Avoid crash when calling warning too early
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41 struct inferior;
42
43 #include "infrun.h" /* For enum exec_direction_kind. */
44 #include "breakpoint.h" /* For enum bptype. */
45 #include "common/scoped_restore.h"
46
47 /* This include file defines the interface between the main part
48 of the debugger, and the part which is target-specific, or
49 specific to the communications interface between us and the
50 target.
51
52 A TARGET is an interface between the debugger and a particular
53 kind of file or process. Targets can be STACKED in STRATA,
54 so that more than one target can potentially respond to a request.
55 In particular, memory accesses will walk down the stack of targets
56 until they find a target that is interested in handling that particular
57 address. STRATA are artificial boundaries on the stack, within
58 which particular kinds of targets live. Strata exist so that
59 people don't get confused by pushing e.g. a process target and then
60 a file target, and wondering why they can't see the current values
61 of variables any more (the file target is handling them and they
62 never get to the process target). So when you push a file target,
63 it goes into the file stratum, which is always below the process
64 stratum.
65
66 Note that rather than allow an empty stack, we always have the
67 dummy target at the bottom stratum, so we can call the target
68 methods without checking them. */
69
70 #include "target/target.h"
71 #include "target/resume.h"
72 #include "target/wait.h"
73 #include "target/waitstatus.h"
74 #include "bfd.h"
75 #include "symtab.h"
76 #include "memattr.h"
77 #include "vec.h"
78 #include "gdb_signals.h"
79 #include "btrace.h"
80 #include "record.h"
81 #include "command.h"
82 #include "disasm.h"
83 #include "tracepoint.h"
84
85 #include "break-common.h" /* For enum target_hw_bp_type. */
86
87 enum strata
88 {
89 dummy_stratum, /* The lowest of the low */
90 file_stratum, /* Executable files, etc */
91 process_stratum, /* Executing processes or core dump files */
92 thread_stratum, /* Executing threads */
93 record_stratum, /* Support record debugging */
94 arch_stratum, /* Architecture overrides */
95 debug_stratum /* Target debug. Must be last. */
96 };
97
98 enum thread_control_capabilities
99 {
100 tc_none = 0, /* Default: can't control thread execution. */
101 tc_schedlock = 1, /* Can lock the thread scheduler. */
102 };
103
104 /* The structure below stores information about a system call.
105 It is basically used in the "catch syscall" command, and in
106 every function that gives information about a system call.
107
108 It's also good to mention that its fields represent everything
109 that we currently know about a syscall in GDB. */
110 struct syscall
111 {
112 /* The syscall number. */
113 int number;
114
115 /* The syscall name. */
116 const char *name;
117 };
118
119 /* Return a pretty printed form of TARGET_OPTIONS. */
120 extern std::string target_options_to_string (int target_options);
121
122 /* Possible types of events that the inferior handler will have to
123 deal with. */
124 enum inferior_event_type
125 {
126 /* Process a normal inferior event which will result in target_wait
127 being called. */
128 INF_REG_EVENT,
129 /* We are called to do stuff after the inferior stops. */
130 INF_EXEC_COMPLETE,
131 };
132 \f
133 /* Target objects which can be transfered using target_read,
134 target_write, et cetera. */
135
136 enum target_object
137 {
138 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
139 TARGET_OBJECT_AVR,
140 /* SPU target specific transfer. See "spu-tdep.c". */
141 TARGET_OBJECT_SPU,
142 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
143 TARGET_OBJECT_MEMORY,
144 /* Memory, avoiding GDB's data cache and trusting the executable.
145 Target implementations of to_xfer_partial never need to handle
146 this object, and most callers should not use it. */
147 TARGET_OBJECT_RAW_MEMORY,
148 /* Memory known to be part of the target's stack. This is cached even
149 if it is not in a region marked as such, since it is known to be
150 "normal" RAM. */
151 TARGET_OBJECT_STACK_MEMORY,
152 /* Memory known to be part of the target code. This is cached even
153 if it is not in a region marked as such. */
154 TARGET_OBJECT_CODE_MEMORY,
155 /* Kernel Unwind Table. See "ia64-tdep.c". */
156 TARGET_OBJECT_UNWIND_TABLE,
157 /* Transfer auxilliary vector. */
158 TARGET_OBJECT_AUXV,
159 /* StackGhost cookie. See "sparc-tdep.c". */
160 TARGET_OBJECT_WCOOKIE,
161 /* Target memory map in XML format. */
162 TARGET_OBJECT_MEMORY_MAP,
163 /* Flash memory. This object can be used to write contents to
164 a previously erased flash memory. Using it without erasing
165 flash can have unexpected results. Addresses are physical
166 address on target, and not relative to flash start. */
167 TARGET_OBJECT_FLASH,
168 /* Available target-specific features, e.g. registers and coprocessors.
169 See "target-descriptions.c". ANNEX should never be empty. */
170 TARGET_OBJECT_AVAILABLE_FEATURES,
171 /* Currently loaded libraries, in XML format. */
172 TARGET_OBJECT_LIBRARIES,
173 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
174 TARGET_OBJECT_LIBRARIES_SVR4,
175 /* Currently loaded libraries specific to AIX systems, in XML format. */
176 TARGET_OBJECT_LIBRARIES_AIX,
177 /* Get OS specific data. The ANNEX specifies the type (running
178 processes, etc.). The data being transfered is expected to follow
179 the DTD specified in features/osdata.dtd. */
180 TARGET_OBJECT_OSDATA,
181 /* Extra signal info. Usually the contents of `siginfo_t' on unix
182 platforms. */
183 TARGET_OBJECT_SIGNAL_INFO,
184 /* The list of threads that are being debugged. */
185 TARGET_OBJECT_THREADS,
186 /* Collected static trace data. */
187 TARGET_OBJECT_STATIC_TRACE_DATA,
188 /* Traceframe info, in XML format. */
189 TARGET_OBJECT_TRACEFRAME_INFO,
190 /* Load maps for FDPIC systems. */
191 TARGET_OBJECT_FDPIC,
192 /* Darwin dynamic linker info data. */
193 TARGET_OBJECT_DARWIN_DYLD_INFO,
194 /* OpenVMS Unwind Information Block. */
195 TARGET_OBJECT_OPENVMS_UIB,
196 /* Branch trace data, in XML format. */
197 TARGET_OBJECT_BTRACE,
198 /* Branch trace configuration, in XML format. */
199 TARGET_OBJECT_BTRACE_CONF,
200 /* The pathname of the executable file that was run to create
201 a specified process. ANNEX should be a string representation
202 of the process ID of the process in question, in hexadecimal
203 format. */
204 TARGET_OBJECT_EXEC_FILE,
205 /* FreeBSD virtual memory mappings. */
206 TARGET_OBJECT_FREEBSD_VMMAP,
207 /* FreeBSD process strings. */
208 TARGET_OBJECT_FREEBSD_PS_STRINGS,
209 /* Possible future objects: TARGET_OBJECT_FILE, ... */
210 };
211
212 /* Possible values returned by target_xfer_partial, etc. */
213
214 enum target_xfer_status
215 {
216 /* Some bytes are transferred. */
217 TARGET_XFER_OK = 1,
218
219 /* No further transfer is possible. */
220 TARGET_XFER_EOF = 0,
221
222 /* The piece of the object requested is unavailable. */
223 TARGET_XFER_UNAVAILABLE = 2,
224
225 /* Generic I/O error. Note that it's important that this is '-1',
226 as we still have target_xfer-related code returning hardcoded
227 '-1' on error. */
228 TARGET_XFER_E_IO = -1,
229
230 /* Keep list in sync with target_xfer_status_to_string. */
231 };
232
233 /* Return the string form of STATUS. */
234
235 extern const char *
236 target_xfer_status_to_string (enum target_xfer_status status);
237
238 typedef enum target_xfer_status
239 target_xfer_partial_ftype (struct target_ops *ops,
240 enum target_object object,
241 const char *annex,
242 gdb_byte *readbuf,
243 const gdb_byte *writebuf,
244 ULONGEST offset,
245 ULONGEST len,
246 ULONGEST *xfered_len);
247
248 enum target_xfer_status
249 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
250 const gdb_byte *writebuf, ULONGEST memaddr,
251 LONGEST len, ULONGEST *xfered_len);
252
253 /* Request that OPS transfer up to LEN addressable units of the target's
254 OBJECT. When reading from a memory object, the size of an addressable unit
255 is architecture dependent and can be found using
256 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
257 byte long. BUF should point to a buffer large enough to hold the read data,
258 taking into account the addressable unit size. The OFFSET, for a seekable
259 object, specifies the starting point. The ANNEX can be used to provide
260 additional data-specific information to the target.
261
262 Return the number of addressable units actually transferred, or a negative
263 error code (an 'enum target_xfer_error' value) if the transfer is not
264 supported or otherwise fails. Return of a positive value less than
265 LEN indicates that no further transfer is possible. Unlike the raw
266 to_xfer_partial interface, callers of these functions do not need
267 to retry partial transfers. */
268
269 extern LONGEST target_read (struct target_ops *ops,
270 enum target_object object,
271 const char *annex, gdb_byte *buf,
272 ULONGEST offset, LONGEST len);
273
274 struct memory_read_result
275 {
276 memory_read_result (ULONGEST begin_, ULONGEST end_,
277 gdb::unique_xmalloc_ptr<gdb_byte> &&data_)
278 : begin (begin_),
279 end (end_),
280 data (std::move (data_))
281 {
282 }
283
284 ~memory_read_result () = default;
285
286 memory_read_result (memory_read_result &&other) = default;
287
288 DISABLE_COPY_AND_ASSIGN (memory_read_result);
289
290 /* First address that was read. */
291 ULONGEST begin;
292 /* Past-the-end address. */
293 ULONGEST end;
294 /* The data. */
295 gdb::unique_xmalloc_ptr<gdb_byte> data;
296 };
297
298 extern std::vector<memory_read_result> read_memory_robust
299 (struct target_ops *ops, const ULONGEST offset, const LONGEST len);
300
301 /* Request that OPS transfer up to LEN addressable units from BUF to the
302 target's OBJECT. When writing to a memory object, the addressable unit
303 size is architecture dependent and can be found using
304 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
305 byte long. The OFFSET, for a seekable object, specifies the starting point.
306 The ANNEX can be used to provide additional data-specific information to
307 the target.
308
309 Return the number of addressable units actually transferred, or a negative
310 error code (an 'enum target_xfer_status' value) if the transfer is not
311 supported or otherwise fails. Return of a positive value less than
312 LEN indicates that no further transfer is possible. Unlike the raw
313 to_xfer_partial interface, callers of these functions do not need to
314 retry partial transfers. */
315
316 extern LONGEST target_write (struct target_ops *ops,
317 enum target_object object,
318 const char *annex, const gdb_byte *buf,
319 ULONGEST offset, LONGEST len);
320
321 /* Similar to target_write, except that it also calls PROGRESS with
322 the number of bytes written and the opaque BATON after every
323 successful partial write (and before the first write). This is
324 useful for progress reporting and user interaction while writing
325 data. To abort the transfer, the progress callback can throw an
326 exception. */
327
328 LONGEST target_write_with_progress (struct target_ops *ops,
329 enum target_object object,
330 const char *annex, const gdb_byte *buf,
331 ULONGEST offset, LONGEST len,
332 void (*progress) (ULONGEST, void *),
333 void *baton);
334
335 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will be read
336 using OPS. The return value will be uninstantiated if the transfer fails or
337 is not supported.
338
339 This method should be used for objects sufficiently small to store
340 in a single xmalloc'd buffer, when no fixed bound on the object's
341 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
342 through this function. */
343
344 extern gdb::optional<gdb::byte_vector> target_read_alloc
345 (struct target_ops *ops, enum target_object object, const char *annex);
346
347 /* Read OBJECT/ANNEX using OPS. The result is a NUL-terminated character vector
348 (therefore usable as a NUL-terminated string). If an error occurs or the
349 transfer is unsupported, the return value will be uninstantiated. Empty
350 objects are returned as allocated but empty strings. Therefore, on success,
351 the returned vector is guaranteed to have at least one element. A warning is
352 issued if the result contains any embedded NUL bytes. */
353
354 extern gdb::optional<gdb::char_vector> target_read_stralloc
355 (struct target_ops *ops, enum target_object object, const char *annex);
356
357 /* See target_ops->to_xfer_partial. */
358 extern target_xfer_partial_ftype target_xfer_partial;
359
360 /* Wrappers to target read/write that perform memory transfers. They
361 throw an error if the memory transfer fails.
