gdb: add target_ops::supports_displaced_step
[deliverable/binutils-gdb.git] / gold / layout.cc
1 // layout.cc -- lay out output file sections for gold
2
3 // Copyright (C) 2006-2020 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cerrno>
26 #include <cstring>
27 #include <algorithm>
28 #include <iostream>
29 #include <fstream>
30 #include <utility>
31 #include <fcntl.h>
32 #include <fnmatch.h>
33 #include <unistd.h>
34 #include "libiberty.h"
35 #include "md5.h"
36 #include "sha1.h"
37 #ifdef __MINGW32__
38 #include <windows.h>
39 #include <rpcdce.h>
40 #endif
41
42 #include "parameters.h"
43 #include "options.h"
44 #include "mapfile.h"
45 #include "script.h"
46 #include "script-sections.h"
47 #include "output.h"
48 #include "symtab.h"
49 #include "dynobj.h"
50 #include "ehframe.h"
51 #include "gdb-index.h"
52 #include "compressed_output.h"
53 #include "reduced_debug_output.h"
54 #include "object.h"
55 #include "reloc.h"
56 #include "descriptors.h"
57 #include "plugin.h"
58 #include "incremental.h"
59 #include "layout.h"
60
61 namespace gold
62 {
63
64 // Class Free_list.
65
66 // The total number of free lists used.
67 unsigned int Free_list::num_lists = 0;
68 // The total number of free list nodes used.
69 unsigned int Free_list::num_nodes = 0;
70 // The total number of calls to Free_list::remove.
71 unsigned int Free_list::num_removes = 0;
72 // The total number of nodes visited during calls to Free_list::remove.
73 unsigned int Free_list::num_remove_visits = 0;
74 // The total number of calls to Free_list::allocate.
75 unsigned int