gdb: defer commit resume until all available events are consumed
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2020 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "gdbsupport/agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48 #include <algorithm>
49 #include "gdbsupport/byte-vector.h"
50 #include "terminal.h"
51 #include <unordered_map>
52 #include "target-connection.h"
53 #include "valprint.h"
54
55 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
56
57 static void default_terminal_info (struct target_ops *, const char *, int);
58
59 static int default_watchpoint_addr_within_range (struct target_ops *,
60 CORE_ADDR, CORE_ADDR, int);
61
62 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
63 CORE_ADDR, int);
64
65 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
66
67 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
68 long lwp, long tid);
69
70 static void default_mourn_inferior (struct target_ops *self);
71
72 static int default_search_memory (struct target_ops *ops,
73 CORE_ADDR start_addr,
74 ULONGEST search_space_len,
75 const gdb_byte *pattern,
76 ULONGEST pattern_len,
77 CORE_ADDR *found_addrp);
78
79 static int default_verify_memory (struct target_ops *self,
80 const gdb_byte *data,
81 CORE_ADDR memaddr, ULONGEST size);
82
83 static void tcomplain (void) ATTRIBUTE_NORETURN;
84
85 static struct target_ops *find_default_run_target (const char *);
86
87 static int dummy_find_memory_regions (struct target_ops *self,
88 find_memory_region_ftype ignore1,
89 void *ignore2);
90
91 static char *dummy_make_corefile_notes (struct target_ops *self,
92 bfd *ignore1, int *ignore2);
93
94 static std::string default_pid_to_str (struct target_ops *ops, ptid_t ptid);
95
96 static enum exec_direction_kind default_execution_direction
97 (struct target_ops *self);
98
99 /* Mapping between target_info objects (which have address identity)
100 and corresponding open/factory function/callback. Each add_target
101 call adds one entry to this map, and registers a "target
102 TARGET_NAME" command that when invoked calls the factory registered
103 here. The target_info object is associated with the command via
104 the command's context. */
105 static std::unordered_map<const target_info *, target_open_ftype *>
106 target_factories;
107
108 /* The singleton debug target. */
109
110 static struct target_ops *the_debug_target;
111
112 /* Top of target stack. */
113 /* The target structure we are currently using to talk to a process
114 or file or whatever "inferior" we have. */
115
116 target_ops *
117 current_top_target ()
118 {
119 return current_inferior ()->top_target ();
120 }
121
122 /* Command list for target. */
123
124 static struct cmd_list_element *targetlist = NULL;
125
126 /* True if we should trust readonly sections from the
127 executable when reading memory. */
128
129 static bool trust_readonly = false;
130
131 /* Nonzero if we should show true memory content including
132 memory breakpoint inserted by gdb. */
133
134 static int show_memory_breakpoints = 0;
135
136 /* These globals control whether GDB attempts to perform these
137 operations; they are useful for targets that need to prevent
138 inadvertent disruption, such as in non-stop mode. */
139
140 bool may_write_registers = true;
141
142 bool may_write_memory = true;
143
144 bool may_insert_breakpoints = true;
145
146 bool may_insert_tracepoints = true;
147
148 bool may_insert_fast_tracepoints = true;
149
150 bool may_stop = true;
151
152 /* Non-zero if we want to see trace of target level stuff. */
153
154 static unsigned int targetdebug = 0;
155
156 static void
157 set_targetdebug (const char *args, int from_tty, struct cmd_list_element *c)
158 {
159 if (targetdebug)
160 push_target (the_debug_target);
161 else
162 unpush_target (the_debug_target);
163 }
164
165 static void
166 show_targetdebug (struct ui_file *file, int from_tty,
167 struct cmd_list_element *c, const char *value)
168 {
169 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
170 }
171
172 int
173 target_has_all_memory_1 (void)
174 {
175 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
176 if (t->has_all_memory ())
177 return 1;
178
179 return 0;
180 }
181
182 int
183 target_has_memory_1 (void)
184 {
185 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
186 if (t->has_memory ())
187 return 1;
188
189 return 0;
190 }
191
192 int
193 target_has_stack_1 (void)
194 {
195 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
196 if (t->has_stack ())
197 return 1;
198
199 return 0;
200 }
201
202 int
203 target_has_registers_1 (void)
204 {
205 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
206 if (t->has_registers ())
207 return 1;
208
209 return 0;
210 }
211
212 bool
213 target_has_execution_1 (inferior *inf)
214 {
215 for (target_ops *t = inf->top_target ();
216 t != nullptr;
217 t = inf->find_target_beneath (t))
218 if (t->has_execution (inf))
219 return true;
220
221 return false;
222 }
223
224 int
225 target_has_execution_current (void)
226 {
227 return target_has_execution_1 (current_inferior ());
228 }
229
230 /* This is used to implement the various target commands. */
231
232 static void
233 open_target (const char *args, int from_tty, struct cmd_list_element *command)
234 {
235 auto *ti = static_cast<target_info *> (get_cmd_context (command));
236 target_open_ftype *func = target_factories[ti];
237
238 if (targetdebug)
239 fprintf_unfiltered (gdb_stdlog, "-> %s->open (...)\n",
240 ti->shortname);
241
242 func (args, from_tty);
243
244 if (targetdebug)
245 fprintf_unfiltered (gdb_stdlog, "<- %s->open (%s, %d)\n",
246 ti->shortname, args, from_tty);
247 }
248
249 /* See target.h. */
250
251 void
252 add_target (const target_info &t, target_open_ftype *func,
253 completer_ftype *completer)
254 {
255 struct cmd_list_element *c;
256
257 auto &func_slot = target_factories[&t];
258 if (func_slot != nullptr)
259 internal_error (__FILE__, __LINE__,
260 _("target already added (\"%s\")."), t.shortname);
261 func_slot = func;
262
263 if (targetlist == NULL)
264 add_basic_prefix_cmd ("target", class_run, _("\
265 Connect to a target machine or process.\n\
266 The first argument is the type or protocol of the target machine.\n\
267 Remaining arguments are interpreted by the target protocol. For more\n\
268 information on the arguments for a particular protocol, type\n\
269 `help target ' followed by the protocol name."),
270 &targetlist, "target ", 0, &cmdlist);
271 c = add_cmd (t.shortname, no_class, t.doc, &targetlist);
272 set_cmd_context (c, (void *) &t);
273 set_cmd_sfunc (c, open_target);
274 if (completer != NULL)
275 set_cmd_completer (c, completer);
276 }
277
278 /* See target.h. */
279
280 void
281 add_deprecated_target_alias (const target_info &tinfo, const char *alias)
282 {
283 struct cmd_list_element *c;
284 char *alt;
285
286 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
287 see PR cli/15104. */
288 c = add_cmd (alias, no_class, tinfo.doc, &targetlist);
289 set_cmd_sfunc (c, open_target);
290 set_cmd_context (c, (void *) &tinfo);
291 alt = xstrprintf ("target %s", tinfo.shortname);
292 deprecate_cmd (c, alt);
293 }
294
295 /* Stub functions */
296
297 void
298 target_kill (void)
299 {
300 current_top_target ()->kill ();
301 }
302
303 void
304 target_load (const char *arg, int from_tty)
305 {
306 target_dcache_invalidate ();
307 current_top_target ()->load (arg, from_tty);
308 }
309
310 /* Define it. */
311
312 target_terminal_state target_terminal::m_terminal_state
313 = target_terminal_state::is_ours;
314
315 /* See target/target.h. */
316
317 void
318 target_terminal::init (void)
319 {
320 current_top_target ()->terminal_init ();
321
322 m_terminal_state = target_terminal_state::is_ours;
323 }
324
325 /* See target/target.h. */
326
327 void
328 target_terminal::inferior (void)
329 {
330 struct ui *ui = current_ui;
331
332 /* A background resume (``run&'') should leave GDB in control of the
333 terminal. */
334 if (ui->prompt_state != PROMPT_BLOCKED)
335 return;
336
337 /* Since we always run the inferior in the main console (unless "set
338 inferior-tty" is in effect), when some UI other than the main one
339 calls target_terminal::inferior, then we leave the main UI's
340 terminal settings as is. */
341 if (ui != main_ui)
342 return;
343
344 /* If GDB is resuming the inferior in the foreground, install
345 inferior's terminal modes. */
346
347 struct inferior *inf = current_inferior ();
348
349 if (inf->terminal_state != target_terminal_state::is_inferior)
350 {
351 current_top_target ()->terminal_inferior ();
352 inf->terminal_state = target_terminal_state::is_inferior;
353 }
354
355 m_terminal_state = target_terminal_state::is_inferior;
356
357 /* If the user hit C-c before, pretend that it was hit right
358 here. */
359 if (check_quit_flag ())
360 target_pass_ctrlc ();
361 }
362
363 /* See target/target.h. */
364
365 void
366 target_terminal::restore_inferior (void)
367 {
368 struct ui *ui = current_ui;
369
370 /* See target_terminal::inferior(). */
371 if (ui->prompt_state != PROMPT_BLOCKED || ui != main_ui)
372 return;
373
374 /* Restore the terminal settings of inferiors that were in the
375 foreground but are now ours_for_output due to a temporary
376 target_target::ours_for_output() call. */
377
378 {
379 scoped_restore_current_inferior restore_inferior;
380
381 for (::inferior *inf : all_inferiors ())
382 {
383 if (inf->terminal_state == target_terminal_state::is_ours_for_output)
384 {
385 set_current_inferior (inf);
386 current_top_target ()->terminal_inferior ();
387 inf->terminal_state = target_terminal_state::is_inferior;
388 }
389 }
390 }
391
392 m_terminal_state = target_terminal_state::is_inferior;
393
394 /* If the user hit C-c before, pretend that it was hit right
395 here. */
396 if (check_quit_flag ())
397 target_pass_ctrlc ();
398 }
399
400 /* Switch terminal state to DESIRED_STATE, either is_ours, or
401 is_ours_for_output. */
402
403 static void
404 target_terminal_is_ours_kind (target_terminal_state desired_state)
405 {
406 scoped_restore_current_inferior restore_inferior;
407
408 /* Must do this in two passes. First, have all inferiors save the
409 current terminal settings. Then, after all inferiors have add a
410 chance to safely save the terminal settings, restore GDB's
411 terminal settings. */
412
413 for (inferior *inf : all_inferiors ())
414 {
415 if (inf->terminal_state == target_terminal_state::is_inferior)
416 {
417 set_current_inferior (inf);
418 current_top_target ()->terminal_save_inferior ();
419 }
420 }
421
422 for (inferior *inf : all_inferiors ())
423 {
424 /* Note we don't check is_inferior here like above because we
425 need to handle 'is_ours_for_output -> is_ours' too. Careful
426 to never transition from 'is_ours' to 'is_ours_for_output',
427 though. */
428 if (inf->terminal_state != target_terminal_state::is_ours
429 && inf->terminal_state != desired_state)
430 {
431 set_current_inferior (inf);
432 if (desired_state == target_terminal_state::is_ours)
433 current_top_target ()->terminal_ours ();
434 else if (desired_state == target_terminal_state::is_ours_for_output)
435 current_top_target ()->terminal_ours_for_output ();
436 else
437 gdb_assert_not_reached ("unhandled desired state");
438 inf->terminal_state = desired_state;
439 }
440 }
441 }
442
443 /* See target/target.h. */
444
445 void
446 target_terminal::ours ()
447 {
448 struct ui *ui = current_ui;
449
450 /* See target_terminal::inferior. */
451 if (ui != main_ui)
452 return;
453
454 if (m_terminal_state == target_terminal_state::is_ours)
455 return;
456
457 target_terminal_is_ours_kind (target_terminal_state::is_ours);
458 m_terminal_state = target_terminal_state::is_ours;
459 }
460
461 /* See target/target.h. */
462
463 void
464 target_terminal::ours_for_output ()
465 {
466 struct ui *ui = current_ui;
467
468 /* See target_terminal::inferior. */
469 if (ui != main_ui)
470 return;
471
472 if (!target_terminal::is_inferior ())
473 return;
474
475 target_terminal_is_ours_kind (target_terminal_state::is_ours_for_output);
476 target_terminal::m_terminal_state = target_terminal_state::is_ours_for_output;
477 }
478
479 /* See target/target.h. */
480
481 void
482 target_terminal::info (const char *arg, int from_tty)
483 {
484 current_top_target ()->terminal_info (arg, from_tty);
485 }
486
487 /* See target.h. */
488
489 bool
490 target_supports_terminal_ours (void)
491 {
492 /* The current top target is the target at the top of the target
493 stack of the current inferior. While normally there's always an
494 inferior, we must check for nullptr here because we can get here
495 very early during startup, before the initial inferior is first
496 created. */
497 inferior *inf = current_inferior ();
498
499 if (inf == nullptr)
500 return false;
501 return inf->top_target ()->supports_terminal_ours ();
502 }
503
504 static void
505 tcomplain (void)
506 {
507 error (_("You can't do that when your target is `%s'"),
508 current_top_target ()->shortname ());
509 }
510
511 void
512 noprocess (void)
513 {
514 error (_("You can't do that without a process to debug."));
515 }
516
517 static void
518 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
519 {
520 printf_unfiltered (_("No saved terminal information.\n"));
521 }
522
523 /* A default implementation for the to_get_ada_task_ptid target method.
