gdb: add target_ops::supports_displaced_step
[deliverable/binutils-gdb.git] / gdbserver / linux-arm-low.cc
1 /* GNU/Linux/ARM specific low level interface, for the remote server for GDB.
2 Copyright (C) 1995-2020 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "server.h"
20 #include "linux-low.h"
21 #include "arch/arm.h"
22 #include "arch/arm-linux.h"
23 #include "arch/arm-get-next-pcs.h"
24 #include "linux-aarch32-low.h"
25 #include "linux-aarch32-tdesc.h"
26 #include "linux-arm-tdesc.h"
27
28 #include <sys/uio.h>
29 /* Don't include elf.h if linux/elf.h got included by gdb_proc_service.h.
30 On Bionic elf.h and linux/elf.h have conflicting definitions. */
31 #ifndef ELFMAG0
32 #include <elf.h>
33 #endif
34 #include "nat/gdb_ptrace.h"
35 #include <signal.h>
36 #include <sys/syscall.h>
37
38 #ifndef PTRACE_GET_THREAD_AREA
39 #define PTRACE_GET_THREAD_AREA 22
40 #endif
41
42 #ifndef PTRACE_GETWMMXREGS
43 # define PTRACE_GETWMMXREGS 18
44 # define PTRACE_SETWMMXREGS 19
45 #endif
46
47 #ifndef PTRACE_GETVFPREGS
48 # define PTRACE_GETVFPREGS 27
49 # define PTRACE_SETVFPREGS 28
50 #endif
51
52 #ifndef PTRACE_GETHBPREGS
53 #define PTRACE_GETHBPREGS 29
54 #define PTRACE_SETHBPREGS 30
55 #endif
56
57 /* Linux target op definitions for the ARM architecture. */
58
59 class arm_target : public linux_process_target
60 {
61 public:
62
63 const regs_info *get_regs_info () override;
64
65 int breakpoint_kind_from_pc (CORE_ADDR *pcptr) override;
66
67 int breakpoint_kind_from_current_state (CORE_ADDR *pcptr) override;
68
69 const gdb_byte *sw_breakpoint_from_kind (int kind, int *size) override;
70
71 bool supports_software_single_step () override;
72
73 bool supports_z_point_type (char z_type) override;
74
75 bool supports_hardware_single_step () override;
76
77 protected:
78
79 void low_arch_setup () override;
80
81 bool low_cannot_fetch_register (int regno) override;
82
83 bool low_cannot_store_register (int regno) override;
84
85 bool low_supports_breakpoints () override;
86
87 CORE_ADDR low_get_pc (regcache *regcache) override;
88
89 void low_set_pc (regcache *regcache, CORE_ADDR newpc) override;
90
91 std::vector<CORE_ADDR> low_get_next_pcs (regcache *regcache) override;
92
93 bool low_breakpoint_at (CORE_ADDR pc) override;
94
95 int low_insert_point (raw_bkpt_type type, CORE_ADDR addr,
96 int size, raw_breakpoint *bp) override;
97
98 int low_remove_point (raw_bkpt_type type, CORE_ADDR addr,
99 int size, raw_breakpoint *bp) override;
100
101 bool low_stopped_by_watchpoint () override;
102
103 CORE_ADDR low_stopped_data_address () override;
104
105 arch_process_info *low_new_process () override;
106
107 void low_delete_process (arch_process_info *info) override;
108
109 void low_new_thread (lwp_info *) override;
110
111 void low_delete_thread (arch_lwp_info *) override;
112
113 void low_new_fork (process_info *parent, process_info *child) override;
114
115 void low_prepare_to_resume (lwp_info *lwp) override;
116
117 bool low_supports_catch_syscall () override;
118
119 void low_get_syscall_trapinfo (regcache *regcache, int *sysno) override;
120 };
121
122 /* The singleton target ops object. */
123
124 static arm_target the_arm_target;
125
126 bool
127 arm_target::low_supports_breakpoints ()
128 {
129 return true;
130 }
131
132 CORE_ADDR
133 arm_target::low_get_pc (regcache *regcache)
134 {
135 return linux_get_pc_32bit (regcache);
136 }
137
138 void
139 arm_target::low_set_pc (regcache *regcache, CORE_ADDR pc)
140 {
141 linux_set_pc_32bit (regcache, pc);
142 }
143
144 int
145 arm_target::breakpoint_kind_from_pc (CORE_ADDR *pcptr)
146 {
147 return arm_breakpoint_kind_from_pc (pcptr);
148 }
149
150 int
151 arm_target::breakpoint_kind_from_current_state (CORE_ADDR *pcptr)
152 {
153 return arm_breakpoint_kind_from_current_state (pcptr);
154 }
155
156 const gdb_byte *
157 arm_target::sw_breakpoint_from_kind (int kind, int *size)
158 {
159 return arm_sw_breakpoint_from_kind (kind, size);
160 }
161
162 bool
