255c71fef09f7c19807fbd82bea5abef494b49a2
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2020 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41 struct inferior;
42
43 #include "infrun.h" /* For enum exec_direction_kind. */
44 #include "breakpoint.h" /* For enum bptype. */
45 #include "gdbsupport/scoped_restore.h"
46 #include "gdbsupport/refcounted-object.h"
47
48 /* This include file defines the interface between the main part
49 of the debugger, and the part which is target-specific, or
50 specific to the communications interface between us and the
51 target.
52
53 A TARGET is an interface between the debugger and a particular
54 kind of file or process. Targets can be STACKED in STRATA,
55 so that more than one target can potentially respond to a request.
56 In particular, memory accesses will walk down the stack of targets
57 until they find a target that is interested in handling that particular
58 address. STRATA are artificial boundaries on the stack, within
59 which particular kinds of targets live. Strata exist so that
60 people don't get confused by pushing e.g. a process target and then
61 a file target, and wondering why they can't see the current values
62 of variables any more (the file target is handling them and they
63 never get to the process target). So when you push a file target,
64 it goes into the file stratum, which is always below the process
65 stratum.
66
67 Note that rather than allow an empty stack, we always have the
68 dummy target at the bottom stratum, so we can call the target
69 methods without checking them. */
70
71 #include "target/target.h"
72 #include "target/resume.h"
73 #include "target/wait.h"
74 #include "target/waitstatus.h"
75 #include "bfd.h"
76 #include "symtab.h"
77 #include "memattr.h"
78 #include "gdbsupport/gdb_signals.h"
79 #include "btrace.h"
80 #include "record.h"
81 #include "command.h"
82 #include "disasm.h"
83 #include "tracepoint.h"
84 #include "displaced-stepping.h"
85
86 #include "gdbsupport/break-common.h" /* For enum target_hw_bp_type. */
87
88 enum strata
89 {
90 dummy_stratum, /* The lowest of the low */
91 file_stratum, /* Executable files, etc */
92 process_stratum, /* Executing processes or core dump files */
93 thread_stratum, /* Executing threads */
94 record_stratum, /* Support record debugging */
95 arch_stratum, /* Architecture overrides */
96 debug_stratum /* Target debug. Must be last. */
97 };
98
99 enum thread_control_capabilities
100 {
101 tc_none = 0, /* Default: can't control thread execution. */
102 tc_schedlock = 1, /* Can lock the thread scheduler. */
103 };
104
105 /* The structure below stores information about a system call.
106 It is basically used in the "catch syscall" command, and in
107 every function that gives information about a system call.
108
109 It's also good to mention that its fields represent everything
110 that we currently know about a syscall in GDB. */
111 struct syscall
112 {
113 /* The syscall number. */
114 int number;
115
116 /* The syscall name. */
117 const char *name;
118 };
119
120 /* Return a pretty printed form of TARGET_OPTIONS. */
121 extern std::string target_options_to_string (int target_options);
122
123 /* Possible types of events that the inferior handler will have to
124 deal with. */
125 enum inferior_event_type
126 {
127 /* Process a normal inferior event which will result in target_wait
128 being called. */
129 INF_REG_EVENT,
130 /* We are called to do stuff after the inferior stops. */
131 INF_EXEC_COMPLETE,
132 };
133 \f
134 /* Target objects which can be transfered using target_read,
135 target_write, et cetera. */
136
137 enum target_object
138 {
139 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
140 TARGET_OBJECT_AVR,
141 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
142 TARGET_OBJECT_MEMORY,
143 /* Memory, avoiding GDB's data cache and trusting the executable.
144 Target implementations of to_xfer_partial never need to handle
145 this object, and most callers should not use it. */
146 TARGET_OBJECT_RAW_MEMORY,
147 /* Memory known to be part of the target's stack. This is cached even
148 if it is not in a region marked as such, since it is known to be
149 "normal" RAM. */
150 TARGET_OBJECT_STACK_MEMORY,
151 /* Memory known to be part of the target code. This is cached even
152 if it is not in a region marked as such. */
153 TARGET_OBJECT_CODE_MEMORY,
154 /* Kernel Unwind Table. See "ia64-tdep.c". */
155 TARGET_OBJECT_UNWIND_TABLE,
156 /* Transfer auxilliary vector. */
157 TARGET_OBJECT_AUXV,
158 /* StackGhost cookie. See "sparc-tdep.c". */
159 TARGET_OBJECT_WCOOKIE,
160 /* Target memory map in XML format. */
161 TARGET_OBJECT_MEMORY_MAP,
162 /* Flash memory. This object can be used to write contents to
163 a previously erased flash memory. Using it without erasing
164 flash can have unexpected results. Addresses are physical
165 address on target, and not relative to flash start. */
166 TARGET_OBJECT_FLASH,
167 /* Available target-specific features, e.g. registers and coprocessors.
168 See "target-descriptions.c". ANNEX should never be empty. */
169 TARGET_OBJECT_AVAILABLE_FEATURES,
170 /* Currently loaded libraries, in XML format. */
171 TARGET_OBJECT_LIBRARIES,
172 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
173 TARGET_OBJECT_LIBRARIES_SVR4,
174 /* Currently loaded libraries specific to AIX systems, in XML format. */
175 TARGET_OBJECT_LIBRARIES_AIX,
176 /* Get OS specific data. The ANNEX specifies the type (running
177 processes, etc.). The data being transfered is expected to follow
178 the DTD specified in features/osdata.dtd. */
179 TARGET_OBJECT_OSDATA,
180 /* Extra signal info. Usually the contents of `siginfo_t' on unix
181 platforms. */
182 TARGET_OBJECT_SIGNAL_INFO,
183 /* The list of threads that are being debugged. */
184 TARGET_OBJECT_THREADS,
185 /* Collected static trace data. */
186 TARGET_OBJECT_STATIC_TRACE_DATA,
187 /* Traceframe info, in XML format. */
188 TARGET_OBJECT_TRACEFRAME_INFO,
189 /* Load maps for FDPIC systems. */
190 TARGET_OBJECT_FDPIC,
191 /* Darwin dynamic linker info data. */
192 TARGET_OBJECT_DARWIN_DYLD_INFO,
193 /* OpenVMS Unwind Information Block. */
194 TARGET_OBJECT_OPENVMS_UIB,
195 /* Branch trace data, in XML format. */
196 TARGET_OBJECT_BTRACE,
197 /* Branch trace configuration, in XML format. */
198 TARGET_OBJECT_BTRACE_CONF,
199 /* The pathname of the executable file that was run to create
200 a specified process. ANNEX should be a string representation
201 of the process ID of the process in question, in hexadecimal
202 format. */
203 TARGET_OBJECT_EXEC_FILE,
204 /* FreeBSD virtual memory mappings. */
205 TARGET_OBJECT_FREEBSD_VMMAP,
206 /* FreeBSD process strings. */
207 TARGET_OBJECT_FREEBSD_PS_STRINGS,
208 /* Possible future objects: TARGET_OBJECT_FILE, ... */
209 };
210
211 /* Possible values returned by target_xfer_partial, etc. */
212
213 enum target_xfer_status
214 {
215 /* Some bytes are transferred. */
216 TARGET_XFER_OK = 1,
217
218 /* No further transfer is possible. */
219 TARGET_XFER_EOF = 0,
220
221 /* The piece of the object requested is unavailable. */
222 TARGET_XFER_UNAVAILABLE = 2,
223
224 /* Generic I/O error. Note that it's important that this is '-1',
225 as we still have target_xfer-related code returning hardcoded
226 '-1' on error. */
227 TARGET_XFER_E_IO = -1,
228
229 /* Keep list in sync with target_xfer_status_to_string. */
230 };
231
232 /* Return the string form of STATUS. */
233
234 extern const char *
235 target_xfer_status_to_string (enum target_xfer_status status);
236
237 typedef enum target_xfer_status
238 target_xfer_partial_ftype (struct target_ops *ops,
239 enum target_object object,
240 const char *annex,
241 gdb_byte *readbuf,
242 const gdb_byte *writebuf,
243 ULONGEST offset,
244 ULONGEST len,
245 ULONGEST *xfered_len);
246
247 enum target_xfer_status
248 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
249 const gdb_byte *writebuf, ULONGEST memaddr,
250 LONGEST len, ULONGEST *xfered_len);
251
252 /* Request that OPS transfer up to LEN addressable units of the target's
253 OBJECT. When reading from a memory object, the size of an addressable unit
254 is architecture dependent and can be found using
255 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
256 byte long. BUF should point to a buffer large enough to hold the read data,
257 taking into account the addressable unit size. The OFFSET, for a seekable
258 object, specifies the starting point. The ANNEX can be used to provide
259 additional data-specific information to the target.
260
261 Return the number of addressable units actually transferred, or a negative
262 error code (an 'enum target_xfer_error' value) if the transfer is not
263 supported or otherwise fails. Return of a positive value less than
264 LEN indicates that no further transfer is possible. Unlike the raw
265 to_xfer_partial interface, callers of these functions do not need
266 to retry partial transfers. */
267
268 extern LONGEST target_read (struct target_ops *ops,
269 enum target_object object,
270 const char *annex, gdb_byte *buf,
271 ULONGEST offset, LONGEST len);
272
273 struct memory_read_result
274 {
275 memory_read_result (ULONGEST begin_, ULONGEST end_,
276 gdb::unique_xmalloc_ptr<gdb_byte> &&data_)
277 : begin (begin_),
278 end (end_),
279 data (std::move (data_))
280 {
281 }
282
283 ~memory_read_result () = default;
284
285 memory_read_result (memory_read_result &&other) = default;
286
287 DISABLE_COPY_AND_ASSIGN (memory_read_result);
288
289 /* First address that was read. */
290 ULONGEST begin;
291 /* Past-the-end address. */
292 ULONGEST end;
293 /* The data. */
294 gdb::unique_xmalloc_ptr<gdb_byte> data;
295 };
296
297 extern std::vector<memory_read_result> read_memory_robust
298 (struct target_ops *ops, const ULONGEST offset, const LONGEST len);
299
300 /* Request that OPS transfer up to LEN addressable units from BUF to the
301 target's OBJECT. When writing to a memory object, the addressable unit
302 size is architecture dependent and can be found using
303 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
304 byte long. The OFFSET, for a seekable object, specifies the starting point.
305 The ANNEX can be used to provide additional data-specific information to
306 the target.
307
308 Return the number of addressable units actually transferred, or a negative
309 error code (an 'enum target_xfer_status' value) if the transfer is not
310 supported or otherwise fails. Return of a positive value less than
311 LEN indicates that no further transfer is possible. Unlike the raw
312 to_xfer_partial interface, callers of these functions do not need to
313 retry partial transfers. */
314
315 extern LONGEST target_write (struct target_ops *ops,
316 enum target_object object,
317 const char *annex, const gdb_byte *buf,
318 ULONGEST offset, LONGEST len);
319
320 /* Similar to target_write, except that it also calls PROGRESS with
321 the number of bytes written and the opaque BATON after every
322 successful partial write (and before the first write). This is
323 useful for progress reporting and user interaction while writing
324 data. To abort the transfer, the progress callback can throw an
325 exception. */
326
327 LONGEST target_write_with_progress (struct target_ops *ops,
328 enum target_object object,
329 const char *annex, const gdb_byte *buf,
330 ULONGEST offset, LONGEST len,
331 void (*progress) (ULONGEST, void *),
332 void *baton);
333
334 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will be read
335 using OPS. The return value will be uninstantiated if the transfer fails or
336 is not supported.
337
338 This method should be used for objects sufficiently small to store
339 in a single xmalloc'd buffer, when no fixed bound on the object's
340 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
341 through this function. */
342
343 extern gdb::optional<gdb::byte_vector> target_read_alloc
344 (struct target_ops *ops, enum target_object object, const char *annex);
345
346 /* Read OBJECT/ANNEX using OPS. The result is a NUL-terminated character vector
347 (therefore usable as a NUL-terminated string). If an error occurs or the
348 transfer is unsupported, the return value will be uninstantiated. Empty
349 objects are returned as allocated but empty strings. Therefore, on success,
350 the returned vector is guaranteed to have at least one element. A warning is
351 issued if the result contains any embedded NUL bytes. */
352
353 extern gdb::optional<gdb::char_vector> target_read_stralloc
354 (struct target_ops *ops, enum target_object object, const char *annex);
355
356 /* See target_ops->to_xfer_partial. */
357 extern target_xfer_partial_ftype target_xfer_partial;
358
359 /* Wrappers to target read/write that perform memory transfers. They
360 throw an error if the memory transfer fails.
