gdb: add target_ops::supports_displaced_step
[deliverable/binutils-gdb.git] / gdbserver / linux-low.cc
1 /* Low level interface to ptrace, for the remote server for GDB.
2 Copyright (C) 1995-2020 Free Software Foundation, Inc.
3
4 This file is part of GDB.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
18
19 #include "server.h"
20 #include "linux-low.h"
21 #include "nat/linux-osdata.h"
22 #include "gdbsupport/agent.h"
23 #include "tdesc.h"
24 #include "gdbsupport/rsp-low.h"
25 #include "gdbsupport/signals-state-save-restore.h"
26 #include "nat/linux-nat.h"
27 #include "nat/linux-waitpid.h"
28 #include "gdbsupport/gdb_wait.h"
29 #include "nat/gdb_ptrace.h"
30 #include "nat/linux-ptrace.h"
31 #include "nat/linux-procfs.h"
32 #include "nat/linux-personality.h"
33 #include <signal.h>
34 #include <sys/ioctl.h>
35 #include <fcntl.h>
36 #include <unistd.h>
37 #include <sys/syscall.h>
38 #include <sched.h>
39 #include <ctype.h>
40 #include <pwd.h>
41 #include <sys/types.h>
42 #include <dirent.h>
43 #include <sys/stat.h>
44 #include <sys/vfs.h>
45 #include <sys/uio.h>
46 #include "gdbsupport/filestuff.h"
47 #include "tracepoint.h"
48 #include <inttypes.h>
49 #include "gdbsupport/common-inferior.h"
50 #include "nat/fork-inferior.h"
51 #include "gdbsupport/environ.h"
52 #include "gdbsupport/gdb-sigmask.h"
53 #include "gdbsupport/scoped_restore.h"
54 #ifndef ELFMAG0
55 /* Don't include <linux/elf.h> here. If it got included by gdb_proc_service.h
56 then ELFMAG0 will have been defined. If it didn't get included by
57 gdb_proc_service.h then including it will likely introduce a duplicate
58 definition of elf_fpregset_t. */
59 #include <elf.h>
60 #endif
61 #include "nat/linux-namespaces.h"
62
63 #ifdef HAVE_PERSONALITY
64 # include <sys/personality.h>
65 # if !HAVE_DECL_ADDR_NO_RANDOMIZE
66 # define ADDR_NO_RANDOMIZE 0x0040000
67 # endif
68 #endif
69
70 #ifndef O_LARGEFILE
71 #define O_LARGEFILE 0
72 #endif
73
74 #ifndef AT_HWCAP2
75 #define AT_HWCAP2 26
76 #endif
77
78 /* Some targets did not define these ptrace constants from the start,
79 so gdbserver defines them locally here. In the future, these may
80 be removed after they are added to asm/ptrace.h. */
81 #if !(defined(PT_TEXT_ADDR) \
82 || defined(PT_DATA_ADDR) \
83 || defined(PT_TEXT_END_ADDR))
84 #if defined(__mcoldfire__)
85 /* These are still undefined in 3.10 kernels. */
86 #define PT_TEXT_ADDR 49*4
87 #define PT_DATA_ADDR 50*4
88 #define PT_TEXT_END_ADDR 51*4
89 /* BFIN already defines these since at least 2.6.32 kernels. */
90 #elif defined(BFIN)
91 #define PT_TEXT_ADDR 220
92 #define PT_TEXT_END_ADDR 224
93 #define PT_DATA_ADDR 228
94 /* These are still undefined in 3.10 kernels. */
95 #elif defined(__TMS320C6X__)
96 #define PT_TEXT_ADDR (0x10000*4)
97 #define PT_DATA_ADDR (0x10004*4)
98 #define PT_TEXT_END_ADDR (0x10008*4)
99 #endif
100 #endif
101
102 #if (defined(__UCLIBC__) \
103 && defined(HAS_NOMMU) \
104 && defined(PT_TEXT_ADDR) \
105 && defined(PT_DATA_ADDR) \
106 && defined(PT_TEXT_END_ADDR))
107 #define SUPPORTS_READ_OFFSETS
108 #endif
109
110 #ifdef HAVE_LINUX_BTRACE
111 # include "nat/linux-btrace.h"
112 # include "gdbsupport/btrace-common.h"
113 #endif
114
115 #ifndef HAVE_ELF32_AUXV_T
116 /* Copied from glibc's elf.h. */
117 typedef struct
118 {
119 uint32_t a_type; /* Entry type */
120 union
121 {
122 uint32_t a_val; /* Integer value */
123 /* We use to have pointer elements added here. We cannot do that,
124 though, since it does not work when using 32-bit definitions
125 on 64-bit platforms and vice versa. */
126 } a_un;
127 } Elf32_auxv_t;
128 #endif
129
130 #ifndef HAVE_ELF64_AUXV_T
131 /* Copied from glibc's elf.h. */
132 typedef struct
133 {
134 uint64_t a_type; /* Entry type */
135 union
136 {
137 uint64_t a_val; /* Integer value */
138 /* We use to have pointer elements added here. We cannot do that,
139 though, since it does not work when using 32-bit definitions
140 on 64-bit platforms and vice versa. */
141 } a_un;
142 } Elf64_auxv_t;
143 #endif
144
145 /* Does the current host support PTRACE_GETREGSET? */
146 int have_ptrace_getregset = -1;
147
148 /* LWP accessors. */
149
150 /* See nat/linux-nat.h. */
151
152 ptid_t
153 ptid_of_lwp (struct lwp_info *lwp)
154 {
155 return ptid_of (get_lwp_thread (lwp));
156 }
157
158 /* See nat/linux-nat.h. */
159
160 void
161 lwp_set_arch_private_info (struct lwp_info *lwp,
162 struct arch_lwp_info *info)
163 {
164 lwp->arch_private = info;
165 }
166
167 /* See nat/linux-nat.h. */
168
169 struct arch_lwp_info *
170 lwp_arch_private_info (struct lwp_info *lwp)
171 {
172 return lwp->arch_private;
173 }
174
175 /* See nat/linux-nat.h. */
176
177 int
178 lwp_is_stopped (struct lwp_info *lwp)
179 {
180 return lwp->stopped;
181 }
182
183 /* See nat/linux-nat.h. */
184
185 enum target_stop_reason
186 lwp_stop_reason (struct lwp_info *lwp)
187 {
188 return lwp->stop_reason;
189 }
190
191 /* See nat/linux-nat.h. */
192
193 int
194 lwp_is_stepping (struct lwp_info *lwp)
195 {
196 return lwp->stepping;
197 }
198
199 /* A list of all unknown processes which receive stop signals. Some
200 other process will presumably claim each of these as forked
201 children momentarily. */
202
203 struct simple_pid_list
204 {
205 /* The process ID. */
206 int pid;
207
208 /* The status as reported by waitpid. */
209 int status;
210
211 /* Next in chain. */
212 struct simple_pid_list *next;
213 };
214 struct simple_pid_list *stopped_pids;
215
216 /* Trivial list manipulation functions to keep track of a list of new
217 stopped processes. */
218
219 static void
220 add_to_pid_list (struct simple_pid_list **listp, int pid, int status)
221 {
222 struct simple_pid_list *new_pid = XNEW (struct simple_pid_list);
223
224 new_pid->pid = pid;
225 new_pid->status = status;
226 new_pid->next = *listp;
227 *listp = new_pid;
228 }
229
230 static int
231 pull_pid_from_list (struct simple_pid_list **listp, int pid, int *statusp)
232 {
233 struct simple_pid_list **p;
234
235 for (p = listp; *p != NULL; p = &(*p)->next)
236 if ((*p)->pid == pid)
237 {
238 struct simple_pid_list *next = (*p)->next;
239
240 *statusp = (*p)->status;
241 xfree (*p);
242 *p = next;
243 return 1;
244 }
245 return 0;
246 }
247
248 enum stopping_threads_kind
249 {
250 /* Not stopping threads presently. */
251 NOT_STOPPING_THREADS,
252
253 /* Stopping threads. */
254 STOPPING_THREADS,
255
256 /* Stopping and suspending threads. */
257 STOPPING_AND_SUSPENDING_THREADS
258 };
259
260 /* This is set while stop_all_lwps is in effect. */
261 enum stopping_threads_kind stopping_threads = NOT_STOPPING_THREADS;
262
263 /* FIXME make into a target method? */
264 int using_threads = 1;
265
266 /* True if we're presently stabilizing threads (moving them out of
267 jump pads). */
268 static int stabilizing_threads;
269
270 static void unsuspend_all_lwps (struct lwp_info *except);
271 static void mark_lwp_dead (struct lwp_info *lwp, int wstat);
272 static int lwp_is_marked_dead (struct lwp_info *lwp);
273 static int kill_lwp (unsigned long lwpid, int signo);
274 static void enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info);
275 static int linux_low_ptrace_options (int attached);
276 static int check_ptrace_stopped_lwp_gone (struct lwp_info *lp);
277
278 /* When the event-loop is doing a step-over, this points at the thread
279 being stepped. */
280 ptid_t step_over_bkpt;
281
282 bool
283 linux_process_target::low_supports_breakpoints ()
284 {
285 return false;
286 }
287
288 CORE_ADDR
289 linux_process_target::low_get_pc (regcache *regcache)
290 {
291 return 0;
292 }
293
294 void
295 linux_process_target::low_set_pc (regcache *regcache, CORE_ADDR newpc)
296 {
297 gdb_assert_not_reached ("linux target op low_set_pc is not implemented");
298 }
299
300 std::vector<CORE_ADDR>
301 linux_process_target::low_get_next_pcs (regcache *regcache)
302 {
303 gdb_assert_not_reached ("linux target op low_get_next_pcs is not "
304 "implemented");
305 }
306
307 int
308 linux_process_target::low_decr_pc_after_break ()
309 {
310 return 0;
311 }
312
313 /* True if LWP is stopped in its stepping range. */
314
315 static int
316 lwp_in_step_range (struct lwp_info *lwp)
317 {
318 CORE_ADDR pc = lwp->stop_pc;
319
320 return (pc >= lwp->step_range_start && pc < lwp->step_range_end);
321 }
322
323 struct pending_signals
324 {
325 int signal;
326 siginfo_t info;
327 struct pending_signals *prev;
328 };
329
330 /* The read/write ends of the pipe registered as waitable file in the
331 event loop. */
332 static int linux_event_pipe[2] = { -1, -1 };
333
334 /* True if we're currently in async mode. */
335 #define target_is_async_p() (linux_event_pipe[0] != -1)
336
337 static void send_sigstop (struct lwp_info *lwp);
338
339 /* Return non-zero if HEADER is a 64-bit ELF file. */
340
341 static int
342 elf_64_header_p (const Elf64_Ehdr *header, unsigned int *machine)
343 {
344 if (header->e_ident[EI_MAG0] == ELFMAG0
345 && header->e_ident[EI_MAG1] == ELFMAG1
346 && header->e_ident[EI_MAG2] == ELFMAG2
347 && header->e_ident[EI_MAG3] == ELFMAG3)
348 {
349 *machine = header->e_machine;
350 return header->e_ident[EI_CLASS] == ELFCLASS64;
351
352 }
353 *machine = EM_NONE;
354 return -1;
355 }
356
357 /* Return non-zero if FILE is a 64-bit ELF file,
358 zero if the file is not a 64-bit ELF file,
359 and -1 if the file is not accessible or doesn't exist. */
360
361 static int
362 elf_64_file_p (const char *file, unsigned int *machine)
363 {
364 Elf64_Ehdr header;
365 int fd;
366
367 fd = open (file, O_RDONLY);
368 if (fd < 0)
369 return -1;
370
371 if (read (fd, &header, sizeof (header)) != sizeof (header))
372 {
373 close (fd);
374 return 0;
375 }
376 close (fd);
377
378 return elf_64_header_p (&header, machine);
379 }
380
381 /* Accepts an integer PID; Returns true if the executable PID is
382 running is a 64-bit ELF file.. */
383
384 int
385 linux_pid_exe_is_elf_64_file (int pid, unsigned int *machine)
386 {
387 char file[PATH_MAX];
388
389 sprintf (file, "/proc/%d/exe", pid);
390 return elf_64_file_p (file, machine);
391 }
392
393 void
394 linux_process_target::delete_lwp (lwp_info *lwp)
395 {
396 struct thread_info *thr = get_lwp_thread (lwp);
397
398 if (debug_threads)
399 debug_printf ("deleting %ld\n", lwpid_of (thr));
400
401 remove_thread (thr);
402
403 low_delete_thread (lwp->arch_private);
404
405 free (lwp);
406 }
407
408 void
409 linux_process_target::low_delete_thread (arch_lwp_info *info)
410 {
411 /* Default implementation should be overridden if architecture-specific
412 info is being used. */
413 gdb_assert (info == nullptr);
414 }
415
416 process_info *
417 linux_process_target::add_linux_process (int pid, int attached)
418 {
419 struct process_info *proc;
420
421 proc = add_process (pid, attached);
422 proc->priv = XCNEW (struct process_info_private);
423
424 proc->priv->arch_private = low_new_process ();
425
426 return proc;
427 }
428
429 arch_process_info *
430 linux_process_target::low_new_process ()
431 {
432 return nullptr;
433 }
434
435 void
436 linux_process_target::low_delete_process (arch_process_info *info)
437 {
438 /* Default implementation must be overridden if architecture-specific
439 info exists. */
440 gdb_assert (info == nullptr);
441 }
442
443 void
444 linux_process_target::low_new_fork (process_info *parent, process_info *child)
445 {
446 /* Nop. */
447 }
448
449 void
450 linux_process_target::arch_setup_thread (thread_info *thread)
451 {
452 struct thread_info *saved_thread;
453
454 saved_thread = current_thread;
455 current_thread = thread;
456
457 low_arch_setup ();
458
459 current_thread = saved_thread;
460 }
461
462 int
463 linux_process_target::handle_extended_wait (lwp_info **orig_event_lwp,
464 int wstat)
465 {
466 client_state &cs = get_client_state ();
467 struct lwp_info *event_lwp = *orig_event_lwp;
468 int event = linux_ptrace_get_extended_event (wstat);
469 struct thread_info *event_thr = get_lwp_thread (event_lwp);
470 struct lwp_info *new_lwp;
471
472 gdb_assert (event_lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
473
474 /* All extended events we currently use are mid-syscall. Only
475 PTRACE_EVENT_STOP is delivered more like a signal-stop, but
476 you have to be using PTRACE_SEIZE to get that. */
477 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
478
479 if ((event == PTRACE_EVENT_FORK) || (event == PTRACE_EVENT_VFORK)
480 || (event == PTRACE_EVENT_CLONE))
481 {
482 ptid_t ptid;
483 unsigned long new_pid;
484 int ret, status;
485
486 /* Get the pid of the new lwp. */
487 ptrace (PTRACE_GETEVENTMSG, lwpid_of (event_thr), (PTRACE_TYPE_ARG3) 0,
488 &new_pid);
489
490 /* If we haven't already seen the new PID stop, wait for it now. */
491 if (!pull_pid_from_list (&stopped_pids, new_pid, &status))
492 {
493 /* The new child has a pending SIGSTOP. We can't affect it until it
494 hits the SIGSTOP, but we're already attached. */
495
496 ret = my_waitpid (new_pid, &status, __WALL);
497
498 if (ret == -1)
499 perror_with_name ("waiting for new child");
500 else if (ret != new_pid)
501 warning ("wait returned unexpected PID %d", ret);
502 else if (!WIFSTOPPED (status))
503 warning ("wait returned unexpected status 0x%x", status);
504 }
505
506 if (event == PTRACE_EVENT_FORK || event == PTRACE_EVENT_VFORK)
507 {
508 struct process_info *parent_proc;
509 struct process_info *child_proc;
510 struct lwp_info *child_lwp;
511 struct thread_info *child_thr;
512 struct target_desc *tdesc;
513
514 ptid = ptid_t (new_pid, new_pid, 0);
515
516 if (debug_threads)
517 {
518 debug_printf ("HEW: Got fork event from LWP %ld, "
519 "new child is %d\n",
520 ptid_of (event_thr).lwp (),
521 ptid.pid ());
522 }
523
524 /* Add the new process to the tables and clone the breakpoint
525 lists of the parent. We need to do this even if the new process
526 will be detached, since we will need the process object and the
527 breakpoints to remove any breakpoints from memory when we
528 detach, and the client side will access registers. */
529 child_proc = add_linux_process (new_pid, 0);
530 gdb_assert (child_proc != NULL);
531 child_lwp = add_lwp (ptid);
532 gdb_assert (child_lwp != NULL);
533 child_lwp->stopped = 1;
534 child_lwp->must_set_ptrace_flags = 1;
535 child_lwp->status_pending_p = 0;
536 child_thr = get_lwp_thread (child_lwp);
537 child_thr->last_resume_kind = resume_stop;
538 child_thr->last_status.kind = TARGET_WAITKIND_STOPPED;
539
540 /* If we're suspending all threads, leave this one suspended
541 too. If the fork/clone parent is stepping over a breakpoint,
542 all other threads have been suspended already. Leave the
543 child suspended too. */
544 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
545 || event_lwp->bp_reinsert != 0)
546 {
547 if (debug_threads)
548 debug_printf ("HEW: leaving child suspended\n");
549 child_lwp->suspended = 1;
550 }
551
552 parent_proc = get_thread_process (event_thr);
553 child_proc->attached = parent_proc->attached;
554
555 if (event_lwp->bp_reinsert != 0
556 && supports_software_single_step ()
557 && event == PTRACE_EVENT_VFORK)
558 {
559 /* If we leave single-step breakpoints there, child will
560 hit it, so uninsert single-step breakpoints from parent
561 (and child). Once vfork child is done, reinsert
562 them back to parent. */
563 uninsert_single_step_breakpoints (event_thr);
564 }
565
566 clone_all_breakpoints (child_thr, event_thr);
567
568 tdesc = allocate_target_description ();
569 copy_target_description (tdesc, parent_proc->tdesc);
570 child_proc->tdesc = tdesc;
571
572 /* Clone arch-specific process data. */
573 low_new_fork (parent_proc, child_proc);
574
575 /* Save fork info in the parent thread. */
576 if (event == PTRACE_EVENT_FORK)
577 event_lwp->waitstatus.kind = TARGET_WAITKIND_FORKED;
578 else if (event == PTRACE_EVENT_VFORK)
579 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORKED;
580
581 event_lwp->waitstatus.value.related_pid = ptid;
582
583 /* The status_pending field contains bits denoting the
584 extended event, so when the pending event is handled,
585 the handler will look at lwp->waitstatus. */
586 event_lwp->status_pending_p = 1;
587 event_lwp->status_pending = wstat;
588
589 /* Link the threads until the parent event is passed on to
590 higher layers. */
591 event_lwp->fork_relative = child_lwp;
592 child_lwp->fork_relative = event_lwp;
593
594 /* If the parent thread is doing step-over with single-step
595 breakpoints, the list of single-step breakpoints are cloned
596 from the parent's. Remove them from the child process.
597 In case of vfork, we'll reinsert them back once vforked
598 child is done. */
599 if (event_lwp->bp_reinsert != 0
600 && supports_software_single_step ())
601 {
602 /* The child process is forked and stopped, so it is safe
603 to access its memory without stopping all other threads
604 from other processes. */
605 delete_single_step_breakpoints (child_thr);
606
607 gdb_assert (has_single_step_breakpoints (event_thr));
608 gdb_assert (!has_single_step_breakpoints (child_thr));
609 }
610
611 /* Report the event. */
612 return 0;
613 }
614
615 if (debug_threads)
616 debug_printf ("HEW: Got clone event "
617 "from LWP %ld, new child is LWP %ld\n",
618 lwpid_of (event_thr), new_pid);
619
620 ptid = ptid_t (pid_of (event_thr), new_pid, 0);
621 new_lwp = add_lwp (ptid);
622
623 /* Either we're going to immediately resume the new thread
624 or leave it stopped. resume_one_lwp is a nop if it
625 thinks the thread is currently running, so set this first
626 before calling resume_one_lwp. */
627 new_lwp->stopped = 1;
628
629 /* If we're suspending all threads, leave this one suspended
630 too. If the fork/clone parent is stepping over a breakpoint,
631 all other threads have been suspended already. Leave the
632 child suspended too. */
633 if (stopping_threads == STOPPING_AND_SUSPENDING_THREADS
634 || event_lwp->bp_reinsert != 0)
635 new_lwp->suspended = 1;
636
637 /* Normally we will get the pending SIGSTOP. But in some cases
638 we might get another signal delivered to the group first.
639 If we do get another signal, be sure not to lose it. */
640 if (WSTOPSIG (status) != SIGSTOP)
641 {
642 new_lwp->stop_expected = 1;
643 new_lwp->status_pending_p = 1;
644 new_lwp->status_pending = status;
645 }
646 else if (cs.report_thread_events)
647 {
648 new_lwp->waitstatus.kind = TARGET_WAITKIND_THREAD_CREATED;
649 new_lwp->status_pending_p = 1;
650 new_lwp->status_pending = status;
651 }
652
653 #ifdef USE_THREAD_DB
654 thread_db_notice_clone (event_thr, ptid);
655 #endif
656
657 /* Don't report the event. */
658 return 1;
659 }
660 else if (event == PTRACE_EVENT_VFORK_DONE)
661 {
662 event_lwp->waitstatus.kind = TARGET_WAITKIND_VFORK_DONE;
663
664 if (event_lwp->bp_reinsert != 0 && supports_software_single_step ())
665 {
666 reinsert_single_step_breakpoints (event_thr);
667
668 gdb_assert (has_single_step_breakpoints (event_thr));
669 }
670
671 /* Report the event. */
672 return 0;
673 }
674 else if (event == PTRACE_EVENT_EXEC && cs.report_exec_events)
675 {
676 struct process_info *proc;
677 std::vector<int> syscalls_to_catch;
678 ptid_t event_ptid;
679 pid_t event_pid;
680
681 if (debug_threads)
682 {
683 debug_printf ("HEW: Got exec event from LWP %ld\n",
684 lwpid_of (event_thr));
685 }
686
687 /* Get the event ptid. */
688 event_ptid = ptid_of (event_thr);
689 event_pid = event_ptid.pid ();
690
691 /* Save the syscall list from the execing process. */
692 proc = get_thread_process (event_thr);
693 syscalls_to_catch = std::move (proc->syscalls_to_catch);
694
695 /* Delete the execing process and all its threads. */
696 mourn (proc);
697 current_thread = NULL;
698
699 /* Create a new process/lwp/thread. */
700 proc = add_linux_process (event_pid, 0);
701 event_lwp = add_lwp (event_ptid);
702 event_thr = get_lwp_thread (event_lwp);
703 gdb_assert (current_thread == event_thr);
704 arch_setup_thread (event_thr);
705
706 /* Set the event status. */
707 event_lwp->waitstatus.kind = TARGET_WAITKIND_EXECD;
708 event_lwp->waitstatus.value.execd_pathname
709 = xstrdup (linux_proc_pid_to_exec_file (lwpid_of (event_thr)));
710
711 /* Mark the exec status as pending. */
712 event_lwp->stopped = 1;
713 event_lwp->status_pending_p = 1;
714 event_lwp->status_pending = wstat;
715 event_thr->last_resume_kind = resume_continue;
716 event_thr->last_status.kind = TARGET_WAITKIND_IGNORE;
717
718 /* Update syscall state in the new lwp, effectively mid-syscall too. */
719 event_lwp->syscall_state = TARGET_WAITKIND_SYSCALL_ENTRY;
720
721 /* Restore the list to catch. Don't rely on the client, which is free
722 to avoid sending a new list when the architecture doesn't change.
723 Also, for ANY_SYSCALL, the architecture doesn't really matter. */
724 proc->syscalls_to_catch = std::move (syscalls_to_catch);
725
726 /* Report the event. */
727 *orig_event_lwp = event_lwp;
728 return 0;
729 }
730
731 internal_error (__FILE__, __LINE__, _("unknown ptrace event %d"), event);
732 }
733
734 CORE_ADDR
735 linux_process_target::get_pc (lwp_info *lwp)
736 {
737 struct thread_info *saved_thread;
738 struct regcache *regcache;
739 CORE_ADDR pc;
740
741 if (!low_supports_breakpoints ())
742 return 0;
743
744 saved_thread = current_thread;
745 current_thread = get_lwp_thread (lwp);
746
747 regcache = get_thread_regcache (current_thread, 1);
748 pc = low_get_pc (regcache);
749
750 if (debug_threads)
751 debug_printf ("pc is 0x%lx\n", (long) pc);
752
753 current_thread = saved_thread;
754 return pc;
755 }
756
757 void
758 linux_process_target::get_syscall_trapinfo (lwp_info *lwp, int *sysno)
759 {
760 struct thread_info *saved_thread;
761 struct regcache *regcache;
762
763 saved_thread = current_thread;
764 current_thread = get_lwp_thread (lwp);
765
766 regcache = get_thread_regcache (current_thread, 1);
767 low_get_syscall_trapinfo (regcache, sysno);
768
769 if (debug_threads)
770 debug_printf ("get_syscall_trapinfo sysno %d\n", *sysno);
771
772 current_thread = saved_thread;
773 }
774
775 void
776 linux_process_target::low_get_syscall_trapinfo (regcache *regcache, int *sysno)
777 {
778 /* By default, report an unknown system call number. */
779 *sysno = UNKNOWN_SYSCALL;
780 }
781
782 bool
783 linux_process_target::save_stop_reason (lwp_info *lwp)
784 {
785 CORE_ADDR pc;
786 CORE_ADDR sw_breakpoint_pc;
787 struct thread_info *saved_thread;
788 #if USE_SIGTRAP_SIGINFO
789 siginfo_t siginfo;
790 #endif
791
792 if (!low_supports_breakpoints ())
793 return false;
794
795 pc = get_pc (lwp);
796 sw_breakpoint_pc = pc - low_decr_pc_after_break ();
797
798 /* breakpoint_at reads from the current thread. */
799 saved_thread = current_thread;
800 current_thread = get_lwp_thread (lwp);
801
802 #if USE_SIGTRAP_SIGINFO
803 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
804 (PTRACE_TYPE_ARG3) 0, &siginfo) == 0)
805 {
806 if (siginfo.si_signo == SIGTRAP)
807 {
808 if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code)
809 && GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
810 {
811 /* The si_code is ambiguous on this arch -- check debug
812 registers. */
813 if (!check_stopped_by_watchpoint (lwp))
814 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
815 }
816 else if (GDB_ARCH_IS_TRAP_BRKPT (siginfo.si_code))
817 {
818 /* If we determine the LWP stopped for a SW breakpoint,
819 trust it. Particularly don't check watchpoint
820 registers, because at least on s390, we'd find
821 stopped-by-watchpoint as long as there's a watchpoint
822 set. */
823 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
824 }
825 else if (GDB_ARCH_IS_TRAP_HWBKPT (siginfo.si_code))
826 {
827 /* This can indicate either a hardware breakpoint or
828 hardware watchpoint. Check debug registers. */
829 if (!check_stopped_by_watchpoint (lwp))
830 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
831 }
832 else if (siginfo.si_code == TRAP_TRACE)
833 {
834 /* We may have single stepped an instruction that
835 triggered a watchpoint. In that case, on some
836 architectures (such as x86), instead of TRAP_HWBKPT,
837 si_code indicates TRAP_TRACE, and we need to check
838 the debug registers separately. */
839 if (!check_stopped_by_watchpoint (lwp))
840 lwp->stop_reason = TARGET_STOPPED_BY_SINGLE_STEP;
841 }
842 }
843 }
844 #else
845 /* We may have just stepped a breakpoint instruction. E.g., in
846 non-stop mode, GDB first tells the thread A to step a range, and
847 then the user inserts a breakpoint inside the range. In that
848 case we need to report the breakpoint PC. */
849 if ((!lwp->stepping || lwp->stop_pc == sw_breakpoint_pc)
850 && low_breakpoint_at (sw_breakpoint_pc))
851 lwp->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
852
853 if (hardware_breakpoint_inserted_here (pc))
854 lwp->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
855
856 if (lwp->stop_reason == TARGET_STOPPED_BY_NO_REASON)
857 check_stopped_by_watchpoint (lwp);
858 #endif
859
860 if (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT)
861 {
862 if (debug_threads)
863 {
864 struct thread_info *thr = get_lwp_thread (lwp);
865
866 debug_printf ("CSBB: %s stopped by software breakpoint\n",
867 target_pid_to_str (ptid_of (thr)));
868 }
869
870 /* Back up the PC if necessary. */
871 if (pc != sw_breakpoint_pc)
872 {
873 struct regcache *regcache
874 = get_thread_regcache (current_thread, 1);
875 low_set_pc (regcache, sw_breakpoint_pc);
876 }
877
878 /* Update this so we record the correct stop PC below. */
879 pc = sw_breakpoint_pc;
880 }
881 else if (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT)
882 {
883 if (debug_threads)
884 {
885 struct thread_info *thr = get_lwp_thread (lwp);
886
887 debug_printf ("CSBB: %s stopped by hardware breakpoint\n",
888 target_pid_to_str (ptid_of (thr)));
889 }
890 }
891 else if (lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
892 {
893 if (debug_threads)
894 {
895 struct thread_info *thr = get_lwp_thread (lwp);
896
897 debug_printf ("CSBB: %s stopped by hardware watchpoint\n",
898 target_pid_to_str (ptid_of (thr)));
899 }
900 }
901 else if (lwp->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP)
902 {
903 if (debug_threads)
904 {
905 struct thread_info *thr = get_lwp_thread (lwp);
906
907 debug_printf ("CSBB: %s stopped by trace\n",
908 target_pid_to_str (ptid_of (thr)));
909 }
910 }
911
912 lwp->stop_pc = pc;
913 current_thread = saved_thread;
914 return true;
915 }
916
917 lwp_info *
918 linux_process_target::add_lwp (ptid_t ptid)
919 {
920 struct lwp_info *lwp;
921
922 lwp = XCNEW (struct lwp_info);
923
924 lwp->waitstatus.kind = TARGET_WAITKIND_IGNORE;
925
926 lwp->thread = add_thread (ptid, lwp);
927
928 low_new_thread (lwp);
929
930 return lwp;
931 }
932
933 void
934 linux_process_target::low_new_thread (lwp_info *info)
935 {
936 /* Nop. */
937 }
938
939 /* Callback to be used when calling fork_inferior, responsible for
940 actually initiating the tracing of the inferior. */
941
942 static void
943 linux_ptrace_fun ()
944 {
945 if (ptrace (PTRACE_TRACEME, 0, (PTRACE_TYPE_ARG3) 0,
946 (PTRACE_TYPE_ARG4) 0) < 0)
947 trace_start_error_with_name ("ptrace");
948
949 if (setpgid (0, 0) < 0)
950 trace_start_error_with_name ("setpgid");
951
952 /* If GDBserver is connected to gdb via stdio, redirect the inferior's
953 stdout to stderr so that inferior i/o doesn't corrupt the connection.