163 arm_target::low_breakpoint_at (CORE_ADDR pc)
164 {
165 return arm_breakpoint_at (pc);
166 }
167
168 /* Information describing the hardware breakpoint capabilities. */
169 static struct
170 {
171 unsigned char arch;
172 unsigned char max_wp_length;
173 unsigned char wp_count;
174 unsigned char bp_count;
175 } arm_linux_hwbp_cap;
176
177 /* Enum describing the different types of ARM hardware break-/watch-points. */
178 typedef enum
179 {
180 arm_hwbp_break = 0,
181 arm_hwbp_load = 1,
182 arm_hwbp_store = 2,
183 arm_hwbp_access = 3
184 } arm_hwbp_type;
185
186 /* Type describing an ARM Hardware Breakpoint Control register value. */
187 typedef unsigned int arm_hwbp_control_t;
188
189 /* Structure used to keep track of hardware break-/watch-points. */
190 struct arm_linux_hw_breakpoint
191 {
192 /* Address to break on, or being watched. */
193 unsigned int address;
194 /* Control register for break-/watch- point. */
195 arm_hwbp_control_t control;
196 };
197
198 /* Since we cannot dynamically allocate subfields of arch_process_info,
199 assume a maximum number of supported break-/watchpoints. */
200 #define MAX_BPTS 32
201 #define MAX_WPTS 32
202
203 /* Per-process arch-specific data we want to keep. */
204 struct arch_process_info
205 {
206 /* Hardware breakpoints for this process. */
207 struct arm_linux_hw_breakpoint bpts[MAX_BPTS];
208 /* Hardware watchpoints for this process. */
209 struct arm_linux_hw_breakpoint wpts[MAX_WPTS];
210 };
211
212 /* Per-thread arch-specific data we want to keep. */
213 struct arch_lwp_info
214 {
215 /* Non-zero if our copy differs from what's recorded in the thread. */
216 char bpts_changed[MAX_BPTS];
217 char wpts_changed[MAX_WPTS];
218 /* Cached stopped data address. */
219 CORE_ADDR stopped_data_address;
220 };
221
222 /* These are in <asm/elf.h> in current kernels. */
223 #define HWCAP_VFP 64
224 #define HWCAP_IWMMXT 512
225 #define HWCAP_NEON 4096
226 #define HWCAP_VFPv3 8192
227 #define HWCAP_VFPv3D16 16384
228
229 #ifdef HAVE_SYS_REG_H
230 #include <sys/reg.h>
231 #endif
232
233 #define arm_num_regs 26
234
235 static int arm_regmap[] = {
236 0, 4, 8, 12, 16, 20, 24, 28,
237 32, 36, 40, 44, 48, 52, 56, 60,
238 -1, -1, -1, -1, -1, -1, -1, -1, -1,
239 64
240 };
241
242 /* Forward declarations needed for get_next_pcs ops. */
243 static ULONGEST get_next_pcs_read_memory_unsigned_integer (CORE_ADDR memaddr,
244 int len,
245 int byte_order);
246
247 static CORE_ADDR get_next_pcs_addr_bits_remove (struct arm_get_next_pcs *self,
248 CORE_ADDR val);
249
250 static CORE_ADDR get_next_pcs_syscall_next_pc (struct arm_get_next_pcs *self);
251
252 static int get_next_pcs_is_thumb (struct arm_get_next_pcs *self);
253
254 /* get_next_pcs operations. */
255 static struct arm_get_next_pcs_ops get_next_pcs_ops = {
256 get_next_pcs_read_memory_unsigned_integer,
257 get_next_pcs_syscall_next_pc,
258 get_next_pcs_addr_bits_remove,
259 get_next_pcs_is_thumb,
260 arm_linux_get_next_pcs_fixup,
261 };
262
263 bool
264 arm_target::low_cannot_store_register (int regno)
265 {
266 return (regno >= arm_num_regs);
267 }
268
269 bool
270 arm_target::low_cannot_fetch_register (int regno)
271 {
272 return (regno >= arm_num_regs);
273 }
274
275 static void
276 arm_fill_wmmxregset (struct regcache *regcache, void *buf)
277 {
278 if (arm_linux_get_tdesc_fp_type (regcache->tdesc) != ARM_FP_TYPE_IWMMXT)
279 return;
280
281 for (int i = 0; i < 16; i++)
282 collect_register (regcache, arm_num_regs + i, (char *) buf + i * 8);
283
284 /* We only have access to wcssf, wcasf, and wcgr0-wcgr3. */
285 for (int i = 0; i < 6; i++)
286 collect_register (regcache, arm_num_regs + i + 16,
287 (char *) buf + 16 * 8 + i * 4);
288 }
289
290 static void
291 arm_store_wmmxregset (struct regcache *regcache, const void *buf)
292 {
293 if (arm_linux_get_tdesc_fp_type (regcache->tdesc) != ARM_FP_TYPE_IWMMXT)
294 return;
295
296 for (int i = 0; i < 16; i++)
297 supply_register (regcache, arm_num_regs + i, (char *) buf + i * 8);
