gdb: add target_ops::supports_displaced_step
[deliverable/binutils-gdb.git] / gold / expression.cc
1 // expression.cc -- expressions in linker scripts for gold
2
3 // Copyright (C) 2006-2020 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <string>
26
27 #include "elfcpp.h"
28 #include "parameters.h"
29 #include "symtab.h"
30 #include "layout.h"
31 #include "output.h"
32 #include "script.h"
33 #include "script-c.h"
34
35 namespace gold
36 {
37
38 // This file holds the code which handles linker expressions.
39
40 // The dot symbol, which linker scripts refer to simply as ".",
41 // requires special treatment. The dot symbol is set several times,
42 // section addresses will refer to it, output sections will change it,
43 // and it can be set based on the value of other symbols. We simplify
44 // the handling by prohibiting setting the dot symbol to the value of
45 // a non-absolute symbol.
46
47 // When evaluating the value of an expression, we pass in a pointer to
48 // this struct, so that the expression evaluation can find the
49 // information it needs.
50
51 struct Expression::Expression_eval_info
52 {
53 // The symbol table.
54 const Symbol_table* symtab;
55 // The layout--we use this to get section information.
56 const Layout* layout;
57 // Whether to check assertions.
58 bool check_assertions;
59 // Whether expressions can refer to the dot symbol. The dot symbol
60 // is only available within a SECTIONS clause.
61 bool is_dot_available;
62 // The current value of the dot symbol.
63 uint64_t dot_value;
64 // The section in which the dot symbol is defined; this is NULL if
65 // it is absolute.
66 Output_section* dot_section;
67 // Points to where the section of the result should be stored.
68 Output_section** result_section_pointer;
69 // Pointer to where the alignment of the result should be stored.
70 uint64_t* result_alignment_pointer;
71 // Pointer to where the type of the symbol on the RHS should be stored.
72 elfcpp::STT* type_pointer;
73 // Pointer to where the visibility of the symbol on the RHS should be stored.
74 elfcpp::STV* vis_pointer;
75 // Pointer to where the rest of the symbol's st_other field should be stored.
76 unsigned char* nonvis_pointer;
77 // Whether the value is valid. In Symbol_assignment::set_if_absolute, we
78 // may be trying to evaluate the address of a section whose address is not
79 // yet finalized, and we need to fail the evaluation gracefully.
80 bool *is_valid_pointer;
81 };
82
83 // Evaluate an expression.
84
85 uint64_t
86 Expression::eval(const Symbol_table* symtab, const Layout* layout,
87 bool check_assertions)
88 {
89 return this->eval_maybe_dot(symtab, layout, check_assertions, false, 0,
90 NULL, NULL, NULL, NULL, NULL, NULL, false, NULL);
91 }
92
93 // Evaluate an expression which may refer to the dot symbol.
94
95 uint64_t
96 Expression::eval_with_dot(const Symbol_table* symtab, const Layout* layout,
97 bool check_assertions, uint64_t dot_value,
98 Output_section* dot_section,
99 Output_section** result_section_pointer,
100 uint64_t* result_alignment_pointer,
101 bool is_section_dot_assignment)
102 {
103 return this->eval_maybe_dot(symtab, layout, check_assertions, true,
104 dot_value, dot_section, result_section_pointer,
105 result_alignment_pointer, NULL, NULL, NULL,
106 is_section_dot_assignment, NULL);
107 }
108
109 // Evaluate an expression which may or may not refer to the dot
110 // symbol.
111
112 uint64_t
113 Expression::eval_maybe_dot(const Symbol_table* symtab, const Layout* layout,
114 bool check_assertions, bool is_dot_available,
115 uint64_t dot_value, Output_section* dot_section,
116 Output_section** result_section_pointer,
117 uint64_t* result_alignment_pointer,
118 elfcpp::STT* type_pointer,
119 elfcpp::STV* vis_pointer,
120 unsigned char* nonvis_pointer,
121 bool is_section_dot_assignment,
122 bool* is_valid_pointer)
123 {
124 Expression_eval_info eei;
125 eei.symtab = symtab;
126 eei.layout = layout;
127 eei.check_assertions = check_assertions;
128 eei.is_dot_available = is_dot_available;
129 eei.dot_value = dot_value;
130 eei.dot_section = dot_section;
131
132 // We assume the value is absolute, and only set this to a section
133 // if we find a section-relative reference.
134 if (result_section_pointer != NULL)
135 *result_section_pointer = NULL;
136 eei.result_section_pointer = result_section_pointer;
137
138 // For symbol=symbol assignments, we need to track the type, visibility,
139 // and remaining st_other bits.
140 eei.type_pointer = type_pointer;
141 eei.vis_pointer = vis_pointer;
142 eei.nonvis_pointer = nonvis_pointer;
143
144 eei.result_alignment_pointer = result_alignment_pointer;
145
146 // Assume the value is valid until we try to evaluate an expression
147 // that can't be evaluated yet.
148 bool is_valid = true;
149 eei.is_valid_pointer = &is_valid;
150
151 uint64_t val = this->value(&eei);
152
153 if (is_valid_pointer != NULL)
154 *is_valid_pointer = is_valid;
155 else
156 gold_assert(is_valid);
157
158 // If this is an assignment to dot within a section, and the value
159 // is absolute, treat it as a section-relative offset.
