dcb472b1d67e4201cdbcdf779426a57075b8f4e1
[deliverable/binutils-gdb.git] / gdb / testsuite / lib / mi-support.exp
1 # Copyright 1999-2019 Free Software Foundation, Inc.
2
3 # This program is free software; you can redistribute it and/or modify
4 # it under the terms of the GNU General Public License as published by
5 # the Free Software Foundation; either version 3 of the License, or
6 # (at your option) any later version.
7 #
8 # This program is distributed in the hope that it will be useful,
9 # but WITHOUT ANY WARRANTY; without even the implied warranty of
10 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 # GNU General Public License for more details.
12 #
13 # You should have received a copy of the GNU General Public License
14 # along with this program. If not, see <http://www.gnu.org/licenses/>.
15
16 # This file was based on a file written by Fred Fish. (fnf@cygnus.com)
17
18 # Test setup routines that work with the MI interpreter.
19
20 load_lib gdb-utils.exp
21
22 # The variable mi_gdb_prompt is a regexp which matches the gdb mi prompt.
23 # Set it if it is not already set.
24 global mi_gdb_prompt
25 if ![info exists mi_gdb_prompt] then {
26 set mi_gdb_prompt "\[(\]gdb\[)\] \r\n"
27 }
28
29 global mi_inferior_tty_name
30
31 # Always points to GDB's main UI spawn ID, even when testing with MI
32 # running on a secondary UI.
33 global gdb_main_spawn_id
34
35 # Points to the spawn id of the MI channel. When testing with MI
36 # running as the primary/main UI, this is the same as
37 # gdb_main_spawn_id, but will be different when testing with MI
38 # running on a secondary UI.
39 global mi_spawn_id
40
41 set MIFLAGS "-i=mi"
42
43 set thread_selected_re "=thread-selected,id=\"\[0-9\]+\"\r\n"
44 set gdbindex_warning_re "&\"warning: Skipping \[^\r\n\]+ \.gdb_index section in \[^\r\n\]+\"\r\n(?:&\"\\\\n\"\r\n)?"
45 set library_loaded_re "=library-loaded\[^\n\]+\"\r\n(?:$gdbindex_warning_re)?"
46 set breakpoint_re "=(?:breakpoint-created|breakpoint-deleted)\[^\n\]+\"\r\n"
47
48 #
49 # mi_gdb_exit -- exit the GDB, killing the target program if necessary
50 #
51 proc mi_gdb_exit {} {
52 catch mi_uncatched_gdb_exit
53 }
54
55 proc mi_uncatched_gdb_exit {} {
56 global GDB
57 global INTERNAL_GDBFLAGS GDBFLAGS
58 global verbose
59 global gdb_spawn_id gdb_main_spawn_id
60 global mi_spawn_id inferior_spawn_id
61 global gdb_prompt
62 global mi_gdb_prompt
63 global MIFLAGS
64
65 gdb_stop_suppressing_tests
66
67 if { [info procs sid_exit] != "" } {
68 sid_exit
69 }
70
71 if ![info exists gdb_spawn_id] {
72 return
73 }
74
75 verbose "Quitting $GDB $INTERNAL_GDBFLAGS $GDBFLAGS $MIFLAGS"
76
77 if { [is_remote host] && [board_info host exists fileid] } {
78 send_gdb "999-gdb-exit\n"
79 gdb_expect 10 {
80 -re "y or n" {
81 send_gdb "y\n"
82 exp_continue
83 }
84 -re "Undefined command.*$gdb_prompt $" {
85 send_gdb "quit\n"
86 exp_continue
87 }
88 -re "DOSEXIT code" { }
89 default { }
90 }
91 }
92
93 if ![is_remote host] {
94 remote_close host
95 }
96 unset gdb_spawn_id
97 unset gdb_main_spawn_id
98 unset mi_spawn_id
99 unset inferior_spawn_id
100 }
101
102 # Create the PTY for the inferior process and tell GDB about it.
103
104 proc mi_create_inferior_pty {} {
105 global mi_gdb_prompt
106 global inferior_spawn_id
107 global mi_inferior_tty_name
108
109 spawn -pty
110 set inferior_spawn_id $spawn_id
111 set tty_name $spawn_out(slave,name)
112 set mi_inferior_tty_name $tty_name
113
114 send_gdb "102-inferior-tty-set $tty_name\n"
115 gdb_expect 10 {
116 -re ".*102\\\^done\r\n$mi_gdb_prompt$" {
117 verbose "redirect inferior output to new terminal device."
118 }
119 timeout {
120 warning "Couldn't redirect inferior output." 2
121 }
122 }
123 }
124
125 proc mi_gdb_start_separate_mi_tty { args } {
126 global gdb_prompt mi_gdb_prompt
127 global timeout
128 global gdb_spawn_id gdb_main_spawn_id mi_spawn_id
129 global inferior_spawn_id
130
131 set separate_inferior_pty 0
132
133 foreach arg $args {
134 if {$arg == "separate-inferior-tty"} {
135 set separate_inferior_pty 1
136 }
137 }
138
139 gdb_start
140
141 # Create the new PTY for the MI UI.
142 spawn -pty
143 set mi_spawn_id $spawn_id
144 set mi_tty_name $spawn_out(slave,name)
145 gdb_test_multiple "new-ui mi $mi_tty_name" "new-ui" {
146 -re "New UI allocated\r\n$gdb_prompt $" {
147 }
148 }
149
150 # Switch to the MI channel.
151 set gdb_main_spawn_id $gdb_spawn_id
152 switch_gdb_spawn_id $mi_spawn_id
153
154 # Consume pending output and MI prompt.
155 gdb_expect {
156 -re "$mi_gdb_prompt$" {
157 }
158 default {
159 perror "MI channel failed"
160 remote_close host
161 return -1
162 }
163 }
164
165 if {$separate_inferior_pty} {
166 mi_create_inferior_pty
167 }
168
169 mi_detect_async
170
171 return 0
172 }
173
174 #
175 # default_mi_gdb_start [FLAGS] -- start gdb running, default procedure
176 #
177 # If "separate-inferior-tty" is specified, the inferior works with
178 # it's own PTY.
179 #
180 # If "separate-mi-tty" is specified, the gdb starts in CLI mode, with
181 # MI running on a secondary UI, on its own tty.
182 #
183 # When running over NFS, particularly if running many simultaneous
184 # tests on different hosts all using the same server, things can
185 # get really slow. Give gdb at least 3 minutes to start up.
186 #
187 proc default_mi_gdb_start { args } {
188 global verbose use_gdb_stub
189 global GDB
190 global INTERNAL_GDBFLAGS GDBFLAGS
191 global gdb_prompt
192 global mi_gdb_prompt
193 global timeout
194 global gdb_spawn_id gdb_main_spawn_id inferior_spawn_id mi_spawn_id
195 global MIFLAGS
196 global FORCE_SEPARATE_MI_TTY
197
198 if {[info exists FORCE_SEPARATE_MI_TTY]} {
199 set separate_mi_pty $FORCE_SEPARATE_MI_TTY
200 } else {
201 set separate_mi_pty 0
202 }
203
204 set separate_inferior_pty 0
205
206 foreach arg $args {
207 if {$arg == "separate-mi-tty"} {
208 set separate_mi_pty 1
209 } elseif {$arg == "separate-inferior-tty"} {
210 set separate_inferior_pty 1
211 }
212 }
213
214 if {$separate_mi_pty} {
215 return [eval mi_gdb_start_separate_mi_tty $args]
216 }
217
218 gdb_stop_suppressing_tests
219 set inferior_pty no-tty
220
221 # Set the default value, it may be overriden later by specific testfile.
222 set use_gdb_stub [target_info exists use_gdb_stub]
223
224 # Start SID.
225 if { [info procs sid_start] != "" } {
226 verbose "Spawning SID"
227 sid_start
228 }
229
230 verbose "Spawning $GDB $INTERNAL_GDBFLAGS $GDBFLAGS $MIFLAGS"
231
232 if [info exists gdb_spawn_id] {
233 return 0
234 }
235
236 if ![is_remote host] {
237 if { [which $GDB] == 0 } then {
238 perror "$GDB does not exist."
239 exit 1
240 }
241 }
242
243 set res [remote_spawn host "$GDB $INTERNAL_GDBFLAGS $GDBFLAGS $MIFLAGS [host_info gdb_opts]"]
244 if { $res < 0 || $res == "" } {
245 perror "Spawning $GDB failed."
246 return 1
247 }
248 gdb_expect {
249 -re "~\"GNU.*\r\n~\".*$mi_gdb_prompt$" {
250 # We have a new format mi startup prompt. If we are
251 # running mi1, then this is an error as we should be
252 # using the old-style prompt.
253 if { $MIFLAGS == "-i=mi1" } {
254 perror "(mi startup) Got unexpected new mi prompt."
255 remote_close host
256 return -1
257 }
258 verbose "GDB initialized."
259 }
260 -re "\[^~\].*$mi_gdb_prompt$" {
261 # We have an old format mi startup prompt. If we are
262 # not running mi1, then this is an error as we should be
263 # using the new-style prompt.
264 if { $MIFLAGS != "-i=mi1" } {
265 perror "(mi startup) Got unexpected old mi prompt."
266 remote_close host
267 return -1
268 }
269 verbose "GDB initialized."
270 }
271 -re ".*unrecognized option.*for a complete list of options." {
272 untested "skip mi tests (not compiled with mi support)."
273 remote_close host
274 return -1
275 }
276 -re ".*Interpreter `mi' unrecognized." {
277 untested "skip mi tests (not compiled with mi support)."
278 remote_close host
279 return -1
280 }
281 timeout {
282 perror "(timeout) GDB never initialized after 10 seconds."
283 remote_close host
284 return -1
285 }
286 }
287 set gdb_spawn_id $res
288 set gdb_main_spawn_id $res
289 set mi_spawn_id $res
290
291 # FIXME: mi output does not go through pagers, so these can be removed.
292 # force the height to "unlimited", so no pagers get used
293 send_gdb "100-gdb-set height 0\n"
294 gdb_expect 10 {
295 -re ".*100-gdb-set height 0\r\n100\\\^done\r\n$mi_gdb_prompt$" {
296 verbose "Setting height to 0." 2
297 }
298 timeout {
299 warning "Couldn't set the height to 0"
300 }
301 }
302 # force the width to "unlimited", so no wraparound occurs
303 send_gdb "101-gdb-set width 0\n"
304 gdb_expect 10 {
305 -re ".*101-gdb-set width 0\r\n101\\\^done\r\n$mi_gdb_prompt$" {
306 verbose "Setting width to 0." 2
307 }
308 timeout {
309 warning "Couldn't set the width to 0."
310 }
311 }
312
313 if { $separate_inferior_pty } {
314 mi_create_inferior_pty
315 }
316
317 if {![info exists inferior_spawn_id]} {
318 set inferior_spawn_id $gdb_spawn_id
319 }
320
321 mi_detect_async
322
323 return 0
324 }
325
326 #
327 # Overridable function. You can override this function in your
328 # baseboard file.
329 #
330 proc mi_gdb_start { args } {
331 return [eval default_mi_gdb_start $args]
332 }
333
334 # Many of the tests depend on setting breakpoints at various places and
335 # running until that breakpoint is reached. At times, we want to start
336 # with a clean-slate with respect to breakpoints, so this utility proc
337 # lets us do this without duplicating this code everywhere.