954 Also, redirect stdin to /dev/null. */
955 if (remote_connection_is_stdio ())
956 {
957 if (close (0) < 0)
958 trace_start_error_with_name ("close");
959 if (open ("/dev/null", O_RDONLY) < 0)
960 trace_start_error_with_name ("open");
961 if (dup2 (2, 1) < 0)
962 trace_start_error_with_name ("dup2");
963 if (write (2, "stdin/stdout redirected\n",
964 sizeof ("stdin/stdout redirected\n") - 1) < 0)
965 {
966 /* Errors ignored. */;
967 }
968 }
969 }
970
971 /* Start an inferior process and returns its pid.
972 PROGRAM is the name of the program to be started, and PROGRAM_ARGS
973 are its arguments. */
974
975 int
976 linux_process_target::create_inferior (const char *program,
977 const std::vector<char *> &program_args)
978 {
979 client_state &cs = get_client_state ();
980 struct lwp_info *new_lwp;
981 int pid;
982 ptid_t ptid;
983
984 {
985 maybe_disable_address_space_randomization restore_personality
986 (cs.disable_randomization);
987 std::string str_program_args = construct_inferior_arguments (program_args);
988
989 pid = fork_inferior (program,
990 str_program_args.c_str (),
991 get_environ ()->envp (), linux_ptrace_fun,
992 NULL, NULL, NULL, NULL);
993 }
994
995 add_linux_process (pid, 0);
996
997 ptid = ptid_t (pid, pid, 0);
998 new_lwp = add_lwp (ptid);
999 new_lwp->must_set_ptrace_flags = 1;
1000
1001 post_fork_inferior (pid, program);
1002
1003 return pid;
1004 }
1005
1006 /* Implement the post_create_inferior target_ops method. */
1007
1008 void
1009 linux_process_target::post_create_inferior ()
1010 {
1011 struct lwp_info *lwp = get_thread_lwp (current_thread);
1012
1013 low_arch_setup ();
1014
1015 if (lwp->must_set_ptrace_flags)
1016 {
1017 struct process_info *proc = current_process ();
1018 int options = linux_low_ptrace_options (proc->attached);
1019
1020 linux_enable_event_reporting (lwpid_of (current_thread), options);
1021 lwp->must_set_ptrace_flags = 0;
1022 }
1023 }
1024
1025 int
1026 linux_process_target::attach_lwp (ptid_t ptid)
1027 {
1028 struct lwp_info *new_lwp;
1029 int lwpid = ptid.lwp ();
1030
1031 if (ptrace (PTRACE_ATTACH, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0)
1032 != 0)
1033 return errno;
1034
1035 new_lwp = add_lwp (ptid);
1036
1037 /* We need to wait for SIGSTOP before being able to make the next
1038 ptrace call on this LWP. */
1039 new_lwp->must_set_ptrace_flags = 1;
1040
1041 if (linux_proc_pid_is_stopped (lwpid))
1042 {
1043 if (debug_threads)
1044 debug_printf ("Attached to a stopped process\n");
1045
1046 /* The process is definitely stopped. It is in a job control
1047 stop, unless the kernel predates the TASK_STOPPED /
1048 TASK_TRACED distinction, in which case it might be in a
1049 ptrace stop. Make sure it is in a ptrace stop; from there we
1050 can kill it, signal it, et cetera.
1051
1052 First make sure there is a pending SIGSTOP. Since we are
1053 already attached, the process can not transition from stopped
1054 to running without a PTRACE_CONT; so we know this signal will
1055 go into the queue. The SIGSTOP generated by PTRACE_ATTACH is
1056 probably already in the queue (unless this kernel is old
1057 enough to use TASK_STOPPED for ptrace stops); but since
1058 SIGSTOP is not an RT signal, it can only be queued once. */
1059 kill_lwp (lwpid, SIGSTOP);
1060
1061 /* Finally, resume the stopped process. This will deliver the
1062 SIGSTOP (or a higher priority signal, just like normal
1063 PTRACE_ATTACH), which we'll catch later on. */
1064 ptrace (PTRACE_CONT, lwpid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1065 }
1066
1067 /* The next time we wait for this LWP we'll see a SIGSTOP as PTRACE_ATTACH
1068 brings it to a halt.
1069
1070 There are several cases to consider here:
1071
1072 1) gdbserver has already attached to the process and is being notified
1073 of a new thread that is being created.
1074 In this case we should ignore that SIGSTOP and resume the
1075 process. This is handled below by setting stop_expected = 1,
1076 and the fact that add_thread sets last_resume_kind ==
1077 resume_continue.
1078
1079 2) This is the first thread (the process thread), and we're attaching
1080 to it via attach_inferior.
1081 In this case we want the process thread to stop.
1082 This is handled by having linux_attach set last_resume_kind ==
1083 resume_stop after we return.
1084
1085 If the pid we are attaching to is also the tgid, we attach to and
1086 stop all the existing threads. Otherwise, we attach to pid and
1087 ignore any other threads in the same group as this pid.
1088
1089 3) GDB is connecting to gdbserver and is requesting an enumeration of all
1090 existing threads.
1091 In this case we want the thread to stop.
1092 FIXME: This case is currently not properly handled.
1093 We should wait for the SIGSTOP but don't. Things work apparently
1094 because enough time passes between when we ptrace (ATTACH) and when
1095 gdb makes the next ptrace call on the thread.
1096
1097 On the other hand, if we are currently trying to stop all threads, we
1098 should treat the new thread as if we had sent it a SIGSTOP. This works
1099 because we are guaranteed that the add_lwp call above added us to the
1100 end of the list, and so the new thread has not yet reached
1101 wait_for_sigstop (but will). */
1102 new_lwp->stop_expected = 1;
1103
1104 return 0;
1105 }
1106
1107 /* Callback for linux_proc_attach_tgid_threads. Attach to PTID if not
1108 already attached. Returns true if a new LWP is found, false
1109 otherwise. */
1110
1111 static int
1112 attach_proc_task_lwp_callback (ptid_t ptid)
1113 {
1114 /* Is this a new thread? */
1115 if (find_thread_ptid (ptid) == NULL)
1116 {
1117 int lwpid = ptid.lwp ();
1118 int err;
1119
1120 if (debug_threads)
1121 debug_printf ("Found new lwp %d\n", lwpid);
1122
1123 err = the_linux_target->attach_lwp (ptid);
1124
1125 /* Be quiet if we simply raced with the thread exiting. EPERM
1126 is returned if the thread's task still exists, and is marked
1127 as exited or zombie, as well as other conditions, so in that
1128 case, confirm the status in /proc/PID/status. */
1129 if (err == ESRCH
1130 || (err == EPERM && linux_proc_pid_is_gone (lwpid)))
1131 {
1132 if (debug_threads)
1133 {
1134 debug_printf ("Cannot attach to lwp %d: "
1135 "thread is gone (%d: %s)\n",
1136 lwpid, err, safe_strerror (err));
1137 }
1138 }
1139 else if (err != 0)
1140 {
1141 std::string reason
1142 = linux_ptrace_attach_fail_reason_string (ptid, err);
1143
1144 warning (_("Cannot attach to lwp %d: %s"), lwpid, reason.c_str ());
1145 }
1146
1147 return 1;
1148 }
1149 return 0;
1150 }
1151
1152 static void async_file_mark (void);
1153
1154 /* Attach to PID. If PID is the tgid, attach to it and all
1155 of its threads. */
1156
1157 int
1158 linux_process_target::attach (unsigned long pid)
1159 {
1160 struct process_info *proc;
1161 struct thread_info *initial_thread;
1162 ptid_t ptid = ptid_t (pid, pid, 0);
1163 int err;
1164
1165 proc = add_linux_process (pid, 1);
1166
1167 /* Attach to PID. We will check for other threads
1168 soon. */
1169 err = attach_lwp (ptid);
1170 if (err != 0)
1171 {
1172 remove_process (proc);
1173
1174 std::string reason = linux_ptrace_attach_fail_reason_string (ptid, err);
1175 error ("Cannot attach to process %ld: %s", pid, reason.c_str ());
1176 }
1177
1178 /* Don't ignore the initial SIGSTOP if we just attached to this
1179 process. It will be collected by wait shortly. */
1180 initial_thread = find_thread_ptid (ptid_t (pid, pid, 0));
1181 initial_thread->last_resume_kind = resume_stop;
1182
1183 /* We must attach to every LWP. If /proc is mounted, use that to
1184 find them now. On the one hand, the inferior may be using raw
1185 clone instead of using pthreads. On the other hand, even if it
1186 is using pthreads, GDB may not be connected yet (thread_db needs
1187 to do symbol lookups, through qSymbol). Also, thread_db walks
1188 structures in the inferior's address space to find the list of
1189 threads/LWPs, and those structures may well be corrupted. Note
1190 that once thread_db is loaded, we'll still use it to list threads
1191 and associate pthread info with each LWP. */
1192 linux_proc_attach_tgid_threads (pid, attach_proc_task_lwp_callback);
1193
1194 /* GDB will shortly read the xml target description for this
1195 process, to figure out the process' architecture. But the target
1196 description is only filled in when the first process/thread in
1197 the thread group reports its initial PTRACE_ATTACH SIGSTOP. Do
1198 that now, otherwise, if GDB is fast enough, it could read the
1199 target description _before_ that initial stop. */
1200 if (non_stop)
1201 {
1202 struct lwp_info *lwp;
1203 int wstat, lwpid;
1204 ptid_t pid_ptid = ptid_t (pid);
1205
1206 lwpid = wait_for_event_filtered (pid_ptid, pid_ptid, &wstat, __WALL);
1207 gdb_assert (lwpid > 0);
1208
1209 lwp = find_lwp_pid (ptid_t (lwpid));
1210
1211 if (!WIFSTOPPED (wstat) || WSTOPSIG (wstat) != SIGSTOP)
1212 {
1213 lwp->status_pending_p = 1;
1214 lwp->status_pending = wstat;
1215 }
1216
1217 initial_thread->last_resume_kind = resume_continue;
1218
1219 async_file_mark ();
1220
1221 gdb_assert (proc->tdesc != NULL);
1222 }
1223
1224 return 0;
1225 }
1226
1227 static int
1228 last_thread_of_process_p (int pid)
1229 {
1230 bool seen_one = false;
1231
1232 thread_info *thread = find_thread (pid, [&] (thread_info *thr_arg)
1233 {
1234 if (!seen_one)
1235 {
1236 /* This is the first thread of this process we see. */
1237 seen_one = true;
1238 return false;
1239 }
1240 else
1241 {
1242 /* This is the second thread of this process we see. */
1243 return true;
1244 }
1245 });
1246
1247 return thread == NULL;
1248 }
1249
1250 /* Kill LWP. */
1251
1252 static void
1253 linux_kill_one_lwp (struct lwp_info *lwp)
1254 {
1255 struct thread_info *thr = get_lwp_thread (lwp);
1256 int pid = lwpid_of (thr);
1257
1258 /* PTRACE_KILL is unreliable. After stepping into a signal handler,
1259 there is no signal context, and ptrace(PTRACE_KILL) (or
1260 ptrace(PTRACE_CONT, SIGKILL), pretty much the same) acts like
1261 ptrace(CONT, pid, 0,0) and just resumes the tracee. A better
1262 alternative is to kill with SIGKILL. We only need one SIGKILL
1263 per process, not one for each thread. But since we still support
1264 support debugging programs using raw clone without CLONE_THREAD,
1265 we send one for each thread. For years, we used PTRACE_KILL
1266 only, so we're being a bit paranoid about some old kernels where
1267 PTRACE_KILL might work better (dubious if there are any such, but
1268 that's why it's paranoia), so we try SIGKILL first, PTRACE_KILL
1269 second, and so we're fine everywhere. */
1270
1271 errno = 0;
1272 kill_lwp (pid, SIGKILL);
1273 if (debug_threads)
1274 {
1275 int save_errno = errno;
1276
1277 debug_printf ("LKL: kill_lwp (SIGKILL) %s, 0, 0 (%s)\n",
1278 target_pid_to_str (ptid_of (thr)),
1279 save_errno ? safe_strerror (save_errno) : "OK");
1280 }
1281
1282 errno = 0;
1283 ptrace (PTRACE_KILL, pid, (PTRACE_TYPE_ARG3) 0, (PTRACE_TYPE_ARG4) 0);
1284 if (debug_threads)
1285 {
1286 int save_errno = errno;
1287
1288 debug_printf ("LKL: PTRACE_KILL %s, 0, 0 (%s)\n",
1289 target_pid_to_str (ptid_of (thr)),
1290 save_errno ? safe_strerror (save_errno) : "OK");
1291 }
1292 }
1293
1294 /* Kill LWP and wait for it to die. */
1295
1296 static void
1297 kill_wait_lwp (struct lwp_info *lwp)
1298 {
1299 struct thread_info *thr = get_lwp_thread (lwp);
1300 int pid = ptid_of (thr).pid ();
1301 int lwpid = ptid_of (thr).lwp ();
1302 int wstat;
1303 int res;
1304
1305 if (debug_threads)
1306 debug_printf ("kwl: killing lwp %d, for pid: %d\n", lwpid, pid);
1307
1308 do
1309 {
1310 linux_kill_one_lwp (lwp);
1311
1312 /* Make sure it died. Notes:
1313
1314 - The loop is most likely unnecessary.
1315
1316 - We don't use wait_for_event as that could delete lwps
1317 while we're iterating over them. We're not interested in
1318 any pending status at this point, only in making sure all
1319 wait status on the kernel side are collected until the
1320 process is reaped.
1321
1322 - We don't use __WALL here as the __WALL emulation relies on
1323 SIGCHLD, and killing a stopped process doesn't generate
1324 one, nor an exit status.
1325 */
1326 res = my_waitpid (lwpid, &wstat, 0);
1327 if (res == -1 && errno == ECHILD)
1328 res = my_waitpid (lwpid, &wstat, __WCLONE);
1329 } while (res > 0 && WIFSTOPPED (wstat));
1330
1331 /* Even if it was stopped, the child may have already disappeared.
1332 E.g., if it was killed by SIGKILL. */
1333 if (res < 0 && errno != ECHILD)
1334 perror_with_name ("kill_wait_lwp");
1335 }
1336
1337 /* Callback for `for_each_thread'. Kills an lwp of a given process,
1338 except the leader. */
1339
1340 static void
1341 kill_one_lwp_callback (thread_info *thread, int pid)
1342 {
1343 struct lwp_info *lwp = get_thread_lwp (thread);
1344
1345 /* We avoid killing the first thread here, because of a Linux kernel (at
1346 least 2.6.0-test7 through 2.6.8-rc4) bug; if we kill the parent before
1347 the children get a chance to be reaped, it will remain a zombie
1348 forever. */
1349
1350 if (lwpid_of (thread) == pid)
1351 {
1352 if (debug_threads)
1353 debug_printf ("lkop: is last of process %s\n",
1354 target_pid_to_str (thread->id));
1355 return;
1356 }
1357
1358 kill_wait_lwp (lwp);
1359 }
1360
1361 int
1362 linux_process_target::kill (process_info *process)
1363 {
1364 int pid = process->pid;
1365
1366 /* If we're killing a running inferior, make sure it is stopped
1367 first, as PTRACE_KILL will not work otherwise. */
1368 stop_all_lwps (0, NULL);
1369
1370 for_each_thread (pid, [&] (thread_info *thread)
1371 {
1372 kill_one_lwp_callback (thread, pid);
1373 });
1374
1375 /* See the comment in linux_kill_one_lwp. We did not kill the first
1376 thread in the list, so do so now. */
1377 lwp_info *lwp = find_lwp_pid (ptid_t (pid));
1378
1379 if (lwp == NULL)
1380 {
1381 if (debug_threads)
1382 debug_printf ("lk_1: cannot find lwp for pid: %d\n",
1383 pid);
1384 }
1385 else
1386 kill_wait_lwp (lwp);
1387
1388 mourn (process);
1389
1390 /* Since we presently can only stop all lwps of all processes, we
1391 need to unstop lwps of other processes. */
1392 unstop_all_lwps (0, NULL);
1393 return 0;
1394 }
1395
1396 /* Get pending signal of THREAD, for detaching purposes. This is the
1397 signal the thread last stopped for, which we need to deliver to the
1398 thread when detaching, otherwise, it'd be suppressed/lost. */
1399
1400 static int
1401 get_detach_signal (struct thread_info *thread)
1402 {
1403 client_state &cs = get_client_state ();
1404 enum gdb_signal signo = GDB_SIGNAL_0;
1405 int status;
1406 struct lwp_info *lp = get_thread_lwp (thread);
1407
1408 if (lp->status_pending_p)
1409 status = lp->status_pending;
1410 else
1411 {
1412 /* If the thread had been suspended by gdbserver, and it stopped
1413 cleanly, then it'll have stopped with SIGSTOP. But we don't
1414 want to deliver that SIGSTOP. */
1415 if (thread->last_status.kind != TARGET_WAITKIND_STOPPED
1416 || thread->last_status.value.sig == GDB_SIGNAL_0)
1417 return 0;
1418
1419 /* Otherwise, we may need to deliver the signal we
1420 intercepted. */
1421 status = lp->last_status;
1422 }
1423
1424 if (!WIFSTOPPED (status))
1425 {
1426 if (debug_threads)
1427 debug_printf ("GPS: lwp %s hasn't stopped: no pending signal\n",
1428 target_pid_to_str (ptid_of (thread)));
1429 return 0;
1430 }
1431
1432 /* Extended wait statuses aren't real SIGTRAPs. */
1433 if (WSTOPSIG (status) == SIGTRAP && linux_is_extended_waitstatus (status))
1434 {
1435 if (debug_threads)
1436 debug_printf ("GPS: lwp %s had stopped with extended "
1437 "status: no pending signal\n",
1438 target_pid_to_str (ptid_of (thread)));
1439 return 0;
1440 }
1441
1442 signo = gdb_signal_from_host (WSTOPSIG (status));
1443
1444 if (cs.program_signals_p && !cs.program_signals[signo])
1445 {
1446 if (debug_threads)
1447 debug_printf ("GPS: lwp %s had signal %s, but it is in nopass state\n",
1448 target_pid_to_str (ptid_of (thread)),
1449 gdb_signal_to_string (signo));
1450 return 0;
1451 }
1452 else if (!cs.program_signals_p
1453 /* If we have no way to know which signals GDB does not
1454 want to have passed to the program, assume
1455 SIGTRAP/SIGINT, which is GDB's default. */
1456 && (signo == GDB_SIGNAL_TRAP || signo == GDB_SIGNAL_INT))
1457 {
1458 if (debug_threads)
1459 debug_printf ("GPS: lwp %s had signal %s, "
1460 "but we don't know if we should pass it. "
1461 "Default to not.\n",
1462 target_pid_to_str (ptid_of (thread)),
1463 gdb_signal_to_string (signo));
1464 return 0;
1465 }
1466 else
1467 {
1468 if (debug_threads)
1469 debug_printf ("GPS: lwp %s has pending signal %s: delivering it.\n",
1470 target_pid_to_str (ptid_of (thread)),
1471 gdb_signal_to_string (signo));
1472
1473 return WSTOPSIG (status);
1474 }
1475 }
1476
1477 void
1478 linux_process_target::detach_one_lwp (lwp_info *lwp)
1479 {
1480 struct thread_info *thread = get_lwp_thread (lwp);
1481 int sig;
1482 int lwpid;
1483
1484 /* If there is a pending SIGSTOP, get rid of it. */
1485 if (lwp->stop_expected)
1486 {
1487 if (debug_threads)
1488 debug_printf ("Sending SIGCONT to %s\n",
1489 target_pid_to_str (ptid_of (thread)));
1490
1491 kill_lwp (lwpid_of (thread), SIGCONT);
1492 lwp->stop_expected = 0;
1493 }
1494
1495 /* Pass on any pending signal for this thread. */
1496 sig = get_detach_signal (thread);
1497
1498 /* Preparing to resume may try to write registers, and fail if the
1499 lwp is zombie. If that happens, ignore the error. We'll handle
1500 it below, when detach fails with ESRCH. */
1501 try
1502 {
1503 /* Flush any pending changes to the process's registers. */
1504 regcache_invalidate_thread (thread);
1505
1506 /* Finally, let it resume. */
1507 low_prepare_to_resume (lwp);
1508 }
1509 catch (const gdb_exception_error &ex)
1510 {
1511 if (!check_ptrace_stopped_lwp_gone (lwp))
1512 throw;
1513 }
1514
1515 lwpid = lwpid_of (thread);
1516 if (ptrace (PTRACE_DETACH, lwpid, (PTRACE_TYPE_ARG3) 0,
1517 (PTRACE_TYPE_ARG4) (long) sig) < 0)
1518 {
1519 int save_errno = errno;
1520
1521 /* We know the thread exists, so ESRCH must mean the lwp is
1522 zombie. This can happen if one of the already-detached
1523 threads exits the whole thread group. In that case we're
1524 still attached, and must reap the lwp. */
1525 if (save_errno == ESRCH)
1526 {
1527 int ret, status;
1528
1529 ret = my_waitpid (lwpid, &status, __WALL);
1530 if (ret == -1)
1531 {
1532 warning (_("Couldn't reap LWP %d while detaching: %s"),
1533 lwpid, safe_strerror (errno));
1534 }
1535 else if (!WIFEXITED (status) && !WIFSIGNALED (status))
1536 {
1537 warning (_("Reaping LWP %d while detaching "
1538 "returned unexpected status 0x%x"),
1539 lwpid, status);
1540 }
1541 }
1542 else
1543 {
1544 error (_("Can't detach %s: %s"),
1545 target_pid_to_str (ptid_of (thread)),
1546 safe_strerror (save_errno));
1547 }
1548 }
1549 else if (debug_threads)
1550 {
1551 debug_printf ("PTRACE_DETACH (%s, %s, 0) (OK)\n",
1552 target_pid_to_str (ptid_of (thread)),
1553 strsignal (sig));
1554 }
1555
1556 delete_lwp (lwp);
1557 }
1558
1559 int
1560 linux_process_target::detach (process_info *process)
1561 {
1562 struct lwp_info *main_lwp;
1563
1564 /* As there's a step over already in progress, let it finish first,
1565 otherwise nesting a stabilize_threads operation on top gets real
1566 messy. */
1567 complete_ongoing_step_over ();
1568
1569 /* Stop all threads before detaching. First, ptrace requires that
1570 the thread is stopped to successfully detach. Second, thread_db
1571 may need to uninstall thread event breakpoints from memory, which
1572 only works with a stopped process anyway. */
1573 stop_all_lwps (0, NULL);
1574
1575 #ifdef USE_THREAD_DB
1576 thread_db_detach (process);
1577 #endif
1578
1579 /* Stabilize threads (move out of jump pads). */
1580 target_stabilize_threads ();
1581
1582 /* Detach from the clone lwps first. If the thread group exits just
1583 while we're detaching, we must reap the clone lwps before we're
1584 able to reap the leader. */
1585 for_each_thread (process->pid, [this] (thread_info *thread)
1586 {
1587 /* We don't actually detach from the thread group leader just yet.
1588 If the thread group exits, we must reap the zombie clone lwps
1589 before we're able to reap the leader. */
1590 if (thread->id.pid () == thread->id.lwp ())
1591 return;
1592
1593 lwp_info *lwp = get_thread_lwp (thread);
1594 detach_one_lwp (lwp);
1595 });
1596
1597 main_lwp = find_lwp_pid (ptid_t (process->pid));
1598 detach_one_lwp (main_lwp);
1599
1600 mourn (process);
1601
1602 /* Since we presently can only stop all lwps of all processes, we
1603 need to unstop lwps of other processes. */
1604 unstop_all_lwps (0, NULL);
1605 return 0;
1606 }
1607
1608 /* Remove all LWPs that belong to process PROC from the lwp list. */
1609
1610 void
1611 linux_process_target::mourn (process_info *process)
1612 {
1613 struct process_info_private *priv;
1614
1615 #ifdef USE_THREAD_DB
1616 thread_db_mourn (process);
1617 #endif
1618
1619 for_each_thread (process->pid, [this] (thread_info *thread)
1620 {
1621 delete_lwp (get_thread_lwp (thread));
1622 });
1623
1624 /* Freeing all private data. */
1625 priv = process->priv;
1626 low_delete_process (priv->arch_private);
1627 free (priv);
1628 process->priv = NULL;
1629
1630 remove_process (process);
1631 }
1632
1633 void
1634 linux_process_target::join (int pid)
1635 {
1636 int status, ret;
1637
1638 do {
1639 ret = my_waitpid (pid, &status, 0);
1640 if (WIFEXITED (status) || WIFSIGNALED (status))
1641 break;
1642 } while (ret != -1 || errno != ECHILD);
1643 }
1644
1645 /* Return true if the given thread is still alive. */
1646
1647 bool
1648 linux_process_target::thread_alive (ptid_t ptid)
1649 {
1650 struct lwp_info *lwp = find_lwp_pid (ptid);
1651
1652 /* We assume we always know if a thread exits. If a whole process
1653 exited but we still haven't been able to report it to GDB, we'll
1654 hold on to the last lwp of the dead process. */
1655 if (lwp != NULL)
1656 return !lwp_is_marked_dead (lwp);
1657 else
1658 return 0;
1659 }
1660
1661 bool
1662 linux_process_target::thread_still_has_status_pending (thread_info *thread)
1663 {
1664 struct lwp_info *lp = get_thread_lwp (thread);
1665
1666 if (!lp->status_pending_p)
1667 return 0;
1668
1669 if (thread->last_resume_kind != resume_stop
1670 && (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1671 || lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT))
1672 {
1673 struct thread_info *saved_thread;
1674 CORE_ADDR pc;
1675 int discard = 0;
1676
1677 gdb_assert (lp->last_status != 0);
1678
1679 pc = get_pc (lp);
1680
1681 saved_thread = current_thread;
1682 current_thread = thread;
1683
1684 if (pc != lp->stop_pc)
1685 {
1686 if (debug_threads)
1687 debug_printf ("PC of %ld changed\n",
1688 lwpid_of (thread));
1689 discard = 1;
1690 }
1691
1692 #if !USE_SIGTRAP_SIGINFO
1693 else if (lp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
1694 && !low_breakpoint_at (pc))
1695 {
1696 if (debug_threads)
1697 debug_printf ("previous SW breakpoint of %ld gone\n",
1698 lwpid_of (thread));
1699 discard = 1;
1700 }
1701 else if (lp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT
1702 && !hardware_breakpoint_inserted_here (pc))
1703 {
1704 if (debug_threads)
1705 debug_printf ("previous HW breakpoint of %ld gone\n",
1706 lwpid_of (thread));
1707 discard = 1;
1708 }
1709 #endif
1710
1711 current_thread = saved_thread;
1712
1713 if (discard)
1714 {
1715 if (debug_threads)
1716 debug_printf ("discarding pending breakpoint status\n");
1717 lp->status_pending_p = 0;
1718 return 0;
1719 }
1720 }
1721
1722 return 1;
1723 }
1724
1725 /* Returns true if LWP is resumed from the client's perspective. */
1726
1727 static int
1728 lwp_resumed (struct lwp_info *lwp)
1729 {
1730 struct thread_info *thread = get_lwp_thread (lwp);
1731
1732 if (thread->last_resume_kind != resume_stop)
1733 return 1;
1734
1735 /* Did gdb send us a `vCont;t', but we haven't reported the
1736 corresponding stop to gdb yet? If so, the thread is still
1737 resumed/running from gdb's perspective. */
1738 if (thread->last_resume_kind == resume_stop
1739 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
1740 return 1;
1741
1742 return 0;
1743 }
1744
1745 bool
1746 linux_process_target::status_pending_p_callback (thread_info *thread,
1747 ptid_t ptid)
1748 {
1749 struct lwp_info *lp = get_thread_lwp (thread);
1750
1751 /* Check if we're only interested in events from a specific process
1752 or a specific LWP. */
1753 if (!thread->id.matches (ptid))
1754 return 0;
1755
1756 if (!lwp_resumed (lp))
1757 return 0;
1758
1759 if (lp->status_pending_p
1760 && !thread_still_has_status_pending (thread))
1761 {
1762 resume_one_lwp (lp, lp->stepping, GDB_SIGNAL_0, NULL);
1763 return 0;
1764 }
1765
1766 return lp->status_pending_p;
1767 }
1768
1769 struct lwp_info *
1770 find_lwp_pid (ptid_t ptid)
1771 {
1772 thread_info *thread = find_thread ([&] (thread_info *thr_arg)
1773 {
1774 int lwp = ptid.lwp () != 0 ? ptid.lwp () : ptid.pid ();
1775 return thr_arg->id.lwp () == lwp;
1776 });
1777
1778 if (thread == NULL)
1779 return NULL;
1780
1781 return get_thread_lwp (thread);
1782 }
1783
1784 /* Return the number of known LWPs in the tgid given by PID. */
1785
1786 static int
1787 num_lwps (int pid)
1788 {
1789 int count = 0;
1790
1791 for_each_thread (pid, [&] (thread_info *thread)
1792 {
1793 count++;
1794 });
1795
1796 return count;
1797 }
1798
1799 /* See nat/linux-nat.h. */
1800
1801 struct lwp_info *
1802 iterate_over_lwps (ptid_t filter,
1803 gdb::function_view<iterate_over_lwps_ftype> callback)
1804 {
1805 thread_info *thread = find_thread (filter, [&] (thread_info *thr_arg)
1806 {
1807 lwp_info *lwp = get_thread_lwp (thr_arg);
1808
1809 return callback (lwp);
1810 });
1811
1812 if (thread == NULL)
1813 return NULL;
1814
1815 return get_thread_lwp (thread);
1816 }
1817
1818 void
1819 linux_process_target::check_zombie_leaders ()
1820 {
1821 for_each_process ([this] (process_info *proc) {
1822 pid_t leader_pid = pid_of (proc);
1823 struct lwp_info *leader_lp;
1824
1825 leader_lp = find_lwp_pid (ptid_t (leader_pid));
1826
1827 if (debug_threads)
1828 debug_printf ("leader_pid=%d, leader_lp!=NULL=%d, "
1829 "num_lwps=%d, zombie=%d\n",
1830 leader_pid, leader_lp!= NULL, num_lwps (leader_pid),
1831 linux_proc_pid_is_zombie (leader_pid));
1832
1833 if (leader_lp != NULL && !leader_lp->stopped
1834 /* Check if there are other threads in the group, as we may
1835 have raced with the inferior simply exiting. */
1836 && !last_thread_of_process_p (leader_pid)
1837 && linux_proc_pid_is_zombie (leader_pid))
1838 {
1839 /* A leader zombie can mean one of two things:
1840
1841 - It exited, and there's an exit status pending
1842 available, or only the leader exited (not the whole
1843 program). In the latter case, we can't waitpid the
1844 leader's exit status until all other threads are gone.