160 if (is_section_dot_assignment && *result_section_pointer == NULL)
161 {
162 gold_assert(dot_section != NULL);
163 val += dot_section->address();
164 *result_section_pointer = dot_section;
165 }
166 return val;
167 }
168
169 // A number.
170
171 class Integer_expression : public Expression
172 {
173 public:
174 Integer_expression(uint64_t val)
175 : val_(val)
176 { }
177
178 uint64_t
179 value(const Expression_eval_info*)
180 { return this->val_; }
181
182 void
183 print(FILE* f) const
184 { fprintf(f, "0x%llx", static_cast<unsigned long long>(this->val_)); }
185
186 private:
187 uint64_t val_;
188 };
189
190 extern "C" Expression*
191 script_exp_integer(uint64_t val)
192 {
193 return new Integer_expression(val);
194 }
195
196 // An expression whose value is the value of a symbol.
197
198 class Symbol_expression : public Expression
199 {
200 public:
201 Symbol_expression(const char* name, size_t length)
202 : name_(name, length)
203 { }
204
205 uint64_t
206 value(const Expression_eval_info*);
207
208 void
209 set_expr_sym_in_real_elf(Symbol_table* symtab) const
210 {
211 Symbol* sym = symtab->lookup(this->name_.c_str());
212 if (sym != NULL)
213 sym->set_in_real_elf();
214 }
215
216 void
217 print(FILE* f) const
218 { fprintf(f, "%s", this->name_.c_str()); }
219
220 private:
221 std::string name_;
222 };
223
224 uint64_t
225 Symbol_expression::value(const Expression_eval_info* eei)
226 {
227 Symbol* sym = eei->symtab->lookup(this->name_.c_str());
228 if (sym == NULL || !sym->is_defined())
229 {
230 gold_error(_("undefined symbol '%s' referenced in expression"),
231 this->name_.c_str());
232 return 0;
233 }
234
235 if (eei->result_section_pointer != NULL)
236 *eei->result_section_pointer = sym->output_section();
237 if (eei->type_pointer != NULL)
238 *eei->type_pointer = sym->type();
239 if (eei->vis_pointer != NULL)
240 *eei->vis_pointer = sym->visibility();
241 if (eei->nonvis_pointer != NULL)
242 *eei->nonvis_pointer = sym->nonvis();
243
244 if (parameters->target().get_size() == 32)
245 return eei->symtab->get_sized_symbol<32>(sym)->value();
246 else if (parameters->target().get_size() == 64)
247 return eei->symtab->get_sized_symbol<64>(sym)->value();
248 else
249 gold_unreachable();
250 }
251
252 // An expression whose value is the value of the special symbol ".".
253 // This is only valid within a SECTIONS clause.
254
255 class Dot_expression : public Expression
256 {
257 public:
258 Dot_expression()
259 { }
260
261 uint64_t
262 value(const Expression_eval_info*);
263
264 void
265 print(FILE* f) const
266 { fprintf(f, "."); }
267 };
268
269 uint64_t
270 Dot_expression::value(const Expression_eval_info* eei)
271 {
272 if (!eei->is_dot_available)
273 {
274 gold_error(_("invalid reference to dot symbol outside of "
275 "SECTIONS clause"));
276 return 0;
277 }
278 if (eei->result_section_pointer != NULL)
279 *eei->result_section_pointer = eei->dot_section;
280 return eei->dot_value;
281 }
282
283 // A string. This is either the name of a symbol, or ".".
284
285 extern "C" Expression*
286 script_exp_string(const char* name, size_t length)
287 {
288 if (length == 1 && name[0] == '.')
289 return new Dot_expression();
290 else
291 return new Symbol_expression(name, length);
292 }
293
294 // A unary expression.
295
296 class Unary_expression : public Expression
297 {
298 public:
299 Unary_expression(Expression* arg)
300 : arg_(arg)
301 { }
302
303 ~Unary_expression()
304 { delete this->arg_; }
305
306 protected:
307 uint64_t
308 arg_value(const Expression_eval_info* eei,
309 Output_section** arg_section_pointer) const
310 {
311 return this->arg_->eval_maybe_dot(eei->symtab, eei->layout,
312 eei->check_assertions,
313 eei->is_dot_available,
314 eei->dot_value,
315 eei->dot_section,
316 arg_section_pointer,
317 eei->result_alignment_pointer,
318 NULL,
319 NULL,
320 NULL,
321 false,
322 eei->is_valid_pointer);
323 }
324
325 void
326 arg_print(FILE* f) const
327 { this->arg_->print(f); }
328
329 void
330 set_expr_sym_in_real_elf(Symbol_table* symtab) const
331 { return this->arg_->set_expr_sym_in_real_elf(symtab); }
332
333 private:
334 Expression* arg_;
335 };
336
337 // Handle unary operators. We use a preprocessor macro as a hack to
338 // capture the C operator.
