target_ops::to_stratum -> target_ops::stratum() virtual method
[deliverable/binutils-gdb.git] / gdb / target.h
1 /* Interface between GDB and target environments, including files and processes
2
3 Copyright (C) 1990-2018 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support. Written by John Gilmore.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #if !defined (TARGET_H)
23 #define TARGET_H
24
25 struct objfile;
26 struct ui_file;
27 struct mem_attrib;
28 struct target_ops;
29 struct bp_location;
30 struct bp_target_info;
31 struct regcache;
32 struct target_section_table;
33 struct trace_state_variable;
34 struct trace_status;
35 struct uploaded_tsv;
36 struct uploaded_tp;
37 struct static_tracepoint_marker;
38 struct traceframe_info;
39 struct expression;
40 struct dcache_struct;
41 struct inferior;
42
43 #include "infrun.h" /* For enum exec_direction_kind. */
44 #include "breakpoint.h" /* For enum bptype. */
45 #include "common/scoped_restore.h"
46
47 /* This include file defines the interface between the main part
48 of the debugger, and the part which is target-specific, or
49 specific to the communications interface between us and the
50 target.
51
52 A TARGET is an interface between the debugger and a particular
53 kind of file or process. Targets can be STACKED in STRATA,
54 so that more than one target can potentially respond to a request.
55 In particular, memory accesses will walk down the stack of targets
56 until they find a target that is interested in handling that particular
57 address. STRATA are artificial boundaries on the stack, within
58 which particular kinds of targets live. Strata exist so that
59 people don't get confused by pushing e.g. a process target and then
60 a file target, and wondering why they can't see the current values
61 of variables any more (the file target is handling them and they
62 never get to the process target). So when you push a file target,
63 it goes into the file stratum, which is always below the process
64 stratum.
65
66 Note that rather than allow an empty stack, we always have the
67 dummy target at the bottom stratum, so we can call the target
68 methods without checking them. */
69
70 #include "target/target.h"
71 #include "target/resume.h"
72 #include "target/wait.h"
73 #include "target/waitstatus.h"
74 #include "bfd.h"
75 #include "symtab.h"
76 #include "memattr.h"
77 #include "vec.h"
78 #include "gdb_signals.h"
79 #include "btrace.h"
80 #include "record.h"
81 #include "command.h"
82 #include "disasm.h"
83 #include "tracepoint.h"
84
85 #include "break-common.h" /* For enum target_hw_bp_type. */
86
87 enum strata
88 {
89 dummy_stratum, /* The lowest of the low */
90 file_stratum, /* Executable files, etc */
91 process_stratum, /* Executing processes or core dump files */
92 thread_stratum, /* Executing threads */
93 record_stratum, /* Support record debugging */
94 arch_stratum, /* Architecture overrides */
95 debug_stratum /* Target debug. Must be last. */
96 };
97
98 enum thread_control_capabilities
99 {
100 tc_none = 0, /* Default: can't control thread execution. */
101 tc_schedlock = 1, /* Can lock the thread scheduler. */
102 };
103
104 /* The structure below stores information about a system call.
105 It is basically used in the "catch syscall" command, and in
106 every function that gives information about a system call.
107
108 It's also good to mention that its fields represent everything
109 that we currently know about a syscall in GDB. */
110 struct syscall
111 {
112 /* The syscall number. */
113 int number;
114
115 /* The syscall name. */
116 const char *name;
117 };
118
119 /* Return a pretty printed form of TARGET_OPTIONS. */
120 extern std::string target_options_to_string (int target_options);
121
122 /* Possible types of events that the inferior handler will have to
123 deal with. */
124 enum inferior_event_type
125 {
126 /* Process a normal inferior event which will result in target_wait
127 being called. */
128 INF_REG_EVENT,
129 /* We are called to do stuff after the inferior stops. */
130 INF_EXEC_COMPLETE,
131 };
132 \f
133 /* Target objects which can be transfered using target_read,
134 target_write, et cetera. */
135
136 enum target_object
137 {
138 /* AVR target specific transfer. See "avr-tdep.c" and "remote.c". */
139 TARGET_OBJECT_AVR,
140 /* SPU target specific transfer. See "spu-tdep.c". */
141 TARGET_OBJECT_SPU,
142 /* Transfer up-to LEN bytes of memory starting at OFFSET. */
143 TARGET_OBJECT_MEMORY,
144 /* Memory, avoiding GDB's data cache and trusting the executable.
145 Target implementations of to_xfer_partial never need to handle
146 this object, and most callers should not use it. */
147 TARGET_OBJECT_RAW_MEMORY,
148 /* Memory known to be part of the target's stack. This is cached even
149 if it is not in a region marked as such, since it is known to be
150 "normal" RAM. */
151 TARGET_OBJECT_STACK_MEMORY,
152 /* Memory known to be part of the target code. This is cached even
153 if it is not in a region marked as such. */
154 TARGET_OBJECT_CODE_MEMORY,
155 /* Kernel Unwind Table. See "ia64-tdep.c". */
156 TARGET_OBJECT_UNWIND_TABLE,
157 /* Transfer auxilliary vector. */
158 TARGET_OBJECT_AUXV,
159 /* StackGhost cookie. See "sparc-tdep.c". */
160 TARGET_OBJECT_WCOOKIE,
161 /* Target memory map in XML format. */
162 TARGET_OBJECT_MEMORY_MAP,
163 /* Flash memory. This object can be used to write contents to
164 a previously erased flash memory. Using it without erasing
165 flash can have unexpected results. Addresses are physical
166 address on target, and not relative to flash start. */
167 TARGET_OBJECT_FLASH,
168 /* Available target-specific features, e.g. registers and coprocessors.
169 See "target-descriptions.c". ANNEX should never be empty. */
170 TARGET_OBJECT_AVAILABLE_FEATURES,
171 /* Currently loaded libraries, in XML format. */
172 TARGET_OBJECT_LIBRARIES,
173 /* Currently loaded libraries specific for SVR4 systems, in XML format. */
174 TARGET_OBJECT_LIBRARIES_SVR4,
175 /* Currently loaded libraries specific to AIX systems, in XML format. */
176 TARGET_OBJECT_LIBRARIES_AIX,
177 /* Get OS specific data. The ANNEX specifies the type (running
178 processes, etc.). The data being transfered is expected to follow
179 the DTD specified in features/osdata.dtd. */
180 TARGET_OBJECT_OSDATA,
181 /* Extra signal info. Usually the contents of `siginfo_t' on unix
182 platforms. */
183 TARGET_OBJECT_SIGNAL_INFO,
184 /* The list of threads that are being debugged. */
185 TARGET_OBJECT_THREADS,
186 /* Collected static trace data. */
187 TARGET_OBJECT_STATIC_TRACE_DATA,
188 /* Traceframe info, in XML format. */
189 TARGET_OBJECT_TRACEFRAME_INFO,
190 /* Load maps for FDPIC systems. */
191 TARGET_OBJECT_FDPIC,
192 /* Darwin dynamic linker info data. */
193 TARGET_OBJECT_DARWIN_DYLD_INFO,
194 /* OpenVMS Unwind Information Block. */
195 TARGET_OBJECT_OPENVMS_UIB,
196 /* Branch trace data, in XML format. */
197 TARGET_OBJECT_BTRACE,
198 /* Branch trace configuration, in XML format. */
199 TARGET_OBJECT_BTRACE_CONF,
200 /* The pathname of the executable file that was run to create
201 a specified process. ANNEX should be a string representation
202 of the process ID of the process in question, in hexadecimal
203 format. */
204 TARGET_OBJECT_EXEC_FILE,
205 /* FreeBSD virtual memory mappings. */
206 TARGET_OBJECT_FREEBSD_VMMAP,
207 /* FreeBSD process strings. */
208 TARGET_OBJECT_FREEBSD_PS_STRINGS,
209 /* Possible future objects: TARGET_OBJECT_FILE, ... */
210 };
211
212 /* Possible values returned by target_xfer_partial, etc. */
213
214 enum target_xfer_status
215 {
216 /* Some bytes are transferred. */
217 TARGET_XFER_OK = 1,
218
219 /* No further transfer is possible. */
220 TARGET_XFER_EOF = 0,
221
222 /* The piece of the object requested is unavailable. */
223 TARGET_XFER_UNAVAILABLE = 2,
224
225 /* Generic I/O error. Note that it's important that this is '-1',
226 as we still have target_xfer-related code returning hardcoded
227 '-1' on error. */
228 TARGET_XFER_E_IO = -1,
229
230 /* Keep list in sync with target_xfer_status_to_string. */
231 };
232
233 /* Return the string form of STATUS. */
234
235 extern const char *
236 target_xfer_status_to_string (enum target_xfer_status status);
237
238 typedef enum target_xfer_status
239 target_xfer_partial_ftype (struct target_ops *ops,
240 enum target_object object,
241 const char *annex,
242 gdb_byte *readbuf,
243 const gdb_byte *writebuf,
244 ULONGEST offset,
245 ULONGEST len,
246 ULONGEST *xfered_len);
247
248 enum target_xfer_status
249 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
250 const gdb_byte *writebuf, ULONGEST memaddr,
251 LONGEST len, ULONGEST *xfered_len);
252
253 /* Request that OPS transfer up to LEN addressable units of the target's
254 OBJECT. When reading from a memory object, the size of an addressable unit
255 is architecture dependent and can be found using
256 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
257 byte long. BUF should point to a buffer large enough to hold the read data,
258 taking into account the addressable unit size. The OFFSET, for a seekable
259 object, specifies the starting point. The ANNEX can be used to provide
260 additional data-specific information to the target.
261
262 Return the number of addressable units actually transferred, or a negative
263 error code (an 'enum target_xfer_error' value) if the transfer is not
264 supported or otherwise fails. Return of a positive value less than
265 LEN indicates that no further transfer is possible. Unlike the raw
266 to_xfer_partial interface, callers of these functions do not need
267 to retry partial transfers. */
268
269 extern LONGEST target_read (struct target_ops *ops,
270 enum target_object object,
271 const char *annex, gdb_byte *buf,
272 ULONGEST offset, LONGEST len);
273
274 struct memory_read_result
275 {
276 memory_read_result (ULONGEST begin_, ULONGEST end_,
277 gdb::unique_xmalloc_ptr<gdb_byte> &&data_)
278 : begin (begin_),
279 end (end_),
280 data (std::move (data_))
281 {
282 }
283
284 ~memory_read_result () = default;
285
286 memory_read_result (memory_read_result &&other) = default;
287
288 DISABLE_COPY_AND_ASSIGN (memory_read_result);
289
290 /* First address that was read. */
291 ULONGEST begin;
292 /* Past-the-end address. */
293 ULONGEST end;
294 /* The data. */
295 gdb::unique_xmalloc_ptr<gdb_byte> data;
296 };
297
298 extern std::vector<memory_read_result> read_memory_robust
299 (struct target_ops *ops, const ULONGEST offset, const LONGEST len);
300
301 /* Request that OPS transfer up to LEN addressable units from BUF to the
302 target's OBJECT. When writing to a memory object, the addressable unit
303 size is architecture dependent and can be found using
304 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is 1
305 byte long. The OFFSET, for a seekable object, specifies the starting point.
306 The ANNEX can be used to provide additional data-specific information to
307 the target.
308
309 Return the number of addressable units actually transferred, or a negative
310 error code (an 'enum target_xfer_status' value) if the transfer is not
311 supported or otherwise fails. Return of a positive value less than
312 LEN indicates that no further transfer is possible. Unlike the raw
313 to_xfer_partial interface, callers of these functions do not need to
314 retry partial transfers. */
315
316 extern LONGEST target_write (struct target_ops *ops,
317 enum target_object object,
318 const char *annex, const gdb_byte *buf,
319 ULONGEST offset, LONGEST len);
320
321 /* Similar to target_write, except that it also calls PROGRESS with
322 the number of bytes written and the opaque BATON after every
323 successful partial write (and before the first write). This is
324 useful for progress reporting and user interaction while writing
325 data. To abort the transfer, the progress callback can throw an
326 exception. */
327
328 LONGEST target_write_with_progress (struct target_ops *ops,
329 enum target_object object,
330 const char *annex, const gdb_byte *buf,
331 ULONGEST offset, LONGEST len,
332 void (*progress) (ULONGEST, void *),
333 void *baton);
334
335 /* Wrapper to perform a full read of unknown size. OBJECT/ANNEX will be read
336 using OPS. The return value will be uninstantiated if the transfer fails or
337 is not supported.
338
339 This method should be used for objects sufficiently small to store
340 in a single xmalloc'd buffer, when no fixed bound on the object's
341 size is known in advance. Don't try to read TARGET_OBJECT_MEMORY
342 through this function. */
343
344 extern gdb::optional<gdb::byte_vector> target_read_alloc
345 (struct target_ops *ops, enum target_object object, const char *annex);
346
347 /* Read OBJECT/ANNEX using OPS. The result is a NUL-terminated character vector
348 (therefore usable as a NUL-terminated string). If an error occurs or the
349 transfer is unsupported, the return value will be uninstantiated. Empty
350 objects are returned as allocated but empty strings. Therefore, on success,
351 the returned vector is guaranteed to have at least one element. A warning is
352 issued if the result contains any embedded NUL bytes. */
353
354 extern gdb::optional<gdb::char_vector> target_read_stralloc
355 (struct target_ops *ops, enum target_object object, const char *annex);
356
357 /* See target_ops->to_xfer_partial. */
358 extern target_xfer_partial_ftype target_xfer_partial;
359
360 /* Wrappers to target read/write that perform memory transfers. They
361 throw an error if the memory transfer fails.
