Multi-target support
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2020 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41 struct inferior;
42
43 #include "infrun.h" /* For enum exec_direction_kind. */
44 #include "breakpoint.h" /* For enum bptype. */
45 #include "gdbsupport/scoped_restore.h"
46 #include "gdbsupport/refcounted-object.h"
47
48 /* This include file defines the interface between the main part
49 of the debugger, and the part which is target-specific, or
50 specific to the communications interface between us and the
51 target.
52
53 A TARGET is an interface between the debugger and a particular
54 kind of file or process. Targets can be STACKED in STRATA,
55 so that more than one target can potentially respond to a request.
56 In particular, memory accesses will walk down the stack of targets
57 until they find a target that is interested in handling that particular
58 address. STRATA are artificial boundaries on the stack, within
59 which particular kinds of targets live. Strata exist so that
60 people don't get confused by pushing e.g. a process target and then
61 a file target, and wondering why they can't see the current values
62 of variables any more (the file target is handling them and they
63 never get to the process target). So when you push a file target,
64 it goes into the file stratum, which is always below the process
65 stratum.
66
67 Note that rather than allow an empty stack, we always have the
68 dummy target at the bottom stratum, so we can call the target
69 methods without checking them. */
70
71 #include "target/target.h"
72 #include "target/resume.h"
73 #include "target/wait.h"
74 #include "target/waitstatus.h"
75 #include "bfd.h"
76 #include "symtab.h"
77 #include "memattr.h"
78 #include "gdbsupport/gdb_signals.h"
79 #include "btrace.h"
80 #include "record.h"
81 #include "command.h"
82 #include "disasm.h"
83 #include "tracepoint.h"
84
85 #include "gdbsupport/break-common.h" /* For enum target_hw_bp_type. */
86
87 enum strata
88 {
89 dummy_stratum, /* The lowest of the low */
90 file_stratum, /* Executable files, etc */
91 process_stratum, /* Executing processes or core dump files */
92 thread_stratum, /* Executing threads */
93 record_stratum, /* Support record debugging */
94 arch_stratum, /* Architecture overrides */
95 debug_stratum /* Target debug. Must be last. */
96 };
97
98 enum thread_control_capabilities
99 {
100 tc_none = 0, /* Default: can't control thread execution. */
101 tc_schedlock = 1, /* Can lock the thread scheduler. */
102 };
103
104 /* The structure below stores information about a system call.
105 It is basically used in the "catch syscall" command, and in
106 every function that gives information about a system call.
107
108 It's also good to mention that its fields represent everything
109 that we currently know about a syscall in GDB. */
110 struct syscall
111 {
112 /* The syscall number. */
113 int number;
114
115 /* The syscall name. */
116 const char *name;
117 };
118
119 /* Return a pretty printed form of TARGET_OPTIONS. */
120 extern std::string target_options_to_string (int target_options);
121
122 /* Possible types of events that the inferior handler will have to
123 deal with. */
124 enum inferior_event_type
125 {
126 /* Process a normal inferior event which will result in target_wait
127 being called. */
128 INF_REG_EVENT,
129 /* We are called to do stuff after the inferior stops. */
130 INF_EXEC_COMPLETE,
131 };
132 \f
133 /* Target objects which can be transfered using target_read,
134 target_write, et cetera. */
135
136 enum target_object
137 {
138 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
139 TARGET_OBJECT_AVR,
140 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
141 TARGET_OBJECT_MEMORY,
142 /* Memory, avoiding GDB's data cache and trusting the executable.
143 Target implementations of to_xfer_partial never need to handle
144 this object, and most callers should not use it. */
145 TARGET_OBJECT_RAW_MEMORY,
146 /* Memory known to be part of the target's stack. This is cached even
147 if it is not in a region marked as such, since it is known to be
148 "normal" RAM. */
149 TARGET_OBJECT_STACK_MEMORY,
150 /* Memory known to be part of the target code. This is cached even
151 if it is not in a region marked as such. */
152 TARGET_OBJECT_CODE_MEMORY,
153 /* Kernel Unwind Table. See "ia64-tdep.c". */
154 TARGET_OBJECT_UNWIND_TABLE,
155 /* Transfer auxilliary vector. */
156 TARGET_OBJECT_AUXV,
157 /* StackGhost cookie. See "sparc-tdep.c". */
158 TARGET_OBJECT_WCOOKIE,
159 /* Target memory map in XML format. */
160 TARGET_OBJECT_MEMORY_MAP,
161 /* Flash memory. This object can be used to write contents to
162 a previously erased flash memory. Using it without erasing
163 flash can have unexpected results. Addresses are physical
164 address on target, and not relative to flash start. */
165 TARGET_OBJECT_FLASH,
166 /* Available target-specific features, e.g. registers and coprocessors.
167 See "target-descriptions.c". ANNEX should never be empty. */
168 TARGET_OBJECT_AVAILABLE_FEATURES,
169 /* Currently loaded libraries, in XML format. */
170 TARGET_OBJECT_LIBRARIES,
171 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
172 TARGET_OBJECT_LIBRARIES_SVR4,
173 /* Currently loaded libraries specific to AIX systems, in XML format. */
174 TARGET_OBJECT_LIBRARIES_AIX,
175 /* Get OS specific data. The ANNEX specifies the type (running
176 processes, etc.). The data being transfered is expected to follow
177 the DTD specified in features/osdata.dtd. */
178 TARGET_OBJECT_OSDATA,
179 /* Extra signal info. Usually the contents of `siginfo_t' on unix
180 platforms. */
181 TARGET_OBJECT_SIGNAL_INFO,
182 /* The list of threads that are being debugged. */
183 TARGET_OBJECT_THREADS,
184 /* Collected static trace data. */
185 TARGET_OBJECT_STATIC_TRACE_DATA,
186 /* Traceframe info, in XML format. */
187 TARGET_OBJECT_TRACEFRAME_INFO,
188 /* Load maps for FDPIC systems. */
189 TARGET_OBJECT_FDPIC,
190 /* Darwin dynamic linker info data. */
191 TARGET_OBJECT_DARWIN_DYLD_INFO,
192 /* OpenVMS Unwind Information Block. */
193 TARGET_OBJECT_OPENVMS_UIB,
194 /* Branch trace data, in XML format. */
195 TARGET_OBJECT_BTRACE,
196 /* Branch trace configuration, in XML format. */
197 TARGET_OBJECT_BTRACE_CONF,
198 /* The pathname of the executable file that was run to create
199 a specified process. ANNEX should be a string representation
200 of the process ID of the process in question, in hexadecimal
201 format. */
202 TARGET_OBJECT_EXEC_FILE,
203 /* FreeBSD virtual memory mappings. */
204 TARGET_OBJECT_FREEBSD_VMMAP,
205 /* FreeBSD process strings. */
206 TARGET_OBJECT_FREEBSD_PS_STRINGS,
207 /* Possible future objects: TARGET_OBJECT_FILE, ... */
208 };
209
210 /* Possible values returned by target_xfer_partial, etc. */
211
212 enum target_xfer_status
213 {
214 /* Some bytes are transferred. */
215 TARGET_XFER_OK = 1,
216
217 /* No further transfer is possible. */
218 TARGET_XFER_EOF = 0,
219
220 /* The piece of the object requested is unavailable. */
221 TARGET_XFER_UNAVAILABLE = 2,
222
223 /* Generic I/O error. Note that it's important that this is '-1',
224 as we still have target_xfer-related code returning hardcoded
225 '-1' on error. */
226 TARGET_XFER_E_IO = -1,
227
228 /* Keep list in sync with target_xfer_status_to_string. */
229 };
230
231 /* Return the string form of STATUS. */
232
233 extern const char *
234 target_xfer_status_to_string (enum target_xfer_status status);
235
236 typedef enum target_xfer_status
237 target_xfer_partial_ftype (struct target_ops *ops,
238 enum target_object object,
239 const char *annex,
240 gdb_byte *readbuf,
241 const gdb_byte *writebuf,
242 ULONGEST offset,
243 ULONGEST len,
244 ULONGEST *xfered_len);
245
246 enum target_xfer_status
247 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
248 const gdb_byte *writebuf, ULONGEST memaddr,
249 LONGEST len, ULONGEST *xfered_len);
250
251 /* Request that OPS transfer up to LEN addressable units of the target's
252 OBJECT. When reading from a memory object, the size of an addressable unit
253 is architecture dependent and can be found using
254 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
255 byte long. BUF should point to a buffer large enough to hold the read data,
256 taking into account the addressable unit size. The OFFSET, for a seekable
257 object, specifies the starting point. The ANNEX can be used to provide
258 additional data-specific information to the target.
259
260 Return the number of addressable units actually transferred, or a negative
261 error code (an 'enum target_xfer_error' value) if the transfer is not
262 supported or otherwise fails. Return of a positive value less than
263 LEN indicates that no further transfer is possible. Unlike the raw
264 to_xfer_partial interface, callers of these functions do not need
265 to retry partial transfers. */
266
267 extern LONGEST target_read (struct target_ops *ops,
268 enum target_object object,
269 const char *annex, gdb_byte *buf,
270 ULONGEST offset, LONGEST len);
271
272 struct memory_read_result
273 {
274 memory_read_result (ULONGEST begin_, ULONGEST end_,
275 gdb::unique_xmalloc_ptr<gdb_byte> &&data_)
276 : begin (begin_),
277 end (end_),
278 data (std::move (data_))
279 {
280 }
281
282 ~memory_read_result () = default;
283
284 memory_read_result (memory_read_result &&other) = default;
285
286 DISABLE_COPY_AND_ASSIGN (memory_read_result);
287
288 /* First address that was read. */
289 ULONGEST begin;
290 /* Past-the-end address. */
291 ULONGEST end;
292 /* The data. */
293 gdb::unique_xmalloc_ptr<gdb_byte> data;
294 };
295
296 extern std::vector<memory_read_result> read_memory_robust
297 (struct target_ops *ops, const ULONGEST offset, const LONGEST len);
298
299 /* Request that OPS transfer up to LEN addressable units from BUF to the
300 target's OBJECT. When writing to a memory object, the addressable unit
301 size is architecture dependent and can be found using
302 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
303 byte long. The OFFSET, for a seekable object, specifies the starting point.
304 The ANNEX can be used to provide additional data-specific information to
305 the target.
306
307 Return the number of addressable units actually transferred, or a negative
308 error code (an 'enum target_xfer_status' value) if the transfer is not
309 supported or otherwise fails. Return of a positive value less than
310 LEN indicates that no further transfer is possible. Unlike the raw
311 to_xfer_partial interface, callers of these functions do not need to
312 retry partial transfers. */
313
314 extern LONGEST target_write (struct target_ops *ops,
315 enum target_object object,
316 const char *annex, const gdb_byte *buf,
317 ULONGEST offset, LONGEST len);
318
319 /* Similar to target_write, except that it also calls PROGRESS with
320 the number of bytes written and the opaque BATON after every
321 successful partial write (and before the first write). This is
322 useful for progress reporting and user interaction while writing
323 data. To abort the transfer, the progress callback can throw an
324 exception. */
325
326 LONGEST target_write_with_progress (struct target_ops *ops,
327 enum target_object object,
328 const char *annex, const gdb_byte *buf,
329 ULONGEST offset, LONGEST len,
330 void (*progress) (ULONGEST, void *),
331 void *baton);
332
333 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will be read
334 using OPS. The return value will be uninstantiated if the transfer fails or
335 is not supported.
336
337 This method should be used for objects sufficiently small to store
338 in a single xmalloc'd buffer, when no fixed bound on the object's
339 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
340 through this function. */
341
342 extern gdb::optional<gdb::byte_vector> target_read_alloc
343 (struct target_ops *ops, enum target_object object, const char *annex);
344
345 /* Read OBJECT/ANNEX using OPS. The result is a NUL-terminated character vector
346 (therefore usable as a NUL-terminated string). If an error occurs or the
347 transfer is unsupported, the return value will be uninstantiated. Empty
348 objects are returned as allocated but empty strings. Therefore, on success,
349 the returned vector is guaranteed to have at least one element. A warning is
350 issued if the result contains any embedded NUL bytes. */
351
352 extern gdb::optional<gdb::char_vector> target_read_stralloc
353 (struct target_ops *ops, enum target_object object, const char *annex);
354
355 /* See target_ops->to_xfer_partial. */
356 extern target_xfer_partial_ftype target_xfer_partial;
357
358 /* Wrappers to target read/write that perform memory transfers. They
359 throw an error if the memory transfer fails.