361
362 NOTE: cagney/2003-10-23: The naming schema is lifted from
363 "frame.h". The parameter order is lifted from get_frame_memory,
364 which in turn lifted it from read_memory. */
365
366 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
367 gdb_byte *buf, LONGEST len);
368 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
369 CORE_ADDR addr, int len,
370 enum bfd_endian byte_order);
371 \f
372 struct thread_info; /* fwd decl for parameter list below: */
373
374 /* The type of the callback to the to_async method. */
375
376 typedef void async_callback_ftype (enum inferior_event_type event_type,
377 void *context);
378
379 /* Normally target debug printing is purely type-based. However,
380 sometimes it is necessary to override the debug printing on a
381 per-argument basis. This macro can be used, attribute-style, to
382 name the target debug printing function for a particular method
383 argument. FUNC is the name of the function. The macro's
384 definition is empty because it is only used by the
385 make-target-delegates script. */
386
387 #define TARGET_DEBUG_PRINTER(FUNC)
388
389 /* These defines are used to mark target_ops methods. The script
390 make-target-delegates scans these and auto-generates the base
391 method implementations. There are four macros that can be used:
392
393 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
394 does nothing. This is only valid if the method return type is
395 'void'.
396
397 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
398 'tcomplain ()'. The base method simply makes this call, which is
399 assumed not to return.
400
401 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
402 base method returns this expression's value.
403
404 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
405 make-target-delegates does not generate a base method in this case,
406 but instead uses the argument function as the base method. */
407
408 #define TARGET_DEFAULT_IGNORE()
409 #define TARGET_DEFAULT_NORETURN(ARG)
410 #define TARGET_DEFAULT_RETURN(ARG)
411 #define TARGET_DEFAULT_FUNC(ARG)
412
413 /* Each target that can be activated with "target TARGET_NAME" passes
414 the address of one of these objects to add_target, which uses the
415 object's address as unique identifier, and registers the "target
416 TARGET_NAME" command using SHORTNAME as target name. */
417
418 struct target_info
419 {
420 /* Name of this target. */
421 const char *shortname;
422
423 /* Name for printing. */
424 const char *longname;
425
426 /* Documentation. Does not include trailing newline, and starts
427 with a one-line description (probably similar to longname). */
428 const char *doc;
429 };
430
431 struct target_ops
432 : public refcounted_object
433 {
434 /* Return this target's stratum. */
435 virtual strata stratum () const = 0;
436
437 /* To the target under this one. */
438 target_ops *beneath () const;
439
440 /* Free resources associated with the target. Note that singleton
441 targets, like e.g., native targets, are global objects, not
442 heap allocated, and are thus only deleted on GDB exit. The
443 main teardown entry point is the "close" method, below. */
444 virtual ~target_ops () {}
445
446 /* Return a reference to this target's unique target_info
447 object. */
448 virtual const target_info &info () const = 0;
449
450 /* Name this target type. */
451 const char *shortname () const
452 { return info ().shortname; }
453
454 const char *longname () const
455 { return info ().longname; }
456
457 /* Close the target. This is where the target can handle
458 teardown. Heap-allocated targets should delete themselves
459 before returning. */
460 virtual void close ();
461
462 /* Attaches to a process on the target side. Arguments are as
463 passed to the `attach' command by the user. This routine can
464 be called when the target is not on the target-stack, if the
465 target_ops::can_run method returns 1; in that case, it must push
466 itself onto the stack. Upon exit, the target should be ready
467 for normal operations, and should be ready to deliver the
468 status of the process immediately (without waiting) to an
469 upcoming target_wait call. */
470 virtual bool can_attach ();
471 virtual void attach (const char *, int);
472 virtual void post_attach (int)
473 TARGET_DEFAULT_IGNORE ();
474 virtual void detach (inferior *, int)
475 TARGET_DEFAULT_IGNORE ();
476 virtual void disconnect (const char *, int)
477 TARGET_DEFAULT_NORETURN (tcomplain ());
478 virtual void resume (ptid_t,
479 int TARGET_DEBUG_PRINTER (target_debug_print_step),
480 enum gdb_signal)
481 TARGET_DEFAULT_NORETURN (noprocess ());
482 virtual void commit_resume ()
483 TARGET_DEFAULT_IGNORE ();
484 /* See target_wait's description. Note that implementations of
485 this method must not assume that inferior_ptid on entry is
486 pointing at the thread or inferior that ends up reporting an
487 event. The reported event could be for some other thread in
488 the current inferior or even for a different process of the
489 current target. inferior_ptid may also be null_ptid on
490 entry. */
491 virtual ptid_t wait (ptid_t, struct target_waitstatus *,
492 int TARGET_DEBUG_PRINTER (target_debug_print_options))
493 TARGET_DEFAULT_FUNC (default_target_wait);
494 virtual void fetch_registers (struct regcache *, int)
495 TARGET_DEFAULT_IGNORE ();
496 virtual void store_registers (struct regcache *, int)
497 TARGET_DEFAULT_NORETURN (noprocess ());
498 virtual void prepare_to_store (struct regcache *)
499 TARGET_DEFAULT_NORETURN (noprocess ());
500
501 virtual void files_info ()
502 TARGET_DEFAULT_IGNORE ();
503 virtual int insert_breakpoint (struct gdbarch *,
504 struct bp_target_info *)
505 TARGET_DEFAULT_NORETURN (noprocess ());
506 virtual int remove_breakpoint (struct gdbarch *,
507 struct bp_target_info *,
508 enum remove_bp_reason)
509 TARGET_DEFAULT_NORETURN (noprocess ());
510
511 /* Returns true if the target stopped because it executed a
512 software breakpoint. This is necessary for correct background
513 execution / non-stop mode operation, and for correct PC
514 adjustment on targets where the PC needs to be adjusted when a
515 software breakpoint triggers. In these modes, by the time GDB
516 processes a breakpoint event, the breakpoint may already be
517 done from the target, so GDB needs to be able to tell whether
518 it should ignore the event and whether it should adjust the PC.
519 See adjust_pc_after_break. */
520 virtual bool stopped_by_sw_breakpoint ()
521 TARGET_DEFAULT_RETURN (false);
522 /* Returns true if the above method is supported. */
523 virtual bool supports_stopped_by_sw_breakpoint ()
524 TARGET_DEFAULT_RETURN (false);
525
526 /* Returns true if the target stopped for a hardware breakpoint.
527 Likewise, if the target supports hardware breakpoints, this
528 method is necessary for correct background execution / non-stop
529 mode operation. Even though hardware breakpoints do not
530 require PC adjustment, GDB needs to be able to tell whether the
531 hardware breakpoint event is a delayed event for a breakpoint
532 that is already gone and should thus be ignored. */
533 virtual bool stopped_by_hw_breakpoint ()
534 TARGET_DEFAULT_RETURN (false);
535 /* Returns true if the above method is supported. */
536 virtual bool supports_stopped_by_hw_breakpoint ()
537 TARGET_DEFAULT_RETURN (false);
538
539 virtual int can_use_hw_breakpoint (enum bptype, int, int)
540 TARGET_DEFAULT_RETURN (0);
541 virtual int ranged_break_num_registers ()
542 TARGET_DEFAULT_RETURN (-1);
543 virtual int insert_hw_breakpoint (struct gdbarch *,
544 struct bp_target_info *)
545 TARGET_DEFAULT_RETURN (-1);
546 virtual int remove_hw_breakpoint (struct gdbarch *,
547 struct bp_target_info *)
548 TARGET_DEFAULT_RETURN (-1);
549
550 /* Documentation of what the two routines below are expected to do is
551 provided with the corresponding target_* macros. */
552 virtual int remove_watchpoint (CORE_ADDR, int,
553 enum target_hw_bp_type, struct expression *)
554 TARGET_DEFAULT_RETURN (-1);
555 virtual int insert_watchpoint (CORE_ADDR, int,
556 enum target_hw_bp_type, struct expression *)
557 TARGET_DEFAULT_RETURN (-1);
558
559 virtual int insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
560 enum target_hw_bp_type)
561 TARGET_DEFAULT_RETURN (1);
562 virtual int remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
563 enum target_hw_bp_type)
564 TARGET_DEFAULT_RETURN (1);
565 virtual bool stopped_by_watchpoint ()
566 TARGET_DEFAULT_RETURN (false);
567 virtual bool have_steppable_watchpoint ()
568 TARGET_DEFAULT_RETURN (false);
569 virtual bool stopped_data_address (CORE_ADDR *)
570 TARGET_DEFAULT_RETURN (false);
571 virtual bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int)
572 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
573
574 /* Documentation of this routine is provided with the corresponding
575 target_* macro. */
576 virtual int region_ok_for_hw_watchpoint (CORE_ADDR, int)
577 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
578
579 virtual bool can_accel_watchpoint_condition (CORE_ADDR, int, int,
580 struct expression *)
581 TARGET_DEFAULT_RETURN (false);
582 virtual int masked_watch_num_registers (CORE_ADDR, CORE_ADDR)
583 TARGET_DEFAULT_RETURN (-1);
584
585 /* Return 1 for sure target can do single step. Return -1 for
586 unknown. Return 0 for target can't do. */
587 virtual int can_do_single_step ()
588 TARGET_DEFAULT_RETURN (-1);
589
590 virtual bool supports_terminal_ours ()
591 TARGET_DEFAULT_RETURN (false);
592 virtual void terminal_init ()
593 TARGET_DEFAULT_IGNORE ();
594 virtual void terminal_inferior ()
595 TARGET_DEFAULT_IGNORE ();
596 virtual void terminal_save_inferior ()
597 TARGET_DEFAULT_IGNORE ();
598 virtual void terminal_ours_for_output ()
599 TARGET_DEFAULT_IGNORE ();
600 virtual void terminal_ours ()
601 TARGET_DEFAULT_IGNORE ();
602 virtual void terminal_info (const char *, int)
603 TARGET_DEFAULT_FUNC (default_terminal_info);
604 virtual void kill ()
605 TARGET_DEFAULT_NORETURN (noprocess ());
606 virtual void load (const char *, int)
607 TARGET_DEFAULT_NORETURN (tcomplain ());
608 /* Start an inferior process and set inferior_ptid to its pid.