298
299 /* We only have access to wcssf, wcasf, and wcgr0-wcgr3. */
300 for (int i = 0; i < 6; i++)
301 supply_register (regcache, arm_num_regs + i + 16,
302 (char *) buf + 16 * 8 + i * 4);
303 }
304
305 static void
306 arm_fill_vfpregset (struct regcache *regcache, void *buf)
307 {
308 int num;
309
310 if (is_aarch32_linux_description (regcache->tdesc))
311 num = 32;
312 else
313 {
314 arm_fp_type fp_type = arm_linux_get_tdesc_fp_type (regcache->tdesc);
315
316 if (fp_type == ARM_FP_TYPE_VFPV3)
317 num = 32;
318 else if (fp_type == ARM_FP_TYPE_VFPV2)
319 num = 16;
320 else
321 return;
322 }
323
324 arm_fill_vfpregset_num (regcache, buf, num);
325 }
326
327 /* Wrapper of UNMAKE_THUMB_ADDR for get_next_pcs. */
328 static CORE_ADDR
329 get_next_pcs_addr_bits_remove (struct arm_get_next_pcs *self, CORE_ADDR val)
330 {
331 return UNMAKE_THUMB_ADDR (val);
332 }
333
334 static void
335 arm_store_vfpregset (struct regcache *regcache, const void *buf)
336 {
337 int num;
338
339 if (is_aarch32_linux_description (regcache->tdesc))
340 num = 32;
341 else
342 {
343 arm_fp_type fp_type = arm_linux_get_tdesc_fp_type (regcache->tdesc);
344
345 if (fp_type == ARM_FP_TYPE_VFPV3)
346 num = 32;
347 else if (fp_type == ARM_FP_TYPE_VFPV2)
348 num = 16;
349 else
350 return;
351 }
352
353 arm_store_vfpregset_num (regcache, buf, num);
354 }
355
356 /* Wrapper of arm_is_thumb_mode for get_next_pcs. */
357 static int
358 get_next_pcs_is_thumb (struct arm_get_next_pcs *self)
359 {
360 return arm_is_thumb_mode ();
361 }
362
363 /* Read memory from the inferior.
364 BYTE_ORDER is ignored and there to keep compatiblity with GDB's
365 read_memory_unsigned_integer. */
366 static ULONGEST
367 get_next_pcs_read_memory_unsigned_integer (CORE_ADDR memaddr,
368 int len,
369 int byte_order)
370 {
371 ULONGEST res;
372
373 res = 0;
374 target_read_memory (memaddr, (unsigned char *) &res, len);
375
376 return res;
377 }
378
379 /* Fetch the thread-local storage pointer for libthread_db. */
380
381 ps_err_e
382 ps_get_thread_area (struct ps_prochandle *ph,
383 lwpid_t lwpid, int idx, void **base)
384 {
385 if (ptrace (PTRACE_GET_THREAD_AREA, lwpid, NULL, base) != 0)
386 return PS_ERR;
387
388 /* IDX is the bias from the thread pointer to the beginning of the
389 thread descriptor. It has to be subtracted due to implementation
390 quirks in libthread_db. */
391 *base = (void *) ((char *)*base - idx);
392
393 return PS_OK;
394 }
395
396
397 /* Query Hardware Breakpoint information for the target we are attached to
398 (using PID as ptrace argument) and set up arm_linux_hwbp_cap. */
399 static void
400 arm_linux_init_hwbp_cap (int pid)
401 {
402 unsigned int val;
403
404 if (ptrace (PTRACE_GETHBPREGS, pid, 0, &val) < 0)
405 return;
406
407 arm_linux_hwbp_cap.arch = (unsigned char)((val >> 24) & 0xff);
408 if (arm_linux_hwbp_cap.arch == 0)
409 return;
410
411 arm_linux_hwbp_cap.max_wp_length = (unsigned char)((val >> 16) & 0xff);
412 arm_linux_hwbp_cap.wp_count = (unsigned char)((val >> 8) & 0xff);
413 arm_linux_hwbp_cap.bp_count = (unsigned char)(val & 0xff);
414
415 if (arm_linux_hwbp_cap.wp_count > MAX_WPTS)
416 internal_error (__FILE__, __LINE__, "Unsupported number of watchpoints");
417 if (arm_linux_hwbp_cap.bp_count > MAX_BPTS)
418 internal_error (__FILE__, __LINE__, "Unsupported number of breakpoints");
419 }
420
421 /* How many hardware breakpoints are available? */
422 static int
423 arm_linux_get_hw_breakpoint_count (void)
424 {
425 return arm_linux_hwbp_cap.bp_count;
426 }
427
428 /* How many hardware watchpoints are available? */
429 static int
430 arm_linux_get_hw_watchpoint_count (void)
431 {
432 return arm_linux_hwbp_cap.wp_count;
433 }
434
435 /* Maximum length of area watched by hardware watchpoint. */
436 static int
437 arm_linux_get_hw_watchpoint_max_length (void)
438 {
439 return arm_linux_hwbp_cap.max_wp_length;
440 }
441
442 /* Initialize an ARM hardware break-/watch-point control register value.