524
525 This function builds the PTID by using both LWP and TID as part of
526 the PTID lwp and tid elements. The pid used is the pid of the
527 inferior_ptid. */
528
529 static ptid_t
530 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
531 {
532 return ptid_t (inferior_ptid.pid (), lwp, tid);
533 }
534
535 static enum exec_direction_kind
536 default_execution_direction (struct target_ops *self)
537 {
538 if (!target_can_execute_reverse)
539 return EXEC_FORWARD;
540 else if (!target_can_async_p ())
541 return EXEC_FORWARD;
542 else
543 gdb_assert_not_reached ("\
544 to_execution_direction must be implemented for reverse async");
545 }
546
547 /* See target.h. */
548
549 void
550 decref_target (target_ops *t)
551 {
552 t->decref ();
553 if (t->refcount () == 0)
554 {
555 if (t->stratum () == process_stratum)
556 connection_list_remove (as_process_stratum_target (t));
557 target_close (t);
558 }
559 }
560
561 /* See target.h. */
562
563 void
564 target_stack::push (target_ops *t)
565 {
566 t->incref ();
567
568 strata stratum = t->stratum ();
569
570 if (stratum == process_stratum)
571 connection_list_add (as_process_stratum_target (t));
572
573 /* If there's already a target at this stratum, remove it. */
574
575 if (m_stack[stratum] != NULL)
576 unpush (m_stack[stratum]);
577
578 /* Now add the new one. */
579 m_stack[stratum] = t;
580
581 if (m_top < stratum)
582 m_top = stratum;
583 }
584
585 /* See target.h. */
586
587 void
588 push_target (struct target_ops *t)
589 {
590 current_inferior ()->push_target (t);
591 }
592
593 /* See target.h. */
594
595 void
596 push_target (target_ops_up &&t)
597 {
598 current_inferior ()->push_target (t.get ());
599 t.release ();
600 }
601
602 /* See target.h. */
603
604 int
605 unpush_target (struct target_ops *t)
606 {
607 return current_inferior ()->unpush_target (t);
608 }
609
610 /* See target.h. */
611
612 bool
613 target_stack::unpush (target_ops *t)
614 {
615 gdb_assert (t != NULL);
616
617 strata stratum = t->stratum ();
618
619 if (stratum == dummy_stratum)
620 internal_error (__FILE__, __LINE__,
621 _("Attempt to unpush the dummy target"));
622
623 /* Look for the specified target. Note that a target can only occur
624 once in the target stack. */
625
626 if (m_stack[stratum] != t)
627 {
628 /* If T wasn't pushed, quit. Only open targets should be
629 closed. */
630 return false;
631 }
632
633 /* Unchain the target. */
634 m_stack[stratum] = NULL;
635
636 if (m_top == stratum)
637 m_top = t->beneath ()->stratum ();
638
639 /* Finally close the target, if there are no inferiors
640 referencing this target still. Note we do this after unchaining,
641 so any target method calls from within the target_close
642 implementation don't end up in T anymore. Do leave the target
643 open if we have are other inferiors referencing this target
644 still. */
645 decref_target (t);
646
647 return true;
648 }
649
650 /* Unpush TARGET and assert that it worked. */
651
652 static void
653 unpush_target_and_assert (struct target_ops *target)
654 {
655 if (!unpush_target (target))
656 {
657 fprintf_unfiltered (gdb_stderr,
658 "pop_all_targets couldn't find target %s\n",
659 target->shortname ());
660 internal_error (__FILE__, __LINE__,
661 _("failed internal consistency check"));
662 }
663 }
664
665 void
666 pop_all_targets_above (enum strata above_stratum)
667 {
668 while ((int) (current_top_target ()->stratum ()) > (int) above_stratum)
669 unpush_target_and_assert (current_top_target ());
670 }
671
672 /* See target.h. */
673
674 void
675 pop_all_targets_at_and_above (enum strata stratum)
676 {
677 while ((int) (current_top_target ()->stratum ()) >= (int) stratum)
678 unpush_target_and_assert (current_top_target ());
679 }
680
681 void
682 pop_all_targets (void)
683 {
684 pop_all_targets_above (dummy_stratum);
685 }
686
687 /* Return true if T is now pushed in the current inferior's target
688 stack. Return false otherwise. */
689
690 bool
691 target_is_pushed (target_ops *t)
692 {
693 return current_inferior ()->target_is_pushed (t);
694 }
695
696 /* Default implementation of to_get_thread_local_address. */
697
698 static void
699 generic_tls_error (void)
700 {
701 throw_error (TLS_GENERIC_ERROR,
702 _("Cannot find thread-local variables on this target"));
703 }
704
705 /* Using the objfile specified in OBJFILE, find the address for the
706 current thread's thread-local storage with offset OFFSET. */
707 CORE_ADDR
708 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
709 {
710 volatile CORE_ADDR addr = 0;
711 struct target_ops *target = current_top_target ();
712 struct gdbarch *gdbarch = target_gdbarch ();
713
714 if (gdbarch_fetch_tls_load_module_address_p (gdbarch))
715 {
716 ptid_t ptid = inferior_ptid;
717
718 try
719 {
720 CORE_ADDR lm_addr;
721
722 /* Fetch the load module address for this objfile. */
723 lm_addr = gdbarch_fetch_tls_load_module_address (gdbarch,
724 objfile);
725
726 if (gdbarch_get_thread_local_address_p (gdbarch))
727 addr = gdbarch_get_thread_local_address (gdbarch, ptid, lm_addr,
728 offset);
729 else
730 addr = target->get_thread_local_address (ptid, lm_addr, offset);
731 }
732 /* If an error occurred, print TLS related messages here. Otherwise,
733 throw the error to some higher catcher. */
734 catch (const gdb_exception &ex)
735 {
736 int objfile_is_library = (objfile->flags & OBJF_SHARED);
737
738 switch (ex.error)
739 {
740 case TLS_NO_LIBRARY_SUPPORT_ERROR:
741 error (_("Cannot find thread-local variables "
742 "in this thread library."));
743 break;
744 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
745 if (objfile_is_library)
746 error (_("Cannot find shared library `%s' in dynamic"
747 " linker's load module list"), objfile_name (objfile));
748 else
749 error (_("Cannot find executable file `%s' in dynamic"
750 " linker's load module list"), objfile_name (objfile));
751 break;
752 case TLS_NOT_ALLOCATED_YET_ERROR:
753 if (objfile_is_library)
754 error (_("The inferior has not yet allocated storage for"
755 " thread-local variables in\n"
756 "the shared library `%s'\n"
757 "for %s"),
758 objfile_name (objfile),
759 target_pid_to_str (ptid).c_str ());
760 else
761 error (_("The inferior has not yet allocated storage for"
762 " thread-local variables in\n"
763 "the executable `%s'\n"
764 "for %s"),
765 objfile_name (objfile),
766 target_pid_to_str (ptid).c_str ());
767 break;
768 case TLS_GENERIC_ERROR:
769 if (objfile_is_library)
770 error (_("Cannot find thread-local storage for %s, "
771 "shared library %s:\n%s"),
772 target_pid_to_str (ptid).c_str (),
773 objfile_name (objfile), ex.what ());
774 else
775 error (_("Cannot find thread-local storage for %s, "
776 "executable file %s:\n%s"),
777 target_pid_to_str (ptid).c_str (),
778 objfile_name (objfile), ex.what ());
779 break;
780 default:
781 throw;
782 break;
783 }
784 }
785 }
786 else
787 error (_("Cannot find thread-local variables on this target"));
788
789 return addr;
790 }
791
792 const char *
793 target_xfer_status_to_string (enum target_xfer_status status)
794 {
795 #define CASE(X) case X: return #X
796 switch (status)
797 {
798 CASE(TARGET_XFER_E_IO);
799 CASE(TARGET_XFER_UNAVAILABLE);
800 default:
801 return "<unknown>";
802 }
803 #undef CASE
804 };
805
806
807 /* See target.h. */
808
809 gdb::unique_xmalloc_ptr<char>
810 target_read_string (CORE_ADDR memaddr, int len, int *bytes_read)
811 {
812 gdb::unique_xmalloc_ptr<gdb_byte> buffer;
813
814 int ignore;
815 if (bytes_read == nullptr)
816 bytes_read = &ignore;
817
818 /* Note that the endian-ness does not matter here. */
819 int errcode = read_string (memaddr, -1, 1, len, BFD_ENDIAN_LITTLE,
820 &buffer, bytes_read);
821 if (errcode != 0)
822 return {};
823
824 return gdb::unique_xmalloc_ptr<char> ((char *) buffer.release ());
825 }
826
827 struct target_section_table *
828 target_get_section_table (struct target_ops *target)
829 {
830 return target->get_section_table ();
831 }
832
833 /* Find a section containing ADDR. */
834
835 struct target_section *
836 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
837 {
838 struct target_section_table *table = target_get_section_table (target);
839 struct target_section *secp;
840
841 if (table == NULL)
842 return NULL;
843
844 for (secp = table->sections; secp < table->sections_end; secp++)
845 {
846 if (addr >= secp->addr && addr < secp->endaddr)
847 return secp;
848 }
849 return NULL;
850 }
851
852
853 /* Helper for the memory xfer routines. Checks the attributes of the
854 memory region of MEMADDR against the read or write being attempted.
855 If the access is permitted returns true, otherwise returns false.
856 REGION_P is an optional output parameter. If not-NULL, it is
857 filled with a pointer to the memory region of MEMADDR. REG_LEN
858 returns LEN trimmed to the end of the region. This is how much the
859 caller can continue requesting, if the access is permitted. A
860 single xfer request must not straddle memory region boundaries. */
861
862 static int
863 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
864 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
865 struct mem_region **region_p)
866 {
867 struct mem_region *region;
868
869 region = lookup_mem_region (memaddr);
870
871 if (region_p != NULL)
872 *region_p = region;
873
874 switch (region->attrib.mode)
875 {
876 case MEM_RO:
877 if (writebuf != NULL)
878 return 0;
879 break;
880
881 case MEM_WO:
882 if (readbuf != NULL)
883 return 0;
884 break;
885
886 case MEM_FLASH:
887 /* We only support writing to flash during "load" for now. */
888 if (writebuf != NULL)
889 error (_("Writing to flash memory forbidden in this context"));
890 break;
891
892 case MEM_NONE:
893 return 0;
894 }
895
896 /* region->hi == 0 means there's no upper bound. */
897 if (memaddr + len < region->hi || region->hi == 0)
898 *reg_len = len;
899 else
900 *reg_len = region->hi - memaddr;
901
902 return 1;
903 }
904
905 /* Read memory from more than one valid target. A core file, for
906 instance, could have some of memory but delegate other bits to
907 the target below it. So, we must manually try all targets. */
908
909 enum target_xfer_status
910 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
911 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
912 ULONGEST *xfered_len)
913 {
914 enum target_xfer_status res;
915
916 do
917 {
918 res = ops->xfer_partial (TARGET_OBJECT_MEMORY, NULL,
919 readbuf, writebuf, memaddr, len,
920 xfered_len);
921 if (res == TARGET_XFER_OK)
922 break;
923
924 /* Stop if the target reports that the memory is not available. */
925 if (res == TARGET_XFER_UNAVAILABLE)
926 break;
927
928 /* We want to continue past core files to executables, but not
929 past a running target's memory. */
930 if (ops->has_all_memory ())
931 break;
932
933 ops = ops->beneath ();
934 }
935 while (ops != NULL);
936
937 /* The cache works at the raw memory level. Make sure the cache
938 gets updated with raw contents no matter what kind of memory
939 object was originally being written. Note we do write-through
940 first, so that if it fails, we don't write to the cache contents
941 that never made it to the target. */
942 if (writebuf != NULL
943 && inferior_ptid != null_ptid
944 && target_dcache_init_p ()
945 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
946 {
947 DCACHE *dcache = target_dcache_get ();
948
949 /* Note that writing to an area of memory which wasn't present
950 in the cache doesn't cause it to be loaded in. */
951 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
952 }
953
954 return res;
955 }
956
957 /* Perform a partial memory transfer.
958 For docs see target.h, to_xfer_partial. */
959
960 static enum target_xfer_status
961 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
962 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
963 ULONGEST len, ULONGEST *xfered_len)
964 {
965 enum target_xfer_status res;
966 ULONGEST reg_len;
967 struct mem_region *region;
968 struct inferior *inf;
969
970 /* For accesses to unmapped overlay sections, read directly from
971 files. Must do this first, as MEMADDR may need adjustment. */
972 if (readbuf != NULL && overlay_debugging)
973 {
974 struct obj_section *section = find_pc_overlay (memaddr);
975
976 if (pc_in_unmapped_range (memaddr, section))
977 {
978 struct target_section_table *table
979 = target_get_section_table (ops);
980 const char *section_name = section->the_bfd_section->name;
981
982 memaddr = overlay_mapped_address (memaddr, section);
983 return section_table_xfer_memory_partial (readbuf, writebuf,
984 memaddr, len, xfered_len,
985 table->sections,
986 table->sections_end,
987 section_name);
988 }
989 }
990
991 /* Try the executable files, if "trust-readonly-sections" is set. */
992 if (readbuf != NULL && trust_readonly)
993 {
994 struct target_section *secp;
995 struct target_section_table *table;
996
997 secp = target_section_by_addr (ops, memaddr);
998 if (secp != NULL
999 && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
1000 {
1001 table = target_get_section_table (ops);
1002 return section_table_xfer_memory_partial (readbuf, writebuf,
1003 memaddr, len, xfered_len,
1004 table->sections,
1005 table->sections_end,
1006 NULL);
1007 }
1008 }
1009
1010 /* Try GDB's internal data cache. */
1011
1012 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1013 &region))
1014 return TARGET_XFER_E_IO;
1015
1016 if (inferior_ptid != null_ptid)
1017 inf = current_inferior ();
1018 else
1019 inf = NULL;
1020
1021 if (inf != NULL
1022 && readbuf != NULL
1023 /* The dcache reads whole cache lines; that doesn't play well
1024 with reading from a trace buffer, because reading outside of
1025 the collected memory range fails. */
1026 && get_traceframe_number () == -1
1027 && (region->attrib.cache
1028 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1029 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1030 {
1031 DCACHE *dcache = target_dcache_get_or_init ();
1032
1033 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1034 reg_len, xfered_len);
1035 }
1036
1037 /* If none of those methods found the memory we wanted, fall back
1038 to a target partial transfer. Normally a single call to
1039 to_xfer_partial is enough; if it doesn't recognize an object
1040 it will call the to_xfer_partial of the next target down.
1041 But for memory this won't do. Memory is the only target
1042 object which can be read from more than one valid target.