362
363 NOTE: cagney/2003-10-23: The naming schema is lifted from
364 "frame.h". The parameter order is lifted from get_frame_memory,
365 which in turn lifted it from read_memory. */
366
367 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
368 gdb_byte *buf, LONGEST len);
369 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
370 CORE_ADDR addr, int len,
371 enum bfd_endian byte_order);
372 \f
373 struct thread_info; /* fwd decl for parameter list below: */
374
375 /* The type of the callback to the to_async method. */
376
377 typedef void async_callback_ftype (enum inferior_event_type event_type,
378 void *context);
379
380 /* Normally target debug printing is purely type-based. However,
381 sometimes it is necessary to override the debug printing on a
382 per-argument basis. This macro can be used, attribute-style, to
383 name the target debug printing function for a particular method
384 argument. FUNC is the name of the function. The macro's
385 definition is empty because it is only used by the
386 make-target-delegates script. */
387
388 #define TARGET_DEBUG_PRINTER(FUNC)
389
390 /* These defines are used to mark target_ops methods. The script
391 make-target-delegates scans these and auto-generates the base
392 method implementations. There are four macros that can be used:
393
394 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
395 does nothing. This is only valid if the method return type is
396 'void'.
397
398 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
399 'tcomplain ()'. The base method simply makes this call, which is
400 assumed not to return.
401
402 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
403 base method returns this expression's value.
404
405 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
406 make-target-delegates does not generate a base method in this case,
407 but instead uses the argument function as the base method. */
408
409 #define TARGET_DEFAULT_IGNORE()
410 #define TARGET_DEFAULT_NORETURN(ARG)
411 #define TARGET_DEFAULT_RETURN(ARG)
412 #define TARGET_DEFAULT_FUNC(ARG)
413
414 /* Each target that can be activated with "target TARGET_NAME" passes
415 the address of one of these objects to add_target, which uses the
416 object's address as unique identifier, and registers the "target
417 TARGET_NAME" command using SHORTNAME as target name. */
418
419 struct target_info
420 {
421 /* Name of this target. */
422 const char *shortname;
423
424 /* Name for printing. */
425 const char *longname;
426
427 /* Documentation. Does not include trailing newline, and starts
428 with a one-line description (probably similar to longname). */
429 const char *doc;
430 };
431
432 struct target_ops
433 {
434 /* To the target under this one. */
435 target_ops *beneath () const;
436
437 /* Free resources associated with the target. Note that singleton
438 targets, like e.g., native targets, are global objects, not
439 heap allocated, and are thus only deleted on GDB exit. The
440 main teardown entry point is the "close" method, below. */
441 virtual ~target_ops () {}
442
443 /* Return a reference to this target's unique target_info
444 object. */
445 virtual const target_info &info () const = 0;
446
447 /* Name this target type. */
448 const char *shortname ()
449 { return info ().shortname; }
450
451 const char *longname ()
452 { return info ().longname; }
453
454 /* Close the target. This is where the target can handle
455 teardown. Heap-allocated targets should delete themselves
456 before returning. */
457 virtual void close ();
458
459 /* Attaches to a process on the target side. Arguments are as
460 passed to the `attach' command by the user. This routine can
461 be called when the target is not on the target-stack, if the
462 target_ops::can_run method returns 1; in that case, it must push
463 itself onto the stack. Upon exit, the target should be ready
464 for normal operations, and should be ready to deliver the
465 status of the process immediately (without waiting) to an
466 upcoming target_wait call. */
467 virtual bool can_attach ();
468 virtual void attach (const char *, int);
469 virtual void post_attach (int)
470 TARGET_DEFAULT_IGNORE ();
471 virtual void detach (inferior *, int)
472 TARGET_DEFAULT_IGNORE ();
473 virtual void disconnect (const char *, int)
474 TARGET_DEFAULT_NORETURN (tcomplain ());
475 virtual void resume (ptid_t,
476 int TARGET_DEBUG_PRINTER (target_debug_print_step),
477 enum gdb_signal)
478 TARGET_DEFAULT_NORETURN (noprocess ());
479 virtual void commit_resume ()
480 TARGET_DEFAULT_IGNORE ();
481 virtual ptid_t wait (ptid_t, struct target_waitstatus *,
482 int TARGET_DEBUG_PRINTER (target_debug_print_options))
483 TARGET_DEFAULT_FUNC (default_target_wait);
484 virtual void fetch_registers (struct regcache *, int)
485 TARGET_DEFAULT_IGNORE ();
486 virtual void store_registers (struct regcache *, int)
487 TARGET_DEFAULT_NORETURN (noprocess ());
488 virtual void prepare_to_store (struct regcache *)
489 TARGET_DEFAULT_NORETURN (noprocess ());
490
491 virtual void files_info ()
492 TARGET_DEFAULT_IGNORE ();
493 virtual int insert_breakpoint (struct gdbarch *,
494 struct bp_target_info *)
495 TARGET_DEFAULT_NORETURN (noprocess ());
496 virtual int remove_breakpoint (struct gdbarch *,
497 struct bp_target_info *,
498 enum remove_bp_reason)
499 TARGET_DEFAULT_NORETURN (noprocess ());
500
501 /* Returns true if the target stopped because it executed a
502 software breakpoint. This is necessary for correct background
503 execution / non-stop mode operation, and for correct PC
504 adjustment on targets where the PC needs to be adjusted when a
505 software breakpoint triggers. In these modes, by the time GDB
506 processes a breakpoint event, the breakpoint may already be
507 done from the target, so GDB needs to be able to tell whether
508 it should ignore the event and whether it should adjust the PC.
509 See adjust_pc_after_break. */
510 virtual bool stopped_by_sw_breakpoint ()
511 TARGET_DEFAULT_RETURN (false);
512 /* Returns true if the above method is supported. */
513 virtual bool supports_stopped_by_sw_breakpoint ()
514 TARGET_DEFAULT_RETURN (false);
515
516 /* Returns true if the target stopped for a hardware breakpoint.
517 Likewise, if the target supports hardware breakpoints, this
518 method is necessary for correct background execution / non-stop
519 mode operation. Even though hardware breakpoints do not
520 require PC adjustment, GDB needs to be able to tell whether the
521 hardware breakpoint event is a delayed event for a breakpoint
522 that is already gone and should thus be ignored. */
523 virtual bool stopped_by_hw_breakpoint ()
524 TARGET_DEFAULT_RETURN (false);
525 /* Returns true if the above method is supported. */
526 virtual bool supports_stopped_by_hw_breakpoint ()
527 TARGET_DEFAULT_RETURN (false);
528
529 virtual int can_use_hw_breakpoint (enum bptype, int, int)
530 TARGET_DEFAULT_RETURN (0);
531 virtual int ranged_break_num_registers ()
532 TARGET_DEFAULT_RETURN (-1);
533 virtual int insert_hw_breakpoint (struct gdbarch *,
534 struct bp_target_info *)
535 TARGET_DEFAULT_RETURN (-1);
536 virtual int remove_hw_breakpoint (struct gdbarch *,
537 struct bp_target_info *)
538 TARGET_DEFAULT_RETURN (-1);
539
540 /* Documentation of what the two routines below are expected to do is
541 provided with the corresponding target_* macros. */
542 virtual int remove_watchpoint (CORE_ADDR, int,
543 enum target_hw_bp_type, struct expression *)
544 TARGET_DEFAULT_RETURN (-1);
545 virtual int insert_watchpoint (CORE_ADDR, int,
546 enum target_hw_bp_type, struct expression *)
547 TARGET_DEFAULT_RETURN (-1);
548
549 virtual int insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
550 enum target_hw_bp_type)
551 TARGET_DEFAULT_RETURN (1);
552 virtual int remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
553 enum target_hw_bp_type)
554 TARGET_DEFAULT_RETURN (1);
555 virtual bool stopped_by_watchpoint ()
556 TARGET_DEFAULT_RETURN (false);
557 virtual int have_steppable_watchpoint ()
558 TARGET_DEFAULT_RETURN (false);
559 virtual bool stopped_data_address (CORE_ADDR *)
560 TARGET_DEFAULT_RETURN (false);
561 virtual bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int)
562 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
563
564 /* Documentation of this routine is provided with the corresponding
565 target_* macro. */
566 virtual int region_ok_for_hw_watchpoint (CORE_ADDR, int)
567 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
568
569 virtual bool can_accel_watchpoint_condition (CORE_ADDR, int, int,
570 struct expression *)
571 TARGET_DEFAULT_RETURN (false);
572 virtual int masked_watch_num_registers (CORE_ADDR, CORE_ADDR)
573 TARGET_DEFAULT_RETURN (-1);
574
575 /* Return 1 for sure target can do single step. Return -1 for
576 unknown. Return 0 for target can't do. */
577 virtual int can_do_single_step ()
578 TARGET_DEFAULT_RETURN (-1);
579
580 virtual bool supports_terminal_ours ()
581 TARGET_DEFAULT_RETURN (false);
582 virtual void terminal_init ()
583 TARGET_DEFAULT_IGNORE ();
584 virtual void terminal_inferior ()
585 TARGET_DEFAULT_IGNORE ();
586 virtual void terminal_save_inferior ()
587 TARGET_DEFAULT_IGNORE ();
588 virtual void terminal_ours_for_output ()
589 TARGET_DEFAULT_IGNORE ();
590 virtual void terminal_ours ()
591 TARGET_DEFAULT_IGNORE ();
592 virtual void terminal_info (const char *, int)
593 TARGET_DEFAULT_FUNC (default_terminal_info);
594 virtual void kill ()
595 TARGET_DEFAULT_NORETURN (noprocess ());
596 virtual void load (const char *, int)
597 TARGET_DEFAULT_NORETURN (tcomplain ());
598 /* Start an inferior process and set inferior_ptid to its pid.
599 EXEC_FILE is the file to run.
600 ALLARGS is a string containing the arguments to the program.
601 ENV is the environment vector to pass. Errors reported with error().
602 On VxWorks and various standalone systems, we ignore exec_file. */
603 virtual bool can_create_inferior ();
604 virtual void create_inferior (const char *, const std::string &,
605 char **, int);
606 virtual void post_startup_inferior (ptid_t)
607 TARGET_DEFAULT_IGNORE ();
608 virtual int insert_fork_catchpoint (int)
609 TARGET_DEFAULT_RETURN (1);
610 virtual int remove_fork_catchpoint (int)
611 TARGET_DEFAULT_RETURN (1);
612 virtual int insert_vfork_catchpoint (int)
613 TARGET_DEFAULT_RETURN (1);
614 virtual int remove_vfork_catchpoint (int)
615 TARGET_DEFAULT_RETURN (1);
616 virtual int follow_fork (int, int)
617 TARGET_DEFAULT_FUNC (default_follow_fork);
618 virtual int insert_exec_catchpoint (int)
619 TARGET_DEFAULT_RETURN (1);
620 virtual int remove_exec_catchpoint (int)
621 TARGET_DEFAULT_RETURN (1);
622 virtual void follow_exec (struct inferior *, char *)
623 TARGET_DEFAULT_IGNORE ();
624 virtual int set_syscall_catchpoint (int, bool, int,
625 gdb::array_view<const int>)
626 TARGET_DEFAULT_RETURN (1);
627 virtual void mourn_inferior ()
628 TARGET_DEFAULT_FUNC (default_mourn_inferior);
629
630 /* Note that can_run is special and can be invoked on an unpushed
631 target. Targets defining this method must also define
632 to_can_async_p and to_supports_non_stop. */
633 virtual bool can_run ();
634
635 /* Documentation of this routine is provided with the corresponding
636 target_* macro. */
637 virtual void pass_signals (int,
638 unsigned char * TARGET_DEBUG_PRINTER (target_debug_print_signals))
639 TARGET_DEFAULT_IGNORE ();
640
641 /* Documentation of this routine is provided with the
642 corresponding target_* function. */
643 virtual void program_signals (int,
644 unsigned char * TARGET_DEBUG_PRINTER (target_debug_print_signals))
645 TARGET_DEFAULT_IGNORE ();
646
647 virtual bool thread_alive (ptid_t ptid)
648 TARGET_DEFAULT_RETURN (false);
649 virtual void update_thread_list ()
650 TARGET_DEFAULT_IGNORE ();
651 virtual const char *pid_to_str (ptid_t)
652 TARGET_DEFAULT_FUNC (default_pid_to_str);
653 virtual const char *extra_thread_info (thread_info *)
654 TARGET_DEFAULT_RETURN (NULL);
655 virtual const char *thread_name (thread_info *)
656 TARGET_DEFAULT_RETURN (NULL);
657 virtual thread_info *thread_handle_to_thread_info (const gdb_byte *,
658 int,
659 inferior *inf)
660 TARGET_DEFAULT_RETURN (NULL);
661 virtual void stop (ptid_t)
662 TARGET_DEFAULT_IGNORE ();
663 virtual void interrupt ()
664 TARGET_DEFAULT_IGNORE ();
665 virtual void pass_ctrlc ()
666 TARGET_DEFAULT_FUNC (default_target_pass_ctrlc);
667 virtual void rcmd (const char *command, struct ui_file *output)
668 TARGET_DEFAULT_FUNC (default_rcmd);
669 virtual char *pid_to_exec_file (int pid)
670 TARGET_DEFAULT_RETURN (NULL);
671 virtual void log_command (const char *)
672 TARGET_DEFAULT_IGNORE ();
673 virtual struct target_section_table *get_section_table ()
674 TARGET_DEFAULT_RETURN (NULL);
675 enum strata to_stratum;
676
677 /* Provide default values for all "must have" methods. */
678 virtual bool has_all_memory () { return false; }
679 virtual bool has_memory () { return false; }
680 virtual bool has_stack () { return false; }
681 virtual bool has_registers () { return false; }
682 virtual bool has_execution (ptid_t) { return false; }
683
684 /* Control thread execution. */
685 virtual thread_control_capabilities get_thread_control_capabilities ()
686 TARGET_DEFAULT_RETURN (tc_none);
687 virtual bool attach_no_wait ()
688 TARGET_DEFAULT_RETURN (0);
689 /* This method must be implemented in some situations. See the
690 comment on 'can_run'. */
691 virtual bool can_async_p ()
692 TARGET_DEFAULT_RETURN (false);
693 virtual bool is_async_p ()
694 TARGET_DEFAULT_RETURN (false);
695 virtual void async (int)
696 TARGET_DEFAULT_NORETURN (tcomplain ());
697 virtual void thread_events (int)
698 TARGET_DEFAULT_IGNORE ();
699 /* This method must be implemented in some situations. See the
700 comment on 'can_run'. */
701 virtual bool supports_non_stop ()
702 TARGET_DEFAULT_RETURN (false);
703 /* Return true if the target operates in non-stop mode even with
704 "set non-stop off". */
705 virtual bool always_non_stop_p ()
706 TARGET_DEFAULT_RETURN (false);
707 /* find_memory_regions support method for gcore */
708 virtual int find_memory_regions (find_memory_region_ftype func, void *data)
709 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
710 /* make_corefile_notes support method for gcore */
711 virtual char *make_corefile_notes (bfd *, int *)
712 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
713 /* get_bookmark support method for bookmarks */
714 virtual gdb_byte *get_bookmark (const char *, int)
715 TARGET_DEFAULT_NORETURN (tcomplain ());
716 /* goto_bookmark support method for bookmarks */
717 virtual void goto_bookmark (const gdb_byte *, int)
718 TARGET_DEFAULT_NORETURN (tcomplain ());
719 /* Return the thread-local address at OFFSET in the
720 thread-local storage for the thread PTID and the shared library
721 or executable file given by OBJFILE. If that block of
722 thread-local storage hasn't been allocated yet, this function
723 may return an error. LOAD_MODULE_ADDR may be zero for statically
724 linked multithreaded inferiors. */
725 virtual CORE_ADDR get_thread_local_address (ptid_t ptid,
726 CORE_ADDR load_module_addr,
727 CORE_ADDR offset)
728 TARGET_DEFAULT_NORETURN (generic_tls_error ());
729
730 /* Request that OPS transfer up to LEN addressable units of the target's
731 OBJECT. When reading from a memory object, the size of an addressable
732 unit is architecture dependent and can be found using
733 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is
734 1 byte long. The OFFSET, for a seekable object, specifies the
735 starting point. The ANNEX can be used to provide additional
736 data-specific information to the target.
