Don't rely on inferior_ptid in record_full_wait
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2020 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41 struct inferior;
42
43 #include "infrun.h" /* For enum exec_direction_kind. */
44 #include "breakpoint.h" /* For enum bptype. */
45 #include "gdbsupport/scoped_restore.h"
46
47 /* This include file defines the interface between the main part
48 of the debugger, and the part which is target-specific, or
49 specific to the communications interface between us and the
50 target.
51
52 A TARGET is an interface between the debugger and a particular
53 kind of file or process. Targets can be STACKED in STRATA,
54 so that more than one target can potentially respond to a request.
55 In particular, memory accesses will walk down the stack of targets
56 until they find a target that is interested in handling that particular
57 address. STRATA are artificial boundaries on the stack, within
58 which particular kinds of targets live. Strata exist so that
59 people don't get confused by pushing e.g. a process target and then
60 a file target, and wondering why they can't see the current values
61 of variables any more (the file target is handling them and they
62 never get to the process target). So when you push a file target,
63 it goes into the file stratum, which is always below the process
64 stratum.
65
66 Note that rather than allow an empty stack, we always have the
67 dummy target at the bottom stratum, so we can call the target
68 methods without checking them. */
69
70 #include "target/target.h"
71 #include "target/resume.h"
72 #include "target/wait.h"
73 #include "target/waitstatus.h"
74 #include "bfd.h"
75 #include "symtab.h"
76 #include "memattr.h"
77 #include "gdbsupport/gdb_signals.h"
78 #include "btrace.h"
79 #include "record.h"
80 #include "command.h"
81 #include "disasm.h"
82 #include "tracepoint.h"
83
84 #include "gdbsupport/break-common.h" /* For enum target_hw_bp_type. */
85
86 enum strata
87 {
88 dummy_stratum, /* The lowest of the low */
89 file_stratum, /* Executable files, etc */
90 process_stratum, /* Executing processes or core dump files */
91 thread_stratum, /* Executing threads */
92 record_stratum, /* Support record debugging */
93 arch_stratum, /* Architecture overrides */
94 debug_stratum /* Target debug. Must be last. */
95 };
96
97 enum thread_control_capabilities
98 {
99 tc_none = 0, /* Default: can't control thread execution. */
100 tc_schedlock = 1, /* Can lock the thread scheduler. */
101 };
102
103 /* The structure below stores information about a system call.
104 It is basically used in the "catch syscall" command, and in
105 every function that gives information about a system call.
106
107 It's also good to mention that its fields represent everything
108 that we currently know about a syscall in GDB. */
109 struct syscall
110 {
111 /* The syscall number. */
112 int number;
113
114 /* The syscall name. */
115 const char *name;
116 };
117
118 /* Return a pretty printed form of TARGET_OPTIONS. */
119 extern std::string target_options_to_string (int target_options);
120
121 /* Possible types of events that the inferior handler will have to
122 deal with. */
123 enum inferior_event_type
124 {
125 /* Process a normal inferior event which will result in target_wait
126 being called. */
127 INF_REG_EVENT,
128 /* We are called to do stuff after the inferior stops. */
129 INF_EXEC_COMPLETE,
130 };
131 \f
132 /* Target objects which can be transfered using target_read,
133 target_write, et cetera. */
134
135 enum target_object
136 {
137 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
138 TARGET_OBJECT_AVR,
139 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
140 TARGET_OBJECT_MEMORY,
141 /* Memory, avoiding GDB's data cache and trusting the executable.
142 Target implementations of to_xfer_partial never need to handle
143 this object, and most callers should not use it. */
144 TARGET_OBJECT_RAW_MEMORY,
145 /* Memory known to be part of the target's stack. This is cached even
146 if it is not in a region marked as such, since it is known to be
147 "normal" RAM. */
148 TARGET_OBJECT_STACK_MEMORY,
149 /* Memory known to be part of the target code. This is cached even
150 if it is not in a region marked as such. */
151 TARGET_OBJECT_CODE_MEMORY,
152 /* Kernel Unwind Table. See "ia64-tdep.c". */
153 TARGET_OBJECT_UNWIND_TABLE,
154 /* Transfer auxilliary vector. */
155 TARGET_OBJECT_AUXV,
156 /* StackGhost cookie. See "sparc-tdep.c". */
157 TARGET_OBJECT_WCOOKIE,
158 /* Target memory map in XML format. */
159 TARGET_OBJECT_MEMORY_MAP,
160 /* Flash memory. This object can be used to write contents to
161 a previously erased flash memory. Using it without erasing
162 flash can have unexpected results. Addresses are physical
163 address on target, and not relative to flash start. */
164 TARGET_OBJECT_FLASH,
165 /* Available target-specific features, e.g. registers and coprocessors.
166 See "target-descriptions.c". ANNEX should never be empty. */
167 TARGET_OBJECT_AVAILABLE_FEATURES,
168 /* Currently loaded libraries, in XML format. */
169 TARGET_OBJECT_LIBRARIES,
170 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
171 TARGET_OBJECT_LIBRARIES_SVR4,
172 /* Currently loaded libraries specific to AIX systems, in XML format. */
173 TARGET_OBJECT_LIBRARIES_AIX,
174 /* Get OS specific data. The ANNEX specifies the type (running
175 processes, etc.). The data being transfered is expected to follow
176 the DTD specified in features/osdata.dtd. */
177 TARGET_OBJECT_OSDATA,
178 /* Extra signal info. Usually the contents of `siginfo_t' on unix
179 platforms. */
180 TARGET_OBJECT_SIGNAL_INFO,
181 /* The list of threads that are being debugged. */
182 TARGET_OBJECT_THREADS,
183 /* Collected static trace data. */
184 TARGET_OBJECT_STATIC_TRACE_DATA,
185 /* Traceframe info, in XML format. */
186 TARGET_OBJECT_TRACEFRAME_INFO,
187 /* Load maps for FDPIC systems. */
188 TARGET_OBJECT_FDPIC,
189 /* Darwin dynamic linker info data. */
190 TARGET_OBJECT_DARWIN_DYLD_INFO,
191 /* OpenVMS Unwind Information Block. */
192 TARGET_OBJECT_OPENVMS_UIB,
193 /* Branch trace data, in XML format. */
194 TARGET_OBJECT_BTRACE,
195 /* Branch trace configuration, in XML format. */
196 TARGET_OBJECT_BTRACE_CONF,
197 /* The pathname of the executable file that was run to create
198 a specified process. ANNEX should be a string representation
199 of the process ID of the process in question, in hexadecimal
200 format. */
201 TARGET_OBJECT_EXEC_FILE,
202 /* FreeBSD virtual memory mappings. */
203 TARGET_OBJECT_FREEBSD_VMMAP,
204 /* FreeBSD process strings. */
205 TARGET_OBJECT_FREEBSD_PS_STRINGS,
206 /* Possible future objects: TARGET_OBJECT_FILE, ... */
207 };
208
209 /* Possible values returned by target_xfer_partial, etc. */
210
211 enum target_xfer_status
212 {
213 /* Some bytes are transferred. */
214 TARGET_XFER_OK = 1,
215
216 /* No further transfer is possible. */
217 TARGET_XFER_EOF = 0,
218
219 /* The piece of the object requested is unavailable. */
220 TARGET_XFER_UNAVAILABLE = 2,
221
222 /* Generic I/O error. Note that it's important that this is '-1',
223 as we still have target_xfer-related code returning hardcoded
224 '-1' on error. */
225 TARGET_XFER_E_IO = -1,
226
227 /* Keep list in sync with target_xfer_status_to_string. */
228 };
229
230 /* Return the string form of STATUS. */
231
232 extern const char *
233 target_xfer_status_to_string (enum target_xfer_status status);
234
235 typedef enum target_xfer_status
236 target_xfer_partial_ftype (struct target_ops *ops,
237 enum target_object object,
238 const char *annex,
239 gdb_byte *readbuf,
240 const gdb_byte *writebuf,
241 ULONGEST offset,
242 ULONGEST len,
243 ULONGEST *xfered_len);
244
245 enum target_xfer_status
246 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
247 const gdb_byte *writebuf, ULONGEST memaddr,
248 LONGEST len, ULONGEST *xfered_len);
249
250 /* Request that OPS transfer up to LEN addressable units of the target's
251 OBJECT. When reading from a memory object, the size of an addressable unit
252 is architecture dependent and can be found using
253 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
254 byte long. BUF should point to a buffer large enough to hold the read data,
255 taking into account the addressable unit size. The OFFSET, for a seekable
256 object, specifies the starting point. The ANNEX can be used to provide
257 additional data-specific information to the target.
258
259 Return the number of addressable units actually transferred, or a negative
260 error code (an 'enum target_xfer_error' value) if the transfer is not
261 supported or otherwise fails. Return of a positive value less than
262 LEN indicates that no further transfer is possible. Unlike the raw
263 to_xfer_partial interface, callers of these functions do not need
264 to retry partial transfers. */
265
266 extern LONGEST target_read (struct target_ops *ops,
267 enum target_object object,
268 const char *annex, gdb_byte *buf,
269 ULONGEST offset, LONGEST len);
270
271 struct memory_read_result
272 {
273 memory_read_result (ULONGEST begin_, ULONGEST end_,
274 gdb::unique_xmalloc_ptr<gdb_byte> &&data_)
275 : begin (begin_),
276 end (end_),
277 data (std::move (data_))
278 {
279 }
280
281 ~memory_read_result () = default;
282
283 memory_read_result (memory_read_result &&other) = default;
284
285 DISABLE_COPY_AND_ASSIGN (memory_read_result);
286
287 /* First address that was read. */
288 ULONGEST begin;
289 /* Past-the-end address. */
290 ULONGEST end;
291 /* The data. */
292 gdb::unique_xmalloc_ptr<gdb_byte> data;
293 };
294
295 extern std::vector<memory_read_result> read_memory_robust
296 (struct target_ops *ops, const ULONGEST offset, const LONGEST len);
297
298 /* Request that OPS transfer up to LEN addressable units from BUF to the
299 target's OBJECT. When writing to a memory object, the addressable unit
300 size is architecture dependent and can be found using
301 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
302 byte long. The OFFSET, for a seekable object, specifies the starting point.
303 The ANNEX can be used to provide additional data-specific information to
304 the target.
305
306 Return the number of addressable units actually transferred, or a negative
307 error code (an 'enum target_xfer_status' value) if the transfer is not
308 supported or otherwise fails. Return of a positive value less than
309 LEN indicates that no further transfer is possible. Unlike the raw
310 to_xfer_partial interface, callers of these functions do not need to
311 retry partial transfers. */
312
313 extern LONGEST target_write (struct target_ops *ops,
314 enum target_object object,
315 const char *annex, const gdb_byte *buf,
316 ULONGEST offset, LONGEST len);
317
318 /* Similar to target_write, except that it also calls PROGRESS with
319 the number of bytes written and the opaque BATON after every
320 successful partial write (and before the first write). This is
321 useful for progress reporting and user interaction while writing
322 data. To abort the transfer, the progress callback can throw an
323 exception. */
324
325 LONGEST target_write_with_progress (struct target_ops *ops,
326 enum target_object object,
327 const char *annex, const gdb_byte *buf,
328 ULONGEST offset, LONGEST len,
329 void (*progress) (ULONGEST, void *),
330 void *baton);
331
332 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will be read
333 using OPS. The return value will be uninstantiated if the transfer fails or
334 is not supported.
335
336 This method should be used for objects sufficiently small to store
337 in a single xmalloc'd buffer, when no fixed bound on the object's
338 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
339 through this function. */
340
341 extern gdb::optional<gdb::byte_vector> target_read_alloc
342 (struct target_ops *ops, enum target_object object, const char *annex);
343
344 /* Read OBJECT/ANNEX using OPS. The result is a NUL-terminated character vector
345 (therefore usable as a NUL-terminated string). If an error occurs or the
346 transfer is unsupported, the return value will be uninstantiated. Empty
347 objects are returned as allocated but empty strings. Therefore, on success,
348 the returned vector is guaranteed to have at least one element. A warning is
349 issued if the result contains any embedded NUL bytes. */
350
351 extern gdb::optional<gdb::char_vector> target_read_stralloc
352 (struct target_ops *ops, enum target_object object, const char *annex);
353
354 /* See target_ops->to_xfer_partial. */
355 extern target_xfer_partial_ftype target_xfer_partial;
356
357 /* Wrappers to target read/write that perform memory transfers. They
358 throw an error if the memory transfer fails.