360
361 NOTE: cagney/2003-10-23: The naming schema is lifted from
362 "frame.h". The parameter order is lifted from get_frame_memory,
363 which in turn lifted it from read_memory. */
364
365 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
366 gdb_byte *buf, LONGEST len);
367 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
368 CORE_ADDR addr, int len,
369 enum bfd_endian byte_order);
370 \f
371 struct thread_info; /* fwd decl for parameter list below: */
372
373 /* The type of the callback to the to_async method. */
374
375 typedef void async_callback_ftype (enum inferior_event_type event_type,
376 void *context);
377
378 /* Normally target debug printing is purely type-based. However,
379 sometimes it is necessary to override the debug printing on a
380 per-argument basis. This macro can be used, attribute-style, to
381 name the target debug printing function for a particular method
382 argument. FUNC is the name of the function. The macro's
383 definition is empty because it is only used by the
384 make-target-delegates script. */
385
386 #define TARGET_DEBUG_PRINTER(FUNC)
387
388 /* These defines are used to mark target_ops methods. The script
389 make-target-delegates scans these and auto-generates the base
390 method implementations. There are four macros that can be used:
391
392 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
393 does nothing. This is only valid if the method return type is
394 'void'.
395
396 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
397 'tcomplain ()'. The base method simply makes this call, which is
398 assumed not to return.
399
400 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
401 base method returns this expression's value.
402
403 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
404 make-target-delegates does not generate a base method in this case,
405 but instead uses the argument function as the base method. */
406
407 #define TARGET_DEFAULT_IGNORE()
408 #define TARGET_DEFAULT_NORETURN(ARG)
409 #define TARGET_DEFAULT_RETURN(ARG)
410 #define TARGET_DEFAULT_FUNC(ARG)
411
412 /* Each target that can be activated with "target TARGET_NAME" passes
413 the address of one of these objects to add_target, which uses the
414 object's address as unique identifier, and registers the "target
415 TARGET_NAME" command using SHORTNAME as target name. */
416
417 struct target_info
418 {
419 /* Name of this target. */
420 const char *shortname;
421
422 /* Name for printing. */
423 const char *longname;
424
425 /* Documentation. Does not include trailing newline, and starts
426 with a one-line description (probably similar to longname). */
427 const char *doc;
428 };
429
430 struct target_ops
431 : public refcounted_object
432 {
433 /* Return this target's stratum. */
434 virtual strata stratum () const = 0;
435
436 /* To the target under this one. */
437 target_ops *beneath () const;
438
439 /* Free resources associated with the target. Note that singleton
440 targets, like e.g., native targets, are global objects, not
441 heap allocated, and are thus only deleted on GDB exit. The
442 main teardown entry point is the "close" method, below. */
443 virtual ~target_ops () {}
444
445 /* Return a reference to this target's unique target_info
446 object. */
447 virtual const target_info &info () const = 0;
448
449 /* Name this target type. */
450 const char *shortname () const
451 { return info ().shortname; }
452
453 const char *longname () const
454 { return info ().longname; }
455
456 /* Close the target. This is where the target can handle
457 teardown. Heap-allocated targets should delete themselves
458 before returning. */
459 virtual void close ();
460
461 /* Attaches to a process on the target side. Arguments are as
462 passed to the `attach' command by the user. This routine can
463 be called when the target is not on the target-stack, if the
464 target_ops::can_run method returns 1; in that case, it must push
465 itself onto the stack. Upon exit, the target should be ready
466 for normal operations, and should be ready to deliver the
467 status of the process immediately (without waiting) to an
468 upcoming target_wait call. */
469 virtual bool can_attach ();
470 virtual void attach (const char *, int);
471 virtual void post_attach (int)
472 TARGET_DEFAULT_IGNORE ();
473 virtual void detach (inferior *, int)
474 TARGET_DEFAULT_IGNORE ();
475 virtual void disconnect (const char *, int)
476 TARGET_DEFAULT_NORETURN (tcomplain ());
477 virtual void resume (ptid_t,
478 int TARGET_DEBUG_PRINTER (target_debug_print_step),
479 enum gdb_signal)
480 TARGET_DEFAULT_NORETURN (noprocess ());
481 virtual void commit_resume ()
482 TARGET_DEFAULT_IGNORE ();
483 /* See target_wait's description. Note that implementations of
484 this method must not assume that inferior_ptid on entry is
485 pointing at the thread or inferior that ends up reporting an
486 event. The reported event could be for some other thread in
487 the current inferior or even for a different process of the
488 current target. inferior_ptid may also be null_ptid on
489 entry. */
490 virtual ptid_t wait (ptid_t, struct target_waitstatus *,
491 int TARGET_DEBUG_PRINTER (target_debug_print_options))
492 TARGET_DEFAULT_FUNC (default_target_wait);
493 virtual void fetch_registers (struct regcache *, int)
494 TARGET_DEFAULT_IGNORE ();
495 virtual void store_registers (struct regcache *, int)
496 TARGET_DEFAULT_NORETURN (noprocess ());
497 virtual void prepare_to_store (struct regcache *)
498 TARGET_DEFAULT_NORETURN (noprocess ());
499
500 virtual void files_info ()
501 TARGET_DEFAULT_IGNORE ();
502 virtual int insert_breakpoint (struct gdbarch *,
503 struct bp_target_info *)
504 TARGET_DEFAULT_NORETURN (noprocess ());
505 virtual int remove_breakpoint (struct gdbarch *,
506 struct bp_target_info *,
507 enum remove_bp_reason)
508 TARGET_DEFAULT_NORETURN (noprocess ());
509
510 /* Returns true if the target stopped because it executed a
511 software breakpoint. This is necessary for correct background
512 execution / non-stop mode operation, and for correct PC
513 adjustment on targets where the PC needs to be adjusted when a
514 software breakpoint triggers. In these modes, by the time GDB
515 processes a breakpoint event, the breakpoint may already be
516 done from the target, so GDB needs to be able to tell whether
517 it should ignore the event and whether it should adjust the PC.
518 See adjust_pc_after_break. */
519 virtual bool stopped_by_sw_breakpoint ()
520 TARGET_DEFAULT_RETURN (false);
521 /* Returns true if the above method is supported. */
522 virtual bool supports_stopped_by_sw_breakpoint ()
523 TARGET_DEFAULT_RETURN (false);
524
525 /* Returns true if the target stopped for a hardware breakpoint.
526 Likewise, if the target supports hardware breakpoints, this
527 method is necessary for correct background execution / non-stop
528 mode operation. Even though hardware breakpoints do not
529 require PC adjustment, GDB needs to be able to tell whether the
530 hardware breakpoint event is a delayed event for a breakpoint
531 that is already gone and should thus be ignored. */
532 virtual bool stopped_by_hw_breakpoint ()
533 TARGET_DEFAULT_RETURN (false);
534 /* Returns true if the above method is supported. */
535 virtual bool supports_stopped_by_hw_breakpoint ()
536 TARGET_DEFAULT_RETURN (false);
537
538 virtual int can_use_hw_breakpoint (enum bptype, int, int)
539 TARGET_DEFAULT_RETURN (0);
540 virtual int ranged_break_num_registers ()
541 TARGET_DEFAULT_RETURN (-1);
542 virtual int insert_hw_breakpoint (struct gdbarch *,
543 struct bp_target_info *)
544 TARGET_DEFAULT_RETURN (-1);
545 virtual int remove_hw_breakpoint (struct gdbarch *,
546 struct bp_target_info *)
547 TARGET_DEFAULT_RETURN (-1);
548
549 /* Documentation of what the two routines below are expected to do is
550 provided with the corresponding target_* macros. */
551 virtual int remove_watchpoint (CORE_ADDR, int,
552 enum target_hw_bp_type, struct expression *)
553 TARGET_DEFAULT_RETURN (-1);
554 virtual int insert_watchpoint (CORE_ADDR, int,
555 enum target_hw_bp_type, struct expression *)
556 TARGET_DEFAULT_RETURN (-1);
557
558 virtual int insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
559 enum target_hw_bp_type)
560 TARGET_DEFAULT_RETURN (1);
561 virtual int remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
562 enum target_hw_bp_type)
563 TARGET_DEFAULT_RETURN (1);
564 virtual bool stopped_by_watchpoint ()
565 TARGET_DEFAULT_RETURN (false);
566 virtual bool have_steppable_watchpoint ()
567 TARGET_DEFAULT_RETURN (false);
568 virtual bool stopped_data_address (CORE_ADDR *)
569 TARGET_DEFAULT_RETURN (false);
570 virtual bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int)
571 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
572
573 /* Documentation of this routine is provided with the corresponding
574 target_* macro. */
575 virtual int region_ok_for_hw_watchpoint (CORE_ADDR, int)
576 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
577
578 virtual bool can_accel_watchpoint_condition (CORE_ADDR, int, int,
579 struct expression *)
580 TARGET_DEFAULT_RETURN (false);
581 virtual int masked_watch_num_registers (CORE_ADDR, CORE_ADDR)
582 TARGET_DEFAULT_RETURN (-1);
583
584 /* Return 1 for sure target can do single step. Return -1 for
585 unknown. Return 0 for target can't do. */
586 virtual int can_do_single_step ()
587 TARGET_DEFAULT_RETURN (-1);
588
589 virtual bool supports_terminal_ours ()
590 TARGET_DEFAULT_RETURN (false);
591 virtual void terminal_init ()
592 TARGET_DEFAULT_IGNORE ();
593 virtual void terminal_inferior ()
594 TARGET_DEFAULT_IGNORE ();
595 virtual void terminal_save_inferior ()
596 TARGET_DEFAULT_IGNORE ();
597 virtual void terminal_ours_for_output ()
598 TARGET_DEFAULT_IGNORE ();
599 virtual void terminal_ours ()
600 TARGET_DEFAULT_IGNORE ();
601 virtual void terminal_info (const char *, int)
602 TARGET_DEFAULT_FUNC (default_terminal_info);
603 virtual void kill ()
604 TARGET_DEFAULT_NORETURN (noprocess ());
605 virtual void load (const char *, int)
606 TARGET_DEFAULT_NORETURN (tcomplain ());
607 /* Start an inferior process and set inferior_ptid to its pid.