737
738 Return the transferred status, error or OK (an
739 'enum target_xfer_status' value). Save the number of addressable units
740 actually transferred in *XFERED_LEN if transfer is successful
741 (TARGET_XFER_OK) or the number unavailable units if the requested
742 data is unavailable (TARGET_XFER_UNAVAILABLE). *XFERED_LEN
743 smaller than LEN does not indicate the end of the object, only
744 the end of the transfer; higher level code should continue
745 transferring if desired. This is handled in target.c.
746
747 The interface does not support a "retry" mechanism. Instead it
748 assumes that at least one addressable unit will be transfered on each
749 successful call.
750
751 NOTE: cagney/2003-10-17: The current interface can lead to
752 fragmented transfers. Lower target levels should not implement
753 hacks, such as enlarging the transfer, in an attempt to
754 compensate for this. Instead, the target stack should be
755 extended so that it implements supply/collect methods and a
756 look-aside object cache. With that available, the lowest
757 target can safely and freely "push" data up the stack.
758
759 See target_read and target_write for more information. One,
760 and only one, of readbuf or writebuf must be non-NULL. */
761
762 virtual enum target_xfer_status xfer_partial (enum target_object object,
763 const char *annex,
764 gdb_byte *readbuf,
765 const gdb_byte *writebuf,
766 ULONGEST offset, ULONGEST len,
767 ULONGEST *xfered_len)
768 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
769
770 /* Return the limit on the size of any single memory transfer
771 for the target. */
772
773 virtual ULONGEST get_memory_xfer_limit ()
774 TARGET_DEFAULT_RETURN (ULONGEST_MAX);
775
776 /* Returns the memory map for the target. A return value of NULL
777 means that no memory map is available. If a memory address
778 does not fall within any returned regions, it's assumed to be
779 RAM. The returned memory regions should not overlap.
780
781 The order of regions does not matter; target_memory_map will
782 sort regions by starting address. For that reason, this
783 function should not be called directly except via
784 target_memory_map.
785
786 This method should not cache data; if the memory map could
787 change unexpectedly, it should be invalidated, and higher
788 layers will re-fetch it. */
789 virtual std::vector<mem_region> memory_map ()
790 TARGET_DEFAULT_RETURN (std::vector<mem_region> ());
791
792 /* Erases the region of flash memory starting at ADDRESS, of
793 length LENGTH.
794
795 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
796 on flash block boundaries, as reported by 'to_memory_map'. */
797 virtual void flash_erase (ULONGEST address, LONGEST length)
798 TARGET_DEFAULT_NORETURN (tcomplain ());
799
800 /* Finishes a flash memory write sequence. After this operation
801 all flash memory should be available for writing and the result
802 of reading from areas written by 'to_flash_write' should be
803 equal to what was written. */
804 virtual void flash_done ()
805 TARGET_DEFAULT_NORETURN (tcomplain ());
806
807 /* Describe the architecture-specific features of this target. If
808 OPS doesn't have a description, this should delegate to the
809 "beneath" target. Returns the description found, or NULL if no
810 description was available. */
811 virtual const struct target_desc *read_description ()
812 TARGET_DEFAULT_RETURN (NULL);
813
814 /* Build the PTID of the thread on which a given task is running,
815 based on LWP and THREAD. These values are extracted from the
816 task Private_Data section of the Ada Task Control Block, and
817 their interpretation depends on the target. */
818 virtual ptid_t get_ada_task_ptid (long lwp, long thread)
819 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
820
821 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
822 Return 0 if *READPTR is already at the end of the buffer.
823 Return -1 if there is insufficient buffer for a whole entry.
824 Return 1 if an entry was read into *TYPEP and *VALP. */
825 virtual int auxv_parse (gdb_byte **readptr,
826 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
827 TARGET_DEFAULT_FUNC (default_auxv_parse);
828
829 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
830 sequence of bytes in PATTERN with length PATTERN_LEN.
831
832 The result is 1 if found, 0 if not found, and -1 if there was an error
833 requiring halting of the search (e.g. memory read error).
834 If the pattern is found the address is recorded in FOUND_ADDRP. */
835 virtual int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
836 const gdb_byte *pattern, ULONGEST pattern_len,
837 CORE_ADDR *found_addrp)
838 TARGET_DEFAULT_FUNC (default_search_memory);
839
840 /* Can target execute in reverse? */
841 virtual bool can_execute_reverse ()
842 TARGET_DEFAULT_RETURN (false);
843
844 /* The direction the target is currently executing. Must be
845 implemented on targets that support reverse execution and async
846 mode. The default simply returns forward execution. */
847 virtual enum exec_direction_kind execution_direction ()
848 TARGET_DEFAULT_FUNC (default_execution_direction);
849
850 /* Does this target support debugging multiple processes
851 simultaneously? */
852 virtual bool supports_multi_process ()
853 TARGET_DEFAULT_RETURN (false);
854
855 /* Does this target support enabling and disabling tracepoints while a trace
856 experiment is running? */
857 virtual bool supports_enable_disable_tracepoint ()
858 TARGET_DEFAULT_RETURN (false);
859
860 /* Does this target support disabling address space randomization? */
861 virtual bool supports_disable_randomization ()
862 TARGET_DEFAULT_FUNC (find_default_supports_disable_randomization);
863
864 /* Does this target support the tracenz bytecode for string collection? */
865 virtual bool supports_string_tracing ()
866 TARGET_DEFAULT_RETURN (false);
867
868 /* Does this target support evaluation of breakpoint conditions on its
869 end? */
870 virtual bool supports_evaluation_of_breakpoint_conditions ()
871 TARGET_DEFAULT_RETURN (false);
872
873 /* Does this target support evaluation of breakpoint commands on its
874 end? */
875 virtual bool can_run_breakpoint_commands ()
876 TARGET_DEFAULT_RETURN (false);
877
878 /* Determine current architecture of thread PTID.
879
880 The target is supposed to determine the architecture of the code where
881 the target is currently stopped at (on Cell, if a target is in spu_run,
882 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
883 This is architecture used to perform decr_pc_after_break adjustment,
884 and also determines the frame architecture of the innermost frame.
885 ptrace operations need to operate according to target_gdbarch ().
886
887 The default implementation always returns target_gdbarch (). */
888 virtual struct gdbarch *thread_architecture (ptid_t)
889 TARGET_DEFAULT_FUNC (default_thread_architecture);
890
891 /* Determine current address space of thread PTID.
892
893 The default implementation always returns the inferior's
894 address space. */
895 virtual struct address_space *thread_address_space (ptid_t)
896 TARGET_DEFAULT_FUNC (default_thread_address_space);
897
898 /* Target file operations. */
899
900 /* Return nonzero if the filesystem seen by the current inferior
901 is the local filesystem, zero otherwise. */
902 virtual bool filesystem_is_local ()
903 TARGET_DEFAULT_RETURN (true);
904
905 /* Open FILENAME on the target, in the filesystem as seen by INF,
906 using FLAGS and MODE. If INF is NULL, use the filesystem seen
907 by the debugger (GDB or, for remote targets, the remote stub).
908 If WARN_IF_SLOW is nonzero, print a warning message if the file
909 is being accessed over a link that may be slow. Return a
910 target file descriptor, or -1 if an error occurs (and set
911 *TARGET_ERRNO). */
912 virtual int fileio_open (struct inferior *inf, const char *filename,
913 int flags, int mode, int warn_if_slow,
914 int *target_errno);
915
916 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
917 Return the number of bytes written, or -1 if an error occurs
918 (and set *TARGET_ERRNO). */
919 virtual int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
920 ULONGEST offset, int *target_errno);
921
922 /* Read up to LEN bytes FD on the target into READ_BUF.