359
360 NOTE: cagney/2003-10-23: The naming schema is lifted from
361 "frame.h". The parameter order is lifted from get_frame_memory,
362 which in turn lifted it from read_memory. */
363
364 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
365 gdb_byte *buf, LONGEST len);
366 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
367 CORE_ADDR addr, int len,
368 enum bfd_endian byte_order);
369 \f
370 struct thread_info; /* fwd decl for parameter list below: */
371
372 /* The type of the callback to the to_async method. */
373
374 typedef void async_callback_ftype (enum inferior_event_type event_type,
375 void *context);
376
377 /* Normally target debug printing is purely type-based. However,
378 sometimes it is necessary to override the debug printing on a
379 per-argument basis. This macro can be used, attribute-style, to
380 name the target debug printing function for a particular method
381 argument. FUNC is the name of the function. The macro's
382 definition is empty because it is only used by the
383 make-target-delegates script. */
384
385 #define TARGET_DEBUG_PRINTER(FUNC)
386
387 /* These defines are used to mark target_ops methods. The script
388 make-target-delegates scans these and auto-generates the base
389 method implementations. There are four macros that can be used:
390
391 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
392 does nothing. This is only valid if the method return type is
393 'void'.
394
395 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
396 'tcomplain ()'. The base method simply makes this call, which is
397 assumed not to return.
398
399 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
400 base method returns this expression's value.
401
402 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
403 make-target-delegates does not generate a base method in this case,
404 but instead uses the argument function as the base method. */
405
406 #define TARGET_DEFAULT_IGNORE()
407 #define TARGET_DEFAULT_NORETURN(ARG)
408 #define TARGET_DEFAULT_RETURN(ARG)
409 #define TARGET_DEFAULT_FUNC(ARG)
410
411 /* Each target that can be activated with "target TARGET_NAME" passes
412 the address of one of these objects to add_target, which uses the
413 object's address as unique identifier, and registers the "target
414 TARGET_NAME" command using SHORTNAME as target name. */
415
416 struct target_info
417 {
418 /* Name of this target. */
419 const char *shortname;
420
421 /* Name for printing. */
422 const char *longname;
423
424 /* Documentation. Does not include trailing newline, and starts
425 with a one-line description (probably similar to longname). */
426 const char *doc;
427 };
428
429 struct target_ops
430 {
431 /* Return this target's stratum. */
432 virtual strata stratum () const = 0;
433
434 /* To the target under this one. */
435 target_ops *beneath () const;
436
437 /* Free resources associated with the target. Note that singleton
438 targets, like e.g., native targets, are global objects, not
439 heap allocated, and are thus only deleted on GDB exit. The
440 main teardown entry point is the "close" method, below. */
441 virtual ~target_ops () {}
442
443 /* Return a reference to this target's unique target_info
444 object. */
445 virtual const target_info &info () const = 0;
446
447 /* Name this target type. */
448 const char *shortname ()
449 { return info ().shortname; }
450
451 const char *longname ()
452 { return info ().longname; }
453
454 /* Close the target. This is where the target can handle
455 teardown. Heap-allocated targets should delete themselves
456 before returning. */
457 virtual void close ();
458
459 /* Attaches to a process on the target side. Arguments are as
460 passed to the `attach' command by the user. This routine can
461 be called when the target is not on the target-stack, if the
462 target_ops::can_run method returns 1; in that case, it must push
463 itself onto the stack. Upon exit, the target should be ready
464 for normal operations, and should be ready to deliver the
465 status of the process immediately (without waiting) to an
466 upcoming target_wait call. */
467 virtual bool can_attach ();
468 virtual void attach (const char *, int);
469 virtual void post_attach (int)
470 TARGET_DEFAULT_IGNORE ();
471 virtual void detach (inferior *, int)
472 TARGET_DEFAULT_IGNORE ();
473 virtual void disconnect (const char *, int)
474 TARGET_DEFAULT_NORETURN (tcomplain ());
475 virtual void resume (ptid_t,
476 int TARGET_DEBUG_PRINTER (target_debug_print_step),
477 enum gdb_signal)
478 TARGET_DEFAULT_NORETURN (noprocess ());
479 virtual void commit_resume ()
480 TARGET_DEFAULT_IGNORE ();
481 /* See target_wait's description. Note that implementations of
482 this method must not assume that inferior_ptid on entry is
483 pointing at the thread or inferior that ends up reporting an
484 event. The reported event could be for some other thread in
485 the current inferior or even for a different process of the
486 current target. inferior_ptid may also be null_ptid on
487 entry. */
488 virtual ptid_t wait (ptid_t, struct target_waitstatus *,
489 int TARGET_DEBUG_PRINTER (target_debug_print_options))
490 TARGET_DEFAULT_FUNC (default_target_wait);
491 virtual void fetch_registers (struct regcache *, int)
492 TARGET_DEFAULT_IGNORE ();
493 virtual void store_registers (struct regcache *, int)
494 TARGET_DEFAULT_NORETURN (noprocess ());
495 virtual void prepare_to_store (struct regcache *)
496 TARGET_DEFAULT_NORETURN (noprocess ());
497
498 virtual void files_info ()
499 TARGET_DEFAULT_IGNORE ();
500 virtual int insert_breakpoint (struct gdbarch *,
501 struct bp_target_info *)
502 TARGET_DEFAULT_NORETURN (noprocess ());
503 virtual int remove_breakpoint (struct gdbarch *,
504 struct bp_target_info *,
505 enum remove_bp_reason)
506 TARGET_DEFAULT_NORETURN (noprocess ());
507
508 /* Returns true if the target stopped because it executed a
509 software breakpoint. This is necessary for correct background
510 execution / non-stop mode operation, and for correct PC
511 adjustment on targets where the PC needs to be adjusted when a
512 software breakpoint triggers. In these modes, by the time GDB
513 processes a breakpoint event, the breakpoint may already be
514 done from the target, so GDB needs to be able to tell whether
515 it should ignore the event and whether it should adjust the PC.
516 See adjust_pc_after_break. */
517 virtual bool stopped_by_sw_breakpoint ()
518 TARGET_DEFAULT_RETURN (false);
519 /* Returns true if the above method is supported. */
520 virtual bool supports_stopped_by_sw_breakpoint ()
521 TARGET_DEFAULT_RETURN (false);
522
523 /* Returns true if the target stopped for a hardware breakpoint.
524 Likewise, if the target supports hardware breakpoints, this
525 method is necessary for correct background execution / non-stop
526 mode operation. Even though hardware breakpoints do not
527 require PC adjustment, GDB needs to be able to tell whether the
528 hardware breakpoint event is a delayed event for a breakpoint
529 that is already gone and should thus be ignored. */
530 virtual bool stopped_by_hw_breakpoint ()
531 TARGET_DEFAULT_RETURN (false);
532 /* Returns true if the above method is supported. */
533 virtual bool supports_stopped_by_hw_breakpoint ()
534 TARGET_DEFAULT_RETURN (false);
535
536 virtual int can_use_hw_breakpoint (enum bptype, int, int)
537 TARGET_DEFAULT_RETURN (0);
538 virtual int ranged_break_num_registers ()
539 TARGET_DEFAULT_RETURN (-1);
540 virtual int insert_hw_breakpoint (struct gdbarch *,
541 struct bp_target_info *)
542 TARGET_DEFAULT_RETURN (-1);
543 virtual int remove_hw_breakpoint (struct gdbarch *,
544 struct bp_target_info *)
545 TARGET_DEFAULT_RETURN (-1);
546
547 /* Documentation of what the two routines below are expected to do is
548 provided with the corresponding target_* macros. */
549 virtual int remove_watchpoint (CORE_ADDR, int,
550 enum target_hw_bp_type, struct expression *)
551 TARGET_DEFAULT_RETURN (-1);
552 virtual int insert_watchpoint (CORE_ADDR, int,
553 enum target_hw_bp_type, struct expression *)
554 TARGET_DEFAULT_RETURN (-1);
555
556 virtual int insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
557 enum target_hw_bp_type)
558 TARGET_DEFAULT_RETURN (1);
559 virtual int remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
560 enum target_hw_bp_type)
561 TARGET_DEFAULT_RETURN (1);
562 virtual bool stopped_by_watchpoint ()
563 TARGET_DEFAULT_RETURN (false);
564 virtual bool have_steppable_watchpoint ()
565 TARGET_DEFAULT_RETURN (false);
566 virtual bool stopped_data_address (CORE_ADDR *)
567 TARGET_DEFAULT_RETURN (false);
568 virtual bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int)
569 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
570
571 /* Documentation of this routine is provided with the corresponding
572 target_* macro. */
573 virtual int region_ok_for_hw_watchpoint (CORE_ADDR, int)
574 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
575
576 virtual bool can_accel_watchpoint_condition (CORE_ADDR, int, int,
577 struct expression *)
578 TARGET_DEFAULT_RETURN (false);
579 virtual int masked_watch_num_registers (CORE_ADDR, CORE_ADDR)
580 TARGET_DEFAULT_RETURN (-1);
581
582 /* Return 1 for sure target can do single step. Return -1 for
583 unknown. Return 0 for target can't do. */
584 virtual int can_do_single_step ()
585 TARGET_DEFAULT_RETURN (-1);
586
587 virtual bool supports_terminal_ours ()
588 TARGET_DEFAULT_RETURN (false);
589 virtual void terminal_init ()
590 TARGET_DEFAULT_IGNORE ();
591 virtual void terminal_inferior ()
592 TARGET_DEFAULT_IGNORE ();
593 virtual void terminal_save_inferior ()
594 TARGET_DEFAULT_IGNORE ();
595 virtual void terminal_ours_for_output ()
596 TARGET_DEFAULT_IGNORE ();
597 virtual void terminal_ours ()
598 TARGET_DEFAULT_IGNORE ();
599 virtual void terminal_info (const char *, int)
600 TARGET_DEFAULT_FUNC (default_terminal_info);
601 virtual void kill ()
602 TARGET_DEFAULT_NORETURN (noprocess ());
603 virtual void load (const char *, int)
604 TARGET_DEFAULT_NORETURN (tcomplain ());
605 /* Start an inferior process and set inferior_ptid to its pid.