609 EXEC_FILE is the file to run.
610 ALLARGS is a string containing the arguments to the program.
611 ENV is the environment vector to pass. Errors reported with error().
612 On VxWorks and various standalone systems, we ignore exec_file. */
613 virtual bool can_create_inferior ();
614 virtual void create_inferior (const char *, const std::string &,
615 char **, int);
616 virtual void post_startup_inferior (ptid_t)
617 TARGET_DEFAULT_IGNORE ();
618 virtual int insert_fork_catchpoint (int)
619 TARGET_DEFAULT_RETURN (1);
620 virtual int remove_fork_catchpoint (int)
621 TARGET_DEFAULT_RETURN (1);
622 virtual int insert_vfork_catchpoint (int)
623 TARGET_DEFAULT_RETURN (1);
624 virtual int remove_vfork_catchpoint (int)
625 TARGET_DEFAULT_RETURN (1);
626 virtual bool follow_fork (bool, bool)
627 TARGET_DEFAULT_FUNC (default_follow_fork);
628 virtual int insert_exec_catchpoint (int)
629 TARGET_DEFAULT_RETURN (1);
630 virtual int remove_exec_catchpoint (int)
631 TARGET_DEFAULT_RETURN (1);
632 virtual void follow_exec (struct inferior *, const char *)
633 TARGET_DEFAULT_IGNORE ();
634 virtual int set_syscall_catchpoint (int, bool, int,
635 gdb::array_view<const int>)
636 TARGET_DEFAULT_RETURN (1);
637 virtual void mourn_inferior ()
638 TARGET_DEFAULT_FUNC (default_mourn_inferior);
639
640 /* Note that can_run is special and can be invoked on an unpushed
641 target. Targets defining this method must also define
642 to_can_async_p and to_supports_non_stop. */
643 virtual bool can_run ();
644
645 /* Documentation of this routine is provided with the corresponding
646 target_* macro. */
647 virtual void pass_signals (gdb::array_view<const unsigned char> TARGET_DEBUG_PRINTER (target_debug_print_signals))
648 TARGET_DEFAULT_IGNORE ();
649
650 /* Documentation of this routine is provided with the
651 corresponding target_* function. */
652 virtual void program_signals (gdb::array_view<const unsigned char> TARGET_DEBUG_PRINTER (target_debug_print_signals))
653 TARGET_DEFAULT_IGNORE ();
654
655 virtual bool thread_alive (ptid_t ptid)
656 TARGET_DEFAULT_RETURN (false);
657 virtual void update_thread_list ()
658 TARGET_DEFAULT_IGNORE ();
659 virtual std::string pid_to_str (ptid_t)
660 TARGET_DEFAULT_FUNC (default_pid_to_str);
661 virtual const char *extra_thread_info (thread_info *)
662 TARGET_DEFAULT_RETURN (NULL);
663 virtual const char *thread_name (thread_info *)
664 TARGET_DEFAULT_RETURN (NULL);
665 virtual thread_info *thread_handle_to_thread_info (const gdb_byte *,
666 int,
667 inferior *inf)
668 TARGET_DEFAULT_RETURN (NULL);
669 /* See target_thread_info_to_thread_handle. */
670 virtual gdb::byte_vector thread_info_to_thread_handle (struct thread_info *)
671 TARGET_DEFAULT_RETURN (gdb::byte_vector ());
672 virtual void stop (ptid_t)
673 TARGET_DEFAULT_IGNORE ();
674 virtual void interrupt ()
675 TARGET_DEFAULT_IGNORE ();
676 virtual void pass_ctrlc ()
677 TARGET_DEFAULT_FUNC (default_target_pass_ctrlc);
678 virtual void rcmd (const char *command, struct ui_file *output)
679 TARGET_DEFAULT_FUNC (default_rcmd);
680 virtual char *pid_to_exec_file (int pid)
681 TARGET_DEFAULT_RETURN (NULL);
682 virtual void log_command (const char *)
683 TARGET_DEFAULT_IGNORE ();
684 virtual struct target_section_table *get_section_table ()
685 TARGET_DEFAULT_RETURN (NULL);
686
687 /* Provide default values for all "must have" methods. */
688 virtual bool has_all_memory () { return false; }
689 virtual bool has_memory () { return false; }
690 virtual bool has_stack () { return false; }
691 virtual bool has_registers () { return false; }
692 virtual bool has_execution (inferior *inf) { return false; }
693
694 /* Control thread execution. */
695 virtual thread_control_capabilities get_thread_control_capabilities ()
696 TARGET_DEFAULT_RETURN (tc_none);
697 virtual bool attach_no_wait ()
698 TARGET_DEFAULT_RETURN (0);
699 /* This method must be implemented in some situations. See the
700 comment on 'can_run'. */
701 virtual bool can_async_p ()
702 TARGET_DEFAULT_RETURN (false);
703 virtual bool is_async_p ()
704 TARGET_DEFAULT_RETURN (false);
705 virtual void async (int)
706 TARGET_DEFAULT_NORETURN (tcomplain ());
707 virtual int async_wait_fd ()
708 TARGET_DEFAULT_NORETURN (noprocess ());
709 virtual void thread_events (int)
710 TARGET_DEFAULT_IGNORE ();
711 /* This method must be implemented in some situations. See the
712 comment on 'can_run'. */
713 virtual bool supports_non_stop ()
714 TARGET_DEFAULT_RETURN (false);
715 /* Return true if the target operates in non-stop mode even with
716 "set non-stop off". */
717 virtual bool always_non_stop_p ()
718 TARGET_DEFAULT_RETURN (false);
719 /* find_memory_regions support method for gcore */
720 virtual int find_memory_regions (find_memory_region_ftype func, void *data)
721 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
722 /* make_corefile_notes support method for gcore */
723 virtual char *make_corefile_notes (bfd *, int *)
724 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
725 /* get_bookmark support method for bookmarks */
726 virtual gdb_byte *get_bookmark (const char *, int)
727 TARGET_DEFAULT_NORETURN (tcomplain ());
728 /* goto_bookmark support method for bookmarks */
729 virtual void goto_bookmark (const gdb_byte *, int)
730 TARGET_DEFAULT_NORETURN (tcomplain ());
731 /* Return the thread-local address at OFFSET in the
732 thread-local storage for the thread PTID and the shared library
733 or executable file given by LOAD_MODULE_ADDR. If that block of
734 thread-local storage hasn't been allocated yet, this function
735 may throw an error. LOAD_MODULE_ADDR may be zero for statically
736 linked multithreaded inferiors. */
737 virtual CORE_ADDR get_thread_local_address (ptid_t ptid,
738 CORE_ADDR load_module_addr,
739 CORE_ADDR offset)
740 TARGET_DEFAULT_NORETURN (generic_tls_error ());
741
742 /* Request that OPS transfer up to LEN addressable units of the target's
743 OBJECT. When reading from a memory object, the size of an addressable
744 unit is architecture dependent and can be found using
745 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is
746 1 byte long. The OFFSET, for a seekable object, specifies the
747 starting point. The ANNEX can be used to provide additional
748 data-specific information to the target.
749
750 Return the transferred status, error or OK (an
751 'enum target_xfer_status' value). Save the number of addressable units
752 actually transferred in *XFERED_LEN if transfer is successful
753 (TARGET_XFER_OK) or the number unavailable units if the requested
754 data is unavailable (TARGET_XFER_UNAVAILABLE). *XFERED_LEN
755 smaller than LEN does not indicate the end of the object, only
756 the end of the transfer; higher level code should continue
757 transferring if desired. This is handled in target.c.
758
759 The interface does not support a "retry" mechanism. Instead it
760 assumes that at least one addressable unit will be transfered on each
761 successful call.
762
763 NOTE: cagney/2003-10-17: The current interface can lead to
764 fragmented transfers. Lower target levels should not implement
765 hacks, such as enlarging the transfer, in an attempt to
766 compensate for this. Instead, the target stack should be
767 extended so that it implements supply/collect methods and a
768 look-aside object cache. With that available, the lowest
769 target can safely and freely "push" data up the stack.
770
771 See target_read and target_write for more information. One,
772 and only one, of readbuf or writebuf must be non-NULL. */
773
774 virtual enum target_xfer_status xfer_partial (enum target_object object,
775 const char *annex,
776 gdb_byte *readbuf,
777 const gdb_byte *writebuf,
778 ULONGEST offset, ULONGEST len,
779 ULONGEST *xfered_len)
780 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
781
782 /* Return the limit on the size of any single memory transfer
783 for the target. */
784
785 virtual ULONGEST get_memory_xfer_limit ()
786 TARGET_DEFAULT_RETURN (ULONGEST_MAX);
787
788 /* Returns the memory map for the target. A return value of NULL
789 means that no memory map is available. If a memory address
790 does not fall within any returned regions, it's assumed to be
791 RAM. The returned memory regions should not overlap.
792
793 The order of regions does not matter; target_memory_map will
794 sort regions by starting address. For that reason, this
795 function should not be called directly except via
796 target_memory_map.
797
798 This method should not cache data; if the memory map could
799 change unexpectedly, it should be invalidated, and higher
800 layers will re-fetch it. */
801 virtual std::vector<mem_region> memory_map ()
802 TARGET_DEFAULT_RETURN (std::vector<mem_region> ());
803
804 /* Erases the region of flash memory starting at ADDRESS, of
805 length LENGTH.
806
807 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
808 on flash block boundaries, as reported by 'to_memory_map'. */
809 virtual void flash_erase (ULONGEST address, LONGEST length)
810 TARGET_DEFAULT_NORETURN (tcomplain ());
811
812 /* Finishes a flash memory write sequence. After this operation
813 all flash memory should be available for writing and the result
814 of reading from areas written by 'to_flash_write' should be
815 equal to what was written. */
816 virtual void flash_done ()
817 TARGET_DEFAULT_NORETURN (tcomplain ());
818
819 /* Describe the architecture-specific features of this target. If
820 OPS doesn't have a description, this should delegate to the
821 "beneath" target. Returns the description found, or NULL if no
822 description was available. */
823 virtual const struct target_desc *read_description ()
824 TARGET_DEFAULT_RETURN (NULL);
825
826 /* Build the PTID of the thread on which a given task is running,
827 based on LWP and THREAD. These values are extracted from the
828 task Private_Data section of the Ada Task Control Block, and
829 their interpretation depends on the target. */
830 virtual ptid_t get_ada_task_ptid (long lwp, long thread)
831 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
832
833 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
834 Return 0 if *READPTR is already at the end of the buffer.
835 Return -1 if there is insufficient buffer for a whole entry.
836 Return 1 if an entry was read into *TYPEP and *VALP. */
837 virtual int auxv_parse (gdb_byte **readptr,
838 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
839 TARGET_DEFAULT_FUNC (default_auxv_parse);
840
841 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
842 sequence of bytes in PATTERN with length PATTERN_LEN.
843
844 The result is 1 if found, 0 if not found, and -1 if there was an error
845 requiring halting of the search (e.g. memory read error).
846 If the pattern is found the address is recorded in FOUND_ADDRP. */
847 virtual int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
848 const gdb_byte *pattern, ULONGEST pattern_len,
849 CORE_ADDR *found_addrp)
850 TARGET_DEFAULT_FUNC (default_search_memory);
851
852 /* Can target execute in reverse? */
853 virtual bool can_execute_reverse ()
854 TARGET_DEFAULT_RETURN (false);
855
856 /* The direction the target is currently executing. Must be
857 implemented on targets that support reverse execution and async
858 mode. The default simply returns forward execution. */
859 virtual enum exec_direction_kind execution_direction ()
860 TARGET_DEFAULT_FUNC (default_execution_direction);
861
862 /* Does this target support debugging multiple processes
863 simultaneously? */
864 virtual bool supports_multi_process ()
865 TARGET_DEFAULT_RETURN (false);
866
867 /* Does this target support enabling and disabling tracepoints while a trace
868 experiment is running? */
869 virtual bool supports_enable_disable_tracepoint ()
870 TARGET_DEFAULT_RETURN (false);
871
872 /* Does this target support disabling address space randomization? */
873 virtual bool supports_disable_randomization ()
874 TARGET_DEFAULT_FUNC (find_default_supports_disable_randomization);
875
876 /* Does this target support the tracenz bytecode for string collection? */
877 virtual bool supports_string_tracing ()
878 TARGET_DEFAULT_RETURN (false);
879
880 /* Does this target support evaluation of breakpoint conditions on its
881 end? */
882 virtual bool supports_evaluation_of_breakpoint_conditions ()
883 TARGET_DEFAULT_RETURN (false);
884
885 /* Does this target support evaluation of breakpoint commands on its
886 end? */
887 virtual bool can_run_breakpoint_commands ()
888 TARGET_DEFAULT_RETURN (false);
889
890 /* Determine current architecture of thread PTID.
891
892 The target is supposed to determine the architecture of the code where
893 the target is currently stopped at. The architecture information is
894 used to perform decr_pc_after_break adjustment, and also to determine
895 the frame architecture of the innermost frame. ptrace operations need to
896 operate according to target_gdbarch (). */
897 virtual struct gdbarch *thread_architecture (ptid_t)
898 TARGET_DEFAULT_RETURN (NULL);
899
900 /* Determine current address space of thread PTID. */
901 virtual struct address_space *thread_address_space (ptid_t)
902 TARGET_DEFAULT_RETURN (NULL);
903
904 /* Target file operations. */
905
906 /* Return nonzero if the filesystem seen by the current inferior
907 is the local filesystem, zero otherwise. */
908 virtual bool filesystem_is_local ()
909 TARGET_DEFAULT_RETURN (true);
910
911 /* Open FILENAME on the target, in the filesystem as seen by INF,
912 using FLAGS and MODE. If INF is NULL, use the filesystem seen
913 by the debugger (GDB or, for remote targets, the remote stub).
914 If WARN_IF_SLOW is nonzero, print a warning message if the file
915 is being accessed over a link that may be slow. Return a
916 target file descriptor, or -1 if an error occurs (and set
917 *TARGET_ERRNO). */
918 virtual int fileio_open (struct inferior *inf, const char *filename,
919 int flags, int mode, int warn_if_slow,
920 int *target_errno);
921
922 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
923 Return the number of bytes written, or -1 if an error occurs
924 (and set *TARGET_ERRNO). */
925 virtual int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
926 ULONGEST offset, int *target_errno);
927
928 /* Read up to LEN bytes FD on the target into READ_BUF.