923 Return the number of bytes read, or -1 if an error occurs
924 (and set *TARGET_ERRNO). */
925 virtual int fileio_pread (int fd, gdb_byte *read_buf, int len,
926 ULONGEST offset, int *target_errno);
927
928 /* Get information about the file opened as FD and put it in
929 SB. Return 0 on success, or -1 if an error occurs (and set
930 *TARGET_ERRNO). */
931 virtual int fileio_fstat (int fd, struct stat *sb, int *target_errno);
932
933 /* Close FD on the target. Return 0, or -1 if an error occurs
934 (and set *TARGET_ERRNO). */
935 virtual int fileio_close (int fd, int *target_errno);
936
937 /* Unlink FILENAME on the target, in the filesystem as seen by
938 INF. If INF is NULL, use the filesystem seen by the debugger
939 (GDB or, for remote targets, the remote stub). Return 0, or
940 -1 if an error occurs (and set *TARGET_ERRNO). */
941 virtual int fileio_unlink (struct inferior *inf,
942 const char *filename,
943 int *target_errno);
944
945 /* Read value of symbolic link FILENAME on the target, in the
946 filesystem as seen by INF. If INF is NULL, use the filesystem
947 seen by the debugger (GDB or, for remote targets, the remote
948 stub). Return a string, or an empty optional if an error
949 occurs (and set *TARGET_ERRNO). */
950 virtual gdb::optional<std::string> fileio_readlink (struct inferior *inf,
951 const char *filename,
952 int *target_errno);
953
954 /* Implement the "info proc" command. Returns true if the target
955 actually implemented the command, false otherwise. */
956 virtual bool info_proc (const char *, enum info_proc_what);
957
958 /* Tracepoint-related operations. */
959
960 /* Prepare the target for a tracing run. */
961 virtual void trace_init ()
962 TARGET_DEFAULT_NORETURN (tcomplain ());
963
964 /* Send full details of a tracepoint location to the target. */
965 virtual void download_tracepoint (struct bp_location *location)
966 TARGET_DEFAULT_NORETURN (tcomplain ());
967
968 /* Is the target able to download tracepoint locations in current
969 state? */
970 virtual bool can_download_tracepoint ()
971 TARGET_DEFAULT_RETURN (false);
972
973 /* Send full details of a trace state variable to the target. */
974 virtual void download_trace_state_variable (const trace_state_variable &tsv)
975 TARGET_DEFAULT_NORETURN (tcomplain ());
976
977 /* Enable a tracepoint on the target. */
978 virtual void enable_tracepoint (struct bp_location *location)
979 TARGET_DEFAULT_NORETURN (tcomplain ());
980
981 /* Disable a tracepoint on the target. */
982 virtual void disable_tracepoint (struct bp_location *location)
983 TARGET_DEFAULT_NORETURN (tcomplain ());
984
985 /* Inform the target info of memory regions that are readonly
986 (such as text sections), and so it should return data from
987 those rather than look in the trace buffer. */
988 virtual void trace_set_readonly_regions ()
989 TARGET_DEFAULT_NORETURN (tcomplain ());
990
991 /* Start a trace run. */
992 virtual void trace_start ()
993 TARGET_DEFAULT_NORETURN (tcomplain ());
994
995 /* Get the current status of a tracing run. */
996 virtual int get_trace_status (struct trace_status *ts)
997 TARGET_DEFAULT_RETURN (-1);
998
999 virtual void get_tracepoint_status (struct breakpoint *tp,
1000 struct uploaded_tp *utp)
1001 TARGET_DEFAULT_NORETURN (tcomplain ());
1002
1003 /* Stop a trace run. */
1004 virtual void trace_stop ()
1005 TARGET_DEFAULT_NORETURN (tcomplain ());
1006
1007 /* Ask the target to find a trace frame of the given type TYPE,
1008 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
1009 number of the trace frame, and also the tracepoint number at
1010 TPP. If no trace frame matches, return -1. May throw if the
1011 operation fails. */
1012 virtual int trace_find (enum trace_find_type type, int num,
1013 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
1014 TARGET_DEFAULT_RETURN (-1);
1015
1016 /* Get the value of the trace state variable number TSV, returning
1017 1 if the value is known and writing the value itself into the
1018 location pointed to by VAL, else returning 0. */
1019 virtual bool get_trace_state_variable_value (int tsv, LONGEST *val)
1020 TARGET_DEFAULT_RETURN (false);
1021
1022 virtual int save_trace_data (const char *filename)
1023 TARGET_DEFAULT_NORETURN (tcomplain ());
1024
1025 virtual int upload_tracepoints (struct uploaded_tp **utpp)
1026 TARGET_DEFAULT_RETURN (0);
1027
1028 virtual int upload_trace_state_variables (struct uploaded_tsv **utsvp)
1029 TARGET_DEFAULT_RETURN (0);
1030
1031 virtual LONGEST get_raw_trace_data (gdb_byte *buf,
1032 ULONGEST offset, LONGEST len)
1033 TARGET_DEFAULT_NORETURN (tcomplain ());
1034
1035 /* Get the minimum length of instruction on which a fast tracepoint
1036 may be set on the target. If this operation is unsupported,
1037 return -1. If for some reason the minimum length cannot be
1038 determined, return 0. */
1039 virtual int get_min_fast_tracepoint_insn_len ()
1040 TARGET_DEFAULT_RETURN (-1);
1041
1042 /* Set the target's tracing behavior in response to unexpected
1043 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
1044 virtual void set_disconnected_tracing (int val)
1045 TARGET_DEFAULT_IGNORE ();
1046 virtual void set_circular_trace_buffer (int val)
1047 TARGET_DEFAULT_IGNORE ();
1048 /* Set the size of trace buffer in the target. */
1049 virtual void set_trace_buffer_size (LONGEST val)
1050 TARGET_DEFAULT_IGNORE ();
1051
1052 /* Add/change textual notes about the trace run, returning 1 if
1053 successful, 0 otherwise. */
1054 virtual bool set_trace_notes (const char *user, const char *notes,
1055 const char *stopnotes)
1056 TARGET_DEFAULT_RETURN (false);
1057
1058 /* Return the processor core that thread PTID was last seen on.
1059 This information is updated only when:
1060 - update_thread_list is called
1061 - thread stops
1062 If the core cannot be determined -- either for the specified
1063 thread, or right now, or in this debug session, or for this
1064 target -- return -1. */
1065 virtual int core_of_thread (ptid_t ptid)
1066 TARGET_DEFAULT_RETURN (-1);
1067
1068 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
1069 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
1070 a match, 0 if there's a mismatch, and -1 if an error is
1071 encountered while reading memory. */
1072 virtual int verify_memory (const gdb_byte *data,
1073 CORE_ADDR memaddr, ULONGEST size)
1074 TARGET_DEFAULT_FUNC (default_verify_memory);
1075
1076 /* Return the address of the start of the Thread Information Block
1077 a Windows OS specific feature. */
1078 virtual bool get_tib_address (ptid_t ptid, CORE_ADDR *addr)
1079 TARGET_DEFAULT_NORETURN (tcomplain ());
1080
1081 /* Send the new settings of write permission variables. */
1082 virtual void set_permissions ()
1083 TARGET_DEFAULT_IGNORE ();
1084
1085 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
1086 with its details. Return true on success, false on failure. */
1087 virtual bool static_tracepoint_marker_at (CORE_ADDR,
1088 static_tracepoint_marker *marker)
1089 TARGET_DEFAULT_RETURN (false);
1090
1091 /* Return a vector of all tracepoints markers string id ID, or all
1092 markers if ID is NULL. */
1093 virtual std::vector<static_tracepoint_marker>
1094 static_tracepoint_markers_by_strid (const char *id)
1095 TARGET_DEFAULT_NORETURN (tcomplain ());
1096
1097 /* Return a traceframe info object describing the current
1098 traceframe's contents. This method should not cache data;
1099 higher layers take care of caching, invalidating, and
1100 re-fetching when necessary. */
1101 virtual traceframe_info_up traceframe_info ()
1102 TARGET_DEFAULT_NORETURN (tcomplain ());
1103
1104 /* Ask the target to use or not to use agent according to USE.
1105 Return true if successful, false otherwise. */
1106 virtual bool use_agent (bool use)
1107 TARGET_DEFAULT_NORETURN (tcomplain ());
1108
1109 /* Is the target able to use agent in current state? */
1110 virtual bool can_use_agent ()
1111 TARGET_DEFAULT_RETURN (false);
1112
1113 /* Enable branch tracing for PTID using CONF configuration.
1114 Return a branch trace target information struct for reading and for
1115 disabling branch trace. */
1116 virtual struct btrace_target_info *enable_btrace (ptid_t ptid,
1117 const struct btrace_config *conf)
1118 TARGET_DEFAULT_NORETURN (tcomplain ());
1119
1120 /* Disable branch tracing and deallocate TINFO. */
1121 virtual void disable_btrace (struct btrace_target_info *tinfo)
1122 TARGET_DEFAULT_NORETURN (tcomplain ());
1123
1124 /* Disable branch tracing and deallocate TINFO. This function is similar
1125 to to_disable_btrace, except that it is called during teardown and is
1126 only allowed to perform actions that are safe. A counter-example would
1127 be attempting to talk to a remote target. */
1128 virtual void teardown_btrace (struct btrace_target_info *tinfo)
1129 TARGET_DEFAULT_NORETURN (tcomplain ());
1130
1131 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1132 DATA is cleared before new trace is added. */
1133 virtual enum btrace_error read_btrace (struct btrace_data *data,
1134 struct btrace_target_info *btinfo,
1135 enum btrace_read_type type)
1136 TARGET_DEFAULT_NORETURN (tcomplain ());
1137
1138 /* Get the branch trace configuration. */
1139 virtual const struct btrace_config *btrace_conf (const struct btrace_target_info *)
1140 TARGET_DEFAULT_RETURN (NULL);
1141
1142 /* Current recording method. */
1143 virtual enum record_method record_method (ptid_t ptid)
1144 TARGET_DEFAULT_RETURN (RECORD_METHOD_NONE);
1145
1146 /* Stop trace recording. */
1147 virtual void stop_recording ()
1148 TARGET_DEFAULT_IGNORE ();
1149
1150 /* Print information about the recording. */
1151 virtual void info_record ()
1152 TARGET_DEFAULT_IGNORE ();
1153
1154 /* Save the recorded execution trace into a file. */
1155 virtual void save_record (const char *filename)
1156 TARGET_DEFAULT_NORETURN (tcomplain ());
1157
1158 /* Delete the recorded execution trace from the current position
1159 onwards. */
1160 virtual bool supports_delete_record ()
1161 TARGET_DEFAULT_RETURN (false);
1162 virtual void delete_record ()
1163 TARGET_DEFAULT_NORETURN (tcomplain ());
1164
1165 /* Query if the record target is currently replaying PTID. */
1166 virtual bool record_is_replaying (ptid_t ptid)
1167 TARGET_DEFAULT_RETURN (false);
1168
1169 /* Query if the record target will replay PTID if it were resumed in
1170 execution direction DIR. */
1171 virtual bool record_will_replay (ptid_t ptid, int dir)
1172 TARGET_DEFAULT_RETURN (false);
1173
1174 /* Stop replaying. */
1175 virtual void record_stop_replaying ()
1176 TARGET_DEFAULT_IGNORE ();
1177
1178 /* Go to the begin of the execution trace. */
1179 virtual void goto_record_begin ()
1180 TARGET_DEFAULT_NORETURN (tcomplain ());
1181
1182 /* Go to the end of the execution trace. */
1183 virtual void goto_record_end ()
1184 TARGET_DEFAULT_NORETURN (tcomplain ());
1185
1186 /* Go to a specific location in the recorded execution trace. */
1187 virtual void goto_record (ULONGEST insn)
1188 TARGET_DEFAULT_NORETURN (tcomplain ());
1189
1190 /* Disassemble SIZE instructions in the recorded execution trace from
1191 the current position.
1192 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1193 disassemble SIZE succeeding instructions. */
1194 virtual void insn_history (int size, gdb_disassembly_flags flags)
1195 TARGET_DEFAULT_NORETURN (tcomplain ());
1196
1197 /* Disassemble SIZE instructions in the recorded execution trace around
1198 FROM.
1199 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1200 disassemble SIZE instructions after FROM. */
1201 virtual void insn_history_from (ULONGEST from, int size,
1202 gdb_disassembly_flags flags)
1203 TARGET_DEFAULT_NORETURN (tcomplain ());
1204
1205 /* Disassemble a section of the recorded execution trace from instruction
1206 BEGIN (inclusive) to instruction END (inclusive). */
1207 virtual void insn_history_range (ULONGEST begin, ULONGEST end,
1208 gdb_disassembly_flags flags)
1209 TARGET_DEFAULT_NORETURN (tcomplain ());
1210
1211 /* Print a function trace of the recorded execution trace.
1212 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1213 succeeding functions. */
1214 virtual void call_history (int size, record_print_flags flags)
1215 TARGET_DEFAULT_NORETURN (tcomplain ());
1216
1217 /* Print a function trace of the recorded execution trace starting
1218 at function FROM.
1219 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1220 SIZE functions after FROM. */
1221 virtual void call_history_from (ULONGEST begin, int size, record_print_flags flags)
1222 TARGET_DEFAULT_NORETURN (tcomplain ());
1223
1224 /* Print a function trace of an execution trace section from function BEGIN
1225 (inclusive) to function END (inclusive). */
1226 virtual void call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
1227 TARGET_DEFAULT_NORETURN (tcomplain ());
1228
1229 /* True if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1230 non-empty annex. */
1231 virtual bool augmented_libraries_svr4_read ()
1232 TARGET_DEFAULT_RETURN (false);
1233
1234 /* Those unwinders are tried before any other arch unwinders. If
1235 SELF doesn't have unwinders, it should delegate to the
1236 "beneath" target. */
1237 virtual const struct frame_unwind *get_unwinder ()
1238 TARGET_DEFAULT_RETURN (NULL);
1239
1240 virtual const struct frame_unwind *get_tailcall_unwinder ()
1241 TARGET_DEFAULT_RETURN (NULL);
1242
1243 /* Prepare to generate a core file. */
1244 virtual void prepare_to_generate_core ()
1245 TARGET_DEFAULT_IGNORE ();
1246
1247 /* Cleanup after generating a core file. */
1248 virtual void done_generating_core ()
1249 TARGET_DEFAULT_IGNORE ();
1250 };
1251
1252 /* Deleter for std::unique_ptr. See comments in
1253 target_ops::~target_ops and target_ops::close about heap-allocated
1254 targets. */
1255 struct target_ops_deleter
1256 {
1257 void operator() (target_ops *target)
1258 {
1259 target->close ();
1260 }
1261 };
1262
1263 /* A unique pointer for target_ops. */
1264 typedef std::unique_ptr<target_ops, target_ops_deleter> target_ops_up;
1265
1266 /* Native target backends call this once at initialization time to
1267 inform the core about which is the target that can respond to "run"
1268 or "attach". Note: native targets are always singletons. */
1269 extern void set_native_target (target_ops *target);
1270
1271 /* Get the registered native target, if there's one. Otherwise return
1272 NULL. */
1273 extern target_ops *get_native_target ();
1274
1275 /* Type that manages a target stack. See description of target stacks
1276 and strata at the top of the file. */
1277
1278 class target_stack
1279 {
1280 public:
1281 target_stack () = default;
1282 DISABLE_COPY_AND_ASSIGN (target_stack);
1283
1284 /* Push a new target into the stack of the existing target
1285 accessors, possibly superseding some existing accessor. */
1286 void push (target_ops *t);
1287
1288 /* Remove a target from the stack, wherever it may be. Return true
1289 if it was removed, false otherwise. */
1290 bool unpush (target_ops *t);
1291
1292 /* Returns true if T is pushed on the target stack. */
1293 bool is_pushed (target_ops *t) const
1294 { return at (t->to_stratum) == t; }
1295
1296 /* Return the target at STRATUM. */
1297 target_ops *at (strata stratum) const { return m_stack[stratum]; }
1298
1299 /* Return the target at the top of the stack. */
1300 target_ops *top () const { return at (m_top); }
1301
1302 /* Find the next target down the stack from the specified target. */
1303 target_ops *find_beneath (const target_ops *t) const;
1304
1305 private:
1306 /* The stratum of the top target. */
1307 enum strata m_top {};
1308
1309 /* The stack, represented as an array, with one slot per stratum.