606 EXEC_FILE is the file to run.
607 ALLARGS is a string containing the arguments to the program.
608 ENV is the environment vector to pass. Errors reported with error().
609 On VxWorks and various standalone systems, we ignore exec_file. */
610 virtual bool can_create_inferior ();
611 virtual void create_inferior (const char *, const std::string &,
612 char **, int);
613 virtual void post_startup_inferior (ptid_t)
614 TARGET_DEFAULT_IGNORE ();
615 virtual int insert_fork_catchpoint (int)
616 TARGET_DEFAULT_RETURN (1);
617 virtual int remove_fork_catchpoint (int)
618 TARGET_DEFAULT_RETURN (1);
619 virtual int insert_vfork_catchpoint (int)
620 TARGET_DEFAULT_RETURN (1);
621 virtual int remove_vfork_catchpoint (int)
622 TARGET_DEFAULT_RETURN (1);
623 virtual int follow_fork (int, int)
624 TARGET_DEFAULT_FUNC (default_follow_fork);
625 virtual int insert_exec_catchpoint (int)
626 TARGET_DEFAULT_RETURN (1);
627 virtual int remove_exec_catchpoint (int)
628 TARGET_DEFAULT_RETURN (1);
629 virtual void follow_exec (struct inferior *, const char *)
630 TARGET_DEFAULT_IGNORE ();
631 virtual int set_syscall_catchpoint (int, bool, int,
632 gdb::array_view<const int>)
633 TARGET_DEFAULT_RETURN (1);
634 virtual void mourn_inferior ()
635 TARGET_DEFAULT_FUNC (default_mourn_inferior);
636
637 /* Note that can_run is special and can be invoked on an unpushed
638 target. Targets defining this method must also define
639 to_can_async_p and to_supports_non_stop. */
640 virtual bool can_run ();
641
642 /* Documentation of this routine is provided with the corresponding
643 target_* macro. */
644 virtual void pass_signals (gdb::array_view<const unsigned char> TARGET_DEBUG_PRINTER (target_debug_print_signals))
645 TARGET_DEFAULT_IGNORE ();
646
647 /* Documentation of this routine is provided with the
648 corresponding target_* function. */
649 virtual void program_signals (gdb::array_view<const unsigned char> TARGET_DEBUG_PRINTER (target_debug_print_signals))
650 TARGET_DEFAULT_IGNORE ();
651
652 virtual bool thread_alive (ptid_t ptid)
653 TARGET_DEFAULT_RETURN (false);
654 virtual void update_thread_list ()
655 TARGET_DEFAULT_IGNORE ();
656 virtual std::string pid_to_str (ptid_t)
657 TARGET_DEFAULT_FUNC (default_pid_to_str);
658 virtual const char *extra_thread_info (thread_info *)
659 TARGET_DEFAULT_RETURN (NULL);
660 virtual const char *thread_name (thread_info *)
661 TARGET_DEFAULT_RETURN (NULL);
662 virtual thread_info *thread_handle_to_thread_info (const gdb_byte *,
663 int,
664 inferior *inf)
665 TARGET_DEFAULT_RETURN (NULL);
666 /* See target_thread_info_to_thread_handle. */
667 virtual gdb::byte_vector thread_info_to_thread_handle (struct thread_info *)
668 TARGET_DEFAULT_RETURN (gdb::byte_vector ());
669 virtual void stop (ptid_t)
670 TARGET_DEFAULT_IGNORE ();
671 virtual void interrupt ()
672 TARGET_DEFAULT_IGNORE ();
673 virtual void pass_ctrlc ()
674 TARGET_DEFAULT_FUNC (default_target_pass_ctrlc);
675 virtual void rcmd (const char *command, struct ui_file *output)
676 TARGET_DEFAULT_FUNC (default_rcmd);
677 virtual char *pid_to_exec_file (int pid)
678 TARGET_DEFAULT_RETURN (NULL);
679 virtual void log_command (const char *)
680 TARGET_DEFAULT_IGNORE ();
681 virtual struct target_section_table *get_section_table ()
682 TARGET_DEFAULT_RETURN (NULL);
683
684 /* Provide default values for all "must have" methods. */
685 virtual bool has_all_memory () { return false; }
686 virtual bool has_memory () { return false; }
687 virtual bool has_stack () { return false; }
688 virtual bool has_registers () { return false; }
689 virtual bool has_execution (ptid_t) { return false; }
690
691 /* Control thread execution. */
692 virtual thread_control_capabilities get_thread_control_capabilities ()
693 TARGET_DEFAULT_RETURN (tc_none);
694 virtual bool attach_no_wait ()
695 TARGET_DEFAULT_RETURN (0);
696 /* This method must be implemented in some situations. See the
697 comment on 'can_run'. */
698 virtual bool can_async_p ()
699 TARGET_DEFAULT_RETURN (false);
700 virtual bool is_async_p ()
701 TARGET_DEFAULT_RETURN (false);
702 virtual void async (int)
703 TARGET_DEFAULT_NORETURN (tcomplain ());
704 virtual void thread_events (int)
705 TARGET_DEFAULT_IGNORE ();
706 /* This method must be implemented in some situations. See the
707 comment on 'can_run'. */
708 virtual bool supports_non_stop ()
709 TARGET_DEFAULT_RETURN (false);
710 /* Return true if the target operates in non-stop mode even with
711 "set non-stop off". */
712 virtual bool always_non_stop_p ()
713 TARGET_DEFAULT_RETURN (false);
714 /* find_memory_regions support method for gcore */
715 virtual int find_memory_regions (find_memory_region_ftype func, void *data)
716 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
717 /* make_corefile_notes support method for gcore */
718 virtual char *make_corefile_notes (bfd *, int *)
719 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
720 /* get_bookmark support method for bookmarks */
721 virtual gdb_byte *get_bookmark (const char *, int)
722 TARGET_DEFAULT_NORETURN (tcomplain ());
723 /* goto_bookmark support method for bookmarks */
724 virtual void goto_bookmark (const gdb_byte *, int)
725 TARGET_DEFAULT_NORETURN (tcomplain ());
726 /* Return the thread-local address at OFFSET in the
727 thread-local storage for the thread PTID and the shared library
728 or executable file given by LOAD_MODULE_ADDR. If that block of
729 thread-local storage hasn't been allocated yet, this function
730 may throw an error. LOAD_MODULE_ADDR may be zero for statically
731 linked multithreaded inferiors. */
732 virtual CORE_ADDR get_thread_local_address (ptid_t ptid,
733 CORE_ADDR load_module_addr,
734 CORE_ADDR offset)
735 TARGET_DEFAULT_NORETURN (generic_tls_error ());
736
737 /* Request that OPS transfer up to LEN addressable units of the target's
738 OBJECT. When reading from a memory object, the size of an addressable
739 unit is architecture dependent and can be found using
740 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is
741 1 byte long. The OFFSET, for a seekable object, specifies the
742 starting point. The ANNEX can be used to provide additional
743 data-specific information to the target.
744
745 Return the transferred status, error or OK (an
746 'enum target_xfer_status' value). Save the number of addressable units
747 actually transferred in *XFERED_LEN if transfer is successful
748 (TARGET_XFER_OK) or the number unavailable units if the requested
749 data is unavailable (TARGET_XFER_UNAVAILABLE). *XFERED_LEN
750 smaller than LEN does not indicate the end of the object, only
751 the end of the transfer; higher level code should continue
752 transferring if desired. This is handled in target.c.
753
754 The interface does not support a "retry" mechanism. Instead it
755 assumes that at least one addressable unit will be transfered on each
756 successful call.
757
758 NOTE: cagney/2003-10-17: The current interface can lead to
759 fragmented transfers. Lower target levels should not implement
760 hacks, such as enlarging the transfer, in an attempt to
761 compensate for this. Instead, the target stack should be
762 extended so that it implements supply/collect methods and a
763 look-aside object cache. With that available, the lowest
764 target can safely and freely "push" data up the stack.
765
766 See target_read and target_write for more information. One,
767 and only one, of readbuf or writebuf must be non-NULL. */
768
769 virtual enum target_xfer_status xfer_partial (enum target_object object,
770 const char *annex,
771 gdb_byte *readbuf,
772 const gdb_byte *writebuf,
773 ULONGEST offset, ULONGEST len,
774 ULONGEST *xfered_len)
775 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
776
777 /* Return the limit on the size of any single memory transfer
778 for the target. */
779
780 virtual ULONGEST get_memory_xfer_limit ()
781 TARGET_DEFAULT_RETURN (ULONGEST_MAX);
782
783 /* Returns the memory map for the target. A return value of NULL
784 means that no memory map is available. If a memory address
785 does not fall within any returned regions, it's assumed to be
786 RAM. The returned memory regions should not overlap.
787
788 The order of regions does not matter; target_memory_map will
789 sort regions by starting address. For that reason, this
790 function should not be called directly except via
791 target_memory_map.
792
793 This method should not cache data; if the memory map could
794 change unexpectedly, it should be invalidated, and higher
795 layers will re-fetch it. */
796 virtual std::vector<mem_region> memory_map ()
797 TARGET_DEFAULT_RETURN (std::vector<mem_region> ());
798
799 /* Erases the region of flash memory starting at ADDRESS, of
800 length LENGTH.
801
802 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
803 on flash block boundaries, as reported by 'to_memory_map'. */
804 virtual void flash_erase (ULONGEST address, LONGEST length)
805 TARGET_DEFAULT_NORETURN (tcomplain ());
806
807 /* Finishes a flash memory write sequence. After this operation
808 all flash memory should be available for writing and the result
809 of reading from areas written by 'to_flash_write' should be
810 equal to what was written. */
811 virtual void flash_done ()
812 TARGET_DEFAULT_NORETURN (tcomplain ());
813
814 /* Describe the architecture-specific features of this target. If
815 OPS doesn't have a description, this should delegate to the
816 "beneath" target. Returns the description found, or NULL if no
817 description was available. */
818 virtual const struct target_desc *read_description ()
819 TARGET_DEFAULT_RETURN (NULL);
820
821 /* Build the PTID of the thread on which a given task is running,
822 based on LWP and THREAD. These values are extracted from the
823 task Private_Data section of the Ada Task Control Block, and
824 their interpretation depends on the target. */
825 virtual ptid_t get_ada_task_ptid (long lwp, long thread)
826 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
827
828 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
829 Return 0 if *READPTR is already at the end of the buffer.
830 Return -1 if there is insufficient buffer for a whole entry.
831 Return 1 if an entry was read into *TYPEP and *VALP. */
832 virtual int auxv_parse (gdb_byte **readptr,
833 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
834 TARGET_DEFAULT_FUNC (default_auxv_parse);
835
836 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
837 sequence of bytes in PATTERN with length PATTERN_LEN.
838
839 The result is 1 if found, 0 if not found, and -1 if there was an error
840 requiring halting of the search (e.g. memory read error).
841 If the pattern is found the address is recorded in FOUND_ADDRP. */
842 virtual int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
843 const gdb_byte *pattern, ULONGEST pattern_len,
844 CORE_ADDR *found_addrp)
845 TARGET_DEFAULT_FUNC (default_search_memory);
846
847 /* Can target execute in reverse? */
848 virtual bool can_execute_reverse ()
849 TARGET_DEFAULT_RETURN (false);
850
851 /* The direction the target is currently executing. Must be
852 implemented on targets that support reverse execution and async
853 mode. The default simply returns forward execution. */
854 virtual enum exec_direction_kind execution_direction ()
855 TARGET_DEFAULT_FUNC (default_execution_direction);
856
857 /* Does this target support debugging multiple processes
858 simultaneously? */
859 virtual bool supports_multi_process ()
860 TARGET_DEFAULT_RETURN (false);
861
862 /* Does this target support enabling and disabling tracepoints while a trace
863 experiment is running? */
864 virtual bool supports_enable_disable_tracepoint ()
865 TARGET_DEFAULT_RETURN (false);
866
867 /* Does this target support disabling address space randomization? */
868 virtual bool supports_disable_randomization ()
869 TARGET_DEFAULT_FUNC (find_default_supports_disable_randomization);
870
871 /* Does this target support the tracenz bytecode for string collection? */
872 virtual bool supports_string_tracing ()
873 TARGET_DEFAULT_RETURN (false);
874
875 /* Does this target support evaluation of breakpoint conditions on its
876 end? */
877 virtual bool supports_evaluation_of_breakpoint_conditions ()
878 TARGET_DEFAULT_RETURN (false);
879
880 /* Does this target support evaluation of breakpoint commands on its
881 end? */
882 virtual bool can_run_breakpoint_commands ()
883 TARGET_DEFAULT_RETURN (false);
884
885 /* Determine current architecture of thread PTID.
886
887 The target is supposed to determine the architecture of the code where
888 the target is currently stopped at. The architecture information is
889 used to perform decr_pc_after_break adjustment, and also to determine
890 the frame architecture of the innermost frame. ptrace operations need to
891 operate according to target_gdbarch (). */
892 virtual struct gdbarch *thread_architecture (ptid_t)
893 TARGET_DEFAULT_RETURN (NULL);
894
895 /* Determine current address space of thread PTID. */
896 virtual struct address_space *thread_address_space (ptid_t)
897 TARGET_DEFAULT_RETURN (NULL);
898
899 /* Target file operations. */
900
901 /* Return nonzero if the filesystem seen by the current inferior
902 is the local filesystem, zero otherwise. */
903 virtual bool filesystem_is_local ()
904 TARGET_DEFAULT_RETURN (true);
905
906 /* Open FILENAME on the target, in the filesystem as seen by INF,
907 using FLAGS and MODE. If INF is NULL, use the filesystem seen
908 by the debugger (GDB or, for remote targets, the remote stub).
909 If WARN_IF_SLOW is nonzero, print a warning message if the file
910 is being accessed over a link that may be slow. Return a
911 target file descriptor, or -1 if an error occurs (and set
912 *TARGET_ERRNO). */
913 virtual int fileio_open (struct inferior *inf, const char *filename,
914 int flags, int mode, int warn_if_slow,
915 int *target_errno);
916
917 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
918 Return the number of bytes written, or -1 if an error occurs
919 (and set *TARGET_ERRNO). */
920 virtual int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
921 ULONGEST offset, int *target_errno);
922
923 /* Read up to LEN bytes FD on the target into READ_BUF.
