gdb: add target_ops::supports_displaced_step
[deliverable/binutils-gdb.git] / gdb / valprint.c
1 /* Print values for GDB, the GNU debugger.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "gdbcore.h"
25 #include "gdbcmd.h"
26 #include "target.h"
27 #include "language.h"
28 #include "annotate.h"
29 #include "valprint.h"
30 #include "target-float.h"
31 #include "extension.h"
32 #include "ada-lang.h"
33 #include "gdb_obstack.h"
34 #include "charset.h"
35 #include "typeprint.h"
36 #include <ctype.h>
37 #include <algorithm>
38 #include "gdbsupport/byte-vector.h"
39 #include "cli/cli-option.h"
40 #include "gdbarch.h"
41 #include "cli/cli-style.h"
42 #include "count-one-bits.h"
43
44 /* Maximum number of wchars returned from wchar_iterate. */
45 #define MAX_WCHARS 4
46
47 /* A convenience macro to compute the size of a wchar_t buffer containing X
48 characters. */
49 #define WCHAR_BUFLEN(X) ((X) * sizeof (gdb_wchar_t))
50
51 /* Character buffer size saved while iterating over wchars. */
52 #define WCHAR_BUFLEN_MAX WCHAR_BUFLEN (MAX_WCHARS)
53
54 /* A structure to encapsulate state information from iterated
55 character conversions. */
56 struct converted_character
57 {
58 /* The number of characters converted. */
59 int num_chars;
60
61 /* The result of the conversion. See charset.h for more. */
62 enum wchar_iterate_result result;
63
64 /* The (saved) converted character(s). */
65 gdb_wchar_t chars[WCHAR_BUFLEN_MAX];
66
67 /* The first converted target byte. */
68 const gdb_byte *buf;
69
70 /* The number of bytes converted. */
71 size_t buflen;
72
73 /* How many times this character(s) is repeated. */
74 int repeat_count;
75 };
76
77 /* Command lists for set/show print raw. */
78 struct cmd_list_element *setprintrawlist;
79 struct cmd_list_element *showprintrawlist;
80
81 /* Prototypes for local functions */
82
83 static int partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
84 int len, int *errptr);
85
86 static void set_input_radix_1 (int, unsigned);
87
88 static void set_output_radix_1 (int, unsigned);
89
90 static void val_print_type_code_flags (struct type *type,
91 struct value *original_value,
92 int embedded_offset,
93 struct ui_file *stream);
94
95 #define PRINT_MAX_DEFAULT 200 /* Start print_max off at this value. */
96 #define PRINT_MAX_DEPTH_DEFAULT 20 /* Start print_max_depth off at this value. */
97
98 struct value_print_options user_print_options =
99 {
100 Val_prettyformat_default, /* prettyformat */
101 0, /* prettyformat_arrays */
102 0, /* prettyformat_structs */
103 0, /* vtblprint */
104 1, /* unionprint */
105 1, /* addressprint */
106 0, /* objectprint */
107 PRINT_MAX_DEFAULT, /* print_max */
108 10, /* repeat_count_threshold */
109 0, /* output_format */
110 0, /* format */
111 0, /* stop_print_at_null */
112 0, /* print_array_indexes */
113 0, /* deref_ref */
114 1, /* static_field_print */
115 1, /* pascal_static_field_print */
116 0, /* raw */
117 0, /* summary */
118 1, /* symbol_print */
119 PRINT_MAX_DEPTH_DEFAULT, /* max_depth */
120 1 /* finish_print */
121 };
122
123 /* Initialize *OPTS to be a copy of the user print options. */
124 void
125 get_user_print_options (struct value_print_options *opts)
126 {
127 *opts = user_print_options;
128 }
129
130 /* Initialize *OPTS to be a copy of the user print options, but with
131 pretty-formatting disabled. */
132 void
133 get_no_prettyformat_print_options (struct value_print_options *opts)
134 {
135 *opts = user_print_options;
136 opts->prettyformat = Val_no_prettyformat;
137 }
138
139 /* Initialize *OPTS to be a copy of the user print options, but using
140 FORMAT as the formatting option. */
141 void
142 get_formatted_print_options (struct value_print_options *opts,
143 char format)
144 {
145 *opts = user_print_options;
146 opts->format = format;
147 }
148
149 static void
150 show_print_max (struct ui_file *file, int from_tty,
151 struct cmd_list_element *c, const char *value)
152 {
153 fprintf_filtered (file,
154 _("Limit on string chars or array "
155 "elements to print is %s.\n"),
156 value);
157 }
158
159
160 /* Default input and output radixes, and output format letter. */
161
162 unsigned input_radix = 10;
163 static void
164 show_input_radix (struct ui_file *file, int from_tty,
165 struct cmd_list_element *c, const char *value)
166 {
167 fprintf_filtered (file,
168 _("Default input radix for entering numbers is %s.\n"),
169 value);
170 }
171
172 unsigned output_radix = 10;
173 static void
174 show_output_radix (struct ui_file *file, int from_tty,
175 struct cmd_list_element *c, const char *value)
176 {
177 fprintf_filtered (file,
178 _("Default output radix for printing of values is %s.\n"),
179 value);
180 }
181
182 /* By default we print arrays without printing the index of each element in
183 the array. This behavior can be changed by setting PRINT_ARRAY_INDEXES. */
184
185 static void
186 show_print_array_indexes (struct ui_file *file, int from_tty,
187 struct cmd_list_element *c, const char *value)
188 {
189 fprintf_filtered (file, _("Printing of array indexes is %s.\n"), value);
190 }
191
192 /* Print repeat counts if there are more than this many repetitions of an
193 element in an array. Referenced by the low level language dependent
194 print routines. */
195
196 static void
197 show_repeat_count_threshold (struct ui_file *file, int from_tty,
198 struct cmd_list_element *c, const char *value)
199 {
200 fprintf_filtered (file, _("Threshold for repeated print elements is %s.\n"),
201 value);
202 }
203
204 /* If nonzero, stops printing of char arrays at first null. */
205
206 static void
207 show_stop_print_at_null (struct ui_file *file, int from_tty,
208 struct cmd_list_element *c, const char *value)
209 {
210 fprintf_filtered (file,
211 _("Printing of char arrays to stop "
212 "at first null char is %s.\n"),
213 value);
214 }
215
216 /* Controls pretty printing of structures. */
217
218 static void
219 show_prettyformat_structs (struct ui_file *file, int from_tty,
220 struct cmd_list_element *c, const char *value)
221 {
222 fprintf_filtered (file, _("Pretty formatting of structures is %s.\n"), value);
223 }
224
225 /* Controls pretty printing of arrays. */
226
227 static void
228 show_prettyformat_arrays (struct ui_file *file, int from_tty,
229 struct cmd_list_element *c, const char *value)
230 {
231 fprintf_filtered (file, _("Pretty formatting of arrays is %s.\n"), value);
232 }
233
234 /* If nonzero, causes unions inside structures or other unions to be
235 printed. */
236
237 static void
238 show_unionprint (struct ui_file *file, int from_tty,
239 struct cmd_list_element *c, const char *value)
240 {
241 fprintf_filtered (file,
242 _("Printing of unions interior to structures is %s.\n"),
243 value);
244 }
245
246 /* If nonzero, causes machine addresses to be printed in certain contexts. */
247
248 static void
249 show_addressprint (struct ui_file *file, int from_tty,
250 struct cmd_list_element *c, const char *value)
251 {
252 fprintf_filtered (file, _("Printing of addresses is %s.\n"), value);
253 }
254
255 static void
256 show_symbol_print (struct ui_file *file, int from_tty,
257 struct cmd_list_element *c, const char *value)
258 {
259 fprintf_filtered (file,
260 _("Printing of symbols when printing pointers is %s.\n"),
261 value);
262 }
263
264 \f
265
266 /* A helper function for val_print. When printing in "summary" mode,
267 we want to print scalar arguments, but not aggregate arguments.
268 This function distinguishes between the two. */
269
270 int
271 val_print_scalar_type_p (struct type *type)
272 {
273 type = check_typedef (type);
274 while (TYPE_IS_REFERENCE (type))
275 {
276 type = TYPE_TARGET_TYPE (type);
277 type = check_typedef (type);
278 }
279 switch (type->code ())
280 {
281 case TYPE_CODE_ARRAY:
282 case TYPE_CODE_STRUCT:
283 case TYPE_CODE_UNION:
284 case TYPE_CODE_SET:
285 case TYPE_CODE_STRING:
286 return 0;
287 default:
288 return 1;
289 }
290 }
291
292 /* A helper function for val_print. When printing with limited depth we
293 want to print string and scalar arguments, but not aggregate arguments.
294 This function distinguishes between the two. */
295
296 static bool
297 val_print_scalar_or_string_type_p (struct type *type,
298 const struct language_defn *language)
299 {
300 return (val_print_scalar_type_p (type)
301 || language->la_is_string_type_p (type));
302 }
303
304 /* See its definition in value.h. */
305
306 int
307 valprint_check_validity (struct ui_file *stream,
308 struct type *type,
309 LONGEST embedded_offset,
310 const struct value *val)
311 {
312 type = check_typedef (type);
313
314 if (type_not_associated (type))
315 {
316 val_print_not_associated (stream);
317 return 0;
318 }
319
320 if (type_not_allocated (type))
321 {
322 val_print_not_allocated (stream);
323 return 0;
324 }
325
326 if (type->code () != TYPE_CODE_UNION
327 && type->code () != TYPE_CODE_STRUCT
328 && type->code () != TYPE_CODE_ARRAY)
329 {
330 if (value_bits_any_optimized_out (val,
331 TARGET_CHAR_BIT * embedded_offset,
332 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
333 {
334 val_print_optimized_out (val, stream);
335 return 0;
336 }
337
338 if (value_bits_synthetic_pointer (val, TARGET_CHAR_BIT * embedded_offset,
339 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
340 {
341 const int is_ref = type->code () == TYPE_CODE_REF;
342 int ref_is_addressable = 0;
343
344 if (is_ref)
345 {
346 const struct value *deref_val = coerce_ref_if_computed (val);
347
348 if (deref_val != NULL)
349 ref_is_addressable = value_lval_const (deref_val) == lval_memory;
350 }
351
352 if (!is_ref || !ref_is_addressable)
353 fputs_styled (_("<synthetic pointer>"), metadata_style.style (),
354 stream);
355
356 /* C++ references should be valid even if they're synthetic. */
357 return is_ref;
358 }
359
360 if (!value_bytes_available (val, embedded_offset, TYPE_LENGTH (type)))
361 {
362 val_print_unavailable (stream);
363 return 0;
364 }
365 }
366
367 return 1;
368 }
369
370 void
371 val_print_optimized_out (const struct value *val, struct ui_file *stream)
372 {
373 if (val != NULL && value_lval_const (val) == lval_register)
374 val_print_not_saved (stream);
375 else
376 fprintf_styled (stream, metadata_style.style (), _("<optimized out>"));
377 }
378
379 void
380 val_print_not_saved (struct ui_file *stream)
381 {
382 fprintf_styled (stream, metadata_style.style (), _("<not saved>"));
383 }
384
385 void
386 val_print_unavailable (struct ui_file *stream)
387 {
388 fprintf_styled (stream, metadata_style.style (), _("<unavailable>"));
389 }
390
391 void
392 val_print_invalid_address (struct ui_file *stream)
393 {
394 fprintf_styled (stream, metadata_style.style (), _("<invalid address>"));
395 }
396
397 /* Print a pointer based on the type of its target.