443 BYTE_ADDRESS_SELECT is the mask of bytes to trigger on; HWBP_TYPE is the
444 type of break-/watch-point; ENABLE indicates whether the point is enabled.
445 */
446 static arm_hwbp_control_t
447 arm_hwbp_control_initialize (unsigned byte_address_select,
448 arm_hwbp_type hwbp_type,
449 int enable)
450 {
451 gdb_assert ((byte_address_select & ~0xffU) == 0);
452 gdb_assert (hwbp_type != arm_hwbp_break
453 || ((byte_address_select & 0xfU) != 0));
454
455 return (byte_address_select << 5) | (hwbp_type << 3) | (3 << 1) | enable;
456 }
457
458 /* Does the breakpoint control value CONTROL have the enable bit set? */
459 static int
460 arm_hwbp_control_is_enabled (arm_hwbp_control_t control)
461 {
462 return control & 0x1;
463 }
464
465 /* Is the breakpoint control value CONTROL initialized? */
466 static int
467 arm_hwbp_control_is_initialized (arm_hwbp_control_t control)
468 {
469 return control != 0;
470 }
471
472 /* Change a breakpoint control word so that it is in the disabled state. */
473 static arm_hwbp_control_t
474 arm_hwbp_control_disable (arm_hwbp_control_t control)
475 {
476 return control & ~0x1;
477 }
478
479 /* Are two break-/watch-points equal? */
480 static int
481 arm_linux_hw_breakpoint_equal (const struct arm_linux_hw_breakpoint *p1,
482 const struct arm_linux_hw_breakpoint *p2)
483 {
484 return p1->address == p2->address && p1->control == p2->control;
485 }
486
487 /* Convert a raw breakpoint type to an enum arm_hwbp_type. */
488
489 static arm_hwbp_type
490 raw_bkpt_type_to_arm_hwbp_type (enum raw_bkpt_type raw_type)
491 {
492 switch (raw_type)
493 {
494 case raw_bkpt_type_hw:
495 return arm_hwbp_break;
496 case raw_bkpt_type_write_wp:
497 return arm_hwbp_store;
498 case raw_bkpt_type_read_wp:
499 return arm_hwbp_load;
500 case raw_bkpt_type_access_wp:
501 return arm_hwbp_access;
502 default:
503 gdb_assert_not_reached ("unhandled raw type");
504 }
505 }
506
507 /* Initialize the hardware breakpoint structure P for a breakpoint or
508 watchpoint at ADDR to LEN. The type of watchpoint is given in TYPE.
509 Returns -1 if TYPE is unsupported, or -2 if the particular combination
510 of ADDR and LEN cannot be implemented. Otherwise, returns 0 if TYPE
511 represents a breakpoint and 1 if type represents a watchpoint. */
512 static int
513 arm_linux_hw_point_initialize (enum raw_bkpt_type raw_type, CORE_ADDR addr,
514 int len, struct arm_linux_hw_breakpoint *p)
515 {
516 arm_hwbp_type hwbp_type;
517 unsigned mask;
518
519 hwbp_type = raw_bkpt_type_to_arm_hwbp_type (raw_type);
520
521 if (hwbp_type == arm_hwbp_break)
522 {
523 /* For breakpoints, the length field encodes the mode. */
524 switch (len)
525 {
526 case 2: /* 16-bit Thumb mode breakpoint */
527 case 3: /* 32-bit Thumb mode breakpoint */
528 mask = 0x3;
529 addr &= ~1;
530 break;
531 case 4: /* 32-bit ARM mode breakpoint */
532 mask = 0xf;
533 addr &= ~3;
534 break;
535 default:
536 /* Unsupported. */
537 return -2;
538 }
539 }
540 else
541 {
542 CORE_ADDR max_wp_length = arm_linux_get_hw_watchpoint_max_length ();
543 CORE_ADDR aligned_addr;
544
545 /* Can not set watchpoints for zero or negative lengths. */
546 if (len <= 0)
547 return -2;
548 /* The current ptrace interface can only handle watchpoints that are a
549 power of 2. */
550 if ((len & (len - 1)) != 0)
551 return -2;
552
553 /* Test that the range [ADDR, ADDR + LEN) fits into the largest address
554 range covered by a watchpoint. */
555 aligned_addr = addr & ~(max_wp_length - 1);
556 if (aligned_addr + max_wp_length < addr + len)
557 return -2;
558
559 mask = (1 << len) - 1;
560 }
561
562 p->address = (unsigned int) addr;
563 p->control = arm_hwbp_control_initialize (mask, hwbp_type, 1);
564
565 return hwbp_type != arm_hwbp_break;
566 }
567
568 /* Callback to mark a watch-/breakpoint to be updated in all threads of
569 the current process. */
570
571 static void
572 update_registers_callback (thread_info *thread, int watch, int i)
573 {
574 struct lwp_info *lwp = get_thread_lwp (thread);
575
576 /* The actual update is done later just before resuming the lwp,
577 we just mark that the registers need updating. */
578 if (watch)
579 lwp->arch_private->wpts_changed[i] = 1;
580 else
581 lwp->arch_private->bpts_changed[i] = 1;
582
583 /* If the lwp isn't stopped, force it to momentarily pause, so