924 Return the number of bytes read, or -1 if an error occurs
925 (and set *TARGET_ERRNO). */
926 virtual int fileio_pread (int fd, gdb_byte *read_buf, int len,
927 ULONGEST offset, int *target_errno);
928
929 /* Get information about the file opened as FD and put it in
930 SB. Return 0 on success, or -1 if an error occurs (and set
931 *TARGET_ERRNO). */
932 virtual int fileio_fstat (int fd, struct stat *sb, int *target_errno);
933
934 /* Close FD on the target. Return 0, or -1 if an error occurs
935 (and set *TARGET_ERRNO). */
936 virtual int fileio_close (int fd, int *target_errno);
937
938 /* Unlink FILENAME on the target, in the filesystem as seen by
939 INF. If INF is NULL, use the filesystem seen by the debugger
940 (GDB or, for remote targets, the remote stub). Return 0, or
941 -1 if an error occurs (and set *TARGET_ERRNO). */
942 virtual int fileio_unlink (struct inferior *inf,
943 const char *filename,
944 int *target_errno);
945
946 /* Read value of symbolic link FILENAME on the target, in the
947 filesystem as seen by INF. If INF is NULL, use the filesystem
948 seen by the debugger (GDB or, for remote targets, the remote
949 stub). Return a string, or an empty optional if an error
950 occurs (and set *TARGET_ERRNO). */
951 virtual gdb::optional<std::string> fileio_readlink (struct inferior *inf,
952 const char *filename,
953 int *target_errno);
954
955 /* Implement the "info proc" command. Returns true if the target
956 actually implemented the command, false otherwise. */
957 virtual bool info_proc (const char *, enum info_proc_what);
958
959 /* Tracepoint-related operations. */
960
961 /* Prepare the target for a tracing run. */
962 virtual void trace_init ()
963 TARGET_DEFAULT_NORETURN (tcomplain ());
964
965 /* Send full details of a tracepoint location to the target. */
966 virtual void download_tracepoint (struct bp_location *location)
967 TARGET_DEFAULT_NORETURN (tcomplain ());
968
969 /* Is the target able to download tracepoint locations in current
970 state? */
971 virtual bool can_download_tracepoint ()
972 TARGET_DEFAULT_RETURN (false);
973
974 /* Send full details of a trace state variable to the target. */
975 virtual void download_trace_state_variable (const trace_state_variable &tsv)
976 TARGET_DEFAULT_NORETURN (tcomplain ());
977
978 /* Enable a tracepoint on the target. */
979 virtual void enable_tracepoint (struct bp_location *location)
980 TARGET_DEFAULT_NORETURN (tcomplain ());
981
982 /* Disable a tracepoint on the target. */
983 virtual void disable_tracepoint (struct bp_location *location)
984 TARGET_DEFAULT_NORETURN (tcomplain ());
985
986 /* Inform the target info of memory regions that are readonly
987 (such as text sections), and so it should return data from
988 those rather than look in the trace buffer. */
989 virtual void trace_set_readonly_regions ()
990 TARGET_DEFAULT_NORETURN (tcomplain ());
991
992 /* Start a trace run. */
993 virtual void trace_start ()
994 TARGET_DEFAULT_NORETURN (tcomplain ());
995
996 /* Get the current status of a tracing run. */
997 virtual int get_trace_status (struct trace_status *ts)
998 TARGET_DEFAULT_RETURN (-1);
999
1000 virtual void get_tracepoint_status (struct breakpoint *tp,
1001 struct uploaded_tp *utp)
1002 TARGET_DEFAULT_NORETURN (tcomplain ());
1003
1004 /* Stop a trace run. */
1005 virtual void trace_stop ()
1006 TARGET_DEFAULT_NORETURN (tcomplain ());
1007
1008 /* Ask the target to find a trace frame of the given type TYPE,
1009 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
1010 number of the trace frame, and also the tracepoint number at
1011 TPP. If no trace frame matches, return -1. May throw if the
1012 operation fails. */
1013 virtual int trace_find (enum trace_find_type type, int num,
1014 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
1015 TARGET_DEFAULT_RETURN (-1);
1016
1017 /* Get the value of the trace state variable number TSV, returning
1018 1 if the value is known and writing the value itself into the
1019 location pointed to by VAL, else returning 0. */
1020 virtual bool get_trace_state_variable_value (int tsv, LONGEST *val)
1021 TARGET_DEFAULT_RETURN (false);
1022
1023 virtual int save_trace_data (const char *filename)
1024 TARGET_DEFAULT_NORETURN (tcomplain ());
1025
1026 virtual int upload_tracepoints (struct uploaded_tp **utpp)
1027 TARGET_DEFAULT_RETURN (0);
1028
1029 virtual int upload_trace_state_variables (struct uploaded_tsv **utsvp)
1030 TARGET_DEFAULT_RETURN (0);
1031
1032 virtual LONGEST get_raw_trace_data (gdb_byte *buf,
1033 ULONGEST offset, LONGEST len)
1034 TARGET_DEFAULT_NORETURN (tcomplain ());
1035
1036 /* Get the minimum length of instruction on which a fast tracepoint
1037 may be set on the target. If this operation is unsupported,
1038 return -1. If for some reason the minimum length cannot be
1039 determined, return 0. */
1040 virtual int get_min_fast_tracepoint_insn_len ()
1041 TARGET_DEFAULT_RETURN (-1);
1042
1043 /* Set the target's tracing behavior in response to unexpected
1044 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
1045 virtual void set_disconnected_tracing (int val)
1046 TARGET_DEFAULT_IGNORE ();
1047 virtual void set_circular_trace_buffer (int val)
1048 TARGET_DEFAULT_IGNORE ();
1049 /* Set the size of trace buffer in the target. */
1050 virtual void set_trace_buffer_size (LONGEST val)
1051 TARGET_DEFAULT_IGNORE ();
1052
1053 /* Add/change textual notes about the trace run, returning 1 if
1054 successful, 0 otherwise. */
1055 virtual bool set_trace_notes (const char *user, const char *notes,
1056 const char *stopnotes)
1057 TARGET_DEFAULT_RETURN (false);
1058
1059 /* Return the processor core that thread PTID was last seen on.
1060 This information is updated only when:
1061 - update_thread_list is called
1062 - thread stops
1063 If the core cannot be determined -- either for the specified
1064 thread, or right now, or in this debug session, or for this
1065 target -- return -1. */
1066 virtual int core_of_thread (ptid_t ptid)
1067 TARGET_DEFAULT_RETURN (-1);
1068
1069 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
1070 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
1071 a match, 0 if there's a mismatch, and -1 if an error is
1072 encountered while reading memory. */
1073 virtual int verify_memory (const gdb_byte *data,
1074 CORE_ADDR memaddr, ULONGEST size)
1075 TARGET_DEFAULT_FUNC (default_verify_memory);
1076
1077 /* Return the address of the start of the Thread Information Block
1078 a Windows OS specific feature. */
1079 virtual bool get_tib_address (ptid_t ptid, CORE_ADDR *addr)
1080 TARGET_DEFAULT_NORETURN (tcomplain ());
1081
1082 /* Send the new settings of write permission variables. */
1083 virtual void set_permissions ()
1084 TARGET_DEFAULT_IGNORE ();
1085
1086 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
1087 with its details. Return true on success, false on failure. */
1088 virtual bool static_tracepoint_marker_at (CORE_ADDR,
1089 static_tracepoint_marker *marker)
1090 TARGET_DEFAULT_RETURN (false);
1091
1092 /* Return a vector of all tracepoints markers string id ID, or all
1093 markers if ID is NULL. */
1094 virtual std::vector<static_tracepoint_marker>
1095 static_tracepoint_markers_by_strid (const char *id)
1096 TARGET_DEFAULT_NORETURN (tcomplain ());
1097
1098 /* Return a traceframe info object describing the current
1099 traceframe's contents. This method should not cache data;
1100 higher layers take care of caching, invalidating, and
1101 re-fetching when necessary. */
1102 virtual traceframe_info_up traceframe_info ()
1103 TARGET_DEFAULT_NORETURN (tcomplain ());
1104
1105 /* Ask the target to use or not to use agent according to USE.
1106 Return true if successful, false otherwise. */
1107 virtual bool use_agent (bool use)
1108 TARGET_DEFAULT_NORETURN (tcomplain ());
1109
1110 /* Is the target able to use agent in current state? */
1111 virtual bool can_use_agent ()
1112 TARGET_DEFAULT_RETURN (false);
1113
1114 /* Enable branch tracing for PTID using CONF configuration.
1115 Return a branch trace target information struct for reading and for
1116 disabling branch trace. */
1117 virtual struct btrace_target_info *enable_btrace (ptid_t ptid,
1118 const struct btrace_config *conf)
1119 TARGET_DEFAULT_NORETURN (tcomplain ());
1120
1121 /* Disable branch tracing and deallocate TINFO. */
1122 virtual void disable_btrace (struct btrace_target_info *tinfo)
1123 TARGET_DEFAULT_NORETURN (tcomplain ());
1124
1125 /* Disable branch tracing and deallocate TINFO. This function is similar
1126 to to_disable_btrace, except that it is called during teardown and is
1127 only allowed to perform actions that are safe. A counter-example would
1128 be attempting to talk to a remote target. */
1129 virtual void teardown_btrace (struct btrace_target_info *tinfo)
1130 TARGET_DEFAULT_NORETURN (tcomplain ());
1131
1132 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1133 DATA is cleared before new trace is added. */
1134 virtual enum btrace_error read_btrace (struct btrace_data *data,
1135 struct btrace_target_info *btinfo,
1136 enum btrace_read_type type)
1137 TARGET_DEFAULT_NORETURN (tcomplain ());
1138
1139 /* Get the branch trace configuration. */
1140 virtual const struct btrace_config *btrace_conf (const struct btrace_target_info *)
1141 TARGET_DEFAULT_RETURN (NULL);
1142
1143 /* Current recording method. */
1144 virtual enum record_method record_method (ptid_t ptid)
1145 TARGET_DEFAULT_RETURN (RECORD_METHOD_NONE);
1146
1147 /* Stop trace recording. */
1148 virtual void stop_recording ()
1149 TARGET_DEFAULT_IGNORE ();
1150
1151 /* Print information about the recording. */
1152 virtual void info_record ()
1153 TARGET_DEFAULT_IGNORE ();
1154
1155 /* Save the recorded execution trace into a file. */
1156 virtual void save_record (const char *filename)
1157 TARGET_DEFAULT_NORETURN (tcomplain ());
1158
1159 /* Delete the recorded execution trace from the current position
1160 onwards. */
1161 virtual bool supports_delete_record ()
1162 TARGET_DEFAULT_RETURN (false);
1163 virtual void delete_record ()
1164 TARGET_DEFAULT_NORETURN (tcomplain ());
1165
1166 /* Query if the record target is currently replaying PTID. */
1167 virtual bool record_is_replaying (ptid_t ptid)
1168 TARGET_DEFAULT_RETURN (false);
1169
1170 /* Query if the record target will replay PTID if it were resumed in
1171 execution direction DIR. */
1172 virtual bool record_will_replay (ptid_t ptid, int dir)
1173 TARGET_DEFAULT_RETURN (false);
1174
1175 /* Stop replaying. */
1176 virtual void record_stop_replaying ()
1177 TARGET_DEFAULT_IGNORE ();
1178
1179 /* Go to the begin of the execution trace. */
1180 virtual void goto_record_begin ()
1181 TARGET_DEFAULT_NORETURN (tcomplain ());
1182
1183 /* Go to the end of the execution trace. */
1184 virtual void goto_record_end ()
1185 TARGET_DEFAULT_NORETURN (tcomplain ());
1186
1187 /* Go to a specific location in the recorded execution trace. */
1188 virtual void goto_record (ULONGEST insn)
1189 TARGET_DEFAULT_NORETURN (tcomplain ());
1190
1191 /* Disassemble SIZE instructions in the recorded execution trace from
1192 the current position.
1193 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1194 disassemble SIZE succeeding instructions. */
1195 virtual void insn_history (int size, gdb_disassembly_flags flags)
1196 TARGET_DEFAULT_NORETURN (tcomplain ());
1197
1198 /* Disassemble SIZE instructions in the recorded execution trace around
1199 FROM.
1200 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1201 disassemble SIZE instructions after FROM. */
1202 virtual void insn_history_from (ULONGEST from, int size,
1203 gdb_disassembly_flags flags)
1204 TARGET_DEFAULT_NORETURN (tcomplain ());
1205
1206 /* Disassemble a section of the recorded execution trace from instruction
1207 BEGIN (inclusive) to instruction END (inclusive). */
1208 virtual void insn_history_range (ULONGEST begin, ULONGEST end,
1209 gdb_disassembly_flags flags)
1210 TARGET_DEFAULT_NORETURN (tcomplain ());
1211
1212 /* Print a function trace of the recorded execution trace.
1213 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1214 succeeding functions. */
1215 virtual void call_history (int size, record_print_flags flags)
1216 TARGET_DEFAULT_NORETURN (tcomplain ());
1217
1218 /* Print a function trace of the recorded execution trace starting
1219 at function FROM.