398
399 Arguments to this functions are roughly the same as those in
400 generic_val_print. A difference is that ADDRESS is the address to print,
401 with embedded_offset already added. ELTTYPE represents
402 the pointed type after check_typedef. */
403
404 static void
405 print_unpacked_pointer (struct type *type, struct type *elttype,
406 CORE_ADDR address, struct ui_file *stream,
407 const struct value_print_options *options)
408 {
409 struct gdbarch *gdbarch = get_type_arch (type);
410
411 if (elttype->code () == TYPE_CODE_FUNC)
412 {
413 /* Try to print what function it points to. */
414 print_function_pointer_address (options, gdbarch, address, stream);
415 return;
416 }
417
418 if (options->symbol_print)
419 print_address_demangle (options, gdbarch, address, stream, demangle);
420 else if (options->addressprint)
421 fputs_filtered (paddress (gdbarch, address), stream);
422 }
423
424 /* generic_val_print helper for TYPE_CODE_ARRAY. */
425
426 static void
427 generic_val_print_array (struct value *val,
428 struct ui_file *stream, int recurse,
429 const struct value_print_options *options,
430 const struct
431 generic_val_print_decorations *decorations)
432 {
433 struct type *type = check_typedef (value_type (val));
434 struct type *unresolved_elttype = TYPE_TARGET_TYPE (type);
435 struct type *elttype = check_typedef (unresolved_elttype);
436
437 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (unresolved_elttype) > 0)
438 {
439 LONGEST low_bound, high_bound;
440
441 if (!get_array_bounds (type, &low_bound, &high_bound))
442 error (_("Could not determine the array high bound"));
443
444 fputs_filtered (decorations->array_start, stream);
445 value_print_array_elements (val, stream, recurse, options, 0);
446 fputs_filtered (decorations->array_end, stream);
447 }
448 else
449 {
450 /* Array of unspecified length: treat like pointer to first elt. */
451 print_unpacked_pointer (type, elttype, value_address (val),
452 stream, options);
453 }
454
455 }
456
457 /* generic_value_print helper for TYPE_CODE_PTR. */
458
459 static void
460 generic_value_print_ptr (struct value *val, struct ui_file *stream,
461 const struct value_print_options *options)
462 {
463
464 if (options->format && options->format != 's')
465 value_print_scalar_formatted (val, options, 0, stream);
466 else
467 {
468 struct type *type = check_typedef (value_type (val));
469 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
470 const gdb_byte *valaddr = value_contents_for_printing (val);
471 CORE_ADDR addr = unpack_pointer (type, valaddr);
472
473 print_unpacked_pointer (type, elttype, addr, stream, options);
474 }
475 }
476
477
478 /* Print '@' followed by the address contained in ADDRESS_BUFFER. */
479
480 static void
481 print_ref_address (struct type *type, const gdb_byte *address_buffer,
482 int embedded_offset, struct ui_file *stream)
483 {
484 struct gdbarch *gdbarch = get_type_arch (type);
485
486 if (address_buffer != NULL)
487 {
488 CORE_ADDR address
489 = extract_typed_address (address_buffer + embedded_offset, type);
490
491 fprintf_filtered (stream, "@");
492 fputs_filtered (paddress (gdbarch, address), stream);
493 }
494 /* Else: we have a non-addressable value, such as a DW_AT_const_value. */
495 }
496
497 /* If VAL is addressable, return the value contents buffer of a value that
498 represents a pointer to VAL. Otherwise return NULL. */
499
500 static const gdb_byte *
501 get_value_addr_contents (struct value *deref_val)
502 {
503 gdb_assert (deref_val != NULL);
504
505 if (value_lval_const (deref_val) == lval_memory)
506 return value_contents_for_printing_const (value_addr (deref_val));
507 else
508 {
509 /* We have a non-addressable value, such as a DW_AT_const_value. */
510 return NULL;
511 }
512 }
513
514 /* generic_val_print helper for TYPE_CODE_{RVALUE_,}REF. */
515
516 static void
517 generic_val_print_ref (struct type *type,
518 int embedded_offset, struct ui_file *stream, int recurse,
519 struct value *original_value,
520 const struct value_print_options *options)
521 {
522 struct type *elttype = check_typedef (TYPE_TARGET_TYPE (type));
523 struct value *deref_val = NULL;
524 const int value_is_synthetic
525 = value_bits_synthetic_pointer (original_value,
526 TARGET_CHAR_BIT * embedded_offset,
527 TARGET_CHAR_BIT * TYPE_LENGTH (type));
528 const int must_coerce_ref = ((options->addressprint && value_is_synthetic)
529 || options->deref_ref);
530 const int type_is_defined = elttype->code () != TYPE_CODE_UNDEF;
531 const gdb_byte *valaddr = value_contents_for_printing (original_value);
532
533 if (must_coerce_ref && type_is_defined)
534 {
535 deref_val = coerce_ref_if_computed (original_value);
536
537 if (deref_val != NULL)
538 {
539 /* More complicated computed references are not supported. */
540 gdb_assert (embedded_offset == 0);
541 }
542 else
543 deref_val = value_at (TYPE_TARGET_TYPE (type),
544 unpack_pointer (type, valaddr + embedded_offset));
545 }
546 /* Else, original_value isn't a synthetic reference or we don't have to print
547 the reference's contents.
548
549 Notice that for references to TYPE_CODE_STRUCT, 'set print object on' will
550 cause original_value to be a not_lval instead of an lval_computed,
551 which will make value_bits_synthetic_pointer return false.
552 This happens because if options->objectprint is true, c_value_print will
553 overwrite original_value's contents with the result of coercing
554 the reference through value_addr, and then set its type back to
555 TYPE_CODE_REF. In that case we don't have to coerce the reference again;
556 we can simply treat it as non-synthetic and move on. */
557
558 if (options->addressprint)
559 {
560 const gdb_byte *address = (value_is_synthetic && type_is_defined
561 ? get_value_addr_contents (deref_val)
562 : valaddr);
563
564 print_ref_address (type, address, embedded_offset, stream);
565
566 if (options->deref_ref)
567 fputs_filtered (": ", stream);
568 }
569
570 if (options->deref_ref)
571 {
572 if (type_is_defined)
573 common_val_print (deref_val, stream, recurse, options,
574 current_language);
575 else
576 fputs_filtered ("???", stream);
577 }
578 }
579
580 /* Helper function for generic_val_print_enum.
581 This is also used to print enums in TYPE_CODE_FLAGS values. */
582
583 static void
584 generic_val_print_enum_1 (struct type *type, LONGEST val,
585 struct ui_file *stream)
586 {
587 unsigned int i;
588 unsigned int len;
589
590 len = type->num_fields ();
591 for (i = 0; i < len; i++)
592 {
593 QUIT;
594 if (val == TYPE_FIELD_ENUMVAL (type, i))
595 {
596 break;
597 }
598 }
599 if (i < len)
600 {
601 fputs_styled (TYPE_FIELD_NAME (type, i), variable_name_style.style (),
602 stream);
603 }
604 else if (TYPE_FLAG_ENUM (type))
605 {
606 int first = 1;
607
608 /* We have a "flag" enum, so we try to decompose it into pieces as
609 appropriate. The enum may have multiple enumerators representing
610 the same bit, in which case we choose to only print the first one
611 we find. */
612 for (i = 0; i < len; ++i)
613 {
614 QUIT;
615
616 ULONGEST enumval = TYPE_FIELD_ENUMVAL (type, i);
617 int nbits = count_one_bits_ll (enumval);
618
619 gdb_assert (nbits == 0 || nbits == 1);
620
621 if ((val & enumval) != 0)
622 {
623 if (first)
624 {
625 fputs_filtered ("(", stream);
626 first = 0;
627 }
628 else
629 fputs_filtered (" | ", stream);
630
631 val &= ~TYPE_FIELD_ENUMVAL (type, i);
632 fputs_styled (TYPE_FIELD_NAME (type, i),
633 variable_name_style.style (), stream);
634 }
635 }
636
637 if (val != 0)
638 {
639 /* There are leftover bits, print them. */
640 if (first)
641 fputs_filtered ("(", stream);
642 else
643 fputs_filtered (" | ", stream);
644
645 fputs_filtered ("unknown: 0x", stream);
646 print_longest (stream, 'x', 0, val);
647 fputs_filtered (")", stream);
648 }
649 else if (first)
650 {
651 /* Nothing has been printed and the value is 0, the enum value must
652 have been 0. */
653 fputs_filtered ("0", stream);
654 }
655 else
656 {
657 /* Something has been printed, close the parenthesis. */
658 fputs_filtered (")", stream);
659 }
660 }
661 else
662 print_longest (stream, 'd', 0, val);
663 }
664
665 /* generic_val_print helper for TYPE_CODE_ENUM. */
666
667 static void
668 generic_val_print_enum (struct type *type,
669 int embedded_offset, struct ui_file *stream,
670 struct value *original_value,
671 const struct value_print_options *options)
672 {
673 LONGEST val;
674 struct gdbarch *gdbarch = get_type_arch (type);
675 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
676
677 gdb_assert (!options->format);
678
679 const gdb_byte *valaddr = value_contents_for_printing (original_value);
680
681 val = unpack_long (type, valaddr + embedded_offset * unit_size);
682
683 generic_val_print_enum_1 (type, val, stream);
684 }
685
686 /* generic_val_print helper for TYPE_CODE_FUNC and TYPE_CODE_METHOD. */
687
688 static void
689 generic_val_print_func (struct type *type,
690 int embedded_offset, CORE_ADDR address,
691 struct ui_file *stream,
692 struct value *original_value,
693 const struct value_print_options *options)
694 {
695 struct gdbarch *gdbarch = get_type_arch (type);
696
697 gdb_assert (!options->format);
698
699 /* FIXME, we should consider, at least for ANSI C language,
700 eliminating the distinction made between FUNCs and POINTERs to
701 FUNCs. */
702 fprintf_filtered (stream, "{");
703 type_print (type, "", stream, -1);
704 fprintf_filtered (stream, "} ");
705 /* Try to print what function it points to, and its address. */
706 print_address_demangle (options, gdbarch, address, stream, demangle);
707 }
708
709 /* generic_value_print helper for TYPE_CODE_BOOL. */
710
711 static void
712 generic_value_print_bool
713 (struct value *value, struct ui_file *stream,
714 const struct value_print_options *options,
715 const struct generic_val_print_decorations *decorations)
716 {
717 if (options->format || options->output_format)
718 {
719 struct value_print_options opts = *options;
720 opts.format = (options->format ? options->format
721 : options->output_format);
722 value_print_scalar_formatted (value, &opts, 0, stream);
723 }
724 else
725 {
726 const gdb_byte *valaddr = value_contents_for_printing (value);
727 struct type *type = check_typedef (value_type (value));
728 LONGEST val = unpack_long (type, valaddr);
729 if (val == 0)
730 fputs_filtered (decorations->false_name, stream);
731 else if (val == 1)
732 fputs_filtered (decorations->true_name, stream);
733 else
734 print_longest (stream, 'd', 0, val);
735 }
736 }
737
738 /* generic_value_print helper for TYPE_CODE_INT. */
739
740 static void
741 generic_value_print_int (struct value *val, struct ui_file *stream,
742 const struct value_print_options *options)
743 {
744 struct value_print_options opts = *options;
745
746 opts.format = (options->format ? options->format
747 : options->output_format);
748 value_print_scalar_formatted (val, &opts, 0, stream);
749 }
750
751 /* generic_value_print helper for TYPE_CODE_CHAR. */
752
753 static void
754 generic_value_print_char (struct value *value, struct ui_file *stream,
755 const struct value_print_options *options)
756 {
757 if (options->format || options->output_format)
758 {
759 struct value_print_options opts = *options;
760
761 opts.format = (options->format ? options->format
762 : options->output_format);
763 value_print_scalar_formatted (value, &opts, 0, stream);
764 }
765 else
766 {
767 struct type *unresolved_type = value_type (value);
768 struct type *type = check_typedef (unresolved_type);
769 const gdb_byte *valaddr = value_contents_for_printing (value);
770
771 LONGEST val = unpack_long (type, valaddr);
772 if (TYPE_UNSIGNED (type))
773 fprintf_filtered (stream, "%u", (unsigned int) val);
774 else
775 fprintf_filtered (stream, "%d", (int) val);
776 fputs_filtered (" ", stream);
777 LA_PRINT_CHAR (val, unresolved_type, stream);
778 }
779 }
780
781 /* generic_val_print helper for TYPE_CODE_FLT and TYPE_CODE_DECFLOAT. */
782
783 static void
784 generic_val_print_float (struct type *type,
785 int embedded_offset, struct ui_file *stream,
786 struct value *original_value,
787 const struct value_print_options *options)
788 {
789 struct gdbarch *gdbarch = get_type_arch (type);
790 int unit_size = gdbarch_addressable_memory_unit_size (gdbarch);
791
792 gdb_assert (!options->format);
793
794 const gdb_byte *valaddr = value_contents_for_printing (original_value);
795
796 print_floating (valaddr + embedded_offset * unit_size, type, stream);
797 }
798
799 /* generic_value_print helper for TYPE_CODE_COMPLEX. */
800
801 static void
802 generic_value_print_complex (struct value *val, struct ui_file *stream,
803 const struct value_print_options *options,
804 const struct generic_val_print_decorations
805 *decorations)
806 {
807 fprintf_filtered (stream, "%s", decorations->complex_prefix);
808
809 struct value *real_part = value_real_part (val);
810 value_print_scalar_formatted (real_part, options, 0, stream);
811 fprintf_filtered (stream, "%s", decorations->complex_infix);
812
813 struct value *imag_part = value_imaginary_part (val);
814 value_print_scalar_formatted (imag_part, options, 0, stream);
815 fprintf_filtered (stream, "%s", decorations->complex_suffix);
816 }
817
818 /* See valprint.h. */
819
820 void
821 generic_value_print (struct value *val, struct ui_file *stream, int recurse,
822 const struct value_print_options *options,
823 const struct generic_val_print_decorations *decorations)
824 {
825 struct type *type = value_type (val);
826
827 type = check_typedef (type);
828 switch (type->code ())
829 {
830 case TYPE_CODE_ARRAY:
831 generic_val_print_array (val, stream, recurse, options, decorations);
832 break;
833
834 case TYPE_CODE_MEMBERPTR:
835 value_print_scalar_formatted (val, options, 0, stream);
836 break;
837
838 case TYPE_CODE_PTR:
839 generic_value_print_ptr (val, stream, options);
840 break;
841
842 case TYPE_CODE_REF:
843 case TYPE_CODE_RVALUE_REF:
844 generic_val_print_ref (type, 0, stream, recurse,
845 val, options);
846 break;
847
848 case TYPE_CODE_ENUM:
849 if (options->format)
850 value_print_scalar_formatted (val, options, 0, stream);
851 else
852 generic_val_print_enum (type, 0, stream, val, options);
853 break;
854
855 case TYPE_CODE_FLAGS:
856 if (options->format)
857 value_print_scalar_formatted (val, options, 0, stream);
858 else
859 val_print_type_code_flags (type, val, 0, stream);
860 break;
861
862 case TYPE_CODE_FUNC:
863 case TYPE_CODE_METHOD:
864 if (options->format)
865 value_print_scalar_formatted (val, options, 0, stream);
866 else
867 generic_val_print_func (type, 0, value_address (val), stream,
868 val, options);
869 break;
870
871 case TYPE_CODE_BOOL:
872 generic_value_print_bool (val, stream, options, decorations);
873 break;
874
875 case TYPE_CODE_RANGE:
876 /* FIXME: create_static_range_type does not set the unsigned bit in a
877 range type (I think it probably should copy it from the
878 target type), so we won't print values which are too large to
879 fit in a signed integer correctly. */
880 /* FIXME: Doesn't handle ranges of enums correctly. (Can't just
881 print with the target type, though, because the size of our
882 type and the target type might differ). */
883
884 /* FALLTHROUGH */
885
886 case TYPE_CODE_INT:
887 generic_value_print_int (val, stream, options);
888 break;
889
890 case TYPE_CODE_CHAR:
891 generic_value_print_char (val, stream, options);
892 break;
893
894 case TYPE_CODE_FLT:
895 case TYPE_CODE_DECFLOAT:
896 if (options->format)
897 value_print_scalar_formatted (val, options, 0, stream);
898 else
899 generic_val_print_float (type, 0, stream,
900 val, options);
901 break;
902
903 case TYPE_CODE_VOID:
904 fputs_filtered (decorations->void_name, stream);
905 break;
906
907 case TYPE_CODE_ERROR:
908 fprintf_filtered (stream, "%s", TYPE_ERROR_NAME (type));
909 break;
910
911 case TYPE_CODE_UNDEF:
912 /* This happens (without TYPE_STUB set) on systems which don't use
913 dbx xrefs (NO_DBX_XREFS in gcc) if a file has a "struct foo *bar"
914 and no complete type for struct foo in that file. */
915 fprintf_styled (stream, metadata_style.style (), _("<incomplete type>"));
916 break;
917
918 case TYPE_CODE_COMPLEX:
919 generic_value_print_complex (val, stream, options, decorations);
920 break;
921
922 case TYPE_CODE_UNION:
923 case TYPE_CODE_STRUCT:
924 case TYPE_CODE_METHODPTR:
925 default:
926 error (_("Unhandled type code %d in symbol table."),
927 type->code ());
928 }
929 }
930
931 /* Helper function for val_print and common_val_print that does the
932 work. Arguments are as to val_print, but FULL_VALUE, if given, is
933 the value to be printed. */
934
935 static void
936 do_val_print (struct value *value, struct ui_file *stream, int recurse,
937 const struct value_print_options *options,
938 const struct language_defn *language)
939 {
940 int ret = 0;
941 struct value_print_options local_opts = *options;
942 struct type *type = value_type (value);
943 struct type *real_type = check_typedef (type);
944
945 if (local_opts.prettyformat == Val_prettyformat_default)
946 local_opts.prettyformat = (local_opts.prettyformat_structs
947 ? Val_prettyformat : Val_no_prettyformat);
948
949 QUIT;
950
951 /* Ensure that the type is complete and not just a stub. If the type is
952 only a stub and we can't find and substitute its complete type, then
953 print appropriate string and return. */
954
955 if (TYPE_STUB (real_type))
956 {
957 fprintf_styled (stream, metadata_style.style (), _("<incomplete type>"));
958 return;
959 }
960
961 if (!valprint_check_validity (stream, real_type, 0, value))
962 return;
963
964 if (!options->raw)
965 {
966 ret = apply_ext_lang_val_pretty_printer (value, stream, recurse, options,
967 language);
968 if (ret)
969 return;
970 }
971
972 /* Handle summary mode. If the value is a scalar, print it;
973 otherwise, print an ellipsis. */
974 if (options->summary && !val_print_scalar_type_p (type))
975 {
976 fprintf_filtered (stream, "...");
977 return;
978 }
979
980 /* If this value is too deep then don't print it. */
981 if (!val_print_scalar_or_string_type_p (type, language)
982 && val_print_check_max_depth (stream, recurse, options, language))
983 return;
984
985 try
986 {
987 language->la_value_print_inner (value, stream, recurse, &local_opts);
988 }
989 catch (const gdb_exception_error &except)
990 {
991 fprintf_styled (stream, metadata_style.style (),
992 _("<error reading variable>"));
993 }
994 }
995
996 /* See valprint.h. */
997
998 bool
999 val_print_check_max_depth (struct ui_file *stream, int recurse,
1000 const struct value_print_options *options,
1001 const struct language_defn *language)
1002 {
1003 if (options->max_depth > -1 && recurse >= options->max_depth)
1004 {
1005 gdb_assert (language->la_struct_too_deep_ellipsis != NULL);
1006 fputs_filtered (language->la_struct_too_deep_ellipsis, stream);
1007 return true;
1008 }
1009
1010 return false;
1011 }
1012
1013 /* Check whether the value VAL is printable. Return 1 if it is;
1014 return 0 and print an appropriate error message to STREAM according to
1015 OPTIONS if it is not. */
1016
1017 static int
1018 value_check_printable (struct value *val, struct ui_file *stream,
1019 const struct value_print_options *options)
1020 {
1021 if (val == 0)
1022 {
1023 fprintf_styled (stream, metadata_style.style (),
1024 _("<address of value unknown>"));
1025 return 0;
1026 }
1027
1028 if (value_entirely_optimized_out (val))
1029 {
1030 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1031 fprintf_filtered (stream, "...");
1032 else
1033 val_print_optimized_out (val, stream);
1034 return 0;
1035 }
1036
1037 if (value_entirely_unavailable (val))
1038 {
1039 if (options->summary && !val_print_scalar_type_p (value_type (val)))
1040 fprintf_filtered (stream, "...");
1041 else
1042 val_print_unavailable (stream);
1043 return 0;
1044 }
1045
1046 if (value_type (val)->code () == TYPE_CODE_INTERNAL_FUNCTION)
1047 {
1048 fprintf_styled (stream, metadata_style.style (),
1049 _("<internal function %s>"),
1050 value_internal_function_name (val));
1051 return 0;
1052 }
1053
1054 if (type_not_associated (value_type (val)))
1055 {
1056 val_print_not_associated (stream);
1057 return 0;
1058 }
1059
1060 if (type_not_allocated (value_type (val)))
1061 {
1062 val_print_not_allocated (stream);
1063 return 0;
1064 }
1065
1066 return 1;
1067 }
1068
1069 /* Print using the given LANGUAGE the value VAL onto stream STREAM according
1070 to OPTIONS.
1071
1072 This is a preferable interface to val_print, above, because it uses
1073 GDB's value mechanism. */
1074
1075 void
1076 common_val_print (struct value *val, struct ui_file *stream, int recurse,
1077 const struct value_print_options *options,
1078 const struct language_defn *language)
1079 {
1080 if (language->la_language == language_ada)
1081 /* The value might have a dynamic type, which would cause trouble
1082 below when trying to extract the value contents (since the value
1083 size is determined from the type size which is unknown). So
1084 get a fixed representation of our value. */
1085 val = ada_to_fixed_value (val);
1086
1087 if (value_lazy (val))
1088 value_fetch_lazy (val);
1089
1090 do_val_print (val, stream, recurse, options, language);
1091 }
1092
1093 /* See valprint.h. */
1094
1095 void
1096 common_val_print_checked (struct value *val, struct ui_file *stream,
1097 int recurse,
1098 const struct value_print_options *options,
1099 const struct language_defn *language)
1100 {
1101 if (!value_check_printable (val, stream, options))
1102 return;
1103 common_val_print (val, stream, recurse, options, language);
1104 }
1105
1106 /* Print on stream STREAM the value VAL according to OPTIONS. The value
1107 is printed using the current_language syntax. */
1108
1109 void
1110 value_print (struct value *val, struct ui_file *stream,
1111 const struct value_print_options *options)
1112 {
1113 scoped_value_mark free_values;
1114
1115 if (!value_check_printable (val, stream, options))
1116 return;
1117
1118 if (!options->raw)
1119 {
1120 int r
1121 = apply_ext_lang_val_pretty_printer (val, stream, 0, options,
1122 current_language);
1123
1124 if (r)
1125 return;
1126 }
1127
1128 LA_VALUE_PRINT (val, stream, options);
1129 }
1130
1131 static void
1132 val_print_type_code_flags (struct type *type, struct value *original_value,
1133 int embedded_offset, struct ui_file *stream)
1134 {
1135 const gdb_byte *valaddr = (value_contents_for_printing (original_value)
1136 + embedded_offset);
1137 ULONGEST val = unpack_long (type, valaddr);
1138 int field, nfields = type->num_fields ();
1139 struct gdbarch *gdbarch = get_type_arch (type);
1140 struct type *bool_type = builtin_type (gdbarch)->builtin_bool;
1141
1142 fputs_filtered ("[", stream);
1143 for (field = 0; field < nfields; field++)
1144 {
1145 if (TYPE_FIELD_NAME (type, field)[0] != '\0')
1146 {
1147 struct type *field_type = TYPE_FIELD_TYPE (type, field);
1148
1149 if (field_type == bool_type
1150 /* We require boolean types here to be one bit wide. This is a
1151 problematic place to notify the user of an internal error
1152 though. Instead just fall through and print the field as an
1153 int. */
1154 && TYPE_FIELD_BITSIZE (type, field) == 1)
1155 {
1156 if (val & ((ULONGEST)1 << TYPE_FIELD_BITPOS (type, field)))
1157 fprintf_filtered
1158 (stream, " %ps",
1159 styled_string (variable_name_style.style (),
1160 TYPE_FIELD_NAME (type, field)));
1161 }
1162 else
1163 {
1164 unsigned field_len = TYPE_FIELD_BITSIZE (type, field);
1165 ULONGEST field_val
1166 = val >> (TYPE_FIELD_BITPOS (type, field) - field_len + 1);
1167
1168 if (field_len < sizeof (ULONGEST) * TARGET_CHAR_BIT)
1169 field_val &= ((ULONGEST) 1 << field_len) - 1;
1170 fprintf_filtered (stream, " %ps=",
1171 styled_string (variable_name_style.style (),
1172 TYPE_FIELD_NAME (type, field)));
1173 if (field_type->code () == TYPE_CODE_ENUM)
1174 generic_val_print_enum_1 (field_type, field_val, stream);
1175 else
1176 print_longest (stream, 'd', 0, field_val);
1177 }
1178 }
1179 }
1180 fputs_filtered (" ]", stream);
1181 }
1182
1183 /* See valprint.h. */
1184
1185 void
1186 value_print_scalar_formatted (struct value *val,
1187 const struct value_print_options *options,
1188 int size,
1189 struct ui_file *stream)
1190 {
1191 struct type *type = check_typedef (value_type (val));
1192
1193 gdb_assert (val != NULL);
1194
1195 /* If we get here with a string format, try again without it. Go
1196 all the way back to the language printers, which may call us
1197 again. */
1198 if (options->format == 's')
1199 {
1200 struct value_print_options opts = *options;
1201 opts.format = 0;
1202 opts.deref_ref = 0;
1203 common_val_print (val, stream, 0, &opts, current_language);
1204 return;
1205 }
1206
1207 /* value_contents_for_printing fetches all VAL's contents. They are
1208 needed to check whether VAL is optimized-out or unavailable
1209 below. */
1210 const gdb_byte *valaddr = value_contents_for_printing (val);
1211
1212 /* A scalar object that does not have all bits available can't be
1213 printed, because all bits contribute to its representation. */
1214 if (value_bits_any_optimized_out (val, 0,
1215 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1216 val_print_optimized_out (val, stream);
1217 else if (!value_bytes_available (val, 0, TYPE_LENGTH (type)))
1218 val_print_unavailable (stream);
1219 else
1220 print_scalar_formatted (valaddr, type, options, size, stream);
1221 }
1222
1223 /* Print a number according to FORMAT which is one of d,u,x,o,b,h,w,g.
1224 The raison d'etre of this function is to consolidate printing of
1225 LONG_LONG's into this one function. The format chars b,h,w,g are
1226 from print_scalar_formatted(). Numbers are printed using C
1227 format.
1228
1229 USE_C_FORMAT means to use C format in all cases. Without it,
1230 'o' and 'x' format do not include the standard C radix prefix
1231 (leading 0 or 0x).
1232
1233 Hilfinger/2004-09-09: USE_C_FORMAT was originally called USE_LOCAL
1234 and was intended to request formatting according to the current
1235 language and would be used for most integers that GDB prints. The
1236 exceptional cases were things like protocols where the format of
1237 the integer is a protocol thing, not a user-visible thing). The
1238 parameter remains to preserve the information of what things might
1239 be printed with language-specific format, should we ever resurrect
1240 that capability. */
1241
1242 void
1243 print_longest (struct ui_file *stream, int format, int use_c_format,
1244 LONGEST val_long)
1245 {
1246 const char *val;
1247
1248 switch (format)
1249 {
1250 case 'd':
1251 val = int_string (val_long, 10, 1, 0, 1); break;
1252 case 'u':
1253 val = int_string (val_long, 10, 0, 0, 1); break;
1254 case 'x':
1255 val = int_string (val_long, 16, 0, 0, use_c_format); break;
1256 case 'b':
1257 val = int_string (val_long, 16, 0, 2, 1); break;
1258 case 'h':
1259 val = int_string (val_long, 16, 0, 4, 1); break;
1260 case 'w':
1261 val = int_string (val_long, 16, 0, 8, 1); break;
1262 case 'g':
1263 val = int_string (val_long, 16, 0, 16, 1); break;
1264 break;
1265 case 'o':
1266 val = int_string (val_long, 8, 0, 0, use_c_format); break;
1267 default:
1268 internal_error (__FILE__, __LINE__,
1269 _("failed internal consistency check"));
1270 }
1271 fputs_filtered (val, stream);
1272 }
1273
1274 /* This used to be a macro, but I don't think it is called often enough
1275 to merit such treatment. */
1276 /* Convert a LONGEST to an int. This is used in contexts (e.g. number of
1277 arguments to a function, number in a value history, register number, etc.)