362
363 NOTE: cagney/2003-10-23: The naming schema is lifted from
364 "frame.h". The parameter order is lifted from get_frame_memory,
365 which in turn lifted it from read_memory. */
366
367 extern void get_target_memory (struct target_ops *ops, CORE_ADDR addr,
368 gdb_byte *buf, LONGEST len);
369 extern ULONGEST get_target_memory_unsigned (struct target_ops *ops,
370 CORE_ADDR addr, int len,
371 enum bfd_endian byte_order);
372 \f
373 struct thread_info; /* fwd decl for parameter list below: */
374
375 /* The type of the callback to the to_async method. */
376
377 typedef void async_callback_ftype (enum inferior_event_type event_type,
378 void *context);
379
380 /* Normally target debug printing is purely type-based. However,
381 sometimes it is necessary to override the debug printing on a
382 per-argument basis. This macro can be used, attribute-style, to
383 name the target debug printing function for a particular method
384 argument. FUNC is the name of the function. The macro's
385 definition is empty because it is only used by the
386 make-target-delegates script. */
387
388 #define TARGET_DEBUG_PRINTER(FUNC)
389
390 /* These defines are used to mark target_ops methods. The script
391 make-target-delegates scans these and auto-generates the base
392 method implementations. There are four macros that can be used:
393
394 1. TARGET_DEFAULT_IGNORE. There is no argument. The base method
395 does nothing. This is only valid if the method return type is
396 'void'.
397
398 2. TARGET_DEFAULT_NORETURN. The argument is a function call, like
399 'tcomplain ()'. The base method simply makes this call, which is
400 assumed not to return.
401
402 3. TARGET_DEFAULT_RETURN. The argument is a C expression. The
403 base method returns this expression's value.
404
405 4. TARGET_DEFAULT_FUNC. The argument is the name of a function.
406 make-target-delegates does not generate a base method in this case,
407 but instead uses the argument function as the base method. */
408
409 #define TARGET_DEFAULT_IGNORE()
410 #define TARGET_DEFAULT_NORETURN(ARG)
411 #define TARGET_DEFAULT_RETURN(ARG)
412 #define TARGET_DEFAULT_FUNC(ARG)
413
414 /* Each target that can be activated with "target TARGET_NAME" passes
415 the address of one of these objects to add_target, which uses the
416 object's address as unique identifier, and registers the "target
417 TARGET_NAME" command using SHORTNAME as target name. */
418
419 struct target_info
420 {
421 /* Name of this target. */
422 const char *shortname;
423
424 /* Name for printing. */
425 const char *longname;
426
427 /* Documentation. Does not include trailing newline, and starts
428 with a one-line description (probably similar to longname). */
429 const char *doc;
430 };
431
432 struct target_ops
433 {
434 /* Return this target's stratum. */
435 virtual strata stratum () const = 0;
436
437 /* To the target under this one. */
438 target_ops *beneath () const;
439
440 /* Free resources associated with the target. Note that singleton
441 targets, like e.g., native targets, are global objects, not
442 heap allocated, and are thus only deleted on GDB exit. The
443 main teardown entry point is the "close" method, below. */
444 virtual ~target_ops () {}
445
446 /* Return a reference to this target's unique target_info
447 object. */
448 virtual const target_info &info () const = 0;
449
450 /* Name this target type. */
451 const char *shortname ()
452 { return info ().shortname; }
453
454 const char *longname ()
455 { return info ().longname; }
456
457 /* Close the target. This is where the target can handle
458 teardown. Heap-allocated targets should delete themselves
459 before returning. */
460 virtual void close ();
461
462 /* Attaches to a process on the target side. Arguments are as
463 passed to the `attach' command by the user. This routine can
464 be called when the target is not on the target-stack, if the
465 target_ops::can_run method returns 1; in that case, it must push
466 itself onto the stack. Upon exit, the target should be ready
467 for normal operations, and should be ready to deliver the
468 status of the process immediately (without waiting) to an
469 upcoming target_wait call. */
470 virtual bool can_attach ();
471 virtual void attach (const char *, int);
472 virtual void post_attach (int)
473 TARGET_DEFAULT_IGNORE ();
474 virtual void detach (inferior *, int)
475 TARGET_DEFAULT_IGNORE ();
476 virtual void disconnect (const char *, int)
477 TARGET_DEFAULT_NORETURN (tcomplain ());
478 virtual void resume (ptid_t,
479 int TARGET_DEBUG_PRINTER (target_debug_print_step),
480 enum gdb_signal)
481 TARGET_DEFAULT_NORETURN (noprocess ());
482 virtual void commit_resume ()
483 TARGET_DEFAULT_IGNORE ();
484 virtual ptid_t wait (ptid_t, struct target_waitstatus *,
485 int TARGET_DEBUG_PRINTER (target_debug_print_options))
486 TARGET_DEFAULT_FUNC (default_target_wait);
487 virtual void fetch_registers (struct regcache *, int)
488 TARGET_DEFAULT_IGNORE ();
489 virtual void store_registers (struct regcache *, int)
490 TARGET_DEFAULT_NORETURN (noprocess ());
491 virtual void prepare_to_store (struct regcache *)
492 TARGET_DEFAULT_NORETURN (noprocess ());
493
494 virtual void files_info ()
495 TARGET_DEFAULT_IGNORE ();
496 virtual int insert_breakpoint (struct gdbarch *,
497 struct bp_target_info *)
498 TARGET_DEFAULT_NORETURN (noprocess ());
499 virtual int remove_breakpoint (struct gdbarch *,
500 struct bp_target_info *,
501 enum remove_bp_reason)
502 TARGET_DEFAULT_NORETURN (noprocess ());
503
504 /* Returns true if the target stopped because it executed a
505 software breakpoint. This is necessary for correct background
506 execution / non-stop mode operation, and for correct PC
507 adjustment on targets where the PC needs to be adjusted when a
508 software breakpoint triggers. In these modes, by the time GDB
509 processes a breakpoint event, the breakpoint may already be
510 done from the target, so GDB needs to be able to tell whether
511 it should ignore the event and whether it should adjust the PC.
512 See adjust_pc_after_break. */
513 virtual bool stopped_by_sw_breakpoint ()
514 TARGET_DEFAULT_RETURN (false);
515 /* Returns true if the above method is supported. */
516 virtual bool supports_stopped_by_sw_breakpoint ()
517 TARGET_DEFAULT_RETURN (false);
518
519 /* Returns true if the target stopped for a hardware breakpoint.
520 Likewise, if the target supports hardware breakpoints, this
521 method is necessary for correct background execution / non-stop
522 mode operation. Even though hardware breakpoints do not
523 require PC adjustment, GDB needs to be able to tell whether the
524 hardware breakpoint event is a delayed event for a breakpoint
525 that is already gone and should thus be ignored. */
526 virtual bool stopped_by_hw_breakpoint ()
527 TARGET_DEFAULT_RETURN (false);
528 /* Returns true if the above method is supported. */
529 virtual bool supports_stopped_by_hw_breakpoint ()
530 TARGET_DEFAULT_RETURN (false);
531
532 virtual int can_use_hw_breakpoint (enum bptype, int, int)
533 TARGET_DEFAULT_RETURN (0);
534 virtual int ranged_break_num_registers ()
535 TARGET_DEFAULT_RETURN (-1);
536 virtual int insert_hw_breakpoint (struct gdbarch *,
537 struct bp_target_info *)
538 TARGET_DEFAULT_RETURN (-1);
539 virtual int remove_hw_breakpoint (struct gdbarch *,
540 struct bp_target_info *)
541 TARGET_DEFAULT_RETURN (-1);
542
543 /* Documentation of what the two routines below are expected to do is
544 provided with the corresponding target_* macros. */
545 virtual int remove_watchpoint (CORE_ADDR, int,
546 enum target_hw_bp_type, struct expression *)
547 TARGET_DEFAULT_RETURN (-1);
548 virtual int insert_watchpoint (CORE_ADDR, int,
549 enum target_hw_bp_type, struct expression *)
550 TARGET_DEFAULT_RETURN (-1);
551
552 virtual int insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
553 enum target_hw_bp_type)
554 TARGET_DEFAULT_RETURN (1);
555 virtual int remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
556 enum target_hw_bp_type)
557 TARGET_DEFAULT_RETURN (1);
558 virtual bool stopped_by_watchpoint ()
559 TARGET_DEFAULT_RETURN (false);
560 virtual bool have_steppable_watchpoint ()
561 TARGET_DEFAULT_RETURN (false);
562 virtual bool stopped_data_address (CORE_ADDR *)
563 TARGET_DEFAULT_RETURN (false);
564 virtual bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int)
565 TARGET_DEFAULT_FUNC (default_watchpoint_addr_within_range);
566
567 /* Documentation of this routine is provided with the corresponding
568 target_* macro. */
569 virtual int region_ok_for_hw_watchpoint (CORE_ADDR, int)
570 TARGET_DEFAULT_FUNC (default_region_ok_for_hw_watchpoint);
571
572 virtual bool can_accel_watchpoint_condition (CORE_ADDR, int, int,
573 struct expression *)
574 TARGET_DEFAULT_RETURN (false);
575 virtual int masked_watch_num_registers (CORE_ADDR, CORE_ADDR)
576 TARGET_DEFAULT_RETURN (-1);
577
578 /* Return 1 for sure target can do single step. Return -1 for
579 unknown. Return 0 for target can't do. */
580 virtual int can_do_single_step ()
581 TARGET_DEFAULT_RETURN (-1);
582
583 virtual bool supports_terminal_ours ()
584 TARGET_DEFAULT_RETURN (false);
585 virtual void terminal_init ()
586 TARGET_DEFAULT_IGNORE ();
587 virtual void terminal_inferior ()
588 TARGET_DEFAULT_IGNORE ();
589 virtual void terminal_save_inferior ()
590 TARGET_DEFAULT_IGNORE ();
591 virtual void terminal_ours_for_output ()
592 TARGET_DEFAULT_IGNORE ();
593 virtual void terminal_ours ()
594 TARGET_DEFAULT_IGNORE ();
595 virtual void terminal_info (const char *, int)
596 TARGET_DEFAULT_FUNC (default_terminal_info);
597 virtual void kill ()
598 TARGET_DEFAULT_NORETURN (noprocess ());
599 virtual void load (const char *, int)
600 TARGET_DEFAULT_NORETURN (tcomplain ());
601 /* Start an inferior process and set inferior_ptid to its pid.