1845
1846 - There are 3 or more threads in the group, and a thread
1847 other than the leader exec'd. On an exec, the Linux
1848 kernel destroys all other threads (except the execing
1849 one) in the thread group, and resets the execing thread's
1850 tid to the tgid. No exit notification is sent for the
1851 execing thread -- from the ptracer's perspective, it
1852 appears as though the execing thread just vanishes.
1853 Until we reap all other threads except the leader and the
1854 execing thread, the leader will be zombie, and the
1855 execing thread will be in `D (disc sleep)'. As soon as
1856 all other threads are reaped, the execing thread changes
1857 it's tid to the tgid, and the previous (zombie) leader
1858 vanishes, giving place to the "new" leader. We could try
1859 distinguishing the exit and exec cases, by waiting once
1860 more, and seeing if something comes out, but it doesn't
1861 sound useful. The previous leader _does_ go away, and
1862 we'll re-add the new one once we see the exec event
1863 (which is just the same as what would happen if the
1864 previous leader did exit voluntarily before some other
1865 thread execs). */
1866
1867 if (debug_threads)
1868 debug_printf ("CZL: Thread group leader %d zombie "
1869 "(it exited, or another thread execd).\n",
1870 leader_pid);
1871
1872 delete_lwp (leader_lp);
1873 }
1874 });
1875 }
1876
1877 /* Callback for `find_thread'. Returns the first LWP that is not
1878 stopped. */
1879
1880 static bool
1881 not_stopped_callback (thread_info *thread, ptid_t filter)
1882 {
1883 if (!thread->id.matches (filter))
1884 return false;
1885
1886 lwp_info *lwp = get_thread_lwp (thread);
1887
1888 return !lwp->stopped;
1889 }
1890
1891 /* Increment LWP's suspend count. */
1892
1893 static void
1894 lwp_suspended_inc (struct lwp_info *lwp)
1895 {
1896 lwp->suspended++;
1897
1898 if (debug_threads && lwp->suspended > 4)
1899 {
1900 struct thread_info *thread = get_lwp_thread (lwp);
1901
1902 debug_printf ("LWP %ld has a suspiciously high suspend count,"
1903 " suspended=%d\n", lwpid_of (thread), lwp->suspended);
1904 }
1905 }
1906
1907 /* Decrement LWP's suspend count. */
1908
1909 static void
1910 lwp_suspended_decr (struct lwp_info *lwp)
1911 {
1912 lwp->suspended--;
1913
1914 if (lwp->suspended < 0)
1915 {
1916 struct thread_info *thread = get_lwp_thread (lwp);
1917
1918 internal_error (__FILE__, __LINE__,
1919 "unsuspend LWP %ld, suspended=%d\n", lwpid_of (thread),
1920 lwp->suspended);
1921 }
1922 }
1923
1924 /* This function should only be called if the LWP got a SIGTRAP.
1925
1926 Handle any tracepoint steps or hits. Return true if a tracepoint
1927 event was handled, 0 otherwise. */
1928
1929 static int
1930 handle_tracepoints (struct lwp_info *lwp)
1931 {
1932 struct thread_info *tinfo = get_lwp_thread (lwp);
1933 int tpoint_related_event = 0;
1934
1935 gdb_assert (lwp->suspended == 0);
1936
1937 /* If this tracepoint hit causes a tracing stop, we'll immediately
1938 uninsert tracepoints. To do this, we temporarily pause all
1939 threads, unpatch away, and then unpause threads. We need to make
1940 sure the unpausing doesn't resume LWP too. */
1941 lwp_suspended_inc (lwp);
1942
1943 /* And we need to be sure that any all-threads-stopping doesn't try
1944 to move threads out of the jump pads, as it could deadlock the
1945 inferior (LWP could be in the jump pad, maybe even holding the
1946 lock.) */
1947
1948 /* Do any necessary step collect actions. */
1949 tpoint_related_event |= tracepoint_finished_step (tinfo, lwp->stop_pc);
1950
1951 tpoint_related_event |= handle_tracepoint_bkpts (tinfo, lwp->stop_pc);
1952
1953 /* See if we just hit a tracepoint and do its main collect
1954 actions. */
1955 tpoint_related_event |= tracepoint_was_hit (tinfo, lwp->stop_pc);
1956
1957 lwp_suspended_decr (lwp);
1958
1959 gdb_assert (lwp->suspended == 0);
1960 gdb_assert (!stabilizing_threads
1961 || (lwp->collecting_fast_tracepoint
1962 != fast_tpoint_collect_result::not_collecting));
1963
1964 if (tpoint_related_event)
1965 {
1966 if (debug_threads)
1967 debug_printf ("got a tracepoint event\n");
1968 return 1;
1969 }
1970
1971 return 0;
1972 }
1973
1974 fast_tpoint_collect_result
1975 linux_process_target::linux_fast_tracepoint_collecting
1976 (lwp_info *lwp, fast_tpoint_collect_status *status)
1977 {
1978 CORE_ADDR thread_area;
1979 struct thread_info *thread = get_lwp_thread (lwp);
1980
1981 /* Get the thread area address. This is used to recognize which
1982 thread is which when tracing with the in-process agent library.
1983 We don't read anything from the address, and treat it as opaque;
1984 it's the address itself that we assume is unique per-thread. */
1985 if (low_get_thread_area (lwpid_of (thread), &thread_area) == -1)
1986 return fast_tpoint_collect_result::not_collecting;
1987
1988 return fast_tracepoint_collecting (thread_area, lwp->stop_pc, status);
1989 }
1990
1991 int
1992 linux_process_target::low_get_thread_area (int lwpid, CORE_ADDR *addrp)
1993 {
1994 return -1;
1995 }
1996
1997 bool
1998 linux_process_target::maybe_move_out_of_jump_pad (lwp_info *lwp, int *wstat)
1999 {
2000 struct thread_info *saved_thread;
2001
2002 saved_thread = current_thread;
2003 current_thread = get_lwp_thread (lwp);
2004
2005 if ((wstat == NULL
2006 || (WIFSTOPPED (*wstat) && WSTOPSIG (*wstat) != SIGTRAP))
2007 && supports_fast_tracepoints ()
2008 && agent_loaded_p ())
2009 {
2010 struct fast_tpoint_collect_status status;
2011
2012 if (debug_threads)
2013 debug_printf ("Checking whether LWP %ld needs to move out of the "
2014 "jump pad.\n",
2015 lwpid_of (current_thread));
2016
2017 fast_tpoint_collect_result r
2018 = linux_fast_tracepoint_collecting (lwp, &status);
2019
2020 if (wstat == NULL
2021 || (WSTOPSIG (*wstat) != SIGILL
2022 && WSTOPSIG (*wstat) != SIGFPE
2023 && WSTOPSIG (*wstat) != SIGSEGV
2024 && WSTOPSIG (*wstat) != SIGBUS))
2025 {
2026 lwp->collecting_fast_tracepoint = r;
2027
2028 if (r != fast_tpoint_collect_result::not_collecting)
2029 {
2030 if (r == fast_tpoint_collect_result::before_insn
2031 && lwp->exit_jump_pad_bkpt == NULL)
2032 {
2033 /* Haven't executed the original instruction yet.
2034 Set breakpoint there, and wait till it's hit,
2035 then single-step until exiting the jump pad. */
2036 lwp->exit_jump_pad_bkpt
2037 = set_breakpoint_at (status.adjusted_insn_addr, NULL);
2038 }
2039
2040 if (debug_threads)
2041 debug_printf ("Checking whether LWP %ld needs to move out of "
2042 "the jump pad...it does\n",
2043 lwpid_of (current_thread));
2044 current_thread = saved_thread;
2045
2046 return true;
2047 }
2048 }
2049 else
2050 {
2051 /* If we get a synchronous signal while collecting, *and*
2052 while executing the (relocated) original instruction,
2053 reset the PC to point at the tpoint address, before
2054 reporting to GDB. Otherwise, it's an IPA lib bug: just
2055 report the signal to GDB, and pray for the best. */
2056
2057 lwp->collecting_fast_tracepoint
2058 = fast_tpoint_collect_result::not_collecting;
2059
2060 if (r != fast_tpoint_collect_result::not_collecting
2061 && (status.adjusted_insn_addr <= lwp->stop_pc
2062 && lwp->stop_pc < status.adjusted_insn_addr_end))
2063 {
2064 siginfo_t info;
2065 struct regcache *regcache;
2066
2067 /* The si_addr on a few signals references the address
2068 of the faulting instruction. Adjust that as
2069 well. */
2070 if ((WSTOPSIG (*wstat) == SIGILL
2071 || WSTOPSIG (*wstat) == SIGFPE
2072 || WSTOPSIG (*wstat) == SIGBUS
2073 || WSTOPSIG (*wstat) == SIGSEGV)
2074 && ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
2075 (PTRACE_TYPE_ARG3) 0, &info) == 0
2076 /* Final check just to make sure we don't clobber
2077 the siginfo of non-kernel-sent signals. */
2078 && (uintptr_t) info.si_addr == lwp->stop_pc)
2079 {
2080 info.si_addr = (void *) (uintptr_t) status.tpoint_addr;
2081 ptrace (PTRACE_SETSIGINFO, lwpid_of (current_thread),
2082 (PTRACE_TYPE_ARG3) 0, &info);
2083 }
2084
2085 regcache = get_thread_regcache (current_thread, 1);
2086 low_set_pc (regcache, status.tpoint_addr);
2087 lwp->stop_pc = status.tpoint_addr;
2088
2089 /* Cancel any fast tracepoint lock this thread was
2090 holding. */
2091 force_unlock_trace_buffer ();
2092 }
2093
2094 if (lwp->exit_jump_pad_bkpt != NULL)
2095 {
2096 if (debug_threads)
2097 debug_printf ("Cancelling fast exit-jump-pad: removing bkpt. "
2098 "stopping all threads momentarily.\n");
2099
2100 stop_all_lwps (1, lwp);
2101
2102 delete_breakpoint (lwp->exit_jump_pad_bkpt);
2103 lwp->exit_jump_pad_bkpt = NULL;
2104
2105 unstop_all_lwps (1, lwp);
2106
2107 gdb_assert (lwp->suspended >= 0);
2108 }
2109 }
2110 }
2111
2112 if (debug_threads)
2113 debug_printf ("Checking whether LWP %ld needs to move out of the "
2114 "jump pad...no\n",
2115 lwpid_of (current_thread));
2116
2117 current_thread = saved_thread;
2118 return false;
2119 }
2120
2121 /* Enqueue one signal in the "signals to report later when out of the
2122 jump pad" list. */
2123
2124 static void
2125 enqueue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2126 {
2127 struct pending_signals *p_sig;
2128 struct thread_info *thread = get_lwp_thread (lwp);
2129
2130 if (debug_threads)
2131 debug_printf ("Deferring signal %d for LWP %ld.\n",
2132 WSTOPSIG (*wstat), lwpid_of (thread));
2133
2134 if (debug_threads)
2135 {
2136 struct pending_signals *sig;
2137
2138 for (sig = lwp->pending_signals_to_report;
2139 sig != NULL;
2140 sig = sig->prev)
2141 debug_printf (" Already queued %d\n",
2142 sig->signal);
2143
2144 debug_printf (" (no more currently queued signals)\n");
2145 }
2146
2147 /* Don't enqueue non-RT signals if they are already in the deferred
2148 queue. (SIGSTOP being the easiest signal to see ending up here
2149 twice) */
2150 if (WSTOPSIG (*wstat) < __SIGRTMIN)
2151 {
2152 struct pending_signals *sig;
2153
2154 for (sig = lwp->pending_signals_to_report;
2155 sig != NULL;
2156 sig = sig->prev)
2157 {
2158 if (sig->signal == WSTOPSIG (*wstat))
2159 {
2160 if (debug_threads)
2161 debug_printf ("Not requeuing already queued non-RT signal %d"
2162 " for LWP %ld\n",
2163 sig->signal,
2164 lwpid_of (thread));
2165 return;
2166 }
2167 }
2168 }
2169
2170 p_sig = XCNEW (struct pending_signals);
2171 p_sig->prev = lwp->pending_signals_to_report;
2172 p_sig->signal = WSTOPSIG (*wstat);
2173
2174 ptrace (PTRACE_GETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2175 &p_sig->info);
2176
2177 lwp->pending_signals_to_report = p_sig;
2178 }
2179
2180 /* Dequeue one signal from the "signals to report later when out of
2181 the jump pad" list. */
2182
2183 static int
2184 dequeue_one_deferred_signal (struct lwp_info *lwp, int *wstat)
2185 {
2186 struct thread_info *thread = get_lwp_thread (lwp);
2187
2188 if (lwp->pending_signals_to_report != NULL)
2189 {
2190 struct pending_signals **p_sig;
2191
2192 p_sig = &lwp->pending_signals_to_report;
2193 while ((*p_sig)->prev != NULL)
2194 p_sig = &(*p_sig)->prev;
2195
2196 *wstat = W_STOPCODE ((*p_sig)->signal);
2197 if ((*p_sig)->info.si_signo != 0)
2198 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
2199 &(*p_sig)->info);
2200 free (*p_sig);
2201 *p_sig = NULL;
2202
2203 if (debug_threads)
2204 debug_printf ("Reporting deferred signal %d for LWP %ld.\n",
2205 WSTOPSIG (*wstat), lwpid_of (thread));
2206
2207 if (debug_threads)
2208 {
2209 struct pending_signals *sig;
2210
2211 for (sig = lwp->pending_signals_to_report;
2212 sig != NULL;
2213 sig = sig->prev)
2214 debug_printf (" Still queued %d\n",
2215 sig->signal);
2216
2217 debug_printf (" (no more queued signals)\n");
2218 }
2219
2220 return 1;
2221 }
2222
2223 return 0;
2224 }
2225
2226 bool
2227 linux_process_target::check_stopped_by_watchpoint (lwp_info *child)
2228 {
2229 struct thread_info *saved_thread = current_thread;
2230 current_thread = get_lwp_thread (child);
2231
2232 if (low_stopped_by_watchpoint ())
2233 {
2234 child->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
2235 child->stopped_data_address = low_stopped_data_address ();
2236 }
2237
2238 current_thread = saved_thread;
2239
2240 return child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
2241 }
2242
2243 bool
2244 linux_process_target::low_stopped_by_watchpoint ()
2245 {
2246 return false;
2247 }
2248
2249 CORE_ADDR
2250 linux_process_target::low_stopped_data_address ()
2251 {
2252 return 0;
2253 }
2254
2255 /* Return the ptrace options that we want to try to enable. */
2256
2257 static int
2258 linux_low_ptrace_options (int attached)
2259 {
2260 client_state &cs = get_client_state ();
2261 int options = 0;
2262
2263 if (!attached)
2264 options |= PTRACE_O_EXITKILL;
2265
2266 if (cs.report_fork_events)
2267 options |= PTRACE_O_TRACEFORK;
2268
2269 if (cs.report_vfork_events)
2270 options |= (PTRACE_O_TRACEVFORK | PTRACE_O_TRACEVFORKDONE);
2271
2272 if (cs.report_exec_events)
2273 options |= PTRACE_O_TRACEEXEC;
2274
2275 options |= PTRACE_O_TRACESYSGOOD;
2276
2277 return options;
2278 }
2279
2280 lwp_info *
2281 linux_process_target::filter_event (int lwpid, int wstat)
2282 {
2283 client_state &cs = get_client_state ();
2284 struct lwp_info *child;
2285 struct thread_info *thread;
2286 int have_stop_pc = 0;
2287
2288 child = find_lwp_pid (ptid_t (lwpid));
2289
2290 /* Check for stop events reported by a process we didn't already
2291 know about - anything not already in our LWP list.
2292
2293 If we're expecting to receive stopped processes after
2294 fork, vfork, and clone events, then we'll just add the
2295 new one to our list and go back to waiting for the event
2296 to be reported - the stopped process might be returned
2297 from waitpid before or after the event is.
2298
2299 But note the case of a non-leader thread exec'ing after the
2300 leader having exited, and gone from our lists (because
2301 check_zombie_leaders deleted it). The non-leader thread
2302 changes its tid to the tgid. */
2303
2304 if (WIFSTOPPED (wstat) && child == NULL && WSTOPSIG (wstat) == SIGTRAP
2305 && linux_ptrace_get_extended_event (wstat) == PTRACE_EVENT_EXEC)
2306 {
2307 ptid_t child_ptid;
2308
2309 /* A multi-thread exec after we had seen the leader exiting. */
2310 if (debug_threads)
2311 {
2312 debug_printf ("LLW: Re-adding thread group leader LWP %d"
2313 "after exec.\n", lwpid);
2314 }
2315
2316 child_ptid = ptid_t (lwpid, lwpid, 0);
2317 child = add_lwp (child_ptid);
2318 child->stopped = 1;
2319 current_thread = child->thread;
2320 }
2321
2322 /* If we didn't find a process, one of two things presumably happened:
2323 - A process we started and then detached from has exited. Ignore it.
2324 - A process we are controlling has forked and the new child's stop
2325 was reported to us by the kernel. Save its PID. */
2326 if (child == NULL && WIFSTOPPED (wstat))
2327 {
2328 add_to_pid_list (&stopped_pids, lwpid, wstat);
2329 return NULL;
2330 }
2331 else if (child == NULL)
2332 return NULL;
2333
2334 thread = get_lwp_thread (child);
2335
2336 child->stopped = 1;
2337
2338 child->last_status = wstat;
2339
2340 /* Check if the thread has exited. */
2341 if ((WIFEXITED (wstat) || WIFSIGNALED (wstat)))
2342 {
2343 if (debug_threads)
2344 debug_printf ("LLFE: %d exited.\n", lwpid);
2345
2346 if (finish_step_over (child))
2347 {
2348 /* Unsuspend all other LWPs, and set them back running again. */
2349 unsuspend_all_lwps (child);
2350 }
2351
2352 /* If there is at least one more LWP, then the exit signal was
2353 not the end of the debugged application and should be
2354 ignored, unless GDB wants to hear about thread exits. */
2355 if (cs.report_thread_events
2356 || last_thread_of_process_p (pid_of (thread)))
2357 {
2358 /* Since events are serialized to GDB core, and we can't
2359 report this one right now. Leave the status pending for
2360 the next time we're able to report it. */
2361 mark_lwp_dead (child, wstat);
2362 return child;
2363 }
2364 else
2365 {
2366 delete_lwp (child);
2367 return NULL;
2368 }
2369 }
2370
2371 gdb_assert (WIFSTOPPED (wstat));
2372
2373 if (WIFSTOPPED (wstat))
2374 {
2375 struct process_info *proc;
2376
2377 /* Architecture-specific setup after inferior is running. */
2378 proc = find_process_pid (pid_of (thread));
2379 if (proc->tdesc == NULL)
2380 {
2381 if (proc->attached)
2382 {
2383 /* This needs to happen after we have attached to the
2384 inferior and it is stopped for the first time, but
2385 before we access any inferior registers. */
2386 arch_setup_thread (thread);
2387 }
2388 else
2389 {
2390 /* The process is started, but GDBserver will do
2391 architecture-specific setup after the program stops at
2392 the first instruction. */
2393 child->status_pending_p = 1;
2394 child->status_pending = wstat;
2395 return child;
2396 }
2397 }
2398 }
2399
2400 if (WIFSTOPPED (wstat) && child->must_set_ptrace_flags)
2401 {
2402 struct process_info *proc = find_process_pid (pid_of (thread));
2403 int options = linux_low_ptrace_options (proc->attached);
2404
2405 linux_enable_event_reporting (lwpid, options);
2406 child->must_set_ptrace_flags = 0;
2407 }
2408
2409 /* Always update syscall_state, even if it will be filtered later. */
2410 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SYSCALL_SIGTRAP)
2411 {
2412 child->syscall_state
2413 = (child->syscall_state == TARGET_WAITKIND_SYSCALL_ENTRY
2414 ? TARGET_WAITKIND_SYSCALL_RETURN
2415 : TARGET_WAITKIND_SYSCALL_ENTRY);
2416 }
2417 else
2418 {
2419 /* Almost all other ptrace-stops are known to be outside of system
2420 calls, with further exceptions in handle_extended_wait. */
2421 child->syscall_state = TARGET_WAITKIND_IGNORE;
2422 }
2423
2424 /* Be careful to not overwrite stop_pc until save_stop_reason is
2425 called. */
2426 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGTRAP
2427 && linux_is_extended_waitstatus (wstat))
2428 {
2429 child->stop_pc = get_pc (child);
2430 if (handle_extended_wait (&child, wstat))
2431 {
2432 /* The event has been handled, so just return without
2433 reporting it. */
2434 return NULL;
2435 }
2436 }
2437
2438 if (linux_wstatus_maybe_breakpoint (wstat))
2439 {
2440 if (save_stop_reason (child))
2441 have_stop_pc = 1;
2442 }
2443
2444 if (!have_stop_pc)
2445 child->stop_pc = get_pc (child);
2446
2447 if (WIFSTOPPED (wstat) && WSTOPSIG (wstat) == SIGSTOP
2448 && child->stop_expected)
2449 {
2450 if (debug_threads)
2451 debug_printf ("Expected stop.\n");
2452 child->stop_expected = 0;
2453
2454 if (thread->last_resume_kind == resume_stop)
2455 {
2456 /* We want to report the stop to the core. Treat the
2457 SIGSTOP as a normal event. */
2458 if (debug_threads)
2459 debug_printf ("LLW: resume_stop SIGSTOP caught for %s.\n",
2460 target_pid_to_str (ptid_of (thread)));
2461 }
2462 else if (stopping_threads != NOT_STOPPING_THREADS)
2463 {
2464 /* Stopping threads. We don't want this SIGSTOP to end up
2465 pending. */
2466 if (debug_threads)
2467 debug_printf ("LLW: SIGSTOP caught for %s "
2468 "while stopping threads.\n",
2469 target_pid_to_str (ptid_of (thread)));
2470 return NULL;
2471 }
2472 else
2473 {
2474 /* This is a delayed SIGSTOP. Filter out the event. */
2475 if (debug_threads)
2476 debug_printf ("LLW: %s %s, 0, 0 (discard delayed SIGSTOP)\n",
2477 child->stepping ? "step" : "continue",
2478 target_pid_to_str (ptid_of (thread)));
2479
2480 resume_one_lwp (child, child->stepping, 0, NULL);
2481 return NULL;
2482 }
2483 }
2484
2485 child->status_pending_p = 1;
2486 child->status_pending = wstat;
2487 return child;
2488 }
2489
2490 bool
2491 linux_process_target::maybe_hw_step (thread_info *thread)
2492 {
2493 if (supports_hardware_single_step ())
2494 return true;
2495 else
2496 {
2497 /* GDBserver must insert single-step breakpoint for software
2498 single step. */
2499 gdb_assert (has_single_step_breakpoints (thread));
2500 return false;
2501 }
2502 }
2503
2504 void
2505 linux_process_target::resume_stopped_resumed_lwps (thread_info *thread)
2506 {
2507 struct lwp_info *lp = get_thread_lwp (thread);
2508
2509 if (lp->stopped
2510 && !lp->suspended
2511 && !lp->status_pending_p
2512 && thread->last_status.kind == TARGET_WAITKIND_IGNORE)
2513 {
2514 int step = 0;
2515
2516 if (thread->last_resume_kind == resume_step)
2517 step = maybe_hw_step (thread);
2518
2519 if (debug_threads)
2520 debug_printf ("RSRL: resuming stopped-resumed LWP %s at %s: step=%d\n",
2521 target_pid_to_str (ptid_of (thread)),
2522 paddress (lp->stop_pc),
2523 step);
2524
2525 resume_one_lwp (lp, step, GDB_SIGNAL_0, NULL);
2526 }
2527 }
2528
2529 int
2530 linux_process_target::wait_for_event_filtered (ptid_t wait_ptid,
2531 ptid_t filter_ptid,
2532 int *wstatp, int options)
2533 {
2534 struct thread_info *event_thread;
2535 struct lwp_info *event_child, *requested_child;
2536 sigset_t block_mask, prev_mask;
2537
2538 retry:
2539 /* N.B. event_thread points to the thread_info struct that contains
2540 event_child. Keep them in sync. */
2541 event_thread = NULL;
2542 event_child = NULL;
2543 requested_child = NULL;
2544
2545 /* Check for a lwp with a pending status. */
2546
2547 if (filter_ptid == minus_one_ptid || filter_ptid.is_pid ())
2548 {
2549 event_thread = find_thread_in_random ([&] (thread_info *thread)
2550 {
2551 return status_pending_p_callback (thread, filter_ptid);
2552 });
2553
2554 if (event_thread != NULL)
2555 event_child = get_thread_lwp (event_thread);
2556 if (debug_threads && event_thread)
2557 debug_printf ("Got a pending child %ld\n", lwpid_of (event_thread));
2558 }
2559 else if (filter_ptid != null_ptid)
2560 {
2561 requested_child = find_lwp_pid (filter_ptid);
2562
2563 if (stopping_threads == NOT_STOPPING_THREADS
2564 && requested_child->status_pending_p
2565 && (requested_child->collecting_fast_tracepoint
2566 != fast_tpoint_collect_result::not_collecting))
2567 {
2568 enqueue_one_deferred_signal (requested_child,
2569 &requested_child->status_pending);
2570 requested_child->status_pending_p = 0;
2571 requested_child->status_pending = 0;
2572 resume_one_lwp (requested_child, 0, 0, NULL);
2573 }
2574
2575 if (requested_child->suspended
2576 && requested_child->status_pending_p)
2577 {
2578 internal_error (__FILE__, __LINE__,
2579 "requesting an event out of a"
2580 " suspended child?");
2581 }
2582
2583 if (requested_child->status_pending_p)
2584 {
2585 event_child = requested_child;
2586 event_thread = get_lwp_thread (event_child);
2587 }
2588 }
2589
2590 if (event_child != NULL)
2591 {
2592 if (debug_threads)
2593 debug_printf ("Got an event from pending child %ld (%04x)\n",
2594 lwpid_of (event_thread), event_child->status_pending);
2595 *wstatp = event_child->status_pending;
2596 event_child->status_pending_p = 0;
2597 event_child->status_pending = 0;
2598 current_thread = event_thread;
2599 return lwpid_of (event_thread);
2600 }
2601
2602 /* But if we don't find a pending event, we'll have to wait.
2603
2604 We only enter this loop if no process has a pending wait status.
2605 Thus any action taken in response to a wait status inside this
2606 loop is responding as soon as we detect the status, not after any
2607 pending events. */
2608
2609 /* Make sure SIGCHLD is blocked until the sigsuspend below. Block
2610 all signals while here. */
2611 sigfillset (&block_mask);
2612 gdb_sigmask (SIG_BLOCK, &block_mask, &prev_mask);
2613
2614 /* Always pull all events out of the kernel. We'll randomly select
2615 an event LWP out of all that have events, to prevent
2616 starvation. */
2617 while (event_child == NULL)
2618 {
2619 pid_t ret = 0;
2620
2621 /* Always use -1 and WNOHANG, due to couple of a kernel/ptrace
2622 quirks:
2623
2624 - If the thread group leader exits while other threads in the
2625 thread group still exist, waitpid(TGID, ...) hangs. That
2626 waitpid won't return an exit status until the other threads
2627 in the group are reaped.
2628
2629 - When a non-leader thread execs, that thread just vanishes
2630 without reporting an exit (so we'd hang if we waited for it
2631 explicitly in that case). The exec event is reported to
2632 the TGID pid. */
2633 errno = 0;
2634 ret = my_waitpid (-1, wstatp, options | WNOHANG);
2635
2636 if (debug_threads)
2637 debug_printf ("LWFE: waitpid(-1, ...) returned %d, %s\n",
2638 ret, errno ? safe_strerror (errno) : "ERRNO-OK");
2639
2640 if (ret > 0)
2641 {
2642 if (debug_threads)
2643 {
2644 debug_printf ("LLW: waitpid %ld received %s\n",
2645 (long) ret, status_to_str (*wstatp));
2646 }
2647
2648 /* Filter all events. IOW, leave all events pending. We'll
2649 randomly select an event LWP out of all that have events
2650 below. */
2651 filter_event (ret, *wstatp);
2652 /* Retry until nothing comes out of waitpid. A single
2653 SIGCHLD can indicate more than one child stopped. */
2654 continue;
2655 }
2656
2657 /* Now that we've pulled all events out of the kernel, resume
2658 LWPs that don't have an interesting event to report. */
2659 if (stopping_threads == NOT_STOPPING_THREADS)
2660 for_each_thread ([this] (thread_info *thread)
2661 {
2662 resume_stopped_resumed_lwps (thread);
2663 });
2664
2665 /* ... and find an LWP with a status to report to the core, if
2666 any. */
2667 event_thread = find_thread_in_random ([&] (thread_info *thread)
2668 {
2669 return status_pending_p_callback (thread, filter_ptid);
2670 });
2671
2672 if (event_thread != NULL)
2673 {
2674 event_child = get_thread_lwp (event_thread);
2675 *wstatp = event_child->status_pending;
2676 event_child->status_pending_p = 0;
2677 event_child->status_pending = 0;
2678 break;
2679 }
2680
2681 /* Check for zombie thread group leaders. Those can't be reaped
2682 until all other threads in the thread group are. */
2683 check_zombie_leaders ();
2684
2685 auto not_stopped = [&] (thread_info *thread)
2686 {
2687 return not_stopped_callback (thread, wait_ptid);
2688 };
2689
2690 /* If there are no resumed children left in the set of LWPs we
2691 want to wait for, bail. We can't just block in
2692 waitpid/sigsuspend, because lwps might have been left stopped
2693 in trace-stop state, and we'd be stuck forever waiting for
2694 their status to change (which would only happen if we resumed
2695 them). Even if WNOHANG is set, this return code is preferred
2696 over 0 (below), as it is more detailed. */
2697 if (find_thread (not_stopped) == NULL)
2698 {
2699 if (debug_threads)
2700 debug_printf ("LLW: exit (no unwaited-for LWP)\n");
2701 gdb_sigmask (SIG_SETMASK, &prev_mask, NULL);
2702 return -1;
2703 }
2704
2705 /* No interesting event to report to the caller. */
2706 if ((options & WNOHANG))
2707 {
2708 if (debug_threads)
2709 debug_printf ("WNOHANG set, no event found\n");
2710
2711 gdb_sigmask (SIG_SETMASK, &prev_mask, NULL);
2712 return 0;
2713 }
2714
2715 /* Block until we get an event reported with SIGCHLD. */
2716 if (debug_threads)
2717 debug_printf ("sigsuspend'ing\n");
2718
2719 sigsuspend (&prev_mask);
2720 gdb_sigmask (SIG_SETMASK, &prev_mask, NULL);
2721 goto retry;
2722 }
2723
2724 gdb_sigmask (SIG_SETMASK, &prev_mask, NULL);
2725
2726 current_thread = event_thread;
2727
2728 return lwpid_of (event_thread);
2729 }
2730
2731 int
2732 linux_process_target::wait_for_event (ptid_t ptid, int *wstatp, int options)
2733 {
2734 return wait_for_event_filtered (ptid, ptid, wstatp, options);
2735 }
2736
2737 /* Select one LWP out of those that have events pending. */
2738
2739 static void
2740 select_event_lwp (struct lwp_info **orig_lp)
2741 {
2742 struct thread_info *event_thread = NULL;
2743
2744 /* In all-stop, give preference to the LWP that is being
2745 single-stepped. There will be at most one, and it's the LWP that
2746 the core is most interested in. If we didn't do this, then we'd
2747 have to handle pending step SIGTRAPs somehow in case the core
2748 later continues the previously-stepped thread, otherwise we'd
2749 report the pending SIGTRAP, and the core, not having stepped the
2750 thread, wouldn't understand what the trap was for, and therefore
2751 would report it to the user as a random signal. */
2752 if (!non_stop)
2753 {
2754 event_thread = find_thread ([] (thread_info *thread)
2755 {
2756 lwp_info *lp = get_thread_lwp (thread);
2757
2758 return (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2759 && thread->last_resume_kind == resume_step
2760 && lp->status_pending_p);
2761 });
2762
2763 if (event_thread != NULL)
2764 {
2765 if (debug_threads)
2766 debug_printf ("SEL: Select single-step %s\n",
2767 target_pid_to_str (ptid_of (event_thread)));
2768 }
2769 }
2770 if (event_thread == NULL)
2771 {
2772 /* No single-stepping LWP. Select one at random, out of those
2773 which have had events. */
2774
2775 event_thread = find_thread_in_random ([&] (thread_info *thread)
2776 {
2777 lwp_info *lp = get_thread_lwp (thread);
2778
2779 /* Only resumed LWPs that have an event pending. */
2780 return (thread->last_status.kind == TARGET_WAITKIND_IGNORE
2781 && lp->status_pending_p);
2782 });
2783 }
2784
2785 if (event_thread != NULL)
2786 {
2787 struct lwp_info *event_lp = get_thread_lwp (event_thread);
2788
2789 /* Switch the event LWP. */
2790 *orig_lp = event_lp;
2791 }
2792 }
2793
2794 /* Decrement the suspend count of all LWPs, except EXCEPT, if non
2795 NULL. */
2796
2797 static void
2798 unsuspend_all_lwps (struct lwp_info *except)
2799 {
2800 for_each_thread ([&] (thread_info *thread)
2801 {
2802 lwp_info *lwp = get_thread_lwp (thread);
2803
2804 if (lwp != except)
2805 lwp_suspended_decr (lwp);
2806 });
2807 }
2808
2809 static bool lwp_running (thread_info *thread);
2810
2811 /* Stabilize threads (move out of jump pads).