1310 If no target is pushed at some stratum, the corresponding slot is
1311 null. */
1312 target_ops *m_stack[(int) debug_stratum + 1] {};
1313 };
1314
1315 /* The ops structure for our "current" target process. This should
1316 never be NULL. If there is no target, it points to the dummy_target. */
1317
1318 extern target_ops *current_top_target ();
1319
1320 /* Define easy words for doing these operations on our current target. */
1321
1322 #define target_shortname (current_top_target ()->shortname ())
1323 #define target_longname (current_top_target ()->longname ())
1324
1325 /* Does whatever cleanup is required for a target that we are no
1326 longer going to be calling. This routine is automatically always
1327 called after popping the target off the target stack - the target's
1328 own methods are no longer available through the target vector.
1329 Closing file descriptors and freeing all memory allocated memory are
1330 typical things it should do. */
1331
1332 void target_close (struct target_ops *targ);
1333
1334 /* Find the correct target to use for "attach". If a target on the
1335 current stack supports attaching, then it is returned. Otherwise,
1336 the default run target is returned. */
1337
1338 extern struct target_ops *find_attach_target (void);
1339
1340 /* Find the correct target to use for "run". If a target on the
1341 current stack supports creating a new inferior, then it is
1342 returned. Otherwise, the default run target is returned. */
1343
1344 extern struct target_ops *find_run_target (void);
1345
1346 /* Some targets don't generate traps when attaching to the inferior,
1347 or their target_attach implementation takes care of the waiting.
1348 These targets must set to_attach_no_wait. */
1349
1350 #define target_attach_no_wait() \
1351 (current_top_target ()->attach_no_wait ())
1352
1353 /* The target_attach operation places a process under debugger control,
1354 and stops the process.
1355
1356 This operation provides a target-specific hook that allows the
1357 necessary bookkeeping to be performed after an attach completes. */
1358 #define target_post_attach(pid) \
1359 (current_top_target ()->post_attach) (pid)
1360
1361 /* Display a message indicating we're about to detach from the current
1362 inferior process. */
1363
1364 extern void target_announce_detach (int from_tty);
1365
1366 /* Takes a program previously attached to and detaches it.
1367 The program may resume execution (some targets do, some don't) and will
1368 no longer stop on signals, etc. We better not have left any breakpoints
1369 in the program or it'll die when it hits one. FROM_TTY says whether to be
1370 verbose or not. */
1371
1372 extern void target_detach (inferior *inf, int from_tty);
1373
1374 /* Disconnect from the current target without resuming it (leaving it
1375 waiting for a debugger). */
1376
1377 extern void target_disconnect (const char *, int);
1378
1379 /* Resume execution (or prepare for execution) of a target thread,
1380 process or all processes. STEP says whether to hardware
1381 single-step or to run free; SIGGNAL is the signal to be given to
1382 the target, or GDB_SIGNAL_0 for no signal. The caller may not pass
1383 GDB_SIGNAL_DEFAULT. A specific PTID means `step/resume only this
1384 process id'. A wildcard PTID (all threads, or all threads of
1385 process) means `step/resume INFERIOR_PTID, and let other threads
1386 (for which the wildcard PTID matches) resume with their
1387 'thread->suspend.stop_signal' signal (usually GDB_SIGNAL_0) if it
1388 is in "pass" state, or with no signal if in "no pass" state.
1389
1390 In order to efficiently handle batches of resumption requests,
1391 targets may implement this method such that it records the
1392 resumption request, but defers the actual resumption to the
1393 target_commit_resume method implementation. See
1394 target_commit_resume below. */
1395 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1396
1397 /* Commit a series of resumption requests previously prepared with
1398 target_resume calls.
1399
1400 GDB always calls target_commit_resume after calling target_resume
1401 one or more times. A target may thus use this method in
1402 coordination with the target_resume method to batch target-side
1403 resumption requests. In that case, the target doesn't actually
1404 resume in its target_resume implementation. Instead, it prepares
1405 the resumption in target_resume, and defers the actual resumption
1406 to target_commit_resume. E.g., the remote target uses this to
1407 coalesce multiple resumption requests in a single vCont packet. */
1408 extern void target_commit_resume ();
1409
1410 /* Setup to defer target_commit_resume calls, and reactivate
1411 target_commit_resume on destruction, if it was previously
1412 active. */
1413 extern scoped_restore_tmpl<int> make_scoped_defer_target_commit_resume ();
1414
1415 /* For target_read_memory see target/target.h. */
1416
1417 /* The default target_ops::to_wait implementation. */
1418
1419 extern ptid_t default_target_wait (struct target_ops *ops,
1420 ptid_t ptid,
1421 struct target_waitstatus *status,
1422 int options);
1423
1424 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1425
1426 extern void target_fetch_registers (struct regcache *regcache, int regno);
1427
1428 /* Store at least register REGNO, or all regs if REGNO == -1.
1429 It can store as many registers as it wants to, so target_prepare_to_store
1430 must have been previously called. Calls error() if there are problems. */
1431
1432 extern void target_store_registers (struct regcache *regcache, int regs);
1433
1434 /* Get ready to modify the registers array. On machines which store
1435 individual registers, this doesn't need to do anything. On machines
1436 which store all the registers in one fell swoop, this makes sure
1437 that REGISTERS contains all the registers from the program being
1438 debugged. */
1439
1440 #define target_prepare_to_store(regcache) \
1441 (current_top_target ()->prepare_to_store) (regcache)
1442
1443 /* Determine current address space of thread PTID. */
1444
1445 struct address_space *target_thread_address_space (ptid_t);
1446
1447 /* Implement the "info proc" command. This returns one if the request
1448 was handled, and zero otherwise. It can also throw an exception if
1449 an error was encountered while attempting to handle the
1450 request. */
1451
1452 int target_info_proc (const char *, enum info_proc_what);
1453
1454 /* Returns true if this target can disable address space randomization. */
1455
1456 int target_supports_disable_randomization (void);
1457
1458 /* Returns true if this target can enable and disable tracepoints
1459 while a trace experiment is running. */
1460
1461 #define target_supports_enable_disable_tracepoint() \
1462 (current_top_target ()->supports_enable_disable_tracepoint) ()
1463
1464 #define target_supports_string_tracing() \
1465 (current_top_target ()->supports_string_tracing) ()
1466
1467 /* Returns true if this target can handle breakpoint conditions
1468 on its end. */
1469
1470 #define target_supports_evaluation_of_breakpoint_conditions() \
1471 (current_top_target ()->supports_evaluation_of_breakpoint_conditions) ()
1472
1473 /* Returns true if this target can handle breakpoint commands
1474 on its end. */
1475
1476 #define target_can_run_breakpoint_commands() \
1477 (current_top_target ()->can_run_breakpoint_commands) ()
1478
1479 extern int target_read_string (CORE_ADDR, gdb::unique_xmalloc_ptr<char> *,
1480 int, int *);
1481
1482 /* For target_read_memory see target/target.h. */
1483
1484 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1485 ssize_t len);
1486
1487 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1488
1489 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1490
1491 /* For target_write_memory see target/target.h. */
1492
1493 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1494 ssize_t len);
1495
1496 /* Fetches the target's memory map. If one is found it is sorted
1497 and returned, after some consistency checking. Otherwise, NULL
1498 is returned. */
1499 std::vector<mem_region> target_memory_map (void);
1500
1501 /* Erases all flash memory regions on the target. */
1502 void flash_erase_command (const char *cmd, int from_tty);
1503
1504 /* Erase the specified flash region. */
1505 void target_flash_erase (ULONGEST address, LONGEST length);
1506
1507 /* Finish a sequence of flash operations. */
1508 void target_flash_done (void);
1509
1510 /* Describes a request for a memory write operation. */
1511 struct memory_write_request
1512 {
1513 memory_write_request (ULONGEST begin_, ULONGEST end_,
1514 gdb_byte *data_ = nullptr, void *baton_ = nullptr)
1515 : begin (begin_), end (end_), data (data_), baton (baton_)
1516 {}
1517
1518 /* Begining address that must be written. */
1519 ULONGEST begin;
1520 /* Past-the-end address. */
1521 ULONGEST end;
1522 /* The data to write. */
1523 gdb_byte *data;
1524 /* A callback baton for progress reporting for this request. */
1525 void *baton;
1526 };
1527
1528 /* Enumeration specifying different flash preservation behaviour. */
1529 enum flash_preserve_mode
1530 {
1531 flash_preserve,
1532 flash_discard
1533 };
1534
1535 /* Write several memory blocks at once. This version can be more
1536 efficient than making several calls to target_write_memory, in
1537 particular because it can optimize accesses to flash memory.
1538
1539 Moreover, this is currently the only memory access function in gdb
1540 that supports writing to flash memory, and it should be used for
1541 all cases where access to flash memory is desirable.
1542
1543 REQUESTS is the vector (see vec.h) of memory_write_request.
1544 PRESERVE_FLASH_P indicates what to do with blocks which must be
1545 erased, but not completely rewritten.
1546 PROGRESS_CB is a function that will be periodically called to provide
1547 feedback to user. It will be called with the baton corresponding
1548 to the request currently being written. It may also be called
1549 with a NULL baton, when preserved flash sectors are being rewritten.
1550
1551 The function returns 0 on success, and error otherwise. */
1552 int target_write_memory_blocks
1553 (const std::vector<memory_write_request> &requests,
1554 enum flash_preserve_mode preserve_flash_p,
1555 void (*progress_cb) (ULONGEST, void *));
1556
1557 /* Print a line about the current target. */
1558
1559 #define target_files_info() \
1560 (current_top_target ()->files_info) ()
1561
1562 /* Insert a breakpoint at address BP_TGT->placed_address in
1563 the target machine. Returns 0 for success, and returns non-zero or
1564 throws an error (with a detailed failure reason error code and
1565 message) otherwise. */
1566
1567 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1568 struct bp_target_info *bp_tgt);
1569
1570 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1571 machine. Result is 0 for success, non-zero for error. */
1572
1573 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1574 struct bp_target_info *bp_tgt,
1575 enum remove_bp_reason reason);
1576
1577 /* Return true if the target stack has a non-default
1578 "terminal_ours" method. */
1579
1580 extern bool target_supports_terminal_ours (void);
1581
1582 /* Kill the inferior process. Make it go away. */
1583
1584 extern void target_kill (void);
1585
1586 /* Load an executable file into the target process. This is expected
1587 to not only bring new code into the target process, but also to
1588 update GDB's symbol tables to match.
1589
1590 ARG contains command-line arguments, to be broken down with
1591 buildargv (). The first non-switch argument is the filename to
1592 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1593 0)), which is an offset to apply to the load addresses of FILE's
1594 sections. The target may define switches, or other non-switch
1595 arguments, as it pleases. */
1596
1597 extern void target_load (const char *arg, int from_tty);
1598
1599 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1600 notification of inferior events such as fork and vork immediately
1601 after the inferior is created. (This because of how gdb gets an
1602 inferior created via invoking a shell to do it. In such a scenario,
1603 if the shell init file has commands in it, the shell will fork and
1604 exec for each of those commands, and we will see each such fork
1605 event. Very bad.)