339
340 #define UNARY_EXPRESSION(NAME, OPERATOR) \
341 class Unary_ ## NAME : public Unary_expression \
342 { \
343 public: \
344 Unary_ ## NAME(Expression* arg) \
345 : Unary_expression(arg) \
346 { } \
347 \
348 uint64_t \
349 value(const Expression_eval_info* eei) \
350 { \
351 Output_section* arg_section; \
352 uint64_t ret = OPERATOR this->arg_value(eei, &arg_section); \
353 if (arg_section != NULL && parameters->options().relocatable()) \
354 gold_warning(_("unary " #NAME " applied to section " \
355 "relative value")); \
356 return ret; \
357 } \
358 \
359 void \
360 print(FILE* f) const \
361 { \
362 fprintf(f, "(%s ", #OPERATOR); \
363 this->arg_print(f); \
364 fprintf(f, ")"); \
365 } \
366 }; \
367 \
368 extern "C" Expression* \
369 script_exp_unary_ ## NAME(Expression* arg) \
370 { \
371 return new Unary_ ## NAME(arg); \
372 }
373
374 UNARY_EXPRESSION(minus, -)
375 UNARY_EXPRESSION(logical_not, !)
376 UNARY_EXPRESSION(bitwise_not, ~)
377
378 // A binary expression.
379
380 class Binary_expression : public Expression
381 {
382 public:
383 Binary_expression(Expression* left, Expression* right)
384 : left_(left), right_(right)
385 { }
386
387 ~Binary_expression()
388 {
389 delete this->left_;
390 delete this->right_;
391 }
392
393 protected:
394 uint64_t
395 left_value(const Expression_eval_info* eei,
396 Output_section** section_pointer,
397 uint64_t* alignment_pointer) const
398 {
399 return this->left_->eval_maybe_dot(eei->symtab, eei->layout,
400 eei->check_assertions,
401 eei->is_dot_available,
402 eei->dot_value,
403 eei->dot_section,
404 section_pointer,
405 alignment_pointer,
406 NULL,
407 NULL,
408 NULL,
409 false,
410 eei->is_valid_pointer);
411 }
412
413 uint64_t
414 right_value(const Expression_eval_info* eei,
415 Output_section** section_pointer,
416 uint64_t* alignment_pointer) const
417 {
418 return this->right_->eval_maybe_dot(eei->symtab, eei->layout,
419 eei->check_assertions,
420 eei->is_dot_available,
421 eei->dot_value,
422 eei->dot_section,
423 section_pointer,
424 alignment_pointer,
425 NULL,
426 NULL,
427 NULL,
428 false,
429 eei->is_valid_pointer);
430 }
431
432 void
433 left_print(FILE* f) const
434 { this->left_->print(f); }
435
436 void
437 right_print(FILE* f) const
438 { this->right_->print(f); }
439
440 // This is a call to function FUNCTION_NAME. Print it. This is for
441 // debugging.
442 void
443 print_function(FILE* f, const char* function_name) const
444 {
445 fprintf(f, "%s(", function_name);
446 this->left_print(f);
447 fprintf(f, ", ");
448 this->right_print(f);
449 fprintf(f, ")");
450 }
451
452 void
453 set_expr_sym_in_real_elf(Symbol_table* symtab) const
454 {
455 this->left_->set_expr_sym_in_real_elf(symtab);
456 this->right_->set_expr_sym_in_real_elf(symtab);
457 }
458
459 private:
460 Expression* left_;
461 Expression* right_;
462 };
463
464 // Handle binary operators. We use a preprocessor macro as a hack to
465 // capture the C operator. KEEP_LEFT means that if the left operand
466 // is section relative and the right operand is not, the result uses
467 // the same section as the left operand. KEEP_RIGHT is the same with
468 // left and right swapped. IS_DIV means that we need to give an error
469 // if the right operand is zero. WARN means that we should warn if
470 // used on section relative values in a relocatable link. We always
471 // warn if used on values in different sections in a relocatable link.
