a8e551ce697f44cbd6511795e46564337ceaffb1
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2020 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41 struct inferior;
42
43 #include "infrun.h" /* For enum exec_direction_kind. */
44 #include "breakpoint.h" /* For enum bptype. */
45 #include "gdbsupport/scoped_restore.h"
46
47 /* This include file defines the interface between the main part
48 of the debugger, and the part which is target-specific, or
49 specific to the communications interface between us and the
50 target.
51
52 A TARGET is an interface between the debugger and a particular
53 kind of file or process. Targets can be STACKED in STRATA,
54 so that more than one target can potentially respond to a request.
55 In particular, memory accesses will walk down the stack of targets
56 until they find a target that is interested in handling that particular
57 address. STRATA are artificial boundaries on the stack, within
58 which particular kinds of targets live. Strata exist so that
59 people don't get confused by pushing e.g. a process target and then
60 a file target, and wondering why they can't see the current values
61 of variables any more (the file target is handling them and they
62 never get to the process target). So when you push a file target,
63 it goes into the file stratum, which is always below the process
64 stratum.
65
66 Note that rather than allow an empty stack, we always have the
67 dummy target at the bottom stratum, so we can call the target
68 methods without checking them. */
69
70 #include "target/target.h"
71 #include "target/resume.h"
72 #include "target/wait.h"
73 #include "target/waitstatus.h"
74 #include "bfd.h"
75 #include "symtab.h"
76 #include "memattr.h"
77 #include "gdbsupport/gdb_signals.h"
78 #include "btrace.h"
79 #include "record.h"
80 #include "command.h"
81 #include "disasm.h"
82 #include "tracepoint.h"
83
84 #include "gdbsupport/break-common.h" /* For enum target_hw_bp_type. */
85
86 enum strata
87 {
88 dummy_stratum, /* The lowest of the low */
89 file_stratum, /* Executable files, etc */
90 process_stratum, /* Executing processes or core dump files */
91 thread_stratum, /* Executing threads */
92 record_stratum, /* Support record debugging */
93 arch_stratum, /* Architecture overrides */
94 debug_stratum /* Target debug. Must be last. */
95 };
96
97 enum thread_control_capabilities
98 {
99 tc_none = 0, /* Default: can't control thread execution. */
100 tc_schedlock = 1, /* Can lock the thread scheduler. */
101 };
102
103 /* The structure below stores information about a system call.
104 It is basically used in the "catch syscall" command, and in
105 every function that gives information about a system call.
106
107 It's also good to mention that its fields represent everything
108 that we currently know about a syscall in GDB. */
109 struct syscall
110 {
111 /* The syscall number. */
112 int number;
113
114 /* The syscall name. */
115 const char *name;
116 };
117
118 /* Return a pretty printed form of TARGET_OPTIONS. */
119 extern std::string target_options_to_string (int target_options);
120
121 /* Possible types of events that the inferior handler will have to
122 deal with. */
123 enum inferior_event_type
124 {
125 /* Process a normal inferior event which will result in target_wait
126 being called. */
127 INF_REG_EVENT,
128 /* We are called to do stuff after the inferior stops. */
129 INF_EXEC_COMPLETE,
130 };
131 \f
132 /* Target objects which can be transfered using target_read,
133 target_write, et cetera. */
134
135 enum target_object
136 {
137 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
138 TARGET_OBJECT_AVR,
139 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
140 TARGET_OBJECT_MEMORY,
141 /* Memory, avoiding GDB's data cache and trusting the executable.
142 Target implementations of to_xfer_partial never need to handle
143 this object, and most callers should not use it. */
144 TARGET_OBJECT_RAW_MEMORY,
145 /* Memory known to be part of the target's stack. This is cached even
146 if it is not in a region marked as such, since it is known to be
147 "normal" RAM. */
148 TARGET_OBJECT_STACK_MEMORY,
149 /* Memory known to be part of the target code. This is cached even
150 if it is not in a region marked as such. */
151 TARGET_OBJECT_CODE_MEMORY,
152 /* Kernel Unwind Table. See "ia64-tdep.c". */
153 TARGET_OBJECT_UNWIND_TABLE,
154 /* Transfer auxilliary vector. */
155 TARGET_OBJECT_AUXV,
156 /* StackGhost cookie. See "sparc-tdep.c". */
157 TARGET_OBJECT_WCOOKIE,
158 /* Target memory map in XML format. */
159 TARGET_OBJECT_MEMORY_MAP,
160 /* Flash memory. This object can be used to write contents to
161 a previously erased flash memory. Using it without erasing
162 flash can have unexpected results. Addresses are physical
163 address on target, and not relative to flash start. */
164 TARGET_OBJECT_FLASH,
165 /* Available target-specific features, e.g. registers and coprocessors.
166 See "target-descriptions.c". ANNEX should never be empty. */
167 TARGET_OBJECT_AVAILABLE_FEATURES,
168 /* Currently loaded libraries, in XML format. */
169 TARGET_OBJECT_LIBRARIES,
170 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
171 TARGET_OBJECT_LIBRARIES_SVR4,
172 /* Currently loaded libraries specific to AIX systems, in XML format. */
173 TARGET_OBJECT_LIBRARIES_AIX,
174 /* Get OS specific data. The ANNEX specifies the type (running
175 processes, etc.). The data being transfered is expected to follow
176 the DTD specified in features/osdata.dtd. */
177 TARGET_OBJECT_OSDATA,
178 /* Extra signal info. Usually the contents of `siginfo_t' on unix
179 platforms. */
180 TARGET_OBJECT_SIGNAL_INFO,
181 /* The list of threads that are being debugged. */
182 TARGET_OBJECT_THREADS,
183 /* Collected static trace data. */
184 TARGET_OBJECT_STATIC_TRACE_DATA,
185 /* Traceframe info, in XML format. */
186 TARGET_OBJECT_TRACEFRAME_INFO,
187 /* Load maps for FDPIC systems. */
188 TARGET_OBJECT_FDPIC,
189 /* Darwin dynamic linker info data. */
190 TARGET_OBJECT_DARWIN_DYLD_INFO,
191 /* OpenVMS Unwind Information Block. */
192 TARGET_OBJECT_OPENVMS_UIB,
193 /* Branch trace data, in XML format. */
194 TARGET_OBJECT_BTRACE,
195 /* Branch trace configuration, in XML format. */
196 TARGET_OBJECT_BTRACE_CONF,
197 /* The pathname of the executable file that was run to create
198 a specified process. ANNEX should be a string representation
199 of the process ID of the process in question, in hexadecimal
200 format. */
201 TARGET_OBJECT_EXEC_FILE,
202 /* FreeBSD virtual memory mappings. */
203 TARGET_OBJECT_FREEBSD_VMMAP,
204 /* FreeBSD process strings. */
205 TARGET_OBJECT_FREEBSD_PS_STRINGS,
206 /* Possible future objects: TARGET_OBJECT_FILE, ... */
207 };
208
209 /* Possible values returned by target_xfer_partial, etc. */
210
211 enum target_xfer_status
212 {
213 /* Some bytes are transferred. */
214 TARGET_XFER_OK = 1,
215
216 /* No further transfer is possible. */
217 TARGET_XFER_EOF = 0,
218
219 /* The piece of the object requested is unavailable. */
220 TARGET_XFER_UNAVAILABLE = 2,
221
222 /* Generic I/O error. Note that it's important that this is '-1',
223 as we still have target_xfer-related code returning hardcoded
224 '-1' on error. */
225 TARGET_XFER_E_IO = -1,
226
227 /* Keep list in sync with target_xfer_status_to_string. */
228 };
229
230 /* Return the string form of STATUS. */
231
232 extern const char *
233 target_xfer_status_to_string (enum target_xfer_status status);
234
235 typedef enum target_xfer_status
236 target_xfer_partial_ftype (struct target_ops *ops,
237 enum target_object object,
238 const char *annex,
239 gdb_byte *readbuf,
240 const gdb_byte *writebuf,
241 ULONGEST offset,
242 ULONGEST len,
243 ULONGEST *xfered_len);
244
245 enum target_xfer_status
246 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
247 const gdb_byte *writebuf, ULONGEST memaddr,
248 LONGEST len, ULONGEST *xfered_len);
249
250 /* Request that OPS transfer up to LEN addressable units of the target's
251 OBJECT. When reading from a memory object, the size of an addressable unit
252 is architecture dependent and can be found using
253 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
254 byte long. BUF should point to a buffer large enough to hold the read data,
255 taking into account the addressable unit size. The OFFSET, for a seekable
256 object, specifies the starting point. The ANNEX can be used to provide
257 additional data-specific information to the target.
258
259 Return the number of addressable units actually transferred, or a negative
260 error code (an 'enum target_xfer_error' value) if the transfer is not
261 supported or otherwise fails. Return of a positive value less than
262 LEN indicates that no further transfer is possible. Unlike the raw
263 to_xfer_partial interface, callers of these functions do not need
264 to retry partial transfers. */
265
266 extern LONGEST target_read (struct target_ops *ops,
267 enum target_object object,
268 const char *annex, gdb_byte *buf,
269 ULONGEST offset, LONGEST len);
270
271 struct memory_read_result
272 {
273 memory_read_result (ULONGEST begin_, ULONGEST end_,
274 gdb::unique_xmalloc_ptr<gdb_byte> &&data_)
275 : begin (begin_),
276 end (end_),
277 data (std::move (data_))
278 {
279 }
280
281 ~memory_read_result () = default;
282
283 memory_read_result (memory_read_result &&other) = default;
284
285 DISABLE_COPY_AND_ASSIGN (memory_read_result);
286
287 /* First address that was read. */
288 ULONGEST begin;
289 /* Past-the-end address. */
290 ULONGEST end;
291 /* The data. */
292 gdb::unique_xmalloc_ptr<gdb_byte> data;
293 };
294
295 extern std::vector<memory_read_result> read_memory_robust
296 (struct target_ops *ops, const ULONGEST offset, const LONGEST len);
297
298 /* Request that OPS transfer up to LEN addressable units from BUF to the
299 target's OBJECT. When writing to a memory object, the addressable unit
300 size is architecture dependent and can be found using
301 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
302 byte long. The OFFSET, for a seekable object, specifies the starting point.
303 The ANNEX can be used to provide additional data-specific information to
304 the target.
305
306 Return the number of addressable units actually transferred, or a negative
307 error code (an 'enum target_xfer_status' value) if the transfer is not
308 supported or otherwise fails. Return of a positive value less than
309 LEN indicates that no further transfer is possible. Unlike the raw
310 to_xfer_partial interface, callers of these functions do not need to
311 retry partial transfers. */
312
313 extern LONGEST target_write (struct target_ops *ops,
314 enum target_object object,
315 const char *annex, const gdb_byte *buf,
316 ULONGEST offset, LONGEST len);
317
318 /* Similar to target_write, except that it also calls PROGRESS with
319 the number of bytes written and the opaque BATON after every
320 successful partial write (and before the first write). This is
321 useful for progress reporting and user interaction while writing
322 data. To abort the transfer, the progress callback can throw an
323 exception. */
324
325 LONGEST target_write_with_progress (struct target_ops *ops,
326 enum target_object object,
327 const char *annex, const gdb_byte *buf,
328 ULONGEST offset, LONGEST len,
329 void (*progress) (ULONGEST, void *),
330 void *baton);
331
332 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will be read
333 using OPS. The return value will be uninstantiated if the transfer fails or
334 is not supported.
335
336 This method should be used for objects sufficiently small to store
337 in a single xmalloc'd buffer, when no fixed bound on the object's
338 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
339 through this function. */
340
341 extern gdb::optional<gdb::byte_vector> target_read_alloc
342 (struct target_ops *ops, enum target_object object, const char *annex);
343
344 /* Read OBJECT/ANNEX using OPS. The result is a NUL-terminated character vector
345 (therefore usable as a NUL-terminated string). If an error occurs or the
346 transfer is unsupported, the return value will be uninstantiated. Empty
347 objects are returned as allocated but empty strings. Therefore, on success,
348 the returned vector is guaranteed to have at least one element. A warning is
349 issued if the result contains any embedded NUL bytes. */
350
351 extern gdb::optional<gdb::char_vector> target_read_stralloc
352 (struct target_ops *ops, enum target_object object, const char *annex);
353
354 /* See target_ops->to_xfer_partial. */
355 extern target_xfer_partial_ftype target_xfer_partial;
356
357 /* Wrappers to target read/write that perform memory transfers. They
358 throw an error if the memory transfer fails.