1606
1607 Such targets will supply an appropriate definition for this function. */
1608
1609 #define target_post_startup_inferior(ptid) \
1610 (current_top_target ()->post_startup_inferior) (ptid)
1611
1612 /* On some targets, we can catch an inferior fork or vfork event when
1613 it occurs. These functions insert/remove an already-created
1614 catchpoint for such events. They return 0 for success, 1 if the
1615 catchpoint type is not supported and -1 for failure. */
1616
1617 #define target_insert_fork_catchpoint(pid) \
1618 (current_top_target ()->insert_fork_catchpoint) (pid)
1619
1620 #define target_remove_fork_catchpoint(pid) \
1621 (current_top_target ()->remove_fork_catchpoint) (pid)
1622
1623 #define target_insert_vfork_catchpoint(pid) \
1624 (current_top_target ()->insert_vfork_catchpoint) (pid)
1625
1626 #define target_remove_vfork_catchpoint(pid) \
1627 (current_top_target ()->remove_vfork_catchpoint) (pid)
1628
1629 /* If the inferior forks or vforks, this function will be called at
1630 the next resume in order to perform any bookkeeping and fiddling
1631 necessary to continue debugging either the parent or child, as
1632 requested, and releasing the other. Information about the fork
1633 or vfork event is available via get_last_target_status ().
1634 This function returns 1 if the inferior should not be resumed
1635 (i.e. there is another event pending). */
1636
1637 int target_follow_fork (int follow_child, int detach_fork);
1638
1639 /* Handle the target-specific bookkeeping required when the inferior
1640 makes an exec call. INF is the exec'd inferior. */
1641
1642 void target_follow_exec (struct inferior *inf, char *execd_pathname);
1643
1644 /* On some targets, we can catch an inferior exec event when it
1645 occurs. These functions insert/remove an already-created
1646 catchpoint for such events. They return 0 for success, 1 if the
1647 catchpoint type is not supported and -1 for failure. */
1648
1649 #define target_insert_exec_catchpoint(pid) \
1650 (current_top_target ()->insert_exec_catchpoint) (pid)
1651
1652 #define target_remove_exec_catchpoint(pid) \
1653 (current_top_target ()->remove_exec_catchpoint) (pid)
1654
1655 /* Syscall catch.
1656
1657 NEEDED is true if any syscall catch (of any kind) is requested.
1658 If NEEDED is false, it means the target can disable the mechanism to
1659 catch system calls because there are no more catchpoints of this type.
1660
1661 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1662 being requested. In this case, SYSCALL_COUNTS should be ignored.
1663
1664 SYSCALL_COUNTS is an array of ints, indexed by syscall number. An
1665 element in this array is nonzero if that syscall should be caught.
1666 This argument only matters if ANY_COUNT is zero.
1667
1668 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1669 for failure. */
1670
1671 #define target_set_syscall_catchpoint(pid, needed, any_count, syscall_counts) \
1672 (current_top_target ()->set_syscall_catchpoint) (pid, needed, any_count, \
1673 syscall_counts)
1674
1675 /* The debugger has completed a blocking wait() call. There is now
1676 some process event that must be processed. This function should
1677 be defined by those targets that require the debugger to perform
1678 cleanup or internal state changes in response to the process event. */
1679
1680 /* For target_mourn_inferior see target/target.h. */
1681
1682 /* Does target have enough data to do a run or attach command? */
1683
1684 extern int target_can_run ();
1685
1686 /* Set list of signals to be handled in the target.
1687
1688 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1689 (enum gdb_signal). For every signal whose entry in this array is
1690 non-zero, the target is allowed -but not required- to skip reporting
1691 arrival of the signal to the GDB core by returning from target_wait,
1692 and to pass the signal directly to the inferior instead.
1693
1694 However, if the target is hardware single-stepping a thread that is
1695 about to receive a signal, it needs to be reported in any case, even
1696 if mentioned in a previous target_pass_signals call. */
1697
1698 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1699
1700 /* Set list of signals the target may pass to the inferior. This
1701 directly maps to the "handle SIGNAL pass/nopass" setting.
1702
1703 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1704 number (enum gdb_signal). For every signal whose entry in this
1705 array is non-zero, the target is allowed to pass the signal to the
1706 inferior. Signals not present in the array shall be silently
1707 discarded. This does not influence whether to pass signals to the
1708 inferior as a result of a target_resume call. This is useful in
1709 scenarios where the target needs to decide whether to pass or not a
1710 signal to the inferior without GDB core involvement, such as for
1711 example, when detaching (as threads may have been suspended with
1712 pending signals not reported to GDB). */
1713
1714 extern void target_program_signals (int nsig, unsigned char *program_signals);
1715
1716 /* Check to see if a thread is still alive. */
1717
1718 extern int target_thread_alive (ptid_t ptid);
1719
1720 /* Sync the target's threads with GDB's thread list. */
1721
1722 extern void target_update_thread_list (void);
1723
1724 /* Make target stop in a continuable fashion. (For instance, under
1725 Unix, this should act like SIGSTOP). Note that this function is
1726 asynchronous: it does not wait for the target to become stopped
1727 before returning. If this is the behavior you want please use
1728 target_stop_and_wait. */
1729
1730 extern void target_stop (ptid_t ptid);
1731
1732 /* Interrupt the target. Unlike target_stop, this does not specify
1733 which thread/process reports the stop. For most target this acts
1734 like raising a SIGINT, though that's not absolutely required. This
1735 function is asynchronous. */
1736
1737 extern void target_interrupt ();
1738
1739 /* Pass a ^C, as determined to have been pressed by checking the quit
1740 flag, to the target, as if the user had typed the ^C on the
1741 inferior's controlling terminal while the inferior was in the
1742 foreground. Remote targets may take the opportunity to detect the
1743 remote side is not responding and offer to disconnect. */
1744
1745 extern void target_pass_ctrlc (void);
1746
1747 /* The default target_ops::to_pass_ctrlc implementation. Simply calls
1748 target_interrupt. */
1749 extern void default_target_pass_ctrlc (struct target_ops *ops);
1750
1751 /* Send the specified COMMAND to the target's monitor
1752 (shell,interpreter) for execution. The result of the query is
1753 placed in OUTBUF. */
1754
1755 #define target_rcmd(command, outbuf) \
1756 (current_top_target ()->rcmd) (command, outbuf)
1757
1758
1759 /* Does the target include all of memory, or only part of it? This
1760 determines whether we look up the target chain for other parts of
1761 memory if this target can't satisfy a request. */
1762
1763 extern int target_has_all_memory_1 (void);
1764 #define target_has_all_memory target_has_all_memory_1 ()
1765
1766 /* Does the target include memory? (Dummy targets don't.) */
1767
1768 extern int target_has_memory_1 (void);
1769 #define target_has_memory target_has_memory_1 ()
1770
1771 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1772 we start a process.) */
1773
1774 extern int target_has_stack_1 (void);
1775 #define target_has_stack target_has_stack_1 ()
1776
1777 /* Does the target have registers? (Exec files don't.) */
1778
1779 extern int target_has_registers_1 (void);
1780 #define target_has_registers target_has_registers_1 ()
1781
1782 /* Does the target have execution? Can we make it jump (through
1783 hoops), or pop its stack a few times? This means that the current
1784 target is currently executing; for some targets, that's the same as
1785 whether or not the target is capable of execution, but there are
1786 also targets which can be current while not executing. In that
1787 case this will become true after to_create_inferior or
1788 to_attach. */
1789
1790 extern int target_has_execution_1 (ptid_t);
1791
1792 /* Like target_has_execution_1, but always passes inferior_ptid. */
1793
1794 extern int target_has_execution_current (void);
1795
1796 #define target_has_execution target_has_execution_current ()
1797
1798 /* Default implementations for process_stratum targets. Return true
1799 if there's a selected inferior, false otherwise. */
1800
1801 extern int default_child_has_all_memory ();
1802 extern int default_child_has_memory ();
1803 extern int default_child_has_stack ();
1804 extern int default_child_has_registers ();
1805 extern int default_child_has_execution (ptid_t the_ptid);
1806
1807 /* Can the target support the debugger control of thread execution?
1808 Can it lock the thread scheduler? */
1809
1810 #define target_can_lock_scheduler \
1811 (current_top_target ()->get_thread_control_capabilities () & tc_schedlock)
1812
1813 /* Controls whether async mode is permitted. */
1814 extern int target_async_permitted;
1815
1816 /* Can the target support asynchronous execution? */
1817 #define target_can_async_p() (current_top_target ()->can_async_p ())
1818
1819 /* Is the target in asynchronous execution mode? */
1820 #define target_is_async_p() (current_top_target ()->is_async_p ())
1821
1822 /* Enables/disabled async target events. */
1823 extern void target_async (int enable);
1824
1825 /* Enables/disables thread create and exit events. */
1826 extern void target_thread_events (int enable);
1827
1828 /* Whether support for controlling the target backends always in
1829 non-stop mode is enabled. */
1830 extern enum auto_boolean target_non_stop_enabled;
1831
1832 /* Is the target in non-stop mode? Some targets control the inferior
1833 in non-stop mode even with "set non-stop off". Always true if "set
1834 non-stop" is on. */
1835 extern int target_is_non_stop_p (void);
1836
1837 #define target_execution_direction() \
1838 (current_top_target ()->execution_direction ())
1839
1840 /* Converts a process id to a string. Usually, the string just contains
1841 `process xyz', but on some systems it may contain
1842 `process xyz thread abc'. */
1843
1844 extern const char *target_pid_to_str (ptid_t ptid);
1845
1846 extern const char *normal_pid_to_str (ptid_t ptid);
1847
1848 /* Return a short string describing extra information about PID,
1849 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1850 is okay. */
1851
1852 #define target_extra_thread_info(TP) \
1853 (current_top_target ()->extra_thread_info (TP))
1854
1855 /* Return the thread's name, or NULL if the target is unable to determine it.
1856 The returned value must not be freed by the caller. */
1857
1858 extern const char *target_thread_name (struct thread_info *);
1859
1860 /* Given a pointer to a thread library specific thread handle and
1861 its length, return a pointer to the corresponding thread_info struct. */
1862
1863 extern struct thread_info *target_thread_handle_to_thread_info
1864 (const gdb_byte *thread_handle, int handle_len, struct inferior *inf);
1865
1866 /* Attempts to find the pathname of the executable file
1867 that was run to create a specified process.
1868
1869 The process PID must be stopped when this operation is used.
1870
1871 If the executable file cannot be determined, NULL is returned.
1872
1873 Else, a pointer to a character string containing the pathname
1874 is returned. This string should be copied into a buffer by
1875 the client if the string will not be immediately used, or if
1876 it must persist. */
1877
1878 #define target_pid_to_exec_file(pid) \
1879 (current_top_target ()->pid_to_exec_file) (pid)
1880
1881 /* See the to_thread_architecture description in struct target_ops. */
1882
1883 #define target_thread_architecture(ptid) \
1884 (current_top_target ()->thread_architecture (ptid))
1885
1886 /*
1887 * Iterator function for target memory regions.
1888 * Calls a callback function once for each memory region 'mapped'
1889 * in the child process. Defined as a simple macro rather than
1890 * as a function macro so that it can be tested for nullity.
1891 */
1892
1893 #define target_find_memory_regions(FUNC, DATA) \
1894 (current_top_target ()->find_memory_regions) (FUNC, DATA)
1895
1896 /*
1897 * Compose corefile .note section.
1898 */
1899
1900 #define target_make_corefile_notes(BFD, SIZE_P) \
1901 (current_top_target ()->make_corefile_notes) (BFD, SIZE_P)
1902
1903 /* Bookmark interfaces. */
1904 #define target_get_bookmark(ARGS, FROM_TTY) \
1905 (current_top_target ()->get_bookmark) (ARGS, FROM_TTY)
1906
1907 #define target_goto_bookmark(ARG, FROM_TTY) \
1908 (current_top_target ()->goto_bookmark) (ARG, FROM_TTY)
1909
1910 /* Hardware watchpoint interfaces. */
1911
1912 /* GDB's current model is that there are three "kinds" of watchpoints,
1913 with respect to when they trigger and how you can move past them.
1914
1915 Those are: continuable, steppable, and non-steppable.
1916
1917 Continuable watchpoints are like x86's -- those trigger after the
1918 memory access's side effects are fully committed to memory. I.e.,
1919 they trap with the PC pointing at the next instruction already.
1920 Continuing past such a watchpoint is doable by just normally
1921 continuing, hence the name.
1922
1923 Both steppable and non-steppable watchpoints trap before the memory
1924 access. I.e, the PC points at the instruction that is accessing
1925 the memory. So GDB needs to single-step once past the current
1926 instruction in order to make the access effective and check whether
1927 the instruction's side effects change the watched expression.
1928
1929 Now, in order to step past that instruction, depending on
1930 architecture and target, you can have two situations:
1931
1932 - steppable watchpoints: you can single-step with the watchpoint
1933 still armed, and the watchpoint won't trigger again.
1934
1935 - non-steppable watchpoints: if you try to single-step with the
1936 watchpoint still armed, you'd trap the watchpoint again and the
1937 thread wouldn't make any progress. So GDB needs to temporarily
1938 remove the watchpoint in order to step past it.