2812
2813 If a thread is midway collecting a fast tracepoint, we need to
2814 finish the collection and move it out of the jump pad before
2815 reporting the signal.
2816
2817 This avoids recursion while collecting (when a signal arrives
2818 midway, and the signal handler itself collects), which would trash
2819 the trace buffer. In case the user set a breakpoint in a signal
2820 handler, this avoids the backtrace showing the jump pad, etc..
2821 Most importantly, there are certain things we can't do safely if
2822 threads are stopped in a jump pad (or in its callee's). For
2823 example:
2824
2825 - starting a new trace run. A thread still collecting the
2826 previous run, could trash the trace buffer when resumed. The trace
2827 buffer control structures would have been reset but the thread had
2828 no way to tell. The thread could even midway memcpy'ing to the
2829 buffer, which would mean that when resumed, it would clobber the
2830 trace buffer that had been set for a new run.
2831
2832 - we can't rewrite/reuse the jump pads for new tracepoints
2833 safely. Say you do tstart while a thread is stopped midway while
2834 collecting. When the thread is later resumed, it finishes the
2835 collection, and returns to the jump pad, to execute the original
2836 instruction that was under the tracepoint jump at the time the
2837 older run had been started. If the jump pad had been rewritten
2838 since for something else in the new run, the thread would now
2839 execute the wrong / random instructions. */
2840
2841 void
2842 linux_process_target::stabilize_threads ()
2843 {
2844 thread_info *thread_stuck = find_thread ([this] (thread_info *thread)
2845 {
2846 return stuck_in_jump_pad (thread);
2847 });
2848
2849 if (thread_stuck != NULL)
2850 {
2851 if (debug_threads)
2852 debug_printf ("can't stabilize, LWP %ld is stuck in jump pad\n",
2853 lwpid_of (thread_stuck));
2854 return;
2855 }
2856
2857 thread_info *saved_thread = current_thread;
2858
2859 stabilizing_threads = 1;
2860
2861 /* Kick 'em all. */
2862 for_each_thread ([this] (thread_info *thread)
2863 {
2864 move_out_of_jump_pad (thread);
2865 });
2866
2867 /* Loop until all are stopped out of the jump pads. */
2868 while (find_thread (lwp_running) != NULL)
2869 {
2870 struct target_waitstatus ourstatus;
2871 struct lwp_info *lwp;
2872 int wstat;
2873
2874 /* Note that we go through the full wait even loop. While
2875 moving threads out of jump pad, we need to be able to step
2876 over internal breakpoints and such. */
2877 wait_1 (minus_one_ptid, &ourstatus, 0);
2878
2879 if (ourstatus.kind == TARGET_WAITKIND_STOPPED)
2880 {
2881 lwp = get_thread_lwp (current_thread);
2882
2883 /* Lock it. */
2884 lwp_suspended_inc (lwp);
2885
2886 if (ourstatus.value.sig != GDB_SIGNAL_0
2887 || current_thread->last_resume_kind == resume_stop)
2888 {
2889 wstat = W_STOPCODE (gdb_signal_to_host (ourstatus.value.sig));
2890 enqueue_one_deferred_signal (lwp, &wstat);
2891 }
2892 }
2893 }
2894
2895 unsuspend_all_lwps (NULL);
2896
2897 stabilizing_threads = 0;
2898
2899 current_thread = saved_thread;
2900
2901 if (debug_threads)
2902 {
2903 thread_stuck = find_thread ([this] (thread_info *thread)
2904 {
2905 return stuck_in_jump_pad (thread);
2906 });
2907
2908 if (thread_stuck != NULL)
2909 debug_printf ("couldn't stabilize, LWP %ld got stuck in jump pad\n",
2910 lwpid_of (thread_stuck));
2911 }
2912 }
2913
2914 /* Convenience function that is called when the kernel reports an
2915 event that is not passed out to GDB. */
2916
2917 static ptid_t
2918 ignore_event (struct target_waitstatus *ourstatus)
2919 {
2920 /* If we got an event, there may still be others, as a single
2921 SIGCHLD can indicate more than one child stopped. This forces
2922 another target_wait call. */
2923 async_file_mark ();
2924
2925 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2926 return null_ptid;
2927 }
2928
2929 ptid_t
2930 linux_process_target::filter_exit_event (lwp_info *event_child,
2931 target_waitstatus *ourstatus)
2932 {
2933 client_state &cs = get_client_state ();
2934 struct thread_info *thread = get_lwp_thread (event_child);
2935 ptid_t ptid = ptid_of (thread);
2936
2937 if (!last_thread_of_process_p (pid_of (thread)))
2938 {
2939 if (cs.report_thread_events)
2940 ourstatus->kind = TARGET_WAITKIND_THREAD_EXITED;
2941 else
2942 ourstatus->kind = TARGET_WAITKIND_IGNORE;
2943
2944 delete_lwp (event_child);
2945 }
2946 return ptid;
2947 }
2948
2949 /* Returns 1 if GDB is interested in any event_child syscalls. */
2950
2951 static int
2952 gdb_catching_syscalls_p (struct lwp_info *event_child)
2953 {
2954 struct thread_info *thread = get_lwp_thread (event_child);
2955 struct process_info *proc = get_thread_process (thread);
2956
2957 return !proc->syscalls_to_catch.empty ();
2958 }
2959
2960 bool
2961 linux_process_target::gdb_catch_this_syscall (lwp_info *event_child)
2962 {
2963 int sysno;
2964 struct thread_info *thread = get_lwp_thread (event_child);
2965 struct process_info *proc = get_thread_process (thread);
2966
2967 if (proc->syscalls_to_catch.empty ())
2968 return false;
2969
2970 if (proc->syscalls_to_catch[0] == ANY_SYSCALL)
2971 return true;
2972
2973 get_syscall_trapinfo (event_child, &sysno);
2974
2975 for (int iter : proc->syscalls_to_catch)
2976 if (iter == sysno)
2977 return true;
2978
2979 return false;
2980 }
2981
2982 ptid_t
2983 linux_process_target::wait_1 (ptid_t ptid, target_waitstatus *ourstatus,
2984 int target_options)
2985 {
2986 client_state &cs = get_client_state ();
2987 int w;
2988 struct lwp_info *event_child;
2989 int options;
2990 int pid;
2991 int step_over_finished;
2992 int bp_explains_trap;
2993 int maybe_internal_trap;
2994 int report_to_gdb;
2995 int trace_event;
2996 int in_step_range;
2997 int any_resumed;
2998
2999 if (debug_threads)
3000 {
3001 debug_enter ();
3002 debug_printf ("wait_1: [%s]\n", target_pid_to_str (ptid));
3003 }
3004
3005 /* Translate generic target options into linux options. */
3006 options = __WALL;
3007 if (target_options & TARGET_WNOHANG)
3008 options |= WNOHANG;
3009
3010 bp_explains_trap = 0;
3011 trace_event = 0;
3012 in_step_range = 0;
3013 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3014
3015 auto status_pending_p_any = [&] (thread_info *thread)
3016 {
3017 return status_pending_p_callback (thread, minus_one_ptid);
3018 };
3019
3020 auto not_stopped = [&] (thread_info *thread)
3021 {
3022 return not_stopped_callback (thread, minus_one_ptid);
3023 };
3024
3025 /* Find a resumed LWP, if any. */
3026 if (find_thread (status_pending_p_any) != NULL)
3027 any_resumed = 1;
3028 else if (find_thread (not_stopped) != NULL)
3029 any_resumed = 1;
3030 else
3031 any_resumed = 0;
3032
3033 if (step_over_bkpt == null_ptid)
3034 pid = wait_for_event (ptid, &w, options);
3035 else
3036 {
3037 if (debug_threads)
3038 debug_printf ("step_over_bkpt set [%s], doing a blocking wait\n",
3039 target_pid_to_str (step_over_bkpt));
3040 pid = wait_for_event (step_over_bkpt, &w, options & ~WNOHANG);
3041 }
3042
3043 if (pid == 0 || (pid == -1 && !any_resumed))
3044 {
3045 gdb_assert (target_options & TARGET_WNOHANG);
3046
3047 if (debug_threads)
3048 {
3049 debug_printf ("wait_1 ret = null_ptid, "
3050 "TARGET_WAITKIND_IGNORE\n");
3051 debug_exit ();
3052 }
3053
3054 ourstatus->kind = TARGET_WAITKIND_IGNORE;
3055 return null_ptid;
3056 }
3057 else if (pid == -1)
3058 {
3059 if (debug_threads)
3060 {
3061 debug_printf ("wait_1 ret = null_ptid, "
3062 "TARGET_WAITKIND_NO_RESUMED\n");
3063 debug_exit ();
3064 }
3065
3066 ourstatus->kind = TARGET_WAITKIND_NO_RESUMED;
3067 return null_ptid;
3068 }
3069
3070 event_child = get_thread_lwp (current_thread);
3071
3072 /* wait_for_event only returns an exit status for the last
3073 child of a process. Report it. */
3074 if (WIFEXITED (w) || WIFSIGNALED (w))
3075 {
3076 if (WIFEXITED (w))
3077 {
3078 ourstatus->kind = TARGET_WAITKIND_EXITED;
3079 ourstatus->value.integer = WEXITSTATUS (w);
3080
3081 if (debug_threads)
3082 {
3083 debug_printf ("wait_1 ret = %s, exited with "
3084 "retcode %d\n",
3085 target_pid_to_str (ptid_of (current_thread)),
3086 WEXITSTATUS (w));
3087 debug_exit ();
3088 }
3089 }
3090 else
3091 {
3092 ourstatus->kind = TARGET_WAITKIND_SIGNALLED;
3093 ourstatus->value.sig = gdb_signal_from_host (WTERMSIG (w));
3094
3095 if (debug_threads)
3096 {
3097 debug_printf ("wait_1 ret = %s, terminated with "
3098 "signal %d\n",
3099 target_pid_to_str (ptid_of (current_thread)),
3100 WTERMSIG (w));
3101 debug_exit ();
3102 }
3103 }
3104
3105 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3106 return filter_exit_event (event_child, ourstatus);
3107
3108 return ptid_of (current_thread);
3109 }
3110
3111 /* If step-over executes a breakpoint instruction, in the case of a
3112 hardware single step it means a gdb/gdbserver breakpoint had been
3113 planted on top of a permanent breakpoint, in the case of a software
3114 single step it may just mean that gdbserver hit the reinsert breakpoint.
3115 The PC has been adjusted by save_stop_reason to point at
3116 the breakpoint address.
3117 So in the case of the hardware single step advance the PC manually
3118 past the breakpoint and in the case of software single step advance only
3119 if it's not the single_step_breakpoint we are hitting.
3120 This avoids that a program would keep trapping a permanent breakpoint
3121 forever. */
3122 if (step_over_bkpt != null_ptid
3123 && event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3124 && (event_child->stepping
3125 || !single_step_breakpoint_inserted_here (event_child->stop_pc)))
3126 {
3127 int increment_pc = 0;
3128 int breakpoint_kind = 0;
3129 CORE_ADDR stop_pc = event_child->stop_pc;
3130
3131 breakpoint_kind = breakpoint_kind_from_current_state (&stop_pc);
3132 sw_breakpoint_from_kind (breakpoint_kind, &increment_pc);
3133
3134 if (debug_threads)
3135 {
3136 debug_printf ("step-over for %s executed software breakpoint\n",
3137 target_pid_to_str (ptid_of (current_thread)));
3138 }
3139
3140 if (increment_pc != 0)
3141 {
3142 struct regcache *regcache
3143 = get_thread_regcache (current_thread, 1);
3144
3145 event_child->stop_pc += increment_pc;
3146 low_set_pc (regcache, event_child->stop_pc);
3147
3148 if (!low_breakpoint_at (event_child->stop_pc))
3149 event_child->stop_reason = TARGET_STOPPED_BY_NO_REASON;
3150 }
3151 }
3152
3153 /* If this event was not handled before, and is not a SIGTRAP, we
3154 report it. SIGILL and SIGSEGV are also treated as traps in case
3155 a breakpoint is inserted at the current PC. If this target does
3156 not support internal breakpoints at all, we also report the
3157 SIGTRAP without further processing; it's of no concern to us. */
3158 maybe_internal_trap
3159 = (low_supports_breakpoints ()
3160 && (WSTOPSIG (w) == SIGTRAP
3161 || ((WSTOPSIG (w) == SIGILL
3162 || WSTOPSIG (w) == SIGSEGV)
3163 && low_breakpoint_at (event_child->stop_pc))));
3164
3165 if (maybe_internal_trap)
3166 {
3167 /* Handle anything that requires bookkeeping before deciding to
3168 report the event or continue waiting. */
3169
3170 /* First check if we can explain the SIGTRAP with an internal
3171 breakpoint, or if we should possibly report the event to GDB.
3172 Do this before anything that may remove or insert a
3173 breakpoint. */
3174 bp_explains_trap = breakpoint_inserted_here (event_child->stop_pc);
3175
3176 /* We have a SIGTRAP, possibly a step-over dance has just
3177 finished. If so, tweak the state machine accordingly,
3178 reinsert breakpoints and delete any single-step
3179 breakpoints. */
3180 step_over_finished = finish_step_over (event_child);
3181
3182 /* Now invoke the callbacks of any internal breakpoints there. */
3183 check_breakpoints (event_child->stop_pc);
3184
3185 /* Handle tracepoint data collecting. This may overflow the
3186 trace buffer, and cause a tracing stop, removing
3187 breakpoints. */
3188 trace_event = handle_tracepoints (event_child);
3189
3190 if (bp_explains_trap)
3191 {
3192 if (debug_threads)
3193 debug_printf ("Hit a gdbserver breakpoint.\n");
3194 }
3195 }
3196 else
3197 {
3198 /* We have some other signal, possibly a step-over dance was in
3199 progress, and it should be cancelled too. */
3200 step_over_finished = finish_step_over (event_child);
3201 }
3202
3203 /* We have all the data we need. Either report the event to GDB, or
3204 resume threads and keep waiting for more. */
3205
3206 /* If we're collecting a fast tracepoint, finish the collection and
3207 move out of the jump pad before delivering a signal. See
3208 linux_stabilize_threads. */
3209
3210 if (WIFSTOPPED (w)
3211 && WSTOPSIG (w) != SIGTRAP
3212 && supports_fast_tracepoints ()
3213 && agent_loaded_p ())
3214 {
3215 if (debug_threads)
3216 debug_printf ("Got signal %d for LWP %ld. Check if we need "
3217 "to defer or adjust it.\n",
3218 WSTOPSIG (w), lwpid_of (current_thread));
3219
3220 /* Allow debugging the jump pad itself. */
3221 if (current_thread->last_resume_kind != resume_step
3222 && maybe_move_out_of_jump_pad (event_child, &w))
3223 {
3224 enqueue_one_deferred_signal (event_child, &w);
3225
3226 if (debug_threads)
3227 debug_printf ("Signal %d for LWP %ld deferred (in jump pad)\n",
3228 WSTOPSIG (w), lwpid_of (current_thread));
3229
3230 resume_one_lwp (event_child, 0, 0, NULL);
3231
3232 if (debug_threads)
3233 debug_exit ();
3234 return ignore_event (ourstatus);
3235 }
3236 }
3237
3238 if (event_child->collecting_fast_tracepoint
3239 != fast_tpoint_collect_result::not_collecting)
3240 {
3241 if (debug_threads)
3242 debug_printf ("LWP %ld was trying to move out of the jump pad (%d). "
3243 "Check if we're already there.\n",
3244 lwpid_of (current_thread),
3245 (int) event_child->collecting_fast_tracepoint);
3246
3247 trace_event = 1;
3248
3249 event_child->collecting_fast_tracepoint
3250 = linux_fast_tracepoint_collecting (event_child, NULL);
3251
3252 if (event_child->collecting_fast_tracepoint
3253 != fast_tpoint_collect_result::before_insn)
3254 {
3255 /* No longer need this breakpoint. */
3256 if (event_child->exit_jump_pad_bkpt != NULL)
3257 {
3258 if (debug_threads)
3259 debug_printf ("No longer need exit-jump-pad bkpt; removing it."
3260 "stopping all threads momentarily.\n");
3261
3262 /* Other running threads could hit this breakpoint.
3263 We don't handle moribund locations like GDB does,
3264 instead we always pause all threads when removing
3265 breakpoints, so that any step-over or
3266 decr_pc_after_break adjustment is always taken
3267 care of while the breakpoint is still
3268 inserted. */
3269 stop_all_lwps (1, event_child);
3270
3271 delete_breakpoint (event_child->exit_jump_pad_bkpt);
3272 event_child->exit_jump_pad_bkpt = NULL;
3273
3274 unstop_all_lwps (1, event_child);
3275
3276 gdb_assert (event_child->suspended >= 0);
3277 }
3278 }
3279
3280 if (event_child->collecting_fast_tracepoint
3281 == fast_tpoint_collect_result::not_collecting)
3282 {
3283 if (debug_threads)
3284 debug_printf ("fast tracepoint finished "
3285 "collecting successfully.\n");
3286
3287 /* We may have a deferred signal to report. */
3288 if (dequeue_one_deferred_signal (event_child, &w))
3289 {
3290 if (debug_threads)
3291 debug_printf ("dequeued one signal.\n");
3292 }
3293 else
3294 {
3295 if (debug_threads)
3296 debug_printf ("no deferred signals.\n");
3297
3298 if (stabilizing_threads)
3299 {
3300 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3301 ourstatus->value.sig = GDB_SIGNAL_0;
3302
3303 if (debug_threads)
3304 {
3305 debug_printf ("wait_1 ret = %s, stopped "
3306 "while stabilizing threads\n",
3307 target_pid_to_str (ptid_of (current_thread)));
3308 debug_exit ();
3309 }
3310
3311 return ptid_of (current_thread);
3312 }
3313 }
3314 }
3315 }
3316
3317 /* Check whether GDB would be interested in this event. */
3318
3319 /* Check if GDB is interested in this syscall. */
3320 if (WIFSTOPPED (w)
3321 && WSTOPSIG (w) == SYSCALL_SIGTRAP
3322 && !gdb_catch_this_syscall (event_child))
3323 {
3324 if (debug_threads)
3325 {
3326 debug_printf ("Ignored syscall for LWP %ld.\n",
3327 lwpid_of (current_thread));
3328 }
3329
3330 resume_one_lwp (event_child, event_child->stepping, 0, NULL);
3331
3332 if (debug_threads)
3333 debug_exit ();
3334 return ignore_event (ourstatus);
3335 }
3336
3337 /* If GDB is not interested in this signal, don't stop other
3338 threads, and don't report it to GDB. Just resume the inferior
3339 right away. We do this for threading-related signals as well as
3340 any that GDB specifically requested we ignore. But never ignore
3341 SIGSTOP if we sent it ourselves, and do not ignore signals when
3342 stepping - they may require special handling to skip the signal
3343 handler. Also never ignore signals that could be caused by a
3344 breakpoint. */
3345 if (WIFSTOPPED (w)
3346 && current_thread->last_resume_kind != resume_step
3347 && (
3348 #if defined (USE_THREAD_DB) && !defined (__ANDROID__)
3349 (current_process ()->priv->thread_db != NULL
3350 && (WSTOPSIG (w) == __SIGRTMIN
3351 || WSTOPSIG (w) == __SIGRTMIN + 1))
3352 ||
3353 #endif
3354 (cs.pass_signals[gdb_signal_from_host (WSTOPSIG (w))]
3355 && !(WSTOPSIG (w) == SIGSTOP
3356 && current_thread->last_resume_kind == resume_stop)
3357 && !linux_wstatus_maybe_breakpoint (w))))
3358 {
3359 siginfo_t info, *info_p;
3360
3361 if (debug_threads)
3362 debug_printf ("Ignored signal %d for LWP %ld.\n",
3363 WSTOPSIG (w), lwpid_of (current_thread));
3364
3365 if (ptrace (PTRACE_GETSIGINFO, lwpid_of (current_thread),
3366 (PTRACE_TYPE_ARG3) 0, &info) == 0)
3367 info_p = &info;
3368 else
3369 info_p = NULL;
3370
3371 if (step_over_finished)
3372 {
3373 /* We cancelled this thread's step-over above. We still
3374 need to unsuspend all other LWPs, and set them back
3375 running again while the signal handler runs. */
3376 unsuspend_all_lwps (event_child);
3377
3378 /* Enqueue the pending signal info so that proceed_all_lwps
3379 doesn't lose it. */
3380 enqueue_pending_signal (event_child, WSTOPSIG (w), info_p);
3381
3382 proceed_all_lwps ();
3383 }
3384 else
3385 {
3386 resume_one_lwp (event_child, event_child->stepping,
3387 WSTOPSIG (w), info_p);
3388 }
3389
3390 if (debug_threads)
3391 debug_exit ();
3392
3393 return ignore_event (ourstatus);
3394 }
3395
3396 /* Note that all addresses are always "out of the step range" when
3397 there's no range to begin with. */
3398 in_step_range = lwp_in_step_range (event_child);
3399
3400 /* If GDB wanted this thread to single step, and the thread is out
3401 of the step range, we always want to report the SIGTRAP, and let
3402 GDB handle it. Watchpoints should always be reported. So should
3403 signals we can't explain. A SIGTRAP we can't explain could be a
3404 GDB breakpoint --- we may or not support Z0 breakpoints. If we
3405 do, we're be able to handle GDB breakpoints on top of internal
3406 breakpoints, by handling the internal breakpoint and still
3407 reporting the event to GDB. If we don't, we're out of luck, GDB
3408 won't see the breakpoint hit. If we see a single-step event but
3409 the thread should be continuing, don't pass the trap to gdb.
3410 That indicates that we had previously finished a single-step but
3411 left the single-step pending -- see
3412 complete_ongoing_step_over. */
3413 report_to_gdb = (!maybe_internal_trap
3414 || (current_thread->last_resume_kind == resume_step
3415 && !in_step_range)
3416 || event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3417 || (!in_step_range
3418 && !bp_explains_trap
3419 && !trace_event
3420 && !step_over_finished
3421 && !(current_thread->last_resume_kind == resume_continue
3422 && event_child->stop_reason == TARGET_STOPPED_BY_SINGLE_STEP))
3423 || (gdb_breakpoint_here (event_child->stop_pc)
3424 && gdb_condition_true_at_breakpoint (event_child->stop_pc)
3425 && gdb_no_commands_at_breakpoint (event_child->stop_pc))
3426 || event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE);
3427
3428 run_breakpoint_commands (event_child->stop_pc);
3429
3430 /* We found no reason GDB would want us to stop. We either hit one
3431 of our own breakpoints, or finished an internal step GDB
3432 shouldn't know about. */
3433 if (!report_to_gdb)
3434 {
3435 if (debug_threads)
3436 {
3437 if (bp_explains_trap)
3438 debug_printf ("Hit a gdbserver breakpoint.\n");
3439 if (step_over_finished)
3440 debug_printf ("Step-over finished.\n");
3441 if (trace_event)
3442 debug_printf ("Tracepoint event.\n");
3443 if (lwp_in_step_range (event_child))
3444 debug_printf ("Range stepping pc 0x%s [0x%s, 0x%s).\n",
3445 paddress (event_child->stop_pc),
3446 paddress (event_child->step_range_start),
3447 paddress (event_child->step_range_end));
3448 }
3449
3450 /* We're not reporting this breakpoint to GDB, so apply the
3451 decr_pc_after_break adjustment to the inferior's regcache
3452 ourselves. */
3453
3454 if (low_supports_breakpoints ())
3455 {
3456 struct regcache *regcache
3457 = get_thread_regcache (current_thread, 1);
3458 low_set_pc (regcache, event_child->stop_pc);
3459 }
3460
3461 if (step_over_finished)
3462 {
3463 /* If we have finished stepping over a breakpoint, we've
3464 stopped and suspended all LWPs momentarily except the
3465 stepping one. This is where we resume them all again.