1220 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1221 SIZE functions after FROM. */
1222 virtual void call_history_from (ULONGEST begin, int size, record_print_flags flags)
1223 TARGET_DEFAULT_NORETURN (tcomplain ());
1224
1225 /* Print a function trace of an execution trace section from function BEGIN
1226 (inclusive) to function END (inclusive). */
1227 virtual void call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
1228 TARGET_DEFAULT_NORETURN (tcomplain ());
1229
1230 /* True if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1231 non-empty annex. */
1232 virtual bool augmented_libraries_svr4_read ()
1233 TARGET_DEFAULT_RETURN (false);
1234
1235 /* Those unwinders are tried before any other arch unwinders. If
1236 SELF doesn't have unwinders, it should delegate to the
1237 "beneath" target. */
1238 virtual const struct frame_unwind *get_unwinder ()
1239 TARGET_DEFAULT_RETURN (NULL);
1240
1241 virtual const struct frame_unwind *get_tailcall_unwinder ()
1242 TARGET_DEFAULT_RETURN (NULL);
1243
1244 /* Prepare to generate a core file. */
1245 virtual void prepare_to_generate_core ()
1246 TARGET_DEFAULT_IGNORE ();
1247
1248 /* Cleanup after generating a core file. */
1249 virtual void done_generating_core ()
1250 TARGET_DEFAULT_IGNORE ();
1251 };
1252
1253 /* Deleter for std::unique_ptr. See comments in
1254 target_ops::~target_ops and target_ops::close about heap-allocated
1255 targets. */
1256 struct target_ops_deleter
1257 {
1258 void operator() (target_ops *target)
1259 {
1260 target->close ();
1261 }
1262 };
1263
1264 /* A unique pointer for target_ops. */
1265 typedef std::unique_ptr<target_ops, target_ops_deleter> target_ops_up;
1266
1267 /* Native target backends call this once at initialization time to
1268 inform the core about which is the target that can respond to "run"
1269 or "attach". Note: native targets are always singletons. */
1270 extern void set_native_target (target_ops *target);
1271
1272 /* Get the registered native target, if there's one. Otherwise return
1273 NULL. */
1274 extern target_ops *get_native_target ();
1275
1276 /* Type that manages a target stack. See description of target stacks
1277 and strata at the top of the file. */
1278
1279 class target_stack
1280 {
1281 public:
1282 target_stack () = default;
1283 DISABLE_COPY_AND_ASSIGN (target_stack);
1284
1285 /* Push a new target into the stack of the existing target
1286 accessors, possibly superseding some existing accessor. */
1287 void push (target_ops *t);
1288
1289 /* Remove a target from the stack, wherever it may be. Return true
1290 if it was removed, false otherwise. */
1291 bool unpush (target_ops *t);
1292
1293 /* Returns true if T is pushed on the target stack. */
1294 bool is_pushed (target_ops *t) const
1295 { return at (t->stratum ()) == t; }
1296
1297 /* Return the target at STRATUM. */
1298 target_ops *at (strata stratum) const { return m_stack[stratum]; }
1299
1300 /* Return the target at the top of the stack. */
1301 target_ops *top () const { return at (m_top); }
1302
1303 /* Find the next target down the stack from the specified target. */
1304 target_ops *find_beneath (const target_ops *t) const;
1305
1306 private:
1307 /* The stratum of the top target. */
1308 enum strata m_top {};
1309
1310 /* The stack, represented as an array, with one slot per stratum.
1311 If no target is pushed at some stratum, the corresponding slot is
1312 null. */
1313 target_ops *m_stack[(int) debug_stratum + 1] {};
1314 };
1315
1316 /* The ops structure for our "current" target process. This should
1317 never be NULL. If there is no target, it points to the dummy_target. */
1318
1319 extern target_ops *current_top_target ();
1320
1321 /* Define easy words for doing these operations on our current target. */
1322
1323 #define target_shortname (current_top_target ()->shortname ())
1324 #define target_longname (current_top_target ()->longname ())
1325
1326 /* Does whatever cleanup is required for a target that we are no
1327 longer going to be calling. This routine is automatically always
1328 called after popping the target off the target stack - the target's
1329 own methods are no longer available through the target vector.
1330 Closing file descriptors and freeing all memory allocated memory are
1331 typical things it should do. */
1332
1333 void target_close (struct target_ops *targ);
1334
1335 /* Find the correct target to use for "attach". If a target on the
1336 current stack supports attaching, then it is returned. Otherwise,
1337 the default run target is returned. */
1338
1339 extern struct target_ops *find_attach_target (void);
1340
1341 /* Find the correct target to use for "run". If a target on the
1342 current stack supports creating a new inferior, then it is
1343 returned. Otherwise, the default run target is returned. */
1344
1345 extern struct target_ops *find_run_target (void);
1346
1347 /* Some targets don't generate traps when attaching to the inferior,
1348 or their target_attach implementation takes care of the waiting.
1349 These targets must set to_attach_no_wait. */
1350
1351 #define target_attach_no_wait() \
1352 (current_top_target ()->attach_no_wait ())
1353
1354 /* The target_attach operation places a process under debugger control,
1355 and stops the process.
1356
1357 This operation provides a target-specific hook that allows the
1358 necessary bookkeeping to be performed after an attach completes. */
1359 #define target_post_attach(pid) \
1360 (current_top_target ()->post_attach) (pid)
1361
1362 /* Display a message indicating we're about to detach from the current
1363 inferior process. */
1364
1365 extern void target_announce_detach (int from_tty);
1366
1367 /* Takes a program previously attached to and detaches it.
1368 The program may resume execution (some targets do, some don't) and will
1369 no longer stop on signals, etc. We better not have left any breakpoints
1370 in the program or it'll die when it hits one. FROM_TTY says whether to be
1371 verbose or not. */
1372
1373 extern void target_detach (inferior *inf, int from_tty);
1374
1375 /* Disconnect from the current target without resuming it (leaving it
1376 waiting for a debugger). */
1377
1378 extern void target_disconnect (const char *, int);
1379
1380 /* Resume execution (or prepare for execution) of a target thread,
1381 process or all processes. STEP says whether to hardware
1382 single-step or to run free; SIGGNAL is the signal to be given to
1383 the target, or GDB_SIGNAL_0 for no signal. The caller may not pass
1384 GDB_SIGNAL_DEFAULT. A specific PTID means `step/resume only this
1385 process id'. A wildcard PTID (all threads, or all threads of
1386 process) means `step/resume INFERIOR_PTID, and let other threads
1387 (for which the wildcard PTID matches) resume with their
1388 'thread->suspend.stop_signal' signal (usually GDB_SIGNAL_0) if it
1389 is in "pass" state, or with no signal if in "no pass" state.
1390
1391 In order to efficiently handle batches of resumption requests,
1392 targets may implement this method such that it records the
1393 resumption request, but defers the actual resumption to the
1394 target_commit_resume method implementation. See
1395 target_commit_resume below. */
1396 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1397
1398 /* Commit a series of resumption requests previously prepared with
1399 target_resume calls.
1400
1401 GDB always calls target_commit_resume after calling target_resume
1402 one or more times. A target may thus use this method in
1403 coordination with the target_resume method to batch target-side
1404 resumption requests. In that case, the target doesn't actually
1405 resume in its target_resume implementation. Instead, it prepares
1406 the resumption in target_resume, and defers the actual resumption
1407 to target_commit_resume. E.g., the remote target uses this to
1408 coalesce multiple resumption requests in a single vCont packet. */
1409 extern void target_commit_resume ();
1410
1411 /* Setup to defer target_commit_resume calls, and reactivate
1412 target_commit_resume on destruction, if it was previously
1413 active. */
1414 extern scoped_restore_tmpl<int> make_scoped_defer_target_commit_resume ();
1415
1416 /* For target_read_memory see target/target.h. */
1417
1418 /* The default target_ops::to_wait implementation. */
1419
1420 extern ptid_t default_target_wait (struct target_ops *ops,
1421 ptid_t ptid,
1422 struct target_waitstatus *status,
1423 int options);
1424
1425 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1426
1427 extern void target_fetch_registers (struct regcache *regcache, int regno);
1428
1429 /* Store at least register REGNO, or all regs if REGNO == -1.
1430 It can store as many registers as it wants to, so target_prepare_to_store
1431 must have been previously called. Calls error() if there are problems. */
1432
1433 extern void target_store_registers (struct regcache *regcache, int regs);
1434
1435 /* Get ready to modify the registers array. On machines which store
1436 individual registers, this doesn't need to do anything. On machines
1437 which store all the registers in one fell swoop, this makes sure
1438 that REGISTERS contains all the registers from the program being
1439 debugged. */
1440
1441 #define target_prepare_to_store(regcache) \
1442 (current_top_target ()->prepare_to_store) (regcache)
1443
1444 /* Determine current address space of thread PTID. */
1445
1446 struct address_space *target_thread_address_space (ptid_t);
1447
1448 /* Implement the "info proc" command. This returns one if the request
1449 was handled, and zero otherwise. It can also throw an exception if
1450 an error was encountered while attempting to handle the
1451 request. */
1452
1453 int target_info_proc (const char *, enum info_proc_what);
1454
1455 /* Returns true if this target can disable address space randomization. */
1456
1457 int target_supports_disable_randomization (void);
1458
1459 /* Returns true if this target can enable and disable tracepoints
1460 while a trace experiment is running. */
1461
1462 #define target_supports_enable_disable_tracepoint() \
1463 (current_top_target ()->supports_enable_disable_tracepoint) ()
1464
1465 #define target_supports_string_tracing() \
1466 (current_top_target ()->supports_string_tracing) ()
1467
1468 /* Returns true if this target can handle breakpoint conditions
1469 on its end. */
1470
1471 #define target_supports_evaluation_of_breakpoint_conditions() \
1472 (current_top_target ()->supports_evaluation_of_breakpoint_conditions) ()
1473
1474 /* Returns true if this target can handle breakpoint commands
1475 on its end. */
1476
1477 #define target_can_run_breakpoint_commands() \
1478 (current_top_target ()->can_run_breakpoint_commands) ()
1479
1480 extern int target_read_string (CORE_ADDR, gdb::unique_xmalloc_ptr<char> *,
1481 int, int *);
1482
1483 /* For target_read_memory see target/target.h. */
1484
1485 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1486 ssize_t len);
1487
1488 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1489
1490 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1491
1492 /* For target_write_memory see target/target.h. */
1493
1494 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1495 ssize_t len);
1496
1497 /* Fetches the target's memory map. If one is found it is sorted
1498 and returned, after some consistency checking. Otherwise, NULL
1499 is returned. */
1500 std::vector<mem_region> target_memory_map (void);
1501
1502 /* Erases all flash memory regions on the target. */
1503 void flash_erase_command (const char *cmd, int from_tty);
1504
1505 /* Erase the specified flash region. */
1506 void target_flash_erase (ULONGEST address, LONGEST length);
1507
1508 /* Finish a sequence of flash operations. */
1509 void target_flash_done (void);
1510
1511 /* Describes a request for a memory write operation. */
1512 struct memory_write_request
1513 {
1514 memory_write_request (ULONGEST begin_, ULONGEST end_,
1515 gdb_byte *data_ = nullptr, void *baton_ = nullptr)
1516 : begin (begin_), end (end_), data (data_), baton (baton_)
1517 {}
1518
1519 /* Begining address that must be written. */
1520 ULONGEST begin;
1521 /* Past-the-end address. */
1522 ULONGEST end;
1523 /* The data to write. */
1524 gdb_byte *data;
1525 /* A callback baton for progress reporting for this request. */
1526 void *baton;
1527 };
1528
1529 /* Enumeration specifying different flash preservation behaviour. */
1530 enum flash_preserve_mode
1531 {
1532 flash_preserve,
1533 flash_discard
1534 };
1535
1536 /* Write several memory blocks at once. This version can be more
1537 efficient than making several calls to target_write_memory, in
1538 particular because it can optimize accesses to flash memory.
1539
1540 Moreover, this is currently the only memory access function in gdb
1541 that supports writing to flash memory, and it should be used for
1542 all cases where access to flash memory is desirable.
1543
1544 REQUESTS is the vector of memory_write_request.
1545 PRESERVE_FLASH_P indicates what to do with blocks which must be
1546 erased, but not completely rewritten.
1547 PROGRESS_CB is a function that will be periodically called to provide
1548 feedback to user. It will be called with the baton corresponding
1549 to the request currently being written. It may also be called
1550 with a NULL baton, when preserved flash sectors are being rewritten.
1551
1552 The function returns 0 on success, and error otherwise. */
1553 int target_write_memory_blocks
1554 (const std::vector<memory_write_request> &requests,
1555 enum flash_preserve_mode preserve_flash_p,
1556 void (*progress_cb) (ULONGEST, void *));
1557
1558 /* Print a line about the current target. */
1559
1560 #define target_files_info() \
1561 (current_top_target ()->files_info) ()
1562
1563 /* Insert a breakpoint at address BP_TGT->placed_address in
1564 the target machine. Returns 0 for success, and returns non-zero or
1565 throws an error (with a detailed failure reason error code and
1566 message) otherwise. */
1567
1568 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1569 struct bp_target_info *bp_tgt);
1570
1571 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1572 machine. Result is 0 for success, non-zero for error. */
1573
1574 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1575 struct bp_target_info *bp_tgt,
1576 enum remove_bp_reason reason);
1577
1578 /* Return true if the target stack has a non-default
1579 "terminal_ours" method. */
1580
1581 extern bool target_supports_terminal_ours (void);
1582
1583 /* Kill the inferior process. Make it go away. */
1584
1585 extern void target_kill (void);
1586
1587 /* Load an executable file into the target process. This is expected
1588 to not only bring new code into the target process, but also to
1589 update GDB's symbol tables to match.
1590
1591 ARG contains command-line arguments, to be broken down with
1592 buildargv (). The first non-switch argument is the filename to
1593 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1594 0)), which is an offset to apply to the load addresses of FILE's
1595 sections. The target may define switches, or other non-switch
1596 arguments, as it pleases. */
1597
1598 extern void target_load (const char *arg, int from_tty);
1599
1600 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1601 notification of inferior events such as fork and vork immediately
1602 after the inferior is created. (This because of how gdb gets an
1603 inferior created via invoking a shell to do it. In such a scenario,
1604 if the shell init file has commands in it, the shell will fork and
1605 exec for each of those commands, and we will see each such fork
1606 event. Very bad.)