608 EXEC_FILE is the file to run.
609 ALLARGS is a string containing the arguments to the program.
610 ENV is the environment vector to pass. Errors reported with error().
611 On VxWorks and various standalone systems, we ignore exec_file. */
612 virtual bool can_create_inferior ();
613 virtual void create_inferior (const char *, const std::string &,
614 char **, int);
615 virtual void post_startup_inferior (ptid_t)
616 TARGET_DEFAULT_IGNORE ();
617 virtual int insert_fork_catchpoint (int)
618 TARGET_DEFAULT_RETURN (1);
619 virtual int remove_fork_catchpoint (int)
620 TARGET_DEFAULT_RETURN (1);
621 virtual int insert_vfork_catchpoint (int)
622 TARGET_DEFAULT_RETURN (1);
623 virtual int remove_vfork_catchpoint (int)
624 TARGET_DEFAULT_RETURN (1);
625 virtual int follow_fork (int, int)
626 TARGET_DEFAULT_FUNC (default_follow_fork);
627 virtual int insert_exec_catchpoint (int)
628 TARGET_DEFAULT_RETURN (1);
629 virtual int remove_exec_catchpoint (int)
630 TARGET_DEFAULT_RETURN (1);
631 virtual void follow_exec (struct inferior *, const char *)
632 TARGET_DEFAULT_IGNORE ();
633 virtual int set_syscall_catchpoint (int, bool, int,
634 gdb::array_view<const int>)
635 TARGET_DEFAULT_RETURN (1);
636 virtual void mourn_inferior ()
637 TARGET_DEFAULT_FUNC (default_mourn_inferior);
638
639 /* Note that can_run is special and can be invoked on an unpushed
640 target. Targets defining this method must also define
641 to_can_async_p and to_supports_non_stop. */
642 virtual bool can_run ();
643
644 /* Documentation of this routine is provided with the corresponding
645 target_* macro. */
646 virtual void pass_signals (gdb::array_view<const unsigned char> TARGET_DEBUG_PRINTER (target_debug_print_signals))
647 TARGET_DEFAULT_IGNORE ();
648
649 /* Documentation of this routine is provided with the
650 corresponding target_* function. */
651 virtual void program_signals (gdb::array_view<const unsigned char> TARGET_DEBUG_PRINTER (target_debug_print_signals))
652 TARGET_DEFAULT_IGNORE ();
653
654 virtual bool thread_alive (ptid_t ptid)
655 TARGET_DEFAULT_RETURN (false);
656 virtual void update_thread_list ()
657 TARGET_DEFAULT_IGNORE ();
658 virtual std::string pid_to_str (ptid_t)
659 TARGET_DEFAULT_FUNC (default_pid_to_str);
660 virtual const char *extra_thread_info (thread_info *)
661 TARGET_DEFAULT_RETURN (NULL);
662 virtual const char *thread_name (thread_info *)
663 TARGET_DEFAULT_RETURN (NULL);
664 virtual thread_info *thread_handle_to_thread_info (const gdb_byte *,
665 int,
666 inferior *inf)
667 TARGET_DEFAULT_RETURN (NULL);
668 /* See target_thread_info_to_thread_handle. */
669 virtual gdb::byte_vector thread_info_to_thread_handle (struct thread_info *)
670 TARGET_DEFAULT_RETURN (gdb::byte_vector ());
671 virtual void stop (ptid_t)
672 TARGET_DEFAULT_IGNORE ();
673 virtual void interrupt ()
674 TARGET_DEFAULT_IGNORE ();
675 virtual void pass_ctrlc ()
676 TARGET_DEFAULT_FUNC (default_target_pass_ctrlc);
677 virtual void rcmd (const char *command, struct ui_file *output)
678 TARGET_DEFAULT_FUNC (default_rcmd);
679 virtual char *pid_to_exec_file (int pid)
680 TARGET_DEFAULT_RETURN (NULL);
681 virtual void log_command (const char *)
682 TARGET_DEFAULT_IGNORE ();
683 virtual struct target_section_table *get_section_table ()
684 TARGET_DEFAULT_RETURN (NULL);
685
686 /* Provide default values for all "must have" methods. */
687 virtual bool has_all_memory () { return false; }
688 virtual bool has_memory () { return false; }
689 virtual bool has_stack () { return false; }
690 virtual bool has_registers () { return false; }
691 virtual bool has_execution (inferior *inf) { return false; }
692
693 /* Control thread execution. */
694 virtual thread_control_capabilities get_thread_control_capabilities ()
695 TARGET_DEFAULT_RETURN (tc_none);
696 virtual bool attach_no_wait ()
697 TARGET_DEFAULT_RETURN (0);
698 /* This method must be implemented in some situations. See the
699 comment on 'can_run'. */
700 virtual bool can_async_p ()
701 TARGET_DEFAULT_RETURN (false);
702 virtual bool is_async_p ()
703 TARGET_DEFAULT_RETURN (false);
704 virtual void async (int)
705 TARGET_DEFAULT_NORETURN (tcomplain ());
706 virtual int async_wait_fd ()
707 TARGET_DEFAULT_NORETURN (noprocess ());
708 virtual void thread_events (int)
709 TARGET_DEFAULT_IGNORE ();
710 /* This method must be implemented in some situations. See the
711 comment on 'can_run'. */
712 virtual bool supports_non_stop ()
713 TARGET_DEFAULT_RETURN (false);
714 /* Return true if the target operates in non-stop mode even with
715 "set non-stop off". */
716 virtual bool always_non_stop_p ()
717 TARGET_DEFAULT_RETURN (false);
718 /* find_memory_regions support method for gcore */
719 virtual int find_memory_regions (find_memory_region_ftype func, void *data)
720 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
721 /* make_corefile_notes support method for gcore */
722 virtual char *make_corefile_notes (bfd *, int *)
723 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
724 /* get_bookmark support method for bookmarks */
725 virtual gdb_byte *get_bookmark (const char *, int)
726 TARGET_DEFAULT_NORETURN (tcomplain ());
727 /* goto_bookmark support method for bookmarks */
728 virtual void goto_bookmark (const gdb_byte *, int)
729 TARGET_DEFAULT_NORETURN (tcomplain ());
730 /* Return the thread-local address at OFFSET in the
731 thread-local storage for the thread PTID and the shared library
732 or executable file given by LOAD_MODULE_ADDR. If that block of
733 thread-local storage hasn't been allocated yet, this function
734 may throw an error. LOAD_MODULE_ADDR may be zero for statically
735 linked multithreaded inferiors. */
736 virtual CORE_ADDR get_thread_local_address (ptid_t ptid,
737 CORE_ADDR load_module_addr,
738 CORE_ADDR offset)
739 TARGET_DEFAULT_NORETURN (generic_tls_error ());
740
741 /* Request that OPS transfer up to LEN addressable units of the target's
742 OBJECT. When reading from a memory object, the size of an addressable
743 unit is architecture dependent and can be found using
744 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is
745 1 byte long. The OFFSET, for a seekable object, specifies the
746 starting point. The ANNEX can be used to provide additional
747 data-specific information to the target.
748
749 Return the transferred status, error or OK (an
750 'enum target_xfer_status' value). Save the number of addressable units
751 actually transferred in *XFERED_LEN if transfer is successful
752 (TARGET_XFER_OK) or the number unavailable units if the requested
753 data is unavailable (TARGET_XFER_UNAVAILABLE). *XFERED_LEN
754 smaller than LEN does not indicate the end of the object, only
755 the end of the transfer; higher level code should continue
756 transferring if desired. This is handled in target.c.
757
758 The interface does not support a "retry" mechanism. Instead it
759 assumes that at least one addressable unit will be transfered on each
760 successful call.
761
762 NOTE: cagney/2003-10-17: The current interface can lead to
763 fragmented transfers. Lower target levels should not implement
764 hacks, such as enlarging the transfer, in an attempt to
765 compensate for this. Instead, the target stack should be
766 extended so that it implements supply/collect methods and a
767 look-aside object cache. With that available, the lowest
768 target can safely and freely "push" data up the stack.
769
770 See target_read and target_write for more information. One,
771 and only one, of readbuf or writebuf must be non-NULL. */
772
773 virtual enum target_xfer_status xfer_partial (enum target_object object,
774 const char *annex,
775 gdb_byte *readbuf,
776 const gdb_byte *writebuf,
777 ULONGEST offset, ULONGEST len,
778 ULONGEST *xfered_len)
779 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
780
781 /* Return the limit on the size of any single memory transfer
782 for the target. */
783
784 virtual ULONGEST get_memory_xfer_limit ()
785 TARGET_DEFAULT_RETURN (ULONGEST_MAX);
786
787 /* Returns the memory map for the target. A return value of NULL
788 means that no memory map is available. If a memory address
789 does not fall within any returned regions, it's assumed to be
790 RAM. The returned memory regions should not overlap.
791
792 The order of regions does not matter; target_memory_map will
793 sort regions by starting address. For that reason, this
794 function should not be called directly except via
795 target_memory_map.
796
797 This method should not cache data; if the memory map could
798 change unexpectedly, it should be invalidated, and higher
799 layers will re-fetch it. */
800 virtual std::vector<mem_region> memory_map ()
801 TARGET_DEFAULT_RETURN (std::vector<mem_region> ());
802
803 /* Erases the region of flash memory starting at ADDRESS, of
804 length LENGTH.
805
806 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
807 on flash block boundaries, as reported by 'to_memory_map'. */
808 virtual void flash_erase (ULONGEST address, LONGEST length)
809 TARGET_DEFAULT_NORETURN (tcomplain ());
810
811 /* Finishes a flash memory write sequence. After this operation
812 all flash memory should be available for writing and the result
813 of reading from areas written by 'to_flash_write' should be
814 equal to what was written. */
815 virtual void flash_done ()
816 TARGET_DEFAULT_NORETURN (tcomplain ());
817
818 /* Describe the architecture-specific features of this target. If
819 OPS doesn't have a description, this should delegate to the
820 "beneath" target. Returns the description found, or NULL if no
821 description was available. */
822 virtual const struct target_desc *read_description ()
823 TARGET_DEFAULT_RETURN (NULL);
824
825 /* Build the PTID of the thread on which a given task is running,
826 based on LWP and THREAD. These values are extracted from the
827 task Private_Data section of the Ada Task Control Block, and
828 their interpretation depends on the target. */
829 virtual ptid_t get_ada_task_ptid (long lwp, long thread)
830 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
831
832 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
833 Return 0 if *READPTR is already at the end of the buffer.
834 Return -1 if there is insufficient buffer for a whole entry.
835 Return 1 if an entry was read into *TYPEP and *VALP. */
836 virtual int auxv_parse (gdb_byte **readptr,
837 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
838 TARGET_DEFAULT_FUNC (default_auxv_parse);
839
840 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
841 sequence of bytes in PATTERN with length PATTERN_LEN.
842
843 The result is 1 if found, 0 if not found, and -1 if there was an error
844 requiring halting of the search (e.g. memory read error).
845 If the pattern is found the address is recorded in FOUND_ADDRP. */
846 virtual int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
847 const gdb_byte *pattern, ULONGEST pattern_len,
848 CORE_ADDR *found_addrp)
849 TARGET_DEFAULT_FUNC (default_search_memory);
850
851 /* Can target execute in reverse? */
852 virtual bool can_execute_reverse ()
853 TARGET_DEFAULT_RETURN (false);
854
855 /* The direction the target is currently executing. Must be
856 implemented on targets that support reverse execution and async
857 mode. The default simply returns forward execution. */
858 virtual enum exec_direction_kind execution_direction ()
859 TARGET_DEFAULT_FUNC (default_execution_direction);
860
861 /* Does this target support debugging multiple processes
862 simultaneously? */
863 virtual bool supports_multi_process ()
864 TARGET_DEFAULT_RETURN (false);
865
866 /* Does this target support enabling and disabling tracepoints while a trace
867 experiment is running? */
868 virtual bool supports_enable_disable_tracepoint ()
869 TARGET_DEFAULT_RETURN (false);
870
871 /* Does this target support disabling address space randomization? */
872 virtual bool supports_disable_randomization ()
873 TARGET_DEFAULT_FUNC (find_default_supports_disable_randomization);
874
875 /* Does this target support the tracenz bytecode for string collection? */
876 virtual bool supports_string_tracing ()
877 TARGET_DEFAULT_RETURN (false);
878
879 /* Does this target support evaluation of breakpoint conditions on its
880 end? */
881 virtual bool supports_evaluation_of_breakpoint_conditions ()
882 TARGET_DEFAULT_RETURN (false);
883
884 /* Does this target support evaluation of breakpoint commands on its
885 end? */
886 virtual bool can_run_breakpoint_commands ()
887 TARGET_DEFAULT_RETURN (false);
888
889 /* Determine current architecture of thread PTID.
890
891 The target is supposed to determine the architecture of the code where
892 the target is currently stopped at. The architecture information is
893 used to perform decr_pc_after_break adjustment, and also to determine
894 the frame architecture of the innermost frame. ptrace operations need to
895 operate according to target_gdbarch (). */
896 virtual struct gdbarch *thread_architecture (ptid_t)
897 TARGET_DEFAULT_RETURN (NULL);
898
899 /* Determine current address space of thread PTID. */
900 virtual struct address_space *thread_address_space (ptid_t)
901 TARGET_DEFAULT_RETURN (NULL);
902
903 /* Target file operations. */
904
905 /* Return nonzero if the filesystem seen by the current inferior
906 is the local filesystem, zero otherwise. */
907 virtual bool filesystem_is_local ()
908 TARGET_DEFAULT_RETURN (true);
909
910 /* Open FILENAME on the target, in the filesystem as seen by INF,
911 using FLAGS and MODE. If INF is NULL, use the filesystem seen
912 by the debugger (GDB or, for remote targets, the remote stub).
913 If WARN_IF_SLOW is nonzero, print a warning message if the file
914 is being accessed over a link that may be slow. Return a
915 target file descriptor, or -1 if an error occurs (and set
916 *TARGET_ERRNO). */
917 virtual int fileio_open (struct inferior *inf, const char *filename,
918 int flags, int mode, int warn_if_slow,
919 int *target_errno);
920
921 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
922 Return the number of bytes written, or -1 if an error occurs
923 (and set *TARGET_ERRNO). */
924 virtual int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
925 ULONGEST offset, int *target_errno);
926
927 /* Read up to LEN bytes FD on the target into READ_BUF.