3466 We're going to keep waiting, so use proceed, which
3467 handles stepping over the next breakpoint. */
3468 unsuspend_all_lwps (event_child);
3469 }
3470 else
3471 {
3472 /* Remove the single-step breakpoints if any. Note that
3473 there isn't single-step breakpoint if we finished stepping
3474 over. */
3475 if (supports_software_single_step ()
3476 && has_single_step_breakpoints (current_thread))
3477 {
3478 stop_all_lwps (0, event_child);
3479 delete_single_step_breakpoints (current_thread);
3480 unstop_all_lwps (0, event_child);
3481 }
3482 }
3483
3484 if (debug_threads)
3485 debug_printf ("proceeding all threads.\n");
3486 proceed_all_lwps ();
3487
3488 if (debug_threads)
3489 debug_exit ();
3490
3491 return ignore_event (ourstatus);
3492 }
3493
3494 if (debug_threads)
3495 {
3496 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3497 {
3498 std::string str
3499 = target_waitstatus_to_string (&event_child->waitstatus);
3500
3501 debug_printf ("LWP %ld: extended event with waitstatus %s\n",
3502 lwpid_of (get_lwp_thread (event_child)), str.c_str ());
3503 }
3504 if (current_thread->last_resume_kind == resume_step)
3505 {
3506 if (event_child->step_range_start == event_child->step_range_end)
3507 debug_printf ("GDB wanted to single-step, reporting event.\n");
3508 else if (!lwp_in_step_range (event_child))
3509 debug_printf ("Out of step range, reporting event.\n");
3510 }
3511 if (event_child->stop_reason == TARGET_STOPPED_BY_WATCHPOINT)
3512 debug_printf ("Stopped by watchpoint.\n");
3513 else if (gdb_breakpoint_here (event_child->stop_pc))
3514 debug_printf ("Stopped by GDB breakpoint.\n");
3515 if (debug_threads)
3516 debug_printf ("Hit a non-gdbserver trap event.\n");
3517 }
3518
3519 /* Alright, we're going to report a stop. */
3520
3521 /* Remove single-step breakpoints. */
3522 if (supports_software_single_step ())
3523 {
3524 /* Remove single-step breakpoints or not. It it is true, stop all
3525 lwps, so that other threads won't hit the breakpoint in the
3526 staled memory. */
3527 int remove_single_step_breakpoints_p = 0;
3528
3529 if (non_stop)
3530 {
3531 remove_single_step_breakpoints_p
3532 = has_single_step_breakpoints (current_thread);
3533 }
3534 else
3535 {
3536 /* In all-stop, a stop reply cancels all previous resume
3537 requests. Delete all single-step breakpoints. */
3538
3539 find_thread ([&] (thread_info *thread) {
3540 if (has_single_step_breakpoints (thread))
3541 {
3542 remove_single_step_breakpoints_p = 1;
3543 return true;
3544 }
3545
3546 return false;
3547 });
3548 }
3549
3550 if (remove_single_step_breakpoints_p)
3551 {
3552 /* If we remove single-step breakpoints from memory, stop all lwps,
3553 so that other threads won't hit the breakpoint in the staled
3554 memory. */
3555 stop_all_lwps (0, event_child);
3556
3557 if (non_stop)
3558 {
3559 gdb_assert (has_single_step_breakpoints (current_thread));
3560 delete_single_step_breakpoints (current_thread);
3561 }
3562 else
3563 {
3564 for_each_thread ([] (thread_info *thread){
3565 if (has_single_step_breakpoints (thread))
3566 delete_single_step_breakpoints (thread);
3567 });
3568 }
3569
3570 unstop_all_lwps (0, event_child);
3571 }
3572 }
3573
3574 if (!stabilizing_threads)
3575 {
3576 /* In all-stop, stop all threads. */
3577 if (!non_stop)
3578 stop_all_lwps (0, NULL);
3579
3580 if (step_over_finished)
3581 {
3582 if (!non_stop)
3583 {
3584 /* If we were doing a step-over, all other threads but
3585 the stepping one had been paused in start_step_over,
3586 with their suspend counts incremented. We don't want
3587 to do a full unstop/unpause, because we're in
3588 all-stop mode (so we want threads stopped), but we
3589 still need to unsuspend the other threads, to
3590 decrement their `suspended' count back. */
3591 unsuspend_all_lwps (event_child);
3592 }
3593 else
3594 {
3595 /* If we just finished a step-over, then all threads had
3596 been momentarily paused. In all-stop, that's fine,
3597 we want threads stopped by now anyway. In non-stop,
3598 we need to re-resume threads that GDB wanted to be
3599 running. */
3600 unstop_all_lwps (1, event_child);
3601 }
3602 }
3603
3604 /* If we're not waiting for a specific LWP, choose an event LWP
3605 from among those that have had events. Giving equal priority
3606 to all LWPs that have had events helps prevent
3607 starvation. */
3608 if (ptid == minus_one_ptid)
3609 {
3610 event_child->status_pending_p = 1;
3611 event_child->status_pending = w;
3612
3613 select_event_lwp (&event_child);
3614
3615 /* current_thread and event_child must stay in sync. */
3616 current_thread = get_lwp_thread (event_child);
3617
3618 event_child->status_pending_p = 0;
3619 w = event_child->status_pending;
3620 }
3621
3622
3623 /* Stabilize threads (move out of jump pads). */
3624 if (!non_stop)
3625 target_stabilize_threads ();
3626 }
3627 else
3628 {
3629 /* If we just finished a step-over, then all threads had been
3630 momentarily paused. In all-stop, that's fine, we want
3631 threads stopped by now anyway. In non-stop, we need to
3632 re-resume threads that GDB wanted to be running. */
3633 if (step_over_finished)
3634 unstop_all_lwps (1, event_child);
3635 }
3636
3637 if (event_child->waitstatus.kind != TARGET_WAITKIND_IGNORE)
3638 {
3639 /* If the reported event is an exit, fork, vfork or exec, let
3640 GDB know. */
3641
3642 /* Break the unreported fork relationship chain. */
3643 if (event_child->waitstatus.kind == TARGET_WAITKIND_FORKED
3644 || event_child->waitstatus.kind == TARGET_WAITKIND_VFORKED)
3645 {
3646 event_child->fork_relative->fork_relative = NULL;
3647 event_child->fork_relative = NULL;
3648 }
3649
3650 *ourstatus = event_child->waitstatus;
3651 /* Clear the event lwp's waitstatus since we handled it already. */
3652 event_child->waitstatus.kind = TARGET_WAITKIND_IGNORE;
3653 }
3654 else
3655 ourstatus->kind = TARGET_WAITKIND_STOPPED;
3656
3657 /* Now that we've selected our final event LWP, un-adjust its PC if
3658 it was a software breakpoint, and the client doesn't know we can
3659 adjust the breakpoint ourselves. */
3660 if (event_child->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT
3661 && !cs.swbreak_feature)
3662 {
3663 int decr_pc = low_decr_pc_after_break ();
3664
3665 if (decr_pc != 0)
3666 {
3667 struct regcache *regcache
3668 = get_thread_regcache (current_thread, 1);
3669 low_set_pc (regcache, event_child->stop_pc + decr_pc);
3670 }
3671 }
3672
3673 if (WSTOPSIG (w) == SYSCALL_SIGTRAP)
3674 {
3675 get_syscall_trapinfo (event_child,
3676 &ourstatus->value.syscall_number);
3677 ourstatus->kind = event_child->syscall_state;
3678 }
3679 else if (current_thread->last_resume_kind == resume_stop
3680 && WSTOPSIG (w) == SIGSTOP)
3681 {
3682 /* A thread that has been requested to stop by GDB with vCont;t,
3683 and it stopped cleanly, so report as SIG0. The use of
3684 SIGSTOP is an implementation detail. */
3685 ourstatus->value.sig = GDB_SIGNAL_0;
3686 }
3687 else if (current_thread->last_resume_kind == resume_stop
3688 && WSTOPSIG (w) != SIGSTOP)
3689 {
3690 /* A thread that has been requested to stop by GDB with vCont;t,
3691 but, it stopped for other reasons. */
3692 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3693 }
3694 else if (ourstatus->kind == TARGET_WAITKIND_STOPPED)
3695 {
3696 ourstatus->value.sig = gdb_signal_from_host (WSTOPSIG (w));
3697 }
3698
3699 gdb_assert (step_over_bkpt == null_ptid);
3700
3701 if (debug_threads)
3702 {
3703 debug_printf ("wait_1 ret = %s, %d, %d\n",
3704 target_pid_to_str (ptid_of (current_thread)),
3705 ourstatus->kind, ourstatus->value.sig);
3706 debug_exit ();
3707 }
3708
3709 if (ourstatus->kind == TARGET_WAITKIND_EXITED)
3710 return filter_exit_event (event_child, ourstatus);
3711
3712 return ptid_of (current_thread);
3713 }
3714
3715 /* Get rid of any pending event in the pipe. */
3716 static void
3717 async_file_flush (void)
3718 {
3719 int ret;
3720 char buf;
3721
3722 do
3723 ret = read (linux_event_pipe[0], &buf, 1);
3724 while (ret >= 0 || (ret == -1 && errno == EINTR));
3725 }
3726
3727 /* Put something in the pipe, so the event loop wakes up. */
3728 static void
3729 async_file_mark (void)
3730 {
3731 int ret;
3732
3733 async_file_flush ();
3734
3735 do
3736 ret = write (linux_event_pipe[1], "+", 1);
3737 while (ret == 0 || (ret == -1 && errno == EINTR));
3738
3739 /* Ignore EAGAIN. If the pipe is full, the event loop will already
3740 be awakened anyway. */
3741 }
3742
3743 ptid_t
3744 linux_process_target::wait (ptid_t ptid,
3745 target_waitstatus *ourstatus,
3746 int target_options)
3747 {
3748 ptid_t event_ptid;
3749
3750 /* Flush the async file first. */
3751 if (target_is_async_p ())
3752 async_file_flush ();
3753
3754 do
3755 {
3756 event_ptid = wait_1 (ptid, ourstatus, target_options);
3757 }
3758 while ((target_options & TARGET_WNOHANG) == 0
3759 && event_ptid == null_ptid
3760 && ourstatus->kind == TARGET_WAITKIND_IGNORE);
3761
3762 /* If at least one stop was reported, there may be more. A single
3763 SIGCHLD can signal more than one child stop. */
3764 if (target_is_async_p ()
3765 && (target_options & TARGET_WNOHANG) != 0
3766 && event_ptid != null_ptid)
3767 async_file_mark ();
3768
3769 return event_ptid;
3770 }
3771
3772 /* Send a signal to an LWP. */
3773
3774 static int
3775 kill_lwp (unsigned long lwpid, int signo)
3776 {
3777 int ret;
3778
3779 errno = 0;
3780 ret = syscall (__NR_tkill, lwpid, signo);
3781 if (errno == ENOSYS)
3782 {
3783 /* If tkill fails, then we are not using nptl threads, a
3784 configuration we no longer support. */
3785 perror_with_name (("tkill"));
3786 }
3787 return ret;
3788 }
3789
3790 void
3791 linux_stop_lwp (struct lwp_info *lwp)
3792 {
3793 send_sigstop (lwp);
3794 }
3795
3796 static void
3797 send_sigstop (struct lwp_info *lwp)
3798 {
3799 int pid;
3800
3801 pid = lwpid_of (get_lwp_thread (lwp));
3802
3803 /* If we already have a pending stop signal for this process, don't
3804 send another. */
3805 if (lwp->stop_expected)
3806 {
3807 if (debug_threads)
3808 debug_printf ("Have pending sigstop for lwp %d\n", pid);
3809
3810 return;
3811 }
3812
3813 if (debug_threads)
3814 debug_printf ("Sending sigstop to lwp %d\n", pid);
3815
3816 lwp->stop_expected = 1;
3817 kill_lwp (pid, SIGSTOP);
3818 }
3819
3820 static void
3821 send_sigstop (thread_info *thread, lwp_info *except)
3822 {
3823 struct lwp_info *lwp = get_thread_lwp (thread);
3824
3825 /* Ignore EXCEPT. */
3826 if (lwp == except)
3827 return;
3828
3829 if (lwp->stopped)
3830 return;
3831
3832 send_sigstop (lwp);
3833 }
3834
3835 /* Increment the suspend count of an LWP, and stop it, if not stopped
3836 yet. */
3837 static void
3838 suspend_and_send_sigstop (thread_info *thread, lwp_info *except)
3839 {
3840 struct lwp_info *lwp = get_thread_lwp (thread);
3841
3842 /* Ignore EXCEPT. */
3843 if (lwp == except)
3844 return;
3845
3846 lwp_suspended_inc (lwp);
3847
3848 send_sigstop (thread, except);
3849 }
3850
3851 static void
3852 mark_lwp_dead (struct lwp_info *lwp, int wstat)
3853 {
3854 /* Store the exit status for later. */
3855 lwp->status_pending_p = 1;
3856 lwp->status_pending = wstat;
3857
3858 /* Store in waitstatus as well, as there's nothing else to process
3859 for this event. */
3860 if (WIFEXITED (wstat))
3861 {
3862 lwp->waitstatus.kind = TARGET_WAITKIND_EXITED;
3863 lwp->waitstatus.value.integer = WEXITSTATUS (wstat);
3864 }
3865 else if (WIFSIGNALED (wstat))
3866 {
3867 lwp->waitstatus.kind = TARGET_WAITKIND_SIGNALLED;
3868 lwp->waitstatus.value.sig = gdb_signal_from_host (WTERMSIG (wstat));
3869 }
3870
3871 /* Prevent trying to stop it. */
3872 lwp->stopped = 1;
3873
3874 /* No further stops are expected from a dead lwp. */
3875 lwp->stop_expected = 0;
3876 }
3877
3878 /* Return true if LWP has exited already, and has a pending exit event
3879 to report to GDB. */
3880
3881 static int
3882 lwp_is_marked_dead (struct lwp_info *lwp)
3883 {
3884 return (lwp->status_pending_p
3885 && (WIFEXITED (lwp->status_pending)
3886 || WIFSIGNALED (lwp->status_pending)));
3887 }
3888
3889 void
3890 linux_process_target::wait_for_sigstop ()
3891 {
3892 struct thread_info *saved_thread;
3893 ptid_t saved_tid;
3894 int wstat;
3895 int ret;
3896
3897 saved_thread = current_thread;
3898 if (saved_thread != NULL)
3899 saved_tid = saved_thread->id;
3900 else
3901 saved_tid = null_ptid; /* avoid bogus unused warning */
3902
3903 if (debug_threads)
3904 debug_printf ("wait_for_sigstop: pulling events\n");
3905
3906 /* Passing NULL_PTID as filter indicates we want all events to be
3907 left pending. Eventually this returns when there are no
3908 unwaited-for children left. */
3909 ret = wait_for_event_filtered (minus_one_ptid, null_ptid, &wstat, __WALL);
3910 gdb_assert (ret == -1);
3911
3912 if (saved_thread == NULL || mythread_alive (saved_tid))
3913 current_thread = saved_thread;
3914 else
3915 {
3916 if (debug_threads)
3917 debug_printf ("Previously current thread died.\n");
3918
3919 /* We can't change the current inferior behind GDB's back,
3920 otherwise, a subsequent command may apply to the wrong
3921 process. */
3922 current_thread = NULL;
3923 }
3924 }
3925
3926 bool
3927 linux_process_target::stuck_in_jump_pad (thread_info *thread)
3928 {
3929 struct lwp_info *lwp = get_thread_lwp (thread);
3930
3931 if (lwp->suspended != 0)
3932 {
3933 internal_error (__FILE__, __LINE__,
3934 "LWP %ld is suspended, suspended=%d\n",
3935 lwpid_of (thread), lwp->suspended);
3936 }
3937 gdb_assert (lwp->stopped);
3938
3939 /* Allow debugging the jump pad, gdb_collect, etc.. */
3940 return (supports_fast_tracepoints ()
3941 && agent_loaded_p ()
3942 && (gdb_breakpoint_here (lwp->stop_pc)
3943 || lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT
3944 || thread->last_resume_kind == resume_step)
3945 && (linux_fast_tracepoint_collecting (lwp, NULL)
3946 != fast_tpoint_collect_result::not_collecting));
3947 }
3948
3949 void
3950 linux_process_target::move_out_of_jump_pad (thread_info *thread)
3951 {
3952 struct thread_info *saved_thread;
3953 struct lwp_info *lwp = get_thread_lwp (thread);
3954 int *wstat;
3955
3956 if (lwp->suspended != 0)
3957 {
3958 internal_error (__FILE__, __LINE__,
3959 "LWP %ld is suspended, suspended=%d\n",
3960 lwpid_of (thread), lwp->suspended);
3961 }
3962 gdb_assert (lwp->stopped);
3963
3964 /* For gdb_breakpoint_here. */
3965 saved_thread = current_thread;
3966 current_thread = thread;
3967
3968 wstat = lwp->status_pending_p ? &lwp->status_pending : NULL;
3969
3970 /* Allow debugging the jump pad, gdb_collect, etc. */
3971 if (!gdb_breakpoint_here (lwp->stop_pc)
3972 && lwp->stop_reason != TARGET_STOPPED_BY_WATCHPOINT
3973 && thread->last_resume_kind != resume_step
3974 && maybe_move_out_of_jump_pad (lwp, wstat))
3975 {
3976 if (debug_threads)
3977 debug_printf ("LWP %ld needs stabilizing (in jump pad)\n",
3978 lwpid_of (thread));
3979
3980 if (wstat)
3981 {
3982 lwp->status_pending_p = 0;
3983 enqueue_one_deferred_signal (lwp, wstat);
3984
3985 if (debug_threads)
3986 debug_printf ("Signal %d for LWP %ld deferred "
3987 "(in jump pad)\n",
3988 WSTOPSIG (*wstat), lwpid_of (thread));
3989 }
3990
3991 resume_one_lwp (lwp, 0, 0, NULL);
3992 }
3993 else
3994 lwp_suspended_inc (lwp);
3995
3996 current_thread = saved_thread;
3997 }
3998
3999 static bool
4000 lwp_running (thread_info *thread)
4001 {
4002 struct lwp_info *lwp = get_thread_lwp (thread);
4003
4004 if (lwp_is_marked_dead (lwp))
4005 return false;
4006
4007 return !lwp->stopped;
4008 }
4009
4010 void
4011 linux_process_target::stop_all_lwps (int suspend, lwp_info *except)
4012 {
4013 /* Should not be called recursively. */
4014 gdb_assert (stopping_threads == NOT_STOPPING_THREADS);
4015
4016 if (debug_threads)
4017 {
4018 debug_enter ();
4019 debug_printf ("stop_all_lwps (%s, except=%s)\n",
4020 suspend ? "stop-and-suspend" : "stop",
4021 except != NULL
4022 ? target_pid_to_str (ptid_of (get_lwp_thread (except)))
4023 : "none");
4024 }
4025
4026 stopping_threads = (suspend
4027 ? STOPPING_AND_SUSPENDING_THREADS
4028 : STOPPING_THREADS);
4029
4030 if (suspend)
4031 for_each_thread ([&] (thread_info *thread)
4032 {
4033 suspend_and_send_sigstop (thread, except);
4034 });
4035 else
4036 for_each_thread ([&] (thread_info *thread)
4037 {
4038 send_sigstop (thread, except);
4039 });
4040
4041 wait_for_sigstop ();
4042 stopping_threads = NOT_STOPPING_THREADS;
4043
4044 if (debug_threads)
4045 {
4046 debug_printf ("stop_all_lwps done, setting stopping_threads "
4047 "back to !stopping\n");
4048 debug_exit ();
4049 }
4050 }
4051
4052 /* Enqueue one signal in the chain of signals which need to be
4053 delivered to this process on next resume. */
4054
4055 static void
4056 enqueue_pending_signal (struct lwp_info *lwp, int signal, siginfo_t *info)
4057 {
4058 struct pending_signals *p_sig = XNEW (struct pending_signals);
4059
4060 p_sig->prev = lwp->pending_signals;
4061 p_sig->signal = signal;
4062 if (info == NULL)
4063 memset (&p_sig->info, 0, sizeof (siginfo_t));
4064 else
4065 memcpy (&p_sig->info, info, sizeof (siginfo_t));
4066 lwp->pending_signals = p_sig;
4067 }
4068
4069 void
4070 linux_process_target::install_software_single_step_breakpoints (lwp_info *lwp)
4071 {
4072 struct thread_info *thread = get_lwp_thread (lwp);
4073 struct regcache *regcache = get_thread_regcache (thread, 1);
4074
4075 scoped_restore save_current_thread = make_scoped_restore (&current_thread);
4076
4077 current_thread = thread;
4078 std::vector<CORE_ADDR> next_pcs = low_get_next_pcs (regcache);
4079
4080 for (CORE_ADDR pc : next_pcs)
4081 set_single_step_breakpoint (pc, current_ptid);
4082 }
4083
4084 int
4085 linux_process_target::single_step (lwp_info* lwp)
4086 {
4087 int step = 0;
4088
4089 if (supports_hardware_single_step ())
4090 {
4091 step = 1;
4092 }
4093 else if (supports_software_single_step ())
4094 {
4095 install_software_single_step_breakpoints (lwp);
4096 step = 0;
4097 }
4098 else
4099 {
4100 if (debug_threads)
4101 debug_printf ("stepping is not implemented on this target");
4102 }
4103
4104 return step;
4105 }
4106
4107 /* The signal can be delivered to the inferior if we are not trying to
4108 finish a fast tracepoint collect. Since signal can be delivered in
4109 the step-over, the program may go to signal handler and trap again
4110 after return from the signal handler. We can live with the spurious
4111 double traps. */
4112
4113 static int
4114 lwp_signal_can_be_delivered (struct lwp_info *lwp)
4115 {
4116 return (lwp->collecting_fast_tracepoint
4117 == fast_tpoint_collect_result::not_collecting);
4118 }
4119
4120 void
4121 linux_process_target::resume_one_lwp_throw (lwp_info *lwp, int step,
4122 int signal, siginfo_t *info)
4123 {
4124 struct thread_info *thread = get_lwp_thread (lwp);
4125 struct thread_info *saved_thread;
4126 int ptrace_request;
4127 struct process_info *proc = get_thread_process (thread);
4128
4129 /* Note that target description may not be initialised
4130 (proc->tdesc == NULL) at this point because the program hasn't
4131 stopped at the first instruction yet. It means GDBserver skips
4132 the extra traps from the wrapper program (see option --wrapper).
4133 Code in this function that requires register access should be
4134 guarded by proc->tdesc == NULL or something else. */
4135
4136 if (lwp->stopped == 0)
4137 return;
4138
4139 gdb_assert (lwp->waitstatus.kind == TARGET_WAITKIND_IGNORE);
4140
4141 fast_tpoint_collect_result fast_tp_collecting
4142 = lwp->collecting_fast_tracepoint;
4143
4144 gdb_assert (!stabilizing_threads
4145 || (fast_tp_collecting
4146 != fast_tpoint_collect_result::not_collecting));
4147
4148 /* Cancel actions that rely on GDB not changing the PC (e.g., the
4149 user used the "jump" command, or "set $pc = foo"). */
4150 if (thread->while_stepping != NULL && lwp->stop_pc != get_pc (lwp))
4151 {
4152 /* Collecting 'while-stepping' actions doesn't make sense
4153 anymore. */
4154 release_while_stepping_state_list (thread);
4155 }
4156
4157 /* If we have pending signals or status, and a new signal, enqueue the
4158 signal. Also enqueue the signal if it can't be delivered to the
4159 inferior right now. */
4160 if (signal != 0
4161 && (lwp->status_pending_p
4162 || lwp->pending_signals != NULL
4163 || !lwp_signal_can_be_delivered (lwp)))
4164 {
4165 enqueue_pending_signal (lwp, signal, info);
4166
4167 /* Postpone any pending signal. It was enqueued above. */
4168 signal = 0;
4169 }
4170
4171 if (lwp->status_pending_p)
4172 {
4173 if (debug_threads)
4174 debug_printf ("Not resuming lwp %ld (%s, stop %s);"
4175 " has pending status\n",
4176 lwpid_of (thread), step ? "step" : "continue",
4177 lwp->stop_expected ? "expected" : "not expected");
4178 return;
4179 }
4180
4181 saved_thread = current_thread;
4182 current_thread = thread;
4183
4184 /* This bit needs some thinking about. If we get a signal that
4185 we must report while a single-step reinsert is still pending,
4186 we often end up resuming the thread. It might be better to
4187 (ew) allow a stack of pending events; then we could be sure that
4188 the reinsert happened right away and not lose any signals.
4189
4190 Making this stack would also shrink the window in which breakpoints are
4191 uninserted (see comment in linux_wait_for_lwp) but not enough for
4192 complete correctness, so it won't solve that problem. It may be
4193 worthwhile just to solve this one, however. */
4194 if (lwp->bp_reinsert != 0)
4195 {
4196 if (debug_threads)
4197 debug_printf (" pending reinsert at 0x%s\n",
4198 paddress (lwp->bp_reinsert));
4199
4200 if (supports_hardware_single_step ())
4201 {
4202 if (fast_tp_collecting == fast_tpoint_collect_result::not_collecting)
4203 {
4204 if (step == 0)
4205 warning ("BAD - reinserting but not stepping.");
4206 if (lwp->suspended)
4207 warning ("BAD - reinserting and suspended(%d).",
4208 lwp->suspended);
4209 }
4210 }
4211
4212 step = maybe_hw_step (thread);
4213 }
4214
4215 if (fast_tp_collecting == fast_tpoint_collect_result::before_insn)
4216 {
4217 if (debug_threads)
4218 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4219 " (exit-jump-pad-bkpt)\n",
4220 lwpid_of (thread));
4221 }
4222 else if (fast_tp_collecting == fast_tpoint_collect_result::at_insn)
4223 {
4224 if (debug_threads)
4225 debug_printf ("lwp %ld wants to get out of fast tracepoint jump pad"
4226 " single-stepping\n",
4227 lwpid_of (thread));
4228
4229 if (supports_hardware_single_step ())
4230 step = 1;
4231 else
4232 {
4233 internal_error (__FILE__, __LINE__,
4234 "moving out of jump pad single-stepping"
4235 " not implemented on this target");
4236 }
4237 }
4238
4239 /* If we have while-stepping actions in this thread set it stepping.
4240 If we have a signal to deliver, it may or may not be set to
4241 SIG_IGN, we don't know. Assume so, and allow collecting
4242 while-stepping into a signal handler. A possible smart thing to
4243 do would be to set an internal breakpoint at the signal return
4244 address, continue, and carry on catching this while-stepping
4245 action only when that breakpoint is hit. A future
4246 enhancement. */
4247 if (thread->while_stepping != NULL)
4248 {
4249 if (debug_threads)
4250 debug_printf ("lwp %ld has a while-stepping action -> forcing step.\n",
4251 lwpid_of (thread));
4252
4253 step = single_step (lwp);
4254 }
4255
4256 if (proc->tdesc != NULL && low_supports_breakpoints ())
4257 {
4258 struct regcache *regcache = get_thread_regcache (current_thread, 1);
4259
4260 lwp->stop_pc = low_get_pc (regcache);
4261
4262 if (debug_threads)
4263 {
4264 debug_printf (" %s from pc 0x%lx\n", step ? "step" : "continue",
4265 (long) lwp->stop_pc);
4266 }
4267 }
4268
4269 /* If we have pending signals, consume one if it can be delivered to
4270 the inferior. */
4271 if (lwp->pending_signals != NULL && lwp_signal_can_be_delivered (lwp))
4272 {
4273 struct pending_signals **p_sig;
4274
4275 p_sig = &lwp->pending_signals;
4276 while ((*p_sig)->prev != NULL)
4277 p_sig = &(*p_sig)->prev;
4278
4279 signal = (*p_sig)->signal;
4280 if ((*p_sig)->info.si_signo != 0)
4281 ptrace (PTRACE_SETSIGINFO, lwpid_of (thread), (PTRACE_TYPE_ARG3) 0,
4282 &(*p_sig)->info);
4283
4284 free (*p_sig);
4285 *p_sig = NULL;
4286 }
4287
4288 if (debug_threads)
4289 debug_printf ("Resuming lwp %ld (%s, signal %d, stop %s)\n",
4290 lwpid_of (thread), step ? "step" : "continue", signal,
4291 lwp->stop_expected ? "expected" : "not expected");
4292
4293 low_prepare_to_resume (lwp);
4294
4295 regcache_invalidate_thread (thread);
4296 errno = 0;
4297 lwp->stepping = step;
4298 if (step)
4299 ptrace_request = PTRACE_SINGLESTEP;
4300 else if (gdb_catching_syscalls_p (lwp))
4301 ptrace_request = PTRACE_SYSCALL;
4302 else
4303 ptrace_request = PTRACE_CONT;
4304 ptrace (ptrace_request,
4305 lwpid_of (thread),
4306 (PTRACE_TYPE_ARG3) 0,
4307 /* Coerce to a uintptr_t first to avoid potential gcc warning
4308 of coercing an 8 byte integer to a 4 byte pointer. */
4309 (PTRACE_TYPE_ARG4) (uintptr_t) signal);
4310
4311 current_thread = saved_thread;
4312 if (errno)
4313 perror_with_name ("resuming thread");
4314
4315 /* Successfully resumed. Clear state that no longer makes sense,
4316 and mark the LWP as running. Must not do this before resuming
4317 otherwise if that fails other code will be confused. E.g., we'd
4318 later try to stop the LWP and hang forever waiting for a stop
4319 status. Note that we must not throw after this is cleared,
4320 otherwise handle_zombie_lwp_error would get confused. */
4321 lwp->stopped = 0;
4322 lwp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4323 }
4324
4325 void
4326 linux_process_target::low_prepare_to_resume (lwp_info *lwp)
4327 {
4328 /* Nop. */
4329 }
4330
4331 /* Called when we try to resume a stopped LWP and that errors out. If
4332 the LWP is no longer in ptrace-stopped state (meaning it's zombie,
4333 or about to become), discard the error, clear any pending status
4334 the LWP may have, and return true (we'll collect the exit status
4335 soon enough). Otherwise, return false. */
4336
4337 static int
4338 check_ptrace_stopped_lwp_gone (struct lwp_info *lp)
4339 {
4340 struct thread_info *thread = get_lwp_thread (lp);
4341
4342 /* If we get an error after resuming the LWP successfully, we'd
4343 confuse !T state for the LWP being gone. */
4344 gdb_assert (lp->stopped);
4345
4346 /* We can't just check whether the LWP is in 'Z (Zombie)' state,
4347 because even if ptrace failed with ESRCH, the tracee may be "not
4348 yet fully dead", but already refusing ptrace requests. In that
4349 case the tracee has 'R (Running)' state for a little bit
4350 (observed in Linux 3.18). See also the note on ESRCH in the
4351 ptrace(2) man page. Instead, check whether the LWP has any state
4352 other than ptrace-stopped. */
4353
4354 /* Don't assume anything if /proc/PID/status can't be read. */
4355 if (linux_proc_pid_is_trace_stopped_nowarn (lwpid_of (thread)) == 0)
4356 {
4357 lp->stop_reason = TARGET_STOPPED_BY_NO_REASON;
4358 lp->status_pending_p = 0;
4359 return 1;
4360 }
4361 return 0;
4362 }
4363
4364 void
4365 linux_process_target::resume_one_lwp (lwp_info *lwp, int step, int signal,
4366 siginfo_t *info)
4367 {
4368 try
4369 {
4370 resume_one_lwp_throw (lwp, step, signal, info);
4371 }
4372 catch (const gdb_exception_error &ex)
4373 {
4374 if (!check_ptrace_stopped_lwp_gone (lwp))
4375 throw;
4376 }
4377 }
4378
4379 /* This function is called once per thread via for_each_thread.
4380 We look up which resume request applies to THREAD and mark it with a
4381 pointer to the appropriate resume request.
4382
4383 This algorithm is O(threads * resume elements), but resume elements
4384 is small (and will remain small at least until GDB supports thread
4385 suspension). */
4386
4387 static void
4388 linux_set_resume_request (thread_info *thread, thread_resume *resume, size_t n)
4389 {
4390 struct lwp_info *lwp = get_thread_lwp (thread);
4391
4392 for (int ndx = 0; ndx < n; ndx++)
4393 {
4394 ptid_t ptid = resume[ndx].thread;
4395 if (ptid == minus_one_ptid
4396 || ptid == thread->id
4397 /* Handle both 'pPID' and 'pPID.-1' as meaning 'all threads
4398 of PID'. */
4399 || (ptid.pid () == pid_of (thread)
4400 && (ptid.is_pid ()
4401 || ptid.lwp () == -1)))
4402 {
4403 if (resume[ndx].kind == resume_stop
4404 && thread->last_resume_kind == resume_stop)
4405 {
4406 if (debug_threads)
4407 debug_printf ("already %s LWP %ld at GDB's request\n",
4408 (thread->last_status.kind
4409 == TARGET_WAITKIND_STOPPED)
4410 ? "stopped"
4411 : "stopping",
4412 lwpid_of (thread));
4413
4414 continue;
4415 }
4416
4417 /* Ignore (wildcard) resume requests for already-resumed
4418 threads. */
4419 if (resume[ndx].kind != resume_stop
4420 && thread->last_resume_kind != resume_stop)
4421 {
4422 if (debug_threads)
4423 debug_printf ("already %s LWP %ld at GDB's request\n",
4424 (thread->last_resume_kind
4425 == resume_step)
4426 ? "stepping"
4427 : "continuing",
4428 lwpid_of (thread));
4429 continue;
4430 }
4431
4432 /* Don't let wildcard resumes resume fork children that GDB
4433 does not yet know are new fork children. */
4434 if (lwp->fork_relative != NULL)
4435 {
4436 struct lwp_info *rel = lwp->fork_relative;
4437
4438 if (rel->status_pending_p
4439 && (rel->waitstatus.kind == TARGET_WAITKIND_FORKED
4440 || rel->waitstatus.kind == TARGET_WAITKIND_VFORKED))
4441 {
4442 if (debug_threads)
4443 debug_printf ("not resuming LWP %ld: has queued stop reply\n",
4444 lwpid_of (thread));
4445 continue;
4446 }
4447 }
4448
4449 /* If the thread has a pending event that has already been
4450 reported to GDBserver core, but GDB has not pulled the
4451 event out of the vStopped queue yet, likewise, ignore the
4452 (wildcard) resume request. */
4453 if (in_queued_stop_replies (thread->id))
4454 {
4455 if (debug_threads)
4456 debug_printf ("not resuming LWP %ld: has queued stop reply\n",
4457 lwpid_of (thread));
4458 continue;
4459 }
4460
4461 lwp->resume = &resume[ndx];
4462 thread->last_resume_kind = lwp->resume->kind;
4463
4464 lwp->step_range_start = lwp->resume->step_range_start;
4465 lwp->step_range_end = lwp->resume->step_range_end;
4466
4467 /* If we had a deferred signal to report, dequeue one now.