1043 A core file, for instance, could have some of memory but
1044 delegate other bits to the target below it. So, we must
1045 manually try all targets. */
1046
1047 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1048 xfered_len);
1049
1050 /* If we still haven't got anything, return the last error. We
1051 give up. */
1052 return res;
1053 }
1054
1055 /* Perform a partial memory transfer. For docs see target.h,
1056 to_xfer_partial. */
1057
1058 static enum target_xfer_status
1059 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1060 gdb_byte *readbuf, const gdb_byte *writebuf,
1061 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1062 {
1063 enum target_xfer_status res;
1064
1065 /* Zero length requests are ok and require no work. */
1066 if (len == 0)
1067 return TARGET_XFER_EOF;
1068
1069 memaddr = address_significant (target_gdbarch (), memaddr);
1070
1071 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1072 breakpoint insns, thus hiding out from higher layers whether
1073 there are software breakpoints inserted in the code stream. */
1074 if (readbuf != NULL)
1075 {
1076 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1077 xfered_len);
1078
1079 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1080 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1081 }
1082 else
1083 {
1084 /* A large write request is likely to be partially satisfied
1085 by memory_xfer_partial_1. We will continually malloc
1086 and free a copy of the entire write request for breakpoint
1087 shadow handling even though we only end up writing a small
1088 subset of it. Cap writes to a limit specified by the target
1089 to mitigate this. */
1090 len = std::min (ops->get_memory_xfer_limit (), len);
1091
1092 gdb::byte_vector buf (writebuf, writebuf + len);
1093 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1094 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1095 xfered_len);
1096 }
1097
1098 return res;
1099 }
1100
1101 scoped_restore_tmpl<int>
1102 make_scoped_restore_show_memory_breakpoints (int show)
1103 {
1104 return make_scoped_restore (&show_memory_breakpoints, show);
1105 }
1106
1107 /* For docs see target.h, to_xfer_partial. */
1108
1109 enum target_xfer_status
1110 target_xfer_partial (struct target_ops *ops,
1111 enum target_object object, const char *annex,
1112 gdb_byte *readbuf, const gdb_byte *writebuf,
1113 ULONGEST offset, ULONGEST len,
1114 ULONGEST *xfered_len)
1115 {
1116 enum target_xfer_status retval;
1117
1118 /* Transfer is done when LEN is zero. */
1119 if (len == 0)
1120 return TARGET_XFER_EOF;
1121
1122 if (writebuf && !may_write_memory)
1123 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1124 core_addr_to_string_nz (offset), plongest (len));
1125
1126 *xfered_len = 0;
1127
1128 /* If this is a memory transfer, let the memory-specific code
1129 have a look at it instead. Memory transfers are more
1130 complicated. */
1131 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1132 || object == TARGET_OBJECT_CODE_MEMORY)
1133 retval = memory_xfer_partial (ops, object, readbuf,
1134 writebuf, offset, len, xfered_len);
1135 else if (object == TARGET_OBJECT_RAW_MEMORY)
1136 {
1137 /* Skip/avoid accessing the target if the memory region
1138 attributes block the access. Check this here instead of in
1139 raw_memory_xfer_partial as otherwise we'd end up checking
1140 this twice in the case of the memory_xfer_partial path is
1141 taken; once before checking the dcache, and another in the
1142 tail call to raw_memory_xfer_partial. */
1143 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1144 NULL))
1145 return TARGET_XFER_E_IO;
1146
1147 /* Request the normal memory object from other layers. */
1148 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1149 xfered_len);
1150 }
1151 else
1152 retval = ops->xfer_partial (object, annex, readbuf,
1153 writebuf, offset, len, xfered_len);
1154
1155 if (targetdebug)
1156 {
1157 const unsigned char *myaddr = NULL;
1158
1159 fprintf_unfiltered (gdb_stdlog,
1160 "%s:target_xfer_partial "
1161 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1162 ops->shortname (),
1163 (int) object,
1164 (annex ? annex : "(null)"),
1165 host_address_to_string (readbuf),
1166 host_address_to_string (writebuf),
1167 core_addr_to_string_nz (offset),
1168 pulongest (len), retval,
1169 pulongest (*xfered_len));
1170
1171 if (readbuf)
1172 myaddr = readbuf;
1173 if (writebuf)
1174 myaddr = writebuf;
1175 if (retval == TARGET_XFER_OK && myaddr != NULL)
1176 {
1177 int i;
1178
1179 fputs_unfiltered (", bytes =", gdb_stdlog);
1180 for (i = 0; i < *xfered_len; i++)
1181 {
1182 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1183 {
1184 if (targetdebug < 2 && i > 0)
1185 {
1186 fprintf_unfiltered (gdb_stdlog, " ...");
1187 break;
1188 }
1189 fprintf_unfiltered (gdb_stdlog, "\n");
1190 }
1191
1192 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1193 }
1194 }
1195
1196 fputc_unfiltered ('\n', gdb_stdlog);
1197 }
1198
1199 /* Check implementations of to_xfer_partial update *XFERED_LEN
1200 properly. Do assertion after printing debug messages, so that we
1201 can find more clues on assertion failure from debugging messages. */
1202 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1203 gdb_assert (*xfered_len > 0);
1204
1205 return retval;
1206 }
1207
1208 /* Read LEN bytes of target memory at address MEMADDR, placing the
1209 results in GDB's memory at MYADDR. Returns either 0 for success or
1210 -1 if any error occurs.
1211
1212 If an error occurs, no guarantee is made about the contents of the data at
1213 MYADDR. In particular, the caller should not depend upon partial reads
1214 filling the buffer with good data. There is no way for the caller to know
1215 how much good data might have been transfered anyway. Callers that can
1216 deal with partial reads should call target_read (which will retry until
1217 it makes no progress, and then return how much was transferred). */
1218
1219 int
1220 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1221 {
1222 if (target_read (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1223 myaddr, memaddr, len) == len)
1224 return 0;
1225 else
1226 return -1;
1227 }
1228
1229 /* See target/target.h. */
1230
1231 int
1232 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1233 {
1234 gdb_byte buf[4];
1235 int r;
1236
1237 r = target_read_memory (memaddr, buf, sizeof buf);
1238 if (r != 0)
1239 return r;
1240 *result = extract_unsigned_integer (buf, sizeof buf,
1241 gdbarch_byte_order (target_gdbarch ()));
1242 return 0;
1243 }
1244
1245 /* Like target_read_memory, but specify explicitly that this is a read
1246 from the target's raw memory. That is, this read bypasses the
1247 dcache, breakpoint shadowing, etc. */
1248
1249 int
1250 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1251 {
1252 if (target_read (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1253 myaddr, memaddr, len) == len)
1254 return 0;
1255 else
1256 return -1;
1257 }
1258
1259 /* Like target_read_memory, but specify explicitly that this is a read from
1260 the target's stack. This may trigger different cache behavior. */
1261
1262 int
1263 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1264 {
1265 if (target_read (current_top_target (), TARGET_OBJECT_STACK_MEMORY, NULL,
1266 myaddr, memaddr, len) == len)
1267 return 0;
1268 else
1269 return -1;
1270 }
1271
1272 /* Like target_read_memory, but specify explicitly that this is a read from
1273 the target's code. This may trigger different cache behavior. */
1274
1275 int
1276 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1277 {
1278 if (target_read (current_top_target (), TARGET_OBJECT_CODE_MEMORY, NULL,
1279 myaddr, memaddr, len) == len)
1280 return 0;
1281 else
1282 return -1;
1283 }
1284
1285 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1286 Returns either 0 for success or -1 if any error occurs. If an
1287 error occurs, no guarantee is made about how much data got written.
1288 Callers that can deal with partial writes should call
1289 target_write. */
1290
1291 int
1292 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1293 {
1294 if (target_write (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1295 myaddr, memaddr, len) == len)
1296 return 0;
1297 else
1298 return -1;
1299 }
1300
1301 /* Write LEN bytes from MYADDR to target raw memory at address
1302 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1303 If an error occurs, no guarantee is made about how much data got
1304 written. Callers that can deal with partial writes should call
1305 target_write. */
1306
1307 int
1308 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1309 {
1310 if (target_write (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1311 myaddr, memaddr, len) == len)
1312 return 0;
1313 else
1314 return -1;
1315 }
1316
1317 /* Fetch the target's memory map. */
1318
1319 std::vector<mem_region>
1320 target_memory_map (void)
1321 {
1322 std::vector<mem_region> result = current_top_target ()->memory_map ();
1323 if (result.empty ())
1324 return result;
1325
1326 std::sort (result.begin (), result.end ());
1327
1328 /* Check that regions do not overlap. Simultaneously assign
1329 a numbering for the "mem" commands to use to refer to
1330 each region. */
1331 mem_region *last_one = NULL;
1332 for (size_t ix = 0; ix < result.size (); ix++)
1333 {
1334 mem_region *this_one = &result[ix];
1335 this_one->number = ix;
1336
1337 if (last_one != NULL && last_one->hi > this_one->lo)
1338 {
1339 warning (_("Overlapping regions in memory map: ignoring"));
1340 return std::vector<mem_region> ();
1341 }
1342
1343 last_one = this_one;
1344 }
1345
1346 return result;
1347 }
1348
1349 void
1350 target_flash_erase (ULONGEST address, LONGEST length)
1351 {
1352 current_top_target ()->flash_erase (address, length);
1353 }
1354
1355 void
1356 target_flash_done (void)
1357 {
1358 current_top_target ()->flash_done ();
1359 }
1360
1361 static void
1362 show_trust_readonly (struct ui_file *file, int from_tty,
1363 struct cmd_list_element *c, const char *value)
1364 {
1365 fprintf_filtered (file,
1366 _("Mode for reading from readonly sections is %s.\n"),
1367 value);
1368 }
1369
1370 /* Target vector read/write partial wrapper functions. */
1371
1372 static enum target_xfer_status
1373 target_read_partial (struct target_ops *ops,
1374 enum target_object object,
1375 const char *annex, gdb_byte *buf,
1376 ULONGEST offset, ULONGEST len,
1377 ULONGEST *xfered_len)
1378 {
1379 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1380 xfered_len);
1381 }
1382
1383 static enum target_xfer_status
1384 target_write_partial (struct target_ops *ops,
1385 enum target_object object,
1386 const char *annex, const gdb_byte *buf,
1387 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1388 {
1389 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1390 xfered_len);
1391 }
1392
1393 /* Wrappers to perform the full transfer. */
1394
1395 /* For docs on target_read see target.h. */
1396
1397 LONGEST
1398 target_read (struct target_ops *ops,
1399 enum target_object object,
1400 const char *annex, gdb_byte *buf,
1401 ULONGEST offset, LONGEST len)
1402 {
1403 LONGEST xfered_total = 0;
1404 int unit_size = 1;
1405
1406 /* If we are reading from a memory object, find the length of an addressable
1407 unit for that architecture. */
1408 if (object == TARGET_OBJECT_MEMORY
1409 || object == TARGET_OBJECT_STACK_MEMORY
1410 || object == TARGET_OBJECT_CODE_MEMORY
1411 || object == TARGET_OBJECT_RAW_MEMORY)
1412 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1413
1414 while (xfered_total < len)
1415 {
1416 ULONGEST xfered_partial;
1417 enum target_xfer_status status;
1418
1419 status = target_read_partial (ops, object, annex,
1420 buf + xfered_total * unit_size,
1421 offset + xfered_total, len - xfered_total,
1422 &xfered_partial);
1423
1424 /* Call an observer, notifying them of the xfer progress? */
1425 if (status == TARGET_XFER_EOF)
1426 return xfered_total;
1427 else if (status == TARGET_XFER_OK)
1428 {
1429 xfered_total += xfered_partial;
1430 QUIT;
1431 }
1432 else
1433 return TARGET_XFER_E_IO;
1434
1435 }
1436 return len;
1437 }
1438
1439 /* Assuming that the entire [begin, end) range of memory cannot be
1440 read, try to read whatever subrange is possible to read.
1441
1442 The function returns, in RESULT, either zero or one memory block.
1443 If there's a readable subrange at the beginning, it is completely
1444 read and returned. Any further readable subrange will not be read.
1445 Otherwise, if there's a readable subrange at the end, it will be
1446 completely read and returned. Any readable subranges before it
1447 (obviously, not starting at the beginning), will be ignored. In
1448 other cases -- either no readable subrange, or readable subrange(s)
1449 that is neither at the beginning, or end, nothing is returned.
1450
1451 The purpose of this function is to handle a read across a boundary
1452 of accessible memory in a case when memory map is not available.
1453 The above restrictions are fine for this case, but will give
1454 incorrect results if the memory is 'patchy'. However, supporting
1455 'patchy' memory would require trying to read every single byte,
1456 and it seems unacceptable solution. Explicit memory map is
1457 recommended for this case -- and target_read_memory_robust will
1458 take care of reading multiple ranges then. */
1459
1460 static void
1461 read_whatever_is_readable (struct target_ops *ops,
1462 const ULONGEST begin, const ULONGEST end,
1463 int unit_size,
1464 std::vector<memory_read_result> *result)
1465 {
1466 ULONGEST current_begin = begin;
1467 ULONGEST current_end = end;
1468 int forward;
1469 ULONGEST xfered_len;
1470
1471 /* If we previously failed to read 1 byte, nothing can be done here. */
1472 if (end - begin <= 1)
1473 return;
1474
1475 gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
1476
1477 /* Check that either first or the last byte is readable, and give up
1478 if not. This heuristic is meant to permit reading accessible memory
1479 at the boundary of accessible region. */
1480 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1481 buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
1482 {
1483 forward = 1;
1484 ++current_begin;
1485 }
1486 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1487 buf.get () + (end - begin) - 1, end - 1, 1,
1488 &xfered_len) == TARGET_XFER_OK)
1489 {
1490 forward = 0;
1491 --current_end;
1492 }
1493 else
1494 return;
1495
1496 /* Loop invariant is that the [current_begin, current_end) was previously
1497 found to be not readable as a whole.
1498
1499 Note loop condition -- if the range has 1 byte, we can't divide the range
1500 so there's no point trying further. */
1501 while (current_end - current_begin > 1)
1502 {
1503 ULONGEST first_half_begin, first_half_end;
1504 ULONGEST second_half_begin, second_half_end;
1505 LONGEST xfer;
1506 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1507
1508 if (forward)
1509 {
1510 first_half_begin = current_begin;
1511 first_half_end = middle;
1512 second_half_begin = middle;
1513 second_half_end = current_end;
1514 }
1515 else
1516 {
1517 first_half_begin = middle;
1518 first_half_end = current_end;
1519 second_half_begin = current_begin;
1520 second_half_end = middle;
1521 }
1522
1523 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1524 buf.get () + (first_half_begin - begin) * unit_size,
1525 first_half_begin,
1526 first_half_end - first_half_begin);
1527
1528 if (xfer == first_half_end - first_half_begin)
1529 {
1530 /* This half reads up fine. So, the error must be in the
1531 other half. */
1532 current_begin = second_half_begin;
1533 current_end = second_half_end;
1534 }
1535 else
1536 {
1537 /* This half is not readable. Because we've tried one byte, we
1538 know some part of this half if actually readable. Go to the next
1539 iteration to divide again and try to read.
