations? If so, we need to finalize them. */
3840 if (found_flash_region)
3841 target_flash_done ();
3842 else
3843 current_uiout->message (_("No flash memory regions found.\n"));
3844 }
3845
3846 /* Print the name of each layers of our target stack. */
3847
3848 static void
3849 maintenance_print_target_stack (const char *cmd, int from_tty)
3850 {
3851 printf_filtered (_("The current target stack is:\n"));
3852
3853 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
3854 {
3855 if (t->stratum () == debug_stratum)
3856 continue;
3857 printf_filtered (" - %s (%s)\n", t->shortname (), t->longname ());
3858 }
3859 }
3860
3861 /* See target.h. */
3862
3863 void
3864 target_async (int enable)
3865 {
3866 infrun_async (enable);
3867 current_top_target ()->async (enable);
3868 }
3869
3870 /* See target.h. */
3871
3872 void
3873 target_thread_events (int enable)
3874 {
3875 current_top_target ()->thread_events (enable);
3876 }
3877
3878 /* Controls if targets can report that they can/are async. This is
3879 just for maintainers to use when debugging gdb. */
3880 bool target_async_permitted = true;
3881
3882 /* The set command writes to this variable. If the inferior is
3883 executing, target_async_permitted is *not* updated. */
3884 static bool target_async_permitted_1 = true;
3885
3886 static void
3887 maint_set_target_async_command (const char *args, int from_tty,
3888 struct cmd_list_element *c)
3889 {
3890 if (have_live_inferiors ())
3891 {
3892 target_async_permitted_1 = target_async_permitted;
3893 error (_("Cannot change this setting while the inferior is running."));
3894 }
3895
3896 target_async_permitted = target_async_permitted_1;
3897 }
3898
3899 static void
3900 maint_show_target_async_command (struct ui_file *file, int from_tty,
3901 struct cmd_list_element *c,
3902 const char *value)
3903 {
3904 fprintf_filtered (file,
3905 _("Controlling the inferior in "
3906 "asynchronous mode is %s.\n"), value);
3907 }
3908
3909 /* Return true if the target operates in non-stop mode even with "set
3910 non-stop off". */
3911
3912 static int
3913 target_always_non_stop_p (void)
3914 {
3915 return current_top_target ()->always_non_stop_p ();
3916 }
3917
3918 /* See target.h. */
3919
3920 int
3921 target_is_non_stop_p (void)
3922 {
3923 return (non_stop
3924 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3925 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3926 && target_always_non_stop_p ()));
3927 }
3928
3929 /* Controls if targets can report that they always run in non-stop
3930 mode. This is just for maintainers to use when debugging gdb. */
3931 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3932
3933 /* The set command writes to this variable. If the inferior is
3934 executing, target_non_stop_enabled is *not* updated. */
3935 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3936
3937 /* Implementation of "maint set target-non-stop". */
3938
3939 static void
3940 maint_set_target_non_stop_command (const char *args, int from_tty,
3941 struct cmd_list_element *c)
3942 {
3943 if (have_live_inferiors ())
3944 {
3945 target_non_stop_enabled_1 = target_non_stop_enabled;
3946 error (_("Cannot change this setting while the inferior is running."));
3947 }
3948
3949 target_non_stop_enabled = target_non_stop_enabled_1;
3950 }
3951
3952 /* Implementation of "maint show target-non-stop". */
3953
3954 static void
3955 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3956 struct cmd_list_element *c,
3957 const char *value)
3958 {
3959 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3960 fprintf_filtered (file,
3961 _("Whether the target is always in non-stop mode "
3962 "is %s (currently %s).\n"), value,
3963 target_always_non_stop_p () ? "on" : "off");
3964 else
3965 fprintf_filtered (file,
3966 _("Whether the target is always in non-stop mode "
3967 "is %s.\n"), value);
3968 }
3969
3970 /* Temporary copies of permission settings. */
3971
3972 static bool may_write_registers_1 = true;
3973 static bool may_write_memory_1 = true;
3974 static bool may_insert_breakpoints_1 = true;
3975 static bool may_insert_tracepoints_1 = true;
3976 static bool may_insert_fast_tracepoints_1 = true;
3977 static bool may_stop_1 = true;
3978
3979 /* Make the user-set values match the real values again. */
3980
3981 void
3982 update_target_permissions (void)
3983 {
3984 may_write_registers_1 = may_write_registers;
3985 may_write_memory_1 = may_write_memory;
3986 may_insert_breakpoints_1 = may_insert_breakpoints;
3987 may_insert_tracepoints_1 = may_insert_tracepoints;
3988 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3989 may_stop_1 = may_stop;
3990 }
3991
3992 /* The one function handles (most of) the permission flags in the same
3993 way. */
3994
3995 static void
3996 set_target_permissions (const char *args, int from_tty,
3997 struct cmd_list_element *c)
3998 {
3999 if (target_has_execution)
4000 {
4001 update_target_permissions ();
4002 error (_("Cannot change this setting while the inferior is running."));
4003 }
4004
4005 /* Make the real values match the user-changed values. */
4006 may_write_registers = may_write_registers_1;
4007 may_insert_breakpoints = may_insert_breakpoints_1;
4008 may_insert_tracepoints = may_insert_tracepoints_1;
4009 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4010 may_stop = may_stop_1;
4011 update_observer_mode ();
4012 }
4013
4014 /* Set memory write permission independently of observer mode. */
4015
4016 static void
4017 set_write_memory_permission (const char *args, int from_tty,
4018 struct cmd_list_element *c)
4019 {
4020 /* Make the real values match the user-changed values. */