929 Return the number of bytes read, or -1 if an error occurs
930 (and set *TARGET_ERRNO). */
931 virtual int fileio_pread (int fd, gdb_byte *read_buf, int len,
932 ULONGEST offset, int *target_errno);
933
934 /* Get information about the file opened as FD and put it in
935 SB. Return 0 on success, or -1 if an error occurs (and set
936 *TARGET_ERRNO). */
937 virtual int fileio_fstat (int fd, struct stat *sb, int *target_errno);
938
939 /* Close FD on the target. Return 0, or -1 if an error occurs
940 (and set *TARGET_ERRNO). */
941 virtual int fileio_close (int fd, int *target_errno);
942
943 /* Unlink FILENAME on the target, in the filesystem as seen by
944 INF. If INF is NULL, use the filesystem seen by the debugger
945 (GDB or, for remote targets, the remote stub). Return 0, or
946 -1 if an error occurs (and set *TARGET_ERRNO). */
947 virtual int fileio_unlink (struct inferior *inf,
948 const char *filename,
949 int *target_errno);
950
951 /* Read value of symbolic link FILENAME on the target, in the
952 filesystem as seen by INF. If INF is NULL, use the filesystem
953 seen by the debugger (GDB or, for remote targets, the remote
954 stub). Return a string, or an empty optional if an error
955 occurs (and set *TARGET_ERRNO). */
956 virtual gdb::optional<std::string> fileio_readlink (struct inferior *inf,
957 const char *filename,
958 int *target_errno);
959
960 /* Implement the "info proc" command. Returns true if the target
961 actually implemented the command, false otherwise. */
962 virtual bool info_proc (const char *, enum info_proc_what);
963
964 /* Tracepoint-related operations. */
965
966 /* Prepare the target for a tracing run. */
967 virtual void trace_init ()
968 TARGET_DEFAULT_NORETURN (tcomplain ());
969
970 /* Send full details of a tracepoint location to the target. */
971 virtual void download_tracepoint (struct bp_location *location)
972 TARGET_DEFAULT_NORETURN (tcomplain ());
973
974 /* Is the target able to download tracepoint locations in current
975 state? */
976 virtual bool can_download_tracepoint ()
977 TARGET_DEFAULT_RETURN (false);
978
979 /* Send full details of a trace state variable to the target. */
980 virtual void download_trace_state_variable (const trace_state_variable &tsv)
981 TARGET_DEFAULT_NORETURN (tcomplain ());
982
983 /* Enable a tracepoint on the target. */
984 virtual void enable_tracepoint (struct bp_location *location)
985 TARGET_DEFAULT_NORETURN (tcomplain ());
986
987 /* Disable a tracepoint on the target. */
988 virtual void disable_tracepoint (struct bp_location *location)
989 TARGET_DEFAULT_NORETURN (tcomplain ());
990
991 /* Inform the target info of memory regions that are readonly
992 (such as text sections), and so it should return data from
993 those rather than look in the trace buffer. */
994 virtual void trace_set_readonly_regions ()
995 TARGET_DEFAULT_NORETURN (tcomplain ());
996
997 /* Start a trace run. */
998 virtual void trace_start ()
999 TARGET_DEFAULT_NORETURN (tcomplain ());
1000
1001 /* Get the current status of a tracing run. */
1002 virtual int get_trace_status (struct trace_status *ts)
1003 TARGET_DEFAULT_RETURN (-1);
1004
1005 virtual void get_tracepoint_status (struct breakpoint *tp,
1006 struct uploaded_tp *utp)
1007 TARGET_DEFAULT_NORETURN (tcomplain ());
1008
1009 /* Stop a trace run. */
1010 virtual void trace_stop ()
1011 TARGET_DEFAULT_NORETURN (tcomplain ());
1012
1013 /* Ask the target to find a trace frame of the given type TYPE,
1014 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
1015 number of the trace frame, and also the tracepoint number at
1016 TPP. If no trace frame matches, return -1. May throw if the
1017 operation fails. */
1018 virtual int trace_find (enum trace_find_type type, int num,
1019 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
1020 TARGET_DEFAULT_RETURN (-1);
1021
1022 /* Get the value of the trace state variable number TSV, returning
1023 1 if the value is known and writing the value itself into the
1024 location pointed to by VAL, else returning 0. */
1025 virtual bool get_trace_state_variable_value (int tsv, LONGEST *val)
1026 TARGET_DEFAULT_RETURN (false);
1027
1028 virtual int save_trace_data (const char *filename)
1029 TARGET_DEFAULT_NORETURN (tcomplain ());
1030
1031 virtual int upload_tracepoints (struct uploaded_tp **utpp)
1032 TARGET_DEFAULT_RETURN (0);
1033
1034 virtual int upload_trace_state_variables (struct uploaded_tsv **utsvp)
1035 TARGET_DEFAULT_RETURN (0);
1036
1037 virtual LONGEST get_raw_trace_data (gdb_byte *buf,
1038 ULONGEST offset, LONGEST len)
1039 TARGET_DEFAULT_NORETURN (tcomplain ());
1040
1041 /* Get the minimum length of instruction on which a fast tracepoint
1042 may be set on the target. If this operation is unsupported,
1043 return -1. If for some reason the minimum length cannot be
1044 determined, return 0. */
1045 virtual int get_min_fast_tracepoint_insn_len ()
1046 TARGET_DEFAULT_RETURN (-1);
1047
1048 /* Set the target's tracing behavior in response to unexpected
1049 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
1050 virtual void set_disconnected_tracing (int val)
1051 TARGET_DEFAULT_IGNORE ();
1052 virtual void set_circular_trace_buffer (int val)
1053 TARGET_DEFAULT_IGNORE ();
1054 /* Set the size of trace buffer in the target. */
1055 virtual void set_trace_buffer_size (LONGEST val)
1056 TARGET_DEFAULT_IGNORE ();
1057
1058 /* Add/change textual notes about the trace run, returning 1 if
1059 successful, 0 otherwise. */
1060 virtual bool set_trace_notes (const char *user, const char *notes,
1061 const char *stopnotes)
1062 TARGET_DEFAULT_RETURN (false);
1063
1064 /* Return the processor core that thread PTID was last seen on.
1065 This information is updated only when:
1066 - update_thread_list is called
1067 - thread stops
1068 If the core cannot be determined -- either for the specified
1069 thread, or right now, or in this debug session, or for this
1070 target -- return -1. */
1071 virtual int core_of_thread (ptid_t ptid)
1072 TARGET_DEFAULT_RETURN (-1);
1073
1074 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
1075 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
1076 a match, 0 if there's a mismatch, and -1 if an error is
1077 encountered while reading memory. */
1078 virtual int verify_memory (const gdb_byte *data,
1079 CORE_ADDR memaddr, ULONGEST size)
1080 TARGET_DEFAULT_FUNC (default_verify_memory);
1081
1082 /* Return the address of the start of the Thread Information Block
1083 a Windows OS specific feature. */
1084 virtual bool get_tib_address (ptid_t ptid, CORE_ADDR *addr)
1085 TARGET_DEFAULT_NORETURN (tcomplain ());
1086
1087 /* Send the new settings of write permission variables. */
1088 virtual void set_permissions ()
1089 TARGET_DEFAULT_IGNORE ();
1090
1091 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
1092 with its details. Return true on success, false on failure. */
1093 virtual bool static_tracepoint_marker_at (CORE_ADDR,
1094 static_tracepoint_marker *marker)
1095 TARGET_DEFAULT_RETURN (false);
1096
1097 /* Return a vector of all tracepoints markers string id ID, or all
1098 markers if ID is NULL. */
1099 virtual std::vector<static_tracepoint_marker>
1100 static_tracepoint_markers_by_strid (const char *id)
1101 TARGET_DEFAULT_NORETURN (tcomplain ());
1102
1103 /* Return a traceframe info object describing the current
1104 traceframe's contents. This method should not cache data;
1105 higher layers take care of caching, invalidating, and
1106 re-fetching when necessary. */
1107 virtual traceframe_info_up traceframe_info ()
1108 TARGET_DEFAULT_NORETURN (tcomplain ());
1109
1110 /* Ask the target to use or not to use agent according to USE.
1111 Return true if successful, false otherwise. */
1112 virtual bool use_agent (bool use)
1113 TARGET_DEFAULT_NORETURN (tcomplain ());
1114
1115 /* Is the target able to use agent in current state? */
1116 virtual bool can_use_agent ()
1117 TARGET_DEFAULT_RETURN (false);
1118
1119 /* Enable branch tracing for PTID using CONF configuration.
1120 Return a branch trace target information struct for reading and for
1121 disabling branch trace. */
1122 virtual struct btrace_target_info *enable_btrace (ptid_t ptid,
1123 const struct btrace_config *conf)
1124 TARGET_DEFAULT_NORETURN (tcomplain ());
1125
1126 /* Disable branch tracing and deallocate TINFO. */
1127 virtual void disable_btrace (struct btrace_target_info *tinfo)
1128 TARGET_DEFAULT_NORETURN (tcomplain ());
1129
1130 /* Disable branch tracing and deallocate TINFO. This function is similar
1131 to to_disable_btrace, except that it is called during teardown and is
1132 only allowed to perform actions that are safe. A counter-example would
1133 be attempting to talk to a remote target. */
1134 virtual void teardown_btrace (struct btrace_target_info *tinfo)
1135 TARGET_DEFAULT_NORETURN (tcomplain ());
1136
1137 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1138 DATA is cleared before new trace is added. */
1139 virtual enum btrace_error read_btrace (struct btrace_data *data,
1140 struct btrace_target_info *btinfo,
1141 enum btrace_read_type type)
1142 TARGET_DEFAULT_NORETURN (tcomplain ());
1143
1144 /* Get the branch trace configuration. */
1145 virtual const struct btrace_config *btrace_conf (const struct btrace_target_info *)
1146 TARGET_DEFAULT_RETURN (NULL);
1147
1148 /* Current recording method. */
1149 virtual enum record_method record_method (ptid_t ptid)
1150 TARGET_DEFAULT_RETURN (RECORD_METHOD_NONE);
1151
1152 /* Stop trace recording. */
1153 virtual void stop_recording ()
1154 TARGET_DEFAULT_IGNORE ();
1155
1156 /* Print information about the recording. */
1157 virtual void info_record ()
1158 TARGET_DEFAULT_IGNORE ();
1159
1160 /* Save the recorded execution trace into a file. */
1161 virtual void save_record (const char *filename)
1162 TARGET_DEFAULT_NORETURN (tcomplain ());
1163
1164 /* Delete the recorded execution trace from the current position
1165 onwards. */
1166 virtual bool supports_delete_record ()
1167 TARGET_DEFAULT_RETURN (false);
1168 virtual void delete_record ()
1169 TARGET_DEFAULT_NORETURN (tcomplain ());
1170
1171 /* Query if the record target is currently replaying PTID. */
1172 virtual bool record_is_replaying (ptid_t ptid)
1173 TARGET_DEFAULT_RETURN (false);
1174
1175 /* Query if the record target will replay PTID if it were resumed in
1176 execution direction DIR. */
1177 virtual bool record_will_replay (ptid_t ptid, int dir)
1178 TARGET_DEFAULT_RETURN (false);
1179
1180 /* Stop replaying. */
1181 virtual void record_stop_replaying ()
1182 TARGET_DEFAULT_IGNORE ();
1183
1184 /* Go to the begin of the execution trace. */
1185 virtual void goto_record_begin ()
1186 TARGET_DEFAULT_NORETURN (tcomplain ());
1187
1188 /* Go to the end of the execution trace. */
1189 virtual void goto_record_end ()
1190 TARGET_DEFAULT_NORETURN (tcomplain ());
1191
1192 /* Go to a specific location in the recorded execution trace. */
1193 virtual void goto_record (ULONGEST insn)
1194 TARGET_DEFAULT_NORETURN (tcomplain ());
1195
1196 /* Disassemble SIZE instructions in the recorded execution trace from
1197 the current position.
1198 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1199 disassemble SIZE succeeding instructions. */
1200 virtual void insn_history (int size, gdb_disassembly_flags flags)
1201 TARGET_DEFAULT_NORETURN (tcomplain ());
1202
1203 /* Disassemble SIZE instructions in the recorded execution trace around
1204 FROM.
1205 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1206 disassemble SIZE instructions after FROM. */
1207 virtual void insn_history_from (ULONGEST from, int size,
1208 gdb_disassembly_flags flags)
1209 TARGET_DEFAULT_NORETURN (tcomplain ());
1210
1211 /* Disassemble a section of the recorded execution trace from instruction
1212 BEGIN (inclusive) to instruction END (inclusive). */
1213 virtual void insn_history_range (ULONGEST begin, ULONGEST end,
1214 gdb_disassembly_flags flags)
1215 TARGET_DEFAULT_NORETURN (tcomplain ());
1216
1217 /* Print a function trace of the recorded execution trace.
1218 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1219 succeeding functions. */
1220 virtual void call_history (int size, record_print_flags flags)
1221 TARGET_DEFAULT_NORETURN (tcomplain ());
1222
1223 /* Print a function trace of the recorded execution trace starting
1224 at function FROM.