359
360 NOTE: cagney/2003-10-23: The naming schema is lifted from
361 "frame.h". The parameter order is lifted from get_frame_memory,
362 which in turn lifted it from read_memory. */
363
364 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
365 gdb_byte *buf, LONGEST len);
366 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
367 CORE_ADDR addr, int len,
368 enum bfd_endian byte_order);
369 \f
370 struct thread_info; /* fwd decl for parameter list below: */
371
372 /* The type of the callback to the to_async method. */
373
374 typedef void async_callback_ftype (enum inferior_event_type event_type,
375 void *context);
376
377 /* Normally target debug printing is purely type-based. However,
378 sometimes it is necessary to override the debug printing on a
379 per-argument basis. This macro can be used, attribute-style, to
380 name the target debug printing function for a particular method
381 argument. FUNC is the name of the function. The macro's
382 definition is empty because it is only used by the
383 make-target-delegates script. */
384
385 #define TARGET_DEBUG_PRINTER(FUNC)
386
387 /* These defines are used to mark target_ops methods. The script
388 make-target-delegates scans these and auto-generates the base
389 method implementations. There are four macros that can be used:
390
391 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
392 does nothing. This is only valid if the method return type is
393 'void'.
394
395 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
396 'tcomplain ()'. The base method simply makes this call, which is
397 assumed not to return.
398
399 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
400 base method returns this expression's value.
401
402 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
403 make-target-delegates does not generate a base method in this case,
404 but instead uses the argument function as the base method. */
405
406 #define TARGET_DEFAULT_IGNORE()
407 #define TARGET_DEFAULT_NORETURN(ARG)
408 #define TARGET_DEFAULT_RETURN(ARG)
409 #define TARGET_DEFAULT_FUNC(ARG)
410
411 /* Each target that can be activated with "target TARGET_NAME" passes
412 the address of one of these objects to add_target, which uses the
413 object's address as unique identifier, and registers the "target
414 TARGET_NAME" command using SHORTNAME as target name. */
415
416 struct target_info
417 {
418 /* Name of this target. */
419 const char *shortname;
420
421 /* Name for printing. */
422 const char *longname;
423
424 /* Documentation. Does not include trailing newline, and starts
425 with a one-line description (probably similar to longname). */
426 const char *doc;
427 };
428
429 struct target_ops
430 {
431 /* Return this target's stratum. */
432 virtual strata stratum () const = 0;
433
434 /* To the target under this one. */
435 target_ops *beneath () const;
436
437 /* Free resources associated with the target. Note that singleton
438 targets, like e.g., native targets, are global objects, not
439 heap allocated, and are thus only deleted on GDB exit. The
440 main teardown entry point is the "close" method, below. */
441 virtual ~target_ops () {}
442
443 /* Return a reference to this target's unique target_info
444 object. */
445 virtual const target_info &info () const = 0;
446
447 /* Name this target type. */
448 const char *shortname ()
449 { return info ().shortname; }
450
451 const char *longname ()
452 { return info ().longname; }
453
454 /* Close the target. This is where the target can handle
455 teardown. Heap-allocated targets should delete themselves
456 before returning. */
457 virtual void close ();
458
459 /* Attaches to a process on the target side. Arguments are as
460 passed to the `attach' command by the user. This routine can
461 be called when the target is not on the target-stack, if the
462 target_ops::can_run method returns 1; in that case, it must push
463 itself onto the stack. Upon exit, the target should be ready
464 for normal operations, and should be ready to deliver the
465 status of the process immediately (without waiting) to an
466 upcoming target_wait call. */
467 virtual bool can_attach ();
468 virtual void attach (const char *, int);
469 virtual void post_attach (int)
470 TARGET_DEFAULT_IGNORE ();
471 virtual void detach (inferior *, int)
472 TARGET_DEFAULT_IGNORE ();
473 virtual void disconnect (const char *, int)
474 TARGET_DEFAULT_NORETURN (tcomplain ());
475 virtual void resume (ptid_t,
476 int TARGET_DEBUG_PRINTER (target_debug_print_step),
477 enum gdb_signal)
478 TARGET_DEFAULT_NORETURN (noprocess ());
479 virtual void commit_resume ()
480 TARGET_DEFAULT_IGNORE ();
481 virtual ptid_t wait (ptid_t, struct target_waitstatus *,
482 int TARGET_DEBUG_PRINTER (target_debug_print_options))
483 TARGET_DEFAULT_FUNC (default_target_wait);
484 virtual void fetch_registers (struct regcache *, int)
485 TARGET_DEFAULT_IGNORE ();
486 virtual void store_registers (struct regcache *, int)
487 TARGET_DEFAULT_NORETURN (noprocess ());
488 virtual void prepare_to_store (struct regcache *)
489 TARGET_DEFAULT_NORETURN (noprocess ());
490
491 virtual void files_info ()
492 TARGET_DEFAULT_IGNORE ();
493 virtual int insert_breakpoint (struct gdbarch *,
494 struct bp_target_info *)
495 TARGET_DEFAULT_NORETURN (noprocess ());
496 virtual int remove_breakpoint (struct gdbarch *,
497 struct bp_target_info *,
498 enum remove_bp_reason)
499 TARGET_DEFAULT_NORETURN (noprocess ());
500
501 /* Returns true if the target stopped because it executed a
502 software breakpoint. This is necessary for correct background
503 execution / non-stop mode operation, and for correct PC
504 adjustment on targets where the PC needs to be adjusted when a
505 software breakpoint triggers. In these modes, by the time GDB
506 processes a breakpoint event, the breakpoint may already be
507 done from the target, so GDB needs to be able to tell whether
508 it should ignore the event and whether it should adjust the PC.
509 See adjust_pc_after_break. */
510 virtual bool stopped_by_sw_breakpoint ()
511 TARGET_DEFAULT_RETURN (false);
512 /* Returns true if the above method is supported. */
513 virtual bool supports_stopped_by_sw_breakpoint ()
514 TARGET_DEFAULT_RETURN (false);
515
516 /* Returns true if the target stopped for a hardware breakpoint.
517 Likewise, if the target supports hardware breakpoints, this
518 method is necessary for correct background execution / non-stop
519 mode operation. Even though hardware breakpoints do not
520 require PC adjustment, GDB needs to be able to tell whether the
521 hardware breakpoint event is a delayed event for a breakpoint
522 that is already gone and should thus be ignored. */
523 virtual bool stopped_by_hw_breakpoint ()
524 TARGET_DEFAULT_RETURN (false);
525 /* Returns true if the above method is supported. */
526 virtual bool supports_stopped_by_hw_breakpoint ()
527 TARGET_DEFAULT_RETURN (false);
528
529 virtual int can_use_hw_breakpoint (enum bptype, int, int)
530 TARGET_DEFAULT_RETURN (0);
531 virtual int ranged_break_num_registers ()
532 TARGET_DEFAULT_RETURN (-1);
533 virtual int insert_hw_breakpoint (struct gdbarch *,
534 struct bp_target_info *)
535 TARGET_DEFAULT_RETURN (-1);
536 virtual int remove_hw_breakpoint (struct gdbarch *,
537 struct bp_target_info *)
538 TARGET_DEFAULT_RETURN (-1);
539
540 /* Documentation of what the two routines below are expected to do is
541 provided with the corresponding target_* macros. */
542 virtual int remove_watchpoint (CORE_ADDR, int,
543 enum target_hw_bp_type, struct expression *)
544 TARGET_DEFAULT_RETURN (-1);
545 virtual int insert_watchpoint (CORE_ADDR, int,
546 enum target_hw_bp_type, struct expression *)
547 TARGET_DEFAULT_RETURN (-1);
548
549 virtual int insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
550 enum target_hw_bp_type)
551 TARGET_DEFAULT_RETURN (1);
552 virtual int remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
553 enum target_hw_bp_type)
554 TARGET_DEFAULT_RETURN (1);
555 virtual bool stopped_by_watchpoint ()
556 TARGET_DEFAULT_RETURN (false);
557 virtual bool have_steppable_watchpoint ()
558 TARGET_DEFAULT_RETURN (false);
559 virtual bool stopped_data_address (CORE_ADDR *)
560 TARGET_DEFAULT_RETURN (false);
561 virtual bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int)
562 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
563
564 /* Documentation of this routine is provided with the corresponding
565 target_* macro. */
566 virtual int region_ok_for_hw_watchpoint (CORE_ADDR, int)
567 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
568
569 virtual bool can_accel_watchpoint_condition (CORE_ADDR, int, int,
570 struct expression *)
571 TARGET_DEFAULT_RETURN (false);
572 virtual int masked_watch_num_registers (CORE_ADDR, CORE_ADDR)
573 TARGET_DEFAULT_RETURN (-1);
574
575 /* Return 1 for sure target can do single step. Return -1 for
576 unknown. Return 0 for target can't do. */
577 virtual int can_do_single_step ()
578 TARGET_DEFAULT_RETURN (-1);
579
580 virtual bool supports_terminal_ours ()
581 TARGET_DEFAULT_RETURN (false);
582 virtual void terminal_init ()
583 TARGET_DEFAULT_IGNORE ();
584 virtual void terminal_inferior ()
585 TARGET_DEFAULT_IGNORE ();
586 virtual void terminal_save_inferior ()
587 TARGET_DEFAULT_IGNORE ();
588 virtual void terminal_ours_for_output ()
589 TARGET_DEFAULT_IGNORE ();
590 virtual void terminal_ours ()
591 TARGET_DEFAULT_IGNORE ();
592 virtual void terminal_info (const char *, int)
593 TARGET_DEFAULT_FUNC (default_terminal_info);
594 virtual void kill ()
595 TARGET_DEFAULT_NORETURN (noprocess ());
596 virtual void load (const char *, int)
597 TARGET_DEFAULT_NORETURN (tcomplain ());
598 /* Start an inferior process and set inferior_ptid to its pid.