1939
1940 If your target/architecture does not signal that it has either
1941 steppable or non-steppable watchpoints via either
1942 target_have_steppable_watchpoint or
1943 gdbarch_have_nonsteppable_watchpoint, GDB assumes continuable
1944 watchpoints. */
1945
1946 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1947 write). Only the INFERIOR_PTID task is being queried. */
1948
1949 #define target_stopped_by_watchpoint() \
1950 ((current_top_target ()->stopped_by_watchpoint) ())
1951
1952 /* Returns non-zero if the target stopped because it executed a
1953 software breakpoint instruction. */
1954
1955 #define target_stopped_by_sw_breakpoint() \
1956 ((current_top_target ()->stopped_by_sw_breakpoint) ())
1957
1958 #define target_supports_stopped_by_sw_breakpoint() \
1959 ((current_top_target ()->supports_stopped_by_sw_breakpoint) ())
1960
1961 #define target_stopped_by_hw_breakpoint() \
1962 ((current_top_target ()->stopped_by_hw_breakpoint) ())
1963
1964 #define target_supports_stopped_by_hw_breakpoint() \
1965 ((current_top_target ()->supports_stopped_by_hw_breakpoint) ())
1966
1967 /* Non-zero if we have steppable watchpoints */
1968
1969 #define target_have_steppable_watchpoint \
1970 (current_top_target ()->have_steppable_watchpoint ())
1971
1972 /* Provide defaults for hardware watchpoint functions. */
1973
1974 /* If the *_hw_beakpoint functions have not been defined
1975 elsewhere use the definitions in the target vector. */
1976
1977 /* Returns positive if we can set a hardware watchpoint of type TYPE.
1978 Returns negative if the target doesn't have enough hardware debug
1979 registers available. Return zero if hardware watchpoint of type
1980 TYPE isn't supported. TYPE is one of bp_hardware_watchpoint,
1981 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
1982 CNT is the number of such watchpoints used so far, including this
1983 one. OTHERTYPE is the number of watchpoints of other types than
1984 this one used so far. */
1985
1986 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1987 (current_top_target ()->can_use_hw_breakpoint) ( \
1988 TYPE, CNT, OTHERTYPE)
1989
1990 /* Returns the number of debug registers needed to watch the given
1991 memory region, or zero if not supported. */
1992
1993 #define target_region_ok_for_hw_watchpoint(addr, len) \
1994 (current_top_target ()->region_ok_for_hw_watchpoint) (addr, len)
1995
1996
1997 #define target_can_do_single_step() \
1998 (current_top_target ()->can_do_single_step) ()
1999
2000 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
2001 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
2002 COND is the expression for its condition, or NULL if there's none.
2003 Returns 0 for success, 1 if the watchpoint type is not supported,
2004 -1 for failure. */
2005
2006 #define target_insert_watchpoint(addr, len, type, cond) \
2007 (current_top_target ()->insert_watchpoint) (addr, len, type, cond)
2008
2009 #define target_remove_watchpoint(addr, len, type, cond) \
2010 (current_top_target ()->remove_watchpoint) (addr, len, type, cond)
2011
2012 /* Insert a new masked watchpoint at ADDR using the mask MASK.
2013 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
2014 or hw_access for an access watchpoint. Returns 0 for success, 1 if
2015 masked watchpoints are not supported, -1 for failure. */
2016
2017 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
2018 enum target_hw_bp_type);
2019
2020 /* Remove a masked watchpoint at ADDR with the mask MASK.
2021 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
2022 or hw_access for an access watchpoint. Returns 0 for success, non-zero
2023 for failure. */
2024
2025 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
2026 enum target_hw_bp_type);
2027
2028 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
2029 the target machine. Returns 0 for success, and returns non-zero or
2030 throws an error (with a detailed failure reason error code and
2031 message) otherwise. */
2032
2033 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
2034 (current_top_target ()->insert_hw_breakpoint) (gdbarch, bp_tgt)
2035
2036 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
2037 (current_top_target ()->remove_hw_breakpoint) (gdbarch, bp_tgt)
2038
2039 /* Return number of debug registers needed for a ranged breakpoint,
2040 or -1 if ranged breakpoints are not supported. */
2041
2042 extern int target_ranged_break_num_registers (void);
2043
2044 /* Return non-zero if target knows the data address which triggered this
2045 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
2046 INFERIOR_PTID task is being queried. */
2047 #define target_stopped_data_address(target, addr_p) \
2048 (target)->stopped_data_address (addr_p)
2049
2050 /* Return non-zero if ADDR is within the range of a watchpoint spanning
2051 LENGTH bytes beginning at START. */
2052 #define target_watchpoint_addr_within_range(target, addr, start, length) \
2053 (target)->watchpoint_addr_within_range (addr, start, length)
2054
2055 /* Return non-zero if the target is capable of using hardware to evaluate
2056 the condition expression. In this case, if the condition is false when
2057 the watched memory location changes, execution may continue without the
2058 debugger being notified.
2059
2060 Due to limitations in the hardware implementation, it may be capable of
2061 avoiding triggering the watchpoint in some cases where the condition
2062 expression is false, but may report some false positives as well.
2063 For this reason, GDB will still evaluate the condition expression when
2064 the watchpoint triggers. */
2065 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
2066 (current_top_target ()->can_accel_watchpoint_condition) (addr, len, type, cond)
2067
2068 /* Return number of debug registers needed for a masked watchpoint,
2069 -1 if masked watchpoints are not supported or -2 if the given address
2070 and mask combination cannot be used. */
2071
2072 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
2073
2074 /* Target can execute in reverse? */
2075 #define target_can_execute_reverse \
2076 current_top_target ()->can_execute_reverse ()
2077
2078 extern const struct target_desc *target_read_description (struct target_ops *);
2079
2080 #define target_get_ada_task_ptid(lwp, tid) \
2081 (current_top_target ()->get_ada_task_ptid) (lwp,tid)
2082
2083 /* Utility implementation of searching memory. */
2084 extern int simple_search_memory (struct target_ops* ops,
2085 CORE_ADDR start_addr,
2086 ULONGEST search_space_len,
2087 const gdb_byte *pattern,
2088 ULONGEST pattern_len,
2089 CORE_ADDR *found_addrp);
2090
2091 /* Main entry point for searching memory. */
2092 extern int target_search_memory (CORE_ADDR start_addr,
2093 ULONGEST search_space_len,
2094 const gdb_byte *pattern,
2095 ULONGEST pattern_len,
2096 CORE_ADDR *found_addrp);
2097
2098 /* Target file operations. */
2099
2100 /* Return nonzero if the filesystem seen by the current inferior
2101 is the local filesystem, zero otherwise. */
2102 #define target_filesystem_is_local() \
2103 current_top_target ()->filesystem_is_local ()
2104
2105 /* Open FILENAME on the target, in the filesystem as seen by INF,
2106 using FLAGS and MODE. If INF is NULL, use the filesystem seen
2107 by the debugger (GDB or, for remote targets, the remote stub).
2108 Return a target file descriptor, or -1 if an error occurs (and
2109 set *TARGET_ERRNO). */
2110 extern int target_fileio_open (struct inferior *inf,
2111 const char *filename, int flags,
2112 int mode, int *target_errno);
2113
2114 /* Like target_fileio_open, but print a warning message if the
2115 file is being accessed over a link that may be slow. */
2116 extern int target_fileio_open_warn_if_slow (struct inferior *inf,
2117 const char *filename,
2118 int flags,
2119 int mode,
2120 int *target_errno);
2121
2122 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2123 Return the number of bytes written, or -1 if an error occurs
2124 (and set *TARGET_ERRNO). */
2125 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2126 ULONGEST offset, int *target_errno);
2127
2128 /* Read up to LEN bytes FD on the target into READ_BUF.
2129 Return the number of bytes read, or -1 if an error occurs
2130 (and set *TARGET_ERRNO). */
2131 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2132 ULONGEST offset, int *target_errno);
2133
2134 /* Get information about the file opened as FD on the target
2135 and put it in SB. Return 0 on success, or -1 if an error
2136 occurs (and set *TARGET_ERRNO). */
2137 extern int target_fileio_fstat (int fd, struct stat *sb,
2138 int *target_errno);
2139
2140 /* Close FD on the target. Return 0, or -1 if an error occurs
2141 (and set *TARGET_ERRNO). */
2142 extern int target_fileio_close (int fd, int *target_errno);
2143
2144 /* Unlink FILENAME on the target, in the filesystem as seen by INF.
2145 If INF is NULL, use the filesystem seen by the debugger (GDB or,
2146 for remote targets, the remote stub). Return 0, or -1 if an error
2147 occurs (and set *TARGET_ERRNO). */
2148 extern int target_fileio_unlink (struct inferior *inf,
2149 const char *filename,
2150 int *target_errno);
2151
2152 /* Read value of symbolic link FILENAME on the target, in the
2153 filesystem as seen by INF. If INF is NULL, use the filesystem seen
2154 by the debugger (GDB or, for remote targets, the remote stub).
2155 Return a null-terminated string allocated via xmalloc, or NULL if
2156 an error occurs (and set *TARGET_ERRNO). */
2157 extern gdb::optional<std::string> target_fileio_readlink
2158 (struct inferior *inf, const char *filename, int *target_errno);
2159
2160 /* Read target file FILENAME, in the filesystem as seen by INF. If
2161 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2162 remote targets, the remote stub). The return value will be -1 if
2163 the transfer fails or is not supported; 0 if the object is empty;
2164 or the length of the object otherwise. If a positive value is
2165 returned, a sufficiently large buffer will be allocated using
2166 xmalloc and returned in *BUF_P containing the contents of the
2167 object.
2168
2169 This method should be used for objects sufficiently small to store
2170 in a single xmalloc'd buffer, when no fixed bound on the object's
2171 size is known in advance. */
2172 extern LONGEST target_fileio_read_alloc (struct inferior *inf,
2173 const char *filename,
2174 gdb_byte **buf_p);
2175
2176 /* Read target file FILENAME, in the filesystem as seen by INF. If
2177 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2178 remote targets, the remote stub). The result is NUL-terminated and
2179 returned as a string, allocated using xmalloc. If an error occurs
2180 or the transfer is unsupported, NULL is returned. Empty objects
2181 are returned as allocated but empty strings. A warning is issued
2182 if the result contains any embedded NUL bytes. */
2183 extern gdb::unique_xmalloc_ptr<char> target_fileio_read_stralloc
2184 (struct inferior *inf, const char *filename);
2185
2186
2187 /* Tracepoint-related operations. */
2188
2189 #define target_trace_init() \
2190 (current_top_target ()->trace_init) ()
2191
2192 #define target_download_tracepoint(t) \
2193 (current_top_target ()->download_tracepoint) (t)
2194
2195 #define target_can_download_tracepoint() \
2196 (current_top_target ()->can_download_tracepoint) ()
2197
2198 #define target_download_trace_state_variable(tsv) \
2199 (current_top_target ()->download_trace_state_variable) (tsv)
2200
2201 #define target_enable_tracepoint(loc) \
2202 (current_top_target ()->enable_tracepoint) (loc)
2203
2204 #define target_disable_tracepoint(loc) \
2205 (current_top_target ()->disable_tracepoint) (loc)
2206
2207 #define target_trace_start() \
2208 (current_top_target ()->trace_start) ()
2209
2210 #define target_trace_set_readonly_regions() \
2211 (current_top_target ()->trace_set_readonly_regions) ()
2212
2213 #define target_get_trace_status(ts) \
2214 (current_top_target ()->get_trace_status) (ts)
2215
2216 #define target_get_tracepoint_status(tp,utp) \
2217 (current_top_target ()->get_tracepoint_status) (tp, utp)
2218
2219 #define target_trace_stop() \
2220 (current_top_target ()->trace_stop) ()
2221
2222 #define target_trace_find(type,num,addr1,addr2,tpp) \
2223 (current_top_target ()->trace_find) (\
2224 (type), (num), (addr1), (addr2), (tpp))
2225
2226 #define target_get_trace_state_variable_value(tsv,val) \
2227 (current_top_target ()->get_trace_state_variable_value) ((tsv), (val))
2228
2229 #define target_save_trace_data(filename) \
2230 (current_top_target ()->save_trace_data) (filename)
2231
2232 #define target_upload_tracepoints(utpp) \
2233 (current_top_target ()->upload_tracepoints) (utpp)
2234
2235 #define target_upload_trace_state_variables(utsvp) \
2236 (current_top_target ()->upload_trace_state_variables) (utsvp)
2237
2238 #define target_get_raw_trace_data(buf,offset,len) \
2239 (current_top_target ()->get_raw_trace_data) ((buf), (offset), (len))
2240
2241 #define target_get_min_fast_tracepoint_insn_len() \
2242 (current_top_target ()->get_min_fast_tracepoint_insn_len) ()
2243
2244 #define target_set_disconnected_tracing(val) \
2245 (current_top_target ()->set_disconnected_tracing) (val)
2246
2247 #define target_set_circular_trace_buffer(val) \
2248 (current_top_target ()->set_circular_trace_buffer) (val)
2249
2250 #define target_set_trace_buffer_size(val) \
2251 (current_top_target ()->set_trace_buffer_size) (val)
2252
2253 #define target_set_trace_notes(user,notes,stopnotes) \
2254 (current_top_target ()->set_trace_notes) ((user), (notes), (stopnotes))
2255
2256 #define target_get_tib_address(ptid, addr) \
2257 (current_top_target ()->get_tib_address) ((ptid), (addr))
2258
2259 #define target_set_permissions() \
2260 (current_top_target ()->set_permissions) ()
2261
2262 #define target_static_tracepoint_marker_at(addr, marker) \
2263 (current_top_target ()->static_tracepoint_marker_at) (addr, marker)
2264
2265 #define target_static_tracepoint_markers_by_strid(marker_id) \
2266 (current_top_target ()->static_tracepoint_markers_by_strid) (marker_id)
2267
2268 #define target_traceframe_info() \
2269 (current_top_target ()->traceframe_info) ()
2270
2271 #define target_use_agent(use) \
2272 (current_top_target ()->use_agent) (use)
2273
2274 #define target_can_use_agent() \
2275 (current_top_target ()->can_use_agent) ()
2276
2277 #define target_augmented_libraries_svr4_read() \
2278 (current_top_target ()->augmented_libraries_svr4_read) ()
2279
2280 /* Command logging facility. */
2281
2282 #define target_log_command(p) \
2283 (current_top_target ()->log_command) (p)
2284
2285
2286 extern int target_core_of_thread (ptid_t ptid);
2287
2288 /* See to_get_unwinder in struct target_ops. */
2289 extern const struct frame_unwind *target_get_unwinder (void);
2290
2291 /* See to_get_tailcall_unwinder in struct target_ops. */
2292 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2293
2294 /* This implements basic memory verification, reading target memory
2295 and performing the comparison here (as opposed to accelerated
2296 verification making use of the qCRC packet, for example). */
2297
2298 extern int simple_verify_memory (struct target_ops* ops,
2299 const gdb_byte *data,
2300 CORE_ADDR memaddr, ULONGEST size);
2301
2302 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2303 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2304 if there's a mismatch, and -1 if an error is encountered while
2305 reading memory. Throws an error if the functionality is found not
2306 to be supported by the current target. */
2307 int target_verify_memory (const gdb_byte *data,
2308 CORE_ADDR memaddr, ULONGEST size);
2309
2310 /* Routines for maintenance of the target structures...