338 #
339
340 proc mi_delete_breakpoints {} {
341 global mi_gdb_prompt
342
343 # FIXME: The mi operation won't accept a prompt back and will use the 'all' arg
344 send_gdb "102-break-delete\n"
345 gdb_expect 30 {
346 -re "Delete all breakpoints.*y or n.*$" {
347 send_gdb "y\n"
348 exp_continue
349 }
350 -re "102-break-delete\r\n102\\\^done\r\n$mi_gdb_prompt$" {
351 # This happens if there were no breakpoints
352 }
353 timeout { perror "Delete all breakpoints in mi_delete_breakpoints (timeout)" ; return }
354 }
355
356 # The correct output is not "No breakpoints or watchpoints." but an
357 # empty BreakpointTable. Also, a query is not acceptable with mi.
358 send_gdb "103-break-list\n"
359 gdb_expect 30 {
360 -re "103-break-list\r\n103\\\^done,BreakpointTable=\{\}\r\n$mi_gdb_prompt$" {}
361 -re "103-break-list\r\n103\\\^done,BreakpointTable=\{nr_rows=\".\",nr_cols=\".\",hdr=\\\[\{width=\".*\",alignment=\".*\",col_name=\"number\",colhdr=\"Num\"\}.*colhdr=\"Type\".*colhdr=\"Disp\".*colhdr=\"Enb\".*colhdr=\"Address\".*colhdr=\"What\".*\\\],body=\\\[\\\]\}\r\n$mi_gdb_prompt$" {}
362 -re "103-break-list\r\n103\\\^doneNo breakpoints or watchpoints.\r\n\r\n$mi_gdb_prompt$" {warning "Unexpected console text received"}
363 -re "$mi_gdb_prompt$" { perror "Breakpoints not deleted" ; return }
364 -re "Delete all breakpoints.*or n.*$" {
365 warning "Unexpected prompt for breakpoints deletion"
366 send_gdb "y\n"
367 exp_continue
368 }
369 timeout { perror "-break-list (timeout)" ; return }
370 }
371 }
372
373 proc mi_gdb_reinitialize_dir { subdir } {
374 global mi_gdb_prompt
375 global MIFLAGS
376
377 global suppress_flag
378 if { $suppress_flag } {
379 return
380 }
381
382 if [is_remote host] {
383 return ""
384 }
385
386 if { $MIFLAGS == "-i=mi1" } {
387 send_gdb "104-environment-directory\n"
388 gdb_expect 60 {
389 -re ".*Reinitialize source path to empty.*y or n. " {
390 warning "Got confirmation prompt for dir reinitialization."
391 send_gdb "y\n"
392 gdb_expect 60 {
393 -re "$mi_gdb_prompt$" {}
394 timeout {error "Dir reinitialization failed (timeout)"}
395 }
396 }
397 -re "$mi_gdb_prompt$" {}
398 timeout {error "Dir reinitialization failed (timeout)"}
399 }
400 } else {
401 send_gdb "104-environment-directory -r\n"
402 gdb_expect 60 {
403 -re "104\\\^done,source-path=.*\r\n$mi_gdb_prompt$" {}
404 -re "$mi_gdb_prompt$" {}
405 timeout {error "Dir reinitialization failed (timeout)"}
406 }
407 }
408
409 send_gdb "105-environment-directory $subdir\n"
410 gdb_expect 60 {
411 -re "Source directories searched.*$mi_gdb_prompt$" {
412 verbose "Dir set to $subdir"
413 }
414 -re "105\\\^done.*\r\n$mi_gdb_prompt$" {
415 # FIXME: We return just the prompt for now.
416 verbose "Dir set to $subdir"
417 # perror "Dir \"$subdir\" failed."
418 }
419 }
420 }
421
422 # Send GDB the "target" command.
423 # FIXME: Some of these patterns are not appropriate for MI. Based on
424 # config/monitor.exp:gdb_target_command.
425 proc mi_gdb_target_cmd { targetname serialport } {
426 global mi_gdb_prompt
427
428 set serialport_re [string_to_regexp $serialport]
429 for {set i 1} {$i <= 3} {incr i} {
430 send_gdb "47-target-select $targetname $serialport\n"
431 gdb_expect 60 {
432 -re "47\\^connected.*$mi_gdb_prompt" {
433 verbose "Set target to $targetname"
434 return 0
435 }
436 -re "unknown host.*$mi_gdb_prompt" {
437 verbose "Couldn't look up $serialport"
438 }
439 -re "Couldn't establish connection to remote.*$mi_gdb_prompt$" {
440 verbose "Connection failed"
441 }
442 -re "Remote MIPS debugging.*$mi_gdb_prompt$" {
443 verbose "Set target to $targetname"
444 return 0
445 }
446 -re "Remote debugging using .*$serialport_re.*$mi_gdb_prompt$" {
447 verbose "Set target to $targetname"
448 return 0
449 }
450 -re "Remote target $targetname connected to.*$mi_gdb_prompt$" {
451 verbose "Set target to $targetname"
452 return 0
453 }
454 -re "Connected to.*$mi_gdb_prompt$" {
455 verbose "Set target to $targetname"
456 return 0
457 }
458 -re "Ending remote.*$mi_gdb_prompt$" { }
459 -re "Connection refused.*$mi_gdb_prompt$" {
460 verbose "Connection refused by remote target. Pausing, and trying again."
461 sleep 5
462 continue
463 }
464 -re "Non-stop mode requested, but remote does not support non-stop.*$mi_gdb_prompt" {
465 unsupported "non-stop mode not supported"
466 return 1
467 }
468 -re "Timeout reading from remote system.*$mi_gdb_prompt$" {
469 verbose "Got timeout error from gdb."
470 }
471 timeout {
472 send_gdb "\ 3"
473 break
474 }
475 }
476 }
477 return 1
478 }
479
480 #
481 # load a file into the debugger (file command only).
482 # return a -1 if anything goes wrong.
483 #
484 proc mi_gdb_file_cmd { arg } {
485 global verbose
486 global loadpath
487 global loadfile
488 global GDB
489 global mi_gdb_prompt
490 global last_loaded_file
491 upvar timeout timeout
492
493 set last_loaded_file $arg
494
495 if [is_remote host] {
496 set arg [remote_download host $arg]
497 if { $arg == "" } {
498 error "download failed"
499 return -1
500 }
501 }
502
503 # FIXME: Several of these patterns are only acceptable for console
504 # output. Queries are an error for mi.
505 send_gdb "105-file-exec-and-symbols $arg\n"
506 gdb_expect 120 {
507 -re "Reading symbols from.*$mi_gdb_prompt$" {
508 verbose "\t\tLoaded $arg into the $GDB"
509 return 0
510 }
511 -re "has no symbol-table.*$mi_gdb_prompt$" {
512 perror "$arg wasn't compiled with \"-g\""
513 return -1
514 }
515 -re "Load new symbol table from \".*\".*y or n. $" {
516 send_gdb "y\n"
517 gdb_expect 120 {
518 -re "Reading symbols from.*$mi_gdb_prompt$" {
519 verbose "\t\tLoaded $arg with new symbol table into $GDB"
520 # All OK
521 }
522 timeout {
523 perror "(timeout) Couldn't load $arg, other program already loaded."
524 return -1
525 }
526 }
527 }
528 -re "No such file or directory.*$mi_gdb_prompt$" {
529 perror "($arg) No such file or directory\n"
530 return -1
531 }
532 -re "105-file-exec-and-symbols .*\r\n105\\\^done\r\n$mi_gdb_prompt$" {
533 # We (MI) are just giving the prompt back for now, instead of giving
534 # some acknowledgement.
535 return 0
536 }
537 timeout {
538 perror "couldn't load $arg into $GDB (timed out)."
539 return -1
540 }
541 eof {
542 # This is an attempt to detect a core dump, but seems not to
543 # work. Perhaps we need to match .* followed by eof, in which
544 # gdb_expect does not seem to have a way to do that.
545 perror "couldn't load $arg into $GDB (end of file)."
546 return -1
547 }
548 }
549 }
550
551 #
552 # connect to the target and download a file, if necessary.
553 # return a -1 if anything goes wrong.
554 #
555 proc mi_gdb_target_load { } {
556 global verbose
557 global loadpath
558 global loadfile
559 global GDB
560 global mi_gdb_prompt
561
562 if [target_info exists gdb_load_timeout] {
563 set loadtimeout [target_info gdb_load_timeout]
564 } else {
565 set loadtimeout 1600
566 }
567
568 if { [info procs gdbserver_gdb_load] != "" } {
569 mi_gdb_test "kill" ".*" ""
570 if { [catch gdbserver_gdb_load res] == 1 } {
571 perror $res
572 return -1
573 }
574 set protocol [lindex $res 0]
575 set gdbport [lindex $res 1]
576
577 if { [mi_gdb_target_cmd $protocol $gdbport] != 0 } {
578 return -1
579 }
580 } elseif { [info procs send_target_sid] != "" } {
581 # For SID, things get complex
582 send_gdb "kill\n"
583 gdb_expect 10 {
584 -re ".*$mi_gdb_prompt$"
585 }
586 send_target_sid
587 gdb_expect $loadtimeout {
588 -re "\\^done.*$mi_gdb_prompt$" {
589 }
590 timeout {
591 perror "Unable to connect to SID target (timeout)"
592 return -1
593 }
594 }
595 send_gdb "48-target-download\n"
596 gdb_expect $loadtimeout {
597 -re "48\\^done.*$mi_gdb_prompt$" {
598 }
599 timeout {
600 perror "Unable to download to SID target (timeout)"
601 return -1
602 }
603 }
604 } elseif { [target_info protocol] == "sim" } {
605 set target_sim_options "[board_info target gdb,target_sim_options]"
606 # For the simulator, just connect to it directly.
607 send_gdb "47-target-select sim $target_sim_options\n"
608 gdb_expect $loadtimeout {
609 -re "47\\^connected.*$mi_gdb_prompt$" {
610 }
611 timeout {
612 perror "Unable to select sim target (timeout)"
613 return -1
614 }
615 }
616 send_gdb "48-target-download\n"
617 gdb_expect $loadtimeout {
618 -re "48\\^done.*$mi_gdb_prompt$" {
619 }
620 timeout {
621 perror "Unable to download to sim target (timeout)"
622 return -1
623 }
624 }
625 } elseif { [target_info gdb_protocol] == "remote" } {
626 # remote targets
627 if { [mi_gdb_target_cmd "remote" [target_info netport]] != 0 } {
628 perror "Unable to connect to remote target"
629 return -1
630 }
631 send_gdb "48-target-download\n"
632 gdb_expect $loadtimeout {
633 -re "48\\^done.*$mi_gdb_prompt$" {
634 }
635 timeout {
636 perror "Unable to download to remote target (timeout)"
637 return -1
638 }
639 }
640 }
641 return 0
642 }
643
644 #
645 # load a file into the debugger.
646 # return a -1 if anything goes wrong.
647 #
648 proc mi_gdb_load { arg } {
649 if { $arg != "" } {
650 return [mi_gdb_file_cmd $arg]
651 }
652 return 0
653 }
654
655 # mi_gdb_test COMMAND PATTERN MESSAGE [IPATTERN] -- send a command to gdb;
656 # test the result.
657 #
658 # COMMAND is the command to execute, send to GDB with send_gdb. If
659 # this is the null string no command is sent.
660 # PATTERN is the pattern to match for a PASS, and must NOT include
661 # the \r\n sequence immediately before the gdb prompt.
662 # MESSAGE is the message to be printed. (If this is the empty string,
663 # then sometimes we don't call pass or fail at all; I don't
664 # understand this at all.)
665 # IPATTERN is the pattern to match for the inferior's output. This parameter
666 # is optional. If present, it will produce a PASS if the match is
667 # successful, and a FAIL if unsuccessful.
668 #
669 # Returns:
670 # 1 if the test failed,
671 # 0 if the test passes,
672 # -1 if there was an internal error.