472
473 #define BINARY_EXPRESSION(NAME, OPERATOR, KEEP_LEFT, KEEP_RIGHT, IS_DIV, WARN) \
474 class Binary_ ## NAME : public Binary_expression \
475 { \
476 public: \
477 Binary_ ## NAME(Expression* left, Expression* right) \
478 : Binary_expression(left, right) \
479 { } \
480 \
481 uint64_t \
482 value(const Expression_eval_info* eei) \
483 { \
484 Output_section* left_section; \
485 uint64_t left_alignment = 0; \
486 uint64_t left = this->left_value(eei, &left_section, \
487 &left_alignment); \
488 Output_section* right_section; \
489 uint64_t right_alignment = 0; \
490 uint64_t right = this->right_value(eei, &right_section, \
491 &right_alignment); \
492 if (KEEP_RIGHT && left_section == NULL && right_section != NULL) \
493 { \
494 if (eei->result_section_pointer != NULL) \
495 *eei->result_section_pointer = right_section; \
496 if (eei->result_alignment_pointer != NULL \
497 && right_alignment > *eei->result_alignment_pointer) \
498 *eei->result_alignment_pointer = right_alignment; \
499 } \
500 else if (KEEP_LEFT \
501 && left_section != NULL \
502 && right_section == NULL) \
503 { \
504 if (eei->result_section_pointer != NULL) \
505 *eei->result_section_pointer = left_section; \
506 if (eei->result_alignment_pointer != NULL \
507 && left_alignment > *eei->result_alignment_pointer) \
508 *eei->result_alignment_pointer = left_alignment; \
509 } \
510 else if ((WARN || left_section != right_section) \
511 && (left_section != NULL || right_section != NULL) \
512 && parameters->options().relocatable()) \
513 gold_warning(_("binary " #NAME " applied to section " \
514 "relative value")); \
515 if (IS_DIV && right == 0) \
516 { \
517 gold_error(_(#NAME " by zero")); \
518 return 0; \
519 } \
520 return left OPERATOR right; \
521 } \
522 \
523 void \
524 print(FILE* f) const \
525 { \
526 fprintf(f, "("); \
527 this->left_print(f); \
528 fprintf(f, " %s ", #OPERATOR); \
529 this->right_print(f); \
530 fprintf(f, ")"); \
531 } \
532 }; \
533 \
534 extern "C" Expression* \
535 script_exp_binary_ ## NAME(Expression* left, Expression* right) \
536 { \
537 return new Binary_ ## NAME(left, right); \
538 }
539
540 BINARY_EXPRESSION(mult, *, false, false, false, true)
541 BINARY_EXPRESSION(div, /, false, false, true, true)
542 BINARY_EXPRESSION(mod, %, false, false, true, true)
543 BINARY_EXPRESSION(add, +, true, true, false, true)
544 BINARY_EXPRESSION(sub, -, true, false, false, false)
545 BINARY_EXPRESSION(lshift, <<, false, false, false, true)
546 BINARY_EXPRESSION(rshift, >>, false, false, false, true)
547 BINARY_EXPRESSION(eq, ==, false, false, false, false)
548 BINARY_EXPRESSION(ne, !=, false, false, false, false)
549 BINARY_EXPRESSION(le, <=, false, false, false, false)
550 BINARY_EXPRESSION(ge, >=, false, false, false, false)
551 BINARY_EXPRESSION(lt, <, false, false, false, false)
552 BINARY_EXPRESSION(gt, >, false, false, false, false)
553 BINARY_EXPRESSION(bitwise_and, &, true, true, false, true)
554 BINARY_EXPRESSION(bitwise_xor, ^, true, true, false, true)
555 BINARY_EXPRESSION(bitwise_or, |, true, true, false, true)
556 BINARY_EXPRESSION(logical_and, &&, false, false, false, true)
557 BINARY_EXPRESSION(logical_or, ||, false, false, false, true)
558
559 // A trinary expression.
560
561 class Trinary_expression : public Expression
562 {
563 public:
564 Trinary_expression(Expression* arg1, Expression* arg2, Expression* arg3)
565 : arg1_(arg1), arg2_(arg2), arg3_(arg3)
566 { }
567
568 ~Trinary_expression()
569 {
570 delete this->arg1_;
571 delete this->arg2_;
572 delete this->arg3_;
573 }
574
575 protected:
576 uint64_t
577 arg1_value(const Expression_eval_info* eei,
578 Output_section** section_pointer) const
579 {
580 return this->arg1_->eval_maybe_dot(eei->symtab, eei->layout,
581 eei->check_assertions,
582 eei->is_dot_available,
583 eei->dot_value,
584 eei->dot_section,
585 section_pointer,
586 NULL,
587 NULL,
588 NULL,
589 NULL,
590 false,
591 eei->is_valid_pointer);
592 }
593
594 uint64_t
595 arg2_value(const Expression_eval_info* eei,
596 Output_section** section_pointer,
597 uint64_t* alignment_pointer) const
598 {
599 return this->arg2_->eval_maybe_dot(eei->symtab, eei->layout,
600 eei->check_assertions,
601 eei->is_dot_available,
602 eei->dot_value,
603 eei->dot_section,
604 section_pointer,
605 alignment_pointer,
606 NULL,
607 NULL,
608 NULL,
609 false,
610 eei->is_valid_pointer);
611 }
612
613 uint64_t
614 arg3_value(const Expression_eval_info* eei,
615 Output_section** section_pointer,
616 uint64_t* alignment_pointer) const
617 {
618 return this->arg3_->eval_maybe_dot(eei->symtab, eei->layout,
619 eei->check_assertions,
620 eei->is_dot_available,
621 eei->dot_value,
622 eei->dot_section,
623 section_pointer,
624 alignment_pointer,
625 NULL,
626 NULL,
627 NULL,
628 false,
629 eei->is_valid_pointer);
630 }
631
632 void
633 arg1_print(FILE* f) const
634 { this->arg1_->print(f); }
635
636 void
637 arg2_print(FILE* f) const
638 { this->arg2_->print(f); }
639
640 void
641 arg3_print(FILE* f) const
642 { this->arg3_->print(f); }
643
644 void
645 set_expr_sym_in_real_elf(Symbol_table* symtab) const
646 {
647 this->arg1_->set_expr_sym_in_real_elf(symtab);
648 this->arg2_->set_expr_sym_in_real_elf(symtab);
649 this->arg3_->set_expr_sym_in_real_elf(symtab);
650 }
651
652 private:
653 Expression* arg1_;
654 Expression* arg2_;
655 Expression* arg3_;
656 };
657
658 // The conditional operator.