602 EXEC_FILE is the file to run.
603 ALLARGS is a string containing the arguments to the program.
604 ENV is the environment vector to pass. Errors reported with error().
605 On VxWorks and various standalone systems, we ignore exec_file. */
606 virtual bool can_create_inferior ();
607 virtual void create_inferior (const char *, const std::string &,
608 char **, int);
609 virtual void post_startup_inferior (ptid_t)
610 TARGET_DEFAULT_IGNORE ();
611 virtual int insert_fork_catchpoint (int)
612 TARGET_DEFAULT_RETURN (1);
613 virtual int remove_fork_catchpoint (int)
614 TARGET_DEFAULT_RETURN (1);
615 virtual int insert_vfork_catchpoint (int)
616 TARGET_DEFAULT_RETURN (1);
617 virtual int remove_vfork_catchpoint (int)
618 TARGET_DEFAULT_RETURN (1);
619 virtual int follow_fork (int, int)
620 TARGET_DEFAULT_FUNC (default_follow_fork);
621 virtual int insert_exec_catchpoint (int)
622 TARGET_DEFAULT_RETURN (1);
623 virtual int remove_exec_catchpoint (int)
624 TARGET_DEFAULT_RETURN (1);
625 virtual void follow_exec (struct inferior *, char *)
626 TARGET_DEFAULT_IGNORE ();
627 virtual int set_syscall_catchpoint (int, bool, int,
628 gdb::array_view<const int>)
629 TARGET_DEFAULT_RETURN (1);
630 virtual void mourn_inferior ()
631 TARGET_DEFAULT_FUNC (default_mourn_inferior);
632
633 /* Note that can_run is special and can be invoked on an unpushed
634 target. Targets defining this method must also define
635 to_can_async_p and to_supports_non_stop. */
636 virtual bool can_run ();
637
638 /* Documentation of this routine is provided with the corresponding
639 target_* macro. */
640 virtual void pass_signals (int,
641 unsigned char * TARGET_DEBUG_PRINTER (target_debug_print_signals))
642 TARGET_DEFAULT_IGNORE ();
643
644 /* Documentation of this routine is provided with the
645 corresponding target_* function. */
646 virtual void program_signals (int,
647 unsigned char * TARGET_DEBUG_PRINTER (target_debug_print_signals))
648 TARGET_DEFAULT_IGNORE ();
649
650 virtual bool thread_alive (ptid_t ptid)
651 TARGET_DEFAULT_RETURN (false);
652 virtual void update_thread_list ()
653 TARGET_DEFAULT_IGNORE ();
654 virtual const char *pid_to_str (ptid_t)
655 TARGET_DEFAULT_FUNC (default_pid_to_str);
656 virtual const char *extra_thread_info (thread_info *)
657 TARGET_DEFAULT_RETURN (NULL);
658 virtual const char *thread_name (thread_info *)
659 TARGET_DEFAULT_RETURN (NULL);
660 virtual thread_info *thread_handle_to_thread_info (const gdb_byte *,
661 int,
662 inferior *inf)
663 TARGET_DEFAULT_RETURN (NULL);
664 virtual void stop (ptid_t)
665 TARGET_DEFAULT_IGNORE ();
666 virtual void interrupt ()
667 TARGET_DEFAULT_IGNORE ();
668 virtual void pass_ctrlc ()
669 TARGET_DEFAULT_FUNC (default_target_pass_ctrlc);
670 virtual void rcmd (const char *command, struct ui_file *output)
671 TARGET_DEFAULT_FUNC (default_rcmd);
672 virtual char *pid_to_exec_file (int pid)
673 TARGET_DEFAULT_RETURN (NULL);
674 virtual void log_command (const char *)
675 TARGET_DEFAULT_IGNORE ();
676 virtual struct target_section_table *get_section_table ()
677 TARGET_DEFAULT_RETURN (NULL);
678
679 /* Provide default values for all "must have" methods. */
680 virtual bool has_all_memory () { return false; }
681 virtual bool has_memory () { return false; }
682 virtual bool has_stack () { return false; }
683 virtual bool has_registers () { return false; }
684 virtual bool has_execution (ptid_t) { return false; }
685
686 /* Control thread execution. */
687 virtual thread_control_capabilities get_thread_control_capabilities ()
688 TARGET_DEFAULT_RETURN (tc_none);
689 virtual bool attach_no_wait ()
690 TARGET_DEFAULT_RETURN (0);
691 /* This method must be implemented in some situations. See the
692 comment on 'can_run'. */
693 virtual bool can_async_p ()
694 TARGET_DEFAULT_RETURN (false);
695 virtual bool is_async_p ()
696 TARGET_DEFAULT_RETURN (false);
697 virtual void async (int)
698 TARGET_DEFAULT_NORETURN (tcomplain ());
699 virtual void thread_events (int)
700 TARGET_DEFAULT_IGNORE ();
701 /* This method must be implemented in some situations. See the
702 comment on 'can_run'. */
703 virtual bool supports_non_stop ()
704 TARGET_DEFAULT_RETURN (false);
705 /* Return true if the target operates in non-stop mode even with
706 "set non-stop off". */
707 virtual bool always_non_stop_p ()
708 TARGET_DEFAULT_RETURN (false);
709 /* find_memory_regions support method for gcore */
710 virtual int find_memory_regions (find_memory_region_ftype func, void *data)
711 TARGET_DEFAULT_FUNC (dummy_find_memory_regions);
712 /* make_corefile_notes support method for gcore */
713 virtual char *make_corefile_notes (bfd *, int *)
714 TARGET_DEFAULT_FUNC (dummy_make_corefile_notes);
715 /* get_bookmark support method for bookmarks */
716 virtual gdb_byte *get_bookmark (const char *, int)
717 TARGET_DEFAULT_NORETURN (tcomplain ());
718 /* goto_bookmark support method for bookmarks */
719 virtual void goto_bookmark (const gdb_byte *, int)
720 TARGET_DEFAULT_NORETURN (tcomplain ());
721 /* Return the thread-local address at OFFSET in the
722 thread-local storage for the thread PTID and the shared library
723 or executable file given by OBJFILE. If that block of
724 thread-local storage hasn't been allocated yet, this function
725 may return an error. LOAD_MODULE_ADDR may be zero for statically
726 linked multithreaded inferiors. */
727 virtual CORE_ADDR get_thread_local_address (ptid_t ptid,
728 CORE_ADDR load_module_addr,
729 CORE_ADDR offset)
730 TARGET_DEFAULT_NORETURN (generic_tls_error ());
731
732 /* Request that OPS transfer up to LEN addressable units of the target's
733 OBJECT. When reading from a memory object, the size of an addressable
734 unit is architecture dependent and can be found using
735 gdbarch_addressable_memory_unit_size. Otherwise, an addressable unit is
736 1 byte long. The OFFSET, for a seekable object, specifies the
737 starting point. The ANNEX can be used to provide additional
738 data-specific information to the target.
739
740 Return the transferred status, error or OK (an
741 'enum target_xfer_status' value). Save the number of addressable units
742 actually transferred in *XFERED_LEN if transfer is successful
743 (TARGET_XFER_OK) or the number unavailable units if the requested
744 data is unavailable (TARGET_XFER_UNAVAILABLE). *XFERED_LEN
745 smaller than LEN does not indicate the end of the object, only
746 the end of the transfer; higher level code should continue
747 transferring if desired. This is handled in target.c.
748
749 The interface does not support a "retry" mechanism. Instead it
750 assumes that at least one addressable unit will be transfered on each
751 successful call.
752
753 NOTE: cagney/2003-10-17: The current interface can lead to
754 fragmented transfers. Lower target levels should not implement
755 hacks, such as enlarging the transfer, in an attempt to
756 compensate for this. Instead, the target stack should be
757 extended so that it implements supply/collect methods and a
758 look-aside object cache. With that available, the lowest
759 target can safely and freely "push" data up the stack.
760
761 See target_read and target_write for more information. One,
762 and only one, of readbuf or writebuf must be non-NULL. */
763
764 virtual enum target_xfer_status xfer_partial (enum target_object object,
765 const char *annex,
766 gdb_byte *readbuf,
767 const gdb_byte *writebuf,
768 ULONGEST offset, ULONGEST len,
769 ULONGEST *xfered_len)
770 TARGET_DEFAULT_RETURN (TARGET_XFER_E_IO);
771
772 /* Return the limit on the size of any single memory transfer
773 for the target. */
774
775 virtual ULONGEST get_memory_xfer_limit ()
776 TARGET_DEFAULT_RETURN (ULONGEST_MAX);
777
778 /* Returns the memory map for the target. A return value of NULL
779 means that no memory map is available. If a memory address
780 does not fall within any returned regions, it's assumed to be
781 RAM. The returned memory regions should not overlap.
782
783 The order of regions does not matter; target_memory_map will
784 sort regions by starting address. For that reason, this
785 function should not be called directly except via
786 target_memory_map.
787
788 This method should not cache data; if the memory map could
789 change unexpectedly, it should be invalidated, and higher
790 layers will re-fetch it. */
791 virtual std::vector<mem_region> memory_map ()
792 TARGET_DEFAULT_RETURN (std::vector<mem_region> ());
793
794 /* Erases the region of flash memory starting at ADDRESS, of
795 length LENGTH.
796
797 Precondition: both ADDRESS and ADDRESS+LENGTH should be aligned
798 on flash block boundaries, as reported by 'to_memory_map'. */
799 virtual void flash_erase (ULONGEST address, LONGEST length)
800 TARGET_DEFAULT_NORETURN (tcomplain ());
801
802 /* Finishes a flash memory write sequence. After this operation
803 all flash memory should be available for writing and the result
804 of reading from areas written by 'to_flash_write' should be
805 equal to what was written. */
806 virtual void flash_done ()
807 TARGET_DEFAULT_NORETURN (tcomplain ());
808
809 /* Describe the architecture-specific features of this target. If
810 OPS doesn't have a description, this should delegate to the
811 "beneath" target. Returns the description found, or NULL if no
812 description was available. */
813 virtual const struct target_desc *read_description ()
814 TARGET_DEFAULT_RETURN (NULL);
815
816 /* Build the PTID of the thread on which a given task is running,
817 based on LWP and THREAD. These values are extracted from the
818 task Private_Data section of the Ada Task Control Block, and
819 their interpretation depends on the target. */
820 virtual ptid_t get_ada_task_ptid (long lwp, long thread)
821 TARGET_DEFAULT_FUNC (default_get_ada_task_ptid);
822
823 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
824 Return 0 if *READPTR is already at the end of the buffer.
825 Return -1 if there is insufficient buffer for a whole entry.
826 Return 1 if an entry was read into *TYPEP and *VALP. */
827 virtual int auxv_parse (gdb_byte **readptr,
828 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
829 TARGET_DEFAULT_FUNC (default_auxv_parse);
830
831 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
832 sequence of bytes in PATTERN with length PATTERN_LEN.
833
834 The result is 1 if found, 0 if not found, and -1 if there was an error
835 requiring halting of the search (e.g. memory read error).
836 If the pattern is found the address is recorded in FOUND_ADDRP. */
837 virtual int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
838 const gdb_byte *pattern, ULONGEST pattern_len,
839 CORE_ADDR *found_addrp)
840 TARGET_DEFAULT_FUNC (default_search_memory);
841
842 /* Can target execute in reverse? */
843 virtual bool can_execute_reverse ()
844 TARGET_DEFAULT_RETURN (false);
845
846 /* The direction the target is currently executing. Must be
847 implemented on targets that support reverse execution and async
848 mode. The default simply returns forward execution. */
849 virtual enum exec_direction_kind execution_direction ()
850 TARGET_DEFAULT_FUNC (default_execution_direction);
851
852 /* Does this target support debugging multiple processes
853 simultaneously? */
854 virtual bool supports_multi_process ()
855 TARGET_DEFAULT_RETURN (false);
856
857 /* Does this target support enabling and disabling tracepoints while a trace
858 experiment is running? */
859 virtual bool supports_enable_disable_tracepoint ()
860 TARGET_DEFAULT_RETURN (false);
861
862 /* Does this target support disabling address space randomization? */
863 virtual bool supports_disable_randomization ()
864 TARGET_DEFAULT_FUNC (find_default_supports_disable_randomization);
865
866 /* Does this target support the tracenz bytecode for string collection? */
867 virtual bool supports_string_tracing ()
868 TARGET_DEFAULT_RETURN (false);
869
870 /* Does this target support evaluation of breakpoint conditions on its
871 end? */
872 virtual bool supports_evaluation_of_breakpoint_conditions ()
873 TARGET_DEFAULT_RETURN (false);
874
875 /* Does this target support evaluation of breakpoint commands on its
876 end? */
877 virtual bool can_run_breakpoint_commands ()
878 TARGET_DEFAULT_RETURN (false);
879
880 /* Determine current architecture of thread PTID.
881
882 The target is supposed to determine the architecture of the code where
883 the target is currently stopped at (on Cell, if a target is in spu_run,
884 to_thread_architecture would return SPU, otherwise PPC32 or PPC64).
885 This is architecture used to perform decr_pc_after_break adjustment,
886 and also determines the frame architecture of the innermost frame.
887 ptrace operations need to operate according to target_gdbarch (). */
888 virtual struct gdbarch *thread_architecture (ptid_t)
889 TARGET_DEFAULT_RETURN (NULL);
890
891 /* Determine current address space of thread PTID. */
892 virtual struct address_space *thread_address_space (ptid_t)
893 TARGET_DEFAULT_RETURN (NULL);
894
895 /* Target file operations. */
896
897 /* Return nonzero if the filesystem seen by the current inferior
898 is the local filesystem, zero otherwise. */
899 virtual bool filesystem_is_local ()
900 TARGET_DEFAULT_RETURN (true);
901
902 /* Open FILENAME on the target, in the filesystem as seen by INF,
903 using FLAGS and MODE. If INF is NULL, use the filesystem seen
904 by the debugger (GDB or, for remote targets, the remote stub).
905 If WARN_IF_SLOW is nonzero, print a warning message if the file
906 is being accessed over a link that may be slow. Return a
907 target file descriptor, or -1 if an error occurs (and set
908 *TARGET_ERRNO). */
909 virtual int fileio_open (struct inferior *inf, const char *filename,
910 int flags, int mode, int warn_if_slow,
911 int *target_errno);
912
913 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
914 Return the number of bytes written, or -1 if an error occurs
915 (and set *TARGET_ERRNO). */
916 virtual int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
917 ULONGEST offset, int *target_errno);
918
919 /* Read up to LEN bytes FD on the target into READ_BUF.