673 #
674 proc mi_gdb_test { args } {
675 global verbose
676 global mi_gdb_prompt
677 global GDB expect_out
678 global inferior_exited_re async
679 upvar timeout timeout
680
681 set command [lindex $args 0]
682 set pattern [lindex $args 1]
683 set message [lindex $args 2]
684
685 if [llength $args]==4 {
686 set ipattern [lindex $args 3]
687 }
688
689 if [llength $args]==5 {
690 set question_string [lindex $args 3]
691 set response_string [lindex $args 4]
692 } else {
693 set question_string "^FOOBAR$"
694 }
695
696 if $verbose>2 then {
697 send_user "Sending \"$command\" to gdb\n"
698 send_user "Looking to match \"$pattern\"\n"
699 send_user "Message is \"$message\"\n"
700 }
701
702 set result -1
703 set string "${command}\n"
704 set string_regex [string_to_regexp $command]
705
706 if { $command != "" } {
707 while { "$string" != "" } {
708 set foo [string first "\n" "$string"]
709 set len [string length "$string"]
710 if { $foo < [expr $len - 1] } {
711 set str [string range "$string" 0 $foo]
712 if { [send_gdb "$str"] != "" } {
713 global suppress_flag
714
715 if { ! $suppress_flag } {
716 perror "Couldn't send $command to GDB."
717 }
718 fail "$message"
719 return $result
720 }
721 gdb_expect 2 {
722 -re "\[\r\n\]" { }
723 timeout { }
724 }
725 set string [string range "$string" [expr $foo + 1] end]
726 } else {
727 break
728 }
729 }
730 if { "$string" != "" } {
731 if { [send_gdb "$string"] != "" } {
732 global suppress_flag
733
734 if { ! $suppress_flag } {
735 perror "Couldn't send $command to GDB."
736 }
737 fail "$message"
738 return $result
739 }
740 }
741 }
742
743 if [info exists timeout] {
744 set tmt $timeout
745 } else {
746 global timeout
747 if [info exists timeout] {
748 set tmt $timeout
749 } else {
750 set tmt 60
751 }
752 }
753 if {$async} {
754 # With $prompt_re "" there may come arbitrary asynchronous response
755 # from the previous command, before or after $string_regex.
756 set string_regex ".*"
757 }
758 verbose -log "Expecting: ^($string_regex\[\r\n\]+)?($pattern\[\r\n\]+$mi_gdb_prompt\[ \]*)"
759 gdb_expect $tmt {
760 -re "\\*\\*\\* DOSEXIT code.*" {
761 if { $message != "" } {
762 fail "$message"
763 }
764 gdb_suppress_entire_file "GDB died"
765 return -1
766 }
767 -re "Ending remote debugging.*$mi_gdb_prompt\[ \]*$" {
768 if ![isnative] then {
769 warning "Can`t communicate to remote target."
770 }
771 gdb_exit
772 gdb_start
773 set result -1
774 }
775 -re "^($string_regex\[\r\n\]+)?($pattern\[\r\n\]+$mi_gdb_prompt\[ \]*)" {
776 # At this point, $expect_out(1,string) is the MI input command.
777 # and $expect_out(2,string) is the MI output command.
778 # If $expect_out(1,string) is "", then there was no MI input command here.
779
780 # NOTE, there is no trailing anchor because with GDB/MI,
781 # asynchronous responses can happen at any point, causing more
782 # data to be available. Normally an anchor is used to make
783 # sure the end of the output is matched, however, $mi_gdb_prompt
784 # is just as good of an anchor since mi_gdb_test is meant to
785 # match a single mi output command. If a second GDB/MI output
786 # response is sent, it will be in the buffer for the next
787 # time mi_gdb_test is called.
788 if ![string match "" $message] then {
789 pass "$message"
790 }
791 set result 0
792 }
793 -re "(${question_string})$" {
794 send_gdb "$response_string\n"
795 exp_continue
796 }
797 -re "Undefined.* command:.*$mi_gdb_prompt\[ \]*$" {
798 perror "Undefined command \"$command\"."
799 fail "$message"
800 set result 1
801 }
802 -re "Ambiguous command.*$mi_gdb_prompt\[ \]*$" {
803 perror "\"$command\" is not a unique command name."
804 fail "$message"
805 set result 1
806 }
807 -re "$inferior_exited_re with code \[0-9\]+.*$mi_gdb_prompt\[ \]*$" {
808 if ![string match "" $message] then {
809 set errmsg "$message (the program exited)"
810 } else {
811 set errmsg "$command (the program exited)"
812 }
813 fail "$errmsg"
814 return -1
815 }
816 -re "The program is not being run.*$mi_gdb_prompt\[ \]*$" {
817 if ![string match "" $message] then {
818 set errmsg "$message (the program is no longer running)"
819 } else {
820 set errmsg "$command (the program is no longer running)"
821 }
822 fail "$errmsg"
823 return -1
824 }
825 -re ".*$mi_gdb_prompt\[ \]*$" {
826 if ![string match "" $message] then {
827 fail "$message (unexpected output)"
828 }
829 set result 1
830 }
831 "<return>" {
832 send_gdb "\n"
833 perror "Window too small."
834 fail "$message"
835 }
836 eof {
837 perror "Process no longer exists"
838 if { $message != "" } {
839 fail "$message"
840 }
841 return -1
842 }
843 full_buffer {
844 perror "internal buffer is full."
845 fail "$message"
846 }
847 timeout {
848 if ![string match "" $message] then {
849 fail "$message (timeout)"
850 }
851 set result 1
852 }
853 }
854
855 # If the GDB output matched, compare the inferior output.
856 if { $result == 0 } {
857 if [ info exists ipattern ] {
858 if { ![target_info exists gdb,noinferiorio] } {
859 global gdb_spawn_id inferior_spawn_id
860
861 set sid "$inferior_spawn_id $gdb_spawn_id"
862 gdb_expect {
863 -i "$sid" -re "$ipattern" {
864 pass "$message inferior output"
865 }
866 timeout {
867 fail "$message inferior output (timeout)"
868 set result 1
869 }
870 }
871 } else {
872 unsupported "$message inferior output"
873 }
874 }
875 }
876
877 return $result
878 }
879
880 # Collect output sent to the console output stream until UNTIL is
881 # seen. UNTIL is a regular expression. MESSAGE is the message to be
882 # printed in case of timeout.
883
884 proc mi_gdb_expect_cli_output {until message} {
885
886 set output ""
887 gdb_expect {
888 -re "~\"(\[^\r\n\]+)\"\r\n" {
889 append output $expect_out(1,string)
890 exp_continue
891 }
892 -notransfer -re "$until" {
893 # Done
894 }
895 timeout {
896 fail "$message (timeout)"
897 return ""
898 }
899 }
900
901 return $output
902 }
903
904 #
905 # MI run command. (A modified version of gdb_run_cmd)
906 #
907
908 # In patterns, the newline sequence ``\r\n'' is matched explicitly as
909 # ``.*$'' could swallow up output that we attempt to match elsewhere.
910
911 # Send the command to run the test program.
912 #
913 # If USE_MI_COMMAND is true, the "-exec-run" command is used.
914 # Otherwise, the "run" (CLI) command is used. If the global USE_GDB_STUB is
915 # true, -exec-continue and continue are used instead of their run counterparts.
916 #
917 # ARGS is passed as argument to the command used to run the test program.
918 # Beware that arguments to "-exec-run" do not have the same semantics as
919 # arguments to the "run" command, so USE_MI_COMMAND influences the meaning
920 # of ARGS. If USE_MI_COMMAND is true, they are arguments to -exec-run.
921 # If USE_MI_COMMAND is false, they are effectively arguments passed
922 # to the test program. If the global USE_GDB_STUB is true, ARGS is not used.
923 proc mi_run_cmd_full {use_mi_command args} {
924 global suppress_flag
925 if { $suppress_flag } {
926 return -1
927 }
928 global mi_gdb_prompt use_gdb_stub
929 global thread_selected_re
930 global library_loaded_re
931
932 if {$use_mi_command} {
933 set run_prefix "220-exec-"
934 set run_match "220"
935 } else {
936 set run_prefix ""
937 set run_match ""
938 }
939
940 foreach command [gdb_init_commands] {
941 send_gdb "$command\n"
942 gdb_expect 30 {
943 -re "$mi_gdb_prompt$" { }
944 default {
945 perror "gdb_init_command for target failed"
946 return -1
947 }
948 }
949 }
950
951 if { [mi_gdb_target_load] < 0 } {
952 return -1
953 }
954
955 if $use_gdb_stub {
956 if [target_info exists gdb,do_reload_on_run] {
957 send_gdb "${run_prefix}continue\n"
958 gdb_expect 60 {
959 -re "${run_match}\\^running\[\r\n\]+\\*running,thread-id=\"\[^\"\]+\"\r\n$mi_gdb_prompt" {}
960 -re "${run_match}\\^error.*$mi_gdb_prompt" {return -1}
961 default {}
962 }
963 return 0
964 }
965
966 if [target_info exists gdb,start_symbol] {
967 set start [target_info gdb,start_symbol]
968 } else {
969 set start "start"
970 }
971
972 # HACK: Should either use 000-jump or fix the target code
973 # to better handle RUN.
974 send_gdb "jump *$start\n"
975 warning "Using CLI jump command, expect run-to-main FAIL"
976 gdb_expect {
977 -re "&\"jump \\*${start}\\\\n\"\[\r\n\]+~\"Continuing at 0x\[0-9A-Fa-f\]+\.\\\\n\"\[\r\n\]+\\^running\[\r\n\]+\\*running,thread-id=\"\[^\"\]+\"\[\r\n\]+${mi_gdb_prompt}" {}
978 timeout {
979 perror "Unable to start target"
980 return -1
981 }
982 }
983 return 0
984 }
985
986 send_gdb "${run_prefix}run $args\n"
987 gdb_expect {
988 -re "${run_match}\\^running\r\n(\\*running,thread-id=\"\[^\"\]+\"\r\n|=thread-created,id=\"1\",group-id=\"\[0-9\]+\"\r\n)*(${library_loaded_re})*(${thread_selected_re})?${mi_gdb_prompt}" {
989 }
990 -re "\\^error,msg=\"The target does not support running in non-stop mode.\"" {
991 unsupported "non-stop mode not supported"
992 return -1
993 }
994 timeout {
995 perror "Unable to start target"
996 return -1
997 }
998 }
999 # NOTE: Shortly after this there will be a ``000*stopped,...(gdb)''
1000
1001 return 0
1002 }
1003
1004 # A wrapper for mi_run_cmd_full which uses -exec-run and
1005 # -exec-continue, as appropriate. ARGS are passed verbatim to
1006 # mi_run_cmd_full.
1007 proc mi_run_cmd {args} {
1008 return [eval mi_run_cmd_full 1 $args]
1009 }
1010
1011 # A wrapper for mi_run_cmd_full which uses the CLI commands 'run' and
1012 # 'continue', as appropriate. ARGS are passed verbatim to
1013 # mi_run_cmd_full.
1014 proc mi_run_with_cli {args} {
1015 return [eval mi_run_cmd_full 0 $args]
1016 }
1017
1018 #
1019 # Just like run-to-main but works with the MI interface
1020 #
1021
1022 proc mi_run_to_main { } {
1023 global suppress_flag
1024 if { $suppress_flag } {
1025 return -1
1026 }
1027
1028 global srcdir
1029 global subdir
1030 global binfile
1031 global srcfile
1032
1033 mi_delete_breakpoints
1034 mi_gdb_reinitialize_dir $srcdir/$subdir
1035 mi_gdb_load ${binfile}
1036
1037 mi_runto main
1038 }
1039
1040
1041 # Just like gdb's "runto" proc, it will run the target to a given
1042 # function. The big difference here between mi_runto and mi_execute_to
1043 # is that mi_execute_to must have the inferior running already. This
1044 # proc will (like gdb's runto) (re)start the inferior, too.