599 EXEC_FILE is the file to run.
600 ALLARGS is a string containing the arguments to the program.
601 ENV is the environment vector to pass. Errors reported with error().
602 On VxWorks and various standalone systems, we ignore exec_file. */
603 virtual bool can_create_inferior ();
604 virtual void create_inferior (const char *, const std::string &,
605 char **, int);
606 virtual void post_startup_inferior (ptid_t)
607 TARGET_DEFAULT_IGNORE ();
608 virtual int insert_fork_catchpoint (int)
609 TARGET_DEFAULT_RETURN (1);
610 virtual int remove_fork_catchpoint (int)
611 TARGET_DEFAULT_RETURN (1);
612 virtual int insert_vfork_catchpoint (int)
613 TARGET_DEFAULT_RETURN (1);
614 virtual int remove_vfork_catchpoint (int)
615 TARGET_DEFAULT_RETURN (1);
616 virtual int follow_fork (int, int)
617 TARGET_DEFAULT_FUNC (default_follow_fork);
618 virtual int insert_exec_catchpoint (int)
619 TARGET_DEFAULT_RETURN (1);
620 virtual int remove_exec_catchpoint (int)
621 TARGET_DEFAULT_RETURN (1);
622 virtual void follow_exec (struct inferior *, const char *)
623 TARGET_DEFAULT_IGNORE ();
624 virtual int set_syscall_catchpoint (int, bool, int,
625 gdb::array_view<const int>)
626 TARGET_DEFAULT_RETURN (1);
627 virtual void mourn_inferior ()
628 TARGET_DEFAULT_FUNC (default_mourn_inferior);
629
630 /* Note that can_run is special and can be invoked on an unpushed
631 target. Targets defining this method must also define
632 to_can_async_p and to_supports_non_stop. */
633 virtual bool can_run ();
634
635 /* Documentation of this routine is provided with the corresponding
636 target_* macro. */
637 virtual void pass_signals (gdb::array_view<const unsigned char> TARGET_DEBUG_PRINTER (target_debug_print_signals))
638 TARGET_DEFAULT_IGNORE ();
639
640 /* Documentation of this routine is provided with the
641 corresponding target_* function. */
642 virtual void program_signals (gdb::array_view<const unsigned char> TARGET_DEBUG_PRINTER (target_debug_print_signals))
643 TARGET_DEFAULT_IGNORE ();
644
645 virtual bool thread_alive (ptid_t ptid)
646 TARGET_DEFAULT_RETURN (false);
647 virtual void update_thread_list ()
648 TARGET_DEFAULT_IGNORE ();
649 virtual std::string pid_to_str (ptid_t)
650 TARGET_DEFAULT_FUNC (default_pid_to_str);
651 virtual const char *extra_thread_info (thread_info *)
652 TARGET_DEFAULT_RETURN (NULL);
653 virtual const char *thread_name (thread_info *)
654 TARGET_DEFAULT_RETURN (NULL);
655 virtual thread_info *thread_handle_to_thread_info (const gdb_byte *,
656 int,
657 inferior *inf)
658 TARGET_DEFAULT_RETURN (NULL);
659 /* See target_thread_info_to_thread_handle. */
660 virtual gdb::byte_vector thread_info_to_thread_handle (struct thread_info *)
661 TARGET_DEFAULT_RETURN (gdb::byte_vector ());
662 virtual void stop (ptid_t)
663 TARGET_DEFAULT_IGNORE ();
664 virtual void interrupt ()
665 TARGET_DEFAULT_IGNORE ();
666 virtual void pass_ctrlc ()
667 TARGET_DEFAULT_FUNC (default_target_pass_ctrlc);
668 virtual void rcmd (const char *command, struct ui_file *output)
669 TARGET_DEFAULT_FUNC (default_rcmd);
670 virtual char *pid_to_exec_file (int pid)
671 TARGET_DEFAULT_RETURN (NULL);
672 virtual void log_command (const char *)
673 TARGET_DEFAULT_IGNORE ();
674 virtual struct target_section_table *get_section_table ()
675 TARGET_DEFAULT_RETURN (NULL);
676
677 /* Provide default values for all "must have" methods. */
678 virtual bool has_all_memory () { return false; }
679 virtual bool has_memory () { return false; }
680 virtual bool has_stack () { return false; }
681 virtual bool has_registers () { return false; }
682 virtual bool has_execution (ptid_t) { return false; }
683
684 /* Control thread execution. */
685 virtual thread_control_capabilities get_thread_control_capabilities ()
686 TARGET_DEFAULT_RETURN (tc_none);
687 virtual bool attach_no_wait ()
688 TARGET_DEFAULT_RETURN (0);
689 /* This method must be implemented in some situations. See the
690 comment on 'can_run'. */
691 virtual bool can_async_p ()
692 TARGET_DEFAULT_RETURN (false);
693 virtual bool is_async_p ()
694 TARGET_DEFAULT_RETURN (false);
695 virtual void async (int)
696 TARGET_DEFAULT_NORETURN (tcomplain ());
697 virtual void thread_events (int)
698 TARGET_DEFAULT_IGNORE ();
699 /* This method must be implemented in some situations. See the
700 comment on 'can_run'. */
701 virtual bool supports_non_stop ()
702 TARGET_DEFAULT_RETURN (false);
703 /* Return true if the target operates in non-stop mode even with
704 "set non-stop off". */
705 virtual bool always_non_stop_p ()
706 TARGET_DEFAULT_RETURN (false);
707 /* find_memory_regions support method for gcore */
708 virtual int find_memory_regions (find_memory_region_ftype func, void *data)
709 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
710 /* make_corefile_notes support method for gcore */
711 virtual char *make_corefile_notes (bfd *, int *)
712 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
713 /* get_bookmark support method for bookmarks */
714 virtual gdb_byte *get_bookmark (const char *, int)
715 TARGET_DEFAULT_NORETURN (tcomplain ());
716 /* goto_bookmark support method for bookmarks */
717 virtual void goto_bookmark (const gdb_byte *, int)
718 TARGET_DEFAULT_NORETURN (tcomplain ());
719 /* Return the thread-local address at OFFSET in the
720 thread-local storage for the thread PTID and the shared library
721 or executable file given by LOAD_MODULE_ADDR. If that block of
722 thread-local storage hasn't been allocated yet, this function
723 may throw an error. LOAD_MODULE_ADDR may be zero for statically
724 linked multithreaded inferiors. */
725 virtual CORE_ADDR get_thread_local_address (ptid_t ptid,
726 CORE_ADDR load_module_addr,
727 CORE_ADDR offset)
728 TARGET_DEFAULT_NORETURN (generic_tls_error ());
729
730 /* Request that OPS transfer up to LEN addressable units of the target's
731 OBJECT. When reading from a memory object, the size of an addressable
732 unit is architecture dependent and can be found using
733 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is
734 1 byte long. The OFFSET, for a seekable object, specifies the
735 starting point. The ANNEX can be used to provide additional
736 data-specific information to the target.
737
738 Return the transferred status, error or OK (an
739 'enum target_xfer_status' value). Save the number of addressable units
740 actually transferred in *XFERED_LEN if transfer is successful
741 (TARGET_XFER_OK) or the number unavailable units if the requested
742 data is unavailable (TARGET_XFER_UNAVAILABLE). *XFERED_LEN
743 smaller than LEN does not indicate the end of the object, only
744 the end of the transfer; higher level code should continue
745 transferring if desired. This is handled in target.c.
746
747 The interface does not support a "retry" mechanism. Instead it
748 assumes that at least one addressable unit will be transfered on each
749 successful call.
750
751 NOTE: cagney/2003-10-17: The current interface can lead to
752 fragmented transfers. Lower target levels should not implement
753 hacks, such as enlarging the transfer, in an attempt to
754 compensate for this. Instead, the target stack should be
755 extended so that it implements supply/collect methods and a
756 look-aside object cache. With that available, the lowest
757 target can safely and freely "push" data up the stack.
758
759 See target_read and target_write for more information. One,
760 and only one, of readbuf or writebuf must be non-NULL. */
761
762 virtual enum target_xfer_status xfer_partial (enum target_object object,
763 const char *annex,
764 gdb_byte *readbuf,
765 const gdb_byte *writebuf,
766 ULONGEST offset, ULONGEST len,
767 ULONGEST *xfered_len)
768 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
769
770 /* Return the limit on the size of any single memory transfer
771 for the target. */
772
773 virtual ULONGEST get_memory_xfer_limit ()
774 TARGET_DEFAULT_RETURN (ULONGEST_MAX);
775
776 /* Returns the memory map for the target. A return value of NULL
777 means that no memory map is available. If a memory address
778 does not fall within any returned regions, it's assumed to be
779 RAM. The returned memory regions should not overlap.
780
781 The order of regions does not matter; target_memory_map will
782 sort regions by starting address. For that reason, this
783 function should not be called directly except via
784 target_memory_map.
785
786 This method should not cache data; if the memory map could
787 change unexpectedly, it should be invalidated, and higher
788 layers will re-fetch it. */
789 virtual std::vector<mem_region> memory_map ()
790 TARGET_DEFAULT_RETURN (std::vector<mem_region> ());
791
792 /* Erases the region of flash memory starting at ADDRESS, of
793 length LENGTH.
794
795 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
796 on flash block boundaries, as reported by 'to_memory_map'. */
797 virtual void flash_erase (ULONGEST address, LONGEST length)
798 TARGET_DEFAULT_NORETURN (tcomplain ());
799
800 /* Finishes a flash memory write sequence. After this operation
801 all flash memory should be available for writing and the result
802 of reading from areas written by 'to_flash_write' should be
803 equal to what was written. */
804 virtual void flash_done ()
805 TARGET_DEFAULT_NORETURN (tcomplain ());
806
807 /* Describe the architecture-specific features of this target. If
808 OPS doesn't have a description, this should delegate to the
809 "beneath" target. Returns the description found, or NULL if no
810 description was available. */
811 virtual const struct target_desc *read_description ()
812 TARGET_DEFAULT_RETURN (NULL);
813
814 /* Build the PTID of the thread on which a given task is running,
815 based on LWP and THREAD. These values are extracted from the
816 task Private_Data section of the Ada Task Control Block, and
817 their interpretation depends on the target. */
818 virtual ptid_t get_ada_task_ptid (long lwp, long thread)
819 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
820
821 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
822 Return 0 if *READPTR is already at the end of the buffer.
823 Return -1 if there is insufficient buffer for a whole entry.
824 Return 1 if an entry was read into *TYPEP and *VALP. */
825 virtual int auxv_parse (gdb_byte **readptr,
826 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
827 TARGET_DEFAULT_FUNC (default_auxv_parse);
828
829 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
830 sequence of bytes in PATTERN with length PATTERN_LEN.
831
832 The result is 1 if found, 0 if not found, and -1 if there was an error
833 requiring halting of the search (e.g. memory read error).
834 If the pattern is found the address is recorded in FOUND_ADDRP. */
835 virtual int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
836 const gdb_byte *pattern, ULONGEST pattern_len,
837 CORE_ADDR *found_addrp)
838 TARGET_DEFAULT_FUNC (default_search_memory);
839
840 /* Can target execute in reverse? */
841 virtual bool can_execute_reverse ()
842 TARGET_DEFAULT_RETURN (false);
843
844 /* The direction the target is currently executing. Must be
845 implemented on targets that support reverse execution and async
846 mode. The default simply returns forward execution. */
847 virtual enum exec_direction_kind execution_direction ()
848 TARGET_DEFAULT_FUNC (default_execution_direction);
849
850 /* Does this target support debugging multiple processes
851 simultaneously? */
852 virtual bool supports_multi_process ()
853 TARGET_DEFAULT_RETURN (false);
854
855 /* Does this target support enabling and disabling tracepoints while a trace
856 experiment is running? */
857 virtual bool supports_enable_disable_tracepoint ()
858 TARGET_DEFAULT_RETURN (false);
859
860 /* Does this target support disabling address space randomization? */
861 virtual bool supports_disable_randomization ()
862 TARGET_DEFAULT_FUNC (find_default_supports_disable_randomization);
863
864 /* Does this target support the tracenz bytecode for string collection? */
865 virtual bool supports_string_tracing ()
866 TARGET_DEFAULT_RETURN (false);
867
868 /* Does this target support evaluation of breakpoint conditions on its
869 end? */
870 virtual bool supports_evaluation_of_breakpoint_conditions ()
871 TARGET_DEFAULT_RETURN (false);
872
873 /* Does this target support evaluation of breakpoint commands on its
874 end? */
875 virtual bool can_run_breakpoint_commands ()
876 TARGET_DEFAULT_RETURN (false);
877
878 /* Determine current architecture of thread PTID.
879
880 The target is supposed to determine the architecture of the code where
881 the target is currently stopped at. The architecture information is
882 used to perform decr_pc_after_break adjustment, and also to determine
883 the frame architecture of the innermost frame. ptrace operations need to
884 operate according to target_gdbarch (). */
885 virtual struct gdbarch *thread_architecture (ptid_t)
886 TARGET_DEFAULT_RETURN (NULL);
887
888 /* Determine current address space of thread PTID. */
889 virtual struct address_space *thread_address_space (ptid_t)
890 TARGET_DEFAULT_RETURN (NULL);
891
892 /* Target file operations. */
893
894 /* Return nonzero if the filesystem seen by the current inferior
895 is the local filesystem, zero otherwise. */
896 virtual bool filesystem_is_local ()
897 TARGET_DEFAULT_RETURN (true);
898
899 /* Open FILENAME on the target, in the filesystem as seen by INF,
900 using FLAGS and MODE. If INF is NULL, use the filesystem seen
901 by the debugger (GDB or, for remote targets, the remote stub).
902 If WARN_IF_SLOW is nonzero, print a warning message if the file
903 is being accessed over a link that may be slow. Return a
904 target file descriptor, or -1 if an error occurs (and set
905 *TARGET_ERRNO). */
906 virtual int fileio_open (struct inferior *inf, const char *filename,
907 int flags, int mode, int warn_if_slow,
908 int *target_errno);
909
910 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
911 Return the number of bytes written, or -1 if an error occurs
912 (and set *TARGET_ERRNO). */
913 virtual int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
914 ULONGEST offset, int *target_errno);
915
916 /* Read up to LEN bytes FD on the target into READ_BUF.