4468 This can happen if LWP gets more than one signal while
4469 trying to get out of a jump pad. */
4470 if (lwp->stopped
4471 && !lwp->status_pending_p
4472 && dequeue_one_deferred_signal (lwp, &lwp->status_pending))
4473 {
4474 lwp->status_pending_p = 1;
4475
4476 if (debug_threads)
4477 debug_printf ("Dequeueing deferred signal %d for LWP %ld, "
4478 "leaving status pending.\n",
4479 WSTOPSIG (lwp->status_pending),
4480 lwpid_of (thread));
4481 }
4482
4483 return;
4484 }
4485 }
4486
4487 /* No resume action for this thread. */
4488 lwp->resume = NULL;
4489 }
4490
4491 bool
4492 linux_process_target::resume_status_pending (thread_info *thread)
4493 {
4494 struct lwp_info *lwp = get_thread_lwp (thread);
4495
4496 /* LWPs which will not be resumed are not interesting, because
4497 we might not wait for them next time through linux_wait. */
4498 if (lwp->resume == NULL)
4499 return false;
4500
4501 return thread_still_has_status_pending (thread);
4502 }
4503
4504 bool
4505 linux_process_target::thread_needs_step_over (thread_info *thread)
4506 {
4507 struct lwp_info *lwp = get_thread_lwp (thread);
4508 struct thread_info *saved_thread;
4509 CORE_ADDR pc;
4510 struct process_info *proc = get_thread_process (thread);
4511
4512 /* GDBserver is skipping the extra traps from the wrapper program,
4513 don't have to do step over. */
4514 if (proc->tdesc == NULL)
4515 return false;
4516
4517 /* LWPs which will not be resumed are not interesting, because we
4518 might not wait for them next time through linux_wait. */
4519
4520 if (!lwp->stopped)
4521 {
4522 if (debug_threads)
4523 debug_printf ("Need step over [LWP %ld]? Ignoring, not stopped\n",
4524 lwpid_of (thread));
4525 return false;
4526 }
4527
4528 if (thread->last_resume_kind == resume_stop)
4529 {
4530 if (debug_threads)
4531 debug_printf ("Need step over [LWP %ld]? Ignoring, should remain"
4532 " stopped\n",
4533 lwpid_of (thread));
4534 return false;
4535 }
4536
4537 gdb_assert (lwp->suspended >= 0);
4538
4539 if (lwp->suspended)
4540 {
4541 if (debug_threads)
4542 debug_printf ("Need step over [LWP %ld]? Ignoring, suspended\n",
4543 lwpid_of (thread));
4544 return false;
4545 }
4546
4547 if (lwp->status_pending_p)
4548 {
4549 if (debug_threads)
4550 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4551 " status.\n",
4552 lwpid_of (thread));
4553 return false;
4554 }
4555
4556 /* Note: PC, not STOP_PC. Either GDB has adjusted the PC already,
4557 or we have. */
4558 pc = get_pc (lwp);
4559
4560 /* If the PC has changed since we stopped, then don't do anything,
4561 and let the breakpoint/tracepoint be hit. This happens if, for
4562 instance, GDB handled the decr_pc_after_break subtraction itself,
4563 GDB is OOL stepping this thread, or the user has issued a "jump"
4564 command, or poked thread's registers herself. */
4565 if (pc != lwp->stop_pc)
4566 {
4567 if (debug_threads)
4568 debug_printf ("Need step over [LWP %ld]? Cancelling, PC was changed. "
4569 "Old stop_pc was 0x%s, PC is now 0x%s\n",
4570 lwpid_of (thread),
4571 paddress (lwp->stop_pc), paddress (pc));
4572 return false;
4573 }
4574
4575 /* On software single step target, resume the inferior with signal
4576 rather than stepping over. */
4577 if (supports_software_single_step ()
4578 && lwp->pending_signals != NULL
4579 && lwp_signal_can_be_delivered (lwp))
4580 {
4581 if (debug_threads)
4582 debug_printf ("Need step over [LWP %ld]? Ignoring, has pending"
4583 " signals.\n",
4584 lwpid_of (thread));
4585
4586 return false;
4587 }
4588
4589 saved_thread = current_thread;
4590 current_thread = thread;
4591
4592 /* We can only step over breakpoints we know about. */
4593 if (breakpoint_here (pc) || fast_tracepoint_jump_here (pc))
4594 {
4595 /* Don't step over a breakpoint that GDB expects to hit
4596 though. If the condition is being evaluated on the target's side
4597 and it evaluate to false, step over this breakpoint as well. */
4598 if (gdb_breakpoint_here (pc)
4599 && gdb_condition_true_at_breakpoint (pc)
4600 && gdb_no_commands_at_breakpoint (pc))
4601 {
4602 if (debug_threads)
4603 debug_printf ("Need step over [LWP %ld]? yes, but found"
4604 " GDB breakpoint at 0x%s; skipping step over\n",
4605 lwpid_of (thread), paddress (pc));
4606
4607 current_thread = saved_thread;
4608 return false;
4609 }
4610 else
4611 {
4612 if (debug_threads)
4613 debug_printf ("Need step over [LWP %ld]? yes, "
4614 "found breakpoint at 0x%s\n",
4615 lwpid_of (thread), paddress (pc));
4616
4617 /* We've found an lwp that needs stepping over --- return 1 so
4618 that find_thread stops looking. */
4619 current_thread = saved_thread;
4620
4621 return true;
4622 }
4623 }
4624
4625 current_thread = saved_thread;
4626
4627 if (debug_threads)
4628 debug_printf ("Need step over [LWP %ld]? No, no breakpoint found"
4629 " at 0x%s\n",
4630 lwpid_of (thread), paddress (pc));
4631
4632 return false;
4633 }
4634
4635 void
4636 linux_process_target::start_step_over (lwp_info *lwp)
4637 {
4638 struct thread_info *thread = get_lwp_thread (lwp);
4639 struct thread_info *saved_thread;
4640 CORE_ADDR pc;
4641 int step;
4642
4643 if (debug_threads)
4644 debug_printf ("Starting step-over on LWP %ld. Stopping all threads\n",
4645 lwpid_of (thread));
4646
4647 stop_all_lwps (1, lwp);
4648
4649 if (lwp->suspended != 0)
4650 {
4651 internal_error (__FILE__, __LINE__,
4652 "LWP %ld suspended=%d\n", lwpid_of (thread),
4653 lwp->suspended);
4654 }
4655
4656 if (debug_threads)
4657 debug_printf ("Done stopping all threads for step-over.\n");
4658
4659 /* Note, we should always reach here with an already adjusted PC,
4660 either by GDB (if we're resuming due to GDB's request), or by our
4661 caller, if we just finished handling an internal breakpoint GDB
4662 shouldn't care about. */
4663 pc = get_pc (lwp);
4664
4665 saved_thread = current_thread;
4666 current_thread = thread;
4667
4668 lwp->bp_reinsert = pc;
4669 uninsert_breakpoints_at (pc);
4670 uninsert_fast_tracepoint_jumps_at (pc);
4671
4672 step = single_step (lwp);
4673
4674 current_thread = saved_thread;
4675
4676 resume_one_lwp (lwp, step, 0, NULL);
4677
4678 /* Require next event from this LWP. */
4679 step_over_bkpt = thread->id;
4680 }
4681
4682 bool
4683 linux_process_target::finish_step_over (lwp_info *lwp)
4684 {
4685 if (lwp->bp_reinsert != 0)
4686 {
4687 struct thread_info *saved_thread = current_thread;
4688
4689 if (debug_threads)
4690 debug_printf ("Finished step over.\n");
4691
4692 current_thread = get_lwp_thread (lwp);
4693
4694 /* Reinsert any breakpoint at LWP->BP_REINSERT. Note that there
4695 may be no breakpoint to reinsert there by now. */
4696 reinsert_breakpoints_at (lwp->bp_reinsert);
4697 reinsert_fast_tracepoint_jumps_at (lwp->bp_reinsert);
4698
4699 lwp->bp_reinsert = 0;
4700
4701 /* Delete any single-step breakpoints. No longer needed. We
4702 don't have to worry about other threads hitting this trap,
4703 and later not being able to explain it, because we were
4704 stepping over a breakpoint, and we hold all threads but
4705 LWP stopped while doing that. */
4706 if (!supports_hardware_single_step ())
4707 {
4708 gdb_assert (has_single_step_breakpoints (current_thread));
4709 delete_single_step_breakpoints (current_thread);
4710 }
4711
4712 step_over_bkpt = null_ptid;
4713 current_thread = saved_thread;
4714 return true;
4715 }
4716 else
4717 return false;
4718 }
4719
4720 void
4721 linux_process_target::complete_ongoing_step_over ()
4722 {
4723 if (step_over_bkpt != null_ptid)
4724 {
4725 struct lwp_info *lwp;
4726 int wstat;
4727 int ret;
4728
4729 if (debug_threads)
4730 debug_printf ("detach: step over in progress, finish it first\n");
4731
4732 /* Passing NULL_PTID as filter indicates we want all events to
4733 be left pending. Eventually this returns when there are no
4734 unwaited-for children left. */
4735 ret = wait_for_event_filtered (minus_one_ptid, null_ptid, &wstat,
4736 __WALL);
4737 gdb_assert (ret == -1);
4738
4739 lwp = find_lwp_pid (step_over_bkpt);
4740 if (lwp != NULL)
4741 finish_step_over (lwp);
4742 step_over_bkpt = null_ptid;
4743 unsuspend_all_lwps (lwp);
4744 }
4745 }
4746
4747 void
4748 linux_process_target::resume_one_thread (thread_info *thread,
4749 bool leave_all_stopped)
4750 {
4751 struct lwp_info *lwp = get_thread_lwp (thread);
4752 int leave_pending;
4753
4754 if (lwp->resume == NULL)
4755 return;
4756
4757 if (lwp->resume->kind == resume_stop)
4758 {
4759 if (debug_threads)
4760 debug_printf ("resume_stop request for LWP %ld\n", lwpid_of (thread));
4761
4762 if (!lwp->stopped)
4763 {
4764 if (debug_threads)
4765 debug_printf ("stopping LWP %ld\n", lwpid_of (thread));
4766
4767 /* Stop the thread, and wait for the event asynchronously,
4768 through the event loop. */
4769 send_sigstop (lwp);
4770 }
4771 else
4772 {
4773 if (debug_threads)
4774 debug_printf ("already stopped LWP %ld\n",
4775 lwpid_of (thread));
4776
4777 /* The LWP may have been stopped in an internal event that
4778 was not meant to be notified back to GDB (e.g., gdbserver
4779 breakpoint), so we should be reporting a stop event in
4780 this case too. */
4781
4782 /* If the thread already has a pending SIGSTOP, this is a
4783 no-op. Otherwise, something later will presumably resume
4784 the thread and this will cause it to cancel any pending
4785 operation, due to last_resume_kind == resume_stop. If
4786 the thread already has a pending status to report, we
4787 will still report it the next time we wait - see
4788 status_pending_p_callback. */
4789
4790 /* If we already have a pending signal to report, then
4791 there's no need to queue a SIGSTOP, as this means we're
4792 midway through moving the LWP out of the jumppad, and we
4793 will report the pending signal as soon as that is
4794 finished. */
4795 if (lwp->pending_signals_to_report == NULL)
4796 send_sigstop (lwp);
4797 }
4798
4799 /* For stop requests, we're done. */
4800 lwp->resume = NULL;
4801 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
4802 return;
4803 }
4804
4805 /* If this thread which is about to be resumed has a pending status,
4806 then don't resume it - we can just report the pending status.
4807 Likewise if it is suspended, because e.g., another thread is
4808 stepping past a breakpoint. Make sure to queue any signals that
4809 would otherwise be sent. In all-stop mode, we do this decision
4810 based on if *any* thread has a pending status. If there's a
4811 thread that needs the step-over-breakpoint dance, then don't
4812 resume any other thread but that particular one. */
4813 leave_pending = (lwp->suspended
4814 || lwp->status_pending_p
4815 || leave_all_stopped);
4816
4817 /* If we have a new signal, enqueue the signal. */
4818 if (lwp->resume->sig != 0)
4819 {
4820 siginfo_t info, *info_p;
4821
4822 /* If this is the same signal we were previously stopped by,
4823 make sure to queue its siginfo. */
4824 if (WIFSTOPPED (lwp->last_status)
4825 && WSTOPSIG (lwp->last_status) == lwp->resume->sig
4826 && ptrace (PTRACE_GETSIGINFO, lwpid_of (thread),
4827 (PTRACE_TYPE_ARG3) 0, &info) == 0)
4828 info_p = &info;
4829 else
4830 info_p = NULL;
4831
4832 enqueue_pending_signal (lwp, lwp->resume->sig, info_p);
4833 }
4834
4835 if (!leave_pending)
4836 {
4837 if (debug_threads)
4838 debug_printf ("resuming LWP %ld\n", lwpid_of (thread));
4839
4840 proceed_one_lwp (thread, NULL);
4841 }
4842 else
4843 {
4844 if (debug_threads)
4845 debug_printf ("leaving LWP %ld stopped\n", lwpid_of (thread));
4846 }
4847
4848 thread->last_status.kind = TARGET_WAITKIND_IGNORE;
4849 lwp->resume = NULL;
4850 }
4851
4852 void
4853 linux_process_target::resume (thread_resume *resume_info, size_t n)
4854 {
4855 struct thread_info *need_step_over = NULL;
4856
4857 if (debug_threads)
4858 {
4859 debug_enter ();
4860 debug_printf ("linux_resume:\n");
4861 }
4862
4863 for_each_thread ([&] (thread_info *thread)
4864 {
4865 linux_set_resume_request (thread, resume_info, n);
4866 });
4867
4868 /* If there is a thread which would otherwise be resumed, which has
4869 a pending status, then don't resume any threads - we can just
4870 report the pending status. Make sure to queue any signals that
4871 would otherwise be sent. In non-stop mode, we'll apply this
4872 logic to each thread individually. We consume all pending events
4873 before considering to start a step-over (in all-stop). */
4874 bool any_pending = false;
4875 if (!non_stop)
4876 any_pending = find_thread ([this] (thread_info *thread)
4877 {
4878 return resume_status_pending (thread);
4879 }) != nullptr;
4880
4881 /* If there is a thread which would otherwise be resumed, which is
4882 stopped at a breakpoint that needs stepping over, then don't
4883 resume any threads - have it step over the breakpoint with all
4884 other threads stopped, then resume all threads again. Make sure
4885 to queue any signals that would otherwise be delivered or
4886 queued. */
4887 if (!any_pending && low_supports_breakpoints ())
4888 need_step_over = find_thread ([this] (thread_info *thread)
4889 {
4890 return thread_needs_step_over (thread);
4891 });
4892
4893 bool leave_all_stopped = (need_step_over != NULL || any_pending);
4894
4895 if (debug_threads)
4896 {
4897 if (need_step_over != NULL)
4898 debug_printf ("Not resuming all, need step over\n");
4899 else if (any_pending)
4900 debug_printf ("Not resuming, all-stop and found "
4901 "an LWP with pending status\n");
4902 else
4903 debug_printf ("Resuming, no pending status or step over needed\n");
4904 }
4905
4906 /* Even if we're leaving threads stopped, queue all signals we'd
4907 otherwise deliver. */
4908 for_each_thread ([&] (thread_info *thread)
4909 {
4910 resume_one_thread (thread, leave_all_stopped);
4911 });
4912
4913 if (need_step_over)
4914 start_step_over (get_thread_lwp (need_step_over));
4915
4916 if (debug_threads)
4917 {
4918 debug_printf ("linux_resume done\n");
4919 debug_exit ();
4920 }
4921
4922 /* We may have events that were pending that can/should be sent to
4923 the client now. Trigger a linux_wait call. */
4924 if (target_is_async_p ())
4925 async_file_mark ();
4926 }
4927
4928 void
4929 linux_process_target::proceed_one_lwp (thread_info *thread, lwp_info *except)
4930 {
4931 struct lwp_info *lwp = get_thread_lwp (thread);
4932 int step;
4933
4934 if (lwp == except)
4935 return;
4936
4937 if (debug_threads)
4938 debug_printf ("proceed_one_lwp: lwp %ld\n", lwpid_of (thread));
4939
4940 if (!lwp->stopped)
4941 {
4942 if (debug_threads)
4943 debug_printf (" LWP %ld already running\n", lwpid_of (thread));
4944 return;
4945 }
4946
4947 if (thread->last_resume_kind == resume_stop
4948 && thread->last_status.kind != TARGET_WAITKIND_IGNORE)
4949 {
4950 if (debug_threads)
4951 debug_printf (" client wants LWP to remain %ld stopped\n",
4952 lwpid_of (thread));
4953 return;
4954 }
4955
4956 if (lwp->status_pending_p)
4957 {
4958 if (debug_threads)
4959 debug_printf (" LWP %ld has pending status, leaving stopped\n",
4960 lwpid_of (thread));
4961 return;
4962 }
4963
4964 gdb_assert (lwp->suspended >= 0);
4965
4966 if (lwp->suspended)
4967 {
4968 if (debug_threads)
4969 debug_printf (" LWP %ld is suspended\n", lwpid_of (thread));
4970 return;
4971 }
4972
4973 if (thread->last_resume_kind == resume_stop
4974 && lwp->pending_signals_to_report == NULL
4975 && (lwp->collecting_fast_tracepoint
4976 == fast_tpoint_collect_result::not_collecting))
4977 {
4978 /* We haven't reported this LWP as stopped yet (otherwise, the
4979 last_status.kind check above would catch it, and we wouldn't
4980 reach here. This LWP may have been momentarily paused by a
4981 stop_all_lwps call while handling for example, another LWP's
4982 step-over. In that case, the pending expected SIGSTOP signal
4983 that was queued at vCont;t handling time will have already
4984 been consumed by wait_for_sigstop, and so we need to requeue
4985 another one here. Note that if the LWP already has a SIGSTOP
4986 pending, this is a no-op. */
4987
4988 if (debug_threads)
4989 debug_printf ("Client wants LWP %ld to stop. "
4990 "Making sure it has a SIGSTOP pending\n",
4991 lwpid_of (thread));
4992
4993 send_sigstop (lwp);
4994 }
4995
4996 if (thread->last_resume_kind == resume_step)
4997 {
4998 if (debug_threads)
4999 debug_printf (" stepping LWP %ld, client wants it stepping\n",
5000 lwpid_of (thread));
5001
5002 /* If resume_step is requested by GDB, install single-step
5003 breakpoints when the thread is about to be actually resumed if
5004 the single-step breakpoints weren't removed. */
5005 if (supports_software_single_step ()
5006 && !has_single_step_breakpoints (thread))
5007 install_software_single_step_breakpoints (lwp);
5008
5009 step = maybe_hw_step (thread);
5010 }
5011 else if (lwp->bp_reinsert != 0)
5012 {
5013 if (debug_threads)
5014 debug_printf (" stepping LWP %ld, reinsert set\n",
5015 lwpid_of (thread));
5016
5017 step = maybe_hw_step (thread);
5018 }
5019 else
5020 step = 0;
5021
5022 resume_one_lwp (lwp, step, 0, NULL);
5023 }
5024
5025 void
5026 linux_process_target::unsuspend_and_proceed_one_lwp (thread_info *thread,
5027 lwp_info *except)
5028 {
5029 struct lwp_info *lwp = get_thread_lwp (thread);
5030
5031 if (lwp == except)
5032 return;
5033
5034 lwp_suspended_decr (lwp);
5035
5036 proceed_one_lwp (thread, except);
5037 }
5038
5039 void
5040 linux_process_target::proceed_all_lwps ()
5041 {
5042 struct thread_info *need_step_over;
5043
5044 /* If there is a thread which would otherwise be resumed, which is
5045 stopped at a breakpoint that needs stepping over, then don't
5046 resume any threads - have it step over the breakpoint with all
5047 other threads stopped, then resume all threads again. */
5048
5049 if (low_supports_breakpoints ())
5050 {
5051 need_step_over = find_thread ([this] (thread_info *thread)
5052 {
5053 return thread_needs_step_over (thread);
5054 });
5055
5056 if (need_step_over != NULL)
5057 {
5058 if (debug_threads)
5059 debug_printf ("proceed_all_lwps: found "
5060 "thread %ld needing a step-over\n",
5061 lwpid_of (need_step_over));
5062
5063 start_step_over (get_thread_lwp (need_step_over));
5064 return;
5065 }
5066 }
5067
5068 if (debug_threads)
5069 debug_printf ("Proceeding, no step-over needed\n");
5070
5071 for_each_thread ([this] (thread_info *thread)
5072 {
5073 proceed_one_lwp (thread, NULL);
5074 });
5075 }
5076
5077 void
5078 linux_process_target::unstop_all_lwps (int unsuspend, lwp_info *except)
5079 {
5080 if (debug_threads)
5081 {
5082 debug_enter ();
5083 if (except)
5084 debug_printf ("unstopping all lwps, except=(LWP %ld)\n",
5085 lwpid_of (get_lwp_thread (except)));
5086 else
5087 debug_printf ("unstopping all lwps\n");
5088 }
5089
5090 if (unsuspend)
5091 for_each_thread ([&] (thread_info *thread)
5092 {
5093 unsuspend_and_proceed_one_lwp (thread, except);
5094 });
5095 else
5096 for_each_thread ([&] (thread_info *thread)
5097 {
5098 proceed_one_lwp (thread, except);
5099 });
5100
5101 if (debug_threads)
5102 {
5103 debug_printf ("unstop_all_lwps done\n");
5104 debug_exit ();
5105 }
5106 }
5107
5108
5109 #ifdef HAVE_LINUX_REGSETS
5110
5111 #define use_linux_regsets 1
5112
5113 /* Returns true if REGSET has been disabled. */
5114
5115 static int
5116 regset_disabled (struct regsets_info *info, struct regset_info *regset)
5117 {
5118 return (info->disabled_regsets != NULL
5119 && info->disabled_regsets[regset - info->regsets]);
5120 }
5121
5122 /* Disable REGSET. */
5123
5124 static void
5125 disable_regset (struct regsets_info *info, struct regset_info *regset)
5126 {
5127 int dr_offset;
5128
5129 dr_offset = regset - info->regsets;
5130 if (info->disabled_regsets == NULL)
5131 info->disabled_regsets = (char *) xcalloc (1, info->num_regsets);
5132 info->disabled_regsets[dr_offset] = 1;
5133 }
5134
5135 static int
5136 regsets_fetch_inferior_registers (struct regsets_info *regsets_info,
5137 struct regcache *regcache)
5138 {
5139 struct regset_info *regset;
5140 int saw_general_regs = 0;
5141 int pid;
5142 struct iovec iov;
5143
5144 pid = lwpid_of (current_thread);
5145 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5146 {
5147 void *buf, *data;
5148 int nt_type, res;
5149
5150 if (regset->size == 0 || regset_disabled (regsets_info, regset))
5151 continue;
5152
5153 buf = xmalloc (regset->size);
5154
5155 nt_type = regset->nt_type;
5156 if (nt_type)
5157 {
5158 iov.iov_base = buf;
5159 iov.iov_len = regset->size;
5160 data = (void *) &iov;
5161 }
5162 else
5163 data = buf;
5164
5165 #ifndef __sparc__
5166 res = ptrace (regset->get_request, pid,
5167 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5168 #else
5169 res = ptrace (regset->get_request, pid, data, nt_type);
5170 #endif
5171 if (res < 0)
5172 {
5173 if (errno == EIO
5174 || (errno == EINVAL && regset->type == OPTIONAL_REGS))
5175 {
5176 /* If we get EIO on a regset, or an EINVAL and the regset is
5177 optional, do not try it again for this process mode. */
5178 disable_regset (regsets_info, regset);
5179 }
5180 else if (errno == ENODATA)
5181 {
5182 /* ENODATA may be returned if the regset is currently
5183 not "active". This can happen in normal operation,
5184 so suppress the warning in this case. */
5185 }
5186 else if (errno == ESRCH)
5187 {
5188 /* At this point, ESRCH should mean the process is
5189 already gone, in which case we simply ignore attempts
5190 to read its registers. */
5191 }
5192 else
5193 {
5194 char s[256];
5195 sprintf (s, "ptrace(regsets_fetch_inferior_registers) PID=%d",
5196 pid);
5197 perror (s);
5198 }
5199 }
5200 else
5201 {
5202 if (regset->type == GENERAL_REGS)
5203 saw_general_regs = 1;
5204 regset->store_function (regcache, buf);
5205 }
5206 free (buf);
5207 }
5208 if (saw_general_regs)
5209 return 0;
5210 else
5211 return 1;
5212 }
5213
5214 static int
5215 regsets_store_inferior_registers (struct regsets_info *regsets_info,
5216 struct regcache *regcache)
5217 {
5218 struct regset_info *regset;
5219 int saw_general_regs = 0;
5220 int pid;
5221 struct iovec iov;
5222
5223 pid = lwpid_of (current_thread);
5224 for (regset = regsets_info->regsets; regset->size >= 0; regset++)
5225 {
5226 void *buf, *data;
5227 int nt_type, res;
5228
5229 if (regset->size == 0 || regset_disabled (regsets_info, regset)
5230 || regset->fill_function == NULL)
5231 continue;
5232
5233 buf = xmalloc (regset->size);
5234
5235 /* First fill the buffer with the current register set contents,
5236 in case there are any items in the kernel's regset that are
5237 not in gdbserver's regcache. */
5238
5239 nt_type = regset->nt_type;
5240 if (nt_type)
5241 {
5242 iov.iov_base = buf;
5243 iov.iov_len = regset->size;
5244 data = (void *) &iov;
5245 }
5246 else
5247 data = buf;
5248
5249 #ifndef __sparc__
5250 res = ptrace (regset->get_request, pid,
5251 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5252 #else
5253 res = ptrace (regset->get_request, pid, data, nt_type);
5254 #endif
5255
5256 if (res == 0)
5257 {
5258 /* Then overlay our cached registers on that. */
5259 regset->fill_function (regcache, buf);
5260
5261 /* Only now do we write the register set. */
5262 #ifndef __sparc__
5263 res = ptrace (regset->set_request, pid,
5264 (PTRACE_TYPE_ARG3) (long) nt_type, data);
5265 #else
5266 res = ptrace (regset->set_request, pid, data, nt_type);
5267 #endif
5268 }
5269
5270 if (res < 0)
5271 {
5272 if (errno == EIO
5273 || (errno == EINVAL && regset->type == OPTIONAL_REGS))
5274 {
5275 /* If we get EIO on a regset, or an EINVAL and the regset is
5276 optional, do not try it again for this process mode. */
5277 disable_regset (regsets_info, regset);
5278 }
5279 else if (errno == ESRCH)
5280 {
5281 /* At this point, ESRCH should mean the process is
5282 already gone, in which case we simply ignore attempts
5283 to change its registers. See also the related
5284 comment in resume_one_lwp. */
5285 free (buf);
5286 return 0;
5287 }
5288 else
5289 {
5290 perror ("Warning: ptrace(regsets_store_inferior_registers)");
5291 }
5292 }
5293 else if (regset->type == GENERAL_REGS)
5294 saw_general_regs = 1;
5295 free (buf);
5296 }
5297 if (saw_general_regs)
5298 return 0;
5299 else
5300 return 1;
5301 }
5302
5303 #else /* !HAVE_LINUX_REGSETS */
5304
5305 #define use_linux_regsets 0
5306 #define regsets_fetch_inferior_registers(regsets_info, regcache) 1
5307 #define regsets_store_inferior_registers(regsets_info, regcache) 1
5308
5309 #endif
5310
5311 /* Return 1 if register REGNO is supported by one of the regset ptrace
5312 calls or 0 if it has to be transferred individually. */
5313
5314 static int
5315 linux_register_in_regsets (const struct regs_info *regs_info, int regno)
5316 {
5317 unsigned char mask = 1 << (regno % 8);
5318 size_t index = regno / 8;
5319
5320 return (use_linux_regsets
5321 && (regs_info->regset_bitmap == NULL
5322 || (regs_info->regset_bitmap[index] & mask) != 0));
5323 }
5324
5325 #ifdef HAVE_LINUX_USRREGS
5326
5327 static int
5328 register_addr (const struct usrregs_info *usrregs, int regnum)
5329 {
5330 int addr;
5331
5332 if (regnum < 0 || regnum >= usrregs->num_regs)
5333 error ("Invalid register number %d.", regnum);
5334
5335 addr = usrregs->regmap[regnum];
5336
5337 return addr;
5338 }
5339
5340
5341 void
5342 linux_process_target::fetch_register (const usrregs_info *usrregs,
5343 regcache *regcache, int regno)
5344 {
5345 CORE_ADDR regaddr;
5346 int i, size;
5347 char *buf;
5348 int pid;
5349
5350 if (regno >= usrregs->num_regs)
5351 return;
5352 if (low_cannot_fetch_register (regno))
5353 return;
5354
5355 regaddr = register_addr (usrregs, regno);
5356 if (regaddr == -1)
5357 return;
5358
5359 size = ((register_size (regcache->tdesc, regno)
5360 + sizeof (PTRACE_XFER_TYPE) - 1)
5361 & -sizeof (PTRACE_XFER_TYPE));
5362 buf = (char *) alloca (size);
5363
5364 pid = lwpid_of (current_thread);
5365 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5366 {
5367 errno = 0;
5368 *(PTRACE_XFER_TYPE *) (buf + i) =
5369 ptrace (PTRACE_PEEKUSER, pid,
5370 /* Coerce to a uintptr_t first to avoid potential gcc warning
5371 of coercing an 8 byte integer to a 4 byte pointer. */
5372 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr, (PTRACE_TYPE_ARG4) 0);
5373 regaddr += sizeof (PTRACE_XFER_TYPE);
5374 if (errno != 0)
5375 {
5376 /* Mark register REGNO unavailable. */
5377 supply_register (regcache, regno, NULL);
5378 return;
5379 }
5380 }
5381
5382 low_supply_ptrace_register (regcache, regno, buf);
5383 }
5384
5385 void
5386 linux_process_target::store_register (const usrregs_info *usrregs,
5387 regcache *regcache, int regno)
5388 {
5389 CORE_ADDR regaddr;
5390 int i, size;
5391 char *buf;
5392 int pid;
5393
5394 if (regno >= usrregs->num_regs)
5395 return;
5396 if (low_cannot_store_register (regno))
5397 return;
5398
5399 regaddr = register_addr (usrregs, regno);
5400 if (regaddr == -1)
5401 return;
5402
5403 size = ((register_size (regcache->tdesc, regno)
5404 + sizeof (PTRACE_XFER_TYPE) - 1)
5405 & -sizeof (PTRACE_XFER_TYPE));
5406 buf = (char *) alloca (size);
5407 memset (buf, 0, size);
5408
5409 low_collect_ptrace_register (regcache, regno, buf);
5410
5411 pid = lwpid_of (current_thread);
5412 for (i = 0; i < size; i += sizeof (PTRACE_XFER_TYPE))
5413 {
5414 errno = 0;
5415 ptrace (PTRACE_POKEUSER, pid,
5416 /* Coerce to a uintptr_t first to avoid potential gcc warning
5417 about coercing an 8 byte integer to a 4 byte pointer. */
5418 (PTRACE_TYPE_ARG3) (uintptr_t) regaddr,
5419 (PTRACE_TYPE_ARG4) *(PTRACE_XFER_TYPE *) (buf + i));
5420 if (errno != 0)
5421 {
5422 /* At this point, ESRCH should mean the process is
5423 already gone, in which case we simply ignore attempts
5424 to change its registers. See also the related
5425 comment in resume_one_lwp. */
5426 if (errno == ESRCH)
5427 return;
5428
5429
5430 if (!low_cannot_store_register (regno))
5431 error ("writing register %d: %s", regno, safe_strerror (errno));
5432 }
5433 regaddr += sizeof (PTRACE_XFER_TYPE);
5434 }
5435 }
5436 #endif /* HAVE_LINUX_USRREGS */
5437
5438 void
5439 linux_process_target::low_collect_ptrace_register (regcache *regcache,
5440 int regno, char *buf)
5441 {
5442 collect_register (regcache, regno, buf);
5443 }
5444
5445 void
5446 linux_process_target::low_supply_ptrace_register (regcache *regcache,
5447 int regno, const char *buf)
5448 {
5449 supply_register (regcache, regno, buf);
5450 }
5451
5452 void
5453 linux_process_target::usr_fetch_inferior_registers (const regs_info *regs_info,
5454 regcache *regcache,
5455 int regno, int all)
5456 {
5457 #ifdef HAVE_LINUX_USRREGS
5458 struct usrregs_info *usr = regs_info->usrregs;
5459
5460 if (regno == -1)
5461 {
5462 for (regno = 0; regno < usr->num_regs; regno++)
5463 if (all || !linux_register_in_regsets (regs_info, regno))
5464 fetch_register (usr, regcache, regno);
5465 }
5466 else
5467 fetch_register (usr, regcache, regno);
5468 #endif
5469 }
5470
5471 void
5472 linux_process_target::usr_store_inferior_registers (const regs_info *regs_info,
5473 regcache *regcache,
5474 int regno, int all)
5475 {
5476 #ifdef HAVE_LINUX_USRREGS
5477 struct usrregs_info *usr = regs_info->usrregs;
5478
5479 if (regno == -1)
5480 {
5481 for (regno = 0; regno < usr->num_regs; regno++)
5482 if (all || !linux_register_in_regsets (regs_info, regno))
5483 store_register (usr, regcache, regno);
5484 }
5485 else
5486 store_register (usr, regcache, regno);