920 Return the number of bytes read, or -1 if an error occurs
921 (and set *TARGET_ERRNO). */
922 virtual int fileio_pread (int fd, gdb_byte *read_buf, int len,
923 ULONGEST offset, int *target_errno);
924
925 /* Get information about the file opened as FD and put it in
926 SB. Return 0 on success, or -1 if an error occurs (and set
927 *TARGET_ERRNO). */
928 virtual int fileio_fstat (int fd, struct stat *sb, int *target_errno);
929
930 /* Close FD on the target. Return 0, or -1 if an error occurs
931 (and set *TARGET_ERRNO). */
932 virtual int fileio_close (int fd, int *target_errno);
933
934 /* Unlink FILENAME on the target, in the filesystem as seen by
935 INF. If INF is NULL, use the filesystem seen by the debugger
936 (GDB or, for remote targets, the remote stub). Return 0, or
937 -1 if an error occurs (and set *TARGET_ERRNO). */
938 virtual int fileio_unlink (struct inferior *inf,
939 const char *filename,
940 int *target_errno);
941
942 /* Read value of symbolic link FILENAME on the target, in the
943 filesystem as seen by INF. If INF is NULL, use the filesystem
944 seen by the debugger (GDB or, for remote targets, the remote
945 stub). Return a string, or an empty optional if an error
946 occurs (and set *TARGET_ERRNO). */
947 virtual gdb::optional<std::string> fileio_readlink (struct inferior *inf,
948 const char *filename,
949 int *target_errno);
950
951 /* Implement the "info proc" command. Returns true if the target
952 actually implemented the command, false otherwise. */
953 virtual bool info_proc (const char *, enum info_proc_what);
954
955 /* Tracepoint-related operations. */
956
957 /* Prepare the target for a tracing run. */
958 virtual void trace_init ()
959 TARGET_DEFAULT_NORETURN (tcomplain ());
960
961 /* Send full details of a tracepoint location to the target. */
962 virtual void download_tracepoint (struct bp_location *location)
963 TARGET_DEFAULT_NORETURN (tcomplain ());
964
965 /* Is the target able to download tracepoint locations in current
966 state? */
967 virtual bool can_download_tracepoint ()
968 TARGET_DEFAULT_RETURN (false);
969
970 /* Send full details of a trace state variable to the target. */
971 virtual void download_trace_state_variable (const trace_state_variable &tsv)
972 TARGET_DEFAULT_NORETURN (tcomplain ());
973
974 /* Enable a tracepoint on the target. */
975 virtual void enable_tracepoint (struct bp_location *location)
976 TARGET_DEFAULT_NORETURN (tcomplain ());
977
978 /* Disable a tracepoint on the target. */
979 virtual void disable_tracepoint (struct bp_location *location)
980 TARGET_DEFAULT_NORETURN (tcomplain ());
981
982 /* Inform the target info of memory regions that are readonly
983 (such as text sections), and so it should return data from
984 those rather than look in the trace buffer. */
985 virtual void trace_set_readonly_regions ()
986 TARGET_DEFAULT_NORETURN (tcomplain ());
987
988 /* Start a trace run. */
989 virtual void trace_start ()
990 TARGET_DEFAULT_NORETURN (tcomplain ());
991
992 /* Get the current status of a tracing run. */
993 virtual int get_trace_status (struct trace_status *ts)
994 TARGET_DEFAULT_RETURN (-1);
995
996 virtual void get_tracepoint_status (struct breakpoint *tp,
997 struct uploaded_tp *utp)
998 TARGET_DEFAULT_NORETURN (tcomplain ());
999
1000 /* Stop a trace run. */
1001 virtual void trace_stop ()
1002 TARGET_DEFAULT_NORETURN (tcomplain ());
1003
1004 /* Ask the target to find a trace frame of the given type TYPE,
1005 using NUM, ADDR1, and ADDR2 as search parameters. Returns the
1006 number of the trace frame, and also the tracepoint number at
1007 TPP. If no trace frame matches, return -1. May throw if the
1008 operation fails. */
1009 virtual int trace_find (enum trace_find_type type, int num,
1010 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp)
1011 TARGET_DEFAULT_RETURN (-1);
1012
1013 /* Get the value of the trace state variable number TSV, returning
1014 1 if the value is known and writing the value itself into the
1015 location pointed to by VAL, else returning 0. */
1016 virtual bool get_trace_state_variable_value (int tsv, LONGEST *val)
1017 TARGET_DEFAULT_RETURN (false);
1018
1019 virtual int save_trace_data (const char *filename)
1020 TARGET_DEFAULT_NORETURN (tcomplain ());
1021
1022 virtual int upload_tracepoints (struct uploaded_tp **utpp)
1023 TARGET_DEFAULT_RETURN (0);
1024
1025 virtual int upload_trace_state_variables (struct uploaded_tsv **utsvp)
1026 TARGET_DEFAULT_RETURN (0);
1027
1028 virtual LONGEST get_raw_trace_data (gdb_byte *buf,
1029 ULONGEST offset, LONGEST len)
1030 TARGET_DEFAULT_NORETURN (tcomplain ());
1031
1032 /* Get the minimum length of instruction on which a fast tracepoint
1033 may be set on the target. If this operation is unsupported,
1034 return -1. If for some reason the minimum length cannot be
1035 determined, return 0. */
1036 virtual int get_min_fast_tracepoint_insn_len ()
1037 TARGET_DEFAULT_RETURN (-1);
1038
1039 /* Set the target's tracing behavior in response to unexpected
1040 disconnection - set VAL to 1 to keep tracing, 0 to stop. */
1041 virtual void set_disconnected_tracing (int val)
1042 TARGET_DEFAULT_IGNORE ();
1043 virtual void set_circular_trace_buffer (int val)
1044 TARGET_DEFAULT_IGNORE ();
1045 /* Set the size of trace buffer in the target. */
1046 virtual void set_trace_buffer_size (LONGEST val)
1047 TARGET_DEFAULT_IGNORE ();
1048
1049 /* Add/change textual notes about the trace run, returning 1 if
1050 successful, 0 otherwise. */
1051 virtual bool set_trace_notes (const char *user, const char *notes,
1052 const char *stopnotes)
1053 TARGET_DEFAULT_RETURN (false);
1054
1055 /* Return the processor core that thread PTID was last seen on.
1056 This information is updated only when:
1057 - update_thread_list is called
1058 - thread stops
1059 If the core cannot be determined -- either for the specified
1060 thread, or right now, or in this debug session, or for this
1061 target -- return -1. */
1062 virtual int core_of_thread (ptid_t ptid)
1063 TARGET_DEFAULT_RETURN (-1);
1064
1065 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range
1066 matches the contents of [DATA,DATA+SIZE). Returns 1 if there's
1067 a match, 0 if there's a mismatch, and -1 if an error is
1068 encountered while reading memory. */
1069 virtual int verify_memory (const gdb_byte *data,
1070 CORE_ADDR memaddr, ULONGEST size)
1071 TARGET_DEFAULT_FUNC (default_verify_memory);
1072
1073 /* Return the address of the start of the Thread Information Block
1074 a Windows OS specific feature. */
1075 virtual bool get_tib_address (ptid_t ptid, CORE_ADDR *addr)
1076 TARGET_DEFAULT_NORETURN (tcomplain ());
1077
1078 /* Send the new settings of write permission variables. */
1079 virtual void set_permissions ()
1080 TARGET_DEFAULT_IGNORE ();
1081
1082 /* Look for a static tracepoint marker at ADDR, and fill in MARKER
1083 with its details. Return true on success, false on failure. */
1084 virtual bool static_tracepoint_marker_at (CORE_ADDR,
1085 static_tracepoint_marker *marker)
1086 TARGET_DEFAULT_RETURN (false);
1087
1088 /* Return a vector of all tracepoints markers string id ID, or all
1089 markers if ID is NULL. */
1090 virtual std::vector<static_tracepoint_marker>
1091 static_tracepoint_markers_by_strid (const char *id)
1092 TARGET_DEFAULT_NORETURN (tcomplain ());
1093
1094 /* Return a traceframe info object describing the current
1095 traceframe's contents. This method should not cache data;
1096 higher layers take care of caching, invalidating, and
1097 re-fetching when necessary. */
1098 virtual traceframe_info_up traceframe_info ()
1099 TARGET_DEFAULT_NORETURN (tcomplain ());
1100
1101 /* Ask the target to use or not to use agent according to USE.
1102 Return true if successful, false otherwise. */
1103 virtual bool use_agent (bool use)
1104 TARGET_DEFAULT_NORETURN (tcomplain ());
1105
1106 /* Is the target able to use agent in current state? */
1107 virtual bool can_use_agent ()
1108 TARGET_DEFAULT_RETURN (false);
1109
1110 /* Enable branch tracing for PTID using CONF configuration.
1111 Return a branch trace target information struct for reading and for
1112 disabling branch trace. */
1113 virtual struct btrace_target_info *enable_btrace (ptid_t ptid,
1114 const struct btrace_config *conf)
1115 TARGET_DEFAULT_NORETURN (tcomplain ());
1116
1117 /* Disable branch tracing and deallocate TINFO. */
1118 virtual void disable_btrace (struct btrace_target_info *tinfo)
1119 TARGET_DEFAULT_NORETURN (tcomplain ());
1120
1121 /* Disable branch tracing and deallocate TINFO. This function is similar
1122 to to_disable_btrace, except that it is called during teardown and is
1123 only allowed to perform actions that are safe. A counter-example would
1124 be attempting to talk to a remote target. */
1125 virtual void teardown_btrace (struct btrace_target_info *tinfo)
1126 TARGET_DEFAULT_NORETURN (tcomplain ());
1127
1128 /* Read branch trace data for the thread indicated by BTINFO into DATA.
1129 DATA is cleared before new trace is added. */
1130 virtual enum btrace_error read_btrace (struct btrace_data *data,
1131 struct btrace_target_info *btinfo,
1132 enum btrace_read_type type)
1133 TARGET_DEFAULT_NORETURN (tcomplain ());
1134
1135 /* Get the branch trace configuration. */
1136 virtual const struct btrace_config *btrace_conf (const struct btrace_target_info *)
1137 TARGET_DEFAULT_RETURN (NULL);
1138
1139 /* Current recording method. */
1140 virtual enum record_method record_method (ptid_t ptid)
1141 TARGET_DEFAULT_RETURN (RECORD_METHOD_NONE);
1142
1143 /* Stop trace recording. */
1144 virtual void stop_recording ()
1145 TARGET_DEFAULT_IGNORE ();
1146
1147 /* Print information about the recording. */
1148 virtual void info_record ()
1149 TARGET_DEFAULT_IGNORE ();
1150
1151 /* Save the recorded execution trace into a file. */
1152 virtual void save_record (const char *filename)
1153 TARGET_DEFAULT_NORETURN (tcomplain ());
1154
1155 /* Delete the recorded execution trace from the current position
1156 onwards. */
1157 virtual bool supports_delete_record ()
1158 TARGET_DEFAULT_RETURN (false);
1159 virtual void delete_record ()
1160 TARGET_DEFAULT_NORETURN (tcomplain ());
1161
1162 /* Query if the record target is currently replaying PTID. */
1163 virtual bool record_is_replaying (ptid_t ptid)
1164 TARGET_DEFAULT_RETURN (false);
1165
1166 /* Query if the record target will replay PTID if it were resumed in
1167 execution direction DIR. */
1168 virtual bool record_will_replay (ptid_t ptid, int dir)
1169 TARGET_DEFAULT_RETURN (false);
1170
1171 /* Stop replaying. */
1172 virtual void record_stop_replaying ()
1173 TARGET_DEFAULT_IGNORE ();
1174
1175 /* Go to the begin of the execution trace. */
1176 virtual void goto_record_begin ()
1177 TARGET_DEFAULT_NORETURN (tcomplain ());
1178
1179 /* Go to the end of the execution trace. */
1180 virtual void goto_record_end ()
1181 TARGET_DEFAULT_NORETURN (tcomplain ());
1182
1183 /* Go to a specific location in the recorded execution trace. */
1184 virtual void goto_record (ULONGEST insn)
1185 TARGET_DEFAULT_NORETURN (tcomplain ());
1186
1187 /* Disassemble SIZE instructions in the recorded execution trace from
1188 the current position.
1189 If SIZE < 0, disassemble abs (SIZE) preceding instructions; otherwise,
1190 disassemble SIZE succeeding instructions. */
1191 virtual void insn_history (int size, gdb_disassembly_flags flags)
1192 TARGET_DEFAULT_NORETURN (tcomplain ());
1193
1194 /* Disassemble SIZE instructions in the recorded execution trace around
1195 FROM.
1196 If SIZE < 0, disassemble abs (SIZE) instructions before FROM; otherwise,
1197 disassemble SIZE instructions after FROM. */
1198 virtual void insn_history_from (ULONGEST from, int size,
1199 gdb_disassembly_flags flags)
1200 TARGET_DEFAULT_NORETURN (tcomplain ());
1201
1202 /* Disassemble a section of the recorded execution trace from instruction
1203 BEGIN (inclusive) to instruction END (inclusive). */
1204 virtual void insn_history_range (ULONGEST begin, ULONGEST end,
1205 gdb_disassembly_flags flags)
1206 TARGET_DEFAULT_NORETURN (tcomplain ());
1207
1208 /* Print a function trace of the recorded execution trace.
1209 If SIZE < 0, print abs (SIZE) preceding functions; otherwise, print SIZE
1210 succeeding functions. */
1211 virtual void call_history (int size, record_print_flags flags)
1212 TARGET_DEFAULT_NORETURN (tcomplain ());
1213
1214 /* Print a function trace of the recorded execution trace starting
1215 at function FROM.