928 Return the number of bytes read, or -1 if an error occurs
929 (and set *TARGET_ERRNO). */
930 virtual int fileio_pread (int fd, gdb_byte *read_buf, int len,
931 ULONGEST offset, int *target_errno);
932
933 /* Get information about the file opened as FD and put it in
934 SB. Return 0 on success, or -1 if an error occurs (and set
935 *TARGET_ERRNO). */
936 virtual int fileio_fstat (int fd, struct stat *sb, int *target_errno);
937
938 /* Close FD on the target. Return 0, or -1 if an error occurs
939 (and set *TARGET_ERRNO). */
940 virtual int fileio_close (int fd, int *target_errno);
941
942 /* Unlink FILENAME on the target, in the filesystem as seen by
943 INF. If INF is NULL, use the filesystem seen by the debugger
944 (GDB or, for remote targets, the remote stub). Return 0, or
945 -1 if an error occurs (and set *TARGET_ERRNO). */
946 virtual int fileio_unlink (struct inferior *inf,
947 const char *filename,
948 int *target_errno);
949
950 /* Read value of symbolic link FILENAME on the target, in the
951 filesystem as seen by INF. If INF is NULL, use the filesystem
952 seen by the debugger (GDB or, for remote targets, the remote
953 stub). Return a string, or an empty optional if an error
954 occurs (and set *TARGET_ERRNO). */
955 virtual gdb::optional<std::string> fileio_readlink (struct inferior *inf,
956 const char *filename,
957 int *target_errno);
958
959 /* Implement the "info proc" command. Returns true if the target
960 actually implemented the command, false otherwise. */
961 virtual bool info_proc (const char *, enum info_proc_what);
962
963 /* Tracepoint-related operations. */
964
965 /* Prepare the target for a tracing run. */
966 virtual void trace_init ()
967 TARGET_DEFAULT_NORETURN (tcomplain ());
968
969 /* Send full details of a tracepoint location to the target. */
970 virtual void download_tracepoint (struct bp_location *location)
971 TARGET_DEFAULT_NORETURN (tcomplain ());
972
973 /* Is the target able to download tracepoint locations in current
974 state? */
975 virtual bool can_download_tracepoint ()
976 TARGET_DEFAULT_RETURN (false);
977
978 /* Send full details of a trace state variable to the target. */
979 virtual void download_trace_state_variable (const trace_state_variable &tsv)
980 TARGET_DEFAULT_NORETURN (tcomplain ());
981
982 /* Enable a tracepoint on the target. */
983 virtual void enable_tracepoint (struct bp_location *location)
984 TARGET_DEFAULT_NORETURN (tcomplain ());
985
986 /* Disable a tracepoint on the target. */
987 virtual void disable_tracepoint (struct bp_location *location)
988 TARGET_DEFAULT_NORETURN (tcomplain ());
989
990 /* Inform the target info of memory regions that are readonly
991 (such as text sections), and so it should return data from
992 those rather than look in the trace buffer. */
993 virtual void trace_set_readonly_regions ()
994 TARGET_DEFAULT_NORETURN (tcomplain ());
995
996 /* Start a trace run. */
997 virtual void trace_start ()
998 TARGET_DEFAULT_NORETURN (tcomplain ());
999
1000 /* Get the current status of a tracing run. */
1001 virtual int get_trace_status (struct trace_status *ts)
1002 TARGET_DEFAULT_RETURN (-1);
1003
1004 virtual void get_tracepoint_status (struct breakpoint *tp,
1005 struct uploaded_tp *utp)
1006 TARGET_DEFAULT_NORETURN (tcomplain ());
1007
1008 /* Stop a trace run. */
1009 virtual void trace_stop ()
1010 TARGET_DEFAULT_NORETURN (tcomplain ());
1011
1012 /* Ask the target to find a trace frame of the given type TYPE,
1013 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
1014 number of the trace frame, and also the tracepoint number at
1015 TPP. If no trace frame matches, return -1. May throw if the
1016 operation fails. */
1017 virtual int trace_find (enum trace_find_type type, int num,
1018 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
1019 TARGET_DEFAULT_RETURN (-1);
1020
1021 /* Get the value of the trace state variable number TSV, returning
1022 1 if the value is known and writing the value itself into the
1023 location pointed to by VAL, else returning 0. */
1024 virtual bool get_trace_state_variable_value (int tsv, LONGEST *val)
1025 TARGET_DEFAULT_RETURN (false);
1026
1027 virtual int save_trace_data (const char *filename)
1028 TARGET_DEFAULT_NORETURN (tcomplain ());
1029
1030 virtual int upload_tracepoints (struct uploaded_tp **utpp)
1031 TARGET_DEFAULT_RETURN (0);
1032
1033 virtual int upload_trace_state_variables (struct uploaded_tsv **utsvp)
1034 TARGET_DEFAULT_RETURN (0);
1035
1036 virtual LONGEST get_raw_trace_data (gdb_byte *buf,
1037 ULONGEST offset, LONGEST len)
1038 TARGET_DEFAULT_NORETURN (tcomplain ());
1039
1040 /* Get the minimum length of instruction on which a fast tracepoint
1041 may be set on the target. If this operation is unsupported,
1042 return -1. If for some reason the minimum length cannot be
1043 determined, return 0. */
1044 virtual int get_min_fast_tracepoint_insn_len ()
1045 TARGET_DEFAULT_RETURN (-1);
1046
1047 /* Set the target's tracing behavior in response to unexpected
1048 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
1049 virtual void set_disconnected_tracing (int val)
1050 TARGET_DEFAULT_IGNORE ();
1051 virtual void set_circular_trace_buffer (int val)
1052 TARGET_DEFAULT_IGNORE ();
1053 /* Set the size of trace buffer in the target. */
1054 virtual void set_trace_buffer_size (LONGEST val)
1055 TARGET_DEFAULT_IGNORE ();
1056
1057 /* Add/change textual notes about the trace run, returning 1 if
1058 successful, 0 otherwise. */
1059 virtual bool set_trace_notes (const char *user, const char *notes,
1060 const char *stopnotes)
1061 TARGET_DEFAULT_RETURN (false);
1062
1063 /* Return the processor core that thread PTID was last seen on.
1064 This information is updated only when:
1065 - update_thread_list is called
1066 - thread stops
1067 If the core cannot be determined -- either for the specified
1068 thread, or right now, or in this debug session, or for this
1069 target -- return -1. */
1070 virtual int core_of_thread (ptid_t ptid)
1071 TARGET_DEFAULT_RETURN (-1);
1072
1073 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
1074 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
1075 a match, 0 if there's a mismatch, and -1 if an error is
1076 encountered while reading memory. */
1077 virtual int verify_memory (const gdb_byte *data,
1078 CORE_ADDR memaddr, ULONGEST size)
1079 TARGET_DEFAULT_FUNC (default_verify_memory);
1080
1081 /* Return the address of the start of the Thread Information Block
1082 a Windows OS specific feature. */
1083 virtual bool get_tib_address (ptid_t ptid, CORE_ADDR *addr)
1084 TARGET_DEFAULT_NORETURN (tcomplain ());
1085
1086 /* Send the new settings of write permission variables. */
1087 virtual void set_permissions ()
1088 TARGET_DEFAULT_IGNORE ();
1089
1090 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
1091 with its details. Return true on success, false on failure. */
1092 virtual bool static_tracepoint_marker_at (CORE_ADDR,
1093 static_tracepoint_marker *marker)
1094 TARGET_DEFAULT_RETURN (false);
1095
1096 /* Return a vector of all tracepoints markers string id ID, or all
1097 markers if ID is NULL. */
1098 virtual std::vector<static_tracepoint_marker>
1099 static_tracepoint_markers_by_strid (const char *id)
1100 TARGET_DEFAULT_NORETURN (tcomplain ());
1101
1102 /* Return a traceframe info object describing the current
1103 traceframe's contents. This method should not cache data;
1104 higher layers take care of caching, invalidating, and
1105 re-fetching when necessary. */
1106 virtual traceframe_info_up traceframe_info ()
1107 TARGET_DEFAULT_NORETURN (tcomplain ());
1108
1109 /* Ask the target to use or not to use agent according to USE.
1110 Return true if successful, false otherwise. */
1111 virtual bool use_agent (bool use)
1112 TARGET_DEFAULT_NORETURN (tcomplain ());
1113
1114 /* Is the target able to use agent in current state? */
1115 virtual bool can_use_agent ()
1116 TARGET_DEFAULT_RETURN (false);
1117
1118 /* Enable branch tracing for PTID using CONF configuration.
1119 Return a branch trace target information struct for reading and for
1120 disabling branch trace. */
1121 virtual struct btrace_target_info *enable_btrace (ptid_t ptid,
1122 const struct btrace_config *conf)
1123 TARGET_DEFAULT_NORETURN (tcomplain ());
1124
1125 /* Disable branch tracing and deallocate TINFO. */
1126 virtual void disable_btrace (struct btrace_target_info *tinfo)
1127 TARGET_DEFAULT_NORETURN (tcomplain ());
1128
1129 /* Disable branch tracing and deallocate TINFO. This function is similar
1130 to to_disable_btrace, except that it is called during teardown and is
1131 only allowed to perform actions that are safe. A counter-example would
1132 be attempting to talk to a remote target. */
1133 virtual void teardown_btrace (struct btrace_target_info *tinfo)
1134 TARGET_DEFAULT_NORETURN (tcomplain ());
1135
1136 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1137 DATA is cleared before new trace is added. */
1138 virtual enum btrace_error read_btrace (struct btrace_data *data,
1139 struct btrace_target_info *btinfo,
1140 enum btrace_read_type type)
1141 TARGET_DEFAULT_NORETURN (tcomplain ());
1142
1143 /* Get the branch trace configuration. */
1144 virtual const struct btrace_config *btrace_conf (const struct btrace_target_info *)
1145 TARGET_DEFAULT_RETURN (NULL);
1146
1147 /* Current recording method. */
1148 virtual enum record_method record_method (ptid_t ptid)
1149 TARGET_DEFAULT_RETURN (RECORD_METHOD_NONE);
1150
1151 /* Stop trace recording. */
1152 virtual void stop_recording ()
1153 TARGET_DEFAULT_IGNORE ();
1154
1155 /* Print information about the recording. */
1156 virtual void info_record ()
1157 TARGET_DEFAULT_IGNORE ();
1158
1159 /* Save the recorded execution trace into a file. */
1160 virtual void save_record (const char *filename)
1161 TARGET_DEFAULT_NORETURN (tcomplain ());
1162
1163 /* Delete the recorded execution trace from the current position
1164 onwards. */
1165 virtual bool supports_delete_record ()
1166 TARGET_DEFAULT_RETURN (false);
1167 virtual void delete_record ()
1168 TARGET_DEFAULT_NORETURN (tcomplain ());
1169
1170 /* Query if the record target is currently replaying PTID. */
1171 virtual bool record_is_replaying (ptid_t ptid)
1172 TARGET_DEFAULT_RETURN (false);
1173
1174 /* Query if the record target will replay PTID if it were resumed in
1175 execution direction DIR. */
1176 virtual bool record_will_replay (ptid_t ptid, int dir)
1177 TARGET_DEFAULT_RETURN (false);
1178
1179 /* Stop replaying. */
1180 virtual void record_stop_replaying ()
1181 TARGET_DEFAULT_IGNORE ();
1182
1183 /* Go to the begin of the execution trace. */
1184 virtual void goto_record_begin ()
1185 TARGET_DEFAULT_NORETURN (tcomplain ());
1186
1187 /* Go to the end of the execution trace. */
1188 virtual void goto_record_end ()
1189 TARGET_DEFAULT_NORETURN (tcomplain ());
1190
1191 /* Go to a specific location in the recorded execution trace. */
1192 virtual void goto_record (ULONGEST insn)
1193 TARGET_DEFAULT_NORETURN (tcomplain ());
1194
1195 /* Disassemble SIZE instructions in the recorded execution trace from
1196 the current position.
1197 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1198 disassemble SIZE succeeding instructions. */
1199 virtual void insn_history (int size, gdb_disassembly_flags flags)
1200 TARGET_DEFAULT_NORETURN (tcomplain ());
1201
1202 /* Disassemble SIZE instructions in the recorded execution trace around
1203 FROM.
1204 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1205 disassemble SIZE instructions after FROM. */
1206 virtual void insn_history_from (ULONGEST from, int size,
1207 gdb_disassembly_flags flags)
1208 TARGET_DEFAULT_NORETURN (tcomplain ());
1209
1210 /* Disassemble a section of the recorded execution trace from instruction
1211 BEGIN (inclusive) to instruction END (inclusive). */
1212 virtual void insn_history_range (ULONGEST begin, ULONGEST end,
1213 gdb_disassembly_flags flags)
1214 TARGET_DEFAULT_NORETURN (tcomplain ());
1215
1216 /* Print a function trace of the recorded execution trace.
1217 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1218 succeeding functions. */
1219 virtual void call_history (int size, record_print_flags flags)
1220 TARGET_DEFAULT_NORETURN (tcomplain ());
1221
1222 /* Print a function trace of the recorded execution trace starting
1223 at function FROM.