1278 where the value must not be larger than can fit in an int. */
1279
1280 int
1281 longest_to_int (LONGEST arg)
1282 {
1283 /* Let the compiler do the work. */
1284 int rtnval = (int) arg;
1285
1286 /* Check for overflows or underflows. */
1287 if (sizeof (LONGEST) > sizeof (int))
1288 {
1289 if (rtnval != arg)
1290 {
1291 error (_("Value out of range."));
1292 }
1293 }
1294 return (rtnval);
1295 }
1296
1297 /* Print a floating point value of floating-point type TYPE,
1298 pointed to in GDB by VALADDR, on STREAM. */
1299
1300 void
1301 print_floating (const gdb_byte *valaddr, struct type *type,
1302 struct ui_file *stream)
1303 {
1304 std::string str = target_float_to_string (valaddr, type);
1305 fputs_filtered (str.c_str (), stream);
1306 }
1307
1308 void
1309 print_binary_chars (struct ui_file *stream, const gdb_byte *valaddr,
1310 unsigned len, enum bfd_endian byte_order, bool zero_pad)
1311 {
1312 const gdb_byte *p;
1313 unsigned int i;
1314 int b;
1315 bool seen_a_one = false;
1316
1317 /* Declared "int" so it will be signed.
1318 This ensures that right shift will shift in zeros. */
1319
1320 const int mask = 0x080;
1321
1322 if (byte_order == BFD_ENDIAN_BIG)
1323 {
1324 for (p = valaddr;
1325 p < valaddr + len;
1326 p++)
1327 {
1328 /* Every byte has 8 binary characters; peel off
1329 and print from the MSB end. */
1330
1331 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1332 {
1333 if (*p & (mask >> i))
1334 b = '1';
1335 else
1336 b = '0';
1337
1338 if (zero_pad || seen_a_one || b == '1')
1339 fputc_filtered (b, stream);
1340 if (b == '1')
1341 seen_a_one = true;
1342 }
1343 }
1344 }
1345 else
1346 {
1347 for (p = valaddr + len - 1;
1348 p >= valaddr;
1349 p--)
1350 {
1351 for (i = 0; i < (HOST_CHAR_BIT * sizeof (*p)); i++)
1352 {
1353 if (*p & (mask >> i))
1354 b = '1';
1355 else
1356 b = '0';
1357
1358 if (zero_pad || seen_a_one || b == '1')
1359 fputc_filtered (b, stream);
1360 if (b == '1')
1361 seen_a_one = true;
1362 }
1363 }
1364 }
1365
1366 /* When not zero-padding, ensure that something is printed when the
1367 input is 0. */
1368 if (!zero_pad && !seen_a_one)
1369 fputc_filtered ('0', stream);
1370 }
1371
1372 /* A helper for print_octal_chars that emits a single octal digit,
1373 optionally suppressing it if is zero and updating SEEN_A_ONE. */
1374
1375 static void
1376 emit_octal_digit (struct ui_file *stream, bool *seen_a_one, int digit)
1377 {
1378 if (*seen_a_one || digit != 0)
1379 fprintf_filtered (stream, "%o", digit);
1380 if (digit != 0)
1381 *seen_a_one = true;
1382 }
1383
1384 /* VALADDR points to an integer of LEN bytes.
1385 Print it in octal on stream or format it in buf. */
1386
1387 void
1388 print_octal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1389 unsigned len, enum bfd_endian byte_order)
1390 {
1391 const gdb_byte *p;
1392 unsigned char octa1, octa2, octa3, carry;
1393 int cycle;
1394
1395 /* Octal is 3 bits, which doesn't fit. Yuk. So we have to track
1396 * the extra bits, which cycle every three bytes:
1397 *
1398 * Byte side: 0 1 2 3
1399 * | | | |
1400 * bit number 123 456 78 | 9 012 345 6 | 78 901 234 | 567 890 12 |
1401 *
1402 * Octal side: 0 1 carry 3 4 carry ...
1403 *
1404 * Cycle number: 0 1 2
1405 *
1406 * But of course we are printing from the high side, so we have to
1407 * figure out where in the cycle we are so that we end up with no
1408 * left over bits at the end.
1409 */
1410 #define BITS_IN_OCTAL 3
1411 #define HIGH_ZERO 0340
1412 #define LOW_ZERO 0034
1413 #define CARRY_ZERO 0003
1414 static_assert (HIGH_ZERO + LOW_ZERO + CARRY_ZERO == 0xff,
1415 "cycle zero constants are wrong");
1416 #define HIGH_ONE 0200
1417 #define MID_ONE 0160
1418 #define LOW_ONE 0016
1419 #define CARRY_ONE 0001
1420 static_assert (HIGH_ONE + MID_ONE + LOW_ONE + CARRY_ONE == 0xff,
1421 "cycle one constants are wrong");
1422 #define HIGH_TWO 0300
1423 #define MID_TWO 0070
1424 #define LOW_TWO 0007
1425 static_assert (HIGH_TWO + MID_TWO + LOW_TWO == 0xff,
1426 "cycle two constants are wrong");
1427
1428 /* For 32 we start in cycle 2, with two bits and one bit carry;
1429 for 64 in cycle in cycle 1, with one bit and a two bit carry. */
1430
1431 cycle = (len * HOST_CHAR_BIT) % BITS_IN_OCTAL;
1432 carry = 0;
1433
1434 fputs_filtered ("0", stream);
1435 bool seen_a_one = false;
1436 if (byte_order == BFD_ENDIAN_BIG)
1437 {
1438 for (p = valaddr;
1439 p < valaddr + len;
1440 p++)
1441 {
1442 switch (cycle)
1443 {
1444 case 0:
1445 /* No carry in, carry out two bits. */
1446
1447 octa1 = (HIGH_ZERO & *p) >> 5;
1448 octa2 = (LOW_ZERO & *p) >> 2;
1449 carry = (CARRY_ZERO & *p);
1450 emit_octal_digit (stream, &seen_a_one, octa1);
1451 emit_octal_digit (stream, &seen_a_one, octa2);
1452 break;
1453
1454 case 1:
1455 /* Carry in two bits, carry out one bit. */
1456
1457 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1458 octa2 = (MID_ONE & *p) >> 4;
1459 octa3 = (LOW_ONE & *p) >> 1;
1460 carry = (CARRY_ONE & *p);
1461 emit_octal_digit (stream, &seen_a_one, octa1);
1462 emit_octal_digit (stream, &seen_a_one, octa2);
1463 emit_octal_digit (stream, &seen_a_one, octa3);
1464 break;
1465
1466 case 2:
1467 /* Carry in one bit, no carry out. */
1468
1469 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1470 octa2 = (MID_TWO & *p) >> 3;
1471 octa3 = (LOW_TWO & *p);
1472 carry = 0;
1473 emit_octal_digit (stream, &seen_a_one, octa1);
1474 emit_octal_digit (stream, &seen_a_one, octa2);
1475 emit_octal_digit (stream, &seen_a_one, octa3);
1476 break;
1477
1478 default:
1479 error (_("Internal error in octal conversion;"));
1480 }
1481
1482 cycle++;
1483 cycle = cycle % BITS_IN_OCTAL;
1484 }
1485 }
1486 else
1487 {
1488 for (p = valaddr + len - 1;
1489 p >= valaddr;
1490 p--)
1491 {
1492 switch (cycle)
1493 {
1494 case 0:
1495 /* Carry out, no carry in */
1496
1497 octa1 = (HIGH_ZERO & *p) >> 5;
1498 octa2 = (LOW_ZERO & *p) >> 2;
1499 carry = (CARRY_ZERO & *p);
1500 emit_octal_digit (stream, &seen_a_one, octa1);
1501 emit_octal_digit (stream, &seen_a_one, octa2);
1502 break;
1503
1504 case 1:
1505 /* Carry in, carry out */
1506
1507 octa1 = (carry << 1) | ((HIGH_ONE & *p) >> 7);
1508 octa2 = (MID_ONE & *p) >> 4;
1509 octa3 = (LOW_ONE & *p) >> 1;
1510 carry = (CARRY_ONE & *p);
1511 emit_octal_digit (stream, &seen_a_one, octa1);
1512 emit_octal_digit (stream, &seen_a_one, octa2);
1513 emit_octal_digit (stream, &seen_a_one, octa3);
1514 break;
1515
1516 case 2:
1517 /* Carry in, no carry out */
1518
1519 octa1 = (carry << 2) | ((HIGH_TWO & *p) >> 6);
1520 octa2 = (MID_TWO & *p) >> 3;
1521 octa3 = (LOW_TWO & *p);
1522 carry = 0;
1523 emit_octal_digit (stream, &seen_a_one, octa1);
1524 emit_octal_digit (stream, &seen_a_one, octa2);
1525 emit_octal_digit (stream, &seen_a_one, octa3);
1526 break;
1527
1528 default:
1529 error (_("Internal error in octal conversion;"));
1530 }
1531
1532 cycle++;
1533 cycle = cycle % BITS_IN_OCTAL;
1534 }
1535 }
1536
1537 }
1538
1539 /* Possibly negate the integer represented by BYTES. It contains LEN
1540 bytes in the specified byte order. If the integer is negative,
1541 copy it into OUT_VEC, negate it, and return true. Otherwise, do
1542 nothing and return false. */
1543
1544 static bool
1545 maybe_negate_by_bytes (const gdb_byte *bytes, unsigned len,
1546 enum bfd_endian byte_order,
1547 gdb::byte_vector *out_vec)
1548 {
1549 gdb_byte sign_byte;
1550 gdb_assert (len > 0);
1551 if (byte_order == BFD_ENDIAN_BIG)
1552 sign_byte = bytes[0];
1553 else
1554 sign_byte = bytes[len - 1];
1555 if ((sign_byte & 0x80) == 0)
1556 return false;
1557
1558 out_vec->resize (len);
1559
1560 /* Compute -x == 1 + ~x. */
1561 if (byte_order == BFD_ENDIAN_LITTLE)
1562 {
1563 unsigned carry = 1;
1564 for (unsigned i = 0; i < len; ++i)
1565 {
1566 unsigned tem = (0xff & ~bytes[i]) + carry;
1567 (*out_vec)[i] = tem & 0xff;
1568 carry = tem / 256;
1569 }
1570 }
1571 else
1572 {
1573 unsigned carry = 1;
1574 for (unsigned i = len; i > 0; --i)
1575 {
1576 unsigned tem = (0xff & ~bytes[i - 1]) + carry;
1577 (*out_vec)[i - 1] = tem & 0xff;
1578 carry = tem / 256;
1579 }
1580 }
1581
1582 return true;
1583 }
1584
1585 /* VALADDR points to an integer of LEN bytes.
1586 Print it in decimal on stream or format it in buf. */
1587
1588 void
1589 print_decimal_chars (struct ui_file *stream, const gdb_byte *valaddr,
1590 unsigned len, bool is_signed,
1591 enum bfd_endian byte_order)
1592 {
1593 #define TEN 10
1594 #define CARRY_OUT( x ) ((x) / TEN) /* extend char to int */
1595 #define CARRY_LEFT( x ) ((x) % TEN)
1596 #define SHIFT( x ) ((x) << 4)
1597 #define LOW_NIBBLE( x ) ( (x) & 0x00F)
1598 #define HIGH_NIBBLE( x ) (((x) & 0x0F0) >> 4)
1599
1600 const gdb_byte *p;
1601 int carry;
1602 int decimal_len;
1603 int i, j, decimal_digits;
1604 int dummy;
1605 int flip;
1606
1607 gdb::byte_vector negated_bytes;
1608 if (is_signed
1609 && maybe_negate_by_bytes (valaddr, len, byte_order, &negated_bytes))
1610 {
1611 fputs_filtered ("-", stream);
1612 valaddr = negated_bytes.data ();
1613 }
1614
1615 /* Base-ten number is less than twice as many digits
1616 as the base 16 number, which is 2 digits per byte. */
1617
1618 decimal_len = len * 2 * 2;
1619 std::vector<unsigned char> digits (decimal_len, 0);
1620
1621 /* Ok, we have an unknown number of bytes of data to be printed in
1622 * decimal.
1623 *
1624 * Given a hex number (in nibbles) as XYZ, we start by taking X and
1625 * decimalizing it as "x1 x2" in two decimal nibbles. Then we multiply
1626 * the nibbles by 16, add Y and re-decimalize. Repeat with Z.
1627 *
1628 * The trick is that "digits" holds a base-10 number, but sometimes
1629 * the individual digits are > 10.
1630 *
1631 * Outer loop is per nibble (hex digit) of input, from MSD end to
1632 * LSD end.
1633 */
1634 decimal_digits = 0; /* Number of decimal digits so far */
1635 p = (byte_order == BFD_ENDIAN_BIG) ? valaddr : valaddr + len - 1;
1636 flip = 0;
1637 while ((byte_order == BFD_ENDIAN_BIG) ? (p < valaddr + len) : (p >= valaddr))
1638 {
1639 /*
1640 * Multiply current base-ten number by 16 in place.
1641 * Each digit was between 0 and 9, now is between
1642 * 0 and 144.
1643 */
1644 for (j = 0; j < decimal_digits; j++)
1645 {
1646 digits[j] = SHIFT (digits[j]);
1647 }
1648
1649 /* Take the next nibble off the input and add it to what
1650 * we've got in the LSB position. Bottom 'digit' is now
1651 * between 0 and 159.