584 we can update its breakpoint registers. */
585 if (!lwp->stopped)
586 linux_stop_lwp (lwp);
587 }
588
589 bool
590 arm_target::supports_z_point_type (char z_type)
591 {
592 switch (z_type)
593 {
594 case Z_PACKET_SW_BP:
595 case Z_PACKET_HW_BP:
596 case Z_PACKET_WRITE_WP:
597 case Z_PACKET_READ_WP:
598 case Z_PACKET_ACCESS_WP:
599 return true;
600 default:
601 /* Leave the handling of sw breakpoints with the gdb client. */
602 return false;
603 }
604 }
605
606 /* Insert hardware break-/watchpoint. */
607 int
608 arm_target::low_insert_point (raw_bkpt_type type, CORE_ADDR addr,
609 int len, raw_breakpoint *bp)
610 {
611 struct process_info *proc = current_process ();
612 struct arm_linux_hw_breakpoint p, *pts;
613 int watch, i, count;
614
615 watch = arm_linux_hw_point_initialize (type, addr, len, &p);
616 if (watch < 0)
617 {
618 /* Unsupported. */
619 return watch == -1 ? 1 : -1;
620 }
621
622 if (watch)
623 {
624 count = arm_linux_get_hw_watchpoint_count ();
625 pts = proc->priv->arch_private->wpts;
626 }
627 else
628 {
629 count = arm_linux_get_hw_breakpoint_count ();
630 pts = proc->priv->arch_private->bpts;
631 }
632
633 for (i = 0; i < count; i++)
634 if (!arm_hwbp_control_is_enabled (pts[i].control))
635 {
636 pts[i] = p;
637
638 /* Only update the threads of the current process. */
639 for_each_thread (current_thread->id.pid (), [&] (thread_info *thread)
640 {
641 update_registers_callback (thread, watch, i);
642 });
643
644 return 0;
645 }
646
647 /* We're out of watchpoints. */
648 return -1;
649 }
650
651 /* Remove hardware break-/watchpoint. */
652 int
653 arm_target::low_remove_point (raw_bkpt_type type, CORE_ADDR addr,
654 int len, raw_breakpoint *bp)
655 {
656 struct process_info *proc = current_process ();
657 struct arm_linux_hw_breakpoint p, *pts;
658 int watch, i, count;
659
660 watch = arm_linux_hw_point_initialize (type, addr, len, &p);
661 if (watch < 0)
662 {
663 /* Unsupported. */
664 return -1;
665 }
666
667 if (watch)
668 {
669 count = arm_linux_get_hw_watchpoint_count ();
670 pts = proc->priv->arch_private->wpts;
671 }
672 else
673 {
674 count = arm_linux_get_hw_breakpoint_count ();
675 pts = proc->priv->arch_private->bpts;
676 }
677
678 for (i = 0; i < count; i++)
679 if (arm_linux_hw_breakpoint_equal (&p, pts + i))
680 {
681 pts[i].control = arm_hwbp_control_disable (pts[i].control);
682
683 /* Only update the threads of the current process. */
684 for_each_thread (current_thread->id.pid (), [&] (thread_info *thread)
685 {
686 update_registers_callback (thread, watch, i);
687 });
688
689 return 0;
690 }
691
692 /* No watchpoint matched. */
693 return -1;
694 }
695
696 /* Return whether current thread is stopped due to a watchpoint. */
697 bool
698 arm_target::low_stopped_by_watchpoint ()
699 {
700 struct lwp_info *lwp = get_thread_lwp (current_thread);
701 siginfo_t siginfo;
702
703 /* We must be able to set hardware watchpoints. */
704 if (arm_linux_get_hw_watchpoint_count () == 0)
705 return false;
706
707 /* Retrieve siginfo. */
708 errno = 0;
709 ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread), 0, &siginfo);
710 if (errno != 0)
711 return false;
712
713 /* This must be a hardware breakpoint. */
714 if (siginfo.si_signo != SIGTRAP
715 || (siginfo.si_code & 0xffff) != 0x0004 /* TRAP_HWBKPT */)
716 return false;
717
718 /* If we are in a positive slot then we're looking at a breakpoint and not
719 a watchpoint. */
720 if (siginfo.si_errno >= 0)
721 return false;
722
723 /* Cache stopped data address for use by arm_stopped_data_address. */
724 lwp->arch_private->stopped_data_address
725 = (CORE_ADDR) (uintptr_t) siginfo.si_addr;
726
727 return true;
728 }
729
730 /* Return data address that triggered watchpoint. Called only if
731 low_stopped_by_watchpoint returned true. */
732 CORE_ADDR
733 arm_target::low_stopped_data_address ()
734 {
735 struct lwp_info *lwp = get_thread_lwp (current_thread);
736 return lwp->arch_private->stopped_data_address;
737 }
738
739 /* Called when a new process is created. */
740 arch_process_info *
741 arm_target::low_new_process ()
742 {
743 struct arch_process_info *info = XCNEW (struct arch_process_info);
744 return info;
745 }
746
747 /* Called when a process is being deleted. */
748
749 void
750 arm_target::low_delete_process (arch_process_info *info)