1216 If SIZE < 0, print abs (SIZE) functions before FROM; otherwise, print
1217 SIZE functions after FROM. */
1218 virtual void call_history_from (ULONGEST begin, int size, record_print_flags flags)
1219 TARGET_DEFAULT_NORETURN (tcomplain ());
1220
1221 /* Print a function trace of an execution trace section from function BEGIN
1222 (inclusive) to function END (inclusive). */
1223 virtual void call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
1224 TARGET_DEFAULT_NORETURN (tcomplain ());
1225
1226 /* True if TARGET_OBJECT_LIBRARIES_SVR4 may be read with a
1227 non-empty annex. */
1228 virtual bool augmented_libraries_svr4_read ()
1229 TARGET_DEFAULT_RETURN (false);
1230
1231 /* Those unwinders are tried before any other arch unwinders. If
1232 SELF doesn't have unwinders, it should delegate to the
1233 "beneath" target. */
1234 virtual const struct frame_unwind *get_unwinder ()
1235 TARGET_DEFAULT_RETURN (NULL);
1236
1237 virtual const struct frame_unwind *get_tailcall_unwinder ()
1238 TARGET_DEFAULT_RETURN (NULL);
1239
1240 /* Prepare to generate a core file. */
1241 virtual void prepare_to_generate_core ()
1242 TARGET_DEFAULT_IGNORE ();
1243
1244 /* Cleanup after generating a core file. */
1245 virtual void done_generating_core ()
1246 TARGET_DEFAULT_IGNORE ();
1247 };
1248
1249 /* Deleter for std::unique_ptr. See comments in
1250 target_ops::~target_ops and target_ops::close about heap-allocated
1251 targets. */
1252 struct target_ops_deleter
1253 {
1254 void operator() (target_ops *target)
1255 {
1256 target->close ();
1257 }
1258 };
1259
1260 /* A unique pointer for target_ops. */
1261 typedef std::unique_ptr<target_ops, target_ops_deleter> target_ops_up;
1262
1263 /* Native target backends call this once at initialization time to
1264 inform the core about which is the target that can respond to "run"
1265 or "attach". Note: native targets are always singletons. */
1266 extern void set_native_target (target_ops *target);
1267
1268 /* Get the registered native target, if there's one. Otherwise return
1269 NULL. */
1270 extern target_ops *get_native_target ();
1271
1272 /* Type that manages a target stack. See description of target stacks
1273 and strata at the top of the file. */
1274
1275 class target_stack
1276 {
1277 public:
1278 target_stack () = default;
1279 DISABLE_COPY_AND_ASSIGN (target_stack);
1280
1281 /* Push a new target into the stack of the existing target
1282 accessors, possibly superseding some existing accessor. */
1283 void push (target_ops *t);
1284
1285 /* Remove a target from the stack, wherever it may be. Return true
1286 if it was removed, false otherwise. */
1287 bool unpush (target_ops *t);
1288
1289 /* Returns true if T is pushed on the target stack. */
1290 bool is_pushed (target_ops *t) const
1291 { return at (t->stratum ()) == t; }
1292
1293 /* Return the target at STRATUM. */
1294 target_ops *at (strata stratum) const { return m_stack[stratum]; }
1295
1296 /* Return the target at the top of the stack. */
1297 target_ops *top () const { return at (m_top); }
1298
1299 /* Find the next target down the stack from the specified target. */
1300 target_ops *find_beneath (const target_ops *t) const;
1301
1302 private:
1303 /* The stratum of the top target. */
1304 enum strata m_top {};
1305
1306 /* The stack, represented as an array, with one slot per stratum.
1307 If no target is pushed at some stratum, the corresponding slot is
1308 null. */
1309 target_ops *m_stack[(int) debug_stratum + 1] {};
1310 };
1311
1312 /* The ops structure for our "current" target process. This should
1313 never be NULL. If there is no target, it points to the dummy_target. */
1314
1315 extern target_ops *current_top_target ();
1316
1317 /* Define easy words for doing these operations on our current target. */
1318
1319 #define target_shortname (current_top_target ()->shortname ())
1320 #define target_longname (current_top_target ()->longname ())
1321
1322 /* Does whatever cleanup is required for a target that we are no
1323 longer going to be calling. This routine is automatically always
1324 called after popping the target off the target stack - the target's
1325 own methods are no longer available through the target vector.
1326 Closing file descriptors and freeing all memory allocated memory are
1327 typical things it should do. */
1328
1329 void target_close (struct target_ops *targ);
1330
1331 /* Find the correct target to use for "attach". If a target on the
1332 current stack supports attaching, then it is returned. Otherwise,
1333 the default run target is returned. */
1334
1335 extern struct target_ops *find_attach_target (void);
1336
1337 /* Find the correct target to use for "run". If a target on the
1338 current stack supports creating a new inferior, then it is
1339 returned. Otherwise, the default run target is returned. */
1340
1341 extern struct target_ops *find_run_target (void);
1342
1343 /* Some targets don't generate traps when attaching to the inferior,
1344 or their target_attach implementation takes care of the waiting.
1345 These targets must set to_attach_no_wait. */
1346
1347 #define target_attach_no_wait() \
1348 (current_top_target ()->attach_no_wait ())
1349
1350 /* The target_attach operation places a process under debugger control,
1351 and stops the process.
1352
1353 This operation provides a target-specific hook that allows the
1354 necessary bookkeeping to be performed after an attach completes. */
1355 #define target_post_attach(pid) \
1356 (current_top_target ()->post_attach) (pid)
1357
1358 /* Display a message indicating we're about to detach from the current
1359 inferior process. */
1360
1361 extern void target_announce_detach (int from_tty);
1362
1363 /* Takes a program previously attached to and detaches it.
1364 The program may resume execution (some targets do, some don't) and will
1365 no longer stop on signals, etc. We better not have left any breakpoints
1366 in the program or it'll die when it hits one. FROM_TTY says whether to be
1367 verbose or not. */
1368
1369 extern void target_detach (inferior *inf, int from_tty);
1370
1371 /* Disconnect from the current target without resuming it (leaving it
1372 waiting for a debugger). */
1373
1374 extern void target_disconnect (const char *, int);
1375
1376 /* Resume execution (or prepare for execution) of a target thread,
1377 process or all processes. STEP says whether to hardware
1378 single-step or to run free; SIGGNAL is the signal to be given to
1379 the target, or GDB_SIGNAL_0 for no signal. The caller may not pass
1380 GDB_SIGNAL_DEFAULT. A specific PTID means `step/resume only this
1381 process id'. A wildcard PTID (all threads, or all threads of
1382 process) means `step/resume INFERIOR_PTID, and let other threads
1383 (for which the wildcard PTID matches) resume with their
1384 'thread->suspend.stop_signal' signal (usually GDB_SIGNAL_0) if it
1385 is in "pass" state, or with no signal if in "no pass" state.
1386
1387 In order to efficiently handle batches of resumption requests,
1388 targets may implement this method such that it records the
1389 resumption request, but defers the actual resumption to the
1390 target_commit_resume method implementation. See
1391 target_commit_resume below. */
1392 extern void target_resume (ptid_t ptid, int step, enum gdb_signal signal);
1393
1394 /* Commit a series of resumption requests previously prepared with
1395 target_resume calls.
1396
1397 GDB always calls target_commit_resume after calling target_resume
1398 one or more times. A target may thus use this method in
1399 coordination with the target_resume method to batch target-side
1400 resumption requests. In that case, the target doesn't actually
1401 resume in its target_resume implementation. Instead, it prepares
1402 the resumption in target_resume, and defers the actual resumption
1403 to target_commit_resume. E.g., the remote target uses this to
1404 coalesce multiple resumption requests in a single vCont packet. */
1405 extern void target_commit_resume ();
1406
1407 /* Setup to defer target_commit_resume calls, and reactivate
1408 target_commit_resume on destruction, if it was previously
1409 active. */
1410 extern scoped_restore_tmpl<int> make_scoped_defer_target_commit_resume ();
1411
1412 /* For target_read_memory see target/target.h. */
1413
1414 /* The default target_ops::to_wait implementation. */
1415
1416 extern ptid_t default_target_wait (struct target_ops *ops,
1417 ptid_t ptid,
1418 struct target_waitstatus *status,
1419 int options);
1420
1421 /* Fetch at least register REGNO, or all regs if regno == -1. No result. */
1422
1423 extern void target_fetch_registers (struct regcache *regcache, int regno);
1424
1425 /* Store at least register REGNO, or all regs if REGNO == -1.
1426 It can store as many registers as it wants to, so target_prepare_to_store
1427 must have been previously called. Calls error() if there are problems. */
1428
1429 extern void target_store_registers (struct regcache *regcache, int regs);
1430
1431 /* Get ready to modify the registers array. On machines which store
1432 individual registers, this doesn't need to do anything. On machines
1433 which store all the registers in one fell swoop, this makes sure
1434 that REGISTERS contains all the registers from the program being
1435 debugged. */
1436
1437 #define target_prepare_to_store(regcache) \
1438 (current_top_target ()->prepare_to_store) (regcache)
1439
1440 /* Determine current address space of thread PTID. */
1441
1442 struct address_space *target_thread_address_space (ptid_t);
1443
1444 /* Implement the "info proc" command. This returns one if the request
1445 was handled, and zero otherwise. It can also throw an exception if
1446 an error was encountered while attempting to handle the
1447 request. */
1448
1449 int target_info_proc (const char *, enum info_proc_what);
1450
1451 /* Returns true if this target can disable address space randomization. */
1452
1453 int target_supports_disable_randomization (void);
1454
1455 /* Returns true if this target can enable and disable tracepoints
1456 while a trace experiment is running. */
1457
1458 #define target_supports_enable_disable_tracepoint() \
1459 (current_top_target ()->supports_enable_disable_tracepoint) ()
1460
1461 #define target_supports_string_tracing() \
1462 (current_top_target ()->supports_string_tracing) ()
1463
1464 /* Returns true if this target can handle breakpoint conditions
1465 on its end. */
1466
1467 #define target_supports_evaluation_of_breakpoint_conditions() \
1468 (current_top_target ()->supports_evaluation_of_breakpoint_conditions) ()
1469
1470 /* Returns true if this target can handle breakpoint commands
1471 on its end. */
1472
1473 #define target_can_run_breakpoint_commands() \
1474 (current_top_target ()->can_run_breakpoint_commands) ()
1475
1476 extern int target_read_string (CORE_ADDR, gdb::unique_xmalloc_ptr<char> *,
1477 int, int *);
1478
1479 /* For target_read_memory see target/target.h. */
1480
1481 extern int target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr,
1482 ssize_t len);
1483
1484 extern int target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1485
1486 extern int target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len);
1487
1488 /* For target_write_memory see target/target.h. */
1489
1490 extern int target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr,
1491 ssize_t len);
1492
1493 /* Fetches the target's memory map. If one is found it is sorted
1494 and returned, after some consistency checking. Otherwise, NULL
1495 is returned. */
1496 std::vector<mem_region> target_memory_map (void);
1497
1498 /* Erases all flash memory regions on the target. */
1499 void flash_erase_command (const char *cmd, int from_tty);
1500
1501 /* Erase the specified flash region. */
1502 void target_flash_erase (ULONGEST address, LONGEST length);
1503
1504 /* Finish a sequence of flash operations. */
1505 void target_flash_done (void);
1506
1507 /* Describes a request for a memory write operation. */
1508 struct memory_write_request
1509 {
1510 memory_write_request (ULONGEST begin_, ULONGEST end_,
1511 gdb_byte *data_ = nullptr, void *baton_ = nullptr)
1512 : begin (begin_), end (end_), data (data_), baton (baton_)
1513 {}
1514
1515 /* Begining address that must be written. */
1516 ULONGEST begin;
1517 /* Past-the-end address. */
1518 ULONGEST end;
1519 /* The data to write. */
1520 gdb_byte *data;
1521 /* A callback baton for progress reporting for this request. */
1522 void *baton;
1523 };
1524
1525 /* Enumeration specifying different flash preservation behaviour. */
1526 enum flash_preserve_mode
1527 {
1528 flash_preserve,
1529 flash_discard
1530 };
1531
1532 /* Write several memory blocks at once. This version can be more
1533 efficient than making several calls to target_write_memory, in
1534 particular because it can optimize accesses to flash memory.
1535
1536 Moreover, this is currently the only memory access function in gdb
1537 that supports writing to flash memory, and it should be used for
1538 all cases where access to flash memory is desirable.
1539
1540 REQUESTS is the vector (see vec.h) of memory_write_request.
1541 PRESERVE_FLASH_P indicates what to do with blocks which must be
1542 erased, but not completely rewritten.
1543 PROGRESS_CB is a function that will be periodically called to provide
1544 feedback to user. It will be called with the baton corresponding
1545 to the request currently being written. It may also be called
1546 with a NULL baton, when preserved flash sectors are being rewritten.
1547
1548 The function returns 0 on success, and error otherwise. */
1549 int target_write_memory_blocks
1550 (const std::vector<memory_write_request> &requests,
1551 enum flash_preserve_mode preserve_flash_p,
1552 void (*progress_cb) (ULONGEST, void *));
1553
1554 /* Print a line about the current target. */
1555
1556 #define target_files_info() \
1557 (current_top_target ()->files_info) ()
1558
1559 /* Insert a breakpoint at address BP_TGT->placed_address in
1560 the target machine. Returns 0 for success, and returns non-zero or
1561 throws an error (with a detailed failure reason error code and
1562 message) otherwise. */
1563
1564 extern int target_insert_breakpoint (struct gdbarch *gdbarch,
1565 struct bp_target_info *bp_tgt);
1566
1567 /* Remove a breakpoint at address BP_TGT->placed_address in the target
1568 machine. Result is 0 for success, non-zero for error. */
1569
1570 extern int target_remove_breakpoint (struct gdbarch *gdbarch,
1571 struct bp_target_info *bp_tgt,
1572 enum remove_bp_reason reason);
1573
1574 /* Return true if the target stack has a non-default
1575 "terminal_ours" method. */
1576
1577 extern bool target_supports_terminal_ours (void);
1578
1579 /* Kill the inferior process. Make it go away. */
1580
1581 extern void target_kill (void);
1582
1583 /* Load an executable file into the target process. This is expected
1584 to not only bring new code into the target process, but also to
1585 update GDB's symbol tables to match.
1586
1587 ARG contains command-line arguments, to be broken down with
1588 buildargv (). The first non-switch argument is the filename to
1589 load, FILE; the second is a number (as parsed by strtoul (..., ...,
1590 0)), which is an offset to apply to the load addresses of FILE's
1591 sections. The target may define switches, or other non-switch
1592 arguments, as it pleases. */
1593
1594 extern void target_load (const char *arg, int from_tty);
1595
1596 /* Some targets (such as ttrace-based HPUX) don't allow us to request
1597 notification of inferior events such as fork and vork immediately
1598 after the inferior is created. (This because of how gdb gets an
1599 inferior created via invoking a shell to do it. In such a scenario,
1600 if the shell init file has commands in it, the shell will fork and
1601 exec for each of those commands, and we will see each such fork
1602 event. Very bad.)