4021 may_write_memory = may_write_memory_1;
4022 update_observer_mode ();
4023 }
4024
4025 void
4026 _initialize_target ()
4027 {
4028 the_debug_target = new debug_target ();
4029
4030 add_info ("target", info_target_command, targ_desc);
4031 add_info ("files", info_target_command, targ_desc);
4032
4033 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4034 Set target debugging."), _("\
4035 Show target debugging."), _("\
4036 When non-zero, target debugging is enabled. Higher numbers are more\n\
4037 verbose."),
4038 set_targetdebug,
4039 show_targetdebug,
4040 &setdebuglist, &showdebuglist);
4041
4042 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4043 &trust_readonly, _("\
4044 Set mode for reading from readonly sections."), _("\
4045 Show mode for reading from readonly sections."), _("\
4046 When this mode is on, memory reads from readonly sections (such as .text)\n\
4047 will be read from the object file instead of from the target. This will\n\
4048 result in significant performance improvement for remote targets."),
4049 NULL,
4050 show_trust_readonly,
4051 &setlist, &showlist);
4052
4053 add_com ("monitor", class_obscure, do_monitor_command,
4054 _("Send a command to the remote monitor (remote targets only)."));
4055
4056 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4057 _("Print the name of each layer of the internal target stack."),
4058 &maintenanceprintlist);
4059
4060 add_setshow_boolean_cmd ("target-async", no_class,
4061 &target_async_permitted_1, _("\
4062 Set whether gdb controls the inferior in asynchronous mode."), _("\
4063 Show whether gdb controls the inferior in asynchronous mode."), _("\
4064 Tells gdb whether to control the inferior in asynchronous mode."),
4065 maint_set_target_async_command,
4066 maint_show_target_async_command,
4067 &maintenance_set_cmdlist,
4068 &maintenance_show_cmdlist);
4069
4070 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4071 &target_non_stop_enabled_1, _("\
4072 Set whether gdb always controls the inferior in non-stop mode."), _("\
4073 Show whether gdb always controls the inferior in non-stop mode."), _("\
4074 Tells gdb whether to control the inferior in non-stop mode."),
4075 maint_set_target_non_stop_command,
4076 maint_show_target_non_stop_command,
4077 &maintenance_set_cmdlist,
4078 &maintenance_show_cmdlist);
4079
4080 add_setshow_boolean_cmd ("may-write-registers", class_support,
4081 &may_write_registers_1, _("\
4082 Set permission to write into registers."), _("\
4083 Show permission to write into registers."), _("\
4084 When this permission is on, GDB may write into the target's registers.\n\
4085 Otherwise, any sort of write attempt will result in an error."),
4086 set_target_permissions, NULL,
4087 &setlist, &showlist);
4088
4089 add_setshow_boolean_cmd ("may-write-memory", class_support,
4090 &may_write_memory_1, _("\
4091 Set permission to write into target memory."), _("\
4092 Show permission to write into target memory."), _("\
4093 When this permission is on, GDB may write into the target's memory.\n\
4094 Otherwise, any sort of write attempt will result in an error."),
4095 set_write_memory_permission, NULL,
4096 &setlist, &showlist);
4097
4098 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4099 &may_insert_breakpoints_1, _("\
4100 Set permission to insert breakpoints in the target."), _("\
4101 Show permission to insert breakpoints in the target."), _("\
4102 When this permission is on, GDB may insert breakpoints in the program.\n\
4103 Otherwise, any sort of insertion attempt will result in an error."),
4104 set_target_permissions, NULL,
4105 &setlist, &showlist);
4106
4107 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4108 &may_insert_tracepoints_1, _("\
4109 Set permission to insert tracepoints in the target."), _("\
4110 Show permission to insert tracepoints in the target."), _("\
4111 When this permission is on, GDB may insert tracepoints in the program.\n\
4112 Otherwise, any sort of insertion attempt will result in an error."),
4113 set_target_permissions, NULL,
4114 &setlist, &showlist);
4115
4116 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4117 &may_insert_fast_tracepoints_1, _("\
4118 Set permission to insert fast tracepoints in the target."), _("\
4119 Show permission to insert fast tracepoints in the target."), _("\
4120 When this permission is on, GDB may insert fast tracepoints.\n\
4121 Otherwise, any sort of insertion attempt will result in an error."),
4122 set_target_permissions, NULL,
4123 &setlist, &showlist);
4124
4125 add_setshow_boolean_cmd ("may-interrupt", class_support,
4126 &may_stop_1, _("\
4127 Set permission to interrupt or signal the target."), _("\
4128 Show permission to interrupt or signal the target."), _("\
4129 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4130 Otherwise, any attempt to interrupt or stop will be ignored."),
4131 set_target_permissions, NULL,
4132 &setlist, &showlist);
4133
4134 add_com ("flash-erase", no_class, flash_erase_command,
4135 _("Erase all flash memory regions."));
4136
4137 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4138 &auto_connect_native_target, _("\
4139 Set whether GDB may automatically connect to the native target."), _("\
4140 Show whether GDB may automatically connect to the native target."), _("\
4141 When on, and GDB is not connected to a target yet, GDB\n\
4142 attempts \"run\" and other commands with the native target."),
4143 NULL, show_auto_connect_native_target,
4144 &setlist, &showlist);
4145 }
This page took 0.124123 seconds and 4 git commands to generate.