1224 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1225 SIZE functions after FROM. */
1226 virtual void call_history_from (ULONGEST begin, int size, record_print_flags flags)
1227 TARGET_DEFAULT_NORETURN (tcomplain ());
1228
1229 /* Print a function trace of an execution trace section from function BEGIN
1230 (inclusive) to function END (inclusive). */
1231 virtual void call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
1232 TARGET_DEFAULT_NORETURN (tcomplain ());
1233
1234 /* True if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1235 non-empty annex. */
1236 virtual bool augmented_libraries_svr4_read ()
1237 TARGET_DEFAULT_RETURN (false);
1238
1239 /* Those unwinders are tried before any other arch unwinders. If
1240 SELF doesn't have unwinders, it should delegate to the
1241 "beneath" target. */
1242 virtual const struct frame_unwind *get_unwinder ()
1243 TARGET_DEFAULT_RETURN (NULL);
1244
1245 virtual const struct frame_unwind *get_tailcall_unwinder ()
1246 TARGET_DEFAULT_RETURN (NULL);
1247
1248 /* Prepare to generate a core file. */
1249 virtual void prepare_to_generate_core ()
1250 TARGET_DEFAULT_IGNORE ();
1251
1252 /* Cleanup after generating a core file. */
1253 virtual void done_generating_core ()
1254 TARGET_DEFAULT_IGNORE ();
1255 };
1256
1257 /* Deleter for std::unique_ptr. See comments in
1258 target_ops::~target_ops and target_ops::close about heap-allocated
1259 targets. */
1260 struct target_ops_deleter
1261 {
1262 void operator() (target_ops *target)
1263 {
1264 target->close ();
1265 }
1266 };
1267
1268 /* A unique pointer for target_ops. */
1269 typedef std::unique_ptr<target_ops, target_ops_deleter> target_ops_up;
1270
1271 /* Decref a target and close if, if there are no references left. */
1272 extern void decref_target (target_ops *t);
1273
1274 /* A policy class to interface gdb::ref_ptr with target_ops. */
1275
1276 struct target_ops_ref_policy
1277 {
1278 static void incref (target_ops *t)
1279 {
1280 t->incref ();
1281 }
1282
1283 static void decref (target_ops *t)
1284 {
1285 decref_target (t);
1286 }
1287 };
1288
1289 /* A gdb::ref_ptr pointer to a target_ops. */
1290 typedef gdb::ref_ptr<target_ops, target_ops_ref_policy> target_ops_ref;
1291
1292 /* Native target backends call this once at initialization time to
1293 inform the core about which is the target that can respond to "run"
1294 or "attach". Note: native targets are always singletons. */
1295 extern void set_native_target (target_ops *target);
1296
1297 /* Get the registered native target, if there's one. Otherwise return
1298 NULL. */
1299 extern target_ops *get_native_target ();
1300
1301 /* Type that manages a target stack. See description of target stacks
1302 and strata at the top of the file. */
1303
1304 class target_stack
1305 {
1306 public:
1307 target_stack () = default;
1308 DISABLE_COPY_AND_ASSIGN (target_stack);
1309
1310 /* Push a new target into the stack of the existing target
1311 accessors, possibly superseding some existing accessor. */
1312 void push (target_ops *t);
1313
1314 /* Remove a target from the stack, wherever it may be. Return true
1315 if it was removed, false otherwise. */
1316 bool unpush (target_ops *t);
1317
1318 /* Returns true if T is pushed on the target stack. */
1319 bool is_pushed (target_ops *t) const
1320 { return at (t->stratum ()) == t; }
1321
1322 /* Return the target at STRATUM. */
1323 target_ops *at (strata stratum) const { return m_stack[stratum]; }
1324
1325 /* Return the target at the top of the stack. */
1326 target_ops *top () const { return at (m_top); }
1327
1328 /* Find the next target down the stack from the specified target. */
1329 target_ops *find_beneath (const target_ops *t) const;
1330
1331 private:
1332 /* The stratum of the top target. */
1333 enum strata m_top {};
1334
1335 /* The stack, represented as an array, with one slot per stratum.
1336 If no target is pushed at some stratum, the corresponding slot is
1337 null. */
1338 target_ops *m_stack[(int) debug_stratum + 1] {};
1339 };
1340
1341 /* The ops structure for our "current" target process. This should
1342 never be NULL. If there is no target, it points to the dummy_target. */
1343
1344 extern target_ops *current_top_target ();
1345
1346 /* Return the dummy target. */
1347 extern target_ops *get_dummy_target ();
1348
1349 /* Define easy words for doing these operations on our current target. */
1350
1351 #define target_shortname (current_top_target ()->shortname ())
1352 #define target_longname (current_top_target ()->longname ())
1353
1354 /* Does whatever cleanup is required for a target that we are no
1355 longer going to be calling. This routine is automatically always
1356 called after popping the target off the target stack - the target's
1357 own methods are no longer available through the target vector.
1358 Closing file descriptors and freeing all memory allocated memory are
1359 typical things it should do. */
1360
1361 void target_close (struct target_ops *targ);
1362
1363 /* Find the correct target to use for "attach". If a target on the
1364 current stack supports attaching, then it is returned. Otherwise,
1365 the default run target is returned. */
1366
1367 extern struct target_ops *find_attach_target (void);
1368
1369 /* Find the correct target to use for "run". If a target on the
1370 current stack supports creating a new inferior, then it is
1371 returned. Otherwise, the default run target is returned. */
1372
1373 extern struct target_ops *find_run_target (void);
1374
1375 /* Some targets don't generate traps when attaching to the inferior,
1376 or their target_attach implementation takes care of the waiting.
1377 These targets must set to_attach_no_wait. */
1378
1379 #define target_attach_no_wait() \
1380 (current_top_target ()->attach_no_wait ())
1381
1382 /* The target_attach operation places a process under debugger control,
1383 and stops the process.
1384
1385 This operation provides a target-specific hook that allows the
1386 necessary bookkeeping to be performed after an attach completes. */
1387 #define target_post_attach(pid) \
1388 (current_top_target ()->post_attach) (pid)
1389
1390 /* Display a message indicating we're about to detach from the current
1391 inferior process. */
1392
1393 extern void target_announce_detach (int from_tty);
1394
1395 /* Takes a program previously attached to and detaches it.
1396 The program may resume execution (some targets do, some don't) and will
1397 no longer stop on signals, etc. We better not have left any breakpoints
1398 in the program or it'll die when it hits one. FROM_TTY says whether to be
1399 verbose or not. */
1400
1401 extern void target_detach (inferior *inf, int from_tty);
1402
1403 /* Disconnect from the current target without resuming it (leaving it
1404 waiting for a debugger). */
1405
1406 extern void target_disconnect (const char *, int);
1407
1408 /* Resume execution (or prepare for execution) of a target thread,
1409 process or all processes. STEP says whether to hardware
1410 single-step or to run free; SIGGNAL is the signal to be given to
1411 the target, or GDB_SIGNAL_0 for no signal. The caller may not pass
1412 GDB_SIGNAL_DEFAULT. A specific PTID means `step/resume only this
1413 process id'. A wildcard PTID (all threads, or all threads of
1414 process) means `step/resume INFERIOR_PTID, and let other threads
1415 (for which the wildcard PTID matches) resume with their
1416 'thread->suspend.stop_signal' signal (usually GDB_SIGNAL_0) if it
1417 is in "pass" state, or with no signal if in "no pass" state.
1418
1419 In order to efficiently handle batches of resumption requests,
1420 targets may implement this method such that it records the
1421 resumption request, but defers the actual resumption to the
1422 target_commit_resume method implementation. See
1423 target_commit_resume below. */
1424 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1425
1426 /* Commit a series of resumption requests previously prepared with
1427 target_resume calls.
1428
1429 GDB always calls target_commit_resume after calling target_resume
1430 one or more times. A target may thus use this method in
1431 coordination with the target_resume method to batch target-side
1432 resumption requests. In that case, the target doesn't actually
1433 resume in its target_resume implementation. Instead, it prepares
1434 the resumption in target_resume, and defers the actual resumption
1435 to target_commit_resume. E.g., the remote target uses this to
1436 coalesce multiple resumption requests in a single vCont packet. */
1437 extern void target_commit_resume ();
1438
1439 /* Setup to defer target_commit_resume calls, and reactivate
1440 target_commit_resume on destruction, if it was previously
1441 active. */
1442 extern scoped_restore_tmpl<int> make_scoped_defer_target_commit_resume ();
1443
1444 /* For target_read_memory see target/target.h. */
1445
1446 /* The default target_ops::to_wait implementation. */
1447
1448 extern ptid_t default_target_wait (struct target_ops *ops,
1449 ptid_t ptid,
1450 struct target_waitstatus *status,
1451 int options);
1452
1453 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1454
1455 extern void target_fetch_registers (struct regcache *regcache, int regno);
1456
1457 /* Store at least register REGNO, or all regs if REGNO == -1.
1458 It can store as many registers as it wants to, so target_prepare_to_store
1459 must have been previously called. Calls error() if there are problems. */
1460
1461 extern void target_store_registers (struct regcache *regcache, int regs);
1462
1463 /* Get ready to modify the registers array. On machines which store
1464 individual registers, this doesn't need to do anything. On machines
1465 which store all the registers in one fell swoop, this makes sure
1466 that REGISTERS contains all the registers from the program being
1467 debugged. */
1468
1469 #define target_prepare_to_store(regcache) \
1470 (current_top_target ()->prepare_to_store) (regcache)
1471
1472 /* Determine current address space of thread PTID. */
1473
1474 struct address_space *target_thread_address_space (ptid_t);
1475
1476 /* Implement the "info proc" command. This returns one if the request
1477 was handled, and zero otherwise. It can also throw an exception if
1478 an error was encountered while attempting to handle the
1479 request. */
1480
1481 int target_info_proc (const char *, enum info_proc_what);
1482
1483 /* Returns true if this target can disable address space randomization. */
1484
1485 int target_supports_disable_randomization (void);
1486
1487 /* Returns true if this target can enable and disable tracepoints
1488 while a trace experiment is running. */
1489
1490 #define target_supports_enable_disable_tracepoint() \
1491 (current_top_target ()->supports_enable_disable_tracepoint) ()
1492
1493 #define target_supports_string_tracing() \
1494 (current_top_target ()->supports_string_tracing) ()
1495
1496 /* Returns true if this target can handle breakpoint conditions
1497 on its end. */
1498
1499 #define target_supports_evaluation_of_breakpoint_conditions() \
1500 (current_top_target ()->supports_evaluation_of_breakpoint_conditions) ()
1501
1502 /* Returns true if this target can handle breakpoint commands
1503 on its end. */
1504
1505 #define target_can_run_breakpoint_commands() \
1506 (current_top_target ()->can_run_breakpoint_commands) ()
1507
1508 extern int target_read_string (CORE_ADDR, gdb::unique_xmalloc_ptr<char> *,
1509 int, int *);
1510
1511 /* For target_read_memory see target/target.h. */
1512
1513 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1514 ssize_t len);
1515
1516 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1517
1518 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1519
1520 /* For target_write_memory see target/target.h. */
1521
1522 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1523 ssize_t len);
1524
1525 /* Fetches the target's memory map. If one is found it is sorted
1526 and returned, after some consistency checking. Otherwise, NULL
1527 is returned. */
1528 std::vector<mem_region> target_memory_map (void);
1529
1530 /* Erases all flash memory regions on the target. */
1531 void flash_erase_command (const char *cmd, int from_tty);
1532
1533 /* Erase the specified flash region. */
1534 void target_flash_erase (ULONGEST address, LONGEST length);
1535
1536 /* Finish a sequence of flash operations. */
1537 void target_flash_done (void);
1538
1539 /* Describes a request for a memory write operation. */
1540 struct memory_write_request
1541 {
1542 memory_write_request (ULONGEST begin_, ULONGEST end_,
1543 gdb_byte *data_ = nullptr, void *baton_ = nullptr)
1544 : begin (begin_), end (end_), data (data_), baton (baton_)
1545 {}
1546
1547 /* Begining address that must be written. */
1548 ULONGEST begin;
1549 /* Past-the-end address. */
1550 ULONGEST end;
1551 /* The data to write. */
1552 gdb_byte *data;
1553 /* A callback baton for progress reporting for this request. */
1554 void *baton;
1555 };
1556
1557 /* Enumeration specifying different flash preservation behaviour. */
1558 enum flash_preserve_mode
1559 {
1560 flash_preserve,
1561 flash_discard
1562 };
1563
1564 /* Write several memory blocks at once. This version can be more
1565 efficient than making several calls to target_write_memory, in
1566 particular because it can optimize accesses to flash memory.
1567
1568 Moreover, this is currently the only memory access function in gdb
1569 that supports writing to flash memory, and it should be used for
1570 all cases where access to flash memory is desirable.
1571
1572 REQUESTS is the vector of memory_write_request.
1573 PRESERVE_FLASH_P indicates what to do with blocks which must be
1574 erased, but not completely rewritten.
1575 PROGRESS_CB is a function that will be periodically called to provide
1576 feedback to user. It will be called with the baton corresponding
1577 to the request currently being written. It may also be called
1578 with a NULL baton, when preserved flash sectors are being rewritten.
1579
1580 The function returns 0 on success, and error otherwise. */
1581 int target_write_memory_blocks
1582 (const std::vector<memory_write_request> &requests,
1583 enum flash_preserve_mode preserve_flash_p,
1584 void (*progress_cb) (ULONGEST, void *));
1585
1586 /* Print a line about the current target. */
1587
1588 #define target_files_info() \
1589 (current_top_target ()->files_info) ()
1590
1591 /* Insert a breakpoint at address BP_TGT->placed_address in
1592 the target machine. Returns 0 for success, and returns non-zero or
1593 throws an error (with a detailed failure reason error code and
1594 message) otherwise. */
1595
1596 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1597 struct bp_target_info *bp_tgt);
1598
1599 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1600 machine. Result is 0 for success, non-zero for error. */
1601
1602 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1603 struct bp_target_info *bp_tgt,
1604 enum remove_bp_reason reason);
1605
1606 /* Return true if the target stack has a non-default
1607 "terminal_ours" method. */
1608
1609 extern bool target_supports_terminal_ours (void);
1610
1611 /* Kill the inferior process. Make it go away. */
1612
1613 extern void target_kill (void);
1614
1615 /* Load an executable file into the target process. This is expected
1616 to not only bring new code into the target process, but also to
1617 update GDB's symbol tables to match.