1225 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1226 SIZE functions after FROM. */
1227 virtual void call_history_from (ULONGEST begin, int size, record_print_flags flags)
1228 TARGET_DEFAULT_NORETURN (tcomplain ());
1229
1230 /* Print a function trace of an execution trace section from function BEGIN
1231 (inclusive) to function END (inclusive). */
1232 virtual void call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
1233 TARGET_DEFAULT_NORETURN (tcomplain ());
1234
1235 /* True if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1236 non-empty annex. */
1237 virtual bool augmented_libraries_svr4_read ()
1238 TARGET_DEFAULT_RETURN (false);
1239
1240 /* Those unwinders are tried before any other arch unwinders. If
1241 SELF doesn't have unwinders, it should delegate to the
1242 "beneath" target. */
1243 virtual const struct frame_unwind *get_unwinder ()
1244 TARGET_DEFAULT_RETURN (NULL);
1245
1246 virtual const struct frame_unwind *get_tailcall_unwinder ()
1247 TARGET_DEFAULT_RETURN (NULL);
1248
1249 /* Prepare to generate a core file. */
1250 virtual void prepare_to_generate_core ()
1251 TARGET_DEFAULT_IGNORE ();
1252
1253 /* Cleanup after generating a core file. */
1254 virtual void done_generating_core ()
1255 TARGET_DEFAULT_IGNORE ();
1256
1257 virtual displaced_step_prepare_status displaced_step_prepare (thread_info *thread)
1258 TARGET_DEFAULT_FUNC (default_displaced_step_prepare);
1259
1260 virtual displaced_step_finish_status displaced_step_finish (thread_info *thread, gdb_signal sig)
1261 TARGET_DEFAULT_FUNC (default_displaced_step_finish);
1262 };
1263
1264 /* Deleter for std::unique_ptr. See comments in
1265 target_ops::~target_ops and target_ops::close about heap-allocated
1266 targets. */
1267 struct target_ops_deleter
1268 {
1269 void operator() (target_ops *target)
1270 {
1271 target->close ();
1272 }
1273 };
1274
1275 /* A unique pointer for target_ops. */
1276 typedef std::unique_ptr<target_ops, target_ops_deleter> target_ops_up;
1277
1278 /* Decref a target and close if, if there are no references left. */
1279 extern void decref_target (target_ops *t);
1280
1281 /* A policy class to interface gdb::ref_ptr with target_ops. */
1282
1283 struct target_ops_ref_policy
1284 {
1285 static void incref (target_ops *t)
1286 {
1287 t->incref ();
1288 }
1289
1290 static void decref (target_ops *t)
1291 {
1292 decref_target (t);
1293 }
1294 };
1295
1296 /* A gdb::ref_ptr pointer to a target_ops. */
1297 typedef gdb::ref_ptr<target_ops, target_ops_ref_policy> target_ops_ref;
1298
1299 /* Native target backends call this once at initialization time to
1300 inform the core about which is the target that can respond to "run"
1301 or "attach". Note: native targets are always singletons. */
1302 extern void set_native_target (target_ops *target);
1303
1304 /* Get the registered native target, if there's one. Otherwise return
1305 NULL. */
1306 extern target_ops *get_native_target ();
1307
1308 /* Type that manages a target stack. See description of target stacks
1309 and strata at the top of the file. */
1310
1311 class target_stack
1312 {
1313 public:
1314 target_stack () = default;
1315 DISABLE_COPY_AND_ASSIGN (target_stack);
1316
1317 /* Push a new target into the stack of the existing target
1318 accessors, possibly superseding some existing accessor. */
1319 void push (target_ops *t);
1320
1321 /* Remove a target from the stack, wherever it may be. Return true
1322 if it was removed, false otherwise. */
1323 bool unpush (target_ops *t);
1324
1325 /* Returns true if T is pushed on the target stack. */
1326 bool is_pushed (target_ops *t) const
1327 { return at (t->stratum ()) == t; }
1328
1329 /* Return the target at STRATUM. */
1330 target_ops *at (strata stratum) const { return m_stack[stratum]; }
1331
1332 /* Return the target at the top of the stack. */
1333 target_ops *top () const { return at (m_top); }
1334
1335 /* Find the next target down the stack from the specified target. */
1336 target_ops *find_beneath (const target_ops *t) const;
1337
1338 private:
1339 /* The stratum of the top target. */
1340 enum strata m_top {};
1341
1342 /* The stack, represented as an array, with one slot per stratum.
1343 If no target is pushed at some stratum, the corresponding slot is
1344 null. */
1345 target_ops *m_stack[(int) debug_stratum + 1] {};
1346 };
1347
1348 /* The ops structure for our "current" target process. This should
1349 never be NULL. If there is no target, it points to the dummy_target. */
1350
1351 extern target_ops *current_top_target ();
1352
1353 /* Return the dummy target. */
1354 extern target_ops *get_dummy_target ();
1355
1356 /* Define easy words for doing these operations on our current target. */
1357
1358 #define target_shortname (current_top_target ()->shortname ())
1359 #define target_longname (current_top_target ()->longname ())
1360
1361 /* Does whatever cleanup is required for a target that we are no
1362 longer going to be calling. This routine is automatically always
1363 called after popping the target off the target stack - the target's
1364 own methods are no longer available through the target vector.
1365 Closing file descriptors and freeing all memory allocated memory are
1366 typical things it should do. */
1367
1368 void target_close (struct target_ops *targ);
1369
1370 /* Find the correct target to use for "attach". If a target on the
1371 current stack supports attaching, then it is returned. Otherwise,
1372 the default run target is returned. */
1373
1374 extern struct target_ops *find_attach_target (void);
1375
1376 /* Find the correct target to use for "run". If a target on the
1377 current stack supports creating a new inferior, then it is
1378 returned. Otherwise, the default run target is returned. */
1379
1380 extern struct target_ops *find_run_target (void);
1381
1382 /* Some targets don't generate traps when attaching to the inferior,
1383 or their target_attach implementation takes care of the waiting.
1384 These targets must set to_attach_no_wait. */
1385
1386 #define target_attach_no_wait() \
1387 (current_top_target ()->attach_no_wait ())
1388
1389 /* The target_attach operation places a process under debugger control,
1390 and stops the process.
1391
1392 This operation provides a target-specific hook that allows the
1393 necessary bookkeeping to be performed after an attach completes. */
1394 #define target_post_attach(pid) \
1395 (current_top_target ()->post_attach) (pid)
1396
1397 /* Display a message indicating we're about to detach from the current
1398 inferior process. */
1399
1400 extern void target_announce_detach (int from_tty);
1401
1402 /* Takes a program previously attached to and detaches it.
1403 The program may resume execution (some targets do, some don't) and will
1404 no longer stop on signals, etc. We better not have left any breakpoints
1405 in the program or it'll die when it hits one. FROM_TTY says whether to be
1406 verbose or not. */
1407
1408 extern void target_detach (inferior *inf, int from_tty);
1409
1410 /* Disconnect from the current target without resuming it (leaving it
1411 waiting for a debugger). */
1412
1413 extern void target_disconnect (const char *, int);
1414
1415 /* Resume execution (or prepare for execution) of a target thread,
1416 process or all processes. STEP says whether to hardware
1417 single-step or to run free; SIGGNAL is the signal to be given to
1418 the target, or GDB_SIGNAL_0 for no signal. The caller may not pass
1419 GDB_SIGNAL_DEFAULT. A specific PTID means `step/resume only this
1420 process id'. A wildcard PTID (all threads, or all threads of
1421 process) means `step/resume INFERIOR_PTID, and let other threads
1422 (for which the wildcard PTID matches) resume with their
1423 'thread->suspend.stop_signal' signal (usually GDB_SIGNAL_0) if it
1424 is in "pass" state, or with no signal if in "no pass" state.
1425
1426 In order to efficiently handle batches of resumption requests,
1427 targets may implement this method such that it records the
1428 resumption request, but defers the actual resumption to the
1429 target_commit_resume method implementation. See
1430 target_commit_resume below. */
1431 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1432
1433 /* Commit a series of resumption requests previously prepared with
1434 target_resume calls.
1435
1436 GDB always calls target_commit_resume after calling target_resume
1437 one or more times. A target may thus use this method in
1438 coordination with the target_resume method to batch target-side
1439 resumption requests. In that case, the target doesn't actually
1440 resume in its target_resume implementation. Instead, it prepares
1441 the resumption in target_resume, and defers the actual resumption
1442 to target_commit_resume. E.g., the remote target uses this to
1443 coalesce multiple resumption requests in a single vCont packet. */
1444 extern void target_commit_resume ();
1445
1446 /* Setup to defer target_commit_resume calls, and reactivate
1447 target_commit_resume on destruction, if it was previously
1448 active. */
1449 extern scoped_restore_tmpl<int> make_scoped_defer_target_commit_resume ();
1450
1451 /* For target_read_memory see target/target.h. */
1452
1453 /* The default target_ops::to_wait implementation. */
1454
1455 extern ptid_t default_target_wait (struct target_ops *ops,
1456 ptid_t ptid,
1457 struct target_waitstatus *status,
1458 int options);
1459
1460 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1461
1462 extern void target_fetch_registers (struct regcache *regcache, int regno);
1463
1464 /* Store at least register REGNO, or all regs if REGNO == -1.
1465 It can store as many registers as it wants to, so target_prepare_to_store
1466 must have been previously called. Calls error() if there are problems. */
1467
1468 extern void target_store_registers (struct regcache *regcache, int regs);
1469
1470 /* Get ready to modify the registers array. On machines which store
1471 individual registers, this doesn't need to do anything. On machines
1472 which store all the registers in one fell swoop, this makes sure
1473 that REGISTERS contains all the registers from the program being
1474 debugged. */
1475
1476 #define target_prepare_to_store(regcache) \
1477 (current_top_target ()->prepare_to_store) (regcache)
1478
1479 /* Determine current address space of thread PTID. */
1480
1481 struct address_space *target_thread_address_space (ptid_t);
1482
1483 /* Implement the "info proc" command. This returns one if the request
1484 was handled, and zero otherwise. It can also throw an exception if
1485 an error was encountered while attempting to handle the
1486 request. */
1487
1488 int target_info_proc (const char *, enum info_proc_what);
1489
1490 /* Returns true if this target can disable address space randomization. */
1491
1492 int target_supports_disable_randomization (void);
1493
1494 /* Returns true if this target can enable and disable tracepoints
1495 while a trace experiment is running. */
1496
1497 #define target_supports_enable_disable_tracepoint() \
1498 (current_top_target ()->supports_enable_disable_tracepoint) ()
1499
1500 #define target_supports_string_tracing() \
1501 (current_top_target ()->supports_string_tracing) ()
1502
1503 /* Returns true if this target can handle breakpoint conditions
1504 on its end. */
1505
1506 #define target_supports_evaluation_of_breakpoint_conditions() \
1507 (current_top_target ()->supports_evaluation_of_breakpoint_conditions) ()
1508
1509 /* Returns true if this target can handle breakpoint commands
1510 on its end. */
1511
1512 #define target_can_run_breakpoint_commands() \
1513 (current_top_target ()->can_run_breakpoint_commands) ()
1514
1515 extern int target_read_string (CORE_ADDR, gdb::unique_xmalloc_ptr<char> *,
1516 int, int *);
1517
1518 /* For target_read_memory see target/target.h. */
1519
1520 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1521 ssize_t len);
1522
1523 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1524
1525 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1526
1527 /* For target_write_memory see target/target.h. */
1528
1529 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1530 ssize_t len);
1531
1532 /* Fetches the target's memory map. If one is found it is sorted
1533 and returned, after some consistency checking. Otherwise, NULL
1534 is returned. */
1535 std::vector<mem_region> target_memory_map (void);
1536
1537 /* Erases all flash memory regions on the target. */
1538 void flash_erase_command (const char *cmd, int from_tty);
1539
1540 /* Erase the specified flash region. */
1541 void target_flash_erase (ULONGEST address, LONGEST length);
1542
1543 /* Finish a sequence of flash operations. */
1544 void target_flash_done (void);
1545
1546 /* Describes a request for a memory write operation. */
1547 struct memory_write_request
1548 {
1549 memory_write_request (ULONGEST begin_, ULONGEST end_,
1550 gdb_byte *data_ = nullptr, void *baton_ = nullptr)
1551 : begin (begin_), end (end_), data (data_), baton (baton_)
1552 {}
1553
1554 /* Begining address that must be written. */
1555 ULONGEST begin;
1556 /* Past-the-end address. */
1557 ULONGEST end;
1558 /* The data to write. */
1559 gdb_byte *data;
1560 /* A callback baton for progress reporting for this request. */
1561 void *baton;
1562 };
1563
1564 /* Enumeration specifying different flash preservation behaviour. */
1565 enum flash_preserve_mode
1566 {
1567 flash_preserve,
1568 flash_discard
1569 };
1570
1571 /* Write several memory blocks at once. This version can be more
1572 efficient than making several calls to target_write_memory, in
1573 particular because it can optimize accesses to flash memory.
1574
1575 Moreover, this is currently the only memory access function in gdb
1576 that supports writing to flash memory, and it should be used for
1577 all cases where access to flash memory is desirable.
1578
1579 REQUESTS is the vector of memory_write_request.
1580 PRESERVE_FLASH_P indicates what to do with blocks which must be
1581 erased, but not completely rewritten.
1582 PROGRESS_CB is a function that will be periodically called to provide
1583 feedback to user. It will be called with the baton corresponding
1584 to the request currently being written. It may also be called
1585 with a NULL baton, when preserved flash sectors are being rewritten.
1586
1587 The function returns 0 on success, and error otherwise. */
1588 int target_write_memory_blocks
1589 (const std::vector<memory_write_request> &requests,
1590 enum flash_preserve_mode preserve_flash_p,
1591 void (*progress_cb) (ULONGEST, void *));
1592
1593 /* Print a line about the current target. */
1594
1595 #define target_files_info() \
1596 (current_top_target ()->files_info) ()
1597
1598 /* Insert a breakpoint at address BP_TGT->placed_address in
1599 the target machine. Returns 0 for success, and returns non-zero or
1600 throws an error (with a detailed failure reason error code and
1601 message) otherwise. */
1602
1603 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1604 struct bp_target_info *bp_tgt);
1605
1606 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1607 machine. Result is 0 for success, non-zero for error. */
1608
1609 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1610 struct bp_target_info *bp_tgt,
1611 enum remove_bp_reason reason);
1612
1613 /* Return true if the target stack has a non-default
1614 "terminal_ours" method. */
1615
1616 extern bool target_supports_terminal_ours (void);
1617
1618 /* Kill the inferior process. Make it go away. */
1619
1620 extern void target_kill (void);
1621
1622 /* Load an executable file into the target process. This is expected
1623 to not only bring new code into the target process, but also to
1624 update GDB's symbol tables to match.