1652 *
1653 * "flip" is used to run this loop twice for each byte.
1654 */
1655 if (flip == 0)
1656 {
1657 /* Take top nibble. */
1658
1659 digits[0] += HIGH_NIBBLE (*p);
1660 flip = 1;
1661 }
1662 else
1663 {
1664 /* Take low nibble and bump our pointer "p". */
1665
1666 digits[0] += LOW_NIBBLE (*p);
1667 if (byte_order == BFD_ENDIAN_BIG)
1668 p++;
1669 else
1670 p--;
1671 flip = 0;
1672 }
1673
1674 /* Re-decimalize. We have to do this often enough
1675 * that we don't overflow, but once per nibble is
1676 * overkill. Easier this way, though. Note that the
1677 * carry is often larger than 10 (e.g. max initial
1678 * carry out of lowest nibble is 15, could bubble all
1679 * the way up greater than 10). So we have to do
1680 * the carrying beyond the last current digit.
1681 */
1682 carry = 0;
1683 for (j = 0; j < decimal_len - 1; j++)
1684 {
1685 digits[j] += carry;
1686
1687 /* "/" won't handle an unsigned char with
1688 * a value that if signed would be negative.
1689 * So extend to longword int via "dummy".
1690 */
1691 dummy = digits[j];
1692 carry = CARRY_OUT (dummy);
1693 digits[j] = CARRY_LEFT (dummy);
1694
1695 if (j >= decimal_digits && carry == 0)
1696 {
1697 /*
1698 * All higher digits are 0 and we
1699 * no longer have a carry.
1700 *
1701 * Note: "j" is 0-based, "decimal_digits" is
1702 * 1-based.
1703 */
1704 decimal_digits = j + 1;
1705 break;
1706 }
1707 }
1708 }
1709
1710 /* Ok, now "digits" is the decimal representation, with
1711 the "decimal_digits" actual digits. Print! */
1712
1713 for (i = decimal_digits - 1; i > 0 && digits[i] == 0; --i)
1714 ;
1715
1716 for (; i >= 0; i--)
1717 {
1718 fprintf_filtered (stream, "%1d", digits[i]);
1719 }
1720 }
1721
1722 /* VALADDR points to an integer of LEN bytes. Print it in hex on stream. */
1723
1724 void
1725 print_hex_chars (struct ui_file *stream, const gdb_byte *valaddr,
1726 unsigned len, enum bfd_endian byte_order,
1727 bool zero_pad)
1728 {
1729 const gdb_byte *p;
1730
1731 fputs_filtered ("0x", stream);
1732 if (byte_order == BFD_ENDIAN_BIG)
1733 {
1734 p = valaddr;
1735
1736 if (!zero_pad)
1737 {
1738 /* Strip leading 0 bytes, but be sure to leave at least a
1739 single byte at the end. */
1740 for (; p < valaddr + len - 1 && !*p; ++p)
1741 ;
1742 }
1743
1744 const gdb_byte *first = p;
1745 for (;
1746 p < valaddr + len;
1747 p++)
1748 {
1749 /* When not zero-padding, use a different format for the
1750 very first byte printed. */
1751 if (!zero_pad && p == first)
1752 fprintf_filtered (stream, "%x", *p);
1753 else
1754 fprintf_filtered (stream, "%02x", *p);
1755 }
1756 }
1757 else
1758 {
1759 p = valaddr + len - 1;
1760
1761 if (!zero_pad)
1762 {
1763 /* Strip leading 0 bytes, but be sure to leave at least a
1764 single byte at the end. */
1765 for (; p >= valaddr + 1 && !*p; --p)
1766 ;
1767 }
1768
1769 const gdb_byte *first = p;
1770 for (;
1771 p >= valaddr;
1772 p--)
1773 {
1774 /* When not zero-padding, use a different format for the
1775 very first byte printed. */
1776 if (!zero_pad && p == first)
1777 fprintf_filtered (stream, "%x", *p);
1778 else
1779 fprintf_filtered (stream, "%02x", *p);
1780 }
1781 }
1782 }
1783
1784 /* VALADDR points to a char integer of LEN bytes.
1785 Print it out in appropriate language form on stream.
1786 Omit any leading zero chars. */
1787
1788 void
1789 print_char_chars (struct ui_file *stream, struct type *type,
1790 const gdb_byte *valaddr,
1791 unsigned len, enum bfd_endian byte_order)
1792 {
1793 const gdb_byte *p;
1794
1795 if (byte_order == BFD_ENDIAN_BIG)
1796 {
1797 p = valaddr;
1798 while (p < valaddr + len - 1 && *p == 0)
1799 ++p;
1800
1801 while (p < valaddr + len)
1802 {
1803 LA_EMIT_CHAR (*p, type, stream, '\'');
1804 ++p;
1805 }
1806 }
1807 else
1808 {
1809 p = valaddr + len - 1;
1810 while (p > valaddr && *p == 0)
1811 --p;
1812
1813 while (p >= valaddr)
1814 {
1815 LA_EMIT_CHAR (*p, type, stream, '\'');
1816 --p;
1817 }
1818 }
1819 }
1820
1821 /* Print function pointer with inferior address ADDRESS onto stdio
1822 stream STREAM. */
1823
1824 void
1825 print_function_pointer_address (const struct value_print_options *options,
1826 struct gdbarch *gdbarch,
1827 CORE_ADDR address,
1828 struct ui_file *stream)
1829 {
1830 CORE_ADDR func_addr
1831 = gdbarch_convert_from_func_ptr_addr (gdbarch, address,
1832 current_top_target ());
1833
1834 /* If the function pointer is represented by a description, print
1835 the address of the description. */
1836 if (options->addressprint && func_addr != address)
1837 {
1838 fputs_filtered ("@", stream);
1839 fputs_filtered (paddress (gdbarch, address), stream);
1840 fputs_filtered (": ", stream);
1841 }
1842 print_address_demangle (options, gdbarch, func_addr, stream, demangle);
1843 }
1844
1845
1846 /* Print on STREAM using the given OPTIONS the index for the element
1847 at INDEX of an array whose index type is INDEX_TYPE. */
1848
1849 void
1850 maybe_print_array_index (struct type *index_type, LONGEST index,
1851 struct ui_file *stream,
1852 const struct value_print_options *options)
1853 {
1854 if (!options->print_array_indexes)
1855 return;
1856
1857 LA_PRINT_ARRAY_INDEX (index_type, index, stream, options);
1858 }
1859
1860 /* See valprint.h. */
1861
1862 void
1863 value_print_array_elements (struct value *val, struct ui_file *stream,
1864 int recurse,
1865 const struct value_print_options *options,
1866 unsigned int i)
1867 {
1868 unsigned int things_printed = 0;
1869 unsigned len;
1870 struct type *elttype, *index_type;
1871 unsigned eltlen;
1872 /* Position of the array element we are examining to see
1873 whether it is repeated. */
1874 unsigned int rep1;
1875 /* Number of repetitions we have detected so far. */
1876 unsigned int reps;
1877 LONGEST low_bound, high_bound;
1878
1879 struct type *type = check_typedef (value_type (val));
1880
1881 elttype = TYPE_TARGET_TYPE (type);
1882 eltlen = type_length_units (check_typedef (elttype));
1883 index_type = TYPE_INDEX_TYPE (type);
1884 if (index_type->code () == TYPE_CODE_RANGE)
1885 index_type = TYPE_TARGET_TYPE (index_type);
1886
1887 if (get_array_bounds (type, &low_bound, &high_bound))
1888 {
1889 /* The array length should normally be HIGH_BOUND - LOW_BOUND +
1890 1. But we have to be a little extra careful, because some
1891 languages such as Ada allow LOW_BOUND to be greater than
1892 HIGH_BOUND for empty arrays. In that situation, the array
1893 length is just zero, not negative! */
1894 if (low_bound > high_bound)
1895 len = 0;
1896 else
1897 len = high_bound - low_bound + 1;
1898 }
1899 else
1900 {
1901 warning (_("unable to get bounds of array, assuming null array"));
1902 low_bound = 0;
1903 len = 0;
1904 }
1905
1906 annotate_array_section_begin (i, elttype);
1907
1908 for (; i < len && things_printed < options->print_max; i++)
1909 {
1910 scoped_value_mark free_values;
1911
1912 if (i != 0)
1913 {
1914 if (options->prettyformat_arrays)
1915 {
1916 fprintf_filtered (stream, ",\n");
1917 print_spaces_filtered (2 + 2 * recurse, stream);
1918 }
1919 else
1920 fprintf_filtered (stream, ", ");
1921 }
1922 else if (options->prettyformat_arrays)
1923 {
1924 fprintf_filtered (stream, "\n");
1925 print_spaces_filtered (2 + 2 * recurse, stream);
1926 }
1927 wrap_here (n_spaces (2 + 2 * recurse));
1928 maybe_print_array_index (index_type, i + low_bound,
1929 stream, options);
1930
1931 rep1 = i + 1;
1932 reps = 1;
1933 /* Only check for reps if repeat_count_threshold is not set to
1934 UINT_MAX (unlimited). */
1935 if (options->repeat_count_threshold < UINT_MAX)
1936 {
1937 while (rep1 < len
1938 && value_contents_eq (val, i * eltlen,
1939 val, rep1 * eltlen,
1940 eltlen))
1941 {
1942 ++reps;
1943 ++rep1;
1944 }
1945 }
1946
1947 struct value *element = value_from_component (val, elttype, eltlen * i);
1948 common_val_print (element, stream, recurse + 1, options,
1949 current_language);
1950
1951 if (reps > options->repeat_count_threshold)
1952 {
1953 annotate_elt_rep (reps);
1954 fprintf_filtered (stream, " %p[<repeats %u times>%p]",
1955 metadata_style.style ().ptr (), reps, nullptr);
1956 annotate_elt_rep_end ();
1957
1958 i = rep1 - 1;
1959 things_printed += options->repeat_count_threshold;
1960 }
1961 else
1962 {
1963 annotate_elt ();
1964 things_printed++;
1965 }
1966 }
1967 annotate_array_section_end ();
1968 if (i < len)
1969 fprintf_filtered (stream, "...");
1970 if (options->prettyformat_arrays)
1971 {
1972 fprintf_filtered (stream, "\n");
1973 print_spaces_filtered (2 * recurse, stream);
1974 }
1975 }
1976
1977 /* Read LEN bytes of target memory at address MEMADDR, placing the
1978 results in GDB's memory at MYADDR. Returns a count of the bytes
1979 actually read, and optionally a target_xfer_status value in the
1980 location pointed to by ERRPTR if ERRPTR is non-null. */
1981
1982 /* FIXME: cagney/1999-10-14: Only used by val_print_string. Can this
1983 function be eliminated. */
1984
1985 static int
1986 partial_memory_read (CORE_ADDR memaddr, gdb_byte *myaddr,
1987 int len, int *errptr)
1988 {
1989 int nread; /* Number of bytes actually read. */
1990 int errcode; /* Error from last read. */
1991
1992 /* First try a complete read. */
1993 errcode = target_read_memory (memaddr, myaddr, len);
1994 if (errcode == 0)
1995 {
1996 /* Got it all. */
1997 nread = len;
1998 }
1999 else
2000 {
2001 /* Loop, reading one byte at a time until we get as much as we can. */
2002 for (errcode = 0, nread = 0; len > 0 && errcode == 0; nread++, len--)
2003 {
2004 errcode = target_read_memory (memaddr++, myaddr++, 1);
2005 }
2006 /* If an error, the last read was unsuccessful, so adjust count. */
2007 if (errcode != 0)
2008 {
2009 nread--;
2010 }
2011 }
2012 if (errptr != NULL)
2013 {
2014 *errptr = errcode;
2015 }
2016 return (nread);
2017 }
2018
2019 /* Read a string from the inferior, at ADDR, with LEN characters of
2020 WIDTH bytes each. Fetch at most FETCHLIMIT characters. BUFFER
2021 will be set to a newly allocated buffer containing the string, and
2022 BYTES_READ will be set to the number of bytes read. Returns 0 on
2023 success, or a target_xfer_status on failure.
2024
2025 If LEN > 0, reads the lesser of LEN or FETCHLIMIT characters
2026 (including eventual NULs in the middle or end of the string).
2027
2028 If LEN is -1, stops at the first null character (not necessarily
2029 the first null byte) up to a maximum of FETCHLIMIT characters. Set
2030 FETCHLIMIT to UINT_MAX to read as many characters as possible from
2031 the string.
2032
2033 Unless an exception is thrown, BUFFER will always be allocated, even on
2034 failure. In this case, some characters might have been read before the
2035 failure happened. Check BYTES_READ to recognize this situation.