1618
1619 ARG contains command-line arguments, to be broken down with
1620 buildargv (). The first non-switch argument is the filename to
1621 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1622 0)), which is an offset to apply to the load addresses of FILE's
1623 sections. The target may define switches, or other non-switch
1624 arguments, as it pleases. */
1625
1626 extern void target_load (const char *arg, int from_tty);
1627
1628 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1629 notification of inferior events such as fork and vork immediately
1630 after the inferior is created. (This because of how gdb gets an
1631 inferior created via invoking a shell to do it. In such a scenario,
1632 if the shell init file has commands in it, the shell will fork and
1633 exec for each of those commands, and we will see each such fork
1634 event. Very bad.)
1635
1636 Such targets will supply an appropriate definition for this function. */
1637
1638 #define target_post_startup_inferior(ptid) \
1639 (current_top_target ()->post_startup_inferior) (ptid)
1640
1641 /* On some targets, we can catch an inferior fork or vfork event when
1642 it occurs. These functions insert/remove an already-created
1643 catchpoint for such events. They return 0 for success, 1 if the
1644 catchpoint type is not supported and -1 for failure. */
1645
1646 #define target_insert_fork_catchpoint(pid) \
1647 (current_top_target ()->insert_fork_catchpoint) (pid)
1648
1649 #define target_remove_fork_catchpoint(pid) \
1650 (current_top_target ()->remove_fork_catchpoint) (pid)
1651
1652 #define target_insert_vfork_catchpoint(pid) \
1653 (current_top_target ()->insert_vfork_catchpoint) (pid)
1654
1655 #define target_remove_vfork_catchpoint(pid) \
1656 (current_top_target ()->remove_vfork_catchpoint) (pid)
1657
1658 /* If the inferior forks or vforks, this function will be called at
1659 the next resume in order to perform any bookkeeping and fiddling
1660 necessary to continue debugging either the parent or child, as
1661 requested, and releasing the other. Information about the fork
1662 or vfork event is available via get_last_target_status ().
1663 This function returns 1 if the inferior should not be resumed
1664 (i.e. there is another event pending). */
1665
1666 int target_follow_fork (int follow_child, int detach_fork);
1667
1668 /* Handle the target-specific bookkeeping required when the inferior
1669 makes an exec call. INF is the exec'd inferior. */
1670
1671 void target_follow_exec (struct inferior *inf, const char *execd_pathname);
1672
1673 /* On some targets, we can catch an inferior exec event when it
1674 occurs. These functions insert/remove an already-created
1675 catchpoint for such events. They return 0 for success, 1 if the
1676 catchpoint type is not supported and -1 for failure. */
1677
1678 #define target_insert_exec_catchpoint(pid) \
1679 (current_top_target ()->insert_exec_catchpoint) (pid)
1680
1681 #define target_remove_exec_catchpoint(pid) \
1682 (current_top_target ()->remove_exec_catchpoint) (pid)
1683
1684 /* Syscall catch.
1685
1686 NEEDED is true if any syscall catch (of any kind) is requested.
1687 If NEEDED is false, it means the target can disable the mechanism to
1688 catch system calls because there are no more catchpoints of this type.
1689
1690 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1691 being requested. In this case, SYSCALL_COUNTS should be ignored.
1692
1693 SYSCALL_COUNTS is an array of ints, indexed by syscall number. An
1694 element in this array is nonzero if that syscall should be caught.
1695 This argument only matters if ANY_COUNT is zero.
1696
1697 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1698 for failure. */
1699
1700 #define target_set_syscall_catchpoint(pid, needed, any_count, syscall_counts) \
1701 (current_top_target ()->set_syscall_catchpoint) (pid, needed, any_count, \
1702 syscall_counts)
1703
1704 /* The debugger has completed a blocking wait() call. There is now
1705 some process event that must be processed. This function should
1706 be defined by those targets that require the debugger to perform
1707 cleanup or internal state changes in response to the process event. */
1708
1709 /* For target_mourn_inferior see target/target.h. */
1710
1711 /* Does target have enough data to do a run or attach command? */
1712
1713 extern int target_can_run ();
1714
1715 /* Set list of signals to be handled in the target.
1716
1717 PASS_SIGNALS is an array indexed by target signal number
1718 (enum gdb_signal). For every signal whose entry in this array is
1719 non-zero, the target is allowed -but not required- to skip reporting
1720 arrival of the signal to the GDB core by returning from target_wait,
1721 and to pass the signal directly to the inferior instead.
1722
1723 However, if the target is hardware single-stepping a thread that is
1724 about to receive a signal, it needs to be reported in any case, even
1725 if mentioned in a previous target_pass_signals call. */
1726
1727 extern void target_pass_signals
1728 (gdb::array_view<const unsigned char> pass_signals);
1729
1730 /* Set list of signals the target may pass to the inferior. This
1731 directly maps to the "handle SIGNAL pass/nopass" setting.
1732
1733 PROGRAM_SIGNALS is an array indexed by target signal
1734 number (enum gdb_signal). For every signal whose entry in this
1735 array is non-zero, the target is allowed to pass the signal to the
1736 inferior. Signals not present in the array shall be silently
1737 discarded. This does not influence whether to pass signals to the
1738 inferior as a result of a target_resume call. This is useful in
1739 scenarios where the target needs to decide whether to pass or not a
1740 signal to the inferior without GDB core involvement, such as for
1741 example, when detaching (as threads may have been suspended with
1742 pending signals not reported to GDB). */
1743
1744 extern void target_program_signals
1745 (gdb::array_view<const unsigned char> program_signals);
1746
1747 /* Check to see if a thread is still alive. */
1748
1749 extern int target_thread_alive (ptid_t ptid);
1750
1751 /* Sync the target's threads with GDB's thread list. */
1752
1753 extern void target_update_thread_list (void);
1754
1755 /* Make target stop in a continuable fashion. (For instance, under
1756 Unix, this should act like SIGSTOP). Note that this function is
1757 asynchronous: it does not wait for the target to become stopped
1758 before returning. If this is the behavior you want please use
1759 target_stop_and_wait. */
1760
1761 extern void target_stop (ptid_t ptid);
1762
1763 /* Interrupt the target. Unlike target_stop, this does not specify
1764 which thread/process reports the stop. For most target this acts
1765 like raising a SIGINT, though that's not absolutely required. This
1766 function is asynchronous. */
1767
1768 extern void target_interrupt ();
1769
1770 /* Pass a ^C, as determined to have been pressed by checking the quit
1771 flag, to the target, as if the user had typed the ^C on the
1772 inferior's controlling terminal while the inferior was in the
1773 foreground. Remote targets may take the opportunity to detect the
1774 remote side is not responding and offer to disconnect. */
1775
1776 extern void target_pass_ctrlc (void);
1777
1778 /* The default target_ops::to_pass_ctrlc implementation. Simply calls
1779 target_interrupt. */
1780 extern void default_target_pass_ctrlc (struct target_ops *ops);
1781
1782 /* Send the specified COMMAND to the target's monitor
1783 (shell,interpreter) for execution. The result of the query is
1784 placed in OUTBUF. */
1785
1786 #define target_rcmd(command, outbuf) \
1787 (current_top_target ()->rcmd) (command, outbuf)
1788
1789
1790 /* Does the target include all of memory, or only part of it? This
1791 determines whether we look up the target chain for other parts of
1792 memory if this target can't satisfy a request. */
1793
1794 extern int target_has_all_memory_1 (void);
1795 #define target_has_all_memory target_has_all_memory_1 ()
1796
1797 /* Does the target include memory? (Dummy targets don't.) */
1798
1799 extern int target_has_memory_1 (void);
1800 #define target_has_memory target_has_memory_1 ()
1801
1802 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1803 we start a process.) */
1804
1805 extern int target_has_stack_1 (void);
1806 #define target_has_stack target_has_stack_1 ()
1807
1808 /* Does the target have registers? (Exec files don't.) */
1809
1810 extern int target_has_registers_1 (void);
1811 #define target_has_registers target_has_registers_1 ()
1812
1813 /* Does the target have execution? Can we make it jump (through
1814 hoops), or pop its stack a few times? This means that the current
1815 target is currently executing; for some targets, that's the same as
1816 whether or not the target is capable of execution, but there are
1817 also targets which can be current while not executing. In that
1818 case this will become true after to_create_inferior or
1819 to_attach. */
1820
1821 extern bool target_has_execution_1 (inferior *inf);
1822
1823 /* Like target_has_execution_1, but always passes
1824 current_inferior(). */
1825
1826 extern int target_has_execution_current (void);
1827
1828 #define target_has_execution target_has_execution_current ()
1829
1830 /* Can the target support the debugger control of thread execution?
1831 Can it lock the thread scheduler? */
1832
1833 #define target_can_lock_scheduler \
1834 (current_top_target ()->get_thread_control_capabilities () & tc_schedlock)
1835
1836 /* Controls whether async mode is permitted. */
1837 extern bool target_async_permitted;
1838
1839 /* Can the target support asynchronous execution? */
1840 #define target_can_async_p() (current_top_target ()->can_async_p ())
1841
1842 /* Is the target in asynchronous execution mode? */
1843 #define target_is_async_p() (current_top_target ()->is_async_p ())
1844
1845 /* Enables/disabled async target events. */
1846 extern void target_async (int enable);
1847
1848 /* Enables/disables thread create and exit events. */
1849 extern void target_thread_events (int enable);
1850
1851 /* Whether support for controlling the target backends always in
1852 non-stop mode is enabled. */
1853 extern enum auto_boolean target_non_stop_enabled;
1854
1855 /* Is the target in non-stop mode? Some targets control the inferior
1856 in non-stop mode even with "set non-stop off". Always true if "set
1857 non-stop" is on. */
1858 extern int target_is_non_stop_p (void);
1859
1860 #define target_execution_direction() \
1861 (current_top_target ()->execution_direction ())
1862
1863 /* Converts a process id to a string. Usually, the string just contains
1864 `process xyz', but on some systems it may contain
1865 `process xyz thread abc'. */
1866
1867 extern std::string target_pid_to_str (ptid_t ptid);
1868
1869 extern std::string normal_pid_to_str (ptid_t ptid);
1870
1871 /* Return a short string describing extra information about PID,
1872 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1873 is okay. */
1874
1875 #define target_extra_thread_info(TP) \
1876 (current_top_target ()->extra_thread_info (TP))
1877
1878 /* Return the thread's name, or NULL if the target is unable to determine it.
1879 The returned value must not be freed by the caller. */
1880
1881 extern const char *target_thread_name (struct thread_info *);
1882
1883 /* Given a pointer to a thread library specific thread handle and
1884 its length, return a pointer to the corresponding thread_info struct. */
1885
1886 extern struct thread_info *target_thread_handle_to_thread_info
1887 (const gdb_byte *thread_handle, int handle_len, struct inferior *inf);
1888
1889 /* Given a thread, return the thread handle, a target-specific sequence of
1890 bytes which serves as a thread identifier within the program being
1891 debugged. */
1892 extern gdb::byte_vector target_thread_info_to_thread_handle
1893 (struct thread_info *);
1894
1895 /* Attempts to find the pathname of the executable file
1896 that was run to create a specified process.
1897
1898 The process PID must be stopped when this operation is used.
1899
1900 If the executable file cannot be determined, NULL is returned.
1901
1902 Else, a pointer to a character string containing the pathname
1903 is returned. This string should be copied into a buffer by
1904 the client if the string will not be immediately used, or if
1905 it must persist. */
1906
1907 #define target_pid_to_exec_file(pid) \
1908 (current_top_target ()->pid_to_exec_file) (pid)
1909
1910 /* See the to_thread_architecture description in struct target_ops. */
1911
1912 #define target_thread_architecture(ptid) \
1913 (current_top_target ()->thread_architecture (ptid))
1914
1915 /*
1916 * Iterator function for target memory regions.
1917 * Calls a callback function once for each memory region 'mapped'
1918 * in the child process. Defined as a simple macro rather than
1919 * as a function macro so that it can be tested for nullity.
1920 */
1921
1922 #define target_find_memory_regions(FUNC, DATA) \
1923 (current_top_target ()->find_memory_regions) (FUNC, DATA)
1924
1925 /*
1926 * Compose corefile .note section.
1927 */
1928
1929 #define target_make_corefile_notes(BFD, SIZE_P) \
1930 (current_top_target ()->make_corefile_notes) (BFD, SIZE_P)
1931
1932 /* Bookmark interfaces. */
1933 #define target_get_bookmark(ARGS, FROM_TTY) \
1934 (current_top_target ()->get_bookmark) (ARGS, FROM_TTY)
1935
1936 #define target_goto_bookmark(ARG, FROM_TTY) \
1937 (current_top_target ()->goto_bookmark) (ARG, FROM_TTY)
1938
1939 /* Hardware watchpoint interfaces. */
1940
1941 /* GDB's current model is that there are three "kinds" of watchpoints,
1942 with respect to when they trigger and how you can move past them.
1943
1944 Those are: continuable, steppable, and non-steppable.
1945
1946 Continuable watchpoints are like x86's -- those trigger after the
1947 memory access's side effects are fully committed to memory. I.e.,
1948 they trap with the PC pointing at the next instruction already.