1045 #
1046 # FUNC is the linespec of the place to stop (it inserts a breakpoint here).
1047 # It returns:
1048 # -1 if test suppressed, failed, timedout
1049 # 0 if test passed
1050
1051 proc mi_runto_helper {func run_or_continue} {
1052 global suppress_flag
1053 if { $suppress_flag } {
1054 return -1
1055 }
1056
1057 global mi_gdb_prompt expect_out
1058 global hex decimal fullname_syntax
1059
1060 set test "mi runto $func"
1061 set bp [mi_make_breakpoint -type breakpoint -disp del \
1062 -func $func\(\\\(.*\\\)\)?]
1063 mi_gdb_test "200-break-insert -t $func" "200\\^done,$bp" \
1064 "breakpoint at $func"
1065
1066 if {$run_or_continue == "run"} {
1067 if { [mi_run_cmd] < 0 } {
1068 return -1
1069 }
1070 } else {
1071 mi_send_resuming_command "exec-continue" "$test"
1072 }
1073
1074 mi_expect_stop "breakpoint-hit" $func ".*" ".*" "\[0-9\]+" { "" "disp=\"del\"" } $test
1075 }
1076
1077 proc mi_runto {func} {
1078 return [mi_runto_helper $func "run"]
1079 }
1080
1081 # Next to the next statement
1082 # For return values, see mi_execute_to_helper
1083
1084 proc mi_next { test } {
1085 return [mi_next_to {.*} {.*} {.*} {.*} $test]
1086 }
1087
1088
1089 # Step to the next statement
1090 # For return values, see mi_execute_to_helper
1091
1092 proc mi_step { test } {
1093 return [mi_step_to {.*} {.*} {.*} {.*} $test]
1094 }
1095
1096 set async "unknown"
1097
1098 proc mi_detect_async {} {
1099 global async
1100 global mi_gdb_prompt
1101
1102 send_gdb "show mi-async\n"
1103
1104 gdb_expect {
1105 -re "asynchronous mode is on...*$mi_gdb_prompt$" {
1106 set async 1
1107 }
1108 -re ".*$mi_gdb_prompt$" {
1109 set async 0
1110 }
1111 timeout {
1112 set async 0
1113 }
1114 }
1115 return $async
1116 }
1117
1118 # Wait for MI *stopped notification to appear.
1119 # The REASON, FUNC, ARGS, FILE and LINE are regular expressions
1120 # to match against whatever is output in *stopped. FILE may also match
1121 # filename of a file without debug info. ARGS should not include [] the
1122 # list of argument is enclosed in, and other regular expressions should
1123 # not include quotes.
1124 # If EXTRA is a list of one element, it's the regular expression
1125 # for output expected right after *stopped, and before GDB prompt.
1126 # If EXTRA is a list of two elements, the first element is for
1127 # output right after *stopped, and the second element is output
1128 # right after reason field. The regex after reason should not include
1129 # the comma separating it from the following fields.
1130 #
1131 # When we fail to match output at all, -1 is returned. If FILE does
1132 # match and the target system has no debug info for FILE return 0.
1133 # Otherwise, the line at which we stop is returned. This is useful when
1134 # exact line is not possible to specify for some reason -- one can pass
1135 # the .* or "\[0-9\]*" regexps for line, and then check the line
1136 # programmatically.
1137 #
1138 # Do not pass .* for any argument if you are expecting more than one stop.
1139 proc mi_expect_stop { reason func args file line extra test } {
1140
1141 global mi_gdb_prompt
1142 global hex
1143 global decimal
1144 global fullname_syntax
1145 global async
1146 global thread_selected_re
1147 global breakpoint_re
1148
1149 set any "\[^\n\]*"
1150
1151 set after_stopped ""
1152 set after_reason ""
1153 if { [llength $extra] == 2 } {
1154 set after_stopped [lindex $extra 0]
1155 set after_reason [lindex $extra 1]
1156 set after_reason "${after_reason},"
1157 } elseif { [llength $extra] == 1 } {
1158 set after_stopped [lindex $extra 0]
1159 }
1160
1161 if {$async} {
1162 set prompt_re ""
1163 } else {
1164 set prompt_re "$mi_gdb_prompt$"
1165 }
1166
1167 if { $reason == "really-no-reason" } {
1168 gdb_expect {
1169 -re "\\*stopped\r\n$prompt_re" {
1170 pass "$test"
1171 }
1172 timeout {
1173 fail "$test (timeout)"
1174 }
1175 }
1176 return
1177 }
1178
1179 if { $reason == "exited-normally" } {
1180
1181 gdb_expect {
1182 -re "\\*stopped,reason=\"exited-normally\"\r\n$prompt_re" {
1183 pass "$test"
1184 }
1185 -re ".*$mi_gdb_prompt$" {fail "continue to end (2)"}
1186 timeout {
1187 fail "$test (timeout)"
1188 }
1189 }
1190 return
1191 }
1192 if { $reason == "exited" } {
1193 gdb_expect {
1194 -re "\\*stopped,reason=\"exited\",exit-code=\"\[0-7\]+\"\r\n$prompt_re" {
1195 pass "$test"
1196 }
1197 -re ".*$mi_gdb_prompt$" {
1198 fail "$test (inferior not stopped)"
1199 }
1200 timeout {
1201 fail "$test (timeout)"
1202 }
1203 }
1204 return
1205 }
1206
1207 if { $reason == "solib-event" } {
1208 set pattern "\\*stopped,reason=\"solib-event\",thread-id=\"$decimal\",stopped-threads=$any\r\n($thread_selected_re|$breakpoint_re)*$prompt_re"
1209 verbose -log "mi_expect_stop: expecting: $pattern"
1210 gdb_expect {
1211 -re "$pattern" {
1212 pass "$test"
1213 }
1214 timeout {
1215 fail "$test (timeout)"
1216 }
1217 }
1218 return
1219 }
1220
1221 set args "\\\[$args\\\]"
1222
1223 set bn ""
1224 set ebn ""
1225 if { $reason == "breakpoint-hit" } {
1226 set bn {bkptno="[0-9]+",}
1227 } elseif { $reason == "solib-event" } {
1228 set bn ".*"
1229 } elseif { $reason == "exception-caught" } {
1230 set ebn {bkptno="[0-9]+",}
1231 set bn ".*"
1232 set reason "breakpoint-hit"
1233 }
1234
1235 set r ""
1236 if { $reason != "" } {
1237 set r "reason=\"$reason\","
1238 }
1239
1240
1241 set a $after_reason
1242
1243 verbose -log "mi_expect_stop: expecting: \\*stopped,${ebn}${r}${a}${bn}frame=\{addr=\"$hex\",func=\"$func\",args=$args,(?:file=\"$any$file\",fullname=\"${fullname_syntax}$file\",line=\"$line\",arch=\"$any\"|from=\"$file\")\}$after_stopped,thread-id=\"$decimal\",stopped-threads=$any\r\n($thread_selected_re|$breakpoint_re)*$prompt_re"
1244 gdb_expect {
1245 -re "\\*stopped,${ebn}${r}${a}${bn}frame=\{addr=\"$hex\",func=\"$func\",args=$args,(?:file=\"$any$file\",fullname=\"${fullname_syntax}$file\",line=\"($line)\",arch=\"$any\"|from=\"$file\")\}$after_stopped,thread-id=\"$decimal\",stopped-threads=$any\r\n($thread_selected_re|$breakpoint_re)*$prompt_re" {
1246 pass "$test"
1247 if {[array names expect_out "2,string"] != ""} {
1248 return $expect_out(2,string)
1249 }
1250 # No debug info available but $file does match.
1251 return 0
1252 }
1253 -re "\\*stopped,${ebn}${r}${a}${bn}frame=\{addr=\"$hex\",func=\"$any\",args=\[\\\[\{\]$any\[\\\]\}\],file=\"$any\",fullname=\"${fullname_syntax}$any\",line=\"\[0-9\]*\",arch=\"$any\"\}$after_stopped,thread-id=\"$decimal\",stopped-threads=$any\r\n($thread_selected_re|$breakpoint_re)*$prompt_re" {
1254 verbose -log "got $expect_out(buffer)"
1255 fail "$test (stopped at wrong place)"
1256 return -1
1257 }
1258 -re ".*\r\n$mi_gdb_prompt$" {
1259 verbose -log "got $expect_out(buffer)"
1260 fail "$test (unknown output after running)"
1261 return -1
1262 }
1263 timeout {
1264 fail "$test (timeout)"
1265 return -1
1266 }
1267 }
1268 }
1269
1270 # Wait for MI *stopped notification related to an interrupt request to
1271 # appear.
1272 proc mi_expect_interrupt { test } {
1273 global mi_gdb_prompt
1274 global decimal
1275 global async
1276
1277 if {$async} {
1278 set prompt_re ""
1279 } else {
1280 set prompt_re "$mi_gdb_prompt"
1281 }
1282
1283 set r_nonstop "reason=\"signal-received\",signal-name=\"0\",signal-meaning=\"Signal 0\""
1284 set r_allstop "reason=\"signal-received\",signal-name=\"SIGINT\",signal-meaning=\"Interrupt\""
1285 set r "(${r_nonstop}|${r_allstop})"
1286 set any "\[^\n\]*"
1287
1288 # A signal can land anywhere, just ignore the location
1289 verbose -log "mi_expect_interrupt: expecting: \\*stopped,${r}$any\r\n$prompt_re"
1290 gdb_expect {
1291 -re "\\*stopped,${r}$any\r\n$prompt_re" {
1292 pass "$test"
1293 return 0
1294 }
1295 -re ".*\r\n$mi_gdb_prompt" {
1296 verbose -log "got $expect_out(buffer)"
1297 fail "$test (unknown output after running)"
1298 return -1
1299 }
1300 timeout {
1301 fail "$test (timeout)"
1302 return -1
1303 }
1304 }
1305 }
1306
1307 # cmd should not include the number or newline (i.e. "exec-step 3", not
1308 # "220-exec-step 3\n"
1309
1310 # Can not match -re ".*\r\n${mi_gdb_prompt}", because of false positives
1311 # after the first prompt is printed.
1312
1313 proc mi_execute_to { cmd reason func args file line extra test } {
1314 global suppress_flag
1315 if { $suppress_flag } {
1316 return -1
1317 }
1318
1319 mi_send_resuming_command "$cmd" "$test"
1320 set r [mi_expect_stop $reason $func $args $file $line $extra $test]
1321 return $r
1322 }
1323
1324 proc mi_next_to { func args file line test } {
1325 mi_execute_to "exec-next" "end-stepping-range" "$func" "$args" \
1326 "$file" "$line" "" "$test"
1327 }
1328
1329 proc mi_step_to { func args file line test } {
1330 mi_execute_to "exec-step" "end-stepping-range" "$func" "$args" \
1331 "$file" "$line" "" "$test"
1332 }
1333
1334 proc mi_finish_to { func args file line result ret test } {
1335 mi_execute_to "exec-finish" "function-finished" "$func" "$args" \
1336 "$file" "$line" \
1337 ",gdb-result-var=\"$result\",return-value=\"$ret\"" \
1338 "$test"
1339 }
1340
1341 proc mi_continue_to {func} {
1342 mi_runto_helper $func "continue"
1343 }
1344
1345 proc mi0_execute_to { cmd reason func args file line extra test } {
1346 mi_execute_to_helper "$cmd" "$reason" "$func" "\{$args\}" \
1347 "$file" "$line" "$extra" "$test"
1348 }
1349
1350 proc mi0_next_to { func args file line test } {
1351 mi0_execute_to "exec-next" "end-stepping-range" "$func" "$args" \
1352 "$file" "$line" "" "$test"
1353 }
1354
1355 proc mi0_step_to { func args file line test } {
1356 mi0_execute_to "exec-step" "end-stepping-range" "$func" "$args" \
1357 "$file" "$line" "" "$test"
1358 }
1359
1360 proc mi0_finish_to { func args file line result ret test } {
1361 mi0_execute_to "exec-finish" "function-finished" "$func" "$args" \
1362 "$file" "$line" \
1363 ",gdb-result-var=\"$result\",return-value=\"$ret\"" \
1364 "$test"
1365 }
1366
1367 proc mi0_continue_to { bkptno func args file line test } {
1368 mi0_execute_to "exec-continue" "breakpoint-hit\",bkptno=\"$bkptno" \
1369 "$func" "$args" "$file" "$line" "" "$test"
1370 }
1371
1372 # Creates a breakpoint and checks the reported fields are as expected.