751 {
752 xfree (info);
753 }
754
755 /* Called when a new thread is detected. */
756 void
757 arm_target::low_new_thread (lwp_info *lwp)
758 {
759 struct arch_lwp_info *info = XCNEW (struct arch_lwp_info);
760 int i;
761
762 for (i = 0; i < MAX_BPTS; i++)
763 info->bpts_changed[i] = 1;
764 for (i = 0; i < MAX_WPTS; i++)
765 info->wpts_changed[i] = 1;
766
767 lwp->arch_private = info;
768 }
769
770 /* Function to call when a thread is being deleted. */
771
772 void
773 arm_target::low_delete_thread (arch_lwp_info *arch_lwp)
774 {
775 xfree (arch_lwp);
776 }
777
778 void
779 arm_target::low_new_fork (process_info *parent, process_info *child)
780 {
781 struct arch_process_info *parent_proc_info;
782 struct arch_process_info *child_proc_info;
783 struct lwp_info *child_lwp;
784 struct arch_lwp_info *child_lwp_info;
785 int i;
786
787 /* These are allocated by linux_add_process. */
788 gdb_assert (parent->priv != NULL
789 && parent->priv->arch_private != NULL);
790 gdb_assert (child->priv != NULL
791 && child->priv->arch_private != NULL);
792
793 parent_proc_info = parent->priv->arch_private;
794 child_proc_info = child->priv->arch_private;
795
796 /* Linux kernel before 2.6.33 commit
797 72f674d203cd230426437cdcf7dd6f681dad8b0d
798 will inherit hardware debug registers from parent
799 on fork/vfork/clone. Newer Linux kernels create such tasks with
800 zeroed debug registers.
801
802 GDB core assumes the child inherits the watchpoints/hw
803 breakpoints of the parent, and will remove them all from the
804 forked off process. Copy the debug registers mirrors into the
805 new process so that all breakpoints and watchpoints can be
806 removed together. The debug registers mirror will become zeroed
807 in the end before detaching the forked off process, thus making
808 this compatible with older Linux kernels too. */
809
810 *child_proc_info = *parent_proc_info;
811
812 /* Mark all the hardware breakpoints and watchpoints as changed to
813 make sure that the registers will be updated. */
814 child_lwp = find_lwp_pid (ptid_t (child->pid));
815 child_lwp_info = child_lwp->arch_private;
816 for (i = 0; i < MAX_BPTS; i++)
817 child_lwp_info->bpts_changed[i] = 1;
818 for (i = 0; i < MAX_WPTS; i++)
819 child_lwp_info->wpts_changed[i] = 1;
820 }
821
822 /* Called when resuming a thread.
823 If the debug regs have changed, update the thread's copies. */
824 void
825 arm_target::low_prepare_to_resume (lwp_info *lwp)
826 {
827 struct thread_info *thread = get_lwp_thread (lwp);
828 int pid = lwpid_of (thread);
829 struct process_info *proc = find_process_pid (pid_of (thread));
830 struct arch_process_info *proc_info = proc->priv->arch_private;
831 struct arch_lwp_info *lwp_info = lwp->arch_private;
832 int i;
833
834 for (i = 0; i < arm_linux_get_hw_breakpoint_count (); i++)
835 if (lwp_info->bpts_changed[i])
836 {
837 errno = 0;
838
839 if (arm_hwbp_control_is_enabled (proc_info->bpts[i].control))
840 if (ptrace (PTRACE_SETHBPREGS, pid,
841 (PTRACE_TYPE_ARG3) ((i << 1) + 1),
842 &proc_info->bpts[i].address) < 0)
843 perror_with_name ("Unexpected error setting breakpoint address");
844
845 if (arm_hwbp_control_is_initialized (proc_info->bpts[i].control))
846 if (ptrace (PTRACE_SETHBPREGS, pid,
847 (PTRACE_TYPE_ARG3) ((i << 1) + 2),
848 &proc_info->bpts[i].control) < 0)
849 perror_with_name ("Unexpected error setting breakpoint");
850
851 lwp_info->bpts_changed[i] = 0;
852 }
853
854 for (i = 0; i < arm_linux_get_hw_watchpoint_count (); i++)
855 if (lwp_info->wpts_changed[i])
856 {
857 errno = 0;
858
859 if (arm_hwbp_control_is_enabled (proc_info->wpts[i].control))
860 if (ptrace (PTRACE_SETHBPREGS, pid,
861 (PTRACE_TYPE_ARG3) -((i << 1) + 1),
862 &proc_info->wpts[i].address) < 0)
863 perror_with_name ("Unexpected error setting watchpoint address");
864
865 if (arm_hwbp_control_is_initialized (proc_info->wpts[i].control))
866 if (ptrace (PTRACE_SETHBPREGS, pid,
867 (PTRACE_TYPE_ARG3) -((i << 1) + 2),
868 &proc_info->wpts[i].control) < 0)
869 perror_with_name ("Unexpected error setting watchpoint");
870
871 lwp_info->wpts_changed[i] = 0;
872 }
873 }
874
875 /* Find the next pc for a sigreturn or rt_sigreturn syscall. In
876 addition, set IS_THUMB depending on whether we will return to ARM
877 or Thumb code.