1949 Continuing past such a watchpoint is doable by just normally
1950 continuing, hence the name.
1951
1952 Both steppable and non-steppable watchpoints trap before the memory
1953 access. I.e, the PC points at the instruction that is accessing
1954 the memory. So GDB needs to single-step once past the current
1955 instruction in order to make the access effective and check whether
1956 the instruction's side effects change the watched expression.
1957
1958 Now, in order to step past that instruction, depending on
1959 architecture and target, you can have two situations:
1960
1961 - steppable watchpoints: you can single-step with the watchpoint
1962 still armed, and the watchpoint won't trigger again.
1963
1964 - non-steppable watchpoints: if you try to single-step with the
1965 watchpoint still armed, you'd trap the watchpoint again and the
1966 thread wouldn't make any progress. So GDB needs to temporarily
1967 remove the watchpoint in order to step past it.
1968
1969 If your target/architecture does not signal that it has either
1970 steppable or non-steppable watchpoints via either
1971 target_have_steppable_watchpoint or
1972 gdbarch_have_nonsteppable_watchpoint, GDB assumes continuable
1973 watchpoints. */
1974
1975 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1976 write). Only the INFERIOR_PTID task is being queried. */
1977
1978 #define target_stopped_by_watchpoint() \
1979 ((current_top_target ()->stopped_by_watchpoint) ())
1980
1981 /* Returns non-zero if the target stopped because it executed a
1982 software breakpoint instruction. */
1983
1984 #define target_stopped_by_sw_breakpoint() \
1985 ((current_top_target ()->stopped_by_sw_breakpoint) ())
1986
1987 #define target_supports_stopped_by_sw_breakpoint() \
1988 ((current_top_target ()->supports_stopped_by_sw_breakpoint) ())
1989
1990 #define target_stopped_by_hw_breakpoint() \
1991 ((current_top_target ()->stopped_by_hw_breakpoint) ())
1992
1993 #define target_supports_stopped_by_hw_breakpoint() \
1994 ((current_top_target ()->supports_stopped_by_hw_breakpoint) ())
1995
1996 /* Non-zero if we have steppable watchpoints */
1997
1998 #define target_have_steppable_watchpoint \
1999 (current_top_target ()->have_steppable_watchpoint ())
2000
2001 /* Provide defaults for hardware watchpoint functions. */
2002
2003 /* If the *_hw_beakpoint functions have not been defined
2004 elsewhere use the definitions in the target vector. */
2005
2006 /* Returns positive if we can set a hardware watchpoint of type TYPE.
2007 Returns negative if the target doesn't have enough hardware debug
2008 registers available. Return zero if hardware watchpoint of type
2009 TYPE isn't supported. TYPE is one of bp_hardware_watchpoint,
2010 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
2011 CNT is the number of such watchpoints used so far, including this
2012 one. OTHERTYPE is the number of watchpoints of other types than
2013 this one used so far. */
2014
2015 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
2016 (current_top_target ()->can_use_hw_breakpoint) ( \
2017 TYPE, CNT, OTHERTYPE)
2018
2019 /* Returns the number of debug registers needed to watch the given
2020 memory region, or zero if not supported. */
2021
2022 #define target_region_ok_for_hw_watchpoint(addr, len) \
2023 (current_top_target ()->region_ok_for_hw_watchpoint) (addr, len)
2024
2025
2026 #define target_can_do_single_step() \
2027 (current_top_target ()->can_do_single_step) ()
2028
2029 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
2030 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
2031 COND is the expression for its condition, or NULL if there's none.
2032 Returns 0 for success, 1 if the watchpoint type is not supported,
2033 -1 for failure. */
2034
2035 #define target_insert_watchpoint(addr, len, type, cond) \
2036 (current_top_target ()->insert_watchpoint) (addr, len, type, cond)
2037
2038 #define target_remove_watchpoint(addr, len, type, cond) \
2039 (current_top_target ()->remove_watchpoint) (addr, len, type, cond)
2040
2041 /* Insert a new masked watchpoint at ADDR using the mask MASK.
2042 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
2043 or hw_access for an access watchpoint. Returns 0 for success, 1 if
2044 masked watchpoints are not supported, -1 for failure. */
2045
2046 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
2047 enum target_hw_bp_type);
2048
2049 /* Remove a masked watchpoint at ADDR with the mask MASK.
2050 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
2051 or hw_access for an access watchpoint. Returns 0 for success, non-zero
2052 for failure. */
2053
2054 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
2055 enum target_hw_bp_type);
2056
2057 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
2058 the target machine. Returns 0 for success, and returns non-zero or
2059 throws an error (with a detailed failure reason error code and
2060 message) otherwise. */
2061
2062 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
2063 (current_top_target ()->insert_hw_breakpoint) (gdbarch, bp_tgt)
2064
2065 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
2066 (current_top_target ()->remove_hw_breakpoint) (gdbarch, bp_tgt)
2067
2068 /* Return number of debug registers needed for a ranged breakpoint,
2069 or -1 if ranged breakpoints are not supported. */
2070
2071 extern int target_ranged_break_num_registers (void);
2072
2073 /* Return non-zero if target knows the data address which triggered this
2074 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
2075 INFERIOR_PTID task is being queried. */
2076 #define target_stopped_data_address(target, addr_p) \
2077 (target)->stopped_data_address (addr_p)
2078
2079 /* Return non-zero if ADDR is within the range of a watchpoint spanning
2080 LENGTH bytes beginning at START. */
2081 #define target_watchpoint_addr_within_range(target, addr, start, length) \
2082 (target)->watchpoint_addr_within_range (addr, start, length)
2083
2084 /* Return non-zero if the target is capable of using hardware to evaluate
2085 the condition expression. In this case, if the condition is false when
2086 the watched memory location changes, execution may continue without the
2087 debugger being notified.
2088
2089 Due to limitations in the hardware implementation, it may be capable of
2090 avoiding triggering the watchpoint in some cases where the condition
2091 expression is false, but may report some false positives as well.
2092 For this reason, GDB will still evaluate the condition expression when
2093 the watchpoint triggers. */
2094 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
2095 (current_top_target ()->can_accel_watchpoint_condition) (addr, len, type, cond)
2096
2097 /* Return number of debug registers needed for a masked watchpoint,
2098 -1 if masked watchpoints are not supported or -2 if the given address
2099 and mask combination cannot be used. */
2100
2101 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
2102
2103 /* Target can execute in reverse? */
2104 #define target_can_execute_reverse \
2105 current_top_target ()->can_execute_reverse ()
2106
2107 extern const struct target_desc *target_read_description (struct target_ops *);
2108
2109 #define target_get_ada_task_ptid(lwp, tid) \
2110 (current_top_target ()->get_ada_task_ptid) (lwp,tid)
2111
2112 /* Utility implementation of searching memory. */
2113 extern int simple_search_memory (struct target_ops* ops,
2114 CORE_ADDR start_addr,
2115 ULONGEST search_space_len,
2116 const gdb_byte *pattern,
2117 ULONGEST pattern_len,
2118 CORE_ADDR *found_addrp);
2119
2120 /* Main entry point for searching memory. */
2121 extern int target_search_memory (CORE_ADDR start_addr,
2122 ULONGEST search_space_len,
2123 const gdb_byte *pattern,
2124 ULONGEST pattern_len,
2125 CORE_ADDR *found_addrp);
2126
2127 /* Target file operations. */
2128
2129 /* Return nonzero if the filesystem seen by the current inferior
2130 is the local filesystem, zero otherwise. */
2131 #define target_filesystem_is_local() \
2132 current_top_target ()->filesystem_is_local ()
2133
2134 /* Open FILENAME on the target, in the filesystem as seen by INF,
2135 using FLAGS and MODE. If INF is NULL, use the filesystem seen
2136 by the debugger (GDB or, for remote targets, the remote stub).
2137 Return a target file descriptor, or -1 if an error occurs (and
2138 set *TARGET_ERRNO). */
2139 extern int target_fileio_open (struct inferior *inf,
2140 const char *filename, int flags,
2141 int mode, int *target_errno);
2142
2143 /* Like target_fileio_open, but print a warning message if the
2144 file is being accessed over a link that may be slow. */
2145 extern int target_fileio_open_warn_if_slow (struct inferior *inf,
2146 const char *filename,
2147 int flags,
2148 int mode,
2149 int *target_errno);
2150
2151 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2152 Return the number of bytes written, or -1 if an error occurs
2153 (and set *TARGET_ERRNO). */
2154 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2155 ULONGEST offset, int *target_errno);
2156
2157 /* Read up to LEN bytes FD on the target into READ_BUF.
2158 Return the number of bytes read, or -1 if an error occurs
2159 (and set *TARGET_ERRNO). */
2160 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2161 ULONGEST offset, int *target_errno);
2162
2163 /* Get information about the file opened as FD on the target
2164 and put it in SB. Return 0 on success, or -1 if an error
2165 occurs (and set *TARGET_ERRNO). */
2166 extern int target_fileio_fstat (int fd, struct stat *sb,
2167 int *target_errno);
2168
2169 /* Close FD on the target. Return 0, or -1 if an error occurs
2170 (and set *TARGET_ERRNO). */
2171 extern int target_fileio_close (int fd, int *target_errno);
2172
2173 /* Unlink FILENAME on the target, in the filesystem as seen by INF.
2174 If INF is NULL, use the filesystem seen by the debugger (GDB or,
2175 for remote targets, the remote stub). Return 0, or -1 if an error
2176 occurs (and set *TARGET_ERRNO). */
2177 extern int target_fileio_unlink (struct inferior *inf,
2178 const char *filename,
2179 int *target_errno);
2180
2181 /* Read value of symbolic link FILENAME on the target, in the
2182 filesystem as seen by INF. If INF is NULL, use the filesystem seen
2183 by the debugger (GDB or, for remote targets, the remote stub).
2184 Return a null-terminated string allocated via xmalloc, or NULL if
2185 an error occurs (and set *TARGET_ERRNO). */
2186 extern gdb::optional<std::string> target_fileio_readlink
2187 (struct inferior *inf, const char *filename, int *target_errno);
2188
2189 /* Read target file FILENAME, in the filesystem as seen by INF. If
2190 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2191 remote targets, the remote stub). The return value will be -1 if
2192 the transfer fails or is not supported; 0 if the object is empty;
2193 or the length of the object otherwise. If a positive value is
2194 returned, a sufficiently large buffer will be allocated using
2195 xmalloc and returned in *BUF_P containing the contents of the
2196 object.