917 Return the number of bytes read, or -1 if an error occurs
918 (and set *TARGET_ERRNO). */
919 virtual int fileio_pread (int fd, gdb_byte *read_buf, int len,
920 ULONGEST offset, int *target_errno);
921
922 /* Get information about the file opened as FD and put it in
923 SB. Return 0 on success, or -1 if an error occurs (and set
924 *TARGET_ERRNO). */
925 virtual int fileio_fstat (int fd, struct stat *sb, int *target_errno);
926
927 /* Close FD on the target. Return 0, or -1 if an error occurs
928 (and set *TARGET_ERRNO). */
929 virtual int fileio_close (int fd, int *target_errno);
930
931 /* Unlink FILENAME on the target, in the filesystem as seen by
932 INF. If INF is NULL, use the filesystem seen by the debugger
933 (GDB or, for remote targets, the remote stub). Return 0, or
934 -1 if an error occurs (and set *TARGET_ERRNO). */
935 virtual int fileio_unlink (struct inferior *inf,
936 const char *filename,
937 int *target_errno);
938
939 /* Read value of symbolic link FILENAME on the target, in the
940 filesystem as seen by INF. If INF is NULL, use the filesystem
941 seen by the debugger (GDB or, for remote targets, the remote
942 stub). Return a string, or an empty optional if an error
943 occurs (and set *TARGET_ERRNO). */
944 virtual gdb::optional<std::string> fileio_readlink (struct inferior *inf,
945 const char *filename,
946 int *target_errno);
947
948 /* Implement the "info proc" command. Returns true if the target
949 actually implemented the command, false otherwise. */
950 virtual bool info_proc (const char *, enum info_proc_what);
951
952 /* Tracepoint-related operations. */
953
954 /* Prepare the target for a tracing run. */
955 virtual void trace_init ()
956 TARGET_DEFAULT_NORETURN (tcomplain ());
957
958 /* Send full details of a tracepoint location to the target. */
959 virtual void download_tracepoint (struct bp_location *location)
960 TARGET_DEFAULT_NORETURN (tcomplain ());
961
962 /* Is the target able to download tracepoint locations in current
963 state? */
964 virtual bool can_download_tracepoint ()
965 TARGET_DEFAULT_RETURN (false);
966
967 /* Send full details of a trace state variable to the target. */
968 virtual void download_trace_state_variable (const trace_state_variable &tsv)
969 TARGET_DEFAULT_NORETURN (tcomplain ());
970
971 /* Enable a tracepoint on the target. */
972 virtual void enable_tracepoint (struct bp_location *location)
973 TARGET_DEFAULT_NORETURN (tcomplain ());
974
975 /* Disable a tracepoint on the target. */
976 virtual void disable_tracepoint (struct bp_location *location)
977 TARGET_DEFAULT_NORETURN (tcomplain ());
978
979 /* Inform the target info of memory regions that are readonly
980 (such as text sections), and so it should return data from
981 those rather than look in the trace buffer. */
982 virtual void trace_set_readonly_regions ()
983 TARGET_DEFAULT_NORETURN (tcomplain ());
984
985 /* Start a trace run. */
986 virtual void trace_start ()
987 TARGET_DEFAULT_NORETURN (tcomplain ());
988
989 /* Get the current status of a tracing run. */
990 virtual int get_trace_status (struct trace_status *ts)
991 TARGET_DEFAULT_RETURN (-1);
992
993 virtual void get_tracepoint_status (struct breakpoint *tp,
994 struct uploaded_tp *utp)
995 TARGET_DEFAULT_NORETURN (tcomplain ());
996
997 /* Stop a trace run. */
998 virtual void trace_stop ()
999 TARGET_DEFAULT_NORETURN (tcomplain ());
1000
1001 /* Ask the target to find a trace frame of the given type TYPE,
1002 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
1003 number of the trace frame, and also the tracepoint number at
1004 TPP. If no trace frame matches, return -1. May throw if the
1005 operation fails. */
1006 virtual int trace_find (enum trace_find_type type, int num,
1007 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
1008 TARGET_DEFAULT_RETURN (-1);
1009
1010 /* Get the value of the trace state variable number TSV, returning
1011 1 if the value is known and writing the value itself into the
1012 location pointed to by VAL, else returning 0. */
1013 virtual bool get_trace_state_variable_value (int tsv, LONGEST *val)
1014 TARGET_DEFAULT_RETURN (false);
1015
1016 virtual int save_trace_data (const char *filename)
1017 TARGET_DEFAULT_NORETURN (tcomplain ());
1018
1019 virtual int upload_tracepoints (struct uploaded_tp **utpp)
1020 TARGET_DEFAULT_RETURN (0);
1021
1022 virtual int upload_trace_state_variables (struct uploaded_tsv **utsvp)
1023 TARGET_DEFAULT_RETURN (0);
1024
1025 virtual LONGEST get_raw_trace_data (gdb_byte *buf,
1026 ULONGEST offset, LONGEST len)
1027 TARGET_DEFAULT_NORETURN (tcomplain ());
1028
1029 /* Get the minimum length of instruction on which a fast tracepoint
1030 may be set on the target. If this operation is unsupported,
1031 return -1. If for some reason the minimum length cannot be
1032 determined, return 0. */
1033 virtual int get_min_fast_tracepoint_insn_len ()
1034 TARGET_DEFAULT_RETURN (-1);
1035
1036 /* Set the target's tracing behavior in response to unexpected
1037 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
1038 virtual void set_disconnected_tracing (int val)
1039 TARGET_DEFAULT_IGNORE ();
1040 virtual void set_circular_trace_buffer (int val)
1041 TARGET_DEFAULT_IGNORE ();
1042 /* Set the size of trace buffer in the target. */
1043 virtual void set_trace_buffer_size (LONGEST val)
1044 TARGET_DEFAULT_IGNORE ();
1045
1046 /* Add/change textual notes about the trace run, returning 1 if
1047 successful, 0 otherwise. */
1048 virtual bool set_trace_notes (const char *user, const char *notes,
1049 const char *stopnotes)
1050 TARGET_DEFAULT_RETURN (false);
1051
1052 /* Return the processor core that thread PTID was last seen on.
1053 This information is updated only when:
1054 - update_thread_list is called
1055 - thread stops
1056 If the core cannot be determined -- either for the specified
1057 thread, or right now, or in this debug session, or for this
1058 target -- return -1. */
1059 virtual int core_of_thread (ptid_t ptid)
1060 TARGET_DEFAULT_RETURN (-1);
1061
1062 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
1063 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
1064 a match, 0 if there's a mismatch, and -1 if an error is
1065 encountered while reading memory. */
1066 virtual int verify_memory (const gdb_byte *data,
1067 CORE_ADDR memaddr, ULONGEST size)
1068 TARGET_DEFAULT_FUNC (default_verify_memory);
1069
1070 /* Return the address of the start of the Thread Information Block
1071 a Windows OS specific feature. */
1072 virtual bool get_tib_address (ptid_t ptid, CORE_ADDR *addr)
1073 TARGET_DEFAULT_NORETURN (tcomplain ());
1074
1075 /* Send the new settings of write permission variables. */
1076 virtual void set_permissions ()
1077 TARGET_DEFAULT_IGNORE ();
1078
1079 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
1080 with its details. Return true on success, false on failure. */
1081 virtual bool static_tracepoint_marker_at (CORE_ADDR,
1082 static_tracepoint_marker *marker)
1083 TARGET_DEFAULT_RETURN (false);
1084
1085 /* Return a vector of all tracepoints markers string id ID, or all
1086 markers if ID is NULL. */
1087 virtual std::vector<static_tracepoint_marker>
1088 static_tracepoint_markers_by_strid (const char *id)
1089 TARGET_DEFAULT_NORETURN (tcomplain ());
1090
1091 /* Return a traceframe info object describing the current
1092 traceframe's contents. This method should not cache data;
1093 higher layers take care of caching, invalidating, and
1094 re-fetching when necessary. */
1095 virtual traceframe_info_up traceframe_info ()
1096 TARGET_DEFAULT_NORETURN (tcomplain ());
1097
1098 /* Ask the target to use or not to use agent according to USE.
1099 Return true if successful, false otherwise. */
1100 virtual bool use_agent (bool use)
1101 TARGET_DEFAULT_NORETURN (tcomplain ());
1102
1103 /* Is the target able to use agent in current state? */
1104 virtual bool can_use_agent ()
1105 TARGET_DEFAULT_RETURN (false);
1106
1107 /* Enable branch tracing for PTID using CONF configuration.
1108 Return a branch trace target information struct for reading and for
1109 disabling branch trace. */
1110 virtual struct btrace_target_info *enable_btrace (ptid_t ptid,
1111 const struct btrace_config *conf)
1112 TARGET_DEFAULT_NORETURN (tcomplain ());
1113
1114 /* Disable branch tracing and deallocate TINFO. */
1115 virtual void disable_btrace (struct btrace_target_info *tinfo)
1116 TARGET_DEFAULT_NORETURN (tcomplain ());
1117
1118 /* Disable branch tracing and deallocate TINFO. This function is similar
1119 to to_disable_btrace, except that it is called during teardown and is
1120 only allowed to perform actions that are safe. A counter-example would
1121 be attempting to talk to a remote target. */
1122 virtual void teardown_btrace (struct btrace_target_info *tinfo)
1123 TARGET_DEFAULT_NORETURN (tcomplain ());
1124
1125 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1126 DATA is cleared before new trace is added. */
1127 virtual enum btrace_error read_btrace (struct btrace_data *data,
1128 struct btrace_target_info *btinfo,
1129 enum btrace_read_type type)
1130 TARGET_DEFAULT_NORETURN (tcomplain ());
1131
1132 /* Get the branch trace configuration. */
1133 virtual const struct btrace_config *btrace_conf (const struct btrace_target_info *)
1134 TARGET_DEFAULT_RETURN (NULL);
1135
1136 /* Current recording method. */
1137 virtual enum record_method record_method (ptid_t ptid)
1138 TARGET_DEFAULT_RETURN (RECORD_METHOD_NONE);
1139
1140 /* Stop trace recording. */
1141 virtual void stop_recording ()
1142 TARGET_DEFAULT_IGNORE ();
1143
1144 /* Print information about the recording. */
1145 virtual void info_record ()
1146 TARGET_DEFAULT_IGNORE ();
1147
1148 /* Save the recorded execution trace into a file. */
1149 virtual void save_record (const char *filename)
1150 TARGET_DEFAULT_NORETURN (tcomplain ());
1151
1152 /* Delete the recorded execution trace from the current position
1153 onwards. */
1154 virtual bool supports_delete_record ()
1155 TARGET_DEFAULT_RETURN (false);
1156 virtual void delete_record ()
1157 TARGET_DEFAULT_NORETURN (tcomplain ());
1158
1159 /* Query if the record target is currently replaying PTID. */
1160 virtual bool record_is_replaying (ptid_t ptid)
1161 TARGET_DEFAULT_RETURN (false);
1162
1163 /* Query if the record target will replay PTID if it were resumed in
1164 execution direction DIR. */
1165 virtual bool record_will_replay (ptid_t ptid, int dir)
1166 TARGET_DEFAULT_RETURN (false);
1167
1168 /* Stop replaying. */
1169 virtual void record_stop_replaying ()
1170 TARGET_DEFAULT_IGNORE ();
1171
1172 /* Go to the begin of the execution trace. */
1173 virtual void goto_record_begin ()
1174 TARGET_DEFAULT_NORETURN (tcomplain ());
1175
1176 /* Go to the end of the execution trace. */
1177 virtual void goto_record_end ()
1178 TARGET_DEFAULT_NORETURN (tcomplain ());
1179
1180 /* Go to a specific location in the recorded execution trace. */
1181 virtual void goto_record (ULONGEST insn)
1182 TARGET_DEFAULT_NORETURN (tcomplain ());
1183
1184 /* Disassemble SIZE instructions in the recorded execution trace from
1185 the current position.
1186 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1187 disassemble SIZE succeeding instructions. */
1188 virtual void insn_history (int size, gdb_disassembly_flags flags)
1189 TARGET_DEFAULT_NORETURN (tcomplain ());
1190
1191 /* Disassemble SIZE instructions in the recorded execution trace around
1192 FROM.
1193 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1194 disassemble SIZE instructions after FROM. */
1195 virtual void insn_history_from (ULONGEST from, int size,
1196 gdb_disassembly_flags flags)
1197 TARGET_DEFAULT_NORETURN (tcomplain ());
1198
1199 /* Disassemble a section of the recorded execution trace from instruction
1200 BEGIN (inclusive) to instruction END (inclusive). */
1201 virtual void insn_history_range (ULONGEST begin, ULONGEST end,
1202 gdb_disassembly_flags flags)
1203 TARGET_DEFAULT_NORETURN (tcomplain ());
1204
1205 /* Print a function trace of the recorded execution trace.
1206 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1207 succeeding functions. */
1208 virtual void call_history (int size, record_print_flags flags)
1209 TARGET_DEFAULT_NORETURN (tcomplain ());
1210
1211 /* Print a function trace of the recorded execution trace starting
1212 at function FROM.