1625
1626 ARG contains command-line arguments, to be broken down with
1627 buildargv (). The first non-switch argument is the filename to
1628 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1629 0)), which is an offset to apply to the load addresses of FILE's
1630 sections. The target may define switches, or other non-switch
1631 arguments, as it pleases. */
1632
1633 extern void target_load (const char *arg, int from_tty);
1634
1635 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1636 notification of inferior events such as fork and vork immediately
1637 after the inferior is created. (This because of how gdb gets an
1638 inferior created via invoking a shell to do it. In such a scenario,
1639 if the shell init file has commands in it, the shell will fork and
1640 exec for each of those commands, and we will see each such fork
1641 event. Very bad.)
1642
1643 Such targets will supply an appropriate definition for this function. */
1644
1645 #define target_post_startup_inferior(ptid) \
1646 (current_top_target ()->post_startup_inferior) (ptid)
1647
1648 /* On some targets, we can catch an inferior fork or vfork event when
1649 it occurs. These functions insert/remove an already-created
1650 catchpoint for such events. They return 0 for success, 1 if the
1651 catchpoint type is not supported and -1 for failure. */
1652
1653 #define target_insert_fork_catchpoint(pid) \
1654 (current_top_target ()->insert_fork_catchpoint) (pid)
1655
1656 #define target_remove_fork_catchpoint(pid) \
1657 (current_top_target ()->remove_fork_catchpoint) (pid)
1658
1659 #define target_insert_vfork_catchpoint(pid) \
1660 (current_top_target ()->insert_vfork_catchpoint) (pid)
1661
1662 #define target_remove_vfork_catchpoint(pid) \
1663 (current_top_target ()->remove_vfork_catchpoint) (pid)
1664
1665 /* If the inferior forks or vforks, this function will be called at
1666 the next resume in order to perform any bookkeeping and fiddling
1667 necessary to continue debugging either the parent or child, as
1668 requested, and releasing the other. Information about the fork
1669 or vfork event is available via get_last_target_status ().
1670 This function returns true if the inferior should not be resumed
1671 (i.e. there is another event pending). */
1672
1673 bool target_follow_fork (bool follow_child, bool detach_fork);
1674
1675 /* Handle the target-specific bookkeeping required when the inferior
1676 makes an exec call. INF is the exec'd inferior. */
1677
1678 void target_follow_exec (struct inferior *inf, const char *execd_pathname);
1679
1680 /* On some targets, we can catch an inferior exec event when it
1681 occurs. These functions insert/remove an already-created
1682 catchpoint for such events. They return 0 for success, 1 if the
1683 catchpoint type is not supported and -1 for failure. */
1684
1685 #define target_insert_exec_catchpoint(pid) \
1686 (current_top_target ()->insert_exec_catchpoint) (pid)
1687
1688 #define target_remove_exec_catchpoint(pid) \
1689 (current_top_target ()->remove_exec_catchpoint) (pid)
1690
1691 /* Syscall catch.
1692
1693 NEEDED is true if any syscall catch (of any kind) is requested.
1694 If NEEDED is false, it means the target can disable the mechanism to
1695 catch system calls because there are no more catchpoints of this type.
1696
1697 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1698 being requested. In this case, SYSCALL_COUNTS should be ignored.
1699
1700 SYSCALL_COUNTS is an array of ints, indexed by syscall number. An
1701 element in this array is nonzero if that syscall should be caught.
1702 This argument only matters if ANY_COUNT is zero.
1703
1704 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1705 for failure. */
1706
1707 #define target_set_syscall_catchpoint(pid, needed, any_count, syscall_counts) \
1708 (current_top_target ()->set_syscall_catchpoint) (pid, needed, any_count, \
1709 syscall_counts)
1710
1711 /* The debugger has completed a blocking wait() call. There is now
1712 some process event that must be processed. This function should
1713 be defined by those targets that require the debugger to perform
1714 cleanup or internal state changes in response to the process event. */
1715
1716 /* For target_mourn_inferior see target/target.h. */
1717
1718 /* Does target have enough data to do a run or attach command? */
1719
1720 extern int target_can_run ();
1721
1722 /* Set list of signals to be handled in the target.
1723
1724 PASS_SIGNALS is an array indexed by target signal number
1725 (enum gdb_signal). For every signal whose entry in this array is
1726 non-zero, the target is allowed -but not required- to skip reporting
1727 arrival of the signal to the GDB core by returning from target_wait,
1728 and to pass the signal directly to the inferior instead.
1729
1730 However, if the target is hardware single-stepping a thread that is
1731 about to receive a signal, it needs to be reported in any case, even
1732 if mentioned in a previous target_pass_signals call. */
1733
1734 extern void target_pass_signals
1735 (gdb::array_view<const unsigned char> pass_signals);
1736
1737 /* Set list of signals the target may pass to the inferior. This
1738 directly maps to the "handle SIGNAL pass/nopass" setting.
1739
1740 PROGRAM_SIGNALS is an array indexed by target signal
1741 number (enum gdb_signal). For every signal whose entry in this
1742 array is non-zero, the target is allowed to pass the signal to the
1743 inferior. Signals not present in the array shall be silently
1744 discarded. This does not influence whether to pass signals to the
1745 inferior as a result of a target_resume call. This is useful in
1746 scenarios where the target needs to decide whether to pass or not a
1747 signal to the inferior without GDB core involvement, such as for
1748 example, when detaching (as threads may have been suspended with
1749 pending signals not reported to GDB). */
1750
1751 extern void target_program_signals
1752 (gdb::array_view<const unsigned char> program_signals);
1753
1754 /* Check to see if a thread is still alive. */
1755
1756 extern int target_thread_alive (ptid_t ptid);
1757
1758 /* Sync the target's threads with GDB's thread list. */
1759
1760 extern void target_update_thread_list (void);
1761
1762 /* Make target stop in a continuable fashion. (For instance, under
1763 Unix, this should act like SIGSTOP). Note that this function is
1764 asynchronous: it does not wait for the target to become stopped
1765 before returning. If this is the behavior you want please use
1766 target_stop_and_wait. */
1767
1768 extern void target_stop (ptid_t ptid);
1769
1770 /* Interrupt the target. Unlike target_stop, this does not specify
1771 which thread/process reports the stop. For most target this acts
1772 like raising a SIGINT, though that's not absolutely required. This
1773 function is asynchronous. */
1774
1775 extern void target_interrupt ();
1776
1777 /* Pass a ^C, as determined to have been pressed by checking the quit
1778 flag, to the target, as if the user had typed the ^C on the
1779 inferior's controlling terminal while the inferior was in the
1780 foreground. Remote targets may take the opportunity to detect the
1781 remote side is not responding and offer to disconnect. */
1782
1783 extern void target_pass_ctrlc (void);
1784
1785 /* The default target_ops::to_pass_ctrlc implementation. Simply calls
1786 target_interrupt. */
1787 extern void default_target_pass_ctrlc (struct target_ops *ops);
1788
1789 /* Send the specified COMMAND to the target's monitor
1790 (shell,interpreter) for execution. The result of the query is
1791 placed in OUTBUF. */
1792
1793 #define target_rcmd(command, outbuf) \
1794 (current_top_target ()->rcmd) (command, outbuf)
1795
1796
1797 /* Does the target include all of memory, or only part of it? This
1798 determines whether we look up the target chain for other parts of
1799 memory if this target can't satisfy a request. */
1800
1801 extern int target_has_all_memory_1 (void);
1802 #define target_has_all_memory target_has_all_memory_1 ()
1803
1804 /* Does the target include memory? (Dummy targets don't.) */
1805
1806 extern int target_has_memory_1 (void);
1807 #define target_has_memory target_has_memory_1 ()
1808
1809 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1810 we start a process.) */
1811
1812 extern int target_has_stack_1 (void);
1813 #define target_has_stack target_has_stack_1 ()
1814
1815 /* Does the target have registers? (Exec files don't.) */
1816
1817 extern int target_has_registers_1 (void);
1818 #define target_has_registers target_has_registers_1 ()
1819
1820 /* Does the target have execution? Can we make it jump (through
1821 hoops), or pop its stack a few times? This means that the current
1822 target is currently executing; for some targets, that's the same as
1823 whether or not the target is capable of execution, but there are
1824 also targets which can be current while not executing. In that
1825 case this will become true after to_create_inferior or
1826 to_attach. */
1827
1828 extern bool target_has_execution_1 (inferior *inf);
1829
1830 /* Like target_has_execution_1, but always passes
1831 current_inferior(). */
1832
1833 extern int target_has_execution_current (void);
1834
1835 #define target_has_execution target_has_execution_current ()
1836
1837 /* Can the target support the debugger control of thread execution?
1838 Can it lock the thread scheduler? */
1839
1840 #define target_can_lock_scheduler \
1841 (current_top_target ()->get_thread_control_capabilities () & tc_schedlock)
1842
1843 /* Controls whether async mode is permitted. */
1844 extern bool target_async_permitted;
1845
1846 /* Can the target support asynchronous execution? */
1847 #define target_can_async_p() (current_top_target ()->can_async_p ())
1848
1849 /* Is the target in asynchronous execution mode? */
1850 #define target_is_async_p() (current_top_target ()->is_async_p ())
1851
1852 /* Enables/disabled async target events. */
1853 extern void target_async (int enable);
1854
1855 /* Enables/disables thread create and exit events. */
1856 extern void target_thread_events (int enable);
1857
1858 /* Whether support for controlling the target backends always in
1859 non-stop mode is enabled. */
1860 extern enum auto_boolean target_non_stop_enabled;
1861
1862 /* Is the target in non-stop mode? Some targets control the inferior
1863 in non-stop mode even with "set non-stop off". Always true if "set
1864 non-stop" is on. */
1865 extern int target_is_non_stop_p (void);
1866
1867 /* Return true if at least one inferior has a non-stop target. */
1868 extern bool exists_non_stop_target ();
1869
1870 #define target_execution_direction() \
1871 (current_top_target ()->execution_direction ())
1872
1873 /* Converts a process id to a string. Usually, the string just contains
1874 `process xyz', but on some systems it may contain
1875 `process xyz thread abc'. */
1876
1877 extern std::string target_pid_to_str (ptid_t ptid);
1878
1879 extern std::string normal_pid_to_str (ptid_t ptid);
1880
1881 /* Return a short string describing extra information about PID,
1882 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1883 is okay. */
1884
1885 #define target_extra_thread_info(TP) \
1886 (current_top_target ()->extra_thread_info (TP))
1887
1888 /* Return the thread's name, or NULL if the target is unable to determine it.
1889 The returned value must not be freed by the caller. */
1890
1891 extern const char *target_thread_name (struct thread_info *);
1892
1893 /* Given a pointer to a thread library specific thread handle and
1894 its length, return a pointer to the corresponding thread_info struct. */
1895
1896 extern struct thread_info *target_thread_handle_to_thread_info
1897 (const gdb_byte *thread_handle, int handle_len, struct inferior *inf);
1898
1899 /* Given a thread, return the thread handle, a target-specific sequence of
1900 bytes which serves as a thread identifier within the program being
1901 debugged. */
1902 extern gdb::byte_vector target_thread_info_to_thread_handle
1903 (struct thread_info *);
1904
1905 /* Attempts to find the pathname of the executable file
1906 that was run to create a specified process.
1907
1908 The process PID must be stopped when this operation is used.
1909
1910 If the executable file cannot be determined, NULL is returned.
1911
1912 Else, a pointer to a character string containing the pathname
1913 is returned. This string should be copied into a buffer by
1914 the client if the string will not be immediately used, or if
1915 it must persist. */
1916
1917 #define target_pid_to_exec_file(pid) \
1918 (current_top_target ()->pid_to_exec_file) (pid)
1919
1920 /* See the to_thread_architecture description in struct target_ops. */
1921
1922 #define target_thread_architecture(ptid) \
1923 (current_top_target ()->thread_architecture (ptid))
1924
1925 /*
1926 * Iterator function for target memory regions.
1927 * Calls a callback function once for each memory region 'mapped'
1928 * in the child process. Defined as a simple macro rather than
1929 * as a function macro so that it can be tested for nullity.
1930 */
1931
1932 #define target_find_memory_regions(FUNC, DATA) \
1933 (current_top_target ()->find_memory_regions) (FUNC, DATA)
1934
1935 /*
1936 * Compose corefile .note section.
1937 */
1938
1939 #define target_make_corefile_notes(BFD, SIZE_P) \
1940 (current_top_target ()->make_corefile_notes) (BFD, SIZE_P)
1941
1942 /* Bookmark interfaces. */
1943 #define target_get_bookmark(ARGS, FROM_TTY) \
1944 (current_top_target ()->get_bookmark) (ARGS, FROM_TTY)
1945
1946 #define target_goto_bookmark(ARG, FROM_TTY) \
1947 (current_top_target ()->goto_bookmark) (ARG, FROM_TTY)
1948
1949 /* Hardware watchpoint interfaces. */
1950
1951 /* GDB's current model is that there are three "kinds" of watchpoints,
1952 with respect to when they trigger and how you can move past them.