659
660 class Trinary_cond : public Trinary_expression
661 {
662 public:
663 Trinary_cond(Expression* arg1, Expression* arg2, Expression* arg3)
664 : Trinary_expression(arg1, arg2, arg3)
665 { }
666
667 uint64_t
668 value(const Expression_eval_info* eei)
669 {
670 Output_section* arg1_section;
671 uint64_t arg1 = this->arg1_value(eei, &arg1_section);
672 return (arg1
673 ? this->arg2_value(eei, eei->result_section_pointer,
674 eei->result_alignment_pointer)
675 : this->arg3_value(eei, eei->result_section_pointer,
676 eei->result_alignment_pointer));
677 }
678
679 void
680 print(FILE* f) const
681 {
682 fprintf(f, "(");
683 this->arg1_print(f);
684 fprintf(f, " ? ");
685 this->arg2_print(f);
686 fprintf(f, " : ");
687 this->arg3_print(f);
688 fprintf(f, ")");
689 }
690 };
691
692 extern "C" Expression*
693 script_exp_trinary_cond(Expression* arg1, Expression* arg2, Expression* arg3)
694 {
695 return new Trinary_cond(arg1, arg2, arg3);
696 }
697
698 // Max function.
699
700 class Max_expression : public Binary_expression
701 {
702 public:
703 Max_expression(Expression* left, Expression* right)
704 : Binary_expression(left, right)
705 { }
706
707 uint64_t
708 value(const Expression_eval_info* eei)
709 {
710 Output_section* left_section;
711 uint64_t left_alignment;
712 uint64_t left = this->left_value(eei, &left_section, &left_alignment);
713 Output_section* right_section;
714 uint64_t right_alignment;
715 uint64_t right = this->right_value(eei, &right_section, &right_alignment);
716 if (left_section == right_section)
717 {
718 if (eei->result_section_pointer != NULL)
719 *eei->result_section_pointer = left_section;
720 }
721 else if ((left_section != NULL || right_section != NULL)
722 && parameters->options().relocatable())
723 gold_warning(_("max applied to section relative value"));
724 if (eei->result_alignment_pointer != NULL)
725 {
726 uint64_t ra = *eei->result_alignment_pointer;
727 if (left > right)
728 ra = std::max(ra, left_alignment);
729 else if (right > left)
730 ra = std::max(ra, right_alignment);
731 else
732 ra = std::max(ra, std::max(left_alignment, right_alignment));
733 *eei->result_alignment_pointer = ra;
734 }
735 return std::max(left, right);
736 }
737
738 void
739 print(FILE* f) const
740 { this->print_function(f, "MAX"); }
741 };
742
743 extern "C" Expression*
744 script_exp_function_max(Expression* left, Expression* right)
745 {
746 return new Max_expression(left, right);
747 }
748
749 // Min function.
750
751 class Min_expression : public Binary_expression
752 {
753 public:
754 Min_expression(Expression* left, Expression* right)
755 : Binary_expression(left, right)
756 { }
757
758 uint64_t
759 value(const Expression_eval_info* eei)
760 {
761 Output_section* left_section;
762 uint64_t left_alignment;
763 uint64_t left = this->left_value(eei, &left_section, &left_alignment);
764 Output_section* right_section;
765 uint64_t right_alignment;
766 uint64_t right = this->right_value(eei, &right_section, &right_alignment);
767 if (left_section == right_section)
768 {
769 if (eei->result_section_pointer != NULL)
770 *eei->result_section_pointer = left_section;
771 }
772 else if ((left_section != NULL || right_section != NULL)
773 && parameters->options().relocatable())
774 gold_warning(_("min applied to section relative value"));
775 if (eei->result_alignment_pointer != NULL)
776 {
777 uint64_t ra = *eei->result_alignment_pointer;
778 if (left < right)
779 ra = std::max(ra, left_alignment);
780 else if (right < left)
781 ra = std::max(ra, right_alignment);
782 else
783 ra = std::max(ra, std::max(left_alignment, right_alignment));
784 *eei->result_alignment_pointer = ra;
785 }
786 return std::min(left, right);
787 }
788
789 void
790 print(FILE* f) const
791 { this->print_function(f, "MIN"); }
792 };
793
794 extern "C" Expression*
795 script_exp_function_min(Expression* left, Expression* right)
796 {
797 return new Min_expression(left, right);
798 }
799
800 // Class Section_expression. This is a parent class used for
801 // functions which take the name of an output section.
802
803 class Section_expression : public Expression
804 {
805 public:
806 Section_expression(const char* section_name, size_t section_name_len)
807 : section_name_(section_name, section_name_len)
808 { }
809
810 uint64_t
811 value(const Expression_eval_info*);
812
813 void
814 print(FILE* f) const
815 { fprintf(f, "%s(%s)", this->function_name(), this->section_name_.c_str()); }
816
817 protected:
818 // The child class must implement this.
819 virtual uint64_t
820 value_from_output_section(const Expression_eval_info*,
821 Output_section*) = 0;
822
823 // The child class must implement this.
824 virtual uint64_t
825 value_from_script_output_section(uint64_t address, uint64_t load_address,
826 uint64_t addralign, uint64_t size) = 0;
827
828 // The child class must implement this.