2036
2037 Note: There was a FIXME asking to make this code use target_read_string,
2038 but this function is more general (can read past null characters, up to
2039 given LEN). Besides, it is used much more often than target_read_string
2040 so it is more tested. Perhaps callers of target_read_string should use
2041 this function instead? */
2042
2043 int
2044 read_string (CORE_ADDR addr, int len, int width, unsigned int fetchlimit,
2045 enum bfd_endian byte_order, gdb::unique_xmalloc_ptr<gdb_byte> *buffer,
2046 int *bytes_read)
2047 {
2048 int errcode; /* Errno returned from bad reads. */
2049 unsigned int nfetch; /* Chars to fetch / chars fetched. */
2050 gdb_byte *bufptr; /* Pointer to next available byte in
2051 buffer. */
2052
2053 /* Loop until we either have all the characters, or we encounter
2054 some error, such as bumping into the end of the address space. */
2055
2056 buffer->reset (nullptr);
2057
2058 if (len > 0)
2059 {
2060 /* We want fetchlimit chars, so we might as well read them all in
2061 one operation. */
2062 unsigned int fetchlen = std::min ((unsigned) len, fetchlimit);
2063
2064 buffer->reset ((gdb_byte *) xmalloc (fetchlen * width));
2065 bufptr = buffer->get ();
2066
2067 nfetch = partial_memory_read (addr, bufptr, fetchlen * width, &errcode)
2068 / width;
2069 addr += nfetch * width;
2070 bufptr += nfetch * width;
2071 }
2072 else if (len == -1)
2073 {
2074 unsigned long bufsize = 0;
2075 unsigned int chunksize; /* Size of each fetch, in chars. */
2076 int found_nul; /* Non-zero if we found the nul char. */
2077 gdb_byte *limit; /* First location past end of fetch buffer. */
2078
2079 found_nul = 0;
2080 /* We are looking for a NUL terminator to end the fetching, so we
2081 might as well read in blocks that are large enough to be efficient,
2082 but not so large as to be slow if fetchlimit happens to be large.
2083 So we choose the minimum of 8 and fetchlimit. We used to use 200
2084 instead of 8 but 200 is way too big for remote debugging over a
2085 serial line. */
2086 chunksize = std::min (8u, fetchlimit);
2087
2088 do
2089 {
2090 QUIT;
2091 nfetch = std::min ((unsigned long) chunksize, fetchlimit - bufsize);
2092
2093 if (*buffer == NULL)
2094 buffer->reset ((gdb_byte *) xmalloc (nfetch * width));
2095 else
2096 buffer->reset ((gdb_byte *) xrealloc (buffer->release (),
2097 (nfetch + bufsize) * width));
2098
2099 bufptr = buffer->get () + bufsize * width;
2100 bufsize += nfetch;
2101
2102 /* Read as much as we can. */
2103 nfetch = partial_memory_read (addr, bufptr, nfetch * width, &errcode)
2104 / width;
2105
2106 /* Scan this chunk for the null character that terminates the string
2107 to print. If found, we don't need to fetch any more. Note
2108 that bufptr is explicitly left pointing at the next character
2109 after the null character, or at the next character after the end
2110 of the buffer. */
2111
2112 limit = bufptr + nfetch * width;
2113 while (bufptr < limit)
2114 {
2115 unsigned long c;
2116
2117 c = extract_unsigned_integer (bufptr, width, byte_order);
2118 addr += width;
2119 bufptr += width;
2120 if (c == 0)
2121 {
2122 /* We don't care about any error which happened after
2123 the NUL terminator. */
2124 errcode = 0;
2125 found_nul = 1;
2126 break;
2127 }
2128 }
2129 }
2130 while (errcode == 0 /* no error */
2131 && bufptr - buffer->get () < fetchlimit * width /* no overrun */
2132 && !found_nul); /* haven't found NUL yet */
2133 }
2134 else
2135 { /* Length of string is really 0! */
2136 /* We always allocate *buffer. */
2137 buffer->reset ((gdb_byte *) xmalloc (1));
2138 bufptr = buffer->get ();
2139 errcode = 0;
2140 }
2141
2142 /* bufptr and addr now point immediately beyond the last byte which we
2143 consider part of the string (including a '\0' which ends the string). */
2144 *bytes_read = bufptr - buffer->get ();
2145
2146 QUIT;
2147
2148 return errcode;
2149 }
2150
2151 /* Return true if print_wchar can display W without resorting to a
2152 numeric escape, false otherwise. */
2153
2154 static int
2155 wchar_printable (gdb_wchar_t w)
2156 {
2157 return (gdb_iswprint (w)
2158 || w == LCST ('\a') || w == LCST ('\b')
2159 || w == LCST ('\f') || w == LCST ('\n')
2160 || w == LCST ('\r') || w == LCST ('\t')
2161 || w == LCST ('\v'));
2162 }
2163
2164 /* A helper function that converts the contents of STRING to wide
2165 characters and then appends them to OUTPUT. */
2166
2167 static void
2168 append_string_as_wide (const char *string,
2169 struct obstack *output)
2170 {
2171 for (; *string; ++string)
2172 {
2173 gdb_wchar_t w = gdb_btowc (*string);
2174 obstack_grow (output, &w, sizeof (gdb_wchar_t));
2175 }
2176 }
2177
2178 /* Print a wide character W to OUTPUT. ORIG is a pointer to the
2179 original (target) bytes representing the character, ORIG_LEN is the
2180 number of valid bytes. WIDTH is the number of bytes in a base
2181 characters of the type. OUTPUT is an obstack to which wide
2182 characters are emitted. QUOTER is a (narrow) character indicating
2183 the style of quotes surrounding the character to be printed.
2184 NEED_ESCAPE is an in/out flag which is used to track numeric
2185 escapes across calls. */
2186
2187 static void
2188 print_wchar (gdb_wint_t w, const gdb_byte *orig,
2189 int orig_len, int width,
2190 enum bfd_endian byte_order,
2191 struct obstack *output,
2192 int quoter, int *need_escapep)
2193 {
2194 int need_escape = *need_escapep;
2195
2196 *need_escapep = 0;
2197
2198 /* iswprint implementation on Windows returns 1 for tab character.
2199 In order to avoid different printout on this host, we explicitly
2200 use wchar_printable function. */
2201 switch (w)
2202 {
2203 case LCST ('\a'):
2204 obstack_grow_wstr (output, LCST ("\\a"));
2205 break;
2206 case LCST ('\b'):
2207 obstack_grow_wstr (output, LCST ("\\b"));
2208 break;
2209 case LCST ('\f'):
2210 obstack_grow_wstr (output, LCST ("\\f"));
2211 break;
2212 case LCST ('\n'):
2213 obstack_grow_wstr (output, LCST ("\\n"));
2214 break;
2215 case LCST ('\r'):
2216 obstack_grow_wstr (output, LCST ("\\r"));
2217 break;
2218 case LCST ('\t'):
2219 obstack_grow_wstr (output, LCST ("\\t"));
2220 break;
2221 case LCST ('\v'):
2222 obstack_grow_wstr (output, LCST ("\\v"));
2223 break;
2224 default:
2225 {
2226 if (wchar_printable (w) && (!need_escape || (!gdb_iswdigit (w)
2227 && w != LCST ('8')
2228 && w != LCST ('9'))))
2229 {
2230 gdb_wchar_t wchar = w;
2231
2232 if (w == gdb_btowc (quoter) || w == LCST ('\\'))
2233 obstack_grow_wstr (output, LCST ("\\"));
2234 obstack_grow (output, &wchar, sizeof (gdb_wchar_t));
2235 }
2236 else
2237 {
2238 int i;
2239
2240 for (i = 0; i + width <= orig_len; i += width)
2241 {
2242 char octal[30];
2243 ULONGEST value;
2244
2245 value = extract_unsigned_integer (&orig[i], width,
2246 byte_order);
2247 /* If the value fits in 3 octal digits, print it that
2248 way. Otherwise, print it as a hex escape. */
2249 if (value <= 0777)
2250 xsnprintf (octal, sizeof (octal), "\\%.3o",
2251 (int) (value & 0777));
2252 else
2253 xsnprintf (octal, sizeof (octal), "\\x%lx", (long) value);
2254 append_string_as_wide (octal, output);
2255 }
2256 /* If we somehow have extra bytes, print them now. */
2257 while (i < orig_len)
2258 {
2259 char octal[5];
2260
2261 xsnprintf (octal, sizeof (octal), "\\%.3o", orig[i] & 0xff);
2262 append_string_as_wide (octal, output);
2263 ++i;
2264 }
2265
2266 *need_escapep = 1;
2267 }
2268 break;
2269 }
2270 }
2271 }
2272
2273 /* Print the character C on STREAM as part of the contents of a
2274 literal string whose delimiter is QUOTER. ENCODING names the
2275 encoding of C. */
2276
2277 void
2278 generic_emit_char (int c, struct type *type, struct ui_file *stream,
2279 int quoter, const char *encoding)
2280 {
2281 enum bfd_endian byte_order
2282 = type_byte_order (type);
2283 gdb_byte *c_buf;
2284 int need_escape = 0;
2285
2286 c_buf = (gdb_byte *) alloca (TYPE_LENGTH (type));
2287 pack_long (c_buf, type, c);
2288
2289 wchar_iterator iter (c_buf, TYPE_LENGTH (type), encoding, TYPE_LENGTH (type));
2290
2291 /* This holds the printable form of the wchar_t data. */
2292 auto_obstack wchar_buf;
2293
2294 while (1)
2295 {
2296 int num_chars;
2297 gdb_wchar_t *chars;
2298 const gdb_byte *buf;
2299 size_t buflen;
2300 int print_escape = 1;
2301 enum wchar_iterate_result result;
2302
2303 num_chars = iter.iterate (&result, &chars, &buf, &buflen);
2304 if (num_chars < 0)
2305 break;
2306 if (num_chars > 0)
2307 {
2308 /* If all characters are printable, print them. Otherwise,
2309 we're going to have to print an escape sequence. We
2310 check all characters because we want to print the target
2311 bytes in the escape sequence, and we don't know character
2312 boundaries there. */
2313 int i;
2314
2315 print_escape = 0;
2316 for (i = 0; i < num_chars; ++i)
2317 if (!wchar_printable (chars[i]))
2318 {
2319 print_escape = 1;
2320 break;
2321 }
2322
2323 if (!print_escape)
2324 {
2325 for (i = 0; i < num_chars; ++i)
2326 print_wchar (chars[i], buf, buflen,
2327 TYPE_LENGTH (type), byte_order,
2328 &wchar_buf, quoter, &need_escape);
2329 }
2330 }
2331
2332 /* This handles the NUM_CHARS == 0 case as well. */
2333 if (print_escape)
2334 print_wchar (gdb_WEOF, buf, buflen, TYPE_LENGTH (type),
2335 byte_order, &wchar_buf, quoter, &need_escape);
2336 }
2337
2338 /* The output in the host encoding. */
2339 auto_obstack output;
2340
2341 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2342 (gdb_byte *) obstack_base (&wchar_buf),
2343 obstack_object_size (&wchar_buf),
2344 sizeof (gdb_wchar_t), &output, translit_char);
2345 obstack_1grow (&output, '\0');
2346
2347 fputs_filtered ((const char *) obstack_base (&output), stream);
2348 }
2349
2350 /* Return the repeat count of the next character/byte in ITER,
2351 storing the result in VEC. */
2352
2353 static int
2354 count_next_character (wchar_iterator *iter,
2355 std::vector<converted_character> *vec)
2356 {
2357 struct converted_character *current;
2358
2359 if (vec->empty ())
2360 {
2361 struct converted_character tmp;
2362 gdb_wchar_t *chars;
2363
2364 tmp.num_chars
2365 = iter->iterate (&tmp.result, &chars, &tmp.buf, &tmp.buflen);
2366 if (tmp.num_chars > 0)
2367 {
2368 gdb_assert (tmp.num_chars < MAX_WCHARS);
2369 memcpy (tmp.chars, chars, tmp.num_chars * sizeof (gdb_wchar_t));
2370 }
2371 vec->push_back (tmp);
2372 }
2373
2374 current = &vec->back ();
2375
2376 /* Count repeated characters or bytes. */
2377 current->repeat_count = 1;
2378 if (current->num_chars == -1)
2379 {
2380 /* EOF */
2381 return -1;
2382 }
2383 else
2384 {
2385 gdb_wchar_t *chars;
2386 struct converted_character d;
2387 int repeat;
2388
2389 d.repeat_count = 0;
2390
2391 while (1)
2392 {
2393 /* Get the next character. */
2394 d.num_chars = iter->iterate (&d.result, &chars, &d.buf, &d.buflen);
2395
2396 /* If a character was successfully converted, save the character
2397 into the converted character. */
2398 if (d.num_chars > 0)
2399 {
2400 gdb_assert (d.num_chars < MAX_WCHARS);
2401 memcpy (d.chars, chars, WCHAR_BUFLEN (d.num_chars));
2402 }
2403
2404 /* Determine if the current character is the same as this
2405 new character. */
2406 if (d.num_chars == current->num_chars && d.result == current->result)
2407 {
2408 /* There are two cases to consider:
2409
2410 1) Equality of converted character (num_chars > 0)
2411 2) Equality of non-converted character (num_chars == 0) */
2412 if ((current->num_chars > 0
2413 && memcmp (current->chars, d.chars,
2414 WCHAR_BUFLEN (current->num_chars)) == 0)
2415 || (current->num_chars == 0
2416 && current->buflen == d.buflen
2417 && memcmp (current->buf, d.buf, current->buflen) == 0))
2418 ++current->repeat_count;
2419 else
2420 break;
2421 }
2422 else
2423 break;
2424 }
2425
2426 /* Push this next converted character onto the result vector. */
2427 repeat = current->repeat_count;
2428 vec->push_back (d);
2429 return repeat;
2430 }
2431 }
2432
2433 /* Print the characters in CHARS to the OBSTACK. QUOTE_CHAR is the quote
2434 character to use with string output. WIDTH is the size of the output
2435 character type. BYTE_ORDER is the target byte order. OPTIONS
2436 is the user's print options. */
2437
2438 static void
2439 print_converted_chars_to_obstack (struct obstack *obstack,
2440 const std::vector<converted_character> &chars,
2441 int quote_char, int width,
2442 enum bfd_endian byte_order,
2443 const struct value_print_options *options)