878 See arm-linux.h for stack layout details. */
879 static CORE_ADDR
880 arm_sigreturn_next_pc (struct regcache *regcache, int svc_number,
881 int *is_thumb)
882 {
883 unsigned long sp;
884 unsigned long sp_data;
885 /* Offset of PC register. */
886 int pc_offset = 0;
887 CORE_ADDR next_pc = 0;
888 uint32_t cpsr;
889
890 gdb_assert (svc_number == __NR_sigreturn || svc_number == __NR_rt_sigreturn);
891
892 collect_register_by_name (regcache, "sp", &sp);
893 the_target->read_memory (sp, (unsigned char *) &sp_data, 4);
894
895 pc_offset = arm_linux_sigreturn_next_pc_offset
896 (sp, sp_data, svc_number, __NR_sigreturn == svc_number ? 1 : 0);
897
898 the_target->read_memory (sp + pc_offset, (unsigned char *) &next_pc, 4);
899
900 /* Set IS_THUMB according the CPSR saved on the stack. */
901 the_target->read_memory (sp + pc_offset + 4, (unsigned char *) &cpsr, 4);
902 *is_thumb = ((cpsr & CPSR_T) != 0);
903
904 return next_pc;
905 }
906
907 /* When PC is at a syscall instruction, return the PC of the next
908 instruction to be executed. */
909 static CORE_ADDR
910 get_next_pcs_syscall_next_pc (struct arm_get_next_pcs *self)
911 {
912 CORE_ADDR next_pc = 0;
913 CORE_ADDR pc = regcache_read_pc (self->regcache);
914 int is_thumb = arm_is_thumb_mode ();
915 ULONGEST svc_number = 0;
916 struct regcache *regcache = self->regcache;
917
918 if (is_thumb)
919 {
920 collect_register (regcache, 7, &svc_number);
921 next_pc = pc + 2;
922 }
923 else
924 {
925 unsigned long this_instr;
926 unsigned long svc_operand;
927
928 target_read_memory (pc, (unsigned char *) &this_instr, 4);
929 svc_operand = (0x00ffffff & this_instr);
930
931 if (svc_operand) /* OABI. */
932 {
933 svc_number = svc_operand - 0x900000;
934 }
935 else /* EABI. */
936 {
937 collect_register (regcache, 7, &svc_number);
938 }
939
940 next_pc = pc + 4;
941 }
942
943 /* This is a sigreturn or sigreturn_rt syscall. */
944 if (svc_number == __NR_sigreturn || svc_number == __NR_rt_sigreturn)
945 {
946 /* SIGRETURN or RT_SIGRETURN may affect the arm thumb mode, so
947 update IS_THUMB. */
948 next_pc = arm_sigreturn_next_pc (regcache, svc_number, &is_thumb);
949 }
950
951 /* Addresses for calling Thumb functions have the bit 0 set. */
952 if (is_thumb)
953 next_pc = MAKE_THUMB_ADDR (next_pc);
954
955 return next_pc;
956 }
957
958 static const struct target_desc *
959 arm_read_description (void)
960 {
961 unsigned long arm_hwcap = linux_get_hwcap (4);
962
963 if (arm_hwcap & HWCAP_IWMMXT)
964 return arm_linux_read_description (ARM_FP_TYPE_IWMMXT);
965
966 if (arm_hwcap & HWCAP_VFP)
967 {
968 /* Make sure that the kernel supports reading VFP registers. Support was
969 added in 2.6.30. */
970 int pid = lwpid_of (current_thread);
971 errno = 0;
972 char *buf = (char *) alloca (ARM_VFP3_REGS_SIZE);
973 if (ptrace (PTRACE_GETVFPREGS, pid, 0, buf) < 0 && errno == EIO)
974 return arm_linux_read_description (ARM_FP_TYPE_NONE);
975
976 /* NEON implies either no VFP, or VFPv3-D32. We only support
977 it with VFP. */
978 if (arm_hwcap & HWCAP_NEON)
979 return aarch32_linux_read_description ();
980 else if ((arm_hwcap & (HWCAP_VFPv3 | HWCAP_VFPv3D16)) == HWCAP_VFPv3)
981 return arm_linux_read_description (ARM_FP_TYPE_VFPV3);
982 else
983 return arm_linux_read_description (ARM_FP_TYPE_VFPV2);
984 }
985
986 /* The default configuration uses legacy FPA registers, probably
987 simulated. */
988 return arm_linux_read_description (ARM_FP_TYPE_NONE);
989 }
990
991 void
992 arm_target::low_arch_setup ()
993 {
994 int tid = lwpid_of (current_thread);
995 int gpregs[18];
996 struct iovec iov;
997