2197
2198 This method should be used for objects sufficiently small to store
2199 in a single xmalloc'd buffer, when no fixed bound on the object's
2200 size is known in advance. */
2201 extern LONGEST target_fileio_read_alloc (struct inferior *inf,
2202 const char *filename,
2203 gdb_byte **buf_p);
2204
2205 /* Read target file FILENAME, in the filesystem as seen by INF. If
2206 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2207 remote targets, the remote stub). The result is NUL-terminated and
2208 returned as a string, allocated using xmalloc. If an error occurs
2209 or the transfer is unsupported, NULL is returned. Empty objects
2210 are returned as allocated but empty strings. A warning is issued
2211 if the result contains any embedded NUL bytes. */
2212 extern gdb::unique_xmalloc_ptr<char> target_fileio_read_stralloc
2213 (struct inferior *inf, const char *filename);
2214
2215
2216 /* Tracepoint-related operations. */
2217
2218 #define target_trace_init() \
2219 (current_top_target ()->trace_init) ()
2220
2221 #define target_download_tracepoint(t) \
2222 (current_top_target ()->download_tracepoint) (t)
2223
2224 #define target_can_download_tracepoint() \
2225 (current_top_target ()->can_download_tracepoint) ()
2226
2227 #define target_download_trace_state_variable(tsv) \
2228 (current_top_target ()->download_trace_state_variable) (tsv)
2229
2230 #define target_enable_tracepoint(loc) \
2231 (current_top_target ()->enable_tracepoint) (loc)
2232
2233 #define target_disable_tracepoint(loc) \
2234 (current_top_target ()->disable_tracepoint) (loc)
2235
2236 #define target_trace_start() \
2237 (current_top_target ()->trace_start) ()
2238
2239 #define target_trace_set_readonly_regions() \
2240 (current_top_target ()->trace_set_readonly_regions) ()
2241
2242 #define target_get_trace_status(ts) \
2243 (current_top_target ()->get_trace_status) (ts)
2244
2245 #define target_get_tracepoint_status(tp,utp) \
2246 (current_top_target ()->get_tracepoint_status) (tp, utp)
2247
2248 #define target_trace_stop() \
2249 (current_top_target ()->trace_stop) ()
2250
2251 #define target_trace_find(type,num,addr1,addr2,tpp) \
2252 (current_top_target ()->trace_find) (\
2253 (type), (num), (addr1), (addr2), (tpp))
2254
2255 #define target_get_trace_state_variable_value(tsv,val) \
2256 (current_top_target ()->get_trace_state_variable_value) ((tsv), (val))
2257
2258 #define target_save_trace_data(filename) \
2259 (current_top_target ()->save_trace_data) (filename)
2260
2261 #define target_upload_tracepoints(utpp) \
2262 (current_top_target ()->upload_tracepoints) (utpp)
2263
2264 #define target_upload_trace_state_variables(utsvp) \
2265 (current_top_target ()->upload_trace_state_variables) (utsvp)
2266
2267 #define target_get_raw_trace_data(buf,offset,len) \
2268 (current_top_target ()->get_raw_trace_data) ((buf), (offset), (len))
2269
2270 #define target_get_min_fast_tracepoint_insn_len() \
2271 (current_top_target ()->get_min_fast_tracepoint_insn_len) ()
2272
2273 #define target_set_disconnected_tracing(val) \
2274 (current_top_target ()->set_disconnected_tracing) (val)
2275
2276 #define target_set_circular_trace_buffer(val) \
2277 (current_top_target ()->set_circular_trace_buffer) (val)
2278
2279 #define target_set_trace_buffer_size(val) \
2280 (current_top_target ()->set_trace_buffer_size) (val)
2281
2282 #define target_set_trace_notes(user,notes,stopnotes) \
2283 (current_top_target ()->set_trace_notes) ((user), (notes), (stopnotes))
2284
2285 #define target_get_tib_address(ptid, addr) \
2286 (current_top_target ()->get_tib_address) ((ptid), (addr))
2287
2288 #define target_set_permissions() \
2289 (current_top_target ()->set_permissions) ()
2290
2291 #define target_static_tracepoint_marker_at(addr, marker) \
2292 (current_top_target ()->static_tracepoint_marker_at) (addr, marker)
2293
2294 #define target_static_tracepoint_markers_by_strid(marker_id) \
2295 (current_top_target ()->static_tracepoint_markers_by_strid) (marker_id)
2296
2297 #define target_traceframe_info() \
2298 (current_top_target ()->traceframe_info) ()
2299
2300 #define target_use_agent(use) \
2301 (current_top_target ()->use_agent) (use)
2302
2303 #define target_can_use_agent() \
2304 (current_top_target ()->can_use_agent) ()
2305
2306 #define target_augmented_libraries_svr4_read() \
2307 (current_top_target ()->augmented_libraries_svr4_read) ()
2308
2309 /* Command logging facility. */
2310
2311 #define target_log_command(p) \
2312 (current_top_target ()->log_command) (p)
2313
2314
2315 extern int target_core_of_thread (ptid_t ptid);
2316
2317 /* See to_get_unwinder in struct target_ops. */
2318 extern const struct frame_unwind *target_get_unwinder (void);
2319
2320 /* See to_get_tailcall_unwinder in struct target_ops. */
2321 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2322
2323 /* This implements basic memory verification, reading target memory
2324 and performing the comparison here (as opposed to accelerated
2325 verification making use of the qCRC packet, for example). */
2326
2327 extern int simple_verify_memory (struct target_ops* ops,
2328 const gdb_byte *data,
2329 CORE_ADDR memaddr, ULONGEST size);
2330
2331 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2332 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2333 if there's a mismatch, and -1 if an error is encountered while
2334 reading memory. Throws an error if the functionality is found not
2335 to be supported by the current target. */
2336 int target_verify_memory (const gdb_byte *data,
2337 CORE_ADDR memaddr, ULONGEST size);
2338
2339 /* Routines for maintenance of the target structures...
2340
2341 add_target: Add a target to the list of all possible targets.
2342 This only makes sense for targets that should be activated using
2343 the "target TARGET_NAME ..." command.
2344
2345 push_target: Make this target the top of the stack of currently used
2346 targets, within its particular stratum of the stack. Result
2347 is 0 if now atop the stack, nonzero if not on top (maybe
2348 should warn user).
2349
2350 unpush_target: Remove this from the stack of currently used targets,
2351 no matter where it is on the list. Returns 0 if no
2352 change, 1 if removed from stack. */
2353
2354 /* Type of callback called when the user activates a target with
2355 "target TARGET_NAME". The callback routine takes the rest of the
2356 parameters from the command, and (if successful) pushes a new
2357 target onto the stack. */
2358 typedef void target_open_ftype (const char *args, int from_tty);
2359
2360 /* Add the target described by INFO to the list of possible targets
2361 and add a new command 'target $(INFO->shortname)'. Set COMPLETER
2362 as the command's completer if not NULL. */
2363
2364 extern void add_target (const target_info &info,
2365 target_open_ftype *func,
2366 completer_ftype *completer = NULL);
2367
2368 /* Adds a command ALIAS for the target described by INFO and marks it
2369 deprecated. This is useful for maintaining backwards compatibility
2370 when renaming targets. */
2371
2372 extern void add_deprecated_target_alias (const target_info &info,
2373 const char *alias);
2374
2375 extern void push_target (struct target_ops *);
2376
2377 /* An overload that deletes the target on failure. */
2378 extern void push_target (target_ops_up &&);
2379
2380 extern int unpush_target (struct target_ops *);
2381
2382 extern void target_pre_inferior (int);
2383
2384 extern void target_preopen (int);
2385
2386 /* Does whatever cleanup is required to get rid of all pushed targets. */
2387 extern void pop_all_targets (void);
2388
2389 /* Like pop_all_targets, but pops only targets whose stratum is at or
2390 above STRATUM. */
2391 extern void pop_all_targets_at_and_above (enum strata stratum);
2392
2393 /* Like pop_all_targets, but pops only targets whose stratum is
2394 strictly above ABOVE_STRATUM. */
2395 extern void pop_all_targets_above (enum strata above_stratum);
2396
2397 extern bool target_is_pushed (target_ops *t);
2398
2399 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2400 CORE_ADDR offset);
2401
2402 /* Struct target_section maps address ranges to file sections. It is
2403 mostly used with BFD files, but can be used without (e.g. for handling
2404 raw disks, or files not in formats handled by BFD). */
2405
2406 struct target_section
2407 {
2408 CORE_ADDR addr; /* Lowest address in section */
2409 CORE_ADDR endaddr; /* 1+highest address in section */
2410
2411 struct bfd_section *the_bfd_section;
2412
2413 /* The "owner" of the section.
2414 It can be any unique value. It is set by add_target_sections
2415 and used by remove_target_sections.
2416 For example, for executables it is a pointer to exec_bfd and
2417 for shlibs it is the so_list pointer. */
2418 void *owner;
2419 };
2420
2421 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2422
2423 struct target_section_table
2424 {
2425 struct target_section *sections;
2426 struct target_section *sections_end;
2427 };
2428
2429 /* Return the "section" containing the specified address. */
2430 struct target_section *target_section_by_addr (struct target_ops *target,
2431 CORE_ADDR addr);
2432
2433 /* Return the target section table this target (or the targets
2434 beneath) currently manipulate. */
2435
2436 extern struct target_section_table *target_get_section_table
2437 (struct target_ops *target);
2438
2439 /* From mem-break.c */
2440
2441 extern int memory_remove_breakpoint (struct target_ops *,
2442 struct gdbarch *, struct bp_target_info *,
2443 enum remove_bp_reason);
2444
2445 extern int memory_insert_breakpoint (struct target_ops *,
2446 struct gdbarch *, struct bp_target_info *);
2447
2448 /* Convenience template use to add memory breakpoints support to a
2449 target. */
2450
2451 template <typename BaseTarget>
2452 struct memory_breakpoint_target : public BaseTarget
2453 {
2454 int insert_breakpoint (struct gdbarch *gdbarch,
2455 struct bp_target_info *bp_tgt) override
2456 { return memory_insert_breakpoint (this, gdbarch, bp_tgt); }
2457
2458 int remove_breakpoint (struct gdbarch *gdbarch,
2459 struct bp_target_info *bp_tgt,
2460 enum remove_bp_reason reason) override
2461 { return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason); }
2462 };
2463
2464 /* Check whether the memory at the breakpoint's placed address still
2465 contains the expected breakpoint instruction. */
2466
2467 extern int memory_validate_breakpoint (struct gdbarch *gdbarch,
2468 struct bp_target_info *bp_tgt);
2469
2470 extern int default_memory_remove_breakpoint (struct gdbarch *,
2471 struct bp_target_info *);
2472
2473 extern int default_memory_insert_breakpoint (struct gdbarch *,
2474 struct bp_target_info *);
2475
2476
2477 /* From target.c */
2478
2479 extern void initialize_targets (void);
2480
2481 extern void noprocess (void) ATTRIBUTE_NORETURN;
2482
2483 extern void target_require_runnable (void);
2484
2485 /* Find the target at STRATUM. If no target is at that stratum,
2486 return NULL. */
2487
2488 struct target_ops *find_target_at (enum strata stratum);
2489
2490 /* Read OS data object of type TYPE from the target, and return it in XML
2491 format. The return value follows the same rules as target_read_stralloc. */
2492
2493 extern gdb::optional<gdb::char_vector> target_get_osdata (const char *type);
2494
2495 /* Stuff that should be shared among the various remote targets. */
2496
2497 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2498 information (higher values, more information). */
2499 extern int remote_debug;
2500
2501 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2502 extern int baud_rate;
2503
2504 /* Parity for serial port */
2505 extern int serial_parity;
2506
2507 /* Timeout limit for response from target. */
2508 extern int remote_timeout;
2509
2510 \f
2511
2512 /* Set the show memory breakpoints mode to show, and return a
2513 scoped_restore to restore it back to the current value. */
2514 extern scoped_restore_tmpl<int>
2515 make_scoped_restore_show_memory_breakpoints (int show);
2516
2517 extern bool may_write_registers;
2518 extern bool may_write_memory;
2519 extern bool may_insert_breakpoints;
2520 extern bool may_insert_tracepoints;
2521 extern bool may_insert_fast_tracepoints;
2522 extern bool may_stop;
2523
2524 extern void update_target_permissions (void);
2525
2526 \f
2527 /* Imported from machine dependent code. */
2528
2529 /* See to_enable_btrace in struct target_ops. */
2530 extern struct btrace_target_info *
2531 target_enable_btrace (ptid_t ptid, const struct btrace_config *);
2532
2533 /* See to_disable_btrace in struct target_ops. */
2534 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2535
2536 /* See to_teardown_btrace in struct target_ops. */
2537 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2538
2539 /* See to_read_btrace in struct target_ops. */
2540 extern enum btrace_error target_read_btrace (struct btrace_data *,
2541 struct btrace_target_info *,
2542 enum btrace_read_type);
2543
2544 /* See to_btrace_conf in struct target_ops. */
2545 extern const struct btrace_config *
2546 target_btrace_conf (const struct btrace_target_info *);
2547
2548 /* See to_stop_recording in struct target_ops. */
2549 extern void target_stop_recording (void);
2550
2551 /* See to_save_record in struct target_ops. */
2552 extern void target_save_record (const char *filename);
2553
2554 /* Query if the target supports deleting the execution log. */
2555 extern int target_supports_delete_record (void);
2556
2557 /* See to_delete_record in struct target_ops. */
2558 extern void target_delete_record (void);
2559
2560 /* See to_record_method. */
2561 extern enum record_method target_record_method (ptid_t ptid);
2562
2563 /* See to_record_is_replaying in struct target_ops. */
2564 extern int target_record_is_replaying (ptid_t ptid);
2565
2566 /* See to_record_will_replay in struct target_ops. */
2567 extern int target_record_will_replay (ptid_t ptid, int dir);
2568
2569 /* See to_record_stop_replaying in struct target_ops. */
2570 extern void target_record_stop_replaying (void);
2571
2572 /* See to_goto_record_begin in struct target_ops. */
2573 extern void target_goto_record_begin (void);
2574
2575 /* See to_goto_record_end in struct target_ops. */
2576 extern void target_goto_record_end (void);
2577
2578 /* See to_goto_record in struct target_ops. */
2579 extern void target_goto_record (ULONGEST insn);
2580
2581 /* See to_insn_history. */
2582 extern void target_insn_history (int size, gdb_disassembly_flags flags);
2583
2584 /* See to_insn_history_from. */
2585 extern void target_insn_history_from (ULONGEST from, int size,
2586 gdb_disassembly_flags flags);
2587
2588 /* See to_insn_history_range. */
2589 extern void target_insn_history_range (ULONGEST begin, ULONGEST end,
2590 gdb_disassembly_flags flags);
2591
2592 /* See to_call_history. */
2593 extern void target_call_history (int size, record_print_flags flags);
2594
2595 /* See to_call_history_from. */
2596 extern void target_call_history_from (ULONGEST begin, int size,
2597 record_print_flags flags);
2598
2599 /* See to_call_history_range. */
2600 extern void target_call_history_range (ULONGEST begin, ULONGEST end,
2601 record_print_flags flags);
2602
2603 /* See to_prepare_to_generate_core. */
2604 extern void target_prepare_to_generate_core (void);
2605
2606 /* See to_done_generating_core. */
2607 extern void target_done_generating_core (void);
2608
2609 #endif /* !defined (TARGET_H) */
This page took 0.091654 seconds and 4 git commands to generate.