2444 {
2445 unsigned int idx;
2446 const converted_character *elem;
2447 enum {START, SINGLE, REPEAT, INCOMPLETE, FINISH} state, last;
2448 gdb_wchar_t wide_quote_char = gdb_btowc (quote_char);
2449 int need_escape = 0;
2450
2451 /* Set the start state. */
2452 idx = 0;
2453 last = state = START;
2454 elem = NULL;
2455
2456 while (1)
2457 {
2458 switch (state)
2459 {
2460 case START:
2461 /* Nothing to do. */
2462 break;
2463
2464 case SINGLE:
2465 {
2466 int j;
2467
2468 /* We are outputting a single character
2469 (< options->repeat_count_threshold). */
2470
2471 if (last != SINGLE)
2472 {
2473 /* We were outputting some other type of content, so we
2474 must output and a comma and a quote. */
2475 if (last != START)
2476 obstack_grow_wstr (obstack, LCST (", "));
2477 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2478 }
2479 /* Output the character. */
2480 for (j = 0; j < elem->repeat_count; ++j)
2481 {
2482 if (elem->result == wchar_iterate_ok)
2483 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2484 byte_order, obstack, quote_char, &need_escape);
2485 else
2486 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2487 byte_order, obstack, quote_char, &need_escape);
2488 }
2489 }
2490 break;
2491
2492 case REPEAT:
2493 {
2494 int j;
2495
2496 /* We are outputting a character with a repeat count
2497 greater than options->repeat_count_threshold. */
2498
2499 if (last == SINGLE)
2500 {
2501 /* We were outputting a single string. Terminate the
2502 string. */
2503 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2504 }
2505 if (last != START)
2506 obstack_grow_wstr (obstack, LCST (", "));
2507
2508 /* Output the character and repeat string. */
2509 obstack_grow_wstr (obstack, LCST ("'"));
2510 if (elem->result == wchar_iterate_ok)
2511 print_wchar (elem->chars[0], elem->buf, elem->buflen, width,
2512 byte_order, obstack, quote_char, &need_escape);
2513 else
2514 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width,
2515 byte_order, obstack, quote_char, &need_escape);
2516 obstack_grow_wstr (obstack, LCST ("'"));
2517 std::string s = string_printf (_(" <repeats %u times>"),
2518 elem->repeat_count);
2519 for (j = 0; s[j]; ++j)
2520 {
2521 gdb_wchar_t w = gdb_btowc (s[j]);
2522 obstack_grow (obstack, &w, sizeof (gdb_wchar_t));
2523 }
2524 }
2525 break;
2526
2527 case INCOMPLETE:
2528 /* We are outputting an incomplete sequence. */
2529 if (last == SINGLE)
2530 {
2531 /* If we were outputting a string of SINGLE characters,
2532 terminate the quote. */
2533 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2534 }
2535 if (last != START)
2536 obstack_grow_wstr (obstack, LCST (", "));
2537
2538 /* Output the incomplete sequence string. */
2539 obstack_grow_wstr (obstack, LCST ("<incomplete sequence "));
2540 print_wchar (gdb_WEOF, elem->buf, elem->buflen, width, byte_order,
2541 obstack, 0, &need_escape);
2542 obstack_grow_wstr (obstack, LCST (">"));
2543
2544 /* We do not attempt to output anything after this. */
2545 state = FINISH;
2546 break;
2547
2548 case FINISH:
2549 /* All done. If we were outputting a string of SINGLE
2550 characters, the string must be terminated. Otherwise,
2551 REPEAT and INCOMPLETE are always left properly terminated. */
2552 if (last == SINGLE)
2553 obstack_grow (obstack, &wide_quote_char, sizeof (gdb_wchar_t));
2554
2555 return;
2556 }
2557
2558 /* Get the next element and state. */
2559 last = state;
2560 if (state != FINISH)
2561 {
2562 elem = &chars[idx++];
2563 switch (elem->result)
2564 {
2565 case wchar_iterate_ok:
2566 case wchar_iterate_invalid:
2567 if (elem->repeat_count > options->repeat_count_threshold)
2568 state = REPEAT;
2569 else
2570 state = SINGLE;
2571 break;
2572
2573 case wchar_iterate_incomplete:
2574 state = INCOMPLETE;
2575 break;
2576
2577 case wchar_iterate_eof:
2578 state = FINISH;
2579 break;
2580 }
2581 }
2582 }
2583 }
2584
2585 /* Print the character string STRING, printing at most LENGTH
2586 characters. LENGTH is -1 if the string is nul terminated. TYPE is
2587 the type of each character. OPTIONS holds the printing options;
2588 printing stops early if the number hits print_max; repeat counts
2589 are printed as appropriate. Print ellipses at the end if we had to
2590 stop before printing LENGTH characters, or if FORCE_ELLIPSES.
2591 QUOTE_CHAR is the character to print at each end of the string. If
2592 C_STYLE_TERMINATOR is true, and the last character is 0, then it is
2593 omitted. */
2594
2595 void
2596 generic_printstr (struct ui_file *stream, struct type *type,
2597 const gdb_byte *string, unsigned int length,
2598 const char *encoding, int force_ellipses,
2599 int quote_char, int c_style_terminator,
2600 const struct value_print_options *options)
2601 {
2602 enum bfd_endian byte_order = type_byte_order (type);
2603 unsigned int i;
2604 int width = TYPE_LENGTH (type);
2605 int finished = 0;
2606 struct converted_character *last;
2607
2608 if (length == -1)
2609 {
2610 unsigned long current_char = 1;
2611
2612 for (i = 0; current_char; ++i)
2613 {
2614 QUIT;
2615 current_char = extract_unsigned_integer (string + i * width,
2616 width, byte_order);
2617 }
2618 length = i;
2619 }
2620
2621 /* If the string was not truncated due to `set print elements', and
2622 the last byte of it is a null, we don't print that, in
2623 traditional C style. */
2624 if (c_style_terminator
2625 && !force_ellipses
2626 && length > 0
2627 && (extract_unsigned_integer (string + (length - 1) * width,
2628 width, byte_order) == 0))
2629 length--;
2630
2631 if (length == 0)
2632 {
2633 fputs_filtered ("\"\"", stream);
2634 return;
2635 }
2636
2637 /* Arrange to iterate over the characters, in wchar_t form. */
2638 wchar_iterator iter (string, length * width, encoding, width);
2639 std::vector<converted_character> converted_chars;
2640
2641 /* Convert characters until the string is over or the maximum
2642 number of printed characters has been reached. */
2643 i = 0;
2644 while (i < options->print_max)
2645 {
2646 int r;
2647
2648 QUIT;
2649
2650 /* Grab the next character and repeat count. */
2651 r = count_next_character (&iter, &converted_chars);
2652
2653 /* If less than zero, the end of the input string was reached. */
2654 if (r < 0)
2655 break;
2656
2657 /* Otherwise, add the count to the total print count and get
2658 the next character. */
2659 i += r;
2660 }
2661
2662 /* Get the last element and determine if the entire string was
2663 processed. */
2664 last = &converted_chars.back ();
2665 finished = (last->result == wchar_iterate_eof);
2666
2667 /* Ensure that CONVERTED_CHARS is terminated. */
2668 last->result = wchar_iterate_eof;
2669
2670 /* WCHAR_BUF is the obstack we use to represent the string in
2671 wchar_t form. */
2672 auto_obstack wchar_buf;
2673
2674 /* Print the output string to the obstack. */
2675 print_converted_chars_to_obstack (&wchar_buf, converted_chars, quote_char,
2676 width, byte_order, options);
2677
2678 if (force_ellipses || !finished)
2679 obstack_grow_wstr (&wchar_buf, LCST ("..."));
2680
2681 /* OUTPUT is where we collect `char's for printing. */
2682 auto_obstack output;
2683
2684 convert_between_encodings (INTERMEDIATE_ENCODING, host_charset (),
2685 (gdb_byte *) obstack_base (&wchar_buf),
2686 obstack_object_size (&wchar_buf),
2687 sizeof (gdb_wchar_t), &output, translit_char);
2688 obstack_1grow (&output, '\0');
2689
2690 fputs_filtered ((const char *) obstack_base (&output), stream);
2691 }
2692
2693 /* Print a string from the inferior, starting at ADDR and printing up to LEN
2694 characters, of WIDTH bytes a piece, to STREAM. If LEN is -1, printing
2695 stops at the first null byte, otherwise printing proceeds (including null
2696 bytes) until either print_max or LEN characters have been printed,
2697 whichever is smaller. ENCODING is the name of the string's
2698 encoding. It can be NULL, in which case the target encoding is
2699 assumed. */
2700
2701 int
2702 val_print_string (struct type *elttype, const char *encoding,
2703 CORE_ADDR addr, int len,
2704 struct ui_file *stream,
2705 const struct value_print_options *options)
2706 {
2707 int force_ellipsis = 0; /* Force ellipsis to be printed if nonzero. */
2708 int err; /* Non-zero if we got a bad read. */
2709 int found_nul; /* Non-zero if we found the nul char. */
2710 unsigned int fetchlimit; /* Maximum number of chars to print. */
2711 int bytes_read;
2712 gdb::unique_xmalloc_ptr<gdb_byte> buffer; /* Dynamically growable fetch buffer. */
2713 struct gdbarch *gdbarch = get_type_arch (elttype);
2714 enum bfd_endian byte_order = type_byte_order (elttype);
2715 int width = TYPE_LENGTH (elttype);
2716
2717 /* First we need to figure out the limit on the number of characters we are
2718 going to attempt to fetch and print. This is actually pretty simple. If
2719 LEN >= zero, then the limit is the minimum of LEN and print_max. If
2720 LEN is -1, then the limit is print_max. This is true regardless of
2721 whether print_max is zero, UINT_MAX (unlimited), or something in between,
2722 because finding the null byte (or available memory) is what actually
2723 limits the fetch. */
2724
2725 fetchlimit = (len == -1 ? options->print_max : std::min ((unsigned) len,
2726 options->print_max));
2727
2728 err = read_string (addr, len, width, fetchlimit, byte_order,
2729 &buffer, &bytes_read);
2730
2731 addr += bytes_read;
2732
2733 /* We now have either successfully filled the buffer to fetchlimit,
2734 or terminated early due to an error or finding a null char when
2735 LEN is -1. */
2736
2737 /* Determine found_nul by looking at the last character read. */
2738 found_nul = 0;
2739 if (bytes_read >= width)
2740 found_nul = extract_unsigned_integer (buffer.get () + bytes_read - width,
2741 width, byte_order) == 0;
2742 if (len == -1 && !found_nul)
2743 {
2744 gdb_byte *peekbuf;
2745
2746 /* We didn't find a NUL terminator we were looking for. Attempt
2747 to peek at the next character. If not successful, or it is not
2748 a null byte, then force ellipsis to be printed. */
2749
2750 peekbuf = (gdb_byte *) alloca (width);
2751
2752 if (target_read_memory (addr, peekbuf, width) == 0
2753 && extract_unsigned_integer (peekbuf, width, byte_order) != 0)
2754 force_ellipsis = 1;
2755 }
2756 else if ((len >= 0 && err != 0) || (len > bytes_read / width))
2757 {
2758 /* Getting an error when we have a requested length, or fetching less
2759 than the number of characters actually requested, always make us
2760 print ellipsis. */
2761 force_ellipsis = 1;
2762 }
2763
2764 /* If we get an error before fetching anything, don't print a string.
2765 But if we fetch something and then get an error, print the string
2766 and then the error message. */
2767 if (err == 0 || bytes_read > 0)
2768 {
2769 LA_PRINT_STRING (stream, elttype, buffer.get (), bytes_read / width,
2770 encoding, force_ellipsis, options);
2771 }
2772
2773 if (err != 0)
2774 {
2775 std::string str = memory_error_message (TARGET_XFER_E_IO, gdbarch, addr);
2776
2777 fprintf_filtered (stream, _("<error: %ps>"),
2778 styled_string (metadata_style.style (),
2779 str.c_str ()));
2780 }
2781
2782 return (bytes_read / width);
2783 }
2784
2785 /* Handle 'show print max-depth'. */
2786
2787 static void
2788 show_print_max_depth (struct ui_file *file, int from_tty,
2789 struct cmd_list_element *c, const char *value)
2790 {
2791 fprintf_filtered (file, _("Maximum print depth is %s.\n"), value);
2792 }
2793 \f
2794
2795 /* The 'set input-radix' command writes to this auxiliary variable.
2796 If the requested radix is valid, INPUT_RADIX is updated; otherwise,
2797 it is left unchanged. */
2798
2799 static unsigned input_radix_1 = 10;
2800
2801 /* Validate an input or output radix setting, and make sure the user
2802 knows what they really did here. Radix setting is confusing, e.g.
2803 setting the input radix to "10" never changes it! */
2804
2805 static void
2806 set_input_radix (const char *args, int from_tty, struct cmd_list_element *c)
2807 {
2808 set_input_radix_1 (from_tty, input_radix_1);
2809 }
2810
2811 static void
2812 set_input_radix_1 (int from_tty, unsigned radix)
2813 {
2814 /* We don't currently disallow any input radix except 0 or 1, which don't
2815 make any mathematical sense. In theory, we can deal with any input
2816 radix greater than 1, even if we don't have unique digits for every
2817 value from 0 to radix-1, but in practice we lose on large radix values.