1603
1604 Such targets will supply an appropriate definition for this function. */
1605
1606 #define target_post_startup_inferior(ptid) \
1607 (current_top_target ()->post_startup_inferior) (ptid)
1608
1609 /* On some targets, we can catch an inferior fork or vfork event when
1610 it occurs. These functions insert/remove an already-created
1611 catchpoint for such events. They return 0 for success, 1 if the
1612 catchpoint type is not supported and -1 for failure. */
1613
1614 #define target_insert_fork_catchpoint(pid) \
1615 (current_top_target ()->insert_fork_catchpoint) (pid)
1616
1617 #define target_remove_fork_catchpoint(pid) \
1618 (current_top_target ()->remove_fork_catchpoint) (pid)
1619
1620 #define target_insert_vfork_catchpoint(pid) \
1621 (current_top_target ()->insert_vfork_catchpoint) (pid)
1622
1623 #define target_remove_vfork_catchpoint(pid) \
1624 (current_top_target ()->remove_vfork_catchpoint) (pid)
1625
1626 /* If the inferior forks or vforks, this function will be called at
1627 the next resume in order to perform any bookkeeping and fiddling
1628 necessary to continue debugging either the parent or child, as
1629 requested, and releasing the other. Information about the fork
1630 or vfork event is available via get_last_target_status ().
1631 This function returns 1 if the inferior should not be resumed
1632 (i.e. there is another event pending). */
1633
1634 int target_follow_fork (int follow_child, int detach_fork);
1635
1636 /* Handle the target-specific bookkeeping required when the inferior
1637 makes an exec call. INF is the exec'd inferior. */
1638
1639 void target_follow_exec (struct inferior *inf, char *execd_pathname);
1640
1641 /* On some targets, we can catch an inferior exec event when it
1642 occurs. These functions insert/remove an already-created
1643 catchpoint for such events. They return 0 for success, 1 if the
1644 catchpoint type is not supported and -1 for failure. */
1645
1646 #define target_insert_exec_catchpoint(pid) \
1647 (current_top_target ()->insert_exec_catchpoint) (pid)
1648
1649 #define target_remove_exec_catchpoint(pid) \
1650 (current_top_target ()->remove_exec_catchpoint) (pid)
1651
1652 /* Syscall catch.
1653
1654 NEEDED is true if any syscall catch (of any kind) is requested.
1655 If NEEDED is false, it means the target can disable the mechanism to
1656 catch system calls because there are no more catchpoints of this type.
1657
1658 ANY_COUNT is nonzero if a generic (filter-less) syscall catch is
1659 being requested. In this case, SYSCALL_COUNTS should be ignored.
1660
1661 SYSCALL_COUNTS is an array of ints, indexed by syscall number. An
1662 element in this array is nonzero if that syscall should be caught.
1663 This argument only matters if ANY_COUNT is zero.
1664
1665 Return 0 for success, 1 if syscall catchpoints are not supported or -1
1666 for failure. */
1667
1668 #define target_set_syscall_catchpoint(pid, needed, any_count, syscall_counts) \
1669 (current_top_target ()->set_syscall_catchpoint) (pid, needed, any_count, \
1670 syscall_counts)
1671
1672 /* The debugger has completed a blocking wait() call. There is now
1673 some process event that must be processed. This function should
1674 be defined by those targets that require the debugger to perform
1675 cleanup or internal state changes in response to the process event. */
1676
1677 /* For target_mourn_inferior see target/target.h. */
1678
1679 /* Does target have enough data to do a run or attach command? */
1680
1681 extern int target_can_run ();
1682
1683 /* Set list of signals to be handled in the target.
1684
1685 PASS_SIGNALS is an array of size NSIG, indexed by target signal number
1686 (enum gdb_signal). For every signal whose entry in this array is
1687 non-zero, the target is allowed -but not required- to skip reporting
1688 arrival of the signal to the GDB core by returning from target_wait,
1689 and to pass the signal directly to the inferior instead.
1690
1691 However, if the target is hardware single-stepping a thread that is
1692 about to receive a signal, it needs to be reported in any case, even
1693 if mentioned in a previous target_pass_signals call. */
1694
1695 extern void target_pass_signals (int nsig, unsigned char *pass_signals);
1696
1697 /* Set list of signals the target may pass to the inferior. This
1698 directly maps to the "handle SIGNAL pass/nopass" setting.
1699
1700 PROGRAM_SIGNALS is an array of size NSIG, indexed by target signal
1701 number (enum gdb_signal). For every signal whose entry in this
1702 array is non-zero, the target is allowed to pass the signal to the
1703 inferior. Signals not present in the array shall be silently
1704 discarded. This does not influence whether to pass signals to the
1705 inferior as a result of a target_resume call. This is useful in
1706 scenarios where the target needs to decide whether to pass or not a
1707 signal to the inferior without GDB core involvement, such as for
1708 example, when detaching (as threads may have been suspended with
1709 pending signals not reported to GDB). */
1710
1711 extern void target_program_signals (int nsig, unsigned char *program_signals);
1712
1713 /* Check to see if a thread is still alive. */
1714
1715 extern int target_thread_alive (ptid_t ptid);
1716
1717 /* Sync the target's threads with GDB's thread list. */
1718
1719 extern void target_update_thread_list (void);
1720
1721 /* Make target stop in a continuable fashion. (For instance, under
1722 Unix, this should act like SIGSTOP). Note that this function is
1723 asynchronous: it does not wait for the target to become stopped
1724 before returning. If this is the behavior you want please use
1725 target_stop_and_wait. */
1726
1727 extern void target_stop (ptid_t ptid);
1728
1729 /* Interrupt the target. Unlike target_stop, this does not specify
1730 which thread/process reports the stop. For most target this acts
1731 like raising a SIGINT, though that's not absolutely required. This
1732 function is asynchronous. */
1733
1734 extern void target_interrupt ();
1735
1736 /* Pass a ^C, as determined to have been pressed by checking the quit
1737 flag, to the target, as if the user had typed the ^C on the
1738 inferior's controlling terminal while the inferior was in the
1739 foreground. Remote targets may take the opportunity to detect the
1740 remote side is not responding and offer to disconnect. */
1741
1742 extern void target_pass_ctrlc (void);
1743
1744 /* The default target_ops::to_pass_ctrlc implementation. Simply calls
1745 target_interrupt. */
1746 extern void default_target_pass_ctrlc (struct target_ops *ops);
1747
1748 /* Send the specified COMMAND to the target's monitor
1749 (shell,interpreter) for execution. The result of the query is
1750 placed in OUTBUF. */
1751
1752 #define target_rcmd(command, outbuf) \
1753 (current_top_target ()->rcmd) (command, outbuf)
1754
1755
1756 /* Does the target include all of memory, or only part of it? This
1757 determines whether we look up the target chain for other parts of
1758 memory if this target can't satisfy a request. */
1759
1760 extern int target_has_all_memory_1 (void);
1761 #define target_has_all_memory target_has_all_memory_1 ()
1762
1763 /* Does the target include memory? (Dummy targets don't.) */
1764
1765 extern int target_has_memory_1 (void);
1766 #define target_has_memory target_has_memory_1 ()
1767
1768 /* Does the target have a stack? (Exec files don't, VxWorks doesn't, until
1769 we start a process.) */
1770
1771 extern int target_has_stack_1 (void);
1772 #define target_has_stack target_has_stack_1 ()
1773
1774 /* Does the target have registers? (Exec files don't.) */
1775
1776 extern int target_has_registers_1 (void);
1777 #define target_has_registers target_has_registers_1 ()
1778
1779 /* Does the target have execution? Can we make it jump (through
1780 hoops), or pop its stack a few times? This means that the current
1781 target is currently executing; for some targets, that's the same as
1782 whether or not the target is capable of execution, but there are
1783 also targets which can be current while not executing. In that
1784 case this will become true after to_create_inferior or
1785 to_attach. */
1786
1787 extern int target_has_execution_1 (ptid_t);
1788
1789 /* Like target_has_execution_1, but always passes inferior_ptid. */
1790
1791 extern int target_has_execution_current (void);
1792
1793 #define target_has_execution target_has_execution_current ()
1794
1795 /* Can the target support the debugger control of thread execution?
1796 Can it lock the thread scheduler? */
1797
1798 #define target_can_lock_scheduler \
1799 (current_top_target ()->get_thread_control_capabilities () & tc_schedlock)
1800
1801 /* Controls whether async mode is permitted. */
1802 extern int target_async_permitted;
1803
1804 /* Can the target support asynchronous execution? */
1805 #define target_can_async_p() (current_top_target ()->can_async_p ())
1806
1807 /* Is the target in asynchronous execution mode? */
1808 #define target_is_async_p() (current_top_target ()->is_async_p ())
1809
1810 /* Enables/disabled async target events. */
1811 extern void target_async (int enable);
1812
1813 /* Enables/disables thread create and exit events. */
1814 extern void target_thread_events (int enable);
1815
1816 /* Whether support for controlling the target backends always in
1817 non-stop mode is enabled. */
1818 extern enum auto_boolean target_non_stop_enabled;
1819
1820 /* Is the target in non-stop mode? Some targets control the inferior
1821 in non-stop mode even with "set non-stop off". Always true if "set
1822 non-stop" is on. */
1823 extern int target_is_non_stop_p (void);
1824
1825 #define target_execution_direction() \
1826 (current_top_target ()->execution_direction ())
1827
1828 /* Converts a process id to a string. Usually, the string just contains
1829 `process xyz', but on some systems it may contain
1830 `process xyz thread abc'. */
1831
1832 extern const char *target_pid_to_str (ptid_t ptid);
1833
1834 extern const char *normal_pid_to_str (ptid_t ptid);
1835
1836 /* Return a short string describing extra information about PID,
1837 e.g. "sleeping", "runnable", "running on LWP 3". Null return value
1838 is okay. */
1839
1840 #define target_extra_thread_info(TP) \
1841 (current_top_target ()->extra_thread_info (TP))
1842
1843 /* Return the thread's name, or NULL if the target is unable to determine it.
1844 The returned value must not be freed by the caller. */
1845
1846 extern const char *target_thread_name (struct thread_info *);
1847
1848 /* Given a pointer to a thread library specific thread handle and
1849 its length, return a pointer to the corresponding thread_info struct. */
1850
1851 extern struct thread_info *target_thread_handle_to_thread_info
1852 (const gdb_byte *thread_handle, int handle_len, struct inferior *inf);
1853
1854 /* Attempts to find the pathname of the executable file
1855 that was run to create a specified process.
1856
1857 The process PID must be stopped when this operation is used.
1858
1859 If the executable file cannot be determined, NULL is returned.
1860
1861 Else, a pointer to a character string containing the pathname
1862 is returned. This string should be copied into a buffer by
1863 the client if the string will not be immediately used, or if
1864 it must persist. */
1865
1866 #define target_pid_to_exec_file(pid) \
1867 (current_top_target ()->pid_to_exec_file) (pid)
1868
1869 /* See the to_thread_architecture description in struct target_ops. */
1870
1871 #define target_thread_architecture(ptid) \
1872 (current_top_target ()->thread_architecture (ptid))
1873
1874 /*
1875 * Iterator function for target memory regions.
1876 * Calls a callback function once for each memory region 'mapped'
1877 * in the child process. Defined as a simple macro rather than
1878 * as a function macro so that it can be tested for nullity.
1879 */
1880
1881 #define target_find_memory_regions(FUNC, DATA) \
1882 (current_top_target ()->find_memory_regions) (FUNC, DATA)
1883
1884 /*
1885 * Compose corefile .note section.
1886 */
1887
1888 #define target_make_corefile_notes(BFD, SIZE_P) \
1889 (current_top_target ()->make_corefile_notes) (BFD, SIZE_P)
1890
1891 /* Bookmark interfaces. */
1892 #define target_get_bookmark(ARGS, FROM_TTY) \
1893 (current_top_target ()->get_bookmark) (ARGS, FROM_TTY)
1894
1895 #define target_goto_bookmark(ARG, FROM_TTY) \
1896 (current_top_target ()->goto_bookmark) (ARG, FROM_TTY)
1897
1898 /* Hardware watchpoint interfaces. */
1899
1900 /* GDB's current model is that there are three "kinds" of watchpoints,
1901 with respect to when they trigger and how you can move past them.
1902
1903 Those are: continuable, steppable, and non-steppable.
1904
1905 Continuable watchpoints are like x86's -- those trigger after the
1906 memory access's side effects are fully committed to memory. I.e.,
1907 they trap with the PC pointing at the next instruction already.
1908 Continuing past such a watchpoint is doable by just normally
1909 continuing, hence the name.
1910
1911 Both steppable and non-steppable watchpoints trap before the memory
1912 access. I.e, the PC points at the instruction that is accessing
1913 the memory. So GDB needs to single-step once past the current
1914 instruction in order to make the access effective and check whether
1915 the instruction's side effects change the watched expression.
1916
1917 Now, in order to step past that instruction, depending on
1918 architecture and target, you can have two situations:
1919
1920 - steppable watchpoints: you can single-step with the watchpoint
1921 still armed, and the watchpoint won't trigger again.
1922
1923 - non-steppable watchpoints: if you try to single-step with the
1924 watchpoint still armed, you'd trap the watchpoint again and the
1925 thread wouldn't make any progress. So GDB needs to temporarily
1926 remove the watchpoint in order to step past it.