1540
1541 We don't handle the other half, because this function only tries
1542 to read a single readable subrange. */
1543 current_begin = first_half_begin;
1544 current_end = first_half_end;
1545 }
1546 }
1547
1548 if (forward)
1549 {
1550 /* The [begin, current_begin) range has been read. */
1551 result->emplace_back (begin, current_end, std::move (buf));
1552 }
1553 else
1554 {
1555 /* The [current_end, end) range has been read. */
1556 LONGEST region_len = end - current_end;
1557
1558 gdb::unique_xmalloc_ptr<gdb_byte> data
1559 ((gdb_byte *) xmalloc (region_len * unit_size));
1560 memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
1561 region_len * unit_size);
1562 result->emplace_back (current_end, end, std::move (data));
1563 }
1564 }
1565
1566 std::vector<memory_read_result>
1567 read_memory_robust (struct target_ops *ops,
1568 const ULONGEST offset, const LONGEST len)
1569 {
1570 std::vector<memory_read_result> result;
1571 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1572
1573 LONGEST xfered_total = 0;
1574 while (xfered_total < len)
1575 {
1576 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1577 LONGEST region_len;
1578
1579 /* If there is no explicit region, a fake one should be created. */
1580 gdb_assert (region);
1581
1582 if (region->hi == 0)
1583 region_len = len - xfered_total;
1584 else
1585 region_len = region->hi - offset;
1586
1587 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1588 {
1589 /* Cannot read this region. Note that we can end up here only
1590 if the region is explicitly marked inaccessible, or
1591 'inaccessible-by-default' is in effect. */
1592 xfered_total += region_len;
1593 }
1594 else
1595 {
1596 LONGEST to_read = std::min (len - xfered_total, region_len);
1597 gdb::unique_xmalloc_ptr<gdb_byte> buffer
1598 ((gdb_byte *) xmalloc (to_read * unit_size));
1599
1600 LONGEST xfered_partial =
1601 target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
1602 offset + xfered_total, to_read);
1603 /* Call an observer, notifying them of the xfer progress? */
1604 if (xfered_partial <= 0)
1605 {
1606 /* Got an error reading full chunk. See if maybe we can read
1607 some subrange. */
1608 read_whatever_is_readable (ops, offset + xfered_total,
1609 offset + xfered_total + to_read,
1610 unit_size, &result);
1611 xfered_total += to_read;
1612 }
1613 else
1614 {
1615 result.emplace_back (offset + xfered_total,
1616 offset + xfered_total + xfered_partial,
1617 std::move (buffer));
1618 xfered_total += xfered_partial;
1619 }
1620 QUIT;
1621 }
1622 }
1623
1624 return result;
1625 }
1626
1627
1628 /* An alternative to target_write with progress callbacks. */
1629
1630 LONGEST
1631 target_write_with_progress (struct target_ops *ops,
1632 enum target_object object,
1633 const char *annex, const gdb_byte *buf,
1634 ULONGEST offset, LONGEST len,
1635 void (*progress) (ULONGEST, void *), void *baton)
1636 {
1637 LONGEST xfered_total = 0;
1638 int unit_size = 1;
1639
1640 /* If we are writing to a memory object, find the length of an addressable
1641 unit for that architecture. */
1642 if (object == TARGET_OBJECT_MEMORY
1643 || object == TARGET_OBJECT_STACK_MEMORY
1644 || object == TARGET_OBJECT_CODE_MEMORY
1645 || object == TARGET_OBJECT_RAW_MEMORY)
1646 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1647
1648 /* Give the progress callback a chance to set up. */
1649 if (progress)
1650 (*progress) (0, baton);
1651
1652 while (xfered_total < len)
1653 {
1654 ULONGEST xfered_partial;
1655 enum target_xfer_status status;
1656
1657 status = target_write_partial (ops, object, annex,
1658 buf + xfered_total * unit_size,
1659 offset + xfered_total, len - xfered_total,
1660 &xfered_partial);
1661
1662 if (status != TARGET_XFER_OK)
1663 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1664
1665 if (progress)
1666 (*progress) (xfered_partial, baton);
1667
1668 xfered_total += xfered_partial;
1669 QUIT;
1670 }
1671 return len;
1672 }
1673
1674 /* For docs on target_write see target.h. */
1675
1676 LONGEST
1677 target_write (struct target_ops *ops,
1678 enum target_object object,
1679 const char *annex, const gdb_byte *buf,
1680 ULONGEST offset, LONGEST len)
1681 {
1682 return target_write_with_progress (ops, object, annex, buf, offset, len,
1683 NULL, NULL);
1684 }
1685
1686 /* Help for target_read_alloc and target_read_stralloc. See their comments
1687 for details. */
1688
1689 template <typename T>
1690 gdb::optional<gdb::def_vector<T>>
1691 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1692 const char *annex)
1693 {
1694 gdb::def_vector<T> buf;
1695 size_t buf_pos = 0;
1696 const int chunk = 4096;
1697
1698 /* This function does not have a length parameter; it reads the
1699 entire OBJECT). Also, it doesn't support objects fetched partly
1700 from one target and partly from another (in a different stratum,
1701 e.g. a core file and an executable). Both reasons make it
1702 unsuitable for reading memory. */
1703 gdb_assert (object != TARGET_OBJECT_MEMORY);
1704
1705 /* Start by reading up to 4K at a time. The target will throttle
1706 this number down if necessary. */
1707 while (1)
1708 {
1709 ULONGEST xfered_len;
1710 enum target_xfer_status status;
1711
1712 buf.resize (buf_pos + chunk);
1713
1714 status = target_read_partial (ops, object, annex,
1715 (gdb_byte *) &buf[buf_pos],
1716 buf_pos, chunk,
1717 &xfered_len);
1718
1719 if (status == TARGET_XFER_EOF)
1720 {
1721 /* Read all there was. */
1722 buf.resize (buf_pos);
1723 return buf;
1724 }
1725 else if (status != TARGET_XFER_OK)
1726 {
1727 /* An error occurred. */
1728 return {};
1729 }
1730
1731 buf_pos += xfered_len;
1732
1733 QUIT;
1734 }
1735 }
1736
1737 /* See target.h */
1738
1739 gdb::optional<gdb::byte_vector>
1740 target_read_alloc (struct target_ops *ops, enum target_object object,
1741 const char *annex)
1742 {
1743 return target_read_alloc_1<gdb_byte> (ops, object, annex);
1744 }
1745
1746 /* See target.h. */
1747
1748 gdb::optional<gdb::char_vector>
1749 target_read_stralloc (struct target_ops *ops, enum target_object object,
1750 const char *annex)
1751 {
1752 gdb::optional<gdb::char_vector> buf
1753 = target_read_alloc_1<char> (ops, object, annex);
1754
1755 if (!buf)
1756 return {};
1757
1758 if (buf->empty () || buf->back () != '\0')
1759 buf->push_back ('\0');
1760
1761 /* Check for embedded NUL bytes; but allow trailing NULs. */
1762 for (auto it = std::find (buf->begin (), buf->end (), '\0');
1763 it != buf->end (); it++)
1764 if (*it != '\0')
1765 {
1766 warning (_("target object %d, annex %s, "
1767 "contained unexpected null characters"),
1768 (int) object, annex ? annex : "(none)");
1769 break;
1770 }
1771
1772 return buf;
1773 }
1774
1775 /* Memory transfer methods. */
1776
1777 void
1778 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1779 LONGEST len)
1780 {
1781 /* This method is used to read from an alternate, non-current
1782 target. This read must bypass the overlay support (as symbols
1783 don't match this target), and GDB's internal cache (wrong cache
1784 for this target). */
1785 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1786 != len)
1787 memory_error (TARGET_XFER_E_IO, addr);
1788 }
1789
1790 ULONGEST
1791 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1792 int len, enum bfd_endian byte_order)
1793 {
1794 gdb_byte buf[sizeof (ULONGEST)];
1795
1796 gdb_assert (len <= sizeof (buf));
1797 get_target_memory (ops, addr, buf, len);
1798 return extract_unsigned_integer (buf, len, byte_order);
1799 }
1800
1801 /* See target.h. */
1802
1803 int
1804 target_insert_breakpoint (struct gdbarch *gdbarch,
1805 struct bp_target_info *bp_tgt)
1806 {
1807 if (!may_insert_breakpoints)
1808 {
1809 warning (_("May not insert breakpoints"));
1810 return 1;
1811 }
1812
1813 return current_top_target ()->insert_breakpoint (gdbarch, bp_tgt);
1814 }
1815
1816 /* See target.h. */
1817
1818 int
1819 target_remove_breakpoint (struct gdbarch *gdbarch,
1820 struct bp_target_info *bp_tgt,
1821 enum remove_bp_reason reason)
1822 {
1823 /* This is kind of a weird case to handle, but the permission might
1824 have been changed after breakpoints were inserted - in which case
1825 we should just take the user literally and assume that any
1826 breakpoints should be left in place. */
1827 if (!may_insert_breakpoints)
1828 {
1829 warning (_("May not remove breakpoints"));
1830 return 1;
1831 }
1832
1833 return current_top_target ()->remove_breakpoint (gdbarch, bp_tgt, reason);
1834 }
1835
1836 static void
1837 info_target_command (const char *args, int from_tty)
1838 {
1839 int has_all_mem = 0;
1840
1841 if (symfile_objfile != NULL)
1842 printf_unfiltered (_("Symbols from \"%s\".\n"),
1843 objfile_name (symfile_objfile));
1844
1845 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
1846 {
1847 if (!t->has_memory ())
1848 continue;
1849
1850 if ((int) (t->stratum ()) <= (int) dummy_stratum)
1851 continue;
1852 if (has_all_mem)
1853 printf_unfiltered (_("\tWhile running this, "
1854 "GDB does not access memory from...\n"));
1855 printf_unfiltered ("%s:\n", t->longname ());
1856 t->files_info ();
1857 has_all_mem = t->has_all_memory ();
1858 }
1859 }
1860
1861 /* This function is called before any new inferior is created, e.g.
1862 by running a program, attaching, or connecting to a target.
1863 It cleans up any state from previous invocations which might
1864 change between runs. This is a subset of what target_preopen
1865 resets (things which might change between targets). */
1866
1867 void
1868 target_pre_inferior (int from_tty)
1869 {
1870 /* Clear out solib state. Otherwise the solib state of the previous
1871 inferior might have survived and is entirely wrong for the new
1872 target. This has been observed on GNU/Linux using glibc 2.3. How
1873 to reproduce:
1874
1875 bash$ ./foo&
1876 [1] 4711
1877 bash$ ./foo&
1878 [1] 4712
1879 bash$ gdb ./foo
1880 [...]
1881 (gdb) attach 4711
1882 (gdb) detach
1883 (gdb) attach 4712
1884 Cannot access memory at address 0xdeadbeef
1885 */
1886
1887 /* In some OSs, the shared library list is the same/global/shared
1888 across inferiors. If code is shared between processes, so are
1889 memory regions and features. */
1890 if (!gdbarch_has_global_solist (target_gdbarch ()))
1891 {
1892 no_shared_libraries (NULL, from_tty);
1893
1894 invalidate_target_mem_regions ();
1895
1896 target_clear_description ();
1897 }
1898
1899 /* attach_flag may be set if the previous process associated with
1900 the inferior was attached to. */
1901 current_inferior ()->attach_flag = 0;
1902
1903 current_inferior ()->highest_thread_num = 0;
1904
1905 agent_capability_invalidate ();
1906 }
1907
1908 /* This is to be called by the open routine before it does
1909 anything. */
1910
1911 void
1912 target_preopen (int from_tty)
1913 {
1914 dont_repeat ();
1915
1916 if (current_inferior ()->pid != 0)
1917 {
1918 if (!from_tty
1919 || !target_has_execution
1920 || query (_("A program is being debugged already. Kill it? ")))
1921 {
1922 /* Core inferiors actually should be detached, not
1923 killed. */
1924 if (target_has_execution)
1925 target_kill ();
1926 else
1927 target_detach (current_inferior (), 0);
1928 }
1929 else
1930 error (_("Program not killed."));
1931 }
1932
1933 /* Calling target_kill may remove the target from the stack. But if
1934 it doesn't (which seems like a win for UDI), remove it now. */
1935 /* Leave the exec target, though. The user may be switching from a
1936 live process to a core of the same program. */
1937 pop_all_targets_above (file_stratum);
1938
1939 target_pre_inferior (from_tty);
1940 }
1941
1942 /* See target.h. */
1943
1944 void
1945 target_detach (inferior *inf, int from_tty)
1946 {
1947 /* After we have detached, we will clear the register cache for this inferior
1948 by calling registers_changed_ptid. We must save the pid_ptid before
1949 detaching, as the target detach method will clear inf->pid. */
1950 ptid_t save_pid_ptid = ptid_t (inf->pid);
1951
1952 /* As long as some to_detach implementations rely on the current_inferior
1953 (either directly, or indirectly, like through target_gdbarch or by
1954 reading memory), INF needs to be the current inferior. When that
1955 requirement will become no longer true, then we can remove this
1956 assertion. */
1957 gdb_assert (inf == current_inferior ());
1958
1959 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
1960 /* Don't remove global breakpoints here. They're removed on
1961 disconnection from the target. */
1962 ;
1963 else
1964 /* If we're in breakpoints-always-inserted mode, have to remove
1965 breakpoints before detaching. */
1966 remove_breakpoints_inf (current_inferior ());
1967
1968 prepare_for_detach ();
1969
1970 /* Hold a strong reference because detaching may unpush the
1971 target. */
1972 auto proc_target_ref = target_ops_ref::new_reference (inf->process_target ());
1973
1974 current_top_target ()->detach (inf, from_tty);
1975
1976 process_stratum_target *proc_target
1977 = as_process_stratum_target (proc_target_ref.get ());
1978
1979 registers_changed_ptid (proc_target, save_pid_ptid);
1980
1981 /* We have to ensure we have no frame cache left. Normally,
1982 registers_changed_ptid (save_pid_ptid) calls reinit_frame_cache when
1983 inferior_ptid matches save_pid_ptid, but in our case, it does not
1984 call it, as inferior_ptid has been reset. */
1985 reinit_frame_cache ();
1986 }
1987
1988 void
1989 target_disconnect (const char *args, int from_tty)
1990 {
1991 /* If we're in breakpoints-always-inserted mode or if breakpoints
1992 are global across processes, we have to remove them before
1993 disconnecting. */
1994 remove_breakpoints ();
1995
1996 current_top_target ()->disconnect (args, from_tty);
1997 }
1998
1999 /* See target/target.h. */
2000
2001 ptid_t
2002 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2003 {
2004 return current_top_target ()->wait (ptid, status, options);
2005 }
2006
2007 /* See target.h. */
2008
2009 ptid_t
2010 default_target_wait (struct target_ops *ops,
2011 ptid_t ptid, struct target_waitstatus *status,
2012 int options)
2013 {
2014 status->kind = TARGET_WAITKIND_IGNORE;
2015 return minus_one_ptid;
2016 }
2017
2018 std::string
2019 target_pid_to_str (ptid_t ptid)
2020 {
2021 return current_top_target ()->pid_to_str (ptid);
2022 }
2023
2024 const char *
2025 target_thread_name (struct thread_info *info)
2026 {
2027 gdb_assert (info->inf == current_inferior ());
2028
2029 return current_top_target ()->thread_name (info);
2030 }
2031
2032 struct thread_info *
2033 target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
2034 int handle_len,
2035 struct inferior *inf)
2036 {
2037 return current_top_target ()->thread_handle_to_thread_info (thread_handle,
2038 handle_len, inf);
2039 }
2040
2041 /* See target.h. */
2042
2043 gdb::byte_vector
2044 target_thread_info_to_thread_handle (struct thread_info *tip)
2045 {
2046 return current_top_target ()->thread_info_to_thread_handle (tip);
2047 }
2048
2049 void
2050 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2051 {
2052 process_stratum_target *curr_target = current_inferior ()->process_target ();
2053
2054 target_dcache_invalidate ();
2055
2056 current_top_target ()->resume (ptid, step, signal);
2057
2058 registers_changed_ptid (curr_target, ptid);
2059 /* We only set the internal executing state here. The user/frontend
2060 running state is set at a higher level. This also clears the
2061 thread's stop_pc as side effect. */
2062 set_executing (curr_target, ptid, true);
2063 clear_inline_frame_state (curr_target, ptid);
2064 }
2065
2066 /* If true, target_commit_resume is a nop. */
2067 static int defer_target_commit_resume;
2068
2069 /* See target.h. */
2070
2071 void
2072 target_commit_resume (void)
2073 {
2074 if (defer_target_commit_resume)
2075 return;
2076
2077 current_top_target ()->commit_resume ();
2078 }
2079
2080 /* See target.h. */
2081
2082 scoped_restore_tmpl<int>
2083 make_scoped_defer_target_commit_resume ()
2084 {
2085 return make_scoped_restore (&defer_target_commit_resume, 1);
2086 }
2087
2088 void
2089 target_pass_signals (gdb::array_view<const unsigned char> pass_signals)
2090 {
2091 current_top_target ()->pass_signals (pass_signals);
2092 }
2093
2094 void
2095 target_program_signals (gdb::array_view<const unsigned char> program_signals)
2096 {
2097 current_top_target ()->program_signals (program_signals);
2098 }
2099
2100 static bool
2101 default_follow_fork (struct target_ops *self, bool follow_child,
2102 bool detach_fork)
2103 {
2104 /* Some target returned a fork event, but did not know how to follow it. */
2105 internal_error (__FILE__, __LINE__,
2106 _("could not find a target to follow fork"));
2107 }
2108
2109 /* Look through the list of possible targets for a target that can
2110 follow forks. */
2111
2112 bool
2113 target_follow_fork (bool follow_child, bool detach_fork)
2114 {
2115 return current_top_target ()->follow_fork (follow_child, detach_fork);
2116 }
2117
2118 /* Target wrapper for follow exec hook. */
2119
2120 void
2121 target_follow_exec (struct inferior *inf, const char *execd_pathname)
2122 {
2123 current_top_target ()->follow_exec (inf, execd_pathname);
2124 }
2125
2126 static void
2127 default_mourn_inferior (struct target_ops *self)
2128 {
2129 internal_error (__FILE__, __LINE__,
2130 _("could not find a target to follow mourn inferior"));
2131 }
2132
2133 void
2134 target_mourn_inferior (ptid_t ptid)
2135 {
2136 gdb_assert (ptid == inferior_ptid);
2137 current_top_target ()->mourn_inferior ();
2138
2139 /* We no longer need to keep handles on any of the object files.