1213 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1214 SIZE functions after FROM. */
1215 virtual void call_history_from (ULONGEST begin, int size, record_print_flags flags)
1216 TARGET_DEFAULT_NORETURN (tcomplain ());
1217
1218 /* Print a function trace of an execution trace section from function BEGIN
1219 (inclusive) to function END (inclusive). */
1220 virtual void call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
1221 TARGET_DEFAULT_NORETURN (tcomplain ());
1222
1223 /* True if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1224 non-empty annex. */
1225 virtual bool augmented_libraries_svr4_read ()
1226 TARGET_DEFAULT_RETURN (false);
1227
1228 /* Those unwinders are tried before any other arch unwinders. If
1229 SELF doesn't have unwinders, it should delegate to the
1230 "beneath" target. */
1231 virtual const struct frame_unwind *get_unwinder ()
1232 TARGET_DEFAULT_RETURN (NULL);
1233
1234 virtual const struct frame_unwind *get_tailcall_unwinder ()
1235 TARGET_DEFAULT_RETURN (NULL);
1236
1237 /* Prepare to generate a core file. */
1238 virtual void prepare_to_generate_core ()
1239 TARGET_DEFAULT_IGNORE ();
1240
1241 /* Cleanup after generating a core file. */
1242 virtual void done_generating_core ()
1243 TARGET_DEFAULT_IGNORE ();
1244 };
1245
1246 /* Deleter for std::unique_ptr. See comments in
1247 target_ops::~target_ops and target_ops::close about heap-allocated
1248 targets. */
1249 struct target_ops_deleter
1250 {
1251 void operator() (target_ops *target)
1252 {
1253 target->close ();
1254 }
1255 };
1256
1257 /* A unique pointer for target_ops. */
1258 typedef std::unique_ptr<target_ops, target_ops_deleter> target_ops_up;
1259
1260 /* Native target backends call this once at initialization time to
1261 inform the core about which is the target that can respond to "run"
1262 or "attach". Note: native targets are always singletons. */
1263 extern void set_native_target (target_ops *target);
1264
1265 /* Get the registered native target, if there's one. Otherwise return
1266 NULL. */
1267 extern target_ops *get_native_target ();
1268
1269 /* Type that manages a target stack. See description of target stacks
1270 and strata at the top of the file. */
1271
1272 class target_stack
1273 {
1274 public:
1275 target_stack () = default;
1276 DISABLE_COPY_AND_ASSIGN (target_stack);
1277
1278 /* Push a new target into the stack of the existing target
1279 accessors, possibly superseding some existing accessor. */
1280 void push (target_ops *t);
1281
1282 /* Remove a target from the stack, wherever it may be. Return true
1283 if it was removed, false otherwise. */
1284 bool unpush (target_ops *t);
1285
1286 /* Returns true if T is pushed on the target stack. */
1287 bool is_pushed (target_ops *t) const
1288 { return at (t->stratum ()) == t; }
1289
1290 /* Return the target at STRATUM. */
1291 target_ops *at (strata stratum) const { return m_stack[stratum]; }
1292
1293 /* Return the target at the top of the stack. */
1294 target_ops *top () const { return at (m_top); }
1295
1296 /* Find the next target down the stack from the specified target. */
1297 target_ops *find_beneath (const target_ops *t) const;
1298
1299 private:
1300 /* The stratum of the top target. */
1301 enum strata m_top {};
1302
1303 /* The stack, represented as an array, with one slot per stratum.
1304 If no target is pushed at some stratum, the corresponding slot is
1305 null. */
1306 target_ops *m_stack[(int) debug_stratum + 1] {};
1307 };
1308
1309 /* The ops structure for our "current" target process. This should
1310 never be NULL. If there is no target, it points to the dummy_target. */
1311
1312 extern target_ops *current_top_target ();
1313
1314 /* Define easy words for doing these operations on our current target. */
1315
1316 #define target_shortname (current_top_target ()->shortname ())
1317 #define target_longname (current_top_target ()->longname ())
1318
1319 /* Does whatever cleanup is required for a target that we are no
1320 longer going to be calling. This routine is automatically always
1321 called after popping the target off the target stack - the target's
1322 own methods are no longer available through the target vector.
1323 Closing file descriptors and freeing all memory allocated memory are
1324 typical things it should do. */
1325
1326 void target_close (struct target_ops *targ);
1327
1328 /* Find the correct target to use for "attach". If a target on the
1329 current stack supports attaching, then it is returned. Otherwise,
1330 the default run target is returned. */
1331
1332 extern struct target_ops *find_attach_target (void);
1333
1334 /* Find the correct target to use for "run". If a target on the
1335 current stack supports creating a new inferior, then it is
1336 returned. Otherwise, the default run target is returned. */
1337
1338 extern struct target_ops *find_run_target (void);
1339
1340 /* Some targets don't generate traps when attaching to the inferior,
1341 or their target_attach implementation takes care of the waiting.
1342 These targets must set to_attach_no_wait. */
1343
1344 #define target_attach_no_wait() \
1345 (current_top_target ()->attach_no_wait ())
1346
1347 /* The target_attach operation places a process under debugger control,
1348 and stops the process.
1349
1350 This operation provides a target-specific hook that allows the
1351 necessary bookkeeping to be performed after an attach completes. */
1352 #define target_post_attach(pid) \
1353 (current_top_target ()->post_attach) (pid)
1354
1355 /* Display a message indicating we're about to detach from the current
1356 inferior process. */
1357
1358 extern void target_announce_detach (int from_tty);
1359
1360 /* Takes a program previously attached to and detaches it.
1361 The program may resume execution (some targets do, some don't) and will
1362 no longer stop on signals, etc. We better not have left any breakpoints
1363 in the program or it'll die when it hits one. FROM_TTY says whether to be
1364 verbose or not. */
1365
1366 extern void target_detach (inferior *inf, int from_tty);
1367
1368 /* Disconnect from the current target without resuming it (leaving it
1369 waiting for a debugger). */
1370
1371 extern void target_disconnect (const char *, int);
1372
1373 /* Resume execution (or prepare for execution) of a target thread,
1374 process or all processes. STEP says whether to hardware
1375 single-step or to run free; SIGGNAL is the signal to be given to
1376 the target, or GDB_SIGNAL_0 for no signal. The caller may not pass
1377 GDB_SIGNAL_DEFAULT. A specific PTID means `step/resume only this
1378 process id'. A wildcard PTID (all threads, or all threads of
1379 process) means `step/resume INFERIOR_PTID, and let other threads
1380 (for which the wildcard PTID matches) resume with their
1381 'thread->suspend.stop_signal' signal (usually GDB_SIGNAL_0) if it
1382 is in "pass" state, or with no signal if in "no pass" state.
1383
1384 In order to efficiently handle batches of resumption requests,
1385 targets may implement this method such that it records the
1386 resumption request, but defers the actual resumption to the
1387 target_commit_resume method implementation. See
1388 target_commit_resume below. */
1389 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1390
1391 /* Commit a series of resumption requests previously prepared with
1392 target_resume calls.
1393
1394 GDB always calls target_commit_resume after calling target_resume
1395 one or more times. A target may thus use this method in
1396 coordination with the target_resume method to batch target-side
1397 resumption requests. In that case, the target doesn't actually
1398 resume in its target_resume implementation. Instead, it prepares
1399 the resumption in target_resume, and defers the actual resumption
1400 to target_commit_resume. E.g., the remote target uses this to
1401 coalesce multiple resumption requests in a single vCont packet. */
1402 extern void target_commit_resume ();
1403
1404 /* Setup to defer target_commit_resume calls, and reactivate
1405 target_commit_resume on destruction, if it was previously
1406 active. */
1407 extern scoped_restore_tmpl<int> make_scoped_defer_target_commit_resume ();
1408
1409 /* For target_read_memory see target/target.h. */
1410
1411 /* The default target_ops::to_wait implementation. */
1412
1413 extern ptid_t default_target_wait (struct target_ops *ops,
1414 ptid_t ptid,
1415 struct target_waitstatus *status,
1416 int options);
1417
1418 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1419
1420 extern void target_fetch_registers (struct regcache *regcache, int regno);
1421
1422 /* Store at least register REGNO, or all regs if REGNO == -1.
1423 It can store as many registers as it wants to, so target_prepare_to_store
1424 must have been previously called. Calls error() if there are problems. */
1425
1426 extern void target_store_registers (struct regcache *regcache, int regs);
1427
1428 /* Get ready to modify the registers array. On machines which store
1429 individual registers, this doesn't need to do anything. On machines
1430 which store all the registers in one fell swoop, this makes sure
1431 that REGISTERS contains all the registers from the program being
1432 debugged. */
1433
1434 #define target_prepare_to_store(regcache) \
1435 (current_top_target ()->prepare_to_store) (regcache)
1436
1437 /* Determine current address space of thread PTID. */
1438
1439 struct address_space *target_thread_address_space (ptid_t);
1440
1441 /* Implement the "info proc" command. This returns one if the request
1442 was handled, and zero otherwise. It can also throw an exception if
1443 an error was encountered while attempting to handle the
1444 request. */
1445
1446 int target_info_proc (const char *, enum info_proc_what);
1447
1448 /* Returns true if this target can disable address space randomization. */
1449
1450 int target_supports_disable_randomization (void);
1451
1452 /* Returns true if this target can enable and disable tracepoints
1453 while a trace experiment is running. */
1454
1455 #define target_supports_enable_disable_tracepoint() \
1456 (current_top_target ()->supports_enable_disable_tracepoint) ()
1457
1458 #define target_supports_string_tracing() \
1459 (current_top_target ()->supports_string_tracing) ()
1460
1461 /* Returns true if this target can handle breakpoint conditions
1462 on its end. */
1463
1464 #define target_supports_evaluation_of_breakpoint_conditions() \
1465 (current_top_target ()->supports_evaluation_of_breakpoint_conditions) ()
1466
1467 /* Returns true if this target can handle breakpoint commands
1468 on its end. */
1469
1470 #define target_can_run_breakpoint_commands() \
1471 (current_top_target ()->can_run_breakpoint_commands) ()
1472
1473 extern int target_read_string (CORE_ADDR, gdb::unique_xmalloc_ptr<char> *,
1474 int, int *);
1475
1476 /* For target_read_memory see target/target.h. */
1477
1478 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1479 ssize_t len);
1480
1481 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1482
1483 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1484
1485 /* For target_write_memory see target/target.h. */
1486
1487 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1488 ssize_t len);
1489
1490 /* Fetches the target's memory map. If one is found it is sorted
1491 and returned, after some consistency checking. Otherwise, NULL
1492 is returned. */
1493 std::vector<mem_region> target_memory_map (void);
1494
1495 /* Erases all flash memory regions on the target. */
1496 void flash_erase_command (const char *cmd, int from_tty);
1497
1498 /* Erase the specified flash region. */
1499 void target_flash_erase (ULONGEST address, LONGEST length);
1500
1501 /* Finish a sequence of flash operations. */
1502 void target_flash_done (void);
1503
1504 /* Describes a request for a memory write operation. */
1505 struct memory_write_request
1506 {
1507 memory_write_request (ULONGEST begin_, ULONGEST end_,
1508 gdb_byte *data_ = nullptr, void *baton_ = nullptr)
1509 : begin (begin_), end (end_), data (data_), baton (baton_)
1510 {}
1511
1512 /* Begining address that must be written. */
1513 ULONGEST begin;
1514 /* Past-the-end address. */
1515 ULONGEST end;
1516 /* The data to write. */
1517 gdb_byte *data;
1518 /* A callback baton for progress reporting for this request. */
1519 void *baton;
1520 };
1521
1522 /* Enumeration specifying different flash preservation behaviour. */
1523 enum flash_preserve_mode
1524 {
1525 flash_preserve,
1526 flash_discard
1527 };
1528
1529 /* Write several memory blocks at once. This version can be more
1530 efficient than making several calls to target_write_memory, in
1531 particular because it can optimize accesses to flash memory.
1532
1533 Moreover, this is currently the only memory access function in gdb
1534 that supports writing to flash memory, and it should be used for
1535 all cases where access to flash memory is desirable.
1536
1537 REQUESTS is the vector of memory_write_request.
1538 PRESERVE_FLASH_P indicates what to do with blocks which must be
1539 erased, but not completely rewritten.
1540 PROGRESS_CB is a function that will be periodically called to provide
1541 feedback to user. It will be called with the baton corresponding
1542 to the request currently being written. It may also be called
1543 with a NULL baton, when preserved flash sectors are being rewritten.
1544
1545 The function returns 0 on success, and error otherwise. */
1546 int target_write_memory_blocks
1547 (const std::vector<memory_write_request> &requests,
1548 enum flash_preserve_mode preserve_flash_p,
1549 void (*progress_cb) (ULONGEST, void *));
1550
1551 /* Print a line about the current target. */
1552
1553 #define target_files_info() \
1554 (current_top_target ()->files_info) ()
1555
1556 /* Insert a breakpoint at address BP_TGT->placed_address in
1557 the target machine. Returns 0 for success, and returns non-zero or
1558 throws an error (with a detailed failure reason error code and
1559 message) otherwise. */
1560
1561 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1562 struct bp_target_info *bp_tgt);
1563
1564 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1565 machine. Result is 0 for success, non-zero for error. */
1566
1567 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1568 struct bp_target_info *bp_tgt,
1569 enum remove_bp_reason reason);
1570
1571 /* Return true if the target stack has a non-default
1572 "terminal_ours" method. */
1573
1574 extern bool target_supports_terminal_ours (void);
1575
1576 /* Kill the inferior process. Make it go away. */
1577
1578 extern void target_kill (void);
1579
1580 /* Load an executable file into the target process. This is expected
1581 to not only bring new code into the target process, but also to
1582 update GDB's symbol tables to match.
1583
1584 ARG contains command-line arguments, to be broken down with
1585 buildargv (). The first non-switch argument is the filename to
1586 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1587 0)), which is an offset to apply to the load addresses of FILE's
1588 sections. The target may define switches, or other non-switch
1589 arguments, as it pleases. */
1590
1591 extern void target_load (const char *arg, int from_tty);
1592
1593 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1594 notification of inferior events such as fork and vork immediately
1595 after the inferior is created. (This because of how gdb gets an
1596 inferior created via invoking a shell to do it. In such a scenario,
1597 if the shell init file has commands in it, the shell will fork and
1598 exec for each of those commands, and we will see each such fork
1599 event. Very bad.)