1927
1928 If your target/architecture does not signal that it has either
1929 steppable or non-steppable watchpoints via either
1930 target_have_steppable_watchpoint or
1931 gdbarch_have_nonsteppable_watchpoint, GDB assumes continuable
1932 watchpoints. */
1933
1934 /* Returns non-zero if we were stopped by a hardware watchpoint (memory read or
1935 write). Only the INFERIOR_PTID task is being queried. */
1936
1937 #define target_stopped_by_watchpoint() \
1938 ((current_top_target ()->stopped_by_watchpoint) ())
1939
1940 /* Returns non-zero if the target stopped because it executed a
1941 software breakpoint instruction. */
1942
1943 #define target_stopped_by_sw_breakpoint() \
1944 ((current_top_target ()->stopped_by_sw_breakpoint) ())
1945
1946 #define target_supports_stopped_by_sw_breakpoint() \
1947 ((current_top_target ()->supports_stopped_by_sw_breakpoint) ())
1948
1949 #define target_stopped_by_hw_breakpoint() \
1950 ((current_top_target ()->stopped_by_hw_breakpoint) ())
1951
1952 #define target_supports_stopped_by_hw_breakpoint() \
1953 ((current_top_target ()->supports_stopped_by_hw_breakpoint) ())
1954
1955 /* Non-zero if we have steppable watchpoints */
1956
1957 #define target_have_steppable_watchpoint \
1958 (current_top_target ()->have_steppable_watchpoint ())
1959
1960 /* Provide defaults for hardware watchpoint functions. */
1961
1962 /* If the *_hw_beakpoint functions have not been defined
1963 elsewhere use the definitions in the target vector. */
1964
1965 /* Returns positive if we can set a hardware watchpoint of type TYPE.
1966 Returns negative if the target doesn't have enough hardware debug
1967 registers available. Return zero if hardware watchpoint of type
1968 TYPE isn't supported. TYPE is one of bp_hardware_watchpoint,
1969 bp_read_watchpoint, bp_write_watchpoint, or bp_hardware_breakpoint.
1970 CNT is the number of such watchpoints used so far, including this
1971 one. OTHERTYPE is the number of watchpoints of other types than
1972 this one used so far. */
1973
1974 #define target_can_use_hardware_watchpoint(TYPE,CNT,OTHERTYPE) \
1975 (current_top_target ()->can_use_hw_breakpoint) ( \
1976 TYPE, CNT, OTHERTYPE)
1977
1978 /* Returns the number of debug registers needed to watch the given
1979 memory region, or zero if not supported. */
1980
1981 #define target_region_ok_for_hw_watchpoint(addr, len) \
1982 (current_top_target ()->region_ok_for_hw_watchpoint) (addr, len)
1983
1984
1985 #define target_can_do_single_step() \
1986 (current_top_target ()->can_do_single_step) ()
1987
1988 /* Set/clear a hardware watchpoint starting at ADDR, for LEN bytes.
1989 TYPE is 0 for write, 1 for read, and 2 for read/write accesses.
1990 COND is the expression for its condition, or NULL if there's none.
1991 Returns 0 for success, 1 if the watchpoint type is not supported,
1992 -1 for failure. */
1993
1994 #define target_insert_watchpoint(addr, len, type, cond) \
1995 (current_top_target ()->insert_watchpoint) (addr, len, type, cond)
1996
1997 #define target_remove_watchpoint(addr, len, type, cond) \
1998 (current_top_target ()->remove_watchpoint) (addr, len, type, cond)
1999
2000 /* Insert a new masked watchpoint at ADDR using the mask MASK.
2001 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
2002 or hw_access for an access watchpoint. Returns 0 for success, 1 if
2003 masked watchpoints are not supported, -1 for failure. */
2004
2005 extern int target_insert_mask_watchpoint (CORE_ADDR, CORE_ADDR,
2006 enum target_hw_bp_type);
2007
2008 /* Remove a masked watchpoint at ADDR with the mask MASK.
2009 RW may be hw_read for a read watchpoint, hw_write for a write watchpoint
2010 or hw_access for an access watchpoint. Returns 0 for success, non-zero
2011 for failure. */
2012
2013 extern int target_remove_mask_watchpoint (CORE_ADDR, CORE_ADDR,
2014 enum target_hw_bp_type);
2015
2016 /* Insert a hardware breakpoint at address BP_TGT->placed_address in
2017 the target machine. Returns 0 for success, and returns non-zero or
2018 throws an error (with a detailed failure reason error code and
2019 message) otherwise. */
2020
2021 #define target_insert_hw_breakpoint(gdbarch, bp_tgt) \
2022 (current_top_target ()->insert_hw_breakpoint) (gdbarch, bp_tgt)
2023
2024 #define target_remove_hw_breakpoint(gdbarch, bp_tgt) \
2025 (current_top_target ()->remove_hw_breakpoint) (gdbarch, bp_tgt)
2026
2027 /* Return number of debug registers needed for a ranged breakpoint,
2028 or -1 if ranged breakpoints are not supported. */
2029
2030 extern int target_ranged_break_num_registers (void);
2031
2032 /* Return non-zero if target knows the data address which triggered this
2033 target_stopped_by_watchpoint, in such case place it to *ADDR_P. Only the
2034 INFERIOR_PTID task is being queried. */
2035 #define target_stopped_data_address(target, addr_p) \
2036 (target)->stopped_data_address (addr_p)
2037
2038 /* Return non-zero if ADDR is within the range of a watchpoint spanning
2039 LENGTH bytes beginning at START. */
2040 #define target_watchpoint_addr_within_range(target, addr, start, length) \
2041 (target)->watchpoint_addr_within_range (addr, start, length)
2042
2043 /* Return non-zero if the target is capable of using hardware to evaluate
2044 the condition expression. In this case, if the condition is false when
2045 the watched memory location changes, execution may continue without the
2046 debugger being notified.
2047
2048 Due to limitations in the hardware implementation, it may be capable of
2049 avoiding triggering the watchpoint in some cases where the condition
2050 expression is false, but may report some false positives as well.
2051 For this reason, GDB will still evaluate the condition expression when
2052 the watchpoint triggers. */
2053 #define target_can_accel_watchpoint_condition(addr, len, type, cond) \
2054 (current_top_target ()->can_accel_watchpoint_condition) (addr, len, type, cond)
2055
2056 /* Return number of debug registers needed for a masked watchpoint,
2057 -1 if masked watchpoints are not supported or -2 if the given address
2058 and mask combination cannot be used. */
2059
2060 extern int target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask);
2061
2062 /* Target can execute in reverse? */
2063 #define target_can_execute_reverse \
2064 current_top_target ()->can_execute_reverse ()
2065
2066 extern const struct target_desc *target_read_description (struct target_ops *);
2067
2068 #define target_get_ada_task_ptid(lwp, tid) \
2069 (current_top_target ()->get_ada_task_ptid) (lwp,tid)
2070
2071 /* Utility implementation of searching memory. */
2072 extern int simple_search_memory (struct target_ops* ops,
2073 CORE_ADDR start_addr,
2074 ULONGEST search_space_len,
2075 const gdb_byte *pattern,
2076 ULONGEST pattern_len,
2077 CORE_ADDR *found_addrp);
2078
2079 /* Main entry point for searching memory. */
2080 extern int target_search_memory (CORE_ADDR start_addr,
2081 ULONGEST search_space_len,
2082 const gdb_byte *pattern,
2083 ULONGEST pattern_len,
2084 CORE_ADDR *found_addrp);
2085
2086 /* Target file operations. */
2087
2088 /* Return nonzero if the filesystem seen by the current inferior
2089 is the local filesystem, zero otherwise. */
2090 #define target_filesystem_is_local() \
2091 current_top_target ()->filesystem_is_local ()
2092
2093 /* Open FILENAME on the target, in the filesystem as seen by INF,
2094 using FLAGS and MODE. If INF is NULL, use the filesystem seen
2095 by the debugger (GDB or, for remote targets, the remote stub).
2096 Return a target file descriptor, or -1 if an error occurs (and
2097 set *TARGET_ERRNO). */
2098 extern int target_fileio_open (struct inferior *inf,
2099 const char *filename, int flags,
2100 int mode, int *target_errno);
2101
2102 /* Like target_fileio_open, but print a warning message if the
2103 file is being accessed over a link that may be slow. */
2104 extern int target_fileio_open_warn_if_slow (struct inferior *inf,
2105 const char *filename,
2106 int flags,
2107 int mode,
2108 int *target_errno);
2109
2110 /* Write up to LEN bytes from WRITE_BUF to FD on the target.
2111 Return the number of bytes written, or -1 if an error occurs
2112 (and set *TARGET_ERRNO). */
2113 extern int target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2114 ULONGEST offset, int *target_errno);
2115
2116 /* Read up to LEN bytes FD on the target into READ_BUF.
2117 Return the number of bytes read, or -1 if an error occurs
2118 (and set *TARGET_ERRNO). */
2119 extern int target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2120 ULONGEST offset, int *target_errno);
2121
2122 /* Get information about the file opened as FD on the target
2123 and put it in SB. Return 0 on success, or -1 if an error
2124 occurs (and set *TARGET_ERRNO). */
2125 extern int target_fileio_fstat (int fd, struct stat *sb,
2126 int *target_errno);
2127
2128 /* Close FD on the target. Return 0, or -1 if an error occurs
2129 (and set *TARGET_ERRNO). */
2130 extern int target_fileio_close (int fd, int *target_errno);
2131
2132 /* Unlink FILENAME on the target, in the filesystem as seen by INF.
2133 If INF is NULL, use the filesystem seen by the debugger (GDB or,
2134 for remote targets, the remote stub). Return 0, or -1 if an error
2135 occurs (and set *TARGET_ERRNO). */
2136 extern int target_fileio_unlink (struct inferior *inf,
2137 const char *filename,
2138 int *target_errno);
2139
2140 /* Read value of symbolic link FILENAME on the target, in the
2141 filesystem as seen by INF. If INF is NULL, use the filesystem seen
2142 by the debugger (GDB or, for remote targets, the remote stub).
2143 Return a null-terminated string allocated via xmalloc, or NULL if
2144 an error occurs (and set *TARGET_ERRNO). */
2145 extern gdb::optional<std::string> target_fileio_readlink
2146 (struct inferior *inf, const char *filename, int *target_errno);
2147
2148 /* Read target file FILENAME, in the filesystem as seen by INF. If
2149 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2150 remote targets, the remote stub). The return value will be -1 if
2151 the transfer fails or is not supported; 0 if the object is empty;
2152 or the length of the object otherwise. If a positive value is
2153 returned, a sufficiently large buffer will be allocated using
2154 xmalloc and returned in *BUF_P containing the contents of the
2155 object.