1373 # This procedure takes the same options as mi_make_breakpoint and
1374 # returns the breakpoint regexp from that procedure.
1375
1376 proc mi_create_breakpoint {location test args} {
1377 set bp [eval mi_make_breakpoint $args]
1378 mi_gdb_test "222-break-insert $location" "222\\^done,$bp" $test
1379 return $bp
1380 }
1381
1382 # Creates varobj named NAME for EXPRESSION.
1383 # Name cannot be "-".
1384 proc mi_create_varobj { name expression testname } {
1385 mi_gdb_test "-var-create $name * $expression" \
1386 "\\^done,name=\"$name\",numchild=\"\[0-9\]+\",value=\".*\",type=.*,has_more=\"0\"" \
1387 $testname
1388 }
1389
1390 proc mi_create_floating_varobj { name expression testname } {
1391 mi_gdb_test "-var-create $name @ $expression" \
1392 "\\^done,name=\"$name\",numchild=\"\(-1\|\[0-9\]+\)\",value=\".*\",type=.*" \
1393 $testname
1394 }
1395
1396
1397 # Same as mi_create_varobj, but also checks the reported type
1398 # of the varobj.
1399 proc mi_create_varobj_checked { name expression type testname } {
1400 mi_gdb_test "-var-create $name * $expression" \
1401 "\\^done,name=\"$name\",numchild=\"\[0-9\]+\",value=\".*\",type=\"$type\".*" \
1402 $testname
1403 }
1404
1405 # Same as mi_create_floating_varobj, but assumes the test is creating
1406 # a dynamic varobj that has children, so the value must be "{...}".
1407 # The "has_more" attribute is checked.
1408 proc mi_create_dynamic_varobj {name expression has_more testname} {
1409 mi_gdb_test "-var-create $name @ $expression" \
1410 "\\^done,name=\"$name\",numchild=\"0\",value=\"{\\.\\.\\.}\",type=.*,has_more=\"${has_more}\"" \
1411 $testname
1412 }
1413
1414 # Deletes the specified NAME.
1415 proc mi_delete_varobj { name testname } {
1416 mi_gdb_test "-var-delete $name" \
1417 "\\^done,ndeleted=.*" \
1418 $testname
1419 }
1420
1421 # Updates varobj named NAME and checks that all varobjs in EXPECTED
1422 # are reported as updated, and no other varobj is updated.
1423 # Assumes that no varobj is out of scope and that no varobj changes
1424 # types.
1425 proc mi_varobj_update { name expected testname } {
1426 set er "\\^done,changelist=\\\["
1427 set first 1
1428 foreach item $expected {
1429 set v "{name=\"$item\",in_scope=\"true\",type_changed=\"false\",has_more=\".\"}"
1430 if {$first == 1} {
1431 set er "$er$v"
1432 set first 0
1433 } else {
1434 set er "$er,$v"
1435 }
1436 }
1437 set er "$er\\\]"
1438
1439 verbose -log "Expecting: $er" 2
1440 mi_gdb_test "-var-update $name" $er $testname
1441 }
1442
1443 proc mi_varobj_update_with_child_type_change { name child_name new_type new_children testname } {
1444 set v "{name=\"$child_name\",in_scope=\"true\",type_changed=\"true\",new_type=\"$new_type\",new_num_children=\"$new_children\",has_more=\".\"}"
1445 set er "\\^done,changelist=\\\[$v\\\]"
1446 verbose -log "Expecting: $er"
1447 mi_gdb_test "-var-update $name" $er $testname
1448 }
1449
1450 proc mi_varobj_update_with_type_change { name new_type new_children testname } {
1451 mi_varobj_update_with_child_type_change $name $name $new_type $new_children $testname
1452 }
1453
1454 # A helper that turns a key/value list into a regular expression
1455 # matching some MI output.
1456 proc mi_varobj_update_kv_helper {list} {
1457 set first 1
1458 set rx ""
1459 foreach {key value} $list {
1460 if {!$first} {
1461 append rx ,
1462 }
1463 set first 0
1464 if {$key == "new_children"} {
1465 append rx "$key=\\\[$value\\\]"
1466 } else {
1467 append rx "$key=\"$value\""
1468 }
1469 }
1470 return $rx
1471 }
1472
1473 # A helper for mi_varobj_update_dynamic that computes a match
1474 # expression given a child list.
1475 proc mi_varobj_update_dynamic_helper {children} {
1476 set crx ""
1477
1478 set first 1
1479 foreach child $children {
1480 if {!$first} {
1481 append crx ,
1482 }
1483 set first 0
1484 append crx "{"
1485 append crx [mi_varobj_update_kv_helper $child]
1486 append crx "}"
1487 }
1488
1489 return $crx
1490 }
1491
1492 # Update a dynamic varobj named NAME. CHILDREN is a list of children
1493 # that have been updated; NEW_CHILDREN is a list of children that were
1494 # added to the primary varobj. Each child is a list of key/value
1495 # pairs that are expected. SELF is a key/value list holding
1496 # information about the varobj itself. TESTNAME is the name of the
1497 # test.
1498 proc mi_varobj_update_dynamic {name testname self children new_children} {
1499 if {[llength $new_children]} {
1500 set newrx [mi_varobj_update_dynamic_helper $new_children]
1501 lappend self new_children $newrx
1502 }
1503 set selfrx [mi_varobj_update_kv_helper $self]
1504 set crx [mi_varobj_update_dynamic_helper $children]
1505
1506 set er "\\^done,changelist=\\\[\{name=\"$name\",in_scope=\"true\""
1507 append er ",$selfrx\}"
1508 if {"$crx" != ""} {
1509 append er ",$crx"
1510 }
1511 append er "\\\]"
1512
1513 verbose -log "Expecting: $er"
1514 mi_gdb_test "-var-update $name" $er $testname
1515 }
1516
1517 proc mi_check_varobj_value { name value testname } {
1518
1519 mi_gdb_test "-var-evaluate-expression $name" \
1520 "\\^done,value=\"$value\"" \
1521 $testname
1522 }
1523
1524 # Helper proc which constructs a child regexp for
1525 # mi_list_varobj_children and mi_varobj_update_dynamic.
1526 proc mi_child_regexp {children add_child} {
1527 set children_exp {}
1528
1529 if {$add_child} {
1530 set pre "child="
1531 } else {
1532 set pre ""
1533 }
1534
1535 foreach item $children {
1536
1537 set name [lindex $item 0]
1538 set exp [lindex $item 1]
1539 set numchild [lindex $item 2]
1540 if {[llength $item] == 5} {
1541 set type [lindex $item 3]
1542 set value [lindex $item 4]
1543
1544 lappend children_exp\
1545 "$pre{name=\"$name\",exp=\"$exp\",numchild=\"$numchild\",value=\"$value\",type=\"$type\"(,thread-id=\"\[0-9\]+\")?}"
1546 } elseif {[llength $item] == 4} {
1547 set type [lindex $item 3]
1548
1549 lappend children_exp\
1550 "$pre{name=\"$name\",exp=\"$exp\",numchild=\"$numchild\",type=\"$type\"(,thread-id=\"\[0-9\]+\")?}"
1551 } else {
1552 lappend children_exp\
1553 "$pre{name=\"$name\",exp=\"$exp\",numchild=\"$numchild\"(,thread-id=\"\[0-9\]+\")?}"
1554 }
1555 }
1556 return [join $children_exp ","]
1557 }
1558
1559 # Check the results of the:
1560 #
1561 # -var-list-children VARNAME
1562 #
1563 # command. The CHILDREN parement should be a list of lists.
1564 # Each inner list can have either 3 or 4 elements, describing
1565 # fields that gdb is expected to report for child variable object,
1566 # in the following order
1567 #
1568 # - Name
1569 # - Expression
1570 # - Number of children
1571 # - Type
1572 #
1573 # If inner list has 3 elements, the gdb is expected to output no
1574 # type for a child and no value.
1575 #
1576 # If the inner list has 4 elements, gdb output is expected to
1577 # have no value.
1578 #
1579 proc mi_list_varobj_children { varname children testname } {
1580 mi_list_varobj_children_range $varname "" "" [llength $children] $children \
1581 $testname
1582 }
1583
1584 # Like mi_list_varobj_children, but sets a subrange. NUMCHILDREN is
1585 # the total number of children.
1586 proc mi_list_varobj_children_range {varname from to numchildren children testname} {
1587 set options ""
1588 if {[llength $varname] == 2} {
1589 set options [lindex $varname 1]
1590 set varname [lindex $varname 0]
1591 }
1592
1593 set children_exp_j [mi_child_regexp $children 1]
1594 if {$numchildren} {
1595 set expected "\\^done,numchild=\".*\",children=\\\[$children_exp_j.*\\\]"
1596 } {
1597 set expected "\\^done,numchild=\"0\""
1598 }
1599
1600 if {"$to" == ""} {
1601 append expected ",has_more=\"0\""
1602 } elseif {$to >= 0 && $numchildren > $to} {
1603 append expected ",has_more=\"1\""
1604 } else {
1605 append expected ",has_more=\"0\""
1606 }
1607
1608 verbose -log "Expecting: $expected"
1609
1610 mi_gdb_test "-var-list-children $options $varname $from $to" \
1611 $expected $testname
1612 }
1613
1614 # Verifies that variable object VARNAME has NUMBER children,
1615 # where each one is named $VARNAME.<index-of-child> and has type TYPE.
1616 proc mi_list_array_varobj_children { varname number type testname } {
1617 mi_list_array_varobj_children_with_index $varname $number 0 $type $testname
1618 }
1619
1620 # Same as mi_list_array_varobj_children, but allowing to pass a start index
1621 # for an array.
1622 proc mi_list_array_varobj_children_with_index { varname number start_index \
1623 type testname } {
1624 set t {}
1625 set index $start_index
1626 for {set i 0} {$i < $number} {incr i} {
1627 lappend t [list $varname.$index $index 0 $type]
1628 incr index
1629 }
1630 mi_list_varobj_children $varname $t $testname
1631 }
1632
1633 # A list of two-element lists. First element of each list is
1634 # a Tcl statement, and the second element is the line
1635 # number of source C file where the statement originates.
1636 set mi_autotest_data ""
1637 # The name of the source file for autotesting.
1638 set mi_autotest_source ""
1639
1640 proc count_newlines { string } {
1641 return [regexp -all "\n" $string]
1642 }
1643
1644 # Prepares for running inline tests in FILENAME.
1645 # See comments for mi_run_inline_test for detailed
1646 # explanation of the idea and syntax.