1953
1954 Those are: continuable, steppable, and non-steppable.
1955
1956 Continuable watchpoints are like x86's -- those trigger after the
1957 memory access's side effects are fully committed to memory. I.e.,
1958 they trap with the PC pointing at the next instruction already.
1959 Continuing past such a watchpoint is doable by just normally
1960 continuing, hence the name.
1961
1962 Both steppable and non-steppable watchpoints trap before the memory
1963 access. I.e, the PC points at the instruction that is accessing
1964 the memory. So GDB needs to single-step once past the current
1965 instruction in order to make the access effective and check whether
1966 the instruction's side effects change the watched expression.
1967
1968 Now, in order to step past that instruction, depending on
1969 architecture and target, you can have two situations:
1970
1971 - steppable watchpoints: you can single-step with the watchpoint
1972 still armed, and the watchpoint won't trigger again.
1973
1974 - non-steppable watchpoints: if you try to single-step with the
1975 watchpoint still armed, you'd trap the watchpoint again and the
1976 thread wouldn't make any progress. So GDB needs to temporarily
1977 remove the watchpoint in order to step past it.
1978
1979 If your target/architecture does not signal that it has either
1980 steppable or non-steppable watchpoints via either
1981 target_have_steppable_watchpoint or
1982 gdbarch_have_nonsteppable_watchpoint, GDB assumes continuable
1983 watchpoints. */
1984
1985 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1986 write). Only the INFERIOR_PTID task is being queried. */
1987
1988 #define target_stopped_by_watchpoint() \
1989 ((current_top_target ()->stopped_by_watchpoint) ())
1990
1991 /* Returns non-zero if the target stopped because it executed a
1992 software breakpoint instruction. */
1993
1994 #define target_stopped_by_sw_breakpoint() \
1995 ((current_top_target ()->stopped_by_sw_breakpoint) ())
1996
1997 #define target_supports_stopped_by_sw_breakpoint() \
1998 ((current_top_target ()->supports_stopped_by_sw_breakpoint) ())
1999
2000 #define target_stopped_by_hw_breakpoint() \
2001 ((current_top_target ()->stopped_by_hw_breakpoint) ())
2002
2003 #define target_supports_stopped_by_hw_breakpoint() \
2004 ((current_top_target ()->supports_stopped_by_hw_breakpoint) ())
2005
2006 /* Non-zero if we have steppable watchpoints */
2007
2008 #define target_have_steppable_watchpoint \
2009 (current_top_target ()->have_steppable_watchpoint ())
2010
2011 /* Provide defaults for hardware watchpoint functions. */
2012
2013 /* If the *_hw_beakpoint functions have not been defined
2014 elsewhere use the definitions in the target vector. */
2015
2016 /* Returns positive if we can set a hardware watchpoint of type TYPE.
2017 Returns negative if the target doesn't have enough hardware debug
2018 registers available. Return zero if hardware watchpoint of type
2019 TYPE isn't supported. TYPE is one of bp_hardware_watchpoint,
2020 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
2021 CNT is the number of such watchpoints used so far, including this
2022 one. OTHERTYPE is the number of watchpoints of other types than
2023 this one used so far. */
2024
2025 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
2026 (current_top_target ()->can_use_hw_breakpoint) ( \
2027 TYPE, CNT, OTHERTYPE)
2028
2029 /* Returns the number of debug registers needed to watch the given
2030 memory region, or zero if not supported. */
2031
2032 #define target_region_ok_for_hw_watchpoint(addr, len) \
2033 (current_top_target ()->region_ok_for_hw_watchpoint) (addr, len)
2034
2035
2036 #define target_can_do_single_step() \
2037 (current_top_target ()->can_do_single_step) ()
2038
2039 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
2040 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
2041 COND is the expression for its condition, or NULL if there's none.
2042 Returns 0 for success, 1 if the watchpoint type is not supported,
2043 -1 for failure. */
2044
2045 #define target_insert_watchpoint(addr, len, type, cond) \
2046 (current_top_target ()->insert_watchpoint) (addr, len, type, cond)
2047
2048 #define target_remove_watchpoint(addr, len, type, cond) \
2049 (current_top_target ()->remove_watchpoint) (addr, len, type, cond)
2050
2051 /* Insert a new masked watchpoint at ADDR using the mask MASK.
2052 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
2053 or hw_access for an access watchpoint. Returns 0 for success, 1 if
2054 masked watchpoints are not supported, -1 for failure. */
2055
2056 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
2057 enum target_hw_bp_type);
2058
2059 /* Remove a masked watchpoint at ADDR with the mask MASK.
2060 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
2061 or hw_access for an access watchpoint. Returns 0 for success, non-zero
2062 for failure. */
2063
2064 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
2065 enum target_hw_bp_type);
2066
2067 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
2068 the target machine. Returns 0 for success, and returns non-zero or
2069 throws an error (with a detailed failure reason error code and
2070 message) otherwise. */
2071
2072 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
2073 (current_top_target ()->insert_hw_breakpoint) (gdbarch, bp_tgt)
2074
2075 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
2076 (current_top_target ()->remove_hw_breakpoint) (gdbarch, bp_tgt)
2077
2078 /* Return number of debug registers needed for a ranged breakpoint,
2079 or -1 if ranged breakpoints are not supported. */
2080
2081 extern int target_ranged_break_num_registers (void);
2082
2083 /* Return non-zero if target knows the data address which triggered this
2084 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
2085 INFERIOR_PTID task is being queried. */
2086 #define target_stopped_data_address(target, addr_p) \
2087 (target)->stopped_data_address (addr_p)
2088
2089 /* Return non-zero if ADDR is within the range of a watchpoint spanning
2090 LENGTH bytes beginning at START. */
2091 #define target_watchpoint_addr_within_range(target, addr, start, length) \
2092 (target)->watchpoint_addr_within_range (addr, start, length)
2093
2094 /* Return non-zero if the target is capable of using hardware to evaluate
2095 the condition expression. In this case, if the condition is false when
2096 the watched memory location changes, execution may continue without the
2097 debugger being notified.
2098
2099 Due to limitations in the hardware implementation, it may be capable of
2100 avoiding triggering the watchpoint in some cases where the condition
2101 expression is false, but may report some false positives as well.
2102 For this reason, GDB will still evaluate the condition expression when
2103 the watchpoint triggers. */
2104 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
2105 (current_top_target ()->can_accel_watchpoint_condition) (addr, len, type, cond)
2106
2107 /* Return number of debug registers needed for a masked watchpoint,
2108 -1 if masked watchpoints are not supported or -2 if the given address
2109 and mask combination cannot be used. */
2110
2111 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
2112
2113 /* Target can execute in reverse? */
2114 #define target_can_execute_reverse \
2115 current_top_target ()->can_execute_reverse ()
2116
2117 extern const struct target_desc *target_read_description (struct target_ops *);
2118
2119 #define target_get_ada_task_ptid(lwp, tid) \
2120 (current_top_target ()->get_ada_task_ptid) (lwp,tid)
2121
2122 /* Utility implementation of searching memory. */
2123 extern int simple_search_memory (struct target_ops* ops,
2124 CORE_ADDR start_addr,
2125 ULONGEST search_space_len,
2126 const gdb_byte *pattern,
2127 ULONGEST pattern_len,
2128 CORE_ADDR *found_addrp);
2129
2130 /* Main entry point for searching memory. */
2131 extern int target_search_memory (CORE_ADDR start_addr,
2132 ULONGEST search_space_len,
2133 const gdb_byte *pattern,
2134 ULONGEST pattern_len,
2135 CORE_ADDR *found_addrp);
2136
2137 /* Target file operations. */
2138
2139 /* Return nonzero if the filesystem seen by the current inferior
2140 is the local filesystem, zero otherwise. */
2141 #define target_filesystem_is_local() \
2142 current_top_target ()->filesystem_is_local ()
2143
2144 /* Open FILENAME on the target, in the filesystem as seen by INF,
2145 using FLAGS and MODE. If INF is NULL, use the filesystem seen by
2146 the debugger (GDB or, for remote targets, the remote stub). Return
2147 a target file descriptor, or -1 if an error occurs (and set
2148 *TARGET_ERRNO). If WARN_IF_SLOW is true, print a warning message
2149 if the file is being accessed over a link that may be slow. */
2150 extern int target_fileio_open (struct inferior *inf,
2151 const char *filename, int flags,
2152 int mode, bool warn_if_slow,
2153 int *target_errno);
2154
2155 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2156 Return the number of bytes written, or -1 if an error occurs
2157 (and set *TARGET_ERRNO). */
2158 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2159 ULONGEST offset, int *target_errno);
2160
2161 /* Read up to LEN bytes FD on the target into READ_BUF.
2162 Return the number of bytes read, or -1 if an error occurs
2163 (and set *TARGET_ERRNO). */
2164 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2165 ULONGEST offset, int *target_errno);
2166
2167 /* Get information about the file opened as FD on the target
2168 and put it in SB. Return 0 on success, or -1 if an error
2169 occurs (and set *TARGET_ERRNO). */
2170 extern int target_fileio_fstat (int fd, struct stat *sb,
2171 int *target_errno);
2172
2173 /* Close FD on the target. Return 0, or -1 if an error occurs
2174 (and set *TARGET_ERRNO). */
2175 extern int target_fileio_close (int fd, int *target_errno);
2176
2177 /* Unlink FILENAME on the target, in the filesystem as seen by INF.
2178 If INF is NULL, use the filesystem seen by the debugger (GDB or,
2179 for remote targets, the remote stub). Return 0, or -1 if an error
2180 occurs (and set *TARGET_ERRNO). */
2181 extern int target_fileio_unlink (struct inferior *inf,
2182 const char *filename,
2183 int *target_errno);
2184
2185 /* Read value of symbolic link FILENAME on the target, in the
2186 filesystem as seen by INF. If INF is NULL, use the filesystem seen
2187 by the debugger (GDB or, for remote targets, the remote stub).
2188 Return a null-terminated string allocated via xmalloc, or NULL if
2189 an error occurs (and set *TARGET_ERRNO). */
2190 extern gdb::optional<std::string> target_fileio_readlink
2191 (struct inferior *inf, const char *filename, int *target_errno);
2192
2193 /* Read target file FILENAME, in the filesystem as seen by INF. If
2194 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2195 remote targets, the remote stub). The return value will be -1 if
2196 the transfer fails or is not supported; 0 if the object is empty;
2197 or the length of the object otherwise. If a positive value is
2198 returned, a sufficiently large buffer will be allocated using
2199 xmalloc and returned in *BUF_P containing the contents of the
2200 object.