2140 Make sure to release them to avoid unnecessarily locking any
2141 of them while we're not actually debugging. */
2142 bfd_cache_close_all ();
2143 }
2144
2145 /* Look for a target which can describe architectural features, starting
2146 from TARGET. If we find one, return its description. */
2147
2148 const struct target_desc *
2149 target_read_description (struct target_ops *target)
2150 {
2151 return target->read_description ();
2152 }
2153
2154 /* This implements a basic search of memory, reading target memory and
2155 performing the search here (as opposed to performing the search in on the
2156 target side with, for example, gdbserver). */
2157
2158 int
2159 simple_search_memory (struct target_ops *ops,
2160 CORE_ADDR start_addr, ULONGEST search_space_len,
2161 const gdb_byte *pattern, ULONGEST pattern_len,
2162 CORE_ADDR *found_addrp)
2163 {
2164 /* NOTE: also defined in find.c testcase. */
2165 #define SEARCH_CHUNK_SIZE 16000
2166 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2167 /* Buffer to hold memory contents for searching. */
2168 unsigned search_buf_size;
2169
2170 search_buf_size = chunk_size + pattern_len - 1;
2171
2172 /* No point in trying to allocate a buffer larger than the search space. */
2173 if (search_space_len < search_buf_size)
2174 search_buf_size = search_space_len;
2175
2176 gdb::byte_vector search_buf (search_buf_size);
2177
2178 /* Prime the search buffer. */
2179
2180 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2181 search_buf.data (), start_addr, search_buf_size)
2182 != search_buf_size)
2183 {
2184 warning (_("Unable to access %s bytes of target "
2185 "memory at %s, halting search."),
2186 pulongest (search_buf_size), hex_string (start_addr));
2187 return -1;
2188 }
2189
2190 /* Perform the search.
2191
2192 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2193 When we've scanned N bytes we copy the trailing bytes to the start and
2194 read in another N bytes. */
2195
2196 while (search_space_len >= pattern_len)
2197 {
2198 gdb_byte *found_ptr;
2199 unsigned nr_search_bytes
2200 = std::min (search_space_len, (ULONGEST) search_buf_size);
2201
2202 found_ptr = (gdb_byte *) memmem (search_buf.data (), nr_search_bytes,
2203 pattern, pattern_len);
2204
2205 if (found_ptr != NULL)
2206 {
2207 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf.data ());
2208
2209 *found_addrp = found_addr;
2210 return 1;
2211 }
2212
2213 /* Not found in this chunk, skip to next chunk. */
2214
2215 /* Don't let search_space_len wrap here, it's unsigned. */
2216 if (search_space_len >= chunk_size)
2217 search_space_len -= chunk_size;
2218 else
2219 search_space_len = 0;
2220
2221 if (search_space_len >= pattern_len)
2222 {
2223 unsigned keep_len = search_buf_size - chunk_size;
2224 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2225 int nr_to_read;
2226
2227 /* Copy the trailing part of the previous iteration to the front
2228 of the buffer for the next iteration. */
2229 gdb_assert (keep_len == pattern_len - 1);
2230 memcpy (&search_buf[0], &search_buf[chunk_size], keep_len);
2231
2232 nr_to_read = std::min (search_space_len - keep_len,
2233 (ULONGEST) chunk_size);
2234
2235 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2236 &search_buf[keep_len], read_addr,
2237 nr_to_read) != nr_to_read)
2238 {
2239 warning (_("Unable to access %s bytes of target "
2240 "memory at %s, halting search."),
2241 plongest (nr_to_read),
2242 hex_string (read_addr));
2243 return -1;
2244 }
2245
2246 start_addr += chunk_size;
2247 }
2248 }
2249
2250 /* Not found. */
2251
2252 return 0;
2253 }
2254
2255 /* Default implementation of memory-searching. */
2256
2257 static int
2258 default_search_memory (struct target_ops *self,
2259 CORE_ADDR start_addr, ULONGEST search_space_len,
2260 const gdb_byte *pattern, ULONGEST pattern_len,
2261 CORE_ADDR *found_addrp)
2262 {
2263 /* Start over from the top of the target stack. */
2264 return simple_search_memory (current_top_target (),
2265 start_addr, search_space_len,
2266 pattern, pattern_len, found_addrp);
2267 }
2268
2269 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2270 sequence of bytes in PATTERN with length PATTERN_LEN.
2271
2272 The result is 1 if found, 0 if not found, and -1 if there was an error
2273 requiring halting of the search (e.g. memory read error).
2274 If the pattern is found the address is recorded in FOUND_ADDRP. */
2275
2276 int
2277 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2278 const gdb_byte *pattern, ULONGEST pattern_len,
2279 CORE_ADDR *found_addrp)
2280 {
2281 return current_top_target ()->search_memory (start_addr, search_space_len,
2282 pattern, pattern_len, found_addrp);
2283 }
2284
2285 /* Look through the currently pushed targets. If none of them will
2286 be able to restart the currently running process, issue an error
2287 message. */
2288
2289 void
2290 target_require_runnable (void)
2291 {
2292 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2293 {
2294 /* If this target knows how to create a new program, then
2295 assume we will still be able to after killing the current
2296 one. Either killing and mourning will not pop T, or else
2297 find_default_run_target will find it again. */
2298 if (t->can_create_inferior ())
2299 return;
2300
2301 /* Do not worry about targets at certain strata that can not
2302 create inferiors. Assume they will be pushed again if
2303 necessary, and continue to the process_stratum. */
2304 if (t->stratum () > process_stratum)
2305 continue;
2306
2307 error (_("The \"%s\" target does not support \"run\". "
2308 "Try \"help target\" or \"continue\"."),
2309 t->shortname ());
2310 }
2311
2312 /* This function is only called if the target is running. In that
2313 case there should have been a process_stratum target and it
2314 should either know how to create inferiors, or not... */
2315 internal_error (__FILE__, __LINE__, _("No targets found"));
2316 }
2317
2318 /* Whether GDB is allowed to fall back to the default run target for
2319 "run", "attach", etc. when no target is connected yet. */
2320 static bool auto_connect_native_target = true;
2321
2322 static void
2323 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2324 struct cmd_list_element *c, const char *value)
2325 {
2326 fprintf_filtered (file,
2327 _("Whether GDB may automatically connect to the "
2328 "native target is %s.\n"),
2329 value);
2330 }
2331
2332 /* A pointer to the target that can respond to "run" or "attach".
2333 Native targets are always singletons and instantiated early at GDB
2334 startup. */
2335 static target_ops *the_native_target;
2336
2337 /* See target.h. */
2338
2339 void
2340 set_native_target (target_ops *target)
2341 {
2342 if (the_native_target != NULL)
2343 internal_error (__FILE__, __LINE__,
2344 _("native target already set (\"%s\")."),
2345 the_native_target->longname ());
2346
2347 the_native_target = target;
2348 }
2349
2350 /* See target.h. */
2351
2352 target_ops *
2353 get_native_target ()
2354 {
2355 return the_native_target;
2356 }
2357
2358 /* Look through the list of possible targets for a target that can
2359 execute a run or attach command without any other data. This is
2360 used to locate the default process stratum.
2361
2362 If DO_MESG is not NULL, the result is always valid (error() is
2363 called for errors); else, return NULL on error. */
2364
2365 static struct target_ops *
2366 find_default_run_target (const char *do_mesg)
2367 {
2368 if (auto_connect_native_target && the_native_target != NULL)
2369 return the_native_target;
2370
2371 if (do_mesg != NULL)
2372 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2373 return NULL;
2374 }
2375
2376 /* See target.h. */
2377
2378 struct target_ops *
2379 find_attach_target (void)
2380 {
2381 /* If a target on the current stack can attach, use it. */
2382 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2383 {
2384 if (t->can_attach ())
2385 return t;
2386 }
2387
2388 /* Otherwise, use the default run target for attaching. */
2389 return find_default_run_target ("attach");
2390 }
2391
2392 /* See target.h. */
2393
2394 struct target_ops *
2395 find_run_target (void)
2396 {
2397 /* If a target on the current stack can run, use it. */
2398 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2399 {
2400 if (t->can_create_inferior ())
2401 return t;
2402 }
2403
2404 /* Otherwise, use the default run target. */
2405 return find_default_run_target ("run");
2406 }
2407
2408 bool
2409 target_ops::info_proc (const char *args, enum info_proc_what what)
2410 {
2411 return false;
2412 }
2413
2414 /* Implement the "info proc" command. */
2415
2416 int
2417 target_info_proc (const char *args, enum info_proc_what what)
2418 {
2419 struct target_ops *t;
2420
2421 /* If we're already connected to something that can get us OS
2422 related data, use it. Otherwise, try using the native
2423 target. */
2424 t = find_target_at (process_stratum);
2425 if (t == NULL)
2426 t = find_default_run_target (NULL);
2427
2428 for (; t != NULL; t = t->beneath ())
2429 {
2430 if (t->info_proc (args, what))
2431 {
2432 if (targetdebug)
2433 fprintf_unfiltered (gdb_stdlog,
2434 "target_info_proc (\"%s\", %d)\n", args, what);
2435
2436 return 1;
2437 }
2438 }
2439
2440 return 0;
2441 }
2442
2443 static int
2444 find_default_supports_disable_randomization (struct target_ops *self)
2445 {
2446 struct target_ops *t;
2447
2448 t = find_default_run_target (NULL);
2449 if (t != NULL)
2450 return t->supports_disable_randomization ();
2451 return 0;
2452 }
2453
2454 int
2455 target_supports_disable_randomization (void)
2456 {
2457 return current_top_target ()->supports_disable_randomization ();
2458 }
2459
2460 /* See target/target.h. */
2461
2462 int
2463 target_supports_multi_process (void)
2464 {
2465 return current_top_target ()->supports_multi_process ();
2466 }
2467
2468 /* See target.h. */
2469
2470 gdb::optional<gdb::char_vector>
2471 target_get_osdata (const char *type)
2472 {
2473 struct target_ops *t;
2474
2475 /* If we're already connected to something that can get us OS
2476 related data, use it. Otherwise, try using the native
2477 target. */
2478 t = find_target_at (process_stratum);
2479 if (t == NULL)
2480 t = find_default_run_target ("get OS data");
2481
2482 if (!t)
2483 return {};
2484
2485 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2486 }
2487
2488 /* Determine the current address space of thread PTID. */
2489
2490 struct address_space *
2491 target_thread_address_space (ptid_t ptid)
2492 {
2493 struct address_space *aspace;
2494
2495 aspace = current_top_target ()->thread_address_space (ptid);
2496 gdb_assert (aspace != NULL);
2497
2498 return aspace;
2499 }
2500
2501 /* See target.h. */
2502
2503 target_ops *
2504 target_ops::beneath () const
2505 {
2506 return current_inferior ()->find_target_beneath (this);
2507 }
2508
2509 void
2510 target_ops::close ()
2511 {
2512 }
2513
2514 bool
2515 target_ops::can_attach ()
2516 {
2517 return 0;
2518 }
2519
2520 void
2521 target_ops::attach (const char *, int)
2522 {
2523 gdb_assert_not_reached ("target_ops::attach called");
2524 }
2525
2526 bool
2527 target_ops::can_create_inferior ()
2528 {
2529 return 0;
2530 }
2531
2532 void
2533 target_ops::create_inferior (const char *, const std::string &,
2534 char **, int)
2535 {
2536 gdb_assert_not_reached ("target_ops::create_inferior called");
2537 }
2538
2539 bool
2540 target_ops::can_run ()
2541 {
2542 return false;
2543 }
2544
2545 int
2546 target_can_run ()
2547 {
2548 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2549 {
2550 if (t->can_run ())
2551 return 1;
2552 }
2553
2554 return 0;
2555 }
2556
2557 /* Target file operations. */
2558
2559 static struct target_ops *
2560 default_fileio_target (void)
2561 {
2562 struct target_ops *t;
2563
2564 /* If we're already connected to something that can perform
2565 file I/O, use it. Otherwise, try using the native target. */
2566 t = find_target_at (process_stratum);
2567 if (t != NULL)
2568 return t;
2569 return find_default_run_target ("file I/O");
2570 }
2571
2572 /* File handle for target file operations. */
2573
2574 struct fileio_fh_t
2575 {
2576 /* The target on which this file is open. NULL if the target is
2577 meanwhile closed while the handle is open. */
2578 target_ops *target;
2579
2580 /* The file descriptor on the target. */
2581 int target_fd;
2582
2583 /* Check whether this fileio_fh_t represents a closed file. */
2584 bool is_closed ()
2585 {
2586 return target_fd < 0;
2587 }
2588 };
2589
2590 /* Vector of currently open file handles. The value returned by
2591 target_fileio_open and passed as the FD argument to other
2592 target_fileio_* functions is an index into this vector. This
2593 vector's entries are never freed; instead, files are marked as
2594 closed, and the handle becomes available for reuse. */
2595 static std::vector<fileio_fh_t> fileio_fhandles;
2596
2597 /* Index into fileio_fhandles of the lowest handle that might be
2598 closed. This permits handle reuse without searching the whole
2599 list each time a new file is opened. */
2600 static int lowest_closed_fd;
2601
2602 /* Invalidate the target associated with open handles that were open
2603 on target TARG, since we're about to close (and maybe destroy) the