2818 We should either fix the lossage or restrict the radix range more.
2819 (FIXME). */
2820
2821 if (radix < 2)
2822 {
2823 input_radix_1 = input_radix;
2824 error (_("Nonsense input radix ``decimal %u''; input radix unchanged."),
2825 radix);
2826 }
2827 input_radix_1 = input_radix = radix;
2828 if (from_tty)
2829 {
2830 printf_filtered (_("Input radix now set to "
2831 "decimal %u, hex %x, octal %o.\n"),
2832 radix, radix, radix);
2833 }
2834 }
2835
2836 /* The 'set output-radix' command writes to this auxiliary variable.
2837 If the requested radix is valid, OUTPUT_RADIX is updated,
2838 otherwise, it is left unchanged. */
2839
2840 static unsigned output_radix_1 = 10;
2841
2842 static void
2843 set_output_radix (const char *args, int from_tty, struct cmd_list_element *c)
2844 {
2845 set_output_radix_1 (from_tty, output_radix_1);
2846 }
2847
2848 static void
2849 set_output_radix_1 (int from_tty, unsigned radix)
2850 {
2851 /* Validate the radix and disallow ones that we aren't prepared to
2852 handle correctly, leaving the radix unchanged. */
2853 switch (radix)
2854 {
2855 case 16:
2856 user_print_options.output_format = 'x'; /* hex */
2857 break;
2858 case 10:
2859 user_print_options.output_format = 0; /* decimal */
2860 break;
2861 case 8:
2862 user_print_options.output_format = 'o'; /* octal */
2863 break;
2864 default:
2865 output_radix_1 = output_radix;
2866 error (_("Unsupported output radix ``decimal %u''; "
2867 "output radix unchanged."),
2868 radix);
2869 }
2870 output_radix_1 = output_radix = radix;
2871 if (from_tty)
2872 {
2873 printf_filtered (_("Output radix now set to "
2874 "decimal %u, hex %x, octal %o.\n"),
2875 radix, radix, radix);
2876 }
2877 }
2878
2879 /* Set both the input and output radix at once. Try to set the output radix
2880 first, since it has the most restrictive range. An radix that is valid as
2881 an output radix is also valid as an input radix.
2882
2883 It may be useful to have an unusual input radix. If the user wishes to
2884 set an input radix that is not valid as an output radix, he needs to use
2885 the 'set input-radix' command. */
2886
2887 static void
2888 set_radix (const char *arg, int from_tty)
2889 {
2890 unsigned radix;
2891
2892 radix = (arg == NULL) ? 10 : parse_and_eval_long (arg);
2893 set_output_radix_1 (0, radix);
2894 set_input_radix_1 (0, radix);
2895 if (from_tty)
2896 {
2897 printf_filtered (_("Input and output radices now set to "
2898 "decimal %u, hex %x, octal %o.\n"),
2899 radix, radix, radix);
2900 }
2901 }
2902
2903 /* Show both the input and output radices. */
2904
2905 static void
2906 show_radix (const char *arg, int from_tty)
2907 {
2908 if (from_tty)
2909 {
2910 if (input_radix == output_radix)
2911 {
2912 printf_filtered (_("Input and output radices set to "
2913 "decimal %u, hex %x, octal %o.\n"),
2914 input_radix, input_radix, input_radix);
2915 }
2916 else
2917 {
2918 printf_filtered (_("Input radix set to decimal "
2919 "%u, hex %x, octal %o.\n"),
2920 input_radix, input_radix, input_radix);
2921 printf_filtered (_("Output radix set to decimal "
2922 "%u, hex %x, octal %o.\n"),
2923 output_radix, output_radix, output_radix);
2924 }
2925 }
2926 }
2927 \f
2928
2929 /* Controls printing of vtbl's. */
2930 static void
2931 show_vtblprint (struct ui_file *file, int from_tty,
2932 struct cmd_list_element *c, const char *value)
2933 {
2934 fprintf_filtered (file, _("\
2935 Printing of C++ virtual function tables is %s.\n"),
2936 value);
2937 }
2938
2939 /* Controls looking up an object's derived type using what we find in
2940 its vtables. */
2941 static void
2942 show_objectprint (struct ui_file *file, int from_tty,
2943 struct cmd_list_element *c,
2944 const char *value)
2945 {
2946 fprintf_filtered (file, _("\
2947 Printing of object's derived type based on vtable info is %s.\n"),
2948 value);
2949 }
2950
2951 static void
2952 show_static_field_print (struct ui_file *file, int from_tty,
2953 struct cmd_list_element *c,
2954 const char *value)
2955 {
2956 fprintf_filtered (file,
2957 _("Printing of C++ static members is %s.\n"),
2958 value);
2959 }
2960
2961 \f
2962
2963 /* A couple typedefs to make writing the options a bit more
2964 convenient. */
2965 using boolean_option_def
2966 = gdb::option::boolean_option_def<value_print_options>;
2967 using uinteger_option_def
2968 = gdb::option::uinteger_option_def<value_print_options>;
2969 using zuinteger_unlimited_option_def
2970 = gdb::option::zuinteger_unlimited_option_def<value_print_options>;
2971
2972 /* Definitions of options for the "print" and "compile print"
2973 commands. */
2974 static const gdb::option::option_def value_print_option_defs[] = {
2975
2976 boolean_option_def {
2977 "address",
2978 [] (value_print_options *opt) { return &opt->addressprint; },
2979 show_addressprint, /* show_cmd_cb */
2980 N_("Set printing of addresses."),
2981 N_("Show printing of addresses."),
2982 NULL, /* help_doc */
2983 },
2984
2985 boolean_option_def {
2986 "array",
2987 [] (value_print_options *opt) { return &opt->prettyformat_arrays; },
2988 show_prettyformat_arrays, /* show_cmd_cb */
2989 N_("Set pretty formatting of arrays."),
2990 N_("Show pretty formatting of arrays."),
2991 NULL, /* help_doc */
2992 },
2993
2994 boolean_option_def {
2995 "array-indexes",
2996 [] (value_print_options *opt) { return &opt->print_array_indexes; },
2997 show_print_array_indexes, /* show_cmd_cb */
2998 N_("Set printing of array indexes."),
2999 N_("Show printing of array indexes."),
3000 NULL, /* help_doc */
3001 },
3002
3003 uinteger_option_def {
3004 "elements",
3005 [] (value_print_options *opt) { return &opt->print_max; },
3006 show_print_max, /* show_cmd_cb */
3007 N_("Set limit on string chars or array elements to print."),
3008 N_("Show limit on string chars or array elements to print."),
3009 N_("\"unlimited\" causes there to be no limit."),
3010 },
3011
3012 zuinteger_unlimited_option_def {
3013 "max-depth",
3014 [] (value_print_options *opt) { return &opt->max_depth; },
3015 show_print_max_depth, /* show_cmd_cb */
3016 N_("Set maximum print depth for nested structures, unions and arrays."),
3017 N_("Show maximum print depth for nested structures, unions, and arrays."),
3018 N_("When structures, unions, or arrays are nested beyond this depth then they\n\
3019 will be replaced with either '{...}' or '(...)' depending on the language.\n\
3020 Use \"unlimited\" to print the complete structure.")
3021 },
3022
3023 boolean_option_def {
3024 "null-stop",
3025 [] (value_print_options *opt) { return &opt->stop_print_at_null; },
3026 show_stop_print_at_null, /* show_cmd_cb */
3027 N_("Set printing of char arrays to stop at first null char."),
3028 N_("Show printing of char arrays to stop at first null char."),
3029 NULL, /* help_doc */
3030 },
3031
3032 boolean_option_def {
3033 "object",
3034 [] (value_print_options *opt) { return &opt->objectprint; },
3035 show_objectprint, /* show_cmd_cb */
3036 _("Set printing of C++ virtual function tables."),
3037 _("Show printing of C++ virtual function tables."),
3038 NULL, /* help_doc */
3039 },
3040
3041 boolean_option_def {
3042 "pretty",
3043 [] (value_print_options *opt) { return &opt->prettyformat_structs; },
3044 show_prettyformat_structs, /* show_cmd_cb */
3045 N_("Set pretty formatting of structures."),
3046 N_("Show pretty formatting of structures."),
3047 NULL, /* help_doc */
3048 },
3049
3050 boolean_option_def {
3051 "raw-values",
3052 [] (value_print_options *opt) { return &opt->raw; },
3053 NULL, /* show_cmd_cb */
3054 N_("Set whether to print values in raw form."),
3055 N_("Show whether to print values in raw form."),
3056 N_("If set, values are printed in raw form, bypassing any\n\
3057 pretty-printers for that value.")
3058 },
3059
3060 uinteger_option_def {
3061 "repeats",
3062 [] (value_print_options *opt) { return &opt->repeat_count_threshold; },
3063 show_repeat_count_threshold, /* show_cmd_cb */
3064 N_("Set threshold for repeated print elements."),
3065 N_("Show threshold for repeated print elements."),
3066 N_("\"unlimited\" causes all elements to be individually printed."),
3067 },
3068
3069 boolean_option_def {
3070 "static-members",
3071 [] (value_print_options *opt) { return &opt->static_field_print; },
3072 show_static_field_print, /* show_cmd_cb */
3073 N_("Set printing of C++ static members."),
3074 N_("Show printing of C++ static members."),
3075 NULL, /* help_doc */
3076 },
3077
3078 boolean_option_def {
3079 "symbol",
3080 [] (value_print_options *opt) { return &opt->symbol_print; },
3081 show_symbol_print, /* show_cmd_cb */
3082 N_("Set printing of symbol names when printing pointers."),
3083 N_("Show printing of symbol names when printing pointers."),
3084 NULL, /* help_doc */
3085 },
3086
3087 boolean_option_def {
3088 "union",
3089 [] (value_print_options *opt) { return &opt->unionprint; },
3090 show_unionprint, /* show_cmd_cb */
3091 N_("Set printing of unions interior to structures."),
3092 N_("Show printing of unions interior to structures."),
3093 NULL, /* help_doc */
3094 },
3095
3096 boolean_option_def {
3097 "vtbl",
3098 [] (value_print_options *opt) { return &opt->vtblprint; },
3099 show_vtblprint, /* show_cmd_cb */
3100 N_("Set printing of C++ virtual function tables."),
3101 N_("Show printing of C++ virtual function tables."),
3102 NULL, /* help_doc */
3103 },
3104 };
3105
3106 /* See valprint.h. */
3107
3108 gdb::option::option_def_group
3109 make_value_print_options_def_group (value_print_options *opts)
3110 {
3111 return {{value_print_option_defs}, opts};
3112 }
3113
3114 void _initialize_valprint ();
3115 void
3116 _initialize_valprint ()
3117 {
3118 cmd_list_element *cmd;
3119
3120 add_basic_prefix_cmd ("print", no_class,
3121 _("Generic command for setting how things print."),
3122 &setprintlist, "set print ", 0, &setlist);
3123 add_alias_cmd ("p", "print", no_class, 1, &setlist);
3124 /* Prefer set print to set prompt. */
3125 add_alias_cmd ("pr", "print", no_class, 1, &setlist);
3126
3127 add_show_prefix_cmd ("print", no_class,
3128 _("Generic command for showing print settings."),
3129 &showprintlist, "show print ", 0, &showlist);
3130 add_alias_cmd ("p", "print", no_class, 1, &showlist);
3131 add_alias_cmd ("pr", "print", no_class, 1, &showlist);
3132
3133 cmd = add_basic_prefix_cmd ("raw", no_class,
3134 _("\
3135 Generic command for setting what things to print in \"raw\" mode."),
3136 &setprintrawlist, "set print raw ", 0,
3137 &setprintlist);
3138 deprecate_cmd (cmd, nullptr);
3139
3140 cmd = add_show_prefix_cmd ("raw", no_class,
3141 _("Generic command for showing \"print raw\" settings."),
3142 &showprintrawlist, "show print raw ", 0,
3143 &showprintlist);
3144 deprecate_cmd (cmd, nullptr);
3145
3146 gdb::option::add_setshow_cmds_for_options
3147 (class_support, &user_print_options, value_print_option_defs,
3148 &setprintlist, &showprintlist);
3149
3150 add_setshow_zuinteger_cmd ("input-radix", class_support, &input_radix_1,
3151 _("\
3152 Set default input radix for entering numbers."), _("\
3153 Show default input radix for entering numbers."), NULL,
3154 set_input_radix,
3155 show_input_radix,
3156 &setlist, &showlist);
3157
3158 add_setshow_zuinteger_cmd ("output-radix", class_support, &output_radix_1,
3159 _("\
3160 Set default output radix for printing of values."), _("\
3161 Show default output radix for printing of values."), NULL,
3162 set_output_radix,
3163 show_output_radix,
3164 &setlist, &showlist);
3165
3166 /* The "set radix" and "show radix" commands are special in that
3167 they are like normal set and show commands but allow two normally
3168 independent variables to be either set or shown with a single
3169 command. So the usual deprecated_add_set_cmd() and [deleted]
3170 add_show_from_set() commands aren't really appropriate. */
3171 /* FIXME: i18n: With the new add_setshow_integer command, that is no
3172 longer true - show can display anything. */
3173 add_cmd ("radix", class_support, set_radix, _("\
3174 Set default input and output number radices.\n\
3175 Use 'set input-radix' or 'set output-radix' to independently set each.\n\
3176 Without an argument, sets both radices back to the default value of 10."),
3177 &setlist);
3178 add_cmd ("radix", class_support, show_radix, _("\
3179 Show the default input and output number radices.\n\
3180 Use 'show input-radix' or 'show output-radix' to independently show each."),
3181 &showlist);
3182 }
This page took 0.09719 seconds and 4 git commands to generate.