2201
2202 This method should be used for objects sufficiently small to store
2203 in a single xmalloc'd buffer, when no fixed bound on the object's
2204 size is known in advance. */
2205 extern LONGEST target_fileio_read_alloc (struct inferior *inf,
2206 const char *filename,
2207 gdb_byte **buf_p);
2208
2209 /* Read target file FILENAME, in the filesystem as seen by INF. If
2210 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2211 remote targets, the remote stub). The result is NUL-terminated and
2212 returned as a string, allocated using xmalloc. If an error occurs
2213 or the transfer is unsupported, NULL is returned. Empty objects
2214 are returned as allocated but empty strings. A warning is issued
2215 if the result contains any embedded NUL bytes. */
2216 extern gdb::unique_xmalloc_ptr<char> target_fileio_read_stralloc
2217 (struct inferior *inf, const char *filename);
2218
2219
2220 /* Tracepoint-related operations. */
2221
2222 #define target_trace_init() \
2223 (current_top_target ()->trace_init) ()
2224
2225 #define target_download_tracepoint(t) \
2226 (current_top_target ()->download_tracepoint) (t)
2227
2228 #define target_can_download_tracepoint() \
2229 (current_top_target ()->can_download_tracepoint) ()
2230
2231 #define target_download_trace_state_variable(tsv) \
2232 (current_top_target ()->download_trace_state_variable) (tsv)
2233
2234 #define target_enable_tracepoint(loc) \
2235 (current_top_target ()->enable_tracepoint) (loc)
2236
2237 #define target_disable_tracepoint(loc) \
2238 (current_top_target ()->disable_tracepoint) (loc)
2239
2240 #define target_trace_start() \
2241 (current_top_target ()->trace_start) ()
2242
2243 #define target_trace_set_readonly_regions() \
2244 (current_top_target ()->trace_set_readonly_regions) ()
2245
2246 #define target_get_trace_status(ts) \
2247 (current_top_target ()->get_trace_status) (ts)
2248
2249 #define target_get_tracepoint_status(tp,utp) \
2250 (current_top_target ()->get_tracepoint_status) (tp, utp)
2251
2252 #define target_trace_stop() \
2253 (current_top_target ()->trace_stop) ()
2254
2255 #define target_trace_find(type,num,addr1,addr2,tpp) \
2256 (current_top_target ()->trace_find) (\
2257 (type), (num), (addr1), (addr2), (tpp))
2258
2259 #define target_get_trace_state_variable_value(tsv,val) \
2260 (current_top_target ()->get_trace_state_variable_value) ((tsv), (val))
2261
2262 #define target_save_trace_data(filename) \
2263 (current_top_target ()->save_trace_data) (filename)
2264
2265 #define target_upload_tracepoints(utpp) \
2266 (current_top_target ()->upload_tracepoints) (utpp)
2267
2268 #define target_upload_trace_state_variables(utsvp) \
2269 (current_top_target ()->upload_trace_state_variables) (utsvp)
2270
2271 #define target_get_raw_trace_data(buf,offset,len) \
2272 (current_top_target ()->get_raw_trace_data) ((buf), (offset), (len))
2273
2274 #define target_get_min_fast_tracepoint_insn_len() \
2275 (current_top_target ()->get_min_fast_tracepoint_insn_len) ()
2276
2277 #define target_set_disconnected_tracing(val) \
2278 (current_top_target ()->set_disconnected_tracing) (val)
2279
2280 #define target_set_circular_trace_buffer(val) \
2281 (current_top_target ()->set_circular_trace_buffer) (val)
2282
2283 #define target_set_trace_buffer_size(val) \
2284 (current_top_target ()->set_trace_buffer_size) (val)
2285
2286 #define target_set_trace_notes(user,notes,stopnotes) \
2287 (current_top_target ()->set_trace_notes) ((user), (notes), (stopnotes))
2288
2289 #define target_get_tib_address(ptid, addr) \
2290 (current_top_target ()->get_tib_address) ((ptid), (addr))
2291
2292 #define target_set_permissions() \
2293 (current_top_target ()->set_permissions) ()
2294
2295 #define target_static_tracepoint_marker_at(addr, marker) \
2296 (current_top_target ()->static_tracepoint_marker_at) (addr, marker)
2297
2298 #define target_static_tracepoint_markers_by_strid(marker_id) \
2299 (current_top_target ()->static_tracepoint_markers_by_strid) (marker_id)
2300
2301 #define target_traceframe_info() \
2302 (current_top_target ()->traceframe_info) ()
2303
2304 #define target_use_agent(use) \
2305 (current_top_target ()->use_agent) (use)
2306
2307 #define target_can_use_agent() \
2308 (current_top_target ()->can_use_agent) ()
2309
2310 #define target_augmented_libraries_svr4_read() \
2311 (current_top_target ()->augmented_libraries_svr4_read) ()
2312
2313 /* Command logging facility. */
2314
2315 #define target_log_command(p) \
2316 (current_top_target ()->log_command) (p)
2317
2318
2319 extern int target_core_of_thread (ptid_t ptid);
2320
2321 /* See to_get_unwinder in struct target_ops. */
2322 extern const struct frame_unwind *target_get_unwinder (void);
2323
2324 /* See to_get_tailcall_unwinder in struct target_ops. */
2325 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2326
2327 /* This implements basic memory verification, reading target memory
2328 and performing the comparison here (as opposed to accelerated
2329 verification making use of the qCRC packet, for example). */
2330
2331 extern int simple_verify_memory (struct target_ops* ops,
2332 const gdb_byte *data,
2333 CORE_ADDR memaddr, ULONGEST size);
2334
2335 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2336 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2337 if there's a mismatch, and -1 if an error is encountered while
2338 reading memory. Throws an error if the functionality is found not
2339 to be supported by the current target. */
2340 int target_verify_memory (const gdb_byte *data,
2341 CORE_ADDR memaddr, ULONGEST size);
2342
2343 /* Routines for maintenance of the target structures...
2344
2345 add_target: Add a target to the list of all possible targets.
2346 This only makes sense for targets that should be activated using
2347 the "target TARGET_NAME ..." command.
2348
2349 push_target: Make this target the top of the stack of currently used
2350 targets, within its particular stratum of the stack. Result
2351 is 0 if now atop the stack, nonzero if not on top (maybe
2352 should warn user).
2353
2354 unpush_target: Remove this from the stack of currently used targets,
2355 no matter where it is on the list. Returns 0 if no
2356 change, 1 if removed from stack. */
2357
2358 /* Type of callback called when the user activates a target with
2359 "target TARGET_NAME". The callback routine takes the rest of the
2360 parameters from the command, and (if successful) pushes a new
2361 target onto the stack. */
2362 typedef void target_open_ftype (const char *args, int from_tty);
2363
2364 /* Add the target described by INFO to the list of possible targets
2365 and add a new command 'target $(INFO->shortname)'. Set COMPLETER
2366 as the command's completer if not NULL. */
2367
2368 extern void add_target (const target_info &info,
2369 target_open_ftype *func,
2370 completer_ftype *completer = NULL);
2371
2372 /* Adds a command ALIAS for the target described by INFO and marks it
2373 deprecated. This is useful for maintaining backwards compatibility
2374 when renaming targets. */
2375
2376 extern void add_deprecated_target_alias (const target_info &info,
2377 const char *alias);
2378
2379 extern void push_target (struct target_ops *);
2380
2381 /* An overload that deletes the target on failure. */
2382 extern void push_target (target_ops_up &&);
2383
2384 extern int unpush_target (struct target_ops *);
2385
2386 extern void target_pre_inferior (int);
2387
2388 extern void target_preopen (int);
2389
2390 /* Does whatever cleanup is required to get rid of all pushed targets. */
2391 extern void pop_all_targets (void);
2392
2393 /* Like pop_all_targets, but pops only targets whose stratum is at or
2394 above STRATUM. */
2395 extern void pop_all_targets_at_and_above (enum strata stratum);
2396
2397 /* Like pop_all_targets, but pops only targets whose stratum is
2398 strictly above ABOVE_STRATUM. */
2399 extern void pop_all_targets_above (enum strata above_stratum);
2400
2401 extern bool target_is_pushed (target_ops *t);
2402
2403 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2404 CORE_ADDR offset);
2405
2406 /* Struct target_section maps address ranges to file sections. It is
2407 mostly used with BFD files, but can be used without (e.g. for handling
2408 raw disks, or files not in formats handled by BFD). */
2409
2410 struct target_section
2411 {
2412 CORE_ADDR addr; /* Lowest address in section */
2413 CORE_ADDR endaddr; /* 1+highest address in section */
2414
2415 struct bfd_section *the_bfd_section;
2416
2417 /* The "owner" of the section.
2418 It can be any unique value. It is set by add_target_sections
2419 and used by remove_target_sections.
2420 For example, for executables it is a pointer to exec_bfd and
2421 for shlibs it is the so_list pointer. */
2422 void *owner;
2423 };
2424
2425 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2426
2427 struct target_section_table
2428 {
2429 struct target_section *sections;
2430 struct target_section *sections_end;
2431 };
2432
2433 /* Return the "section" containing the specified address. */
2434 struct target_section *target_section_by_addr (struct target_ops *target,
2435 CORE_ADDR addr);
2436
2437 /* Return the target section table this target (or the targets
2438 beneath) currently manipulate. */
2439
2440 extern struct target_section_table *target_get_section_table
2441 (struct target_ops *target);
2442
2443 /* From mem-break.c */
2444
2445 extern int memory_remove_breakpoint (struct target_ops *,
2446 struct gdbarch *, struct bp_target_info *,
2447 enum remove_bp_reason);
2448
2449 extern int memory_insert_breakpoint (struct target_ops *,
2450 struct gdbarch *, struct bp_target_info *);
2451
2452 /* Convenience template use to add memory breakpoints support to a
2453 target. */
2454
2455 template <typename BaseTarget>
2456 struct memory_breakpoint_target : public BaseTarget
2457 {
2458 int insert_breakpoint (struct gdbarch *gdbarch,
2459 struct bp_target_info *bp_tgt) override
2460 { return memory_insert_breakpoint (this, gdbarch, bp_tgt); }
2461
2462 int remove_breakpoint (struct gdbarch *gdbarch,
2463 struct bp_target_info *bp_tgt,
2464 enum remove_bp_reason reason) override
2465 { return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason); }
2466 };
2467
2468 /* Check whether the memory at the breakpoint's placed address still
2469 contains the expected breakpoint instruction. */
2470
2471 extern int memory_validate_breakpoint (struct gdbarch *gdbarch,
2472 struct bp_target_info *bp_tgt);
2473
2474 extern int default_memory_remove_breakpoint (struct gdbarch *,
2475 struct bp_target_info *);
2476
2477 extern int default_memory_insert_breakpoint (struct gdbarch *,
2478 struct bp_target_info *);
2479
2480
2481 /* From target.c */
2482
2483 extern void initialize_targets (void);
2484
2485 extern void noprocess (void) ATTRIBUTE_NORETURN;
2486
2487 extern void target_require_runnable (void);
2488
2489 /* Find the target at STRATUM. If no target is at that stratum,
2490 return NULL. */
2491
2492 struct target_ops *find_target_at (enum strata stratum);
2493
2494 /* Read OS data object of type TYPE from the target, and return it in XML
2495 format. The return value follows the same rules as target_read_stralloc. */
2496
2497 extern gdb::optional<gdb::char_vector> target_get_osdata (const char *type);
2498
2499 /* Stuff that should be shared among the various remote targets. */
2500
2501 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2502 information (higher values, more information). */
2503 extern int remote_debug;
2504
2505 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2506 extern int baud_rate;
2507
2508 /* Parity for serial port */
2509 extern int serial_parity;
2510
2511 /* Timeout limit for response from target. */
2512 extern int remote_timeout;
2513
2514 \f
2515
2516 /* Set the show memory breakpoints mode to show, and return a
2517 scoped_restore to restore it back to the current value. */
2518 extern scoped_restore_tmpl<int>
2519 make_scoped_restore_show_memory_breakpoints (int show);
2520
2521 extern bool may_write_registers;
2522 extern bool may_write_memory;
2523 extern bool may_insert_breakpoints;
2524 extern bool may_insert_tracepoints;
2525 extern bool may_insert_fast_tracepoints;
2526 extern bool may_stop;
2527
2528 extern void update_target_permissions (void);
2529
2530 \f
2531 /* Imported from machine dependent code. */
2532
2533 /* See to_enable_btrace in struct target_ops. */
2534 extern struct btrace_target_info *
2535 target_enable_btrace (ptid_t ptid, const struct btrace_config *);
2536
2537 /* See to_disable_btrace in struct target_ops. */
2538 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2539
2540 /* See to_teardown_btrace in struct target_ops. */
2541 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2542
2543 /* See to_read_btrace in struct target_ops. */
2544 extern enum btrace_error target_read_btrace (struct btrace_data *,
2545 struct btrace_target_info *,
2546 enum btrace_read_type);
2547
2548 /* See to_btrace_conf in struct target_ops. */
2549 extern const struct btrace_config *
2550 target_btrace_conf (const struct btrace_target_info *);
2551
2552 /* See to_stop_recording in struct target_ops. */
2553 extern void target_stop_recording (void);
2554
2555 /* See to_save_record in struct target_ops. */
2556 extern void target_save_record (const char *filename);
2557
2558 /* Query if the target supports deleting the execution log. */
2559 extern int target_supports_delete_record (void);
2560
2561 /* See to_delete_record in struct target_ops. */
2562 extern void target_delete_record (void);
2563
2564 /* See to_record_method. */
2565 extern enum record_method target_record_method (ptid_t ptid);
2566
2567 /* See to_record_is_replaying in struct target_ops. */
2568 extern int target_record_is_replaying (ptid_t ptid);
2569
2570 /* See to_record_will_replay in struct target_ops. */
2571 extern int target_record_will_replay (ptid_t ptid, int dir);
2572
2573 /* See to_record_stop_replaying in struct target_ops. */
2574 extern void target_record_stop_replaying (void);
2575
2576 /* See to_goto_record_begin in struct target_ops. */
2577 extern void target_goto_record_begin (void);
2578
2579 /* See to_goto_record_end in struct target_ops. */
2580 extern void target_goto_record_end (void);
2581
2582 /* See to_goto_record in struct target_ops. */
2583 extern void target_goto_record (ULONGEST insn);
2584
2585 /* See to_insn_history. */
2586 extern void target_insn_history (int size, gdb_disassembly_flags flags);
2587
2588 /* See to_insn_history_from. */
2589 extern void target_insn_history_from (ULONGEST from, int size,
2590 gdb_disassembly_flags flags);
2591
2592 /* See to_insn_history_range. */
2593 extern void target_insn_history_range (ULONGEST begin, ULONGEST end,
2594 gdb_disassembly_flags flags);
2595
2596 /* See to_call_history. */
2597 extern void target_call_history (int size, record_print_flags flags);
2598
2599 /* See to_call_history_from. */
2600 extern void target_call_history_from (ULONGEST begin, int size,
2601 record_print_flags flags);
2602
2603 /* See to_call_history_range. */
2604 extern void target_call_history_range (ULONGEST begin, ULONGEST end,
2605 record_print_flags flags);
2606
2607 /* See to_prepare_to_generate_core. */
2608 extern void target_prepare_to_generate_core (void);
2609
2610 /* See to_done_generating_core. */
2611 extern void target_done_generating_core (void);
2612
2613 #endif /* !defined (TARGET_H) */
This page took 0.081256 seconds and 3 git commands to generate.