1647 proc mi_prepare_inline_tests { filename } {
1648
1649 global srcdir
1650 global subdir
1651 global mi_autotest_source
1652 global mi_autotest_data
1653
1654 set mi_autotest_data {}
1655
1656 set mi_autotest_source $filename
1657
1658 if { ! [regexp "^/" "$filename"] } then {
1659 set filename "$srcdir/$subdir/$filename"
1660 }
1661
1662 set chan [open $filename]
1663 set content [read $chan]
1664 set line_number 1
1665 while {1} {
1666 set start [string first "/*:" $content]
1667 if {$start != -1} {
1668 set end [string first ":*/" $content]
1669 if {$end == -1} {
1670 error "Unterminated special comment in $filename"
1671 }
1672
1673 set prefix [string range $content 0 $start]
1674 set prefix_newlines [count_newlines $prefix]
1675
1676 set line_number [expr $line_number+$prefix_newlines]
1677 set comment_line $line_number
1678
1679 set comment [string range $content [expr $start+3] [expr $end-1]]
1680
1681 set comment_newlines [count_newlines $comment]
1682 set line_number [expr $line_number+$comment_newlines]
1683
1684 set comment [string trim $comment]
1685 set content [string range $content [expr $end+3] \
1686 [string length $content]]
1687 lappend mi_autotest_data [list $comment $comment_line]
1688 } else {
1689 break
1690 }
1691 }
1692 close $chan
1693 }
1694
1695 # Helper to mi_run_inline_test below.
1696 # Return the list of all (statement,line_number) lists
1697 # that comprise TESTCASE. The begin and end markers
1698 # are not included.
1699 proc mi_get_inline_test {testcase} {
1700
1701 global mi_gdb_prompt
1702 global mi_autotest_data
1703 global mi_autotest_source
1704
1705 set result {}
1706
1707 set seen_begin 0
1708 set seen_end 0
1709 foreach l $mi_autotest_data {
1710
1711 set comment [lindex $l 0]
1712
1713 if {$comment == "BEGIN: $testcase"} {
1714 set seen_begin 1
1715 } elseif {$comment == "END: $testcase"} {
1716 set seen_end 1
1717 break
1718 } elseif {$seen_begin==1} {
1719 lappend result $l
1720 }
1721 }
1722
1723 if {$seen_begin == 0} {
1724 error "Autotest $testcase not found"
1725 }
1726
1727 if {$seen_begin == 1 && $seen_end == 0} {
1728 error "Missing end marker for test $testcase"
1729 }
1730
1731 return $result
1732 }
1733
1734 # Sets temporary breakpoint at LOCATION.
1735 proc mi_tbreak {location} {
1736
1737 global mi_gdb_prompt
1738
1739 mi_gdb_test "-break-insert -t $location" \
1740 {\^done,bkpt=.*} \
1741 "run to $location (set breakpoint)"
1742 }
1743
1744 # Send COMMAND that must be a command that resumes
1745 # the inferior (run/continue/next/etc) and consumes
1746 # the "^running" output from it.
1747 proc mi_send_resuming_command_raw {command test} {
1748
1749 global mi_gdb_prompt
1750 global thread_selected_re
1751 global library_loaded_re
1752
1753 send_gdb "$command\n"
1754 gdb_expect {
1755 -re "\\^running\r\n\\*running,thread-id=\"\[^\"\]+\"\r\n($library_loaded_re)*($thread_selected_re)?${mi_gdb_prompt}" {
1756 # Note that lack of 'pass' call here -- this works around limitation
1757 # in DejaGNU xfail mechanism. mi-until.exp has this:
1758 #
1759 # setup_kfail gdb/2104 "*-*-*"
1760 # mi_execute_to ...
1761 #
1762 # and mi_execute_to uses mi_send_resuming_command. If we use 'pass' here,
1763 # it will reset kfail, so when the actual test fails, it will be flagged
1764 # as real failure.
1765 return 0
1766 }
1767 -re "\\^error,msg=\"Displaced stepping is only supported in ARM mode\".*" {
1768 unsupported "$test (Thumb mode)"
1769 return -1
1770 }
1771 -re "\\^error,msg=.*" {
1772 fail "$test (MI error)"
1773 return -1
1774 }
1775 -re ".*${mi_gdb_prompt}" {
1776 fail "$test (failed to resume)"
1777 return -1
1778 }
1779 timeout {
1780 fail "$test"
1781 return -1
1782 }
1783 }
1784 }
1785
1786 proc mi_send_resuming_command {command test} {
1787 mi_send_resuming_command_raw -$command $test
1788 }
1789
1790 # Helper to mi_run_inline_test below.
1791 # Sets a temporary breakpoint at LOCATION and runs
1792 # the program using COMMAND. When the program is stopped
1793 # returns the line at which it. Returns -1 if line cannot
1794 # be determined.
1795 # Does not check that the line is the same as requested.
1796 # The caller can check itself if required.
1797 proc mi_continue_to_line {location test} {
1798
1799 mi_tbreak $location
1800 mi_send_resuming_command "exec-continue" "run to $location (exec-continue)"
1801 return [mi_get_stop_line $test]
1802 }
1803
1804 # Wait until gdb prints the current line.
1805 proc mi_get_stop_line {test} {
1806
1807 global mi_gdb_prompt
1808 global async
1809
1810 if {$async} {
1811 set prompt_re ""
1812 } else {
1813 set prompt_re "$mi_gdb_prompt$"
1814 }
1815
1816 gdb_expect {
1817 -re ".*line=\"(\[0-9\]*)\".*\r\n$prompt_re" {
1818 return $expect_out(1,string)
1819 }
1820 -re ".*$mi_gdb_prompt" {
1821 fail "wait for stop ($test)"
1822 }
1823 timeout {
1824 fail "wait for stop ($test)"
1825 }
1826 }
1827 }
1828
1829 # Run a MI test embedded in comments in a C file.
1830 # The C file should contain special comments in the following
1831 # three forms:
1832 #
1833 # /*: BEGIN: testname :*/
1834 # /*: <Tcl statements> :*/
1835 # /*: END: testname :*/
1836 #
1837 # This procedure find the begin and end marker for the requested
1838 # test. Then, a temporary breakpoint is set at the begin
1839 # marker and the program is run (from start).
1840 #
1841 # After that, for each special comment between the begin and end
1842 # marker, the Tcl statements are executed. It is assumed that
1843 # for each comment, the immediately preceding line is executable
1844 # C statement. Then, gdb will be single-stepped until that
1845 # preceding C statement is executed, and after that the
1846 # Tcl statements in the comment will be executed.
1847 #
1848 # For example:
1849 #
1850 # /*: BEGIN: assignment-test :*/
1851 # v = 10;
1852 # /*: <Tcl code to check that 'v' is indeed 10 :*/
1853 # /*: END: assignment-test :*/
1854 #
1855 # The mi_prepare_inline_tests function should be called before
1856 # calling this function. A given C file can contain several
1857 # inline tests. The names of the tests must be unique within one
1858 # C file.
1859 #
1860 proc mi_run_inline_test { testcase } {
1861
1862 global mi_gdb_prompt
1863 global hex
1864 global decimal
1865 global fullname_syntax
1866 global mi_autotest_source
1867
1868 set commands [mi_get_inline_test $testcase]
1869
1870 set first 1
1871 set line_now 1
1872
1873 foreach c $commands {
1874 set statements [lindex $c 0]
1875 set line [lindex $c 1]
1876 set line [expr $line-1]
1877
1878 # We want gdb to be stopped at the expression immediately
1879 # before the comment. If this is the first comment, the
1880 # program is either not started yet or is in some random place,
1881 # so we run it. For further comments, we might be already
1882 # standing at the right line. If not continue till the
1883 # right line.
1884
1885 if {$first==1} {
1886 # Start the program afresh.
1887 mi_tbreak "$mi_autotest_source:$line"
1888 mi_run_cmd
1889 set line_now [mi_get_stop_line "$testcase: step to $line"]
1890 set first 0
1891 } elseif {$line_now!=$line} {
1892 set line_now [mi_continue_to_line "$mi_autotest_source:$line" "continue to $line"]
1893 }
1894
1895 if {$line_now!=$line} {
1896 fail "$testcase: go to line $line"
1897 }
1898
1899 # We're not at the statement right above the comment.
1900 # Execute that statement so that the comment can test
1901 # the state after the statement is executed.
1902
1903 # Single-step past the line.
1904 if { [mi_send_resuming_command "exec-next" "$testcase: step over $line"] != 0 } {
1905 return -1
1906 }
1907 set line_now [mi_get_stop_line "$testcase: step over $line"]
1908
1909 # We probably want to use 'uplevel' so that statements
1910 # have direct access to global variables that the
1911 # main 'exp' file has set up. But it's not yet clear,
1912 # will need more experience to be sure.
1913 eval $statements
1914 }
1915 }
1916
1917 proc get_mi_thread_list {name} {
1918 global expect_out
1919
1920 # MI will return a list of thread ids:
1921 #
1922 # -thread-list-ids
1923 # ^done,thread-ids=[thread-id="1",thread-id="2",...],number-of-threads="N"
1924 # (gdb)
1925 mi_gdb_test "-thread-list-ids" \
1926 {.*\^done,thread-ids={(thread-id="[0-9]+"(,)?)+},current-thread-id="[0-9]+",number-of-threads="[0-9]+"} \
1927 "-thread_list_ids ($name)"
1928
1929 set output {}
1930 if {[info exists expect_out(buffer)]} {
1931 set output $expect_out(buffer)
1932 }
1933
1934 set thread_list {}
1935 if {![regexp {thread-ids=\{(thread-id="[0-9]+"(,)?)*\}} $output threads]} {
1936 fail "finding threads in MI output ($name)"
1937 } else {
1938 pass "finding threads in MI output ($name)"
1939
1940 # Make list of console threads
1941 set start [expr {[string first \{ $threads] + 1}]
1942 set end [expr {[string first \} $threads] - 1}]
1943 set threads [string range $threads $start $end]
1944 foreach thread [split $threads ,] {
1945 if {[scan $thread {thread-id="%d"} num]} {
1946 lappend thread_list $num
1947 }
1948 }
1949 }
1950
1951 return $thread_list
1952 }
1953
1954 # Check that MI and the console know of the same threads.
1955 # Appends NAME to all test names.
1956 proc check_mi_and_console_threads {name} {
1957 global expect_out
1958
1959 mi_gdb_test "-thread-list-ids" \
1960 {.*\^done,thread-ids={(thread-id="[0-9]+"(,)*)+},current-thread-id="[0-9]+",number-of-threads="[0-9]+"} \
1961 "-thread-list-ids ($name)"
1962 set mi_output {}
1963 if {[info exists expect_out(buffer)]} {
1964 set mi_output $expect_out(buffer)
1965 }
1966
1967 # GDB will return a list of thread ids and some more info:
1968 #
1969 # (gdb)
1970 # -interpreter-exec console "info threads"
1971 # ~" 4 Thread 2051 (LWP 7734) 0x401166b1 in __libc_nanosleep () at __libc_nanosleep:-1"
1972 # ~" 3 Thread 1026 (LWP 7733) () at __libc_nanosleep:-1"
1973 # ~" 2 Thread 2049 (LWP 7732) 0x401411f8 in __poll (fds=0x804bb24, nfds=1, timeout=2000) at ../sysdeps/unix/sysv/linux/poll.c:63"
1974 # ~"* 1 Thread 1024 (LWP 7731) main (argc=1, argv=0xbfffdd94) at ../../../src/gdb/testsuite/gdb.mi/pthreads.c:160"
1975 # FIXME: kseitz/2002-09-05: Don't use the hack-cli method.