2156
2157 This method should be used for objects sufficiently small to store
2158 in a single xmalloc'd buffer, when no fixed bound on the object's
2159 size is known in advance. */
2160 extern LONGEST target_fileio_read_alloc (struct inferior *inf,
2161 const char *filename,
2162 gdb_byte **buf_p);
2163
2164 /* Read target file FILENAME, in the filesystem as seen by INF. If
2165 INF is NULL, use the filesystem seen by the debugger (GDB or, for
2166 remote targets, the remote stub). The result is NUL-terminated and
2167 returned as a string, allocated using xmalloc. If an error occurs
2168 or the transfer is unsupported, NULL is returned. Empty objects
2169 are returned as allocated but empty strings. A warning is issued
2170 if the result contains any embedded NUL bytes. */
2171 extern gdb::unique_xmalloc_ptr<char> target_fileio_read_stralloc
2172 (struct inferior *inf, const char *filename);
2173
2174
2175 /* Tracepoint-related operations. */
2176
2177 #define target_trace_init() \
2178 (current_top_target ()->trace_init) ()
2179
2180 #define target_download_tracepoint(t) \
2181 (current_top_target ()->download_tracepoint) (t)
2182
2183 #define target_can_download_tracepoint() \
2184 (current_top_target ()->can_download_tracepoint) ()
2185
2186 #define target_download_trace_state_variable(tsv) \
2187 (current_top_target ()->download_trace_state_variable) (tsv)
2188
2189 #define target_enable_tracepoint(loc) \
2190 (current_top_target ()->enable_tracepoint) (loc)
2191
2192 #define target_disable_tracepoint(loc) \
2193 (current_top_target ()->disable_tracepoint) (loc)
2194
2195 #define target_trace_start() \
2196 (current_top_target ()->trace_start) ()
2197
2198 #define target_trace_set_readonly_regions() \
2199 (current_top_target ()->trace_set_readonly_regions) ()
2200
2201 #define target_get_trace_status(ts) \
2202 (current_top_target ()->get_trace_status) (ts)
2203
2204 #define target_get_tracepoint_status(tp,utp) \
2205 (current_top_target ()->get_tracepoint_status) (tp, utp)
2206
2207 #define target_trace_stop() \
2208 (current_top_target ()->trace_stop) ()
2209
2210 #define target_trace_find(type,num,addr1,addr2,tpp) \
2211 (current_top_target ()->trace_find) (\
2212 (type), (num), (addr1), (addr2), (tpp))
2213
2214 #define target_get_trace_state_variable_value(tsv,val) \
2215 (current_top_target ()->get_trace_state_variable_value) ((tsv), (val))
2216
2217 #define target_save_trace_data(filename) \
2218 (current_top_target ()->save_trace_data) (filename)
2219
2220 #define target_upload_tracepoints(utpp) \
2221 (current_top_target ()->upload_tracepoints) (utpp)
2222
2223 #define target_upload_trace_state_variables(utsvp) \
2224 (current_top_target ()->upload_trace_state_variables) (utsvp)
2225
2226 #define target_get_raw_trace_data(buf,offset,len) \
2227 (current_top_target ()->get_raw_trace_data) ((buf), (offset), (len))
2228
2229 #define target_get_min_fast_tracepoint_insn_len() \
2230 (current_top_target ()->get_min_fast_tracepoint_insn_len) ()
2231
2232 #define target_set_disconnected_tracing(val) \
2233 (current_top_target ()->set_disconnected_tracing) (val)
2234
2235 #define target_set_circular_trace_buffer(val) \
2236 (current_top_target ()->set_circular_trace_buffer) (val)
2237
2238 #define target_set_trace_buffer_size(val) \
2239 (current_top_target ()->set_trace_buffer_size) (val)
2240
2241 #define target_set_trace_notes(user,notes,stopnotes) \
2242 (current_top_target ()->set_trace_notes) ((user), (notes), (stopnotes))
2243
2244 #define target_get_tib_address(ptid, addr) \
2245 (current_top_target ()->get_tib_address) ((ptid), (addr))
2246
2247 #define target_set_permissions() \
2248 (current_top_target ()->set_permissions) ()
2249
2250 #define target_static_tracepoint_marker_at(addr, marker) \
2251 (current_top_target ()->static_tracepoint_marker_at) (addr, marker)
2252
2253 #define target_static_tracepoint_markers_by_strid(marker_id) \
2254 (current_top_target ()->static_tracepoint_markers_by_strid) (marker_id)
2255
2256 #define target_traceframe_info() \
2257 (current_top_target ()->traceframe_info) ()
2258
2259 #define target_use_agent(use) \
2260 (current_top_target ()->use_agent) (use)
2261
2262 #define target_can_use_agent() \
2263 (current_top_target ()->can_use_agent) ()
2264
2265 #define target_augmented_libraries_svr4_read() \
2266 (current_top_target ()->augmented_libraries_svr4_read) ()
2267
2268 /* Command logging facility. */
2269
2270 #define target_log_command(p) \
2271 (current_top_target ()->log_command) (p)
2272
2273
2274 extern int target_core_of_thread (ptid_t ptid);
2275
2276 /* See to_get_unwinder in struct target_ops. */
2277 extern const struct frame_unwind *target_get_unwinder (void);
2278
2279 /* See to_get_tailcall_unwinder in struct target_ops. */
2280 extern const struct frame_unwind *target_get_tailcall_unwinder (void);
2281
2282 /* This implements basic memory verification, reading target memory
2283 and performing the comparison here (as opposed to accelerated
2284 verification making use of the qCRC packet, for example). */
2285
2286 extern int simple_verify_memory (struct target_ops* ops,
2287 const gdb_byte *data,
2288 CORE_ADDR memaddr, ULONGEST size);
2289
2290 /* Verify that the memory in the [MEMADDR, MEMADDR+SIZE) range matches
2291 the contents of [DATA,DATA+SIZE). Returns 1 if there's a match, 0
2292 if there's a mismatch, and -1 if an error is encountered while
2293 reading memory. Throws an error if the functionality is found not
2294 to be supported by the current target. */
2295 int target_verify_memory (const gdb_byte *data,
2296 CORE_ADDR memaddr, ULONGEST size);
2297
2298 /* Routines for maintenance of the target structures...
2299
2300 add_target: Add a target to the list of all possible targets.
2301 This only makes sense for targets that should be activated using
2302 the "target TARGET_NAME ..." command.
2303
2304 push_target: Make this target the top of the stack of currently used
2305 targets, within its particular stratum of the stack. Result
2306 is 0 if now atop the stack, nonzero if not on top (maybe
2307 should warn user).
2308
2309 unpush_target: Remove this from the stack of currently used targets,
2310 no matter where it is on the list. Returns 0 if no
2311 change, 1 if removed from stack. */
2312
2313 /* Type of callback called when the user activates a target with
2314 "target TARGET_NAME". The callback routine takes the rest of the
2315 parameters from the command, and (if successful) pushes a new
2316 target onto the stack. */
2317 typedef void target_open_ftype (const char *args, int from_tty);
2318
2319 /* Add the target described by INFO to the list of possible targets
2320 and add a new command 'target $(INFO->shortname)'. Set COMPLETER
2321 as the command's completer if not NULL. */
2322
2323 extern void add_target (const target_info &info,
2324 target_open_ftype *func,
2325 completer_ftype *completer = NULL);
2326
2327 /* Adds a command ALIAS for the target described by INFO and marks it
2328 deprecated. This is useful for maintaining backwards compatibility
2329 when renaming targets. */
2330
2331 extern void add_deprecated_target_alias (const target_info &info,
2332 const char *alias);
2333
2334 extern void push_target (struct target_ops *);
2335
2336 extern int unpush_target (struct target_ops *);
2337
2338 extern void target_pre_inferior (int);
2339
2340 extern void target_preopen (int);
2341
2342 /* Does whatever cleanup is required to get rid of all pushed targets. */
2343 extern void pop_all_targets (void);
2344
2345 /* Like pop_all_targets, but pops only targets whose stratum is at or
2346 above STRATUM. */
2347 extern void pop_all_targets_at_and_above (enum strata stratum);
2348
2349 /* Like pop_all_targets, but pops only targets whose stratum is
2350 strictly above ABOVE_STRATUM. */
2351 extern void pop_all_targets_above (enum strata above_stratum);
2352
2353 extern int target_is_pushed (struct target_ops *t);
2354
2355 extern CORE_ADDR target_translate_tls_address (struct objfile *objfile,
2356 CORE_ADDR offset);
2357
2358 /* Struct target_section maps address ranges to file sections. It is
2359 mostly used with BFD files, but can be used without (e.g. for handling
2360 raw disks, or files not in formats handled by BFD). */
2361
2362 struct target_section
2363 {
2364 CORE_ADDR addr; /* Lowest address in section */
2365 CORE_ADDR endaddr; /* 1+highest address in section */
2366
2367 struct bfd_section *the_bfd_section;
2368
2369 /* The "owner" of the section.
2370 It can be any unique value. It is set by add_target_sections
2371 and used by remove_target_sections.
2372 For example, for executables it is a pointer to exec_bfd and
2373 for shlibs it is the so_list pointer. */
2374 void *owner;
2375 };
2376
2377 /* Holds an array of target sections. Defined by [SECTIONS..SECTIONS_END[. */
2378
2379 struct target_section_table
2380 {
2381 struct target_section *sections;
2382 struct target_section *sections_end;
2383 };
2384
2385 /* Return the "section" containing the specified address. */
2386 struct target_section *target_section_by_addr (struct target_ops *target,
2387 CORE_ADDR addr);
2388
2389 /* Return the target section table this target (or the targets
2390 beneath) currently manipulate. */
2391
2392 extern struct target_section_table *target_get_section_table
2393 (struct target_ops *target);
2394
2395 /* From mem-break.c */
2396
2397 extern int memory_remove_breakpoint (struct target_ops *,
2398 struct gdbarch *, struct bp_target_info *,
2399 enum remove_bp_reason);
2400
2401 extern int memory_insert_breakpoint (struct target_ops *,
2402 struct gdbarch *, struct bp_target_info *);
2403
2404 /* Convenience template use to add memory breakpoints support to a
2405 target. */
2406
2407 template <typename BaseTarget>
2408 struct memory_breakpoint_target : public BaseTarget
2409 {
2410 int insert_breakpoint (struct gdbarch *gdbarch,
2411 struct bp_target_info *bp_tgt) override
2412 { return memory_insert_breakpoint (this, gdbarch, bp_tgt); }
2413
2414 int remove_breakpoint (struct gdbarch *gdbarch,
2415 struct bp_target_info *bp_tgt,
2416 enum remove_bp_reason reason) override
2417 { return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason); }
2418 };
2419
2420 /* Check whether the memory at the breakpoint's placed address still
2421 contains the expected breakpoint instruction. */
2422
2423 extern int memory_validate_breakpoint (struct gdbarch *gdbarch,
2424 struct bp_target_info *bp_tgt);
2425
2426 extern int default_memory_remove_breakpoint (struct gdbarch *,
2427 struct bp_target_info *);
2428
2429 extern int default_memory_insert_breakpoint (struct gdbarch *,
2430 struct bp_target_info *);
2431
2432
2433 /* From target.c */
2434
2435 extern void initialize_targets (void);
2436
2437 extern void noprocess (void) ATTRIBUTE_NORETURN;
2438
2439 extern void target_require_runnable (void);
2440
2441 /* Find the target at STRATUM. If no target is at that stratum,
2442 return NULL. */
2443
2444 struct target_ops *find_target_at (enum strata stratum);
2445
2446 /* Read OS data object of type TYPE from the target, and return it in XML
2447 format. The return value follows the same rules as target_read_stralloc. */
2448
2449 extern gdb::optional<gdb::char_vector> target_get_osdata (const char *type);
2450
2451 /* Stuff that should be shared among the various remote targets. */
2452
2453 /* Debugging level. 0 is off, and non-zero values mean to print some debug
2454 information (higher values, more information). */
2455 extern int remote_debug;
2456
2457 /* Speed in bits per second, or -1 which means don't mess with the speed. */
2458 extern int baud_rate;
2459
2460 /* Parity for serial port */
2461 extern int serial_parity;
2462
2463 /* Timeout limit for response from target. */
2464 extern int remote_timeout;
2465
2466 \f
2467
2468 /* Set the show memory breakpoints mode to show, and return a
2469 scoped_restore to restore it back to the current value. */
2470 extern scoped_restore_tmpl<int>
2471 make_scoped_restore_show_memory_breakpoints (int show);
2472
2473 extern int may_write_registers;
2474 extern int may_write_memory;
2475 extern int may_insert_breakpoints;
2476 extern int may_insert_tracepoints;
2477 extern int may_insert_fast_tracepoints;
2478 extern int may_stop;
2479
2480 extern void update_target_permissions (void);
2481
2482 \f
2483 /* Imported from machine dependent code. */
2484
2485 /* See to_enable_btrace in struct target_ops. */
2486 extern struct btrace_target_info *
2487 target_enable_btrace (ptid_t ptid, const struct btrace_config *);
2488
2489 /* See to_disable_btrace in struct target_ops. */
2490 extern void target_disable_btrace (struct btrace_target_info *btinfo);
2491
2492 /* See to_teardown_btrace in struct target_ops. */
2493 extern void target_teardown_btrace (struct btrace_target_info *btinfo);
2494
2495 /* See to_read_btrace in struct target_ops. */
2496 extern enum btrace_error target_read_btrace (struct btrace_data *,
2497 struct btrace_target_info *,
2498 enum btrace_read_type);
2499
2500 /* See to_btrace_conf in struct target_ops. */
2501 extern const struct btrace_config *
2502 target_btrace_conf (const struct btrace_target_info *);
2503
2504 /* See to_stop_recording in struct target_ops. */
2505 extern void target_stop_recording (void);
2506
2507 /* See to_save_record in struct target_ops. */
2508 extern void target_save_record (const char *filename);
2509
2510 /* Query if the target supports deleting the execution log. */
2511 extern int target_supports_delete_record (void);
2512
2513 /* See to_delete_record in struct target_ops. */
2514 extern void target_delete_record (void);
2515
2516 /* See to_record_method. */
2517 extern enum record_method target_record_method (ptid_t ptid);
2518
2519 /* See to_record_is_replaying in struct target_ops. */
2520 extern int target_record_is_replaying (ptid_t ptid);
2521
2522 /* See to_record_will_replay in struct target_ops. */
2523 extern int target_record_will_replay (ptid_t ptid, int dir);
2524
2525 /* See to_record_stop_replaying in struct target_ops. */
2526 extern void target_record_stop_replaying (void);
2527
2528 /* See to_goto_record_begin in struct target_ops. */
2529 extern void target_goto_record_begin (void);
2530
2531 /* See to_goto_record_end in struct target_ops. */
2532 extern void target_goto_record_end (void);
2533
2534 /* See to_goto_record in struct target_ops. */
2535 extern void target_goto_record (ULONGEST insn);
2536
2537 /* See to_insn_history. */
2538 extern void target_insn_history (int size, gdb_disassembly_flags flags);
2539
2540 /* See to_insn_history_from. */
2541 extern void target_insn_history_from (ULONGEST from, int size,
2542 gdb_disassembly_flags flags);
2543
2544 /* See to_insn_history_range. */
2545 extern void target_insn_history_range (ULONGEST begin, ULONGEST end,
2546 gdb_disassembly_flags flags);
2547
2548 /* See to_call_history. */
2549 extern void target_call_history (int size, record_print_flags flags);
2550
2551 /* See to_call_history_from. */
2552 extern void target_call_history_from (ULONGEST begin, int size,
2553 record_print_flags flags);
2554
2555 /* See to_call_history_range. */
2556 extern void target_call_history_range (ULONGEST begin, ULONGEST end,
2557 record_print_flags flags);
2558
2559 /* See to_prepare_to_generate_core. */
2560 extern void target_prepare_to_generate_core (void);
2561
2562 /* See to_done_generating_core. */
2563 extern void target_done_generating_core (void);
2564
2565 #endif /* !defined (TARGET_H) */
This page took 0.078931 seconds and 5 git commands to generate.