1600
1601 Such targets will supply an appropriate definition for this function. */
1602
1603 #define target_post_startup_inferior(ptid) \
1604 (current_top_target ()->post_startup_inferior) (ptid)
1605
1606 /* On some targets, we can catch an inferior fork or vfork event when
1607 it occurs. These functions insert/remove an already-created
1608 catchpoint for such events. They return 0 for success, 1 if the
1609 catchpoint type is not supported and -1 for failure. */
1610
1611 #define target_insert_fork_catchpoint(pid) \
1612 (current_top_target ()->insert_fork_catchpoint) (pid)
1613
1614 #define target_remove_fork_catchpoint(pid) \
1615 (current_top_target ()->remove_fork_catchpoint) (pid)
1616
1617 #define target_insert_vfork_catchpoint(pid) \
1618 (current_top_target ()->insert_vfork_catchpoint) (pid)
1619
1620 #define target_remove_vfork_catchpoint(pid) \
1621 (current_top_target ()->remove_vfork_catchpoint) (pid)
1622
1623 /* If the inferior forks or vforks, this function will be called at
1624 the next resume in order to perform any bookkeeping and fiddling
1625 necessary to continue debugging either the parent or child, as
1626 requested, and releasing the other. Information about the fork
1627 or vfork event is available via get_last_target_status ().
1628 This function returns 1 if the inferior should not be resumed
1629 (i.e. there is another event pending). */
1630
1631 int target_follow_fork (int follow_child, int detach_fork);
1632
1633 /* Handle the target-specific bookkeeping required when the inferior
1634 makes an exec call. INF is the exec'd inferior. */
1635
1636 void target_follow_exec (struct inferior *inf, const char *execd_pathname);
1637
1638 /* On some targets, we can catch an inferior exec event when it
1639 occurs. These functions insert/remove an already-created
1640 catchpoint for such events. They return 0 for success, 1 if the
1641 catchpoint type is not supported and -1 for failure. */
1642
1643 #define target_insert_exec_catchpoint(pid) \
1644 (current_top_target ()->insert_exec_catchpoint) (pid)
1645
1646 #define target_remove_exec_catchpoint(pid) \
1647 (current_top_target ()->remove_exec_catchpoint) (pid)
1648
1649 /* Syscall catch.
1650
1651 NEEDED is true if any syscall catch (of any kind) is requested.
1652 If NEEDED is false, it means the target can disable the mechanism to
1653 catch system calls because there are no more catchpoints of this type.
1654
1655 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1656 being requested. In this case, SYSCALL_COUNTS should be ignored.
1657
1658 SYSCALL_COUNTS is an array of ints, indexed by syscall number. An
1659 element in this array is nonzero if that syscall should be caught.
1660 This argument only matters if ANY_COUNT is zero.
1661
1662 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1663 for failure. */
1664
1665 #define target_set_syscall_catchpoint(pid, needed, any_count, syscall_counts) \
1666 (current_top_target ()->set_syscall_catchpoint) (pid, needed, any_count, \
1667 syscall_counts)
1668
1669 /* The debugger has completed a blocking wait() call. There is now
1670 some process event that must be processed. This function should
1671 be defined by those targets that require the debugger to perform
1672 cleanup or internal state changes in response to the process event. */
1673
1674 /* For target_mourn_inferior see target/target.h. */
1675
1676 /* Does target have enough data to do a run or attach command? */
1677
1678 extern int target_can_run ();
1679
1680 /* Set list of signals to be handled in the target.
1681
1682 PASS_SIGNALS is an array indexed by target signal number
1683 (enum gdb_signal). For every signal whose entry in this array is
1684 non-zero, the target is allowed -but not required- to skip reporting
1685 arrival of the signal to the GDB core by returning from target_wait,
1686 and to pass the signal directly to the inferior instead.
1687
1688 However, if the target is hardware single-stepping a thread that is
1689 about to receive a signal, it needs to be reported in any case, even
1690 if mentioned in a previous target_pass_signals call. */
1691
1692 extern void target_pass_signals
1693 (gdb::array_view<const unsigned char> pass_signals);
1694
1695 /* Set list of signals the target may pass to the inferior. This
1696 directly maps to the "handle SIGNAL pass/nopass" setting.
1697
1698 PROGRAM_SIGNALS is an array indexed by target signal
1699 number (enum gdb_signal). For every signal whose entry in this
1700 array is non-zero, the target is allowed to pass the signal to the
1701 inferior. Signals not present in the array shall be silently
1702 discarded. This does not influence whether to pass signals to the
1703 inferior as a result of a target_resume call. This is useful in
1704 scenarios where the target needs to decide whether to pass or not a
1705 signal to the inferior without GDB core involvement, such as for
1706 example, when detaching (as threads may have been suspended with
1707 pending signals not reported to GDB). */
1708
1709 extern void target_program_signals
1710 (gdb::array_view<const unsigned char> program_signals);
1711
1712 /* Check to see if a thread is still alive. */
1713
1714 extern int target_thread_alive (ptid_t ptid);
1715
1716 /* Sync the target's threads with GDB's thread list. */
1717
1718 extern void target_update_thread_list (void);
1719
1720 /* Make target stop in a continuable fashion. (For instance, under
1721 Unix, this should act like SIGSTOP). Note that this function is
1722 asynchronous: it does not wait for the target to become stopped
1723 before returning. If this is the behavior you want please use
1724 target_stop_and_wait. */
1725
1726 extern void target_stop (ptid_t ptid);
1727
1728 /* Interrupt the target. Unlike target_stop, this does not specify
1729 which thread/process reports the stop. For most target this acts
1730 like raising a SIGINT, though that's not absolutely required. This
1731 function is asynchronous. */
1732
1733 extern void target_interrupt ();
1734
1735 /* Pass a ^C, as determined to have been pressed by checking the quit
1736 flag, to the target, as if the user had typed the ^C on the
1737 inferior's controlling terminal while the inferior was in the
1738 foreground. Remote targets may take the opportunity to detect the
1739 remote side is not responding and offer to disconnect. */
1740
1741 extern void target_pass_ctrlc (void);
1742
1743 /* The default target_ops::to_pass_ctrlc implementation. Simply calls
1744 target_interrupt. */
1745 extern void default_target_pass_ctrlc (struct target_ops *ops);
1746
1747 /* Send the specified COMMAND to the target's monitor
1748 (shell,interpreter) for execution. The result of the query is
1749 placed in OUTBUF. */
1750
1751 #define target_rcmd(command, outbuf) \
1752 (current_top_target ()->rcmd) (command, outbuf)
1753
1754
1755 /* Does the target include all of memory, or only part of it? This
1756 determines whether we look up the target chain for other parts of
1757 memory if this target can't satisfy a request. */
1758
1759 extern int target_has_all_memory_1 (void);
1760 #define target_has_all_memory target_has_all_memory_1 ()
1761
1762 /* Does the target include memory? (Dummy targets don't.) */
1763
1764 extern int target_has_memory_1 (void);
1765 #define target_has_memory target_has_memory_1 ()
1766
1767 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1768 we start a process.) */
1769
1770 extern int target_has_stack_1 (void);
1771 #define target_has_stack target_has_stack_1 ()
1772
1773 /* Does the target have registers? (Exec files don't.) */
1774
1775 extern int target_has_registers_1 (void);
1776 #define target_has_registers target_has_registers_1 ()
1777
1778 /* Does the target have execution? Can we make it jump (through
1779 hoops), or pop its stack a few times? This means that the current
1780 target is currently executing; for some targets, that's the same as
1781 whether or not the target is capable of execution, but there are
1782 also targets which can be current while not executing. In that
1783 case this will become true after to_create_inferior or
1784 to_attach. */
1785
1786 extern int target_has_execution_1 (ptid_t);
1787
1788 /* Like target_has_execution_1, but always passes inferior_ptid. */
1789
1790 extern int target_has_execution_current (void);
1791
1792 #define target_has_execution target_has_execution_current ()
1793
1794 /* Can the target support the debugger control of thread execution?
1795 Can it lock the thread scheduler? */
1796
1797 #define target_can_lock_scheduler \
1798 (current_top_target ()->get_thread_control_capabilities () & tc_schedlock)
1799
1800 /* Controls whether async mode is permitted. */
1801 extern bool target_async_permitted;
1802
1803 /* Can the target support asynchronous execution? */
1804 #define target_can_async_p() (current_top_target ()->can_async_p ())
1805
1806 /* Is the target in asynchronous execution mode? */
1807 #define target_is_async_p() (current_top_target ()->is_async_p ())
1808
1809 /* Enables/disabled async target events. */
1810 extern void target_async (int enable);
1811
1812 /* Enables/disables thread create and exit events. */
1813 extern void target_thread_events (int enable);
1814
1815 /* Whether support for controlling the target backends always in
1816 non-stop mode is enabled. */
1817 extern enum auto_boolean target_non_stop_enabled;
1818
1819 /* Is the target in non-stop mode? Some targets control the inferior
1820 in non-stop mode even with "set non-stop off". Always true if "set
1821 non-stop" is on. */
1822 extern int target_is_non_stop_p (void);
1823
1824 #define target_execution_direction() \
1825 (current_top_target ()->execution_direction ())
1826
1827 /* Converts a process id to a string. Usually, the string just contains
1828 `process xyz', but on some systems it may contain
1829 `process xyz thread abc'. */
1830
1831 extern std::string target_pid_to_str (ptid_t ptid);
1832
1833 extern std::string normal_pid_to_str (ptid_t ptid);
1834
1835 /* Return a short string describing extra information about PID,
1836 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1837 is okay. */
1838
1839 #define target_extra_thread_info(TP) \
1840 (current_top_target ()->extra_thread_info (TP))
1841
1842 /* Return the thread's name, or NULL if the target is unable to determine it.
1843 The returned value must not be freed by the caller. */
1844
1845 extern const char *target_thread_name (struct thread_info *);
1846
1847 /* Given a pointer to a thread library specific thread handle and
1848 its length, return a pointer to the corresponding thread_info struct. */
1849
1850 extern struct thread_info *target_thread_handle_to_thread_info
1851 (const gdb_byte *thread_handle, int handle_len, struct inferior *inf);
1852
1853 /* Given a thread, return the thread handle, a target-specific sequence of
1854 bytes which serves as a thread identifier within the program being
1855 debugged. */
1856 extern gdb::byte_vector target_thread_info_to_thread_handle
1857 (struct thread_info *);
1858
1859 /* Attempts to find the pathname of the executable file
1860 that was run to create a specified process.
1861
1862 The process PID must be stopped when this operation is used.
1863
1864 If the executable file cannot be determined, NULL is returned.
1865
1866 Else, a pointer to a character string containing the pathname
1867 is returned. This string should be copied into a buffer by
1868 the client if the string will not be immediately used, or if
1869 it must persist. */
1870
1871 #define target_pid_to_exec_file(pid) \
1872 (current_top_target ()->pid_to_exec_file) (pid)
1873
1874 /* See the to_thread_architecture description in struct target_ops. */
1875
1876 #define target_thread_architecture(ptid) \
1877 (current_top_target ()->thread_architecture (ptid))
1878
1879 /*
1880 * Iterator function for target memory regions.
1881 * Calls a callback function once for each memory region 'mapped'
1882 * in the child process. Defined as a simple macro rather than
1883 * as a function macro so that it can be tested for nullity.
1884 */
1885
1886 #define target_find_memory_regions(FUNC, DATA) \
1887 (current_top_target ()->find_memory_regions) (FUNC, DATA)
1888
1889 /*
1890 * Compose corefile .note section.
1891 */
1892
1893 #define target_make_corefile_notes(BFD, SIZE_P) \
1894 (current_top_target ()->make_corefile_notes) (BFD, SIZE_P)
1895
1896 /* Bookmark interfaces. */
1897 #define target_get_bookmark(ARGS, FROM_TTY) \
1898 (current_top_target ()->get_bookmark) (ARGS, FROM_TTY)
1899
1900 #define target_goto_bookmark(ARG, FROM_TTY) \
1901 (current_top_target ()->goto_bookmark) (ARG, FROM_TTY)
1902
1903 /* Hardware watchpoint interfaces. */
1904
1905 /* GDB's current model is that there are three "kinds" of watchpoints,
1906 with respect to when they trigger and how you can move past them.
1907
1908 Those are: continuable, steppable, and non-steppable.
1909
1910 Continuable watchpoints are like x86's -- those trigger after the
1911 memory access's side effects are fully committed to memory. I.e.,
1912 they trap with the PC pointing at the next instruction already.
1913 Continuing past such a watchpoint is doable by just normally
1914 continuing, hence the name.
1915
1916 Both steppable and non-steppable watchpoints trap before the memory
1917 access. I.e, the PC points at the instruction that is accessing
1918 the memory. So GDB needs to single-step once past the current
1919 instruction in order to make the access effective and check whether
1920 the instruction's side effects change the watched expression.