1976 mi_gdb_test "info threads" \
1977 {.*(~".*"[\r\n]*)+.*} \
1978 "info threads ($name)"
1979 set console_output {}
1980 if {[info exists expect_out(buffer)]} {
1981 set console_output $expect_out(buffer)
1982 }
1983
1984 # Make a list of all known threads to console (gdb's thread IDs)
1985 set console_thread_list {}
1986 foreach line [split $console_output \n] {
1987 if {[string index $line 0] == "~"} {
1988 # This is a line from the console; trim off "~", " ", "*", and "\""
1989 set line [string trim $line ~\ \"\*]
1990 if {[scan $line "%d" id] == 1} {
1991 lappend console_thread_list $id
1992 }
1993 }
1994 }
1995
1996 # Now find the result string from MI
1997 set mi_result ""
1998 foreach line [split $mi_output \n] {
1999 if {[string range $line 0 4] == "^done"} {
2000 set mi_result $line
2001 }
2002 }
2003 if {$mi_result == ""} {
2004 fail "finding MI result string ($name)"
2005 } else {
2006 pass "finding MI result string ($name)"
2007 }
2008
2009 # Finally, extract the thread ids and compare them to the console
2010 set num_mi_threads_str ""
2011 if {![regexp {number-of-threads="[0-9]+"} $mi_result num_mi_threads_str]} {
2012 fail "finding number of threads in MI output ($name)"
2013 } else {
2014 pass "finding number of threads in MI output ($name)"
2015
2016 # Extract the number of threads from the MI result
2017 if {![scan $num_mi_threads_str {number-of-threads="%d"} num_mi_threads]} {
2018 fail "got number of threads from MI ($name)"
2019 } else {
2020 pass "got number of threads from MI ($name)"
2021
2022 # Check if MI and console have same number of threads
2023 if {$num_mi_threads != [llength $console_thread_list]} {
2024 fail "console and MI have same number of threads ($name)"
2025 } else {
2026 pass "console and MI have same number of threads ($name)"
2027
2028 # Get MI thread list
2029 set mi_thread_list [get_mi_thread_list $name]
2030
2031 # Check if MI and console have the same threads
2032 set fails 0
2033 foreach ct [lsort $console_thread_list] mt [lsort $mi_thread_list] {
2034 if {$ct != $mt} {
2035 incr fails
2036 }
2037 }
2038 if {$fails > 0} {
2039 fail "MI and console have same threads ($name)"
2040
2041 # Send a list of failures to the log
2042 send_log "Console has thread ids: $console_thread_list\n"
2043 send_log "MI has thread ids: $mi_thread_list\n"
2044 } else {
2045 pass "MI and console have same threads ($name)"
2046 }
2047 }
2048 }
2049 }
2050 }
2051
2052 # Download shared libraries to the target.
2053 proc mi_load_shlibs { args } {
2054 foreach file $args {
2055 gdb_remote_download target [shlib_target_file $file]
2056 }
2057
2058 if {[is_remote target]} {
2059 # If the target is remote, we need to tell gdb where to find the
2060 # libraries.
2061 #
2062 # We could set this even when not testing remotely, but a user
2063 # generally won't set it unless necessary. In order to make the tests
2064 # more like the real-life scenarios, we don't set it for local testing.
2065 mi_gdb_test "set solib-search-path [file dirname [lindex $args 0]]" "\^done" ""
2066 }
2067 }
2068
2069 proc mi_check_thread_states { states test } {
2070 global expect_out
2071 set pattern ".*\\^done,threads=\\\["
2072 foreach s $states {
2073 set pattern "${pattern}(.*)state=\"$s\""
2074 }
2075 set pattern "${pattern}(,core=\"\[0-9\]*\")?\\\}\\\].*"
2076
2077 verbose -log "expecting: $pattern"
2078 mi_gdb_test "-thread-info" $pattern $test
2079 }
2080
2081 # Return a list of MI features supported by this gdb.
2082 proc mi_get_features {} {
2083 global expect_out mi_gdb_prompt
2084
2085 send_gdb "-list-features\n"
2086
2087 gdb_expect {
2088 -re "\\^done,features=\\\[(.*)\\\]\r\n$mi_gdb_prompt$" {
2089 regsub -all -- \" $expect_out(1,string) "" features
2090 return [split $features ,]
2091 }
2092 -re ".*\r\n$mi_gdb_prompt$" {
2093 verbose -log "got $expect_out(buffer)"
2094 return ""
2095 }
2096 timeout {
2097 verbose -log "timeout in mi_gdb_prompt"
2098 return ""
2099 }
2100 }
2101 }
2102
2103 # Variable Object Trees
2104 #
2105 # Yet another way to check varobjs. Pass mi_walk_varobj_tree a "list" of
2106 # variables (not unlike the actual source code definition), and it will
2107 # automagically test the children for you (by default).
2108 #
2109 # Example:
2110 #
2111 # source code:
2112 # struct bar {
2113 # union {
2114 # int integer;
2115 # void *ptr;
2116 # };
2117 # const int *iPtr;
2118 # };
2119 #
2120 # class foo {
2121 # public:
2122 # int a;
2123 # struct {
2124 # int b;
2125 # struct bar *c;
2126 # };
2127 # };
2128 #
2129 # foo *f = new foo (); <-- break here
2130 #
2131 # We want to check all the children of "f".
2132 #
2133 # Translate the above structures into the following tree:
2134 #
2135 # set tree {
2136 # foo f {
2137 # {} public {
2138 # int a {}
2139 # anonymous struct {
2140 # {} public {
2141 # int b {}
2142 # {bar *} c {
2143 # {} public {
2144 # anonymous union {
2145 # {} public {
2146 # int integer {}
2147 # {void *} ptr {}
2148 # }
2149 # }
2150 # {const int *} iPtr {
2151 # {const int} {*iPtr} {}
2152 # }
2153 # }
2154 # }
2155 # }
2156 # }
2157 # }
2158 # }
2159 # }
2160 #
2161 # mi_walk_varobj_tree c++ $tree
2162 #
2163 # If you'd prefer to walk the tree using your own callback,
2164 # simply pass the name of the callback to mi_walk_varobj_tree.
2165 #
2166 # This callback should take one argument, the name of the variable
2167 # to process. This name is the name of a global array holding the
2168 # variable's properties (object name, type, etc).
2169 #
2170 # An example callback:
2171 #
2172 # proc my_callback {var} {
2173 # upvar #0 $var varobj
2174 #
2175 # puts "my_callback: called on varobj $varobj(obj_name)"
2176 # }
2177 #
2178 # The arrays created for each variable object contain the following
2179 # members:
2180 #
2181 # obj_name - the object name for accessing this variable via MI
2182 # display_name - the display name for this variable (exp="display_name" in
2183 # the output of -var-list-children)
2184 # type - the type of this variable (type="type" in the output
2185 # of -var-list-children, or the special tag "anonymous"
2186 # path_expr - the "-var-info-path-expression" for this variable
2187 # NOTE: This member cannot be used reliably with typedefs.
2188 # Use with caution!
2189 # See notes inside get_path_expr for more.
2190 # parent - the variable name of the parent varobj
2191 # children - a list of children variable names (which are the
2192 # names Tcl arrays, not object names)
2193 #
2194 # For each variable object, an array containing the above fields will
2195 # be created under the root node (conveniently called, "root"). For example,
2196 # a variable object with handle "OBJ.public.0_anonymous.a" will have
2197 # a corresponding global Tcl variable named "root.OBJ.public.0_anonymous.a".
2198 #
2199 # Note that right now, this mechanism cannot be used for recursive data
2200 # structures like linked lists.
2201
2202 namespace eval ::varobj_tree {
2203 # An index which is appended to root varobjs to ensure uniqueness.
2204 variable _root_idx 0
2205
2206 # A procedure to help with debuggging varobj trees.
2207 # VARIABLE_NAME is the name of the variable to dump.
2208 # CMD, if present, is the name of the callback to output the contstructed
2209 # strings. By default, it uses expect's "send_log" command.
2210 # TERM, if present, is a terminating character. By default it is the newline.
2211 #
2212 # To output to the terminal (not the expect log), use
2213 # mi_varobj_tree_dump_variable my_variable puts ""
2214
2215 proc mi_varobj_tree_dump_variable {variable_name {cmd send_log} {term "\n"}} {
2216 upvar #0 $variable_name varobj
2217
2218 eval "$cmd \"VAR = $variable_name$term\""
2219
2220 # Explicitly encode the array indices, since outputting them
2221 # in some logical order is better than what "array names" might
2222 # return.
2223 foreach idx {obj_name parent display_name type path_expr} {
2224 eval "$cmd \"\t$idx = $varobj($idx)$term\""
2225 }
2226
2227 # Output children
2228 set num [llength $varobj(children)]
2229 eval "$cmd \"\tnum_children = $num$term\""
2230 if {$num > 0} {
2231 eval "$cmd \"\tchildren = $varobj(children)$term\""
2232 }
2233 }
2234
2235 # The default callback used by mi_walk_varobj_tree. This callback
2236 # simply checks all of VAR's children. It specifically does not test
2237 # path expressions, since that is very problematic.
2238 #
2239 # This procedure may be used in custom callbacks.
2240 proc test_children_callback {variable_name} {
2241 upvar #0 $variable_name varobj
2242
2243 if {[llength $varobj(children)] > 0} {
2244 # Construct the list of children the way mi_list_varobj_children
2245 # expects to get it:
2246 # { {obj_name display_name num_children type} ... }
2247 set children_list {}
2248 foreach child $varobj(children) {
2249 upvar #0 $child c
2250 set clist [list [string_to_regexp $c(obj_name)] \
2251 [string_to_regexp $c(display_name)] \
2252 [llength $c(children)]]
2253 if {[string length $c(type)] > 0} {
2254 lappend clist [string_to_regexp $c(type)]
2255 }
2256 lappend children_list $clist
2257 }
2258
2259 mi_list_varobj_children $varobj(obj_name) $children_list \
2260 "VT: list children of $varobj(obj_name)"
2261 }
2262 }
2263
2264 # Set the properties of the varobj represented by
2265 # PARENT_VARIABLE - the name of the parent's variable
2266 # OBJNAME - the MI object name of this variable
2267 # DISP_NAME - the display name of this variable
2268 # TYPE - the type of this variable
2269 # PATH - the path expression for this variable
2270 # CHILDREN - a list of the variable's children
2271 proc create_varobj {parent_variable objname disp_name \
2272 type path children} {
2273 upvar #0 $parent_variable parent
2274
2275 set var_name "root.$objname"
2276 global $var_name
2277 array set $var_name [list obj_name $objname]
2278 array set $var_name [list display_name $disp_name]
2279 array set $var_name [list type $type]
2280 array set $var_name [list path_expr $path]
2281 array set $var_name [list parent "$parent_variable"]
2282 array set $var_name [list children \
2283 [get_tree_children $var_name $children]]
2284 return $var_name
2285 }
2286
2287 # Should VARIABLE be used in path expressions? The CPLUS_FAKE_CHILD
2288 # varobjs and anonymous structs/unions are not used for path expressions.
2289 proc is_path_expr_parent {variable} {
2290 upvar #0 $variable varobj
2291
2292 # If the varobj's type is "", it is a CPLUS_FAKE_CHILD.
2293 # If the tail of the varobj's object name is "%d_anonymous",
2294 # then it represents an anonymous struct or union.
2295 if {[string length $varobj(type)] == 0 \
2296 || [regexp {[0-9]+_anonymous$} $varobj(obj_name)]} {
2297 return false
2298 }
2299
2300 return true
2301 }
2302
2303 # Return the path expression for the variable named NAME in
2304 # parent varobj whose variable name is given by PARENT_VARIABLE.
2305 proc get_path_expr {parent_variable name type} {
2306 upvar #0 $parent_variable parent
2307 upvar #0 $parent_variable path_parent
2308
2309 # If TYPE is "", this is one of the CPLUS_FAKE_CHILD varobjs,
2310 # which has no path expression. Likewsise for anonymous structs
2311 # and unions.
2312 if {[string length $type] == 0 \
2313 || [string compare $type "anonymous"] == 0} {
2314 return ""
2315 }
2316
2317 # Find the path parent variable.
2318 while {![is_path_expr_parent $parent_variable]} {
2319 set parent_variable $path_parent(parent)
2320 upvar #0 $parent_variable path_parent
2321 }
2322
2323 # This is where things get difficult. We do not actually know
2324 # the real type for variables defined via typedefs, so we don't actually
2325 # know whether the parent is a structure/union or not.