829 virtual const char*
830 function_name() const = 0;
831
832 private:
833 std::string section_name_;
834 };
835
836 uint64_t
837 Section_expression::value(const Expression_eval_info* eei)
838 {
839 const char* section_name = this->section_name_.c_str();
840 Output_section* os = eei->layout->find_output_section(section_name);
841 if (os != NULL)
842 return this->value_from_output_section(eei, os);
843
844 uint64_t address;
845 uint64_t load_address;
846 uint64_t addralign;
847 uint64_t size;
848 const Script_options* ss = eei->layout->script_options();
849 if (ss->saw_sections_clause())
850 {
851 if (ss->script_sections()->get_output_section_info(section_name,
852 &address,
853 &load_address,
854 &addralign,
855 &size))
856 return this->value_from_script_output_section(address, load_address,
857 addralign, size);
858 }
859
860 gold_error("%s called on nonexistent output section '%s'",
861 this->function_name(), section_name);
862 return 0;
863 }
864
865 // ABSOLUTE function.
866
867 class Absolute_expression : public Unary_expression
868 {
869 public:
870 Absolute_expression(Expression* arg)
871 : Unary_expression(arg)
872 { }
873
874 uint64_t
875 value(const Expression_eval_info* eei)
876 {
877 uint64_t ret = this->arg_value(eei, NULL);
878 // Force the value to be absolute.
879 if (eei->result_section_pointer != NULL)
880 *eei->result_section_pointer = NULL;
881 return ret;
882 }
883
884 void
885 print(FILE* f) const
886 {
887 fprintf(f, "ABSOLUTE(");
888 this->arg_print(f);
889 fprintf(f, ")");
890 }
891 };
892
893 extern "C" Expression*
894 script_exp_function_absolute(Expression* arg)
895 {
896 return new Absolute_expression(arg);
897 }
898
899 // ALIGN function.
900
901 class Align_expression : public Binary_expression
902 {
903 public:
904 Align_expression(Expression* left, Expression* right)
905 : Binary_expression(left, right)
906 { }
907
908 uint64_t
909 value(const Expression_eval_info* eei)
910 {
911 Output_section* align_section;
912 uint64_t align = this->right_value(eei, &align_section, NULL);
913 if (align_section != NULL
914 && parameters->options().relocatable())
915 gold_warning(_("aligning to section relative value"));
916
917 if (eei->result_alignment_pointer != NULL
918 && align > *eei->result_alignment_pointer)
919 {
920 uint64_t a = align;
921 while ((a & (a - 1)) != 0)
922 a &= a - 1;
923 *eei->result_alignment_pointer = a;
924 }
925
926 uint64_t value = this->left_value(eei, eei->result_section_pointer, NULL);
927 if (align <= 1)
928 return value;
929 return ((value + align - 1) / align) * align;
930 }
931
932 void
933 print(FILE* f) const
934 { this->print_function(f, "ALIGN"); }
935 };
936
937 extern "C" Expression*
938 script_exp_function_align(Expression* left, Expression* right)
939 {
940 return new Align_expression(left, right);
941 }
942
943 // ASSERT function.
944
945 class Assert_expression : public Unary_expression
946 {
947 public:
948 Assert_expression(Expression* arg, const char* message, size_t length)
949 : Unary_expression(arg), message_(message, length)
950 { }
951
952 uint64_t
953 value(const Expression_eval_info* eei)
954 {
955 uint64_t value = this->arg_value(eei, eei->result_section_pointer);
956 if (!value && eei->check_assertions)
957 gold_error("%s", this->message_.c_str());
958 return value;
959 }
960
961 void
962 print(FILE* f) const
963 {
964 fprintf(f, "ASSERT(");
965 this->arg_print(f);
966 fprintf(f, ", %s)", this->message_.c_str());
967 }
968
969 private:
970 std::string message_;
971 };
972
973 extern "C" Expression*
974 script_exp_function_assert(Expression* expr, const char* message,
975 size_t length)
976 {
977 return new Assert_expression(expr, message, length);
978 }
979
980 // ADDR function.
981
982 class Addr_expression : public Section_expression
983 {
984 public:
985 Addr_expression(const char* section_name, size_t section_name_len)
986 : Section_expression(section_name, section_name_len)
987 { }
988
989 protected:
990 uint64_t
991 value_from_output_section(const Expression_eval_info* eei,
992 Output_section* os)
993 {
994 if (eei->result_section_pointer != NULL)
995 *eei->result_section_pointer = os;
996 if (os->is_address_valid())
997 return os->address();
998 *eei->is_valid_pointer = false;
999 return 0;
1000 }
1001
1002 uint64_t
1003 value_from_script_output_section(uint64_t address, uint64_t, uint64_t,
1004 uint64_t)
1005 { return address; }
1006
1007 const char*
1008 function_name() const
1009 { return "ADDR"; }
1010 };
1011
1012 extern "C" Expression*
1013 script_exp_function_addr(const char* section_name, size_t section_name_len)
1014 {
1015 return new Addr_expression(section_name, section_name_len);
1016 }
1017
1018 // ALIGNOF.