2311
2312 add_target: Add a target to the list of all possible targets.
2313 This only makes sense for targets that should be activated using
2314 the "target TARGET_NAME ..." command.
2315
2316 push_target: Make this target the top of the stack of currently used
2317 targets, within its particular stratum of the stack. Result
2318 is 0 if now atop the stack, nonzero if not on top (maybe
2319 should warn user).
2320
2321 unpush_target: Remove this from the stack of currently used targets,
2322 no matter where it is on the list. Returns 0 if no
2323 change, 1 if removed from stack. */
2324
2325 /* Type of callback called when the user activates a target with
2326 "target TARGET_NAME". The callback routine takes the rest of the
2327 parameters from the command, and (if successful) pushes a new
2328 target onto the stack. */
2329 typedef void target_open_ftype (const char *args, int from_tty);
2330
2331 /* Add the target described by INFO to the list of possible targets
2332 and add a new command 'target $(INFO->shortname)'. Set COMPLETER
2333 as the command's completer if not NULL. */
2334
2335 extern void add_target (const target_info &info,
2336 target_open_ftype *func,
2337 completer_ftype *completer = NULL);
2338
2339 /* Adds a command ALIAS for the target described by INFO and marks it
2340 deprecated. This is useful for maintaining backwards compatibility
2341 when renaming targets. */
2342
2343 extern void add_deprecated_target_alias (const target_info &info,
2344 const char *alias);
2345
2346 extern void push_target (struct target_ops *);
2347
2348 extern int unpush_target (struct target_ops *);
2349
2350 extern void target_pre_inferior (int);
2351
2352 extern void target_preopen (int);
2353
2354 /* Does whatever cleanup is required to get rid of all pushed targets. */
2355 extern void pop_all_targets (void);
2356
2357 /* Like pop_all_targets, but pops only targets whose stratum is at or
2358 above STRATUM. */
2359 extern void pop_all_targets_at_and_above (enum strata stratum);
2360
2361 /* Like pop_all_targets, but pops only targets whose stratum is
2362 strictly above ABOVE_STRATUM. */
2363 extern void pop_all_targets_above (enum strata above_stratum);
2364
2365 extern int target_is_pushed (struct target_ops *t);
2366
2367 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2368 CORE_ADDR offset);
2369
2370 /* Struct target_section maps address ranges to file sections. It is
2371 mostly used with BFD files, but can be used without (e.g. for handling
2372 raw disks, or files not in formats handled by BFD). */
2373
2374 struct target_section
2375 {
2376 CORE_ADDR addr; /* Lowest address in section */
2377 CORE_ADDR endaddr; /* 1+highest address in section */
2378
2379 struct bfd_section *the_bfd_section;
2380
2381 /* The "owner" of the section.
2382 It can be any unique value. It is set by add_target_sections
2383 and used by remove_target_sections.
2384 For example, for executables it is a pointer to exec_bfd and
2385 for shlibs it is the so_list pointer. */
2386 void *owner;
2387 };
2388
2389 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2390
2391 struct target_section_table
2392 {
2393 struct target_section *sections;
2394 struct target_section *sections_end;
2395 };
2396
2397 /* Return the "section" containing the specified address. */
2398 struct target_section *target_section_by_addr (struct target_ops *target,
2399 CORE_ADDR addr);
2400
2401 /* Return the target section table this target (or the targets
2402 beneath) currently manipulate. */
2403
2404 extern struct target_section_table *target_get_section_table
2405 (struct target_ops *target);
2406
2407 /* From mem-break.c */
2408
2409 extern int memory_remove_breakpoint (struct target_ops *,
2410 struct gdbarch *, struct bp_target_info *,
2411 enum remove_bp_reason);
2412
2413 extern int memory_insert_breakpoint (struct target_ops *,
2414 struct gdbarch *, struct bp_target_info *);
2415
2416 /* Convenience template use to add memory breakpoints support to a
2417 target. */
2418
2419 template <typename BaseTarget>
2420 struct memory_breakpoint_target : public BaseTarget
2421 {
2422 int insert_breakpoint (struct gdbarch *gdbarch,
2423 struct bp_target_info *bp_tgt) override
2424 { return memory_insert_breakpoint (this, gdbarch, bp_tgt); }
2425
2426 int remove_breakpoint (struct gdbarch *gdbarch,
2427 struct bp_target_info *bp_tgt,
2428 enum remove_bp_reason reason) override
2429 { return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason); }
2430 };
2431
2432 /* Check whether the memory at the breakpoint's placed address still
2433 contains the expected breakpoint instruction. */
2434
2435 extern int memory_validate_breakpoint (struct gdbarch *gdbarch,
2436 struct bp_target_info *bp_tgt);
2437
2438 extern int default_memory_remove_breakpoint (struct gdbarch *,
2439 struct bp_target_info *);
2440
2441 extern int default_memory_insert_breakpoint (struct gdbarch *,
2442 struct bp_target_info *);
2443
2444
2445 /* From target.c */
2446
2447 extern void initialize_targets (void);
2448
2449 extern void noprocess (void) ATTRIBUTE_NORETURN;
2450
2451 extern void target_require_runnable (void);
2452
2453 /* Find the target at STRATUM. If no target is at that stratum,
2454 return NULL. */
2455
2456 struct target_ops *find_target_at (enum strata stratum);
2457
2458 /* Read OS data object of type TYPE from the target, and return it in XML
2459 format. The return value follows the same rules as target_read_stralloc. */
2460
2461 extern gdb::optional<gdb::char_vector> target_get_osdata (const char *type);
2462
2463 /* Stuff that should be shared among the various remote targets. */
2464
2465 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2466 information (higher values, more information). */
2467 extern int remote_debug;
2468
2469 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2470 extern int baud_rate;
2471
2472 /* Parity for serial port */
2473 extern int serial_parity;
2474
2475 /* Timeout limit for response from target. */
2476 extern int remote_timeout;
2477
2478 \f
2479
2480 /* Set the show memory breakpoints mode to show, and return a
2481 scoped_restore to restore it back to the current value. */
2482 extern scoped_restore_tmpl<int>
2483 make_scoped_restore_show_memory_breakpoints (int show);
2484
2485 extern int may_write_registers;
2486 extern int may_write_memory;
2487 extern int may_insert_breakpoints;
2488 extern int may_insert_tracepoints;
2489 extern int may_insert_fast_tracepoints;
2490 extern int may_stop;
2491
2492 extern void update_target_permissions (void);
2493
2494 \f
2495 /* Imported from machine dependent code. */
2496
2497 /* See to_enable_btrace in struct target_ops. */
2498 extern struct btrace_target_info *
2499 target_enable_btrace (ptid_t ptid, const struct btrace_config *);
2500
2501 /* See to_disable_btrace in struct target_ops. */
2502 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2503
2504 /* See to_teardown_btrace in struct target_ops. */
2505 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2506
2507 /* See to_read_btrace in struct target_ops. */
2508 extern enum btrace_error target_read_btrace (struct btrace_data *,
2509 struct btrace_target_info *,
2510 enum btrace_read_type);
2511
2512 /* See to_btrace_conf in struct target_ops. */
2513 extern const struct btrace_config *
2514 target_btrace_conf (const struct btrace_target_info *);
2515
2516 /* See to_stop_recording in struct target_ops. */
2517 extern void target_stop_recording (void);
2518
2519 /* See to_save_record in struct target_ops. */
2520 extern void target_save_record (const char *filename);
2521
2522 /* Query if the target supports deleting the execution log. */
2523 extern int target_supports_delete_record (void);
2524
2525 /* See to_delete_record in struct target_ops. */
2526 extern void target_delete_record (void);
2527
2528 /* See to_record_method. */
2529 extern enum record_method target_record_method (ptid_t ptid);
2530
2531 /* See to_record_is_replaying in struct target_ops. */
2532 extern int target_record_is_replaying (ptid_t ptid);
2533
2534 /* See to_record_will_replay in struct target_ops. */
2535 extern int target_record_will_replay (ptid_t ptid, int dir);
2536
2537 /* See to_record_stop_replaying in struct target_ops. */
2538 extern void target_record_stop_replaying (void);
2539
2540 /* See to_goto_record_begin in struct target_ops. */
2541 extern void target_goto_record_begin (void);
2542
2543 /* See to_goto_record_end in struct target_ops. */
2544 extern void target_goto_record_end (void);
2545
2546 /* See to_goto_record in struct target_ops. */
2547 extern void target_goto_record (ULONGEST insn);
2548
2549 /* See to_insn_history. */
2550 extern void target_insn_history (int size, gdb_disassembly_flags flags);
2551
2552 /* See to_insn_history_from. */
2553 extern void target_insn_history_from (ULONGEST from, int size,
2554 gdb_disassembly_flags flags);
2555
2556 /* See to_insn_history_range. */
2557 extern void target_insn_history_range (ULONGEST begin, ULONGEST end,
2558 gdb_disassembly_flags flags);
2559
2560 /* See to_call_history. */
2561 extern void target_call_history (int size, record_print_flags flags);
2562
2563 /* See to_call_history_from. */
2564 extern void target_call_history_from (ULONGEST begin, int size,
2565 record_print_flags flags);
2566
2567 /* See to_call_history_range. */
2568 extern void target_call_history_range (ULONGEST begin, ULONGEST end,
2569 record_print_flags flags);
2570
2571 /* See to_prepare_to_generate_core. */
2572 extern void target_prepare_to_generate_core (void);
2573
2574 /* See to_done_generating_core. */
2575 extern void target_done_generating_core (void);
2576
2577 #if GDB_SELF_TEST
2578 namespace selftests {
2579
2580 /* A mock process_stratum target_ops that doesn't read/write registers
2581 anywhere. */
2582
2583 class test_target_ops : public target_ops
2584 {
2585 public:
2586 test_target_ops ()
2587 : target_ops {}
2588 {
2589 to_stratum = process_stratum;
2590 }
2591
2592 const target_info &info () const override;
2593
2594 bool has_registers () override
2595 {
2596 return true;
2597 }
2598
2599 bool has_stack () override
2600 {
2601 return true;
2602 }
2603
2604 bool has_memory () override
2605 {
2606 return true;
2607 }
2608
2609 void prepare_to_store (regcache *regs) override
2610 {
2611 }
2612
2613 void store_registers (regcache *regs, int regno) override
2614 {
2615 }
2616 };
2617
2618
2619 } // namespace selftests
2620 #endif /* GDB_SELF_TEST */
2621
2622 #endif /* !defined (TARGET_H) */
This page took 0.080838 seconds and 4 git commands to generate.