1921
1922 Now, in order to step past that instruction, depending on
1923 architecture and target, you can have two situations:
1924
1925 - steppable watchpoints: you can single-step with the watchpoint
1926 still armed, and the watchpoint won't trigger again.
1927
1928 - non-steppable watchpoints: if you try to single-step with the
1929 watchpoint still armed, you'd trap the watchpoint again and the
1930 thread wouldn't make any progress. So GDB needs to temporarily
1931 remove the watchpoint in order to step past it.
1932
1933 If your target/architecture does not signal that it has either
1934 steppable or non-steppable watchpoints via either
1935 target_have_steppable_watchpoint or
1936 gdbarch_have_nonsteppable_watchpoint, GDB assumes continuable
1937 watchpoints. */
1938
1939 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1940 write). Only the INFERIOR_PTID task is being queried. */
1941
1942 #define target_stopped_by_watchpoint() \
1943 ((current_top_target ()->stopped_by_watchpoint) ())
1944
1945 /* Returns non-zero if the target stopped because it executed a
1946 software breakpoint instruction. */
1947
1948 #define target_stopped_by_sw_breakpoint() \
1949 ((current_top_target ()->stopped_by_sw_breakpoint) ())
1950
1951 #define target_supports_stopped_by_sw_breakpoint() \
1952 ((current_top_target ()->supports_stopped_by_sw_breakpoint) ())
1953
1954 #define target_stopped_by_hw_breakpoint() \
1955 ((current_top_target ()->stopped_by_hw_breakpoint) ())
1956
1957 #define target_supports_stopped_by_hw_breakpoint() \
1958 ((current_top_target ()->supports_stopped_by_hw_breakpoint) ())
1959
1960 /* Non-zero if we have steppable watchpoints */
1961
1962 #define target_have_steppable_watchpoint \
1963 (current_top_target ()->have_steppable_watchpoint ())
1964
1965 /* Provide defaults for hardware watchpoint functions. */
1966
1967 /* If the *_hw_beakpoint functions have not been defined
1968 elsewhere use the definitions in the target vector. */
1969
1970 /* Returns positive if we can set a hardware watchpoint of type TYPE.
1971 Returns negative if the target doesn't have enough hardware debug
1972 registers available. Return zero if hardware watchpoint of type
1973 TYPE isn't supported. TYPE is one of bp_hardware_watchpoint,
1974 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
1975 CNT is the number of such watchpoints used so far, including this
1976 one. OTHERTYPE is the number of watchpoints of other types than
1977 this one used so far. */
1978
1979 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1980 (current_top_target ()->can_use_hw_breakpoint) ( \
1981 TYPE, CNT, OTHERTYPE)
1982
1983 /* Returns the number of debug registers needed to watch the given
1984 memory region, or zero if not supported. */
1985
1986 #define target_region_ok_for_hw_watchpoint(addr, len) \
1987 (current_top_target ()->region_ok_for_hw_watchpoint) (addr, len)
1988
1989
1990 #define target_can_do_single_step() \
1991 (current_top_target ()->can_do_single_step) ()
1992
1993 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1994 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1995 COND is the expression for its condition, or NULL if there's none.
1996 Returns 0 for success, 1 if the watchpoint type is not supported,
1997 -1 for failure. */
1998
1999 #define target_insert_watchpoint(addr, len, type, cond) \
2000 (current_top_target ()->insert_watchpoint) (addr, len, type, cond)
2001
2002 #define target_remove_watchpoint(addr, len, type, cond) \
2003 (current_top_target ()->remove_watchpoint) (addr, len, type, cond)
2004
2005 /* Insert a new masked watchpoint at ADDR using the mask MASK.
2006 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
2007 or hw_access for an access watchpoint. Returns 0 for success, 1 if
2008 masked watchpoints are not supported, -1 for failure. */
2009
2010 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
2011 enum target_hw_bp_type);
2012
2013 /* Remove a masked watchpoint at ADDR with the mask MASK.
2014 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
2015 or hw_access for an access watchpoint. Returns 0 for success, non-zero
2016 for failure. */
2017
2018 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
2019 enum target_hw_bp_type);
2020
2021 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
2022 the target machine. Returns 0 for success, and returns non-zero or
2023 throws an error (with a detailed failure reason error code and
2024 message) otherwise. */
2025
2026 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
2027 (current_top_target ()->insert_hw_breakpoint) (gdbarch, bp_tgt)
2028
2029 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
2030 (current_top_target ()->remove_hw_breakpoint) (gdbarch, bp_tgt)
2031
2032 /* Return number of debug registers needed for a ranged breakpoint,
2033 or -1 if ranged breakpoints are not supported. */
2034
2035 extern int target_ranged_break_num_registers (void);
2036
2037 /* Return non-zero if target knows the data address which triggered this
2038 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
2039 INFERIOR_PTID task is being queried. */
2040 #define target_stopped_data_address(target, addr_p) \
2041 (target)->stopped_data_address (addr_p)
2042
2043 /* Return non-zero if ADDR is within the range of a watchpoint spanning
2044 LENGTH bytes beginning at START. */
2045 #define target_watchpoint_addr_within_range(target, addr, start, length) \
2046 (target)->watchpoint_addr_within_range (addr, start, length)
2047
2048 /* Return non-zero if the target is capable of using hardware to evaluate
2049 the condition expression. In this case, if the condition is false when
2050 the watched memory location changes, execution may continue without the
2051 debugger being notified.
2052
2053 Due to limitations in the hardware implementation, it may be capable of
2054 avoiding triggering the watchpoint in some cases where the condition
2055 expression is false, but may report some false positives as well.
2056 For this reason, GDB will still evaluate the condition expression when
2057 the watchpoint triggers. */
2058 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
2059 (current_top_target ()->can_accel_watchpoint_condition) (addr, len, type, cond)
2060
2061 /* Return number of debug registers needed for a masked watchpoint,
2062 -1 if masked watchpoints are not supported or -2 if the given address
2063 and mask combination cannot be used. */
2064
2065 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
2066
2067 /* Target can execute in reverse? */
2068 #define target_can_execute_reverse \
2069 current_top_target ()->can_execute_reverse ()
2070
2071 extern const struct target_desc *target_read_description (struct target_ops *);
2072
2073 #define target_get_ada_task_ptid(lwp, tid) \
2074 (current_top_target ()->get_ada_task_ptid) (lwp,tid)
2075
2076 /* Utility implementation of searching memory. */
2077 extern int simple_search_memory (struct target_ops* ops,
2078 CORE_ADDR start_addr,
2079 ULONGEST search_space_len,
2080 const gdb_byte *pattern,
2081 ULONGEST pattern_len,
2082 CORE_ADDR *found_addrp);
2083
2084 /* Main entry point for searching memory. */
2085 extern int target_search_memory (CORE_ADDR start_addr,
2086 ULONGEST search_space_len,
2087 const gdb_byte *pattern,
2088 ULONGEST pattern_len,
2089 CORE_ADDR *found_addrp);
2090
2091 /* Target file operations. */
2092
2093 /* Return nonzero if the filesystem seen by the current inferior
2094 is the local filesystem, zero otherwise. */
2095 #define target_filesystem_is_local() \
2096 current_top_target ()->filesystem_is_local ()
2097
2098 /* Open FILENAME on the target, in the filesystem as seen by INF,
2099 using FLAGS and MODE. If INF is NULL, use the filesystem seen
2100 by the debugger (GDB or, for remote targets, the remote stub).
2101 Return a target file descriptor, or -1 if an error occurs (and
2102 set *TARGET_ERRNO). */
2103 extern int target_fileio_open (struct inferior *inf,
2104 const char *filename, int flags,
2105 int mode, int *target_errno);
2106
2107 /* Like target_fileio_open, but print a warning message if the
2108 file is being accessed over a link that may be slow. */
2109 extern int target_fileio_open_warn_if_slow (struct inferior *inf,
2110 const char *filename,
2111 int flags,
2112 int mode,
2113 int *target_errno);
2114
2115 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2116 Return the number of bytes written, or -1 if an error occurs
2117 (and set *TARGET_ERRNO). */
2118 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2119 ULONGEST offset, int *target_errno);
2120
2121 /* Read up to LEN bytes FD on the target into READ_BUF.
2122 Return the number of bytes read, or -1 if an error occurs
2123 (and set *TARGET_ERRNO). */
2124 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2125 ULONGEST offset, int *target_errno);
2126
2127 /* Get information about the file opened as FD on the target
2128 and put it in SB. Return 0 on success, or -1 if an error
2129 occurs (and set *TARGET_ERRNO). */
2130 extern int target_fileio_fstat (int fd, struct stat *sb,
2131 int *target_errno);
2132
2133 /* Close FD on the target. Return 0, or -1 if an error occurs
2134 (and set *TARGET_ERRNO). */
2135 extern int target_fileio_close (int fd, int *target_errno);
2136
2137 /* Unlink FILENAME on the target, in the filesystem as seen by INF.
2138 If INF is NULL, use the filesystem seen by the debugger (GDB or,
2139 for remote targets, the remote stub). Return 0, or -1 if an error
2140 occurs (and set *TARGET_ERRNO). */
2141 extern int target_fileio_unlink (struct inferior *inf,
2142 const char *filename,
2143 int *target_errno);
2144
2145 /* Read value of symbolic link FILENAME on the target, in the
2146 filesystem as seen by INF. If INF is NULL, use the filesystem seen
2147 by the debugger (GDB or, for remote targets, the remote stub).
2148 Return a null-terminated string allocated via xmalloc, or NULL if
2149 an error occurs (and set *TARGET_ERRNO). */
2150 extern gdb::optional<std::string> target_fileio_readlink
2151 (struct inferior *inf, const char *filename, int *target_errno);
2152
2153 /* Read target file FILENAME, in the filesystem as seen by INF. If
2154 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2155 remote targets, the remote stub). The return value will be -1 if
2156 the transfer fails or is not supported; 0 if the object is empty;
2157 or the length of the object otherwise. If a positive value is
2158 returned, a sufficiently large buffer will be allocated using
2159 xmalloc and returned in *BUF_P containing the contents of the
2160 object.