2326 #
2327 # So we assume everything that isn't a simple type is a compound type.
2328 set stars ""
2329 regexp {\*+} $parent(type) stars
2330 set is_compound 1
2331 if {[string index $name 0] == "*"} {
2332 set is_compound 0
2333 }
2334
2335 if {[string index $parent(type) end] == "\]"} {
2336 # Parent is an array.
2337 return "($path_parent(path_expr))\[$name\]"
2338 } elseif {$is_compound} {
2339 # Parent is a structure or union or a pointer to one.
2340 if {[string length $stars]} {
2341 set join "->"
2342 } else {
2343 set join "."
2344 }
2345
2346 global root
2347
2348 # To make matters even more hideous, varobj.c has slightly different
2349 # path expressions for C and C++.
2350 set path_expr "($path_parent(path_expr))$join$name"
2351 if {[string compare -nocase $root(language) "c"] == 0} {
2352 return $path_expr
2353 } else {
2354 return "($path_expr)"
2355 }
2356 } else {
2357 # Parent is a pointer.
2358 return "*($path_parent(path_expr))"
2359 }
2360 }
2361
2362 # Process the CHILDREN (a list of varobj_tree elements) of the variable
2363 # given by PARENT_VARIABLE. Returns a list of children variables.
2364 proc get_tree_children {parent_variable children} {
2365 upvar #0 $parent_variable parent
2366
2367 set field_idx 0
2368 set children_list {}
2369 foreach {type name children} $children {
2370 if {[string compare $parent_variable "root"] == 0} {
2371 # Root variable
2372 variable _root_idx
2373 incr _root_idx
2374 set objname "$name$_root_idx"
2375 set disp_name "$name"
2376 set path_expr "$name"
2377 } elseif {[string compare $type "anonymous"] == 0} {
2378 # Special case: anonymous types. In this case, NAME will either be
2379 # "struct" or "union".
2380 set objname "$parent(obj_name).${field_idx}_anonymous"
2381 set disp_name "<anonymous $name>"
2382 set path_expr ""
2383 set type "$name {...}"
2384 } else {
2385 set objname "$parent(obj_name).$name"
2386 set disp_name $name
2387 set path_expr [get_path_expr $parent_variable $name $type]
2388 }
2389
2390 lappend children_list [create_varobj $parent_variable $objname \
2391 $disp_name $type $path_expr $children]
2392 incr field_idx
2393 }
2394
2395 return $children_list
2396 }
2397
2398 # The main procedure to call the given CALLBACK on the elements of the
2399 # given varobj TREE. See detailed explanation above.
2400 proc walk_tree {language tree callback} {
2401 global root
2402 variable _root_idx
2403
2404 if {[llength $tree] < 3} {
2405 error "tree does not contain enough elements"
2406 }
2407
2408 set _root_idx 0
2409
2410 # Create root node and process the tree.
2411 array set root [list language $language]
2412 array set root [list obj_name "root"]
2413 array set root [list display_name "root"]
2414 array set root [list type "root"]
2415 array set root [list path_expr "root"]
2416 array set root [list parent "root"]
2417 array set root [list children [get_tree_children root $tree]]
2418
2419 # Walk the tree
2420 set all_nodes $root(children); # a stack of nodes
2421 while {[llength $all_nodes] > 0} {
2422 # "Pop" the name of the global variable containing this varobj's
2423 # information from the stack of nodes.
2424 set var_name [lindex $all_nodes 0]
2425 set all_nodes [lreplace $all_nodes 0 0]
2426
2427 # Bring the global named in VAR_NAME into scope as the local variable
2428 # VAROBJ.
2429 upvar #0 $var_name varobj
2430
2431 # Append any children of VAROBJ to the list of nodes to walk.
2432 if {[llength $varobj(children)] > 0} {
2433 set all_nodes [concat $all_nodes $varobj(children)]
2434 }
2435
2436 # If this is a root variable, create the variable object for it.
2437 if {[string compare $varobj(parent) "root"] == 0} {
2438 mi_create_varobj $varobj(obj_name) $varobj(display_name) \
2439 "VT: create root varobj for $varobj(display_name)"
2440 }
2441
2442 # Now call the callback for VAROBJ.
2443 uplevel #0 $callback $var_name
2444 }
2445 }
2446 }
2447
2448 # The default varobj tree callback, which simply tests -var-list-children.
2449 proc mi_varobj_tree_test_children_callback {variable} {
2450 ::varobj_tree::test_children_callback $variable
2451 }
2452
2453 # Walk the variable object tree given by TREE, calling the specified
2454 # CALLBACK. By default this uses mi_varobj_tree_test_children_callback.
2455 proc mi_walk_varobj_tree {language tree \
2456 {callback \
2457 mi_varobj_tree_test_children_callback}} {
2458 ::varobj_tree::walk_tree $language $tree $callback
2459 }
2460
2461 # Build a list of key-value pairs given by the list ATTR_LIST. Flatten
2462 # this list using the optional JOINER, a comma by default.
2463 #
2464 # The list must contain an even number of elements, which are the key-value
2465 # pairs. Each value will be surrounded by quotes, according to the grammar,
2466 # except if the value starts with \[ or \{, when the quotes will be omitted.
2467 #
2468 # Example: mi_build_kv_pairs {a b c d e f g \[.*\]}
2469 # returns a=\"b\",c=\"d\",e=\"f\",g=\[.*\]
2470 proc mi_build_kv_pairs {attr_list {joiner ,}} {
2471 set l {}
2472 foreach {var value} $attr_list {
2473 if {[string range $value 0 1] == "\\\["
2474 || [string range $value 0 1] == "\\\{"} {
2475 lappend l "$var=$value"
2476 } else {
2477 lappend l "$var=\"$value\""
2478 }
2479 }
2480 return "[join $l $joiner]"
2481 }
2482
2483 # Construct a breakpoint regexp. This may be used to test the output of
2484 # -break-insert, -dprintf-insert, or -break-info.
2485 #
2486 # All arguments for the breakpoint may be specified using the options
2487 # number, type, disp, enabled, addr, func, file, fullanme, line,
2488 # thread-groups, cond, evaluated-by, times, ignore, script,
2489 # and original-location.
2490 #
2491 # Only if -script and -ignore are given will they appear in the output.
2492 # Otherwise, this procedure will skip them using ".*".
2493 #
2494 # Example: mi_make_breakpoint -number 2 -file ".*/myfile.c" -line 3
2495 # will return the breakpoint:
2496 # bkpt={number="2",type=".*",disp=".*",enabled=".*",addr=".*",func=".*",
2497 # file=".*/myfile.c",fullname=".*",line="3",thread-groups=\[.*\],
2498 # times="0".*original-location=".*"}
2499
2500 proc mi_make_breakpoint {args} {
2501 parse_args {{number .*} {type .*} {disp .*} {enabled .*} {addr .*}
2502 {func .*} {file .*} {fullname .*} {line .*}
2503 {thread-groups \\\[.*\\\]} {times .*} {ignore 0}
2504 {script ""} {original-location .*} {cond ""} {evaluated-by ""}}
2505
2506 set attr_list {}
2507 foreach attr [list number type disp enabled addr func file \
2508 fullname line thread-groups] {
2509 lappend attr_list $attr [set $attr]
2510 }
2511
2512 set result "bkpt={[mi_build_kv_pairs $attr_list]"
2513
2514 # There are always exceptions.
2515
2516 # If COND is not preset, do not output it.
2517 if {[string length $cond] > 0} {
2518 append result ","
2519 append result [mi_build_kv_pairs [list "cond" $cond]]
2520
2521 # When running on a remote, GDB may output who is evaluating
2522 # breakpoint conditions.
2523 if {[string length ${evaluated-by}] > 0} {
2524 append result [mi_build_kv_pairs \
2525 [list "evaluated-by" ${evaluated-by}]]
2526 } else {
2527 append result {(,evaluated-by=".*")?}
2528 }
2529 }
2530
2531 append result ","
2532 append result [mi_build_kv_pairs [list "times" $times]]
2533
2534 # If SCRIPT and IGNORE are not present, do not output them.
2535 if {$ignore != 0} {
2536 append result ","
2537 append result [mi_build_kv_pairs [list "ignore" $ignore]]
2538 append result ","
2539 }
2540 if {[string length $script] > 0} {
2541 append result ","
2542 append result [mi_build_kv_pairs [list "script" $script]]
2543 append result ","
2544 } else {
2545 # Allow anything up until the next "official"/required attribute.
2546 # This pattern skips over script/ignore if matches on those
2547 # were not specifically required by the caller.
2548 append result ".*"
2549 }
2550 append result [mi_build_kv_pairs \
2551 [list "original-location" ${original-location}]]
2552 append result "}"
2553 return $result
2554 }
2555
2556 # Build a breakpoint table regexp given the list of breakpoints in `bp_list',
2557 # constructed by mi_make_breakpoint.
2558 #
2559 # Example: Construct a breakpoint table where the only attributes we
2560 # test for are the existence of three breakpoints numbered 1, 2, and 3.
2561 #
2562 # set bps {}
2563 # lappend bps [mi_make_breakpoint -number 1]
2564 # lappend bps [mi_make_breakpoint -number 2]
2565 # lappned bps [mi_make_breakpoint -number 3]
2566 # mi_make_breakpoint_table $bps
2567 # will return (abbreviated for clarity):
2568 # BreakpointTable={nr_rows="3",nr_cols="6",hdr=[{width=".*",...} ...],
2569 # body=[bkpt={number="1",...},bkpt={number="2",...},bkpt={number="3",...}]}
2570
2571 proc mi_make_breakpoint_table {bp_list} {
2572 # Build header -- assume a standard header for all breakpoint tables.
2573 set hl {}
2574 foreach {nm hdr} [list number Num type Type disp Disp enabled Enb \
2575 addr Address what What] {
2576 # The elements here are the MI table headers, which have the
2577 # format:
2578 # {width="7",alignment="-1",col_name="number",colhdr="Num"}
2579 lappend hl "{[mi_build_kv_pairs [list width .* alignment .* \
2580 col_name $nm colhdr $hdr]]}"
2581 }
2582 set header "hdr=\\\[[join $hl ,]\\\]"
2583
2584 # The caller has implicitly supplied the number of columns and rows.
2585 set nc [llength $hl]
2586 set nr [llength $bp_list]
2587
2588 # Build body -- mi_make_breakpoint has done most of the work.
2589 set body "body=\\\[[join $bp_list ,]\\\]"
2590
2591 # Assemble the final regexp.
2592 return "BreakpointTable={nr_rows=\"$nr\",nr_cols=\"$nc\",$header,$body}"
2593 }
2594
2595 # Return a 1 for configurations that do not support Python scripting.
2596 # Note: This also sets various globals that specify which version of Python
2597 # is in use. See skip_python_tests_prompt.
2598
2599 proc mi_skip_python_tests {} {
2600 global mi_gdb_prompt
2601 return [skip_python_tests_prompt "$mi_gdb_prompt$"]
2602 }
2603
2604 # As skip_libstdcxx_probe_tests_prompt, with mi_gdb_prompt.
2605
2606 proc mi_skip_libstdcxx_probe_tests {} {
2607 global mi_gdb_prompt
2608 return [skip_libstdcxx_probe_tests_prompt "$mi_gdb_prompt$"]
2609 }
2610
2611 # Check whether we're testing with the remote or extended-remote
2612 # targets.
2613
2614 proc mi_is_target_remote {} {
2615 global mi_gdb_prompt
2616
2617 return [gdb_is_target_remote_prompt "$mi_gdb_prompt"]
2618 }
This page took 0.083163 seconds and 3 git commands to generate.