2604 target. The handles remain open from the client's perspective, but
2605 trying to do anything with them other than closing them will fail
2606 with EIO. */
2607
2608 static void
2609 fileio_handles_invalidate_target (target_ops *targ)
2610 {
2611 for (fileio_fh_t &fh : fileio_fhandles)
2612 if (fh.target == targ)
2613 fh.target = NULL;
2614 }
2615
2616 /* Acquire a target fileio file descriptor. */
2617
2618 static int
2619 acquire_fileio_fd (target_ops *target, int target_fd)
2620 {
2621 /* Search for closed handles to reuse. */
2622 for (; lowest_closed_fd < fileio_fhandles.size (); lowest_closed_fd++)
2623 {
2624 fileio_fh_t &fh = fileio_fhandles[lowest_closed_fd];
2625
2626 if (fh.is_closed ())
2627 break;
2628 }
2629
2630 /* Push a new handle if no closed handles were found. */
2631 if (lowest_closed_fd == fileio_fhandles.size ())
2632 fileio_fhandles.push_back (fileio_fh_t {target, target_fd});
2633 else
2634 fileio_fhandles[lowest_closed_fd] = {target, target_fd};
2635
2636 /* Should no longer be marked closed. */
2637 gdb_assert (!fileio_fhandles[lowest_closed_fd].is_closed ());
2638
2639 /* Return its index, and start the next lookup at
2640 the next index. */
2641 return lowest_closed_fd++;
2642 }
2643
2644 /* Release a target fileio file descriptor. */
2645
2646 static void
2647 release_fileio_fd (int fd, fileio_fh_t *fh)
2648 {
2649 fh->target_fd = -1;
2650 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2651 }
2652
2653 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2654
2655 static fileio_fh_t *
2656 fileio_fd_to_fh (int fd)
2657 {
2658 return &fileio_fhandles[fd];
2659 }
2660
2661
2662 /* Default implementations of file i/o methods. We don't want these
2663 to delegate automatically, because we need to know which target
2664 supported the method, in order to call it directly from within
2665 pread/pwrite, etc. */
2666
2667 int
2668 target_ops::fileio_open (struct inferior *inf, const char *filename,
2669 int flags, int mode, int warn_if_slow,
2670 int *target_errno)
2671 {
2672 *target_errno = FILEIO_ENOSYS;
2673 return -1;
2674 }
2675
2676 int
2677 target_ops::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2678 ULONGEST offset, int *target_errno)
2679 {
2680 *target_errno = FILEIO_ENOSYS;
2681 return -1;
2682 }
2683
2684 int
2685 target_ops::fileio_pread (int fd, gdb_byte *read_buf, int len,
2686 ULONGEST offset, int *target_errno)
2687 {
2688 *target_errno = FILEIO_ENOSYS;
2689 return -1;
2690 }
2691
2692 int
2693 target_ops::fileio_fstat (int fd, struct stat *sb, int *target_errno)
2694 {
2695 *target_errno = FILEIO_ENOSYS;
2696 return -1;
2697 }
2698
2699 int
2700 target_ops::fileio_close (int fd, int *target_errno)
2701 {
2702 *target_errno = FILEIO_ENOSYS;
2703 return -1;
2704 }
2705
2706 int
2707 target_ops::fileio_unlink (struct inferior *inf, const char *filename,
2708 int *target_errno)
2709 {
2710 *target_errno = FILEIO_ENOSYS;
2711 return -1;
2712 }
2713
2714 gdb::optional<std::string>
2715 target_ops::fileio_readlink (struct inferior *inf, const char *filename,
2716 int *target_errno)
2717 {
2718 *target_errno = FILEIO_ENOSYS;
2719 return {};
2720 }
2721
2722 /* See target.h. */
2723
2724 int
2725 target_fileio_open (struct inferior *inf, const char *filename,
2726 int flags, int mode, bool warn_if_slow, int *target_errno)
2727 {
2728 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2729 {
2730 int fd = t->fileio_open (inf, filename, flags, mode,
2731 warn_if_slow, target_errno);
2732
2733 if (fd == -1 && *target_errno == FILEIO_ENOSYS)
2734 continue;
2735
2736 if (fd < 0)
2737 fd = -1;
2738 else
2739 fd = acquire_fileio_fd (t, fd);
2740
2741 if (targetdebug)
2742 fprintf_unfiltered (gdb_stdlog,
2743 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2744 " = %d (%d)\n",
2745 inf == NULL ? 0 : inf->num,
2746 filename, flags, mode,
2747 warn_if_slow, fd,
2748 fd != -1 ? 0 : *target_errno);
2749 return fd;
2750 }
2751
2752 *target_errno = FILEIO_ENOSYS;
2753 return -1;
2754 }
2755
2756 /* See target.h. */
2757
2758 int
2759 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2760 ULONGEST offset, int *target_errno)
2761 {
2762 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2763 int ret = -1;
2764
2765 if (fh->is_closed ())
2766 *target_errno = EBADF;
2767 else if (fh->target == NULL)
2768 *target_errno = EIO;
2769 else
2770 ret = fh->target->fileio_pwrite (fh->target_fd, write_buf,
2771 len, offset, target_errno);
2772
2773 if (targetdebug)
2774 fprintf_unfiltered (gdb_stdlog,
2775 "target_fileio_pwrite (%d,...,%d,%s) "
2776 "= %d (%d)\n",
2777 fd, len, pulongest (offset),
2778 ret, ret != -1 ? 0 : *target_errno);
2779 return ret;
2780 }
2781
2782 /* See target.h. */
2783
2784 int
2785 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2786 ULONGEST offset, int *target_errno)
2787 {
2788 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2789 int ret = -1;
2790
2791 if (fh->is_closed ())
2792 *target_errno = EBADF;
2793 else if (fh->target == NULL)
2794 *target_errno = EIO;
2795 else
2796 ret = fh->target->fileio_pread (fh->target_fd, read_buf,
2797 len, offset, target_errno);
2798
2799 if (targetdebug)
2800 fprintf_unfiltered (gdb_stdlog,
2801 "target_fileio_pread (%d,...,%d,%s) "
2802 "= %d (%d)\n",
2803 fd, len, pulongest (offset),
2804 ret, ret != -1 ? 0 : *target_errno);
2805 return ret;
2806 }
2807
2808 /* See target.h. */
2809
2810 int
2811 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2812 {
2813 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2814 int ret = -1;
2815
2816 if (fh->is_closed ())
2817 *target_errno = EBADF;
2818 else if (fh->target == NULL)
2819 *target_errno = EIO;
2820 else
2821 ret = fh->target->fileio_fstat (fh->target_fd, sb, target_errno);
2822
2823 if (targetdebug)
2824 fprintf_unfiltered (gdb_stdlog,
2825 "target_fileio_fstat (%d) = %d (%d)\n",
2826 fd, ret, ret != -1 ? 0 : *target_errno);
2827 return ret;
2828 }
2829
2830 /* See target.h. */
2831
2832 int
2833 target_fileio_close (int fd, int *target_errno)
2834 {
2835 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2836 int ret = -1;
2837
2838 if (fh->is_closed ())
2839 *target_errno = EBADF;
2840 else
2841 {
2842 if (fh->target != NULL)
2843 ret = fh->target->fileio_close (fh->target_fd,
2844 target_errno);
2845 else
2846 ret = 0;
2847 release_fileio_fd (fd, fh);
2848 }
2849
2850 if (targetdebug)
2851 fprintf_unfiltered (gdb_stdlog,
2852 "target_fileio_close (%d) = %d (%d)\n",
2853 fd, ret, ret != -1 ? 0 : *target_errno);
2854 return ret;
2855 }
2856
2857 /* See target.h. */
2858
2859 int
2860 target_fileio_unlink (struct inferior *inf, const char *filename,
2861 int *target_errno)
2862 {
2863 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2864 {
2865 int ret = t->fileio_unlink (inf, filename, target_errno);
2866
2867 if (ret == -1 && *target_errno == FILEIO_ENOSYS)
2868 continue;
2869
2870 if (targetdebug)
2871 fprintf_unfiltered (gdb_stdlog,
2872 "target_fileio_unlink (%d,%s)"
2873 " = %d (%d)\n",
2874 inf == NULL ? 0 : inf->num, filename,
2875 ret, ret != -1 ? 0 : *target_errno);
2876 return ret;
2877 }
2878
2879 *target_errno = FILEIO_ENOSYS;
2880 return -1;
2881 }
2882
2883 /* See target.h. */
2884
2885 gdb::optional<std::string>
2886 target_fileio_readlink (struct inferior *inf, const char *filename,
2887 int *target_errno)
2888 {
2889 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2890 {
2891 gdb::optional<std::string> ret
2892 = t->fileio_readlink (inf, filename, target_errno);
2893
2894 if (!ret.has_value () && *target_errno == FILEIO_ENOSYS)
2895 continue;
2896
2897 if (targetdebug)
2898 fprintf_unfiltered (gdb_stdlog,
2899 "target_fileio_readlink (%d,%s)"
2900 " = %s (%d)\n",
2901 inf == NULL ? 0 : inf->num,
2902 filename, ret ? ret->c_str () : "(nil)",
2903 ret ? 0 : *target_errno);
2904 return ret;
2905 }
2906
2907 *target_errno = FILEIO_ENOSYS;
2908 return {};
2909 }
2910
2911 /* Like scoped_fd, but specific to target fileio. */
2912
2913 class scoped_target_fd
2914 {
2915 public:
2916 explicit scoped_target_fd (int fd) noexcept
2917 : m_fd (fd)
2918 {
2919 }
2920
2921 ~scoped_target_fd ()
2922 {
2923 if (m_fd >= 0)
2924 {
2925 int target_errno;
2926
2927 target_fileio_close (m_fd, &target_errno);
2928 }
2929 }
2930
2931 DISABLE_COPY_AND_ASSIGN (scoped_target_fd);
2932
2933 int get () const noexcept
2934 {
2935 return m_fd;
2936 }
2937
2938 private:
2939 int m_fd;
2940 };
2941
2942 /* Read target file FILENAME, in the filesystem as seen by INF. If
2943 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2944 remote targets, the remote stub). Store the result in *BUF_P and
2945 return the size of the transferred data. PADDING additional bytes
2946 are available in *BUF_P. This is a helper function for
2947 target_fileio_read_alloc; see the declaration of that function for
2948 more information. */
2949
2950 static LONGEST
2951 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
2952 gdb_byte **buf_p, int padding)
2953 {
2954 size_t buf_alloc, buf_pos;
2955 gdb_byte *buf;
2956 LONGEST n;
2957 int target_errno;
2958
2959 scoped_target_fd fd (target_fileio_open (inf, filename, FILEIO_O_RDONLY,
2960 0700, false, &target_errno));
2961 if (fd.get () == -1)
2962 return -1;
2963
2964 /* Start by reading up to 4K at a time. The target will throttle
2965 this number down if necessary. */
2966 buf_alloc = 4096;
2967 buf = (gdb_byte *) xmalloc (buf_alloc);
2968 buf_pos = 0;
2969 while (1)
2970 {
2971 n = target_fileio_pread (fd.get (), &buf[buf_pos],
2972 buf_alloc - buf_pos - padding, buf_pos,
2973 &target_errno);
2974 if (n < 0)
2975 {
2976 /* An error occurred. */
2977 xfree (buf);
2978 return -1;
2979 }
2980 else if (n == 0)
2981 {
2982 /* Read all there was. */
2983 if (buf_pos == 0)
2984 xfree (buf);
2985 else
2986 *buf_p = buf;
2987 return buf_pos;
2988 }
2989
2990 buf_pos += n;
2991
2992 /* If the buffer is filling up, expand it. */
2993 if (buf_alloc < buf_pos * 2)
2994 {
2995 buf_alloc *= 2;
2996 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
2997 }
2998
2999 QUIT;
3000 }
3001 }
3002
3003 /* See target.h. */
3004
3005 LONGEST
3006 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3007 gdb_byte **buf_p)
3008 {
3009 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3010 }
3011
3012 /* See target.h. */
3013
3014 gdb::unique_xmalloc_ptr<char>
3015 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3016 {
3017 gdb_byte *buffer;
3018 char *bufstr;
3019 LONGEST i, transferred;
3020
3021 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3022 bufstr = (char *) buffer;
3023
3024 if (transferred < 0)
3025 return gdb::unique_xmalloc_ptr<char> (nullptr);
3026
3027 if (transferred == 0)
3028 return make_unique_xstrdup ("");
3029
3030 bufstr[transferred] = 0;
3031
3032 /* Check for embedded NUL bytes; but allow trailing NULs. */
3033 for (i = strlen (bufstr); i < transferred; i++)
3034 if (bufstr[i] != 0)
3035 {
3036 warning (_("target file %s "
3037 "contained unexpected null characters"),
3038 filename);
3039 break;
3040 }
3041
3042 return gdb::unique_xmalloc_ptr<char> (bufstr);
3043 }
3044
3045
3046 static int
3047 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3048 CORE_ADDR addr, int len)
3049 {
3050 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3051 }
3052
3053 static int
3054 default_watchpoint_addr_within_range (struct target_ops *target,
3055 CORE_ADDR addr,
3056 CORE_ADDR start, int length)
3057 {
3058 return addr >= start && addr < start + length;
3059 }
3060
3061 /* See target.h. */
3062
3063 target_ops *
3064 target_stack::find_beneath (const target_ops *t) const
3065 {
3066 /* Look for a non-empty slot at stratum levels beneath T's. */
3067 for (int stratum = t->stratum () - 1; stratum >= 0; --stratum)
3068 if (m_stack[stratum] != NULL)
3069 return m_stack[stratum];
3070
3071 return NULL;
3072 }
3073
3074 /* See target.h. */
3075
3076 struct target_ops *
3077 find_target_at (enum strata stratum)
3078 {
3079 return current_inferior ()->target_at (stratum);
3080 }
3081
3082 \f
3083
3084 /* See target.h */
3085
3086 void
3087 target_announce_detach (int from_tty)
3088 {
3089 pid_t pid;
3090 const char *exec_file;
3091
3092 if (!from_tty)
3093 return;
3094
3095 exec_file = get_exec_file (0);
3096 if (exec_file == NULL)
3097 exec_file = "";
3098
3099 pid = inferior_ptid.pid ();
3100 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3101 target_pid_to_str (ptid_t (pid)).c_str ());
3102 }
3103
3104 /* The inferior process has died. Long live the inferior! */
3105
3106 void
3107 generic_mourn_inferior (void)
3108 {
3109 inferior *inf = current_inferior ();
3110
3111 switch_to_no_thread ();
3112
3113 /* Mark breakpoints uninserted in case something tries to delete a
3114 breakpoint while we delete the inferior's threads (which would
3115 fail, since the inferior is long gone). */
3116 mark_breakpoints_out ();
3117
3118 if (inf->pid != 0)
3119 exit_inferior (inf);
3120
3121 /* Note this wipes step-resume breakpoints, so needs to be done
3122 after exit_inferior, which ends up referencing the step-resume
3123 breakpoints through clear_thread_inferior_resources. */
3124 breakpoint_init_inferior (inf_exited);
3125
3126 registers_changed ();
3127
3128 reopen_exec_file ();
3129 reinit_frame_cache ();
3130
3131 if (deprecated_detach_hook)