1607
1608 Such targets will supply an appropriate definition for this function. */
1609
1610 #define target_post_startup_inferior(ptid) \
1611 (current_top_target ()->post_startup_inferior) (ptid)
1612
1613 /* On some targets, we can catch an inferior fork or vfork event when
1614 it occurs. These functions insert/remove an already-created
1615 catchpoint for such events. They return 0 for success, 1 if the
1616 catchpoint type is not supported and -1 for failure. */
1617
1618 #define target_insert_fork_catchpoint(pid) \
1619 (current_top_target ()->insert_fork_catchpoint) (pid)
1620
1621 #define target_remove_fork_catchpoint(pid) \
1622 (current_top_target ()->remove_fork_catchpoint) (pid)
1623
1624 #define target_insert_vfork_catchpoint(pid) \
1625 (current_top_target ()->insert_vfork_catchpoint) (pid)
1626
1627 #define target_remove_vfork_catchpoint(pid) \
1628 (current_top_target ()->remove_vfork_catchpoint) (pid)
1629
1630 /* If the inferior forks or vforks, this function will be called at
1631 the next resume in order to perform any bookkeeping and fiddling
1632 necessary to continue debugging either the parent or child, as
1633 requested, and releasing the other. Information about the fork
1634 or vfork event is available via get_last_target_status ().
1635 This function returns 1 if the inferior should not be resumed
1636 (i.e. there is another event pending). */
1637
1638 int target_follow_fork (int follow_child, int detach_fork);
1639
1640 /* Handle the target-specific bookkeeping required when the inferior
1641 makes an exec call. INF is the exec'd inferior. */
1642
1643 void target_follow_exec (struct inferior *inf, const char *execd_pathname);
1644
1645 /* On some targets, we can catch an inferior exec event when it
1646 occurs. These functions insert/remove an already-created
1647 catchpoint for such events. They return 0 for success, 1 if the
1648 catchpoint type is not supported and -1 for failure. */
1649
1650 #define target_insert_exec_catchpoint(pid) \
1651 (current_top_target ()->insert_exec_catchpoint) (pid)
1652
1653 #define target_remove_exec_catchpoint(pid) \
1654 (current_top_target ()->remove_exec_catchpoint) (pid)
1655
1656 /* Syscall catch.
1657
1658 NEEDED is true if any syscall catch (of any kind) is requested.
1659 If NEEDED is false, it means the target can disable the mechanism to
1660 catch system calls because there are no more catchpoints of this type.
1661
1662 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1663 being requested. In this case, SYSCALL_COUNTS should be ignored.
1664
1665 SYSCALL_COUNTS is an array of ints, indexed by syscall number. An
1666 element in this array is nonzero if that syscall should be caught.
1667 This argument only matters if ANY_COUNT is zero.
1668
1669 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1670 for failure. */
1671
1672 #define target_set_syscall_catchpoint(pid, needed, any_count, syscall_counts) \
1673 (current_top_target ()->set_syscall_catchpoint) (pid, needed, any_count, \
1674 syscall_counts)
1675
1676 /* The debugger has completed a blocking wait() call. There is now
1677 some process event that must be processed. This function should
1678 be defined by those targets that require the debugger to perform
1679 cleanup or internal state changes in response to the process event. */
1680
1681 /* For target_mourn_inferior see target/target.h. */
1682
1683 /* Does target have enough data to do a run or attach command? */
1684
1685 extern int target_can_run ();
1686
1687 /* Set list of signals to be handled in the target.
1688
1689 PASS_SIGNALS is an array indexed by target signal number
1690 (enum gdb_signal). For every signal whose entry in this array is
1691 non-zero, the target is allowed -but not required- to skip reporting
1692 arrival of the signal to the GDB core by returning from target_wait,
1693 and to pass the signal directly to the inferior instead.
1694
1695 However, if the target is hardware single-stepping a thread that is
1696 about to receive a signal, it needs to be reported in any case, even
1697 if mentioned in a previous target_pass_signals call. */
1698
1699 extern void target_pass_signals
1700 (gdb::array_view<const unsigned char> pass_signals);
1701
1702 /* Set list of signals the target may pass to the inferior. This
1703 directly maps to the "handle SIGNAL pass/nopass" setting.
1704
1705 PROGRAM_SIGNALS is an array indexed by target signal
1706 number (enum gdb_signal). For every signal whose entry in this
1707 array is non-zero, the target is allowed to pass the signal to the
1708 inferior. Signals not present in the array shall be silently
1709 discarded. This does not influence whether to pass signals to the
1710 inferior as a result of a target_resume call. This is useful in
1711 scenarios where the target needs to decide whether to pass or not a
1712 signal to the inferior without GDB core involvement, such as for
1713 example, when detaching (as threads may have been suspended with
1714 pending signals not reported to GDB). */
1715
1716 extern void target_program_signals
1717 (gdb::array_view<const unsigned char> program_signals);
1718
1719 /* Check to see if a thread is still alive. */
1720
1721 extern int target_thread_alive (ptid_t ptid);
1722
1723 /* Sync the target's threads with GDB's thread list. */
1724
1725 extern void target_update_thread_list (void);
1726
1727 /* Make target stop in a continuable fashion. (For instance, under
1728 Unix, this should act like SIGSTOP). Note that this function is
1729 asynchronous: it does not wait for the target to become stopped
1730 before returning. If this is the behavior you want please use
1731 target_stop_and_wait. */
1732
1733 extern void target_stop (ptid_t ptid);
1734
1735 /* Interrupt the target. Unlike target_stop, this does not specify
1736 which thread/process reports the stop. For most target this acts
1737 like raising a SIGINT, though that's not absolutely required. This
1738 function is asynchronous. */
1739
1740 extern void target_interrupt ();
1741
1742 /* Pass a ^C, as determined to have been pressed by checking the quit
1743 flag, to the target, as if the user had typed the ^C on the
1744 inferior's controlling terminal while the inferior was in the
1745 foreground. Remote targets may take the opportunity to detect the
1746 remote side is not responding and offer to disconnect. */
1747
1748 extern void target_pass_ctrlc (void);
1749
1750 /* The default target_ops::to_pass_ctrlc implementation. Simply calls
1751 target_interrupt. */
1752 extern void default_target_pass_ctrlc (struct target_ops *ops);
1753
1754 /* Send the specified COMMAND to the target's monitor
1755 (shell,interpreter) for execution. The result of the query is
1756 placed in OUTBUF. */
1757
1758 #define target_rcmd(command, outbuf) \
1759 (current_top_target ()->rcmd) (command, outbuf)
1760
1761
1762 /* Does the target include all of memory, or only part of it? This
1763 determines whether we look up the target chain for other parts of
1764 memory if this target can't satisfy a request. */
1765
1766 extern int target_has_all_memory_1 (void);
1767 #define target_has_all_memory target_has_all_memory_1 ()
1768
1769 /* Does the target include memory? (Dummy targets don't.) */
1770
1771 extern int target_has_memory_1 (void);
1772 #define target_has_memory target_has_memory_1 ()
1773
1774 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1775 we start a process.) */
1776
1777 extern int target_has_stack_1 (void);
1778 #define target_has_stack target_has_stack_1 ()
1779
1780 /* Does the target have registers? (Exec files don't.) */
1781
1782 extern int target_has_registers_1 (void);
1783 #define target_has_registers target_has_registers_1 ()
1784
1785 /* Does the target have execution? Can we make it jump (through
1786 hoops), or pop its stack a few times? This means that the current
1787 target is currently executing; for some targets, that's the same as
1788 whether or not the target is capable of execution, but there are
1789 also targets which can be current while not executing. In that
1790 case this will become true after to_create_inferior or
1791 to_attach. */
1792
1793 extern int target_has_execution_1 (ptid_t);
1794
1795 /* Like target_has_execution_1, but always passes inferior_ptid. */
1796
1797 extern int target_has_execution_current (void);
1798
1799 #define target_has_execution target_has_execution_current ()
1800
1801 /* Can the target support the debugger control of thread execution?
1802 Can it lock the thread scheduler? */
1803
1804 #define target_can_lock_scheduler \
1805 (current_top_target ()->get_thread_control_capabilities () & tc_schedlock)
1806
1807 /* Controls whether async mode is permitted. */
1808 extern bool target_async_permitted;
1809
1810 /* Can the target support asynchronous execution? */
1811 #define target_can_async_p() (current_top_target ()->can_async_p ())
1812
1813 /* Is the target in asynchronous execution mode? */
1814 #define target_is_async_p() (current_top_target ()->is_async_p ())
1815
1816 /* Enables/disabled async target events. */
1817 extern void target_async (int enable);
1818
1819 /* Enables/disables thread create and exit events. */
1820 extern void target_thread_events (int enable);
1821
1822 /* Whether support for controlling the target backends always in
1823 non-stop mode is enabled. */
1824 extern enum auto_boolean target_non_stop_enabled;
1825
1826 /* Is the target in non-stop mode? Some targets control the inferior
1827 in non-stop mode even with "set non-stop off". Always true if "set
1828 non-stop" is on. */
1829 extern int target_is_non_stop_p (void);
1830
1831 #define target_execution_direction() \
1832 (current_top_target ()->execution_direction ())
1833
1834 /* Converts a process id to a string. Usually, the string just contains
1835 `process xyz', but on some systems it may contain
1836 `process xyz thread abc'. */
1837
1838 extern std::string target_pid_to_str (ptid_t ptid);
1839
1840 extern std::string normal_pid_to_str (ptid_t ptid);
1841
1842 /* Return a short string describing extra information about PID,
1843 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1844 is okay. */
1845
1846 #define target_extra_thread_info(TP) \
1847 (current_top_target ()->extra_thread_info (TP))
1848
1849 /* Return the thread's name, or NULL if the target is unable to determine it.
1850 The returned value must not be freed by the caller. */
1851
1852 extern const char *target_thread_name (struct thread_info *);
1853
1854 /* Given a pointer to a thread library specific thread handle and
1855 its length, return a pointer to the corresponding thread_info struct. */
1856
1857 extern struct thread_info *target_thread_handle_to_thread_info
1858 (const gdb_byte *thread_handle, int handle_len, struct inferior *inf);
1859
1860 /* Given a thread, return the thread handle, a target-specific sequence of
1861 bytes which serves as a thread identifier within the program being
1862 debugged. */
1863 extern gdb::byte_vector target_thread_info_to_thread_handle
1864 (struct thread_info *);
1865
1866 /* Attempts to find the pathname of the executable file
1867 that was run to create a specified process.
1868
1869 The process PID must be stopped when this operation is used.
1870
1871 If the executable file cannot be determined, NULL is returned.
1872
1873 Else, a pointer to a character string containing the pathname
1874 is returned. This string should be copied into a buffer by
1875 the client if the string will not be immediately used, or if
1876 it must persist. */
1877
1878 #define target_pid_to_exec_file(pid) \
1879 (current_top_target ()->pid_to_exec_file) (pid)
1880
1881 /* See the to_thread_architecture description in struct target_ops. */
1882
1883 #define target_thread_architecture(ptid) \
1884 (current_top_target ()->thread_architecture (ptid))
1885
1886 /*
1887 * Iterator function for target memory regions.
1888 * Calls a callback function once for each memory region 'mapped'
1889 * in the child process. Defined as a simple macro rather than
1890 * as a function macro so that it can be tested for nullity.
1891 */
1892
1893 #define target_find_memory_regions(FUNC, DATA) \
1894 (current_top_target ()->find_memory_regions) (FUNC, DATA)
1895
1896 /*
1897 * Compose corefile .note section.
1898 */
1899
1900 #define target_make_corefile_notes(BFD, SIZE_P) \
1901 (current_top_target ()->make_corefile_notes) (BFD, SIZE_P)
1902
1903 /* Bookmark interfaces. */
1904 #define target_get_bookmark(ARGS, FROM_TTY) \
1905 (current_top_target ()->get_bookmark) (ARGS, FROM_TTY)
1906
1907 #define target_goto_bookmark(ARG, FROM_TTY) \
1908 (current_top_target ()->goto_bookmark) (ARG, FROM_TTY)
1909
1910 /* Hardware watchpoint interfaces. */
1911
1912 /* GDB's current model is that there are three "kinds" of watchpoints,
1913 with respect to when they trigger and how you can move past them.
1914
1915 Those are: continuable, steppable, and non-steppable.
1916
1917 Continuable watchpoints are like x86's -- those trigger after the
1918 memory access's side effects are fully committed to memory. I.e.,
1919 they trap with the PC pointing at the next instruction already.
1920 Continuing past such a watchpoint is doable by just normally
1921 continuing, hence the name.
1922
1923 Both steppable and non-steppable watchpoints trap before the memory
1924 access. I.e, the PC points at the instruction that is accessing
1925 the memory. So GDB needs to single-step once past the current
1926 instruction in order to make the access effective and check whether
1927 the instruction's side effects change the watched expression.