998 /* Query hardware watchpoint/breakpoint capabilities. */
999 arm_linux_init_hwbp_cap (tid);
1000
1001 current_process ()->tdesc = arm_read_description ();
1002
1003 iov.iov_base = gpregs;
1004 iov.iov_len = sizeof (gpregs);
1005
1006 /* Check if PTRACE_GETREGSET works. */
1007 if (ptrace (PTRACE_GETREGSET, tid, NT_PRSTATUS, &iov) == 0)
1008 have_ptrace_getregset = 1;
1009 else
1010 have_ptrace_getregset = 0;
1011 }
1012
1013 bool
1014 arm_target::supports_software_single_step ()
1015 {
1016 return true;
1017 }
1018
1019 /* Fetch the next possible PCs after the current instruction executes. */
1020
1021 std::vector<CORE_ADDR>
1022 arm_target::low_get_next_pcs (regcache *regcache)
1023 {
1024 struct arm_get_next_pcs next_pcs_ctx;
1025
1026 arm_get_next_pcs_ctor (&next_pcs_ctx,
1027 &get_next_pcs_ops,
1028 /* Byte order is ignored assumed as host. */
1029 0,
1030 0,
1031 1,
1032 regcache);
1033
1034 return arm_get_next_pcs (&next_pcs_ctx);
1035 }
1036
1037 /* Support for hardware single step. */
1038
1039 bool
1040 arm_target::supports_hardware_single_step ()
1041 {
1042 return false;
1043 }
1044
1045 bool
1046 arm_target::low_supports_catch_syscall ()
1047 {
1048 return true;
1049 }
1050
1051 /* Implementation of linux target ops method "low_get_syscall_trapinfo". */
1052
1053 void
1054 arm_target::low_get_syscall_trapinfo (regcache *regcache, int *sysno)
1055 {
1056 if (arm_is_thumb_mode ())
1057 collect_register_by_name (regcache, "r7", sysno);
1058 else
1059 {
1060 unsigned long pc;
1061 unsigned long insn;
1062
1063 collect_register_by_name (regcache, "pc", &pc);
1064
1065 if (read_memory (pc - 4, (unsigned char *) &insn, 4))
1066 *sysno = UNKNOWN_SYSCALL;
1067 else
1068 {
1069 unsigned long svc_operand = (0x00ffffff & insn);
1070
1071 if (svc_operand)
1072 {
1073 /* OABI */
1074 *sysno = svc_operand - 0x900000;
1075 }
1076 else
1077 {
1078 /* EABI */
1079 collect_register_by_name (regcache, "r7", sysno);
1080 }
1081 }
1082 }
1083 }
1084
1085 /* Register sets without using PTRACE_GETREGSET. */
1086
1087 static struct regset_info arm_regsets[] = {
1088 { PTRACE_GETREGS, PTRACE_SETREGS, 0,
1089 ARM_CORE_REGS_SIZE + ARM_INT_REGISTER_SIZE, GENERAL_REGS,
1090 arm_fill_gregset, arm_store_gregset },
1091 { PTRACE_GETWMMXREGS, PTRACE_SETWMMXREGS, 0, IWMMXT_REGS_SIZE, EXTENDED_REGS,
1092 arm_fill_wmmxregset, arm_store_wmmxregset },
1093 { PTRACE_GETVFPREGS, PTRACE_SETVFPREGS, 0, ARM_VFP3_REGS_SIZE, EXTENDED_REGS,
1094 arm_fill_vfpregset, arm_store_vfpregset },
1095 NULL_REGSET
1096 };
1097
1098 static struct regsets_info arm_regsets_info =
1099 {
1100 arm_regsets, /* regsets */
1101 0, /* num_regsets */
1102 NULL, /* disabled_regsets */
1103 };
1104
1105 static struct usrregs_info arm_usrregs_info =
1106 {
1107 arm_num_regs,
1108 arm_regmap,
1109 };
1110
1111 static struct regs_info regs_info_arm =
1112 {
1113 NULL, /* regset_bitmap */
1114 &arm_usrregs_info,
1115 &arm_regsets_info
1116 };
1117
1118 const regs_info *
1119 arm_target::get_regs_info ()
1120 {
1121 const struct target_desc *tdesc = current_process ()->tdesc;
1122
1123 if (have_ptrace_getregset == 1
1124 && (is_aarch32_linux_description (tdesc)
1125 || arm_linux_get_tdesc_fp_type (tdesc) == ARM_FP_TYPE_VFPV3))
1126 return &regs_info_aarch32;
1127
1128 return &regs_info_arm;
1129 }
1130
1131 /* The linux target ops object. */
1132
1133 linux_process_target *the_linux_target = &the_arm_target;
1134
1135 void
1136 initialize_low_arch (void)
1137 {
1138 initialize_low_arch_aarch32 ();
1139 initialize_regsets_info (&arm_regsets_info);
1140 }
This page took 0.055043 seconds and 4 git commands to generate.