5487 #endif
5488 }
5489
5490 void
5491 linux_process_target::fetch_registers (regcache *regcache, int regno)
5492 {
5493 int use_regsets;
5494 int all = 0;
5495 const regs_info *regs_info = get_regs_info ();
5496
5497 if (regno == -1)
5498 {
5499 if (regs_info->usrregs != NULL)
5500 for (regno = 0; regno < regs_info->usrregs->num_regs; regno++)
5501 low_fetch_register (regcache, regno);
5502
5503 all = regsets_fetch_inferior_registers (regs_info->regsets_info, regcache);
5504 if (regs_info->usrregs != NULL)
5505 usr_fetch_inferior_registers (regs_info, regcache, -1, all);
5506 }
5507 else
5508 {
5509 if (low_fetch_register (regcache, regno))
5510 return;
5511
5512 use_regsets = linux_register_in_regsets (regs_info, regno);
5513 if (use_regsets)
5514 all = regsets_fetch_inferior_registers (regs_info->regsets_info,
5515 regcache);
5516 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5517 usr_fetch_inferior_registers (regs_info, regcache, regno, 1);
5518 }
5519 }
5520
5521 void
5522 linux_process_target::store_registers (regcache *regcache, int regno)
5523 {
5524 int use_regsets;
5525 int all = 0;
5526 const regs_info *regs_info = get_regs_info ();
5527
5528 if (regno == -1)
5529 {
5530 all = regsets_store_inferior_registers (regs_info->regsets_info,
5531 regcache);
5532 if (regs_info->usrregs != NULL)
5533 usr_store_inferior_registers (regs_info, regcache, regno, all);
5534 }
5535 else
5536 {
5537 use_regsets = linux_register_in_regsets (regs_info, regno);
5538 if (use_regsets)
5539 all = regsets_store_inferior_registers (regs_info->regsets_info,
5540 regcache);
5541 if ((!use_regsets || all) && regs_info->usrregs != NULL)
5542 usr_store_inferior_registers (regs_info, regcache, regno, 1);
5543 }
5544 }
5545
5546 bool
5547 linux_process_target::low_fetch_register (regcache *regcache, int regno)
5548 {
5549 return false;
5550 }
5551
5552 /* A wrapper for the read_memory target op. */
5553
5554 static int
5555 linux_read_memory (CORE_ADDR memaddr, unsigned char *myaddr, int len)
5556 {
5557 return the_target->read_memory (memaddr, myaddr, len);
5558 }
5559
5560 /* Copy LEN bytes from inferior's memory starting at MEMADDR
5561 to debugger memory starting at MYADDR. */
5562
5563 int
5564 linux_process_target::read_memory (CORE_ADDR memaddr,
5565 unsigned char *myaddr, int len)
5566 {
5567 int pid = lwpid_of (current_thread);
5568 PTRACE_XFER_TYPE *buffer;
5569 CORE_ADDR addr;
5570 int count;
5571 char filename[64];
5572 int i;
5573 int ret;
5574 int fd;
5575
5576 /* Try using /proc. Don't bother for one word. */
5577 if (len >= 3 * sizeof (long))
5578 {
5579 int bytes;
5580
5581 /* We could keep this file open and cache it - possibly one per
5582 thread. That requires some juggling, but is even faster. */
5583 sprintf (filename, "/proc/%d/mem", pid);
5584 fd = open (filename, O_RDONLY | O_LARGEFILE);
5585 if (fd == -1)
5586 goto no_proc;
5587
5588 /* If pread64 is available, use it. It's faster if the kernel
5589 supports it (only one syscall), and it's 64-bit safe even on
5590 32-bit platforms (for instance, SPARC debugging a SPARC64
5591 application). */
5592 #ifdef HAVE_PREAD64
5593 bytes = pread64 (fd, myaddr, len, memaddr);
5594 #else
5595 bytes = -1;
5596 if (lseek (fd, memaddr, SEEK_SET) != -1)
5597 bytes = read (fd, myaddr, len);
5598 #endif
5599
5600 close (fd);
5601 if (bytes == len)
5602 return 0;
5603
5604 /* Some data was read, we'll try to get the rest with ptrace. */
5605 if (bytes > 0)
5606 {
5607 memaddr += bytes;
5608 myaddr += bytes;
5609 len -= bytes;
5610 }
5611 }
5612
5613 no_proc:
5614 /* Round starting address down to longword boundary. */
5615 addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5616 /* Round ending address up; get number of longwords that makes. */
5617 count = ((((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5618 / sizeof (PTRACE_XFER_TYPE));
5619 /* Allocate buffer of that many longwords. */
5620 buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5621
5622 /* Read all the longwords */
5623 errno = 0;
5624 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5625 {
5626 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5627 about coercing an 8 byte integer to a 4 byte pointer. */
5628 buffer[i] = ptrace (PTRACE_PEEKTEXT, pid,
5629 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5630 (PTRACE_TYPE_ARG4) 0);
5631 if (errno)
5632 break;
5633 }
5634 ret = errno;
5635
5636 /* Copy appropriate bytes out of the buffer. */
5637 if (i > 0)
5638 {
5639 i *= sizeof (PTRACE_XFER_TYPE);
5640 i -= memaddr & (sizeof (PTRACE_XFER_TYPE) - 1);
5641 memcpy (myaddr,
5642 (char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5643 i < len ? i : len);
5644 }
5645
5646 return ret;
5647 }
5648
5649 /* Copy LEN bytes of data from debugger memory at MYADDR to inferior's
5650 memory at MEMADDR. On failure (cannot write to the inferior)
5651 returns the value of errno. Always succeeds if LEN is zero. */
5652
5653 int
5654 linux_process_target::write_memory (CORE_ADDR memaddr,
5655 const unsigned char *myaddr, int len)
5656 {
5657 int i;
5658 /* Round starting address down to longword boundary. */
5659 CORE_ADDR addr = memaddr & -(CORE_ADDR) sizeof (PTRACE_XFER_TYPE);
5660 /* Round ending address up; get number of longwords that makes. */
5661 int count
5662 = (((memaddr + len) - addr) + sizeof (PTRACE_XFER_TYPE) - 1)
5663 / sizeof (PTRACE_XFER_TYPE);
5664
5665 /* Allocate buffer of that many longwords. */
5666 PTRACE_XFER_TYPE *buffer = XALLOCAVEC (PTRACE_XFER_TYPE, count);
5667
5668 int pid = lwpid_of (current_thread);
5669
5670 if (len == 0)
5671 {
5672 /* Zero length write always succeeds. */
5673 return 0;
5674 }
5675
5676 if (debug_threads)
5677 {
5678 /* Dump up to four bytes. */
5679 char str[4 * 2 + 1];
5680 char *p = str;
5681 int dump = len < 4 ? len : 4;
5682
5683 for (i = 0; i < dump; i++)
5684 {
5685 sprintf (p, "%02x", myaddr[i]);
5686 p += 2;
5687 }
5688 *p = '\0';
5689
5690 debug_printf ("Writing %s to 0x%08lx in process %d\n",
5691 str, (long) memaddr, pid);
5692 }
5693
5694 /* Fill start and end extra bytes of buffer with existing memory data. */
5695
5696 errno = 0;
5697 /* Coerce the 3rd arg to a uintptr_t first to avoid potential gcc warning
5698 about coercing an 8 byte integer to a 4 byte pointer. */
5699 buffer[0] = ptrace (PTRACE_PEEKTEXT, pid,
5700 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5701 (PTRACE_TYPE_ARG4) 0);
5702 if (errno)
5703 return errno;
5704
5705 if (count > 1)
5706 {
5707 errno = 0;
5708 buffer[count - 1]
5709 = ptrace (PTRACE_PEEKTEXT, pid,
5710 /* Coerce to a uintptr_t first to avoid potential gcc warning
5711 about coercing an 8 byte integer to a 4 byte pointer. */
5712 (PTRACE_TYPE_ARG3) (uintptr_t) (addr + (count - 1)
5713 * sizeof (PTRACE_XFER_TYPE)),
5714 (PTRACE_TYPE_ARG4) 0);
5715 if (errno)
5716 return errno;
5717 }
5718
5719 /* Copy data to be written over corresponding part of buffer. */
5720
5721 memcpy ((char *) buffer + (memaddr & (sizeof (PTRACE_XFER_TYPE) - 1)),
5722 myaddr, len);
5723
5724 /* Write the entire buffer. */
5725
5726 for (i = 0; i < count; i++, addr += sizeof (PTRACE_XFER_TYPE))
5727 {
5728 errno = 0;
5729 ptrace (PTRACE_POKETEXT, pid,
5730 /* Coerce to a uintptr_t first to avoid potential gcc warning
5731 about coercing an 8 byte integer to a 4 byte pointer. */
5732 (PTRACE_TYPE_ARG3) (uintptr_t) addr,
5733 (PTRACE_TYPE_ARG4) buffer[i]);
5734 if (errno)
5735 return errno;
5736 }
5737
5738 return 0;
5739 }
5740
5741 void
5742 linux_process_target::look_up_symbols ()
5743 {
5744 #ifdef USE_THREAD_DB
5745 struct process_info *proc = current_process ();
5746
5747 if (proc->priv->thread_db != NULL)
5748 return;
5749
5750 thread_db_init ();
5751 #endif
5752 }
5753
5754 void
5755 linux_process_target::request_interrupt ()
5756 {
5757 /* Send a SIGINT to the process group. This acts just like the user
5758 typed a ^C on the controlling terminal. */
5759 ::kill (-signal_pid, SIGINT);
5760 }
5761
5762 bool
5763 linux_process_target::supports_read_auxv ()
5764 {
5765 return true;
5766 }
5767
5768 /* Copy LEN bytes from inferior's auxiliary vector starting at OFFSET
5769 to debugger memory starting at MYADDR. */
5770
5771 int
5772 linux_process_target::read_auxv (CORE_ADDR offset, unsigned char *myaddr,
5773 unsigned int len)
5774 {
5775 char filename[PATH_MAX];
5776 int fd, n;
5777 int pid = lwpid_of (current_thread);
5778
5779 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
5780
5781 fd = open (filename, O_RDONLY);
5782 if (fd < 0)
5783 return -1;
5784
5785 if (offset != (CORE_ADDR) 0
5786 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
5787 n = -1;
5788 else
5789 n = read (fd, myaddr, len);
5790
5791 close (fd);
5792
5793 return n;
5794 }
5795
5796 int
5797 linux_process_target::insert_point (enum raw_bkpt_type type, CORE_ADDR addr,
5798 int size, raw_breakpoint *bp)
5799 {
5800 if (type == raw_bkpt_type_sw)
5801 return insert_memory_breakpoint (bp);
5802 else
5803 return low_insert_point (type, addr, size, bp);
5804 }
5805
5806 int
5807 linux_process_target::low_insert_point (raw_bkpt_type type, CORE_ADDR addr,
5808 int size, raw_breakpoint *bp)
5809 {
5810 /* Unsupported (see target.h). */
5811 return 1;
5812 }
5813
5814 int
5815 linux_process_target::remove_point (enum raw_bkpt_type type, CORE_ADDR addr,
5816 int size, raw_breakpoint *bp)
5817 {
5818 if (type == raw_bkpt_type_sw)
5819 return remove_memory_breakpoint (bp);
5820 else
5821 return low_remove_point (type, addr, size, bp);
5822 }
5823
5824 int
5825 linux_process_target::low_remove_point (raw_bkpt_type type, CORE_ADDR addr,
5826 int size, raw_breakpoint *bp)
5827 {
5828 /* Unsupported (see target.h). */
5829 return 1;
5830 }
5831
5832 /* Implement the stopped_by_sw_breakpoint target_ops
5833 method. */
5834
5835 bool
5836 linux_process_target::stopped_by_sw_breakpoint ()
5837 {
5838 struct lwp_info *lwp = get_thread_lwp (current_thread);
5839
5840 return (lwp->stop_reason == TARGET_STOPPED_BY_SW_BREAKPOINT);
5841 }
5842
5843 /* Implement the supports_stopped_by_sw_breakpoint target_ops
5844 method. */
5845
5846 bool
5847 linux_process_target::supports_stopped_by_sw_breakpoint ()
5848 {
5849 return USE_SIGTRAP_SIGINFO;
5850 }
5851
5852 /* Implement the stopped_by_hw_breakpoint target_ops
5853 method. */
5854
5855 bool
5856 linux_process_target::stopped_by_hw_breakpoint ()
5857 {
5858 struct lwp_info *lwp = get_thread_lwp (current_thread);
5859
5860 return (lwp->stop_reason == TARGET_STOPPED_BY_HW_BREAKPOINT);
5861 }
5862
5863 /* Implement the supports_stopped_by_hw_breakpoint target_ops
5864 method. */
5865
5866 bool
5867 linux_process_target::supports_stopped_by_hw_breakpoint ()
5868 {
5869 return USE_SIGTRAP_SIGINFO;
5870 }
5871
5872 /* Implement the supports_hardware_single_step target_ops method. */
5873
5874 bool
5875 linux_process_target::supports_hardware_single_step ()
5876 {
5877 return true;
5878 }
5879
5880 bool
5881 linux_process_target::stopped_by_watchpoint ()
5882 {
5883 struct lwp_info *lwp = get_thread_lwp (current_thread);
5884
5885 return lwp->stop_reason == TARGET_STOPPED_BY_WATCHPOINT;
5886 }
5887
5888 CORE_ADDR
5889 linux_process_target::stopped_data_address ()
5890 {
5891 struct lwp_info *lwp = get_thread_lwp (current_thread);
5892
5893 return lwp->stopped_data_address;
5894 }
5895
5896 /* This is only used for targets that define PT_TEXT_ADDR,
5897 PT_DATA_ADDR and PT_TEXT_END_ADDR. If those are not defined, supposedly
5898 the target has different ways of acquiring this information, like
5899 loadmaps. */
5900
5901 bool
5902 linux_process_target::supports_read_offsets ()
5903 {
5904 #ifdef SUPPORTS_READ_OFFSETS
5905 return true;
5906 #else
5907 return false;
5908 #endif
5909 }
5910
5911 /* Under uClinux, programs are loaded at non-zero offsets, which we need
5912 to tell gdb about. */
5913
5914 int
5915 linux_process_target::read_offsets (CORE_ADDR *text_p, CORE_ADDR *data_p)
5916 {
5917 #ifdef SUPPORTS_READ_OFFSETS
5918 unsigned long text, text_end, data;
5919 int pid = lwpid_of (current_thread);
5920
5921 errno = 0;
5922
5923 text = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_ADDR,
5924 (PTRACE_TYPE_ARG4) 0);
5925 text_end = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_TEXT_END_ADDR,
5926 (PTRACE_TYPE_ARG4) 0);
5927 data = ptrace (PTRACE_PEEKUSER, pid, (PTRACE_TYPE_ARG3) PT_DATA_ADDR,
5928 (PTRACE_TYPE_ARG4) 0);
5929
5930 if (errno == 0)
5931 {
5932 /* Both text and data offsets produced at compile-time (and so
5933 used by gdb) are relative to the beginning of the program,
5934 with the data segment immediately following the text segment.
5935 However, the actual runtime layout in memory may put the data
5936 somewhere else, so when we send gdb a data base-address, we
5937 use the real data base address and subtract the compile-time
5938 data base-address from it (which is just the length of the
5939 text segment). BSS immediately follows data in both
5940 cases. */
5941 *text_p = text;
5942 *data_p = data - (text_end - text);
5943
5944 return 1;
5945 }
5946 return 0;
5947 #else
5948 gdb_assert_not_reached ("target op read_offsets not supported");
5949 #endif
5950 }
5951
5952 bool
5953 linux_process_target::supports_get_tls_address ()
5954 {
5955 #ifdef USE_THREAD_DB
5956 return true;
5957 #else
5958 return false;
5959 #endif
5960 }
5961
5962 int
5963 linux_process_target::get_tls_address (thread_info *thread,
5964 CORE_ADDR offset,
5965 CORE_ADDR load_module,
5966 CORE_ADDR *address)
5967 {
5968 #ifdef USE_THREAD_DB
5969 return thread_db_get_tls_address (thread, offset, load_module, address);
5970 #else
5971 return -1;
5972 #endif
5973 }
5974
5975 bool
5976 linux_process_target::supports_qxfer_osdata ()
5977 {
5978 return true;
5979 }
5980
5981 int
5982 linux_process_target::qxfer_osdata (const char *annex,
5983 unsigned char *readbuf,
5984 unsigned const char *writebuf,
5985 CORE_ADDR offset, int len)
5986 {
5987 return linux_common_xfer_osdata (annex, readbuf, offset, len);
5988 }
5989
5990 void
5991 linux_process_target::siginfo_fixup (siginfo_t *siginfo,
5992 gdb_byte *inf_siginfo, int direction)
5993 {
5994 bool done = low_siginfo_fixup (siginfo, inf_siginfo, direction);
5995
5996 /* If there was no callback, or the callback didn't do anything,
5997 then just do a straight memcpy. */
5998 if (!done)
5999 {
6000 if (direction == 1)
6001 memcpy (siginfo, inf_siginfo, sizeof (siginfo_t));
6002 else
6003 memcpy (inf_siginfo, siginfo, sizeof (siginfo_t));
6004 }
6005 }
6006
6007 bool
6008 linux_process_target::low_siginfo_fixup (siginfo_t *native, gdb_byte *inf,
6009 int direction)
6010 {
6011 return false;
6012 }
6013
6014 bool
6015 linux_process_target::supports_qxfer_siginfo ()
6016 {
6017 return true;
6018 }
6019
6020 int
6021 linux_process_target::qxfer_siginfo (const char *annex,
6022 unsigned char *readbuf,
6023 unsigned const char *writebuf,
6024 CORE_ADDR offset, int len)
6025 {
6026 int pid;
6027 siginfo_t siginfo;
6028 gdb_byte inf_siginfo[sizeof (siginfo_t)];
6029
6030 if (current_thread == NULL)
6031 return -1;
6032
6033 pid = lwpid_of (current_thread);
6034
6035 if (debug_threads)
6036 debug_printf ("%s siginfo for lwp %d.\n",
6037 readbuf != NULL ? "Reading" : "Writing",
6038 pid);
6039
6040 if (offset >= sizeof (siginfo))
6041 return -1;
6042
6043 if (ptrace (PTRACE_GETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6044 return -1;
6045
6046 /* When GDBSERVER is built as a 64-bit application, ptrace writes into
6047 SIGINFO an object with 64-bit layout. Since debugging a 32-bit
6048 inferior with a 64-bit GDBSERVER should look the same as debugging it
6049 with a 32-bit GDBSERVER, we need to convert it. */
6050 siginfo_fixup (&siginfo, inf_siginfo, 0);
6051
6052 if (offset + len > sizeof (siginfo))
6053 len = sizeof (siginfo) - offset;
6054
6055 if (readbuf != NULL)
6056 memcpy (readbuf, inf_siginfo + offset, len);
6057 else
6058 {
6059 memcpy (inf_siginfo + offset, writebuf, len);
6060
6061 /* Convert back to ptrace layout before flushing it out. */
6062 siginfo_fixup (&siginfo, inf_siginfo, 1);
6063
6064 if (ptrace (PTRACE_SETSIGINFO, pid, (PTRACE_TYPE_ARG3) 0, &siginfo) != 0)
6065 return -1;
6066 }
6067
6068 return len;
6069 }
6070
6071 /* SIGCHLD handler that serves two purposes: In non-stop/async mode,
6072 so we notice when children change state; as the handler for the
6073 sigsuspend in my_waitpid. */
6074
6075 static void
6076 sigchld_handler (int signo)
6077 {
6078 int old_errno = errno;
6079
6080 if (debug_threads)
6081 {
6082 do
6083 {
6084 /* Use the async signal safe debug function. */
6085 if (debug_write ("sigchld_handler\n",
6086 sizeof ("sigchld_handler\n") - 1) < 0)
6087 break; /* just ignore */
6088 } while (0);
6089 }
6090
6091 if (target_is_async_p ())
6092 async_file_mark (); /* trigger a linux_wait */
6093
6094 errno = old_errno;
6095 }
6096
6097 bool
6098 linux_process_target::supports_non_stop ()
6099 {
6100 return true;
6101 }
6102
6103 bool
6104 linux_process_target::async (bool enable)
6105 {
6106 bool previous = target_is_async_p ();
6107
6108 if (debug_threads)
6109 debug_printf ("linux_async (%d), previous=%d\n",
6110 enable, previous);
6111
6112 if (previous != enable)
6113 {
6114 sigset_t mask;
6115 sigemptyset (&mask);
6116 sigaddset (&mask, SIGCHLD);
6117
6118 gdb_sigmask (SIG_BLOCK, &mask, NULL);
6119
6120 if (enable)
6121 {
6122 if (pipe (linux_event_pipe) == -1)
6123 {
6124 linux_event_pipe[0] = -1;
6125 linux_event_pipe[1] = -1;
6126 gdb_sigmask (SIG_UNBLOCK, &mask, NULL);
6127
6128 warning ("creating event pipe failed.");
6129 return previous;
6130 }
6131
6132 fcntl (linux_event_pipe[0], F_SETFL, O_NONBLOCK);
6133 fcntl (linux_event_pipe[1], F_SETFL, O_NONBLOCK);
6134
6135 /* Register the event loop handler. */
6136 add_file_handler (linux_event_pipe[0],
6137 handle_target_event, NULL);
6138
6139 /* Always trigger a linux_wait. */
6140 async_file_mark ();
6141 }
6142 else
6143 {
6144 delete_file_handler (linux_event_pipe[0]);
6145
6146 close (linux_event_pipe[0]);
6147 close (linux_event_pipe[1]);
6148 linux_event_pipe[0] = -1;
6149 linux_event_pipe[1] = -1;
6150 }
6151
6152 gdb_sigmask (SIG_UNBLOCK, &mask, NULL);
6153 }
6154
6155 return previous;
6156 }
6157
6158 int
6159 linux_process_target::start_non_stop (bool nonstop)
6160 {
6161 /* Register or unregister from event-loop accordingly. */
6162 target_async (nonstop);
6163
6164 if (target_is_async_p () != (nonstop != false))
6165 return -1;
6166
6167 return 0;
6168 }
6169
6170 bool
6171 linux_process_target::supports_multi_process ()
6172 {
6173 return true;
6174 }
6175
6176 /* Check if fork events are supported. */
6177
6178 bool
6179 linux_process_target::supports_fork_events ()
6180 {
6181 return linux_supports_tracefork ();
6182 }
6183
6184 /* Check if vfork events are supported. */
6185
6186 bool
6187 linux_process_target::supports_vfork_events ()
6188 {
6189 return linux_supports_tracefork ();
6190 }
6191
6192 /* Check if exec events are supported. */
6193
6194 bool
6195 linux_process_target::supports_exec_events ()
6196 {
6197 return linux_supports_traceexec ();
6198 }
6199
6200 /* Target hook for 'handle_new_gdb_connection'. Causes a reset of the
6201 ptrace flags for all inferiors. This is in case the new GDB connection
6202 doesn't support the same set of events that the previous one did. */
6203
6204 void
6205 linux_process_target::handle_new_gdb_connection ()
6206 {
6207 /* Request that all the lwps reset their ptrace options. */
6208 for_each_thread ([] (thread_info *thread)
6209 {
6210 struct lwp_info *lwp = get_thread_lwp (thread);
6211
6212 if (!lwp->stopped)
6213 {
6214 /* Stop the lwp so we can modify its ptrace options. */
6215 lwp->must_set_ptrace_flags = 1;
6216 linux_stop_lwp (lwp);
6217 }
6218 else
6219 {
6220 /* Already stopped; go ahead and set the ptrace options. */
6221 struct process_info *proc = find_process_pid (pid_of (thread));
6222 int options = linux_low_ptrace_options (proc->attached);
6223
6224 linux_enable_event_reporting (lwpid_of (thread), options);
6225 lwp->must_set_ptrace_flags = 0;
6226 }
6227 });
6228 }
6229
6230 int
6231 linux_process_target::handle_monitor_command (char *mon)
6232 {
6233 #ifdef USE_THREAD_DB
6234 return thread_db_handle_monitor_command (mon);
6235 #else
6236 return 0;
6237 #endif
6238 }
6239
6240 int
6241 linux_process_target::core_of_thread (ptid_t ptid)
6242 {
6243 return linux_common_core_of_thread (ptid);
6244 }
6245
6246 bool
6247 linux_process_target::supports_disable_randomization ()
6248 {
6249 #ifdef HAVE_PERSONALITY
6250 return true;
6251 #else
6252 return false;
6253 #endif
6254 }
6255
6256 bool
6257 linux_process_target::supports_agent ()
6258 {
6259 return true;
6260 }
6261
6262 bool
6263 linux_process_target::supports_range_stepping ()
6264 {
6265 if (supports_software_single_step ())
6266 return true;
6267
6268 return low_supports_range_stepping ();
6269 }
6270
6271 bool
6272 linux_process_target::low_supports_range_stepping ()
6273 {
6274 return false;
6275 }
6276
6277 bool
6278 linux_process_target::supports_pid_to_exec_file ()
6279 {
6280 return true;
6281 }
6282
6283 char *
6284 linux_process_target::pid_to_exec_file (int pid)
6285 {
6286 return linux_proc_pid_to_exec_file (pid);
6287 }
6288
6289 bool
6290 linux_process_target::supports_multifs ()
6291 {
6292 return true;
6293 }
6294
6295 int
6296 linux_process_target::multifs_open (int pid, const char *filename,
6297 int flags, mode_t mode)
6298 {
6299 return linux_mntns_open_cloexec (pid, filename, flags, mode);
6300 }
6301
6302 int
6303 linux_process_target::multifs_unlink (int pid, const char *filename)
6304 {
6305 return linux_mntns_unlink (pid, filename);
6306 }
6307
6308 ssize_t
6309 linux_process_target::multifs_readlink (int pid, const char *filename,
6310 char *buf, size_t bufsiz)
6311 {
6312 return linux_mntns_readlink (pid, filename, buf, bufsiz);
6313 }
6314
6315 #if defined PT_GETDSBT || defined PTRACE_GETFDPIC
6316 struct target_loadseg
6317 {
6318 /* Core address to which the segment is mapped. */
6319 Elf32_Addr addr;
6320 /* VMA recorded in the program header. */
6321 Elf32_Addr p_vaddr;
6322 /* Size of this segment in memory. */
6323 Elf32_Word p_memsz;
6324 };
6325
6326 # if defined PT_GETDSBT
6327 struct target_loadmap
6328 {
6329 /* Protocol version number, must be zero. */
6330 Elf32_Word version;
6331 /* Pointer to the DSBT table, its size, and the DSBT index. */
6332 unsigned *dsbt_table;
6333 unsigned dsbt_size, dsbt_index;
6334 /* Number of segments in this map. */
6335 Elf32_Word nsegs;
6336 /* The actual memory map. */
6337 struct target_loadseg segs[/*nsegs*/];
6338 };
6339 # define LINUX_LOADMAP PT_GETDSBT
6340 # define LINUX_LOADMAP_EXEC PTRACE_GETDSBT_EXEC
6341 # define LINUX_LOADMAP_INTERP PTRACE_GETDSBT_INTERP
6342 # else
6343 struct target_loadmap
6344 {
6345 /* Protocol version number, must be zero. */
6346 Elf32_Half version;
6347 /* Number of segments in this map. */
6348 Elf32_Half nsegs;
6349 /* The actual memory map. */
6350 struct target_loadseg segs[/*nsegs*/];
6351 };
6352 # define LINUX_LOADMAP PTRACE_GETFDPIC
6353 # define LINUX_LOADMAP_EXEC PTRACE_GETFDPIC_EXEC
6354 # define LINUX_LOADMAP_INTERP PTRACE_GETFDPIC_INTERP
6355 # endif
6356
6357 bool
6358 linux_process_target::supports_read_loadmap ()
6359 {
6360 return true;
6361 }
6362
6363 int
6364 linux_process_target::read_loadmap (const char *annex, CORE_ADDR offset,
6365 unsigned char *myaddr, unsigned int len)
6366 {
6367 int pid = lwpid_of (current_thread);
6368 int addr = -1;
6369 struct target_loadmap *data = NULL;
6370 unsigned int actual_length, copy_length;
6371
6372 if (strcmp (annex, "exec") == 0)
6373 addr = (int) LINUX_LOADMAP_EXEC;
6374 else if (strcmp (annex, "interp") == 0)
6375 addr = (int) LINUX_LOADMAP_INTERP;
6376 else
6377 return -1;
6378
6379 if (ptrace (LINUX_LOADMAP, pid, addr, &data) != 0)
6380 return -1;
6381
6382 if (data == NULL)
6383 return -1;
6384
6385 actual_length = sizeof (struct target_loadmap)
6386 + sizeof (struct target_loadseg) * data->nsegs;
6387
6388 if (offset < 0 || offset > actual_length)
6389 return -1;
6390
6391 copy_length = actual_length - offset < len ? actual_length - offset : len;
6392 memcpy (myaddr, (char *) data + offset, copy_length);
6393 return copy_length;
6394 }
6395 #endif /* defined PT_GETDSBT || defined PTRACE_GETFDPIC */
6396
6397 bool
6398 linux_process_target::supports_catch_syscall ()
6399 {
6400 return (low_supports_catch_syscall ()
6401 && linux_supports_tracesysgood ());
6402 }
6403
6404 bool
6405 linux_process_target::low_supports_catch_syscall ()
6406 {
6407 return false;
6408 }
6409
6410 CORE_ADDR
6411 linux_process_target::read_pc (regcache *regcache)
6412 {
6413 if (!low_supports_breakpoints ())
6414 return 0;
6415
6416 return low_get_pc (regcache);
6417 }
6418
6419 void
6420 linux_process_target::write_pc (regcache *regcache, CORE_ADDR pc)
6421 {
6422 gdb_assert (low_supports_breakpoints ());
6423
6424 low_set_pc (regcache, pc);
6425 }
6426
6427 bool
6428 linux_process_target::supports_thread_stopped ()
6429 {
6430 return true;
6431 }
6432
6433 bool
6434 linux_process_target::thread_stopped (thread_info *thread)
6435 {
6436 return get_thread_lwp (thread)->stopped;
6437 }
6438
6439 /* This exposes stop-all-threads functionality to other modules. */
6440
6441 void
6442 linux_process_target::pause_all (bool freeze)
6443 {
6444 stop_all_lwps (freeze, NULL);
6445 }
6446
6447 /* This exposes unstop-all-threads functionality to other gdbserver
6448 modules. */
6449
6450 void
6451 linux_process_target::unpause_all (bool unfreeze)
6452 {
6453 unstop_all_lwps (unfreeze, NULL);
6454 }
6455
6456 int
6457 linux_process_target::prepare_to_access_memory ()
6458 {
6459 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6460 running LWP. */
6461 if (non_stop)
6462 target_pause_all (true);
6463 return 0;
6464 }
6465
6466 void
6467 linux_process_target::done_accessing_memory ()
6468 {
6469 /* Neither ptrace nor /proc/PID/mem allow accessing memory through a
6470 running LWP. */
6471 if (non_stop)
6472 target_unpause_all (true);
6473 }
6474
6475 /* Extract &phdr and num_phdr in the inferior. Return 0 on success. */
6476
6477 static int
6478 get_phdr_phnum_from_proc_auxv (const int pid, const int is_elf64,
6479 CORE_ADDR *phdr_memaddr, int *num_phdr)
6480 {
6481 char filename[PATH_MAX];
6482 int fd;
6483 const int auxv_size = is_elf64
6484 ? sizeof (Elf64_auxv_t) : sizeof (Elf32_auxv_t);
6485 char buf[sizeof (Elf64_auxv_t)]; /* The larger of the two. */
6486
6487 xsnprintf (filename, sizeof filename, "/proc/%d/auxv", pid);
6488
6489 fd = open (filename, O_RDONLY);
6490 if (fd < 0)
6491 return 1;
6492
6493 *phdr_memaddr = 0;
6494 *num_phdr = 0;
6495 while (read (fd, buf, auxv_size) == auxv_size
6496 && (*phdr_memaddr == 0 || *num_phdr == 0))
6497 {
6498 if (is_elf64)
6499 {
6500 Elf64_auxv_t *const aux = (Elf64_auxv_t *) buf;
6501
6502 switch (aux->a_type)
6503 {
6504 case AT_PHDR:
6505 *phdr_memaddr = aux->a_un.a_val;
6506 break;
6507 case AT_PHNUM:
6508 *num_phdr = aux->a_un.a_val;
6509 break;
6510 }
6511 }
6512 else
6513 {
6514 Elf32_auxv_t *const aux = (Elf32_auxv_t *) buf;
6515
6516 switch (aux->a_type)
6517 {
6518 case AT_PHDR:
6519 *phdr_memaddr = aux->a_un.a_val;
6520 break;
6521 case AT_PHNUM:
6522 *num_phdr = aux->a_un.a_val;
6523 break;
6524 }
6525 }
6526 }
6527
6528 close (fd);
6529
6530 if (*phdr_memaddr == 0 || *num_phdr == 0)
6531 {
6532 warning ("Unexpected missing AT_PHDR and/or AT_PHNUM: "
6533 "phdr_memaddr = %ld, phdr_num = %d",
6534 (long) *phdr_memaddr, *num_phdr);
6535 return 2;
6536 }
6537
6538 return 0;
6539 }
6540
6541 /* Return &_DYNAMIC (via PT_DYNAMIC) in the inferior, or 0 if not present. */
6542
6543 static CORE_ADDR
6544 get_dynamic (const int pid, const int is_elf64)
6545 {
6546 CORE_ADDR phdr_memaddr, relocation;
6547 int num_phdr, i;
6548 unsigned char *phdr_buf;
6549 const int phdr_size = is_elf64 ? sizeof (Elf64_Phdr) : sizeof (Elf32_Phdr);
6550
6551 if (get_phdr_phnum_from_proc_auxv (pid, is_elf64, &phdr_memaddr, &num_phdr))
6552 return 0;
6553
6554 gdb_assert (num_phdr < 100); /* Basic sanity check. */
6555 phdr_buf = (unsigned char *) alloca (num_phdr * phdr_size);
6556
6557 if (linux_read_memory (phdr_memaddr, phdr_buf, num_phdr * phdr_size))
6558 return 0;
6559
6560 /* Compute relocation: it is expected to be 0 for "regular" executables,
6561 non-zero for PIE ones. */
6562 relocation = -1;
6563 for (i = 0; relocation == -1 && i < num_phdr; i++)
6564 if (is_elf64)
6565 {
6566 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6567
6568 if (p->p_type == PT_PHDR)
6569 relocation = phdr_memaddr - p->p_vaddr;
6570 }
6571 else
6572 {
6573 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6574
6575 if (p->p_type == PT_PHDR)
6576 relocation = phdr_memaddr - p->p_vaddr;
6577 }
6578
6579 if (relocation == -1)
6580 {
6581 /* PT_PHDR is optional, but necessary for PIE in general. Fortunately
6582 any real world executables, including PIE executables, have always
6583 PT_PHDR present. PT_PHDR is not present in some shared libraries or
6584 in fpc (Free Pascal 2.4) binaries but neither of those have a need for
6585 or present DT_DEBUG anyway (fpc binaries are statically linked).
6586
6587 Therefore if there exists DT_DEBUG there is always also PT_PHDR.
6588
6589 GDB could find RELOCATION also from AT_ENTRY - e_entry. */
6590
6591 return 0;
6592 }
6593
6594 for (i = 0; i < num_phdr; i++)
6595 {
6596 if (is_elf64)
6597 {
6598 Elf64_Phdr *const p = (Elf64_Phdr *) (phdr_buf + i * phdr_size);
6599
6600 if (p->p_type == PT_DYNAMIC)
6601 return p->p_vaddr + relocation;
6602 }
6603 else
6604 {
6605 Elf32_Phdr *const p = (Elf32_Phdr *) (phdr_buf + i * phdr_size);
6606
6607 if (p->p_type == PT_DYNAMIC)
6608 return p->p_vaddr + relocation;
6609 }
6610 }
6611
6612 return 0;
6613 }
6614
6615 /* Return &_r_debug in the inferior, or -1 if not present. Return value
6616 can be 0 if the inferior does not yet have the library list initialized.
6617 We look for DT_MIPS_RLD_MAP first. MIPS executables use this instead of
6618 DT_DEBUG, although they sometimes contain an unused DT_DEBUG entry too. */
6619
6620 static CORE_ADDR
6621 get_r_debug (const int pid, const int is_elf64)
6622 {
6623 CORE_ADDR dynamic_memaddr;
6624 const int dyn_size = is_elf64 ? sizeof (Elf64_Dyn) : sizeof (Elf32_Dyn);
6625 unsigned char buf[sizeof (Elf64_Dyn)]; /* The larger of the two. */
6626 CORE_ADDR map = -1;
6627
6628 dynamic_memaddr = get_dynamic (pid, is_elf64);
6629 if (dynamic_memaddr == 0)
6630 return map;
6631
6632 while (linux_read_memory (dynamic_memaddr, buf, dyn_size) == 0)
6633 {
6634 if (is_elf64)
6635 {
6636 Elf64_Dyn *const dyn = (Elf64_Dyn *) buf;
6637 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6638 union
6639 {
6640 Elf64_Xword map;
6641 unsigned char buf[sizeof (Elf64_Xword)];
6642 }
6643 rld_map;
6644 #endif
6645 #ifdef DT_MIPS_RLD_MAP
6646 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6647 {
6648 if (linux_read_memory (dyn->d_un.d_val,
6649 rld_map.buf, sizeof (rld_map.buf)) == 0)
6650 return rld_map.map;
6651 else
6652 break;
6653 }
6654 #endif /* DT_MIPS_RLD_MAP */
6655 #ifdef DT_MIPS_RLD_MAP_REL
6656 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6657 {
6658 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6659 rld_map.buf, sizeof (rld_map.buf)) == 0)
6660 return rld_map.map;
6661 else
6662 break;
6663 }
6664 #endif /* DT_MIPS_RLD_MAP_REL */
6665
6666 if (dyn->d_tag == DT_DEBUG && map == -1)
6667 map = dyn->d_un.d_val;
6668
6669 if (dyn->d_tag == DT_NULL)
6670 break;
6671 }
6672 else
6673 {
6674 Elf32_Dyn *const dyn = (Elf32_Dyn *) buf;
6675 #if defined DT_MIPS_RLD_MAP || defined DT_MIPS_RLD_MAP_REL
6676 union
6677 {
6678 Elf32_Word map;
6679 unsigned char buf[sizeof (Elf32_Word)];
6680 }
6681 rld_map;
6682 #endif
6683 #ifdef DT_MIPS_RLD_MAP
6684 if (dyn->d_tag == DT_MIPS_RLD_MAP)
6685 {
6686 if (linux_read_memory (dyn->d_un.d_val,
6687 rld_map.buf, sizeof (rld_map.buf)) == 0)
6688 return rld_map.map;
6689 else
6690 break;
6691 }
6692 #endif /* DT_MIPS_RLD_MAP */
6693 #ifdef DT_MIPS_RLD_MAP_REL
6694 if (dyn->d_tag == DT_MIPS_RLD_MAP_REL)
6695 {
6696 if (linux_read_memory (dyn->d_un.d_val + dynamic_memaddr,
6697 rld_map.buf, sizeof (rld_map.buf)) == 0)
6698 return rld_map.map;
6699 else
6700 break;
6701 }
6702 #endif /* DT_MIPS_RLD_MAP_REL */
6703
6704 if (dyn->d_tag == DT_DEBUG && map == -1)
6705 map = dyn->d_un.d_val;
6706
6707 if (dyn->d_tag == DT_NULL)
6708 break;
6709 }
6710
6711 dynamic_memaddr += dyn_size;
6712 }
6713
6714 return map;
6715 }
6716
6717 /* Read one pointer from MEMADDR in the inferior. */
6718
6719 static int
6720 read_one_ptr (CORE_ADDR memaddr, CORE_ADDR *ptr, int ptr_size)
6721 {
6722 int ret;
6723
6724 /* Go through a union so this works on either big or little endian
6725 hosts, when the inferior's pointer size is smaller than the size
6726 of CORE_ADDR. It is assumed the inferior's endianness is the
6727 same of the superior's. */
6728 union
6729 {
6730 CORE_ADDR core_addr;
6731 unsigned int ui;
6732 unsigned char uc;
6733 } addr;
6734
6735 ret = linux_read_memory (memaddr, &addr.uc, ptr_size);
6736 if (ret == 0)
6737 {
6738 if (ptr_size == sizeof (CORE_ADDR))
6739 *ptr = addr.core_addr;
6740 else if (ptr_size == sizeof (unsigned int))
6741 *ptr = addr.ui;
6742 else
6743 gdb_assert_not_reached ("unhandled pointer size");
6744 }
6745 return ret;
6746 }
6747
6748 bool
6749 linux_process_target::supports_qxfer_libraries_svr4 ()
6750 {
6751 return true;
6752 }
6753
6754 struct link_map_offsets
6755 {
6756 /* Offset and size of r_debug.r_version. */
6757 int r_version_offset;
6758
6759 /* Offset and size of r_debug.r_map. */
6760 int r_map_offset;
6761
6762 /* Offset to l_addr field in struct link_map. */
6763 int l_addr_offset;
6764
6765 /* Offset to l_name field in struct link_map. */
6766 int l_name_offset;
6767
6768 /* Offset to l_ld field in struct link_map. */
6769 int l_ld_offset;
6770
6771 /* Offset to l_next field in struct link_map. */
6772 int l_next_offset;
6773
6774 /* Offset to l_prev field in struct link_map. */
6775 int l_prev_offset;
6776 };
6777
6778 /* Construct qXfer:libraries-svr4:read reply. */
6779
6780 int
6781 linux_process_target::qxfer_libraries_svr4 (const char *annex,
6782 unsigned char *readbuf,
6783 unsigned const char *writebuf,
6784 CORE_ADDR offset, int len)
6785 {
6786 struct process_info_private *const priv = current_process ()->priv;
6787 char filename[PATH_MAX];
6788 int pid, is_elf64;
6789
6790 static const struct link_map_offsets lmo_32bit_offsets =
6791 {
6792 0, /* r_version offset. */
6793 4, /* r_debug.r_map offset. */
6794 0, /* l_addr offset in link_map. */
6795 4, /* l_name offset in link_map. */
6796 8, /* l_ld offset in link_map. */
6797 12, /* l_next offset in link_map. */
6798 16 /* l_prev offset in link_map. */
6799 };
6800
6801 static const struct link_map_offsets lmo_64bit_offsets =
6802 {
6803 0, /* r_version offset. */
6804 8, /* r_debug.r_map offset. */
6805 0, /* l_addr offset in link_map. */
6806 8, /* l_name offset in link_map. */
6807 16, /* l_ld offset in link_map. */
6808 24, /* l_next offset in link_map. */
6809 32 /* l_prev offset in link_map. */
6810 };
6811 const struct link_map_offsets *lmo;
6812 unsigned int machine;
6813 int ptr_size;
6814 CORE_ADDR lm_addr = 0, lm_prev = 0;
6815 CORE_ADDR l_name, l_addr, l_ld, l_next, l_prev;
6816 int header_done = 0;
6817
6818 if (writebuf != NULL)
6819 return -2;
6820 if (readbuf == NULL)
6821 return -1;
6822
6823 pid = lwpid_of (current_thread);
6824 xsnprintf (filename, sizeof filename, "/proc/%d/exe", pid);
6825 is_elf64 = elf_64_file_p (filename, &machine);
6826 lmo = is_elf64 ? &lmo_64bit_offsets : &lmo_32bit_offsets;
6827 ptr_size = is_elf64 ? 8 : 4;
6828
6829 while (annex[0] != '\0')
6830 {
6831 const char *sep;
6832 CORE_ADDR *addrp;
6833 int name_len;
6834
6835 sep = strchr (annex, '=');
6836 if (sep == NULL)
6837 break;
6838
6839 name_len = sep - annex;
6840 if (name_len == 5 && startswith (annex, "start"))
6841 addrp = &lm_addr;
6842 else if (name_len == 4 && startswith (annex, "prev"))
6843 addrp = &lm_prev;
6844 else
6845 {
6846 annex = strchr (sep, ';');
6847 if (annex == NULL)
6848 break;
6849 annex++;
6850 continue;
6851 }
6852
6853 annex = decode_address_to_semicolon (addrp, sep + 1);
6854 }
6855
6856 if (lm_addr == 0)
6857 {
6858 int r_version = 0;
6859
6860 if (priv->r_debug == 0)
6861 priv->r_debug = get_r_debug (pid, is_elf64);
6862
6863 /* We failed to find DT_DEBUG. Such situation will not change
6864 for this inferior - do not retry it. Report it to GDB as
6865 E01, see for the reasons at the GDB solib-svr4.c side. */
6866 if (priv->r_debug == (CORE_ADDR) -1)
6867 return -1;
6868
6869 if (priv->r_debug != 0)
6870 {
6871 if (linux_read_memory (priv->r_debug + lmo->r_version_offset,
6872 (unsigned char *) &r_version,
6873 sizeof (r_version)) != 0
6874 || r_version != 1)
6875 {
6876 warning ("unexpected r_debug version %d", r_version);
6877 }
6878 else if (read_one_ptr (priv->r_debug + lmo->r_map_offset,
6879 &lm_addr, ptr_size) != 0)
6880 {
6881 warning ("unable to read r_map from 0x%lx",
6882 (long) priv->r_debug + lmo->r_map_offset);
6883 }
6884 }
6885 }
6886
6887 std::string document = "<library-list-svr4 version=\"1.0\"";
6888
6889 while (lm_addr
6890 && read_one_ptr (lm_addr + lmo->l_name_offset,
6891 &l_name, ptr_size) == 0
6892 && read_one_ptr (lm_addr + lmo->l_addr_offset,
6893 &l_addr, ptr_size) == 0
6894 && read_one_ptr (lm_addr + lmo->l_ld_offset,
6895 &l_ld, ptr_size) == 0
6896 && read_one_ptr (lm_addr + lmo->l_prev_offset,
6897 &l_prev, ptr_size) == 0
6898 && read_one_ptr (lm_addr + lmo->l_next_offset,
6899 &l_next, ptr_size) == 0)
6900 {
6901 unsigned char libname[PATH_MAX];
6902
6903 if (lm_prev != l_prev)
6904 {
6905 warning ("Corrupted shared library list: 0x%lx != 0x%lx",
6906 (long) lm_prev, (long) l_prev);
6907 break;
6908 }
6909
6910 /* Ignore the first entry even if it has valid name as the first entry
6911 corresponds to the main executable. The first entry should not be
6912 skipped if the dynamic loader was loaded late by a static executable
6913 (see solib-svr4.c parameter ignore_first). But in such case the main
6914 executable does not have PT_DYNAMIC present and this function already
6915 exited above due to failed get_r_debug. */
6916 if (lm_prev == 0)
6917 string_appendf (document, " main-lm=\"0x%lx\"", (unsigned long) lm_addr);
6918 else
6919 {
6920 /* Not checking for error because reading may stop before
6921 we've got PATH_MAX worth of characters. */
6922 libname[0] = '\0';
6923 linux_read_memory (l_name, libname, sizeof (libname) - 1);
6924 libname[sizeof (libname) - 1] = '\0';
6925 if (libname[0] != '\0')
6926 {
6927 if (!header_done)
6928 {
6929 /* Terminate `<library-list-svr4'. */
6930 document += '>';
6931 header_done = 1;
6932 }
6933
6934 string_appendf (document, "<library name=\"");
6935 xml_escape_text_append (&document, (char *) libname);
6936 string_appendf (document, "\" lm=\"0x%lx\" "
6937 "l_addr=\"0x%lx\" l_ld=\"0x%lx\"/>",
6938 (unsigned long) lm_addr, (unsigned long) l_addr,
6939 (unsigned long) l_ld);
6940 }
6941 }
6942
6943 lm_prev = lm_addr;
6944 lm_addr = l_next;
6945 }
6946
6947 if (!header_done)
6948 {
6949 /* Empty list; terminate `<library-list-svr4'. */
6950 document += "/>";
6951 }
6952 else
6953 document += "</library-list-svr4>";
6954
6955 int document_len = document.length ();
6956 if (offset < document_len)
6957 document_len -= offset;
6958 else
6959 document_len = 0;
6960 if (len > document_len)
6961 len = document_len;
6962
6963 memcpy (readbuf, document.data () + offset, len);
6964
6965 return len;
6966 }
6967
6968 #ifdef HAVE_LINUX_BTRACE
6969
6970 btrace_target_info *
6971 linux_process_target::enable_btrace (ptid_t ptid,
6972 const btrace_config *conf)
6973 {
6974 return linux_enable_btrace (ptid, conf);
6975 }
6976
6977 /* See to_disable_btrace target method. */
6978
6979 int
6980 linux_process_target::disable_btrace (btrace_target_info *tinfo)
6981 {
6982 enum btrace_error err;
6983
6984 err = linux_disable_btrace (tinfo);
6985 return (err == BTRACE_ERR_NONE ? 0 : -1);
6986 }
6987
6988 /* Encode an Intel Processor Trace configuration. */
6989
6990 static void
6991 linux_low_encode_pt_config (struct buffer *buffer,
6992 const struct btrace_data_pt_config *config)
6993 {
6994 buffer_grow_str (buffer, "<pt-config>\n");
6995
6996 switch (config->cpu.vendor)
6997 {
6998 case CV_INTEL:
6999 buffer_xml_printf (buffer, "<cpu vendor=\"GenuineIntel\" family=\"%u\" "
7000 "model=\"%u\" stepping=\"%u\"/>\n",
7001 config->cpu.family, config->cpu.model,
7002 config->cpu.stepping);
7003 break;
7004
7005 default:
7006 break;
7007 }
7008
7009 buffer_grow_str (buffer, "</pt-config>\n");
7010 }
7011
7012 /* Encode a raw buffer. */
7013
7014 static void
7015 linux_low_encode_raw (struct buffer *buffer, const gdb_byte *data,
7016 unsigned int size)
7017 {
7018 if (size == 0)
7019 return;
7020
7021 /* We use hex encoding - see gdbsupport/rsp-low.h. */
7022 buffer_grow_str (buffer, "<raw>\n");
7023
7024 while (size-- > 0)
7025 {
7026 char elem[2];
7027
7028 elem[0] = tohex ((*data >> 4) & 0xf);
7029 elem[1] = tohex (*data++ & 0xf);
7030
7031 buffer_grow (buffer, elem, 2);
7032 }
7033
7034 buffer_grow_str (buffer, "</raw>\n");
7035 }
7036
7037 /* See to_read_btrace target method. */
7038
7039 int
7040 linux_process_target::read_btrace (btrace_target_info *tinfo,
7041 buffer *buffer,
7042 enum btrace_read_type type)
7043 {
7044 struct btrace_data btrace;
7045 enum btrace_error err;
7046
7047 err = linux_read_btrace (&btrace, tinfo, type);
7048 if (err != BTRACE_ERR_NONE)
7049 {
7050 if (err == BTRACE_ERR_OVERFLOW)
7051 buffer_grow_str0 (buffer, "E.Overflow.");
7052 else
7053 buffer_grow_str0 (buffer, "E.Generic Error.");
7054
7055 return -1;
7056 }
7057
7058 switch (btrace.format)
7059 {
7060 case BTRACE_FORMAT_NONE:
7061 buffer_grow_str0 (buffer, "E.No Trace.");
7062 return -1;
7063
7064 case BTRACE_FORMAT_BTS:
7065 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7066 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7067
7068 for (const btrace_block &block : *btrace.variant.bts.blocks)
7069 buffer_xml_printf (buffer, "<block begin=\"0x%s\" end=\"0x%s\"/>\n",
7070 paddress (block.begin), paddress (block.end));
7071
7072 buffer_grow_str0 (buffer, "</btrace>\n");
7073 break;
7074
7075 case BTRACE_FORMAT_PT:
7076 buffer_grow_str (buffer, "<!DOCTYPE btrace SYSTEM \"btrace.dtd\">\n");
7077 buffer_grow_str (buffer, "<btrace version=\"1.0\">\n");
7078 buffer_grow_str (buffer, "<pt>\n");
7079
7080 linux_low_encode_pt_config (buffer, &btrace.variant.pt.config);
7081
7082 linux_low_encode_raw (buffer, btrace.variant.pt.data,
7083 btrace.variant.pt.size);
7084
7085 buffer_grow_str (buffer, "</pt>\n");
7086 buffer_grow_str0 (buffer, "</btrace>\n");
7087 break;
7088
7089 default:
7090 buffer_grow_str0 (buffer, "E.Unsupported Trace Format.");
7091 return -1;
7092 }
7093
7094 return 0;
7095 }
7096
7097 /* See to_btrace_conf target method. */
7098
7099 int
7100 linux_process_target::read_btrace_conf (const btrace_target_info *tinfo,
7101 buffer *buffer)
7102 {
7103 const struct btrace_config *conf;
7104
7105 buffer_grow_str (buffer, "<!DOCTYPE btrace-conf SYSTEM \"btrace-conf.dtd\">\n");
7106 buffer_grow_str (buffer, "<btrace-conf version=\"1.0\">\n");
7107
7108 conf = linux_btrace_conf (tinfo);
7109 if (conf != NULL)
7110 {
7111 switch (conf->format)
7112 {
7113 case BTRACE_FORMAT_NONE:
7114 break;
7115
7116 case BTRACE_FORMAT_BTS:
7117 buffer_xml_printf (buffer, "<bts");
7118 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->bts.size);
7119 buffer_xml_printf (buffer, " />\n");
7120 break;
7121
7122 case BTRACE_FORMAT_PT:
7123 buffer_xml_printf (buffer, "<pt");
7124 buffer_xml_printf (buffer, " size=\"0x%x\"", conf->pt.size);
7125 buffer_xml_printf (buffer, "/>\n");
7126 break;
7127 }
7128 }
7129
7130 buffer_grow_str0 (buffer, "</btrace-conf>\n");
7131 return 0;
7132 }
7133 #endif /* HAVE_LINUX_BTRACE */
7134
7135 /* See nat/linux-nat.h. */
7136
7137 ptid_t
7138 current_lwp_ptid (void)
7139 {
7140 return ptid_of (current_thread);
7141 }
7142
7143 const char *
7144 linux_process_target::thread_name (ptid_t thread)
7145 {
7146 return linux_proc_tid_get_name (thread);
7147 }
7148
7149 #if USE_THREAD_DB
7150 bool
7151 linux_process_target::thread_handle (ptid_t ptid, gdb_byte **handle,
7152 int *handle_len)
7153 {
7154 return thread_db_thread_handle (ptid, handle, handle_len);
7155 }
7156 #endif
7157
7158 /* Default implementation of linux_target_ops method "set_pc" for
7159 32-bit pc register which is literally named "pc". */
7160
7161 void
7162 linux_set_pc_32bit (struct regcache *regcache, CORE_ADDR pc)
7163 {
7164 uint32_t newpc = pc;
7165
7166 supply_register_by_name (regcache, "pc", &newpc);
7167 }
7168
7169 /* Default implementation of linux_target_ops method "get_pc" for
7170 32-bit pc register which is literally named "pc". */
7171
7172 CORE_ADDR
7173 linux_get_pc_32bit (struct regcache *regcache)
7174 {
7175 uint32_t pc;
7176
7177 collect_register_by_name (regcache, "pc", &pc);
7178 if (debug_threads)
7179 debug_printf ("stop pc is 0x%" PRIx32 "\n", pc);
7180 return pc;
7181 }
7182
7183 /* Default implementation of linux_target_ops method "set_pc" for
7184 64-bit pc register which is literally named "pc". */
7185
7186 void
7187 linux_set_pc_64bit (struct regcache *regcache, CORE_ADDR pc)
7188 {
7189 uint64_t newpc = pc;
7190
7191 supply_register_by_name (regcache, "pc", &newpc);
7192 }
7193
7194 /* Default implementation of linux_target_ops method "get_pc" for
7195 64-bit pc register which is literally named "pc". */
7196
7197 CORE_ADDR
7198 linux_get_pc_64bit (struct regcache *regcache)
7199 {
7200 uint64_t pc;
7201
7202 collect_register_by_name (regcache, "pc", &pc);
7203 if (debug_threads)
7204 debug_printf ("stop pc is 0x%" PRIx64 "\n", pc);
7205 return pc;
7206 }
7207
7208 /* See linux-low.h. */
7209
7210 int
7211 linux_get_auxv (int wordsize, CORE_ADDR match, CORE_ADDR *valp)
7212 {
7213 gdb_byte *data = (gdb_byte *) alloca (2 * wordsize);
7214 int offset = 0;
7215
7216 gdb_assert (wordsize == 4 || wordsize == 8);
7217
7218 while (the_target->read_auxv (offset, data, 2 * wordsize) == 2 * wordsize)
7219 {
7220 if (wordsize == 4)
7221 {
7222 uint32_t *data_p = (uint32_t *) data;
7223 if (data_p[0] == match)
7224 {
7225 *valp = data_p[1];
7226 return 1;
7227 }
7228 }
7229 else
7230 {
7231 uint64_t *data_p = (uint64_t *) data;
7232 if (data_p[0] == match)
7233 {
7234 *valp = data_p[1];
7235 return 1;
7236 }
7237 }
7238
7239 offset += 2 * wordsize;
7240 }
7241
7242 return 0;
7243 }
7244
7245 /* See linux-low.h. */
7246
7247 CORE_ADDR
7248 linux_get_hwcap (int wordsize)
7249 {
7250 CORE_ADDR hwcap = 0;
7251 linux_get_auxv (wordsize, AT_HWCAP, &hwcap);
7252 return hwcap;
7253 }
7254
7255 /* See linux-low.h. */
7256
7257 CORE_ADDR
7258 linux_get_hwcap2 (int wordsize)
7259 {
7260 CORE_ADDR hwcap2 = 0;
7261 linux_get_auxv (wordsize, AT_HWCAP2, &hwcap2);
7262 return hwcap2;
7263 }
7264
7265 #ifdef HAVE_LINUX_REGSETS
7266 void
7267 initialize_regsets_info (struct regsets_info *info)
7268 {
7269 for (info->num_regsets = 0;
7270 info->regsets[info->num_regsets].size >= 0;
7271 info->num_regsets++)
7272 ;
7273 }
7274 #endif
7275
7276 void
7277 initialize_low (void)
7278 {
7279 struct sigaction sigchld_action;
7280
7281 memset (&sigchld_action, 0, sizeof (sigchld_action));
7282 set_target_ops (the_linux_target);
7283
7284 linux_ptrace_init_warnings ();
7285 linux_proc_init_warnings ();
7286
7287 sigchld_action.sa_handler = sigchld_handler;
7288 sigemptyset (&sigchld_action.sa_mask);
7289 sigchld_action.sa_flags = SA_RESTART;
7290 sigaction (SIGCHLD, &sigchld_action, NULL);
7291
7292 initialize_low_arch ();
7293
7294 linux_check_ptrace_features ();
7295 }
This page took 0.18065 seconds and 4 git commands to generate.