1928
1929 Now, in order to step past that instruction, depending on
1930 architecture and target, you can have two situations:
1931
1932 - steppable watchpoints: you can single-step with the watchpoint
1933 still armed, and the watchpoint won't trigger again.
1934
1935 - non-steppable watchpoints: if you try to single-step with the
1936 watchpoint still armed, you'd trap the watchpoint again and the
1937 thread wouldn't make any progress. So GDB needs to temporarily
1938 remove the watchpoint in order to step past it.
1939
1940 If your target/architecture does not signal that it has either
1941 steppable or non-steppable watchpoints via either
1942 target_have_steppable_watchpoint or
1943 gdbarch_have_nonsteppable_watchpoint, GDB assumes continuable
1944 watchpoints. */
1945
1946 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1947 write). Only the INFERIOR_PTID task is being queried. */
1948
1949 #define target_stopped_by_watchpoint() \
1950 ((current_top_target ()->stopped_by_watchpoint) ())
1951
1952 /* Returns non-zero if the target stopped because it executed a
1953 software breakpoint instruction. */
1954
1955 #define target_stopped_by_sw_breakpoint() \
1956 ((current_top_target ()->stopped_by_sw_breakpoint) ())
1957
1958 #define target_supports_stopped_by_sw_breakpoint() \
1959 ((current_top_target ()->supports_stopped_by_sw_breakpoint) ())
1960
1961 #define target_stopped_by_hw_breakpoint() \
1962 ((current_top_target ()->stopped_by_hw_breakpoint) ())
1963
1964 #define target_supports_stopped_by_hw_breakpoint() \
1965 ((current_top_target ()->supports_stopped_by_hw_breakpoint) ())
1966
1967 /* Non-zero if we have steppable watchpoints */
1968
1969 #define target_have_steppable_watchpoint \
1970 (current_top_target ()->have_steppable_watchpoint ())
1971
1972 /* Provide defaults for hardware watchpoint functions. */
1973
1974 /* If the *_hw_beakpoint functions have not been defined
1975 elsewhere use the definitions in the target vector. */
1976
1977 /* Returns positive if we can set a hardware watchpoint of type TYPE.
1978 Returns negative if the target doesn't have enough hardware debug
1979 registers available. Return zero if hardware watchpoint of type
1980 TYPE isn't supported. TYPE is one of bp_hardware_watchpoint,
1981 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
1982 CNT is the number of such watchpoints used so far, including this
1983 one. OTHERTYPE is the number of watchpoints of other types than
1984 this one used so far. */
1985
1986 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1987 (current_top_target ()->can_use_hw_breakpoint) ( \
1988 TYPE, CNT, OTHERTYPE)
1989
1990 /* Returns the number of debug registers needed to watch the given
1991 memory region, or zero if not supported. */
1992
1993 #define target_region_ok_for_hw_watchpoint(addr, len) \
1994 (current_top_target ()->region_ok_for_hw_watchpoint) (addr, len)
1995
1996
1997 #define target_can_do_single_step() \
1998 (current_top_target ()->can_do_single_step) ()
1999
2000 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
2001 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
2002 COND is the expression for its condition, or NULL if there's none.
2003 Returns 0 for success, 1 if the watchpoint type is not supported,
2004 -1 for failure. */
2005
2006 #define target_insert_watchpoint(addr, len, type, cond) \
2007 (current_top_target ()->insert_watchpoint) (addr, len, type, cond)
2008
2009 #define target_remove_watchpoint(addr, len, type, cond) \
2010 (current_top_target ()->remove_watchpoint) (addr, len, type, cond)
2011
2012 /* Insert a new masked watchpoint at ADDR using the mask MASK.
2013 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
2014 or hw_access for an access watchpoint. Returns 0 for success, 1 if
2015 masked watchpoints are not supported, -1 for failure. */
2016
2017 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
2018 enum target_hw_bp_type);
2019
2020 /* Remove a masked watchpoint at ADDR with the mask MASK.
2021 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
2022 or hw_access for an access watchpoint. Returns 0 for success, non-zero
2023 for failure. */
2024
2025 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
2026 enum target_hw_bp_type);
2027
2028 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
2029 the target machine. Returns 0 for success, and returns non-zero or
2030 throws an error (with a detailed failure reason error code and
2031 message) otherwise. */
2032
2033 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
2034 (current_top_target ()->insert_hw_breakpoint) (gdbarch, bp_tgt)
2035
2036 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
2037 (current_top_target ()->remove_hw_breakpoint) (gdbarch, bp_tgt)
2038
2039 /* Return number of debug registers needed for a ranged breakpoint,
2040 or -1 if ranged breakpoints are not supported. */
2041
2042 extern int target_ranged_break_num_registers (void);
2043
2044 /* Return non-zero if target knows the data address which triggered this
2045 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
2046 INFERIOR_PTID task is being queried. */
2047 #define target_stopped_data_address(target, addr_p) \
2048 (target)->stopped_data_address (addr_p)
2049
2050 /* Return non-zero if ADDR is within the range of a watchpoint spanning
2051 LENGTH bytes beginning at START. */
2052 #define target_watchpoint_addr_within_range(target, addr, start, length) \
2053 (target)->watchpoint_addr_within_range (addr, start, length)
2054
2055 /* Return non-zero if the target is capable of using hardware to evaluate
2056 the condition expression. In this case, if the condition is false when
2057 the watched memory location changes, execution may continue without the
2058 debugger being notified.
2059
2060 Due to limitations in the hardware implementation, it may be capable of
2061 avoiding triggering the watchpoint in some cases where the condition
2062 expression is false, but may report some false positives as well.
2063 For this reason, GDB will still evaluate the condition expression when
2064 the watchpoint triggers. */
2065 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
2066 (current_top_target ()->can_accel_watchpoint_condition) (addr, len, type, cond)
2067
2068 /* Return number of debug registers needed for a masked watchpoint,
2069 -1 if masked watchpoints are not supported or -2 if the given address
2070 and mask combination cannot be used. */
2071
2072 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
2073
2074 /* Target can execute in reverse? */
2075 #define target_can_execute_reverse \
2076 current_top_target ()->can_execute_reverse ()
2077
2078 extern const struct target_desc *target_read_description (struct target_ops *);
2079
2080 #define target_get_ada_task_ptid(lwp, tid) \
2081 (current_top_target ()->get_ada_task_ptid) (lwp,tid)
2082
2083 /* Utility implementation of searching memory. */
2084 extern int simple_search_memory (struct target_ops* ops,
2085 CORE_ADDR start_addr,
2086 ULONGEST search_space_len,
2087 const gdb_byte *pattern,
2088 ULONGEST pattern_len,
2089 CORE_ADDR *found_addrp);
2090
2091 /* Main entry point for searching memory. */
2092 extern int target_search_memory (CORE_ADDR start_addr,
2093 ULONGEST search_space_len,
2094 const gdb_byte *pattern,
2095 ULONGEST pattern_len,
2096 CORE_ADDR *found_addrp);
2097
2098 /* Target file operations. */
2099
2100 /* Return nonzero if the filesystem seen by the current inferior
2101 is the local filesystem, zero otherwise. */
2102 #define target_filesystem_is_local() \
2103 current_top_target ()->filesystem_is_local ()
2104
2105 /* Open FILENAME on the target, in the filesystem as seen by INF,
2106 using FLAGS and MODE. If INF is NULL, use the filesystem seen
2107 by the debugger (GDB or, for remote targets, the remote stub).
2108 Return a target file descriptor, or -1 if an error occurs (and
2109 set *TARGET_ERRNO). */
2110 extern int target_fileio_open (struct inferior *inf,
2111 const char *filename, int flags,
2112 int mode, int *target_errno);
2113
2114 /* Like target_fileio_open, but print a warning message if the
2115 file is being accessed over a link that may be slow. */
2116 extern int target_fileio_open_warn_if_slow (struct inferior *inf,
2117 const char *filename,
2118 int flags,
2119 int mode,
2120 int *target_errno);
2121
2122 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2123 Return the number of bytes written, or -1 if an error occurs
2124 (and set *TARGET_ERRNO). */
2125 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2126 ULONGEST offset, int *target_errno);
2127
2128 /* Read up to LEN bytes FD on the target into READ_BUF.
2129 Return the number of bytes read, or -1 if an error occurs
2130 (and set *TARGET_ERRNO). */
2131 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2132 ULONGEST offset, int *target_errno);
2133
2134 /* Get information about the file opened as FD on the target
2135 and put it in SB. Return 0 on success, or -1 if an error
2136 occurs (and set *TARGET_ERRNO). */
2137 extern int target_fileio_fstat (int fd, struct stat *sb,
2138 int *target_errno);
2139
2140 /* Close FD on the target. Return 0, or -1 if an error occurs
2141 (and set *TARGET_ERRNO). */
2142 extern int target_fileio_close (int fd, int *target_errno);
2143
2144 /* Unlink FILENAME on the target, in the filesystem as seen by INF.
2145 If INF is NULL, use the filesystem seen by the debugger (GDB or,
2146 for remote targets, the remote stub). Return 0, or -1 if an error
2147 occurs (and set *TARGET_ERRNO). */
2148 extern int target_fileio_unlink (struct inferior *inf,
2149 const char *filename,
2150 int *target_errno);
2151
2152 /* Read value of symbolic link FILENAME on the target, in the
2153 filesystem as seen by INF. If INF is NULL, use the filesystem seen
2154 by the debugger (GDB or, for remote targets, the remote stub).
2155 Return a null-terminated string allocated via xmalloc, or NULL if
2156 an error occurs (and set *TARGET_ERRNO). */
2157 extern gdb::optional<std::string> target_fileio_readlink
2158 (struct inferior *inf, const char *filename, int *target_errno);
2159
2160 /* Read target file FILENAME, in the filesystem as seen by INF. If
2161 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2162 remote targets, the remote stub). The return value will be -1 if
2163 the transfer fails or is not supported; 0 if the object is empty;
2164 or the length of the object otherwise. If a positive value is
2165 returned, a sufficiently large buffer will be allocated using
2166 xmalloc and returned in *BUF_P containing the contents of the
2167 object.