2161
2162 This method should be used for objects sufficiently small to store
2163 in a single xmalloc'd buffer, when no fixed bound on the object's
2164 size is known in advance. */
2165 extern LONGEST target_fileio_read_alloc (struct inferior *inf,
2166 const char *filename,
2167 gdb_byte **buf_p);
2168
2169 /* Read target file FILENAME, in the filesystem as seen by INF. If
2170 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2171 remote targets, the remote stub). The result is NUL-terminated and
2172 returned as a string, allocated using xmalloc. If an error occurs
2173 or the transfer is unsupported, NULL is returned. Empty objects
2174 are returned as allocated but empty strings. A warning is issued
2175 if the result contains any embedded NUL bytes. */
2176 extern gdb::unique_xmalloc_ptr<char> target_fileio_read_stralloc
2177 (struct inferior *inf, const char *filename);
2178
2179
2180 /* Tracepoint-related operations. */
2181
2182 #define target_trace_init() \
2183 (current_top_target ()->trace_init) ()
2184
2185 #define target_download_tracepoint(t) \
2186 (current_top_target ()->download_tracepoint) (t)
2187
2188 #define target_can_download_tracepoint() \
2189 (current_top_target ()->can_download_tracepoint) ()
2190
2191 #define target_download_trace_state_variable(tsv) \
2192 (current_top_target ()->download_trace_state_variable) (tsv)
2193
2194 #define target_enable_tracepoint(loc) \
2195 (current_top_target ()->enable_tracepoint) (loc)
2196
2197 #define target_disable_tracepoint(loc) \
2198 (current_top_target ()->disable_tracepoint) (loc)
2199
2200 #define target_trace_start() \
2201 (current_top_target ()->trace_start) ()
2202
2203 #define target_trace_set_readonly_regions() \
2204 (current_top_target ()->trace_set_readonly_regions) ()
2205
2206 #define target_get_trace_status(ts) \
2207 (current_top_target ()->get_trace_status) (ts)
2208
2209 #define target_get_tracepoint_status(tp,utp) \
2210 (current_top_target ()->get_tracepoint_status) (tp, utp)
2211
2212 #define target_trace_stop() \
2213 (current_top_target ()->trace_stop) ()
2214
2215 #define target_trace_find(type,num,addr1,addr2,tpp) \
2216 (current_top_target ()->trace_find) (\
2217 (type), (num), (addr1), (addr2), (tpp))
2218
2219 #define target_get_trace_state_variable_value(tsv,val) \
2220 (current_top_target ()->get_trace_state_variable_value) ((tsv), (val))
2221
2222 #define target_save_trace_data(filename) \
2223 (current_top_target ()->save_trace_data) (filename)
2224
2225 #define target_upload_tracepoints(utpp) \
2226 (current_top_target ()->upload_tracepoints) (utpp)
2227
2228 #define target_upload_trace_state_variables(utsvp) \
2229 (current_top_target ()->upload_trace_state_variables) (utsvp)
2230
2231 #define target_get_raw_trace_data(buf,offset,len) \
2232 (current_top_target ()->get_raw_trace_data) ((buf), (offset), (len))
2233
2234 #define target_get_min_fast_tracepoint_insn_len() \
2235 (current_top_target ()->get_min_fast_tracepoint_insn_len) ()
2236
2237 #define target_set_disconnected_tracing(val) \
2238 (current_top_target ()->set_disconnected_tracing) (val)
2239
2240 #define target_set_circular_trace_buffer(val) \
2241 (current_top_target ()->set_circular_trace_buffer) (val)
2242
2243 #define target_set_trace_buffer_size(val) \
2244 (current_top_target ()->set_trace_buffer_size) (val)
2245
2246 #define target_set_trace_notes(user,notes,stopnotes) \
2247 (current_top_target ()->set_trace_notes) ((user), (notes), (stopnotes))
2248
2249 #define target_get_tib_address(ptid, addr) \
2250 (current_top_target ()->get_tib_address) ((ptid), (addr))
2251
2252 #define target_set_permissions() \
2253 (current_top_target ()->set_permissions) ()
2254
2255 #define target_static_tracepoint_marker_at(addr, marker) \
2256 (current_top_target ()->static_tracepoint_marker_at) (addr, marker)
2257
2258 #define target_static_tracepoint_markers_by_strid(marker_id) \
2259 (current_top_target ()->static_tracepoint_markers_by_strid) (marker_id)
2260
2261 #define target_traceframe_info() \
2262 (current_top_target ()->traceframe_info) ()
2263
2264 #define target_use_agent(use) \
2265 (current_top_target ()->use_agent) (use)
2266
2267 #define target_can_use_agent() \
2268 (current_top_target ()->can_use_agent) ()
2269
2270 #define target_augmented_libraries_svr4_read() \
2271 (current_top_target ()->augmented_libraries_svr4_read) ()
2272
2273 /* Command logging facility. */
2274
2275 #define target_log_command(p) \
2276 (current_top_target ()->log_command) (p)
2277
2278
2279 extern int target_core_of_thread (ptid_t ptid);
2280
2281 /* See to_get_unwinder in struct target_ops. */
2282 extern const struct frame_unwind *target_get_unwinder (void);
2283
2284 /* See to_get_tailcall_unwinder in struct target_ops. */
2285 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2286
2287 /* This implements basic memory verification, reading target memory
2288 and performing the comparison here (as opposed to accelerated
2289 verification making use of the qCRC packet, for example). */
2290
2291 extern int simple_verify_memory (struct target_ops* ops,
2292 const gdb_byte *data,
2293 CORE_ADDR memaddr, ULONGEST size);
2294
2295 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2296 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2297 if there's a mismatch, and -1 if an error is encountered while
2298 reading memory. Throws an error if the functionality is found not
2299 to be supported by the current target. */
2300 int target_verify_memory (const gdb_byte *data,
2301 CORE_ADDR memaddr, ULONGEST size);
2302
2303 /* Routines for maintenance of the target structures...
2304
2305 add_target: Add a target to the list of all possible targets.
2306 This only makes sense for targets that should be activated using
2307 the "target TARGET_NAME ..." command.
2308
2309 push_target: Make this target the top of the stack of currently used
2310 targets, within its particular stratum of the stack. Result
2311 is 0 if now atop the stack, nonzero if not on top (maybe
2312 should warn user).
2313
2314 unpush_target: Remove this from the stack of currently used targets,
2315 no matter where it is on the list. Returns 0 if no
2316 change, 1 if removed from stack. */
2317
2318 /* Type of callback called when the user activates a target with
2319 "target TARGET_NAME". The callback routine takes the rest of the
2320 parameters from the command, and (if successful) pushes a new
2321 target onto the stack. */
2322 typedef void target_open_ftype (const char *args, int from_tty);
2323
2324 /* Add the target described by INFO to the list of possible targets
2325 and add a new command 'target $(INFO->shortname)'. Set COMPLETER
2326 as the command's completer if not NULL. */
2327
2328 extern void add_target (const target_info &info,
2329 target_open_ftype *func,
2330 completer_ftype *completer = NULL);
2331
2332 /* Adds a command ALIAS for the target described by INFO and marks it
2333 deprecated. This is useful for maintaining backwards compatibility
2334 when renaming targets. */
2335
2336 extern void add_deprecated_target_alias (const target_info &info,
2337 const char *alias);
2338
2339 extern void push_target (struct target_ops *);
2340
2341 /* An overload that deletes the target on failure. */
2342 extern void push_target (target_ops_up &&);
2343
2344 extern int unpush_target (struct target_ops *);
2345
2346 extern void target_pre_inferior (int);
2347
2348 extern void target_preopen (int);
2349
2350 /* Does whatever cleanup is required to get rid of all pushed targets. */
2351 extern void pop_all_targets (void);
2352
2353 /* Like pop_all_targets, but pops only targets whose stratum is at or
2354 above STRATUM. */
2355 extern void pop_all_targets_at_and_above (enum strata stratum);
2356
2357 /* Like pop_all_targets, but pops only targets whose stratum is
2358 strictly above ABOVE_STRATUM. */
2359 extern void pop_all_targets_above (enum strata above_stratum);
2360
2361 extern int target_is_pushed (struct target_ops *t);
2362
2363 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2364 CORE_ADDR offset);
2365
2366 /* Struct target_section maps address ranges to file sections. It is
2367 mostly used with BFD files, but can be used without (e.g. for handling
2368 raw disks, or files not in formats handled by BFD). */
2369
2370 struct target_section
2371 {
2372 CORE_ADDR addr; /* Lowest address in section */
2373 CORE_ADDR endaddr; /* 1+highest address in section */
2374
2375 struct bfd_section *the_bfd_section;
2376
2377 /* The "owner" of the section.
2378 It can be any unique value. It is set by add_target_sections
2379 and used by remove_target_sections.
2380 For example, for executables it is a pointer to exec_bfd and
2381 for shlibs it is the so_list pointer. */
2382 void *owner;
2383 };
2384
2385 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2386
2387 struct target_section_table
2388 {
2389 struct target_section *sections;
2390 struct target_section *sections_end;
2391 };
2392
2393 /* Return the "section" containing the specified address. */
2394 struct target_section *target_section_by_addr (struct target_ops *target,
2395 CORE_ADDR addr);
2396
2397 /* Return the target section table this target (or the targets
2398 beneath) currently manipulate. */
2399
2400 extern struct target_section_table *target_get_section_table
2401 (struct target_ops *target);
2402
2403 /* From mem-break.c */
2404
2405 extern int memory_remove_breakpoint (struct target_ops *,
2406 struct gdbarch *, struct bp_target_info *,
2407 enum remove_bp_reason);
2408
2409 extern int memory_insert_breakpoint (struct target_ops *,
2410 struct gdbarch *, struct bp_target_info *);
2411
2412 /* Convenience template use to add memory breakpoints support to a
2413 target. */
2414
2415 template <typename BaseTarget>
2416 struct memory_breakpoint_target : public BaseTarget
2417 {
2418 int insert_breakpoint (struct gdbarch *gdbarch,
2419 struct bp_target_info *bp_tgt) override
2420 { return memory_insert_breakpoint (this, gdbarch, bp_tgt); }
2421
2422 int remove_breakpoint (struct gdbarch *gdbarch,
2423 struct bp_target_info *bp_tgt,
2424 enum remove_bp_reason reason) override
2425 { return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason); }
2426 };
2427
2428 /* Check whether the memory at the breakpoint's placed address still
2429 contains the expected breakpoint instruction. */
2430
2431 extern int memory_validate_breakpoint (struct gdbarch *gdbarch,
2432 struct bp_target_info *bp_tgt);
2433
2434 extern int default_memory_remove_breakpoint (struct gdbarch *,
2435 struct bp_target_info *);
2436
2437 extern int default_memory_insert_breakpoint (struct gdbarch *,
2438 struct bp_target_info *);
2439
2440
2441 /* From target.c */
2442
2443 extern void initialize_targets (void);
2444
2445 extern void noprocess (void) ATTRIBUTE_NORETURN;
2446
2447 extern void target_require_runnable (void);
2448
2449 /* Find the target at STRATUM. If no target is at that stratum,
2450 return NULL. */
2451
2452 struct target_ops *find_target_at (enum strata stratum);
2453
2454 /* Read OS data object of type TYPE from the target, and return it in XML
2455 format. The return value follows the same rules as target_read_stralloc. */
2456
2457 extern gdb::optional<gdb::char_vector> target_get_osdata (const char *type);
2458
2459 /* Stuff that should be shared among the various remote targets. */
2460
2461 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2462 information (higher values, more information). */
2463 extern int remote_debug;
2464
2465 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2466 extern int baud_rate;
2467
2468 /* Parity for serial port */
2469 extern int serial_parity;
2470
2471 /* Timeout limit for response from target. */
2472 extern int remote_timeout;
2473
2474 \f
2475
2476 /* Set the show memory breakpoints mode to show, and return a
2477 scoped_restore to restore it back to the current value. */
2478 extern scoped_restore_tmpl<int>
2479 make_scoped_restore_show_memory_breakpoints (int show);
2480
2481 extern bool may_write_registers;
2482 extern bool may_write_memory;
2483 extern bool may_insert_breakpoints;
2484 extern bool may_insert_tracepoints;
2485 extern bool may_insert_fast_tracepoints;
2486 extern bool may_stop;
2487
2488 extern void update_target_permissions (void);
2489
2490 \f
2491 /* Imported from machine dependent code. */
2492
2493 /* See to_enable_btrace in struct target_ops. */
2494 extern struct btrace_target_info *
2495 target_enable_btrace (ptid_t ptid, const struct btrace_config *);
2496
2497 /* See to_disable_btrace in struct target_ops. */
2498 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2499
2500 /* See to_teardown_btrace in struct target_ops. */
2501 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2502
2503 /* See to_read_btrace in struct target_ops. */
2504 extern enum btrace_error target_read_btrace (struct btrace_data *,
2505 struct btrace_target_info *,
2506 enum btrace_read_type);
2507
2508 /* See to_btrace_conf in struct target_ops. */
2509 extern const struct btrace_config *
2510 target_btrace_conf (const struct btrace_target_info *);
2511
2512 /* See to_stop_recording in struct target_ops. */
2513 extern void target_stop_recording (void);
2514
2515 /* See to_save_record in struct target_ops. */
2516 extern void target_save_record (const char *filename);
2517
2518 /* Query if the target supports deleting the execution log. */
2519 extern int target_supports_delete_record (void);
2520
2521 /* See to_delete_record in struct target_ops. */
2522 extern void target_delete_record (void);
2523
2524 /* See to_record_method. */
2525 extern enum record_method target_record_method (ptid_t ptid);
2526
2527 /* See to_record_is_replaying in struct target_ops. */
2528 extern int target_record_is_replaying (ptid_t ptid);
2529
2530 /* See to_record_will_replay in struct target_ops. */
2531 extern int target_record_will_replay (ptid_t ptid, int dir);
2532
2533 /* See to_record_stop_replaying in struct target_ops. */
2534 extern void target_record_stop_replaying (void);
2535
2536 /* See to_goto_record_begin in struct target_ops. */
2537 extern void target_goto_record_begin (void);
2538
2539 /* See to_goto_record_end in struct target_ops. */
2540 extern void target_goto_record_end (void);
2541
2542 /* See to_goto_record in struct target_ops. */
2543 extern void target_goto_record (ULONGEST insn);
2544
2545 /* See to_insn_history. */
2546 extern void target_insn_history (int size, gdb_disassembly_flags flags);
2547
2548 /* See to_insn_history_from. */
2549 extern void target_insn_history_from (ULONGEST from, int size,
2550 gdb_disassembly_flags flags);
2551
2552 /* See to_insn_history_range. */
2553 extern void target_insn_history_range (ULONGEST begin, ULONGEST end,
2554 gdb_disassembly_flags flags);
2555
2556 /* See to_call_history. */
2557 extern void target_call_history (int size, record_print_flags flags);
2558
2559 /* See to_call_history_from. */
2560 extern void target_call_history_from (ULONGEST begin, int size,
2561 record_print_flags flags);
2562
2563 /* See to_call_history_range. */
2564 extern void target_call_history_range (ULONGEST begin, ULONGEST end,
2565 record_print_flags flags);
2566
2567 /* See to_prepare_to_generate_core. */
2568 extern void target_prepare_to_generate_core (void);
2569
2570 /* See to_done_generating_core. */
2571 extern void target_done_generating_core (void);
2572
2573 #endif /* !defined (TARGET_H) */
This page took 0.081788 seconds and 3 git commands to generate.