1019
1020 class Alignof_expression : public Section_expression
1021 {
1022 public:
1023 Alignof_expression(const char* section_name, size_t section_name_len)
1024 : Section_expression(section_name, section_name_len)
1025 { }
1026
1027 protected:
1028 uint64_t
1029 value_from_output_section(const Expression_eval_info*,
1030 Output_section* os)
1031 { return os->addralign(); }
1032
1033 uint64_t
1034 value_from_script_output_section(uint64_t, uint64_t, uint64_t addralign,
1035 uint64_t)
1036 { return addralign; }
1037
1038 const char*
1039 function_name() const
1040 { return "ALIGNOF"; }
1041 };
1042
1043 extern "C" Expression*
1044 script_exp_function_alignof(const char* section_name, size_t section_name_len)
1045 {
1046 return new Alignof_expression(section_name, section_name_len);
1047 }
1048
1049 // CONSTANT. It would be nice if we could simply evaluate this
1050 // immediately and return an Integer_expression, but unfortunately we
1051 // don't know the target.
1052
1053 class Constant_expression : public Expression
1054 {
1055 public:
1056 Constant_expression(const char* name, size_t length);
1057
1058 uint64_t
1059 value(const Expression_eval_info*);
1060
1061 void
1062 print(FILE* f) const;
1063
1064 private:
1065 enum Constant_function
1066 {
1067 CONSTANT_MAXPAGESIZE,
1068 CONSTANT_COMMONPAGESIZE
1069 };
1070
1071 Constant_function function_;
1072 };
1073
1074 Constant_expression::Constant_expression(const char* name, size_t length)
1075 {
1076 if (length == 11 && strncmp(name, "MAXPAGESIZE", length) == 0)
1077 this->function_ = CONSTANT_MAXPAGESIZE;
1078 else if (length == 14 && strncmp(name, "COMMONPAGESIZE", length) == 0)
1079 this->function_ = CONSTANT_COMMONPAGESIZE;
1080 else
1081 {
1082 std::string s(name, length);
1083 gold_error(_("unknown constant %s"), s.c_str());
1084 this->function_ = CONSTANT_MAXPAGESIZE;
1085 }
1086 }
1087
1088 uint64_t
1089 Constant_expression::value(const Expression_eval_info*)
1090 {
1091 switch (this->function_)
1092 {
1093 case CONSTANT_MAXPAGESIZE:
1094 return parameters->target().abi_pagesize();
1095 case CONSTANT_COMMONPAGESIZE:
1096 return parameters->target().common_pagesize();
1097 default:
1098 gold_unreachable();
1099 }
1100 }
1101
1102 void
1103 Constant_expression::print(FILE* f) const
1104 {
1105 const char* name;
1106 switch (this->function_)
1107 {
1108 case CONSTANT_MAXPAGESIZE:
1109 name = "MAXPAGESIZE";
1110 break;
1111 case CONSTANT_COMMONPAGESIZE:
1112 name = "COMMONPAGESIZE";
1113 break;
1114 default:
1115 gold_unreachable();
1116 }
1117 fprintf(f, "CONSTANT(%s)", name);
1118 }
1119
1120 extern "C" Expression*
1121 script_exp_function_constant(const char* name, size_t length)
1122 {
1123 return new Constant_expression(name, length);
1124 }
1125
1126 // DATA_SEGMENT_ALIGN. FIXME: we don't implement this; we always fall
1127 // back to the general case.
1128
1129 extern "C" Expression*
1130 script_exp_function_data_segment_align(Expression* left, Expression*)
1131 {
1132 Expression* e1 = script_exp_function_align(script_exp_string(".", 1), left);
1133 Expression* e2 = script_exp_binary_sub(left, script_exp_integer(1));
1134 Expression* e3 = script_exp_binary_bitwise_and(script_exp_string(".", 1),
1135 e2);
1136 return script_exp_binary_add(e1, e3);
1137 }
1138
1139 // DATA_SEGMENT_RELRO. FIXME: This is not implemented.
1140
1141 extern "C" Expression*
1142 script_exp_function_data_segment_relro_end(Expression*, Expression* right)
1143 {
1144 return right;
1145 }
1146
1147 // DATA_SEGMENT_END. FIXME: This is not implemented.
1148
1149 extern "C" Expression*
1150 script_exp_function_data_segment_end(Expression* val)
1151 {
1152 return val;
1153 }
1154
1155 // DEFINED function.