2168
2169 This method should be used for objects sufficiently small to store
2170 in a single xmalloc'd buffer, when no fixed bound on the object's
2171 size is known in advance. */
2172 extern LONGEST target_fileio_read_alloc (struct inferior *inf,
2173 const char *filename,
2174 gdb_byte **buf_p);
2175
2176 /* Read target file FILENAME, in the filesystem as seen by INF. If
2177 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2178 remote targets, the remote stub). The result is NUL-terminated and
2179 returned as a string, allocated using xmalloc. If an error occurs
2180 or the transfer is unsupported, NULL is returned. Empty objects
2181 are returned as allocated but empty strings. A warning is issued
2182 if the result contains any embedded NUL bytes. */
2183 extern gdb::unique_xmalloc_ptr<char> target_fileio_read_stralloc
2184 (struct inferior *inf, const char *filename);
2185
2186
2187 /* Tracepoint-related operations. */
2188
2189 #define target_trace_init() \
2190 (current_top_target ()->trace_init) ()
2191
2192 #define target_download_tracepoint(t) \
2193 (current_top_target ()->download_tracepoint) (t)
2194
2195 #define target_can_download_tracepoint() \
2196 (current_top_target ()->can_download_tracepoint) ()
2197
2198 #define target_download_trace_state_variable(tsv) \
2199 (current_top_target ()->download_trace_state_variable) (tsv)
2200
2201 #define target_enable_tracepoint(loc) \
2202 (current_top_target ()->enable_tracepoint) (loc)
2203
2204 #define target_disable_tracepoint(loc) \
2205 (current_top_target ()->disable_tracepoint) (loc)
2206
2207 #define target_trace_start() \
2208 (current_top_target ()->trace_start) ()
2209
2210 #define target_trace_set_readonly_regions() \
2211 (current_top_target ()->trace_set_readonly_regions) ()
2212
2213 #define target_get_trace_status(ts) \
2214 (current_top_target ()->get_trace_status) (ts)
2215
2216 #define target_get_tracepoint_status(tp,utp) \
2217 (current_top_target ()->get_tracepoint_status) (tp, utp)
2218
2219 #define target_trace_stop() \
2220 (current_top_target ()->trace_stop) ()
2221
2222 #define target_trace_find(type,num,addr1,addr2,tpp) \
2223 (current_top_target ()->trace_find) (\
2224 (type), (num), (addr1), (addr2), (tpp))
2225
2226 #define target_get_trace_state_variable_value(tsv,val) \
2227 (current_top_target ()->get_trace_state_variable_value) ((tsv), (val))
2228
2229 #define target_save_trace_data(filename) \
2230 (current_top_target ()->save_trace_data) (filename)
2231
2232 #define target_upload_tracepoints(utpp) \
2233 (current_top_target ()->upload_tracepoints) (utpp)
2234
2235 #define target_upload_trace_state_variables(utsvp) \
2236 (current_top_target ()->upload_trace_state_variables) (utsvp)
2237
2238 #define target_get_raw_trace_data(buf,offset,len) \
2239 (current_top_target ()->get_raw_trace_data) ((buf), (offset), (len))
2240
2241 #define target_get_min_fast_tracepoint_insn_len() \
2242 (current_top_target ()->get_min_fast_tracepoint_insn_len) ()
2243
2244 #define target_set_disconnected_tracing(val) \
2245 (current_top_target ()->set_disconnected_tracing) (val)
2246
2247 #define target_set_circular_trace_buffer(val) \
2248 (current_top_target ()->set_circular_trace_buffer) (val)
2249
2250 #define target_set_trace_buffer_size(val) \
2251 (current_top_target ()->set_trace_buffer_size) (val)
2252
2253 #define target_set_trace_notes(user,notes,stopnotes) \
2254 (current_top_target ()->set_trace_notes) ((user), (notes), (stopnotes))
2255
2256 #define target_get_tib_address(ptid, addr) \
2257 (current_top_target ()->get_tib_address) ((ptid), (addr))
2258
2259 #define target_set_permissions() \
2260 (current_top_target ()->set_permissions) ()
2261
2262 #define target_static_tracepoint_marker_at(addr, marker) \
2263 (current_top_target ()->static_tracepoint_marker_at) (addr, marker)
2264
2265 #define target_static_tracepoint_markers_by_strid(marker_id) \
2266 (current_top_target ()->static_tracepoint_markers_by_strid) (marker_id)
2267
2268 #define target_traceframe_info() \
2269 (current_top_target ()->traceframe_info) ()
2270
2271 #define target_use_agent(use) \
2272 (current_top_target ()->use_agent) (use)
2273
2274 #define target_can_use_agent() \
2275 (current_top_target ()->can_use_agent) ()
2276
2277 #define target_augmented_libraries_svr4_read() \
2278 (current_top_target ()->augmented_libraries_svr4_read) ()
2279
2280 /* Command logging facility. */
2281
2282 #define target_log_command(p) \
2283 (current_top_target ()->log_command) (p)
2284
2285
2286 extern int target_core_of_thread (ptid_t ptid);
2287
2288 /* See to_get_unwinder in struct target_ops. */
2289 extern const struct frame_unwind *target_get_unwinder (void);
2290
2291 /* See to_get_tailcall_unwinder in struct target_ops. */
2292 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2293
2294 /* This implements basic memory verification, reading target memory
2295 and performing the comparison here (as opposed to accelerated
2296 verification making use of the qCRC packet, for example). */
2297
2298 extern int simple_verify_memory (struct target_ops* ops,
2299 const gdb_byte *data,
2300 CORE_ADDR memaddr, ULONGEST size);
2301
2302 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2303 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2304 if there's a mismatch, and -1 if an error is encountered while
2305 reading memory. Throws an error if the functionality is found not
2306 to be supported by the current target. */
2307 int target_verify_memory (const gdb_byte *data,
2308 CORE_ADDR memaddr, ULONGEST size);
2309
2310 /* Routines for maintenance of the target structures...
2311
2312 add_target: Add a target to the list of all possible targets.
2313 This only makes sense for targets that should be activated using
2314 the "target TARGET_NAME ..." command.
2315
2316 push_target: Make this target the top of the stack of currently used
2317 targets, within its particular stratum of the stack. Result
2318 is 0 if now atop the stack, nonzero if not on top (maybe
2319 should warn user).
2320
2321 unpush_target: Remove this from the stack of currently used targets,
2322 no matter where it is on the list. Returns 0 if no
2323 change, 1 if removed from stack. */
2324
2325 /* Type of callback called when the user activates a target with
2326 "target TARGET_NAME". The callback routine takes the rest of the
2327 parameters from the command, and (if successful) pushes a new
2328 target onto the stack. */
2329 typedef void target_open_ftype (const char *args, int from_tty);
2330
2331 /* Add the target described by INFO to the list of possible targets
2332 and add a new command 'target $(INFO->shortname)'. Set COMPLETER
2333 as the command's completer if not NULL. */
2334
2335 extern void add_target (const target_info &info,
2336 target_open_ftype *func,
2337 completer_ftype *completer = NULL);
2338
2339 /* Adds a command ALIAS for the target described by INFO and marks it
2340 deprecated. This is useful for maintaining backwards compatibility
2341 when renaming targets. */
2342
2343 extern void add_deprecated_target_alias (const target_info &info,
2344 const char *alias);
2345
2346 extern void push_target (struct target_ops *);
2347
2348 /* An overload that deletes the target on failure. */
2349 extern void push_target (target_ops_up &&);
2350
2351 extern int unpush_target (struct target_ops *);
2352
2353 extern void target_pre_inferior (int);
2354
2355 extern void target_preopen (int);
2356
2357 /* Does whatever cleanup is required to get rid of all pushed targets. */
2358 extern void pop_all_targets (void);
2359
2360 /* Like pop_all_targets, but pops only targets whose stratum is at or
2361 above STRATUM. */
2362 extern void pop_all_targets_at_and_above (enum strata stratum);
2363
2364 /* Like pop_all_targets, but pops only targets whose stratum is
2365 strictly above ABOVE_STRATUM. */
2366 extern void pop_all_targets_above (enum strata above_stratum);
2367
2368 extern int target_is_pushed (struct target_ops *t);
2369
2370 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2371 CORE_ADDR offset);
2372
2373 /* Struct target_section maps address ranges to file sections. It is
2374 mostly used with BFD files, but can be used without (e.g. for handling
2375 raw disks, or files not in formats handled by BFD). */
2376
2377 struct target_section
2378 {
2379 CORE_ADDR addr; /* Lowest address in section */
2380 CORE_ADDR endaddr; /* 1+highest address in section */
2381
2382 struct bfd_section *the_bfd_section;
2383
2384 /* The "owner" of the section.
2385 It can be any unique value. It is set by add_target_sections
2386 and used by remove_target_sections.
2387 For example, for executables it is a pointer to exec_bfd and
2388 for shlibs it is the so_list pointer. */
2389 void *owner;
2390 };
2391
2392 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2393
2394 struct target_section_table
2395 {
2396 struct target_section *sections;
2397 struct target_section *sections_end;
2398 };
2399
2400 /* Return the "section" containing the specified address. */
2401 struct target_section *target_section_by_addr (struct target_ops *target,
2402 CORE_ADDR addr);
2403
2404 /* Return the target section table this target (or the targets
2405 beneath) currently manipulate. */
2406
2407 extern struct target_section_table *target_get_section_table
2408 (struct target_ops *target);
2409
2410 /* From mem-break.c */
2411
2412 extern int memory_remove_breakpoint (struct target_ops *,
2413 struct gdbarch *, struct bp_target_info *,
2414 enum remove_bp_reason);
2415
2416 extern int memory_insert_breakpoint (struct target_ops *,
2417 struct gdbarch *, struct bp_target_info *);
2418
2419 /* Convenience template use to add memory breakpoints support to a
2420 target. */
2421
2422 template <typename BaseTarget>
2423 struct memory_breakpoint_target : public BaseTarget
2424 {
2425 int insert_breakpoint (struct gdbarch *gdbarch,
2426 struct bp_target_info *bp_tgt) override
2427 { return memory_insert_breakpoint (this, gdbarch, bp_tgt); }
2428
2429 int remove_breakpoint (struct gdbarch *gdbarch,
2430 struct bp_target_info *bp_tgt,
2431 enum remove_bp_reason reason) override
2432 { return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason); }
2433 };
2434
2435 /* Check whether the memory at the breakpoint's placed address still
2436 contains the expected breakpoint instruction. */
2437
2438 extern int memory_validate_breakpoint (struct gdbarch *gdbarch,
2439 struct bp_target_info *bp_tgt);
2440
2441 extern int default_memory_remove_breakpoint (struct gdbarch *,
2442 struct bp_target_info *);
2443
2444 extern int default_memory_insert_breakpoint (struct gdbarch *,
2445 struct bp_target_info *);
2446
2447
2448 /* From target.c */
2449
2450 extern void initialize_targets (void);
2451
2452 extern void noprocess (void) ATTRIBUTE_NORETURN;
2453
2454 extern void target_require_runnable (void);
2455
2456 /* Find the target at STRATUM. If no target is at that stratum,
2457 return NULL. */
2458
2459 struct target_ops *find_target_at (enum strata stratum);
2460
2461 /* Read OS data object of type TYPE from the target, and return it in XML
2462 format. The return value follows the same rules as target_read_stralloc. */
2463
2464 extern gdb::optional<gdb::char_vector> target_get_osdata (const char *type);
2465
2466 /* Stuff that should be shared among the various remote targets. */
2467
2468 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2469 information (higher values, more information). */
2470 extern int remote_debug;
2471
2472 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2473 extern int baud_rate;
2474
2475 /* Parity for serial port */
2476 extern int serial_parity;
2477
2478 /* Timeout limit for response from target. */
2479 extern int remote_timeout;
2480
2481 \f
2482
2483 /* Set the show memory breakpoints mode to show, and return a
2484 scoped_restore to restore it back to the current value. */
2485 extern scoped_restore_tmpl<int>
2486 make_scoped_restore_show_memory_breakpoints (int show);
2487
2488 extern bool may_write_registers;
2489 extern bool may_write_memory;
2490 extern bool may_insert_breakpoints;
2491 extern bool may_insert_tracepoints;
2492 extern bool may_insert_fast_tracepoints;
2493 extern bool may_stop;
2494
2495 extern void update_target_permissions (void);
2496
2497 \f
2498 /* Imported from machine dependent code. */
2499
2500 /* See to_enable_btrace in struct target_ops. */
2501 extern struct btrace_target_info *
2502 target_enable_btrace (ptid_t ptid, const struct btrace_config *);
2503
2504 /* See to_disable_btrace in struct target_ops. */
2505 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2506
2507 /* See to_teardown_btrace in struct target_ops. */
2508 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2509
2510 /* See to_read_btrace in struct target_ops. */
2511 extern enum btrace_error target_read_btrace (struct btrace_data *,
2512 struct btrace_target_info *,
2513 enum btrace_read_type);
2514
2515 /* See to_btrace_conf in struct target_ops. */
2516 extern const struct btrace_config *
2517 target_btrace_conf (const struct btrace_target_info *);
2518
2519 /* See to_stop_recording in struct target_ops. */
2520 extern void target_stop_recording (void);
2521
2522 /* See to_save_record in struct target_ops. */
2523 extern void target_save_record (const char *filename);
2524
2525 /* Query if the target supports deleting the execution log. */
2526 extern int target_supports_delete_record (void);
2527
2528 /* See to_delete_record in struct target_ops. */
2529 extern void target_delete_record (void);
2530
2531 /* See to_record_method. */
2532 extern enum record_method target_record_method (ptid_t ptid);
2533
2534 /* See to_record_is_replaying in struct target_ops. */
2535 extern int target_record_is_replaying (ptid_t ptid);
2536
2537 /* See to_record_will_replay in struct target_ops. */
2538 extern int target_record_will_replay (ptid_t ptid, int dir);
2539
2540 /* See to_record_stop_replaying in struct target_ops. */
2541 extern void target_record_stop_replaying (void);
2542
2543 /* See to_goto_record_begin in struct target_ops. */
2544 extern void target_goto_record_begin (void);
2545
2546 /* See to_goto_record_end in struct target_ops. */
2547 extern void target_goto_record_end (void);
2548
2549 /* See to_goto_record in struct target_ops. */
2550 extern void target_goto_record (ULONGEST insn);
2551
2552 /* See to_insn_history. */
2553 extern void target_insn_history (int size, gdb_disassembly_flags flags);
2554
2555 /* See to_insn_history_from. */
2556 extern void target_insn_history_from (ULONGEST from, int size,
2557 gdb_disassembly_flags flags);
2558
2559 /* See to_insn_history_range. */
2560 extern void target_insn_history_range (ULONGEST begin, ULONGEST end,
2561 gdb_disassembly_flags flags);
2562
2563 /* See to_call_history. */
2564 extern void target_call_history (int size, record_print_flags flags);
2565
2566 /* See to_call_history_from. */
2567 extern void target_call_history_from (ULONGEST begin, int size,
2568 record_print_flags flags);
2569
2570 /* See to_call_history_range. */
2571 extern void target_call_history_range (ULONGEST begin, ULONGEST end,
2572 record_print_flags flags);
2573
2574 /* See to_prepare_to_generate_core. */
2575 extern void target_prepare_to_generate_core (void);
2576
2577 /* See to_done_generating_core. */
2578 extern void target_done_generating_core (void);
2579
2580 #endif /* !defined (TARGET_H) */
This page took 0.104894 seconds and 4 git commands to generate.