3132 deprecated_detach_hook ();
3133 }
3134 \f
3135 /* Convert a normal process ID to a string. Returns the string in a
3136 static buffer. */
3137
3138 std::string
3139 normal_pid_to_str (ptid_t ptid)
3140 {
3141 return string_printf ("process %d", ptid.pid ());
3142 }
3143
3144 static std::string
3145 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3146 {
3147 return normal_pid_to_str (ptid);
3148 }
3149
3150 /* Error-catcher for target_find_memory_regions. */
3151 static int
3152 dummy_find_memory_regions (struct target_ops *self,
3153 find_memory_region_ftype ignore1, void *ignore2)
3154 {
3155 error (_("Command not implemented for this target."));
3156 return 0;
3157 }
3158
3159 /* Error-catcher for target_make_corefile_notes. */
3160 static char *
3161 dummy_make_corefile_notes (struct target_ops *self,
3162 bfd *ignore1, int *ignore2)
3163 {
3164 error (_("Command not implemented for this target."));
3165 return NULL;
3166 }
3167
3168 #include "target-delegates.c"
3169
3170 /* The initial current target, so that there is always a semi-valid
3171 current target. */
3172
3173 static dummy_target the_dummy_target;
3174
3175 /* See target.h. */
3176
3177 target_ops *
3178 get_dummy_target ()
3179 {
3180 return &the_dummy_target;
3181 }
3182
3183 static const target_info dummy_target_info = {
3184 "None",
3185 N_("None"),
3186 ""
3187 };
3188
3189 strata
3190 dummy_target::stratum () const
3191 {
3192 return dummy_stratum;
3193 }
3194
3195 strata
3196 debug_target::stratum () const
3197 {
3198 return debug_stratum;
3199 }
3200
3201 const target_info &
3202 dummy_target::info () const
3203 {
3204 return dummy_target_info;
3205 }
3206
3207 const target_info &
3208 debug_target::info () const
3209 {
3210 return beneath ()->info ();
3211 }
3212
3213 \f
3214
3215 void
3216 target_close (struct target_ops *targ)
3217 {
3218 gdb_assert (!target_is_pushed (targ));
3219
3220 fileio_handles_invalidate_target (targ);
3221
3222 targ->close ();
3223
3224 if (targetdebug)
3225 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3226 }
3227
3228 int
3229 target_thread_alive (ptid_t ptid)
3230 {
3231 return current_top_target ()->thread_alive (ptid);
3232 }
3233
3234 void
3235 target_update_thread_list (void)
3236 {
3237 current_top_target ()->update_thread_list ();
3238 }
3239
3240 void
3241 target_stop (ptid_t ptid)
3242 {
3243 if (!may_stop)
3244 {
3245 warning (_("May not interrupt or stop the target, ignoring attempt"));
3246 return;
3247 }
3248
3249 current_top_target ()->stop (ptid);
3250 }
3251
3252 void
3253 target_interrupt ()
3254 {
3255 if (!may_stop)
3256 {
3257 warning (_("May not interrupt or stop the target, ignoring attempt"));
3258 return;
3259 }
3260
3261 current_top_target ()->interrupt ();
3262 }
3263
3264 /* See target.h. */
3265
3266 void
3267 target_pass_ctrlc (void)
3268 {
3269 /* Pass the Ctrl-C to the first target that has a thread
3270 running. */
3271 for (inferior *inf : all_inferiors ())
3272 {
3273 target_ops *proc_target = inf->process_target ();
3274 if (proc_target == NULL)
3275 continue;
3276
3277 for (thread_info *thr : inf->non_exited_threads ())
3278 {
3279 /* A thread can be THREAD_STOPPED and executing, while
3280 running an infcall. */
3281 if (thr->state == THREAD_RUNNING || thr->executing)
3282 {
3283 /* We can get here quite deep in target layers. Avoid
3284 switching thread context or anything that would
3285 communicate with the target (e.g., to fetch
3286 registers), or flushing e.g., the frame cache. We
3287 just switch inferior in order to be able to call
3288 through the target_stack. */
3289 scoped_restore_current_inferior restore_inferior;
3290 set_current_inferior (inf);
3291 current_top_target ()->pass_ctrlc ();
3292 return;
3293 }
3294 }
3295 }
3296 }
3297
3298 /* See target.h. */
3299
3300 void
3301 default_target_pass_ctrlc (struct target_ops *ops)
3302 {
3303 target_interrupt ();
3304 }
3305
3306 /* See target/target.h. */
3307
3308 void
3309 target_stop_and_wait (ptid_t ptid)
3310 {
3311 struct target_waitstatus status;
3312 bool was_non_stop = non_stop;
3313
3314 non_stop = true;
3315 target_stop (ptid);
3316
3317 memset (&status, 0, sizeof (status));
3318 target_wait (ptid, &status, 0);
3319
3320 non_stop = was_non_stop;
3321 }
3322
3323 /* See target/target.h. */
3324
3325 void
3326 target_continue_no_signal (ptid_t ptid)
3327 {
3328 target_resume (ptid, 0, GDB_SIGNAL_0);
3329 }
3330
3331 /* See target/target.h. */
3332
3333 void
3334 target_continue (ptid_t ptid, enum gdb_signal signal)
3335 {
3336 target_resume (ptid, 0, signal);
3337 }
3338
3339 /* Concatenate ELEM to LIST, a comma-separated list. */
3340
3341 static void
3342 str_comma_list_concat_elem (std::string *list, const char *elem)
3343 {
3344 if (!list->empty ())
3345 list->append (", ");
3346
3347 list->append (elem);
3348 }
3349
3350 /* Helper for target_options_to_string. If OPT is present in
3351 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3352 OPT is removed from TARGET_OPTIONS. */
3353
3354 static void
3355 do_option (int *target_options, std::string *ret,
3356 int opt, const char *opt_str)
3357 {
3358 if ((*target_options & opt) != 0)
3359 {
3360 str_comma_list_concat_elem (ret, opt_str);
3361 *target_options &= ~opt;
3362 }
3363 }
3364
3365 /* See target.h. */
3366
3367 std::string
3368 target_options_to_string (int target_options)
3369 {
3370 std::string ret;
3371
3372 #define DO_TARG_OPTION(OPT) \
3373 do_option (&target_options, &ret, OPT, #OPT)
3374
3375 DO_TARG_OPTION (TARGET_WNOHANG);
3376
3377 if (target_options != 0)
3378 str_comma_list_concat_elem (&ret, "unknown???");
3379
3380 return ret;
3381 }
3382
3383 void
3384 target_fetch_registers (struct regcache *regcache, int regno)
3385 {
3386 current_top_target ()->fetch_registers (regcache, regno);
3387 if (targetdebug)
3388 regcache->debug_print_register ("target_fetch_registers", regno);
3389 }
3390
3391 void
3392 target_store_registers (struct regcache *regcache, int regno)
3393 {
3394 if (!may_write_registers)
3395 error (_("Writing to registers is not allowed (regno %d)"), regno);
3396
3397 current_top_target ()->store_registers (regcache, regno);
3398 if (targetdebug)
3399 {
3400 regcache->debug_print_register ("target_store_registers", regno);
3401 }
3402 }
3403
3404 int
3405 target_core_of_thread (ptid_t ptid)
3406 {
3407 return current_top_target ()->core_of_thread (ptid);
3408 }
3409
3410 int
3411 simple_verify_memory (struct target_ops *ops,
3412 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3413 {
3414 LONGEST total_xfered = 0;
3415
3416 while (total_xfered < size)
3417 {
3418 ULONGEST xfered_len;
3419 enum target_xfer_status status;
3420 gdb_byte buf[1024];
3421 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3422
3423 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3424 buf, NULL, lma + total_xfered, howmuch,
3425 &xfered_len);
3426 if (status == TARGET_XFER_OK
3427 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3428 {
3429 total_xfered += xfered_len;
3430 QUIT;
3431 }
3432 else
3433 return 0;
3434 }
3435 return 1;
3436 }
3437
3438 /* Default implementation of memory verification. */
3439
3440 static int
3441 default_verify_memory (struct target_ops *self,
3442 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3443 {
3444 /* Start over from the top of the target stack. */
3445 return simple_verify_memory (current_top_target (),
3446 data, memaddr, size);
3447 }
3448
3449 int
3450 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3451 {
3452 return current_top_target ()->verify_memory (data, memaddr, size);
3453 }
3454
3455 /* The documentation for this function is in its prototype declaration in
3456 target.h. */
3457
3458 int
3459 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3460 enum target_hw_bp_type rw)
3461 {
3462 return current_top_target ()->insert_mask_watchpoint (addr, mask, rw);
3463 }
3464
3465 /* The documentation for this function is in its prototype declaration in
3466 target.h. */
3467
3468 int
3469 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3470 enum target_hw_bp_type rw)
3471 {
3472 return current_top_target ()->remove_mask_watchpoint (addr, mask, rw);
3473 }
3474
3475 /* The documentation for this function is in its prototype declaration
3476 in target.h. */
3477
3478 int
3479 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3480 {
3481 return current_top_target ()->masked_watch_num_registers (addr, mask);
3482 }
3483
3484 /* The documentation for this function is in its prototype declaration
3485 in target.h. */
3486
3487 int
3488 target_ranged_break_num_registers (void)
3489 {
3490 return current_top_target ()->ranged_break_num_registers ();
3491 }
3492
3493 /* See target.h. */
3494
3495 struct btrace_target_info *
3496 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3497 {
3498 return current_top_target ()->enable_btrace (ptid, conf);
3499 }
3500
3501 /* See target.h. */
3502
3503 void
3504 target_disable_btrace (struct btrace_target_info *btinfo)
3505 {
3506 current_top_target ()->disable_btrace (btinfo);
3507 }
3508
3509 /* See target.h. */
3510
3511 void
3512 target_teardown_btrace (struct btrace_target_info *btinfo)
3513 {
3514 current_top_target ()->teardown_btrace (btinfo);
3515 }
3516
3517 /* See target.h. */
3518
3519 enum btrace_error
3520 target_read_btrace (struct btrace_data *btrace,
3521 struct btrace_target_info *btinfo,
3522 enum btrace_read_type type)
3523 {
3524 return current_top_target ()->read_btrace (btrace, btinfo, type);
3525 }
3526
3527 /* See target.h. */
3528
3529 const struct btrace_config *
3530 target_btrace_conf (const struct btrace_target_info *btinfo)
3531 {
3532 return current_top_target ()->btrace_conf (btinfo);
3533 }
3534
3535 /* See target.h. */
3536
3537 void
3538 target_stop_recording (void)
3539 {
3540 current_top_target ()->stop_recording ();
3541 }
3542
3543 /* See target.h. */
3544
3545 void
3546 target_save_record (const char *filename)
3547 {
3548 current_top_target ()->save_record (filename);
3549 }
3550
3551 /* See target.h. */
3552
3553 int
3554 target_supports_delete_record ()
3555 {
3556 return current_top_target ()->supports_delete_record ();
3557 }
3558
3559 /* See target.h. */
3560
3561 void
3562 target_delete_record (void)
3563 {
3564 current_top_target ()->delete_record ();
3565 }
3566
3567 /* See target.h. */
3568
3569 enum record_method
3570 target_record_method (ptid_t ptid)
3571 {
3572 return current_top_target ()->record_method (ptid);
3573 }
3574
3575 /* See target.h. */
3576
3577 int
3578 target_record_is_replaying (ptid_t ptid)
3579 {
3580 return current_top_target ()->record_is_replaying (ptid);
3581 }
3582
3583 /* See target.h. */
3584
3585 int
3586 target_record_will_replay (ptid_t ptid, int dir)
3587 {
3588 return current_top_target ()->record_will_replay (ptid, dir);
3589 }
3590
3591 /* See target.h. */
3592
3593 void
3594 target_record_stop_replaying (void)
3595 {
3596 current_top_target ()->record_stop_replaying ();
3597 }
3598
3599 /* See target.h. */
3600
3601 void
3602 target_goto_record_begin (void)
3603 {
3604 current_top_target ()->goto_record_begin ();
3605 }
3606
3607 /* See target.h. */
3608
3609 void
3610 target_goto_record_end (void)
3611 {
3612 current_top_target ()->goto_record_end ();
3613 }
3614
3615 /* See target.h. */
3616
3617 void
3618 target_goto_record (ULONGEST insn)
3619 {
3620 current_top_target ()->goto_record (insn);
3621 }
3622
3623 /* See target.h. */
3624
3625 void
3626 target_insn_history (int size, gdb_disassembly_flags flags)
3627 {
3628 current_top_target ()->insn_history (size, flags);
3629 }
3630
3631 /* See target.h. */
3632
3633 void
3634 target_insn_history_from (ULONGEST from, int size,
3635 gdb_disassembly_flags flags)
3636 {
3637 current_top_target ()->insn_history_from (from, size, flags);
3638 }
3639
3640 /* See target.h. */
3641
3642 void
3643 target_insn_history_range (ULONGEST begin, ULONGEST end,
3644 gdb_disassembly_flags flags)
3645 {
3646 current_top_target ()->insn_history_range (begin, end, flags);
3647 }
3648
3649 /* See target.h. */
3650
3651 void
3652 target_call_history (int size, record_print_flags flags)
3653 {
3654 current_top_target ()->call_history (size, flags);
3655 }
3656
3657 /* See target.h. */
3658
3659 void
3660 target_call_history_from (ULONGEST begin, int size, record_print_flags flags)
3661 {
3662 current_top_target ()->call_history_from (begin, size, flags);
3663 }
3664
3665 /* See target.h. */
3666
3667 void
3668 target_call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
3669 {
3670 current_top_target ()->call_history_range (begin, end, flags);
3671 }
3672
3673 /* See target.h. */
3674
3675 const struct frame_unwind *
3676 target_get_unwinder (void)
3677 {
3678 return current_top_target ()->get_unwinder ();
3679 }
3680
3681 /* See target.h. */
3682
3683 const struct frame_unwind *
3684 target_get_tailcall_unwinder (void)
3685 {
3686 return current_top_target ()->get_tailcall_unwinder ();
3687 }
3688
3689 /* See target.h. */
3690
3691 void
3692 target_prepare_to_generate_core (void)
3693 {
3694 current_top_target ()->prepare_to_generate_core ();
3695 }
3696
3697 /* See target.h. */
3698
3699 void
3700 target_done_generating_core (void)
3701 {
3702 current_top_target ()->done_generating_core ();
3703 }
3704
3705 \f
3706
3707 static char targ_desc[] =
3708 "Names of targets and files being debugged.\nShows the entire \
3709 stack of targets currently in use (including the exec-file,\n\
3710 core-file, and process, if any), as well as the symbol file name.";
3711
3712 static void
3713 default_rcmd (struct target_ops *self, const char *command,
3714 struct ui_file *output)
3715 {
3716 error (_("\"monitor\" command not supported by this target."));
3717 }
3718
3719 static void
3720 do_monitor_command (const char *cmd, int from_tty)
3721 {
3722 target_rcmd (cmd, gdb_stdtarg);
3723 }
3724
3725 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
3726 ignored. */
3727
3728 void
3729 flash_erase_command (const char *cmd, int from_tty)
3730 {
3731 /* Used to communicate termination of flash operations to the target. */
3732 bool found_flash_region = false;
3733 struct gdbarch *gdbarch = target_gdbarch ();
3734
3735 std::vector<mem_region> mem_regions = target_memory_map ();
3736
3737 /* Iterate over all memory regions. */
3738 for (const mem_region &m : mem_regions)
3739 {
3740 /* Is this a flash memory region? */
3741 if (m.attrib.mode == MEM_FLASH)
3742 {
3743 found_flash_region = true;
3744 target_flash_erase (m.lo, m.hi - m.lo);
3745
3746 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
3747
3748 current_uiout->message (_("Erasing flash memory region at address "));
3749 current_uiout->field_core_addr ("address", gdbarch, m.lo);
3750 current_uiout->message (", size = ");
3751 current_uiout->field_string ("size", hex_string (m.hi - m.lo));
3752 current_uiout->message ("\n");
3753 }
3754 }
3755
3756 /* Did we do any flash operations? If so, we need to finalize them. */
3757 if (found_flash_region)
3758 target_flash_done ();
3759 else
3760 current_uiout->message (_("No flash memory regions found.\n"));
3761 }
3762
3763 /* Print the name of each layers of our target stack. */
3764
3765 static void
3766 maintenance_print_target_stack (const char *cmd, int from_tty)
3767 {
3768 printf_filtered (_("The current target stack is:\n"));
3769
3770 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
3771 {
3772 if (t->stratum () == debug_stratum)
3773 continue;
3774 printf_filtered (" - %s (%s)\n", t->shortname (), t->longname ());
3775 }
3776 }
3777
3778 /* See target.h. */
3779
3780 void
3781 target_async (int enable)
3782 {
3783 infrun_async (enable);
3784 current_top_target ()->async (enable);
3785 }
3786
3787 /* See target.h. */
3788
3789 void
3790 target_thread_events (int enable)
3791 {
3792 current_top_target ()->thread_events (enable);
3793 }
3794
3795 /* Controls if targets can report that they can/are async. This is
3796 just for maintainers to use when debugging gdb. */
3797 bool target_async_permitted = true;
3798
3799 /* The set command writes to this variable. If the inferior is
3800 executing, target_async_permitted is *not* updated. */
3801 static bool target_async_permitted_1 = true;
3802
3803 static void
3804 maint_set_target_async_command (const char *args, int from_tty,
3805 struct cmd_list_element *c)
3806 {
3807 if (have_live_inferiors ())
3808 {
3809 target_async_permitted_1 = target_async_permitted;
3810 error (_("Cannot change this setting while the inferior is running."));
3811 }
3812
3813 target_async_permitted = target_async_permitted_1;
3814 }
3815
3816 static void
3817 maint_show_target_async_command (struct ui_file *file, int from_tty,
3818 struct cmd_list_element *c,
3819 const char *value)
3820 {
3821 fprintf_filtered (file,
3822 _("Controlling the inferior in "
3823 "asynchronous mode is %s.\n"), value);
3824 }
3825
3826 /* Return true if the target operates in non-stop mode even with "set
3827 non-stop off". */
3828
3829 static int
3830 target_always_non_stop_p (void)
3831 {
3832 return current_top_target ()->always_non_stop_p ();
3833 }
3834
3835 /* See target.h. */
3836
3837 int
3838 target_is_non_stop_p (void)
3839 {
3840 return (non_stop
3841 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3842 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3843 && target_always_non_stop_p ()));
3844 }
3845
3846 /* See target.h. */
3847
3848 bool
3849 exists_non_stop_target ()
3850 {
3851 if (target_is_non_stop_p ())
3852 return true;
3853
3854 scoped_restore_current_thread restore_thread;
3855
3856 for (inferior *inf : all_inferiors ())
3857 {
3858 switch_to_inferior_no_thread (inf);
3859 if (target_is_non_stop_p ())
3860 return true;
3861 }
3862
3863 return false;
3864 }
3865
3866 /* Controls if targets can report that they always run in non-stop
3867 mode. This is just for maintainers to use when debugging gdb. */
3868 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3869
3870 /* The set command writes to this variable. If the inferior is
3871 executing, target_non_stop_enabled is *not* updated. */
3872 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3873
3874 /* Implementation of "maint set target-non-stop". */
3875
3876 static void
3877 maint_set_target_non_stop_command (const char *args, int from_tty,
3878 struct cmd_list_element *c)
3879 {
3880 if (have_live_inferiors ())
3881 {
3882 target_non_stop_enabled_1 = target_non_stop_enabled;
3883 error (_("Cannot change this setting while the inferior is running."));
3884 }
3885
3886 target_non_stop_enabled = target_non_stop_enabled_1;
3887 }
3888
3889 /* Implementation of "maint show target-non-stop". */
3890
3891 static void
3892 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3893 struct cmd_list_element *c,
3894 const char *value)
3895 {
3896 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3897 fprintf_filtered (file,
3898 _("Whether the target is always in non-stop mode "
3899 "is %s (currently %s).\n"), value,
3900 target_always_non_stop_p () ? "on" : "off");
3901 else
3902 fprintf_filtered (file,
3903 _("Whether the target is always in non-stop mode "
3904 "is %s.\n"), value);
3905 }
3906
3907 /* Temporary copies of permission settings. */
3908
3909 static bool may_write_registers_1 = true;
3910 static bool may_write_memory_1 = true;
3911 static bool may_insert_breakpoints_1 = true;
3912 static bool may_insert_tracepoints_1 = true;
3913 static bool may_insert_fast_tracepoints_1 = true;
3914 static bool may_stop_1 = true;
3915
3916 /* Make the user-set values match the real values again. */
3917
3918 void
3919 update_target_permissions (void)
3920 {
3921 may_write_registers_1 = may_write_registers;
3922 may_write_memory_1 = may_write_memory;
3923 may_insert_breakpoints_1 = may_insert_breakpoints;
3924 may_insert_tracepoints_1 = may_insert_tracepoints;
3925 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3926 may_stop_1 = may_stop;
3927 }
3928
3929 /* The one function handles (most of) the permission flags in the same
3930 way. */
3931
3932 static void
3933 set_target_permissions (const char *args, int from_tty,
3934 struct cmd_list_element *c)
3935 {
3936 if (target_has_execution)
3937 {
3938 update_target_permissions ();
3939 error (_("Cannot change this setting while the inferior is running."));
3940 }
3941
3942 /* Make the real values match the user-changed values. */
3943 may_write_registers = may_write_registers_1;
3944 may_insert_breakpoints = may_insert_breakpoints_1;
3945 may_insert_tracepoints = may_insert_tracepoints_1;
3946 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3947 may_stop = may_stop_1;
3948 update_observer_mode ();
3949 }
3950
3951 /* Set memory write permission independently of observer mode. */
3952
3953 static void
3954 set_write_memory_permission (const char *args, int from_tty,
3955 struct cmd_list_element *c)
3956 {
3957 /* Make the real values match the user-changed values. */
3958 may_write_memory = may_write_memory_1;
3959 update_observer_mode ();
3960 }
3961
3962 void _initialize_target ();
3963
3964 void
3965 _initialize_target ()
3966 {
3967 the_debug_target = new debug_target ();
3968
3969 add_info ("target", info_target_command, targ_desc);
3970 add_info ("files", info_target_command, targ_desc);
3971
3972 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3973 Set target debugging."), _("\
3974 Show target debugging."), _("\
3975 When non-zero, target debugging is enabled. Higher numbers are more\n\
3976 verbose."),
3977 set_targetdebug,
3978 show_targetdebug,
3979 &setdebuglist, &showdebuglist);
3980
3981 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
3982 &trust_readonly, _("\
3983 Set mode for reading from readonly sections."), _("\
3984 Show mode for reading from readonly sections."), _("\
3985 When this mode is on, memory reads from readonly sections (such as .text)\n\
3986 will be read from the object file instead of from the target. This will\n\
3987 result in significant performance improvement for remote targets."),
3988 NULL,
3989 show_trust_readonly,
3990 &setlist, &showlist);
3991
3992 add_com ("monitor", class_obscure, do_monitor_command,
3993 _("Send a command to the remote monitor (remote targets only)."));
3994
3995 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
3996 _("Print the name of each layer of the internal target stack."),
3997 &maintenanceprintlist);
3998
3999 add_setshow_boolean_cmd ("target-async", no_class,
4000 &target_async_permitted_1, _("\
4001 Set whether gdb controls the inferior in asynchronous mode."), _("\
4002 Show whether gdb controls the inferior in asynchronous mode."), _("\
4003 Tells gdb whether to control the inferior in asynchronous mode."),
4004 maint_set_target_async_command,
4005 maint_show_target_async_command,
4006 &maintenance_set_cmdlist,
4007 &maintenance_show_cmdlist);
4008
4009 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4010 &target_non_stop_enabled_1, _("\
4011 Set whether gdb always controls the inferior in non-stop mode."), _("\
4012 Show whether gdb always controls the inferior in non-stop mode."), _("\
4013 Tells gdb whether to control the inferior in non-stop mode."),
4014 maint_set_target_non_stop_command,
4015 maint_show_target_non_stop_command,
4016 &maintenance_set_cmdlist,
4017 &maintenance_show_cmdlist);
4018
4019 add_setshow_boolean_cmd ("may-write-registers", class_support,
4020 &may_write_registers_1, _("\
4021 Set permission to write into registers."), _("\
4022 Show permission to write into registers."), _("\
4023 When this permission is on, GDB may write into the target's registers.\n\
4024 Otherwise, any sort of write attempt will result in an error."),
4025 set_target_permissions, NULL,
4026 &setlist, &showlist);
4027
4028 add_setshow_boolean_cmd ("may-write-memory", class_support,
4029 &may_write_memory_1, _("\
4030 Set permission to write into target memory."), _("\
4031 Show permission to write into target memory."), _("\
4032 When this permission is on, GDB may write into the target's memory.\n\
4033 Otherwise, any sort of write attempt will result in an error."),
4034 set_write_memory_permission, NULL,
4035 &setlist, &showlist);
4036
4037 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4038 &may_insert_breakpoints_1, _("\
4039 Set permission to insert breakpoints in the target."), _("\
4040 Show permission to insert breakpoints in the target."), _("\
4041 When this permission is on, GDB may insert breakpoints in the program.\n\
4042 Otherwise, any sort of insertion attempt will result in an error."),
4043 set_target_permissions, NULL,
4044 &setlist, &showlist);
4045
4046 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4047 &may_insert_tracepoints_1, _("\
4048 Set permission to insert tracepoints in the target."), _("\
4049 Show permission to insert tracepoints in the target."), _("\
4050 When this permission is on, GDB may insert tracepoints in the program.\n\
4051 Otherwise, any sort of insertion attempt will result in an error."),
4052 set_target_permissions, NULL,
4053 &setlist, &showlist);
4054
4055 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4056 &may_insert_fast_tracepoints_1, _("\
4057 Set permission to insert fast tracepoints in the target."), _("\
4058 Show permission to insert fast tracepoints in the target."), _("\
4059 When this permission is on, GDB may insert fast tracepoints.\n\
4060 Otherwise, any sort of insertion attempt will result in an error."),
4061 set_target_permissions, NULL,
4062 &setlist, &showlist);
4063
4064 add_setshow_boolean_cmd ("may-interrupt", class_support,
4065 &may_stop_1, _("\
4066 Set permission to interrupt or signal the target."), _("\
4067 Show permission to interrupt or signal the target."), _("\
4068 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4069 Otherwise, any attempt to interrupt or stop will be ignored."),
4070 set_target_permissions, NULL,
4071 &setlist, &showlist);
4072
4073 add_com ("flash-erase", no_class, flash_erase_command,
4074 _("Erase all flash memory regions."));
4075
4076 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4077 &auto_connect_native_target, _("\
4078 Set whether GDB may automatically connect to the native target."), _("\
4079 Show whether GDB may automatically connect to the native target."), _("\
4080 When on, and GDB is not connected to a target yet, GDB\n\
4081 attempts \"run\" and other commands with the native target."),
4082 NULL, show_auto_connect_native_target,
4083 &setlist, &showlist);
4084 }
This page took 0.113147 seconds and 4 git commands to generate.