1156
1157 class Defined_expression : public Expression
1158 {
1159 public:
1160 Defined_expression(const char* symbol_name, size_t symbol_name_len)
1161 : symbol_name_(symbol_name, symbol_name_len)
1162 { }
1163
1164 uint64_t
1165 value(const Expression_eval_info* eei)
1166 {
1167 Symbol* sym = eei->symtab->lookup(this->symbol_name_.c_str());
1168 return sym != NULL && sym->is_defined();
1169 }
1170
1171 void
1172 print(FILE* f) const
1173 { fprintf(f, "DEFINED(%s)", this->symbol_name_.c_str()); }
1174
1175 private:
1176 std::string symbol_name_;
1177 };
1178
1179 extern "C" Expression*
1180 script_exp_function_defined(const char* symbol_name, size_t symbol_name_len)
1181 {
1182 return new Defined_expression(symbol_name, symbol_name_len);
1183 }
1184
1185 // LOADADDR function
1186
1187 class Loadaddr_expression : public Section_expression
1188 {
1189 public:
1190 Loadaddr_expression(const char* section_name, size_t section_name_len)
1191 : Section_expression(section_name, section_name_len)
1192 { }
1193
1194 protected:
1195 uint64_t
1196 value_from_output_section(const Expression_eval_info* eei,
1197 Output_section* os)
1198 {
1199 if (os->has_load_address())
1200 return os->load_address();
1201 else
1202 {
1203 if (eei->result_section_pointer != NULL)
1204 *eei->result_section_pointer = os;
1205 return os->address();
1206 }
1207 }
1208
1209 uint64_t
1210 value_from_script_output_section(uint64_t, uint64_t load_address, uint64_t,
1211 uint64_t)
1212 { return load_address; }
1213
1214 const char*
1215 function_name() const
1216 { return "LOADADDR"; }
1217 };
1218
1219 extern "C" Expression*
1220 script_exp_function_loadaddr(const char* section_name, size_t section_name_len)
1221 {
1222 return new Loadaddr_expression(section_name, section_name_len);
1223 }
1224
1225 // SIZEOF function
1226
1227 class Sizeof_expression : public Section_expression
1228 {
1229 public:
1230 Sizeof_expression(const char* section_name, size_t section_name_len)
1231 : Section_expression(section_name, section_name_len)
1232 { }
1233
1234 protected:
1235 uint64_t
1236 value_from_output_section(const Expression_eval_info*,
1237 Output_section* os)
1238 {
1239 // We can not use data_size here, as the size of the section may
1240 // not have been finalized. Instead we get whatever the current
1241 // size is. This will work correctly for backward references in
1242 // linker scripts.
1243 return os->current_data_size();
1244 }
1245
1246 uint64_t
1247 value_from_script_output_section(uint64_t, uint64_t, uint64_t,
1248 uint64_t size)
1249 { return size; }
1250
1251 const char*
1252 function_name() const
1253 { return "SIZEOF"; }
1254 };
1255
1256 extern "C" Expression*
1257 script_exp_function_sizeof(const char* section_name, size_t section_name_len)
1258 {
1259 return new Sizeof_expression(section_name, section_name_len);
1260 }
1261
1262 // SIZEOF_HEADERS.
1263
1264 class Sizeof_headers_expression : public Expression
1265 {
1266 public:
1267 Sizeof_headers_expression()
1268 { }
1269
1270 uint64_t
1271 value(const Expression_eval_info*);
1272
1273 void
1274 print(FILE* f) const
1275 { fprintf(f, "SIZEOF_HEADERS"); }
1276 };
1277
1278 uint64_t
1279 Sizeof_headers_expression::value(const Expression_eval_info* eei)
1280 {
1281 unsigned int ehdr_size;
1282 unsigned int phdr_size;
1283 if (parameters->target().get_size() == 32)
1284 {
1285 ehdr_size = elfcpp::Elf_sizes<32>::ehdr_size;
1286 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
1287 }
1288 else if (parameters->target().get_size() == 64)
1289 {
1290 ehdr_size = elfcpp::Elf_sizes<64>::ehdr_size;
1291 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
1292 }
1293 else
1294 gold_unreachable();
1295
1296 return ehdr_size + phdr_size * eei->layout->expected_segment_count();
1297 }
1298
1299 extern "C" Expression*
1300 script_exp_function_sizeof_headers()
1301 {
1302 return new Sizeof_headers_expression();
1303 }
1304
1305 // SEGMENT_START.
1306
1307 class Segment_start_expression : public Unary_expression
1308 {
1309 public:
1310 Segment_start_expression(const char* segment_name, size_t segment_name_len,
1311 Expression* default_value)
1312 : Unary_expression(default_value),
1313 segment_name_(segment_name, segment_name_len)
1314 { }
1315
1316 uint64_t
1317 value(const Expression_eval_info*);
1318
1319 void
1320 print(FILE* f) const
1321 {
1322 fprintf(f, "SEGMENT_START(\"%s\", ", this->segment_name_.c_str());
1323 this->arg_print(f);
1324 fprintf(f, ")");
1325 }
1326
1327 private:
1328 std::string segment_name_;
1329 };
1330
1331 uint64_t
1332 Segment_start_expression::value(const Expression_eval_info* eei)
1333 {
1334 // Check for command line overrides.
1335 if (parameters->options().user_set_Ttext()
1336 && this->segment_name_ == ".text")
1337 return parameters->options().Ttext();
1338 else if (parameters->options().user_set_Tdata()
1339 && this->segment_name_ == ".data")
1340 return parameters->options().Tdata();
1341 else if (parameters->options().user_set_Tbss()
1342 && this->segment_name_ == ".bss")
1343 return parameters->options().Tbss();
1344 else
1345 {
1346 uint64_t ret = this->arg_value(eei, NULL);
1347 // Force the value to be absolute.
1348 if (eei->result_section_pointer != NULL)
1349 *eei->result_section_pointer = NULL;
1350 return ret;
1351 }
1352 }
1353
1354 extern "C" Expression*
1355 script_exp_function_segment_start(const char* segment_name,
1356 size_t segment_name_len,
1357 Expression* default_value)
1358 {
1359 return new Segment_start_expression(segment_name, segment_name_len,
1360 default_value);
1361 }
1362
1363 } // End namespace gold.
This page took 0.056318 seconds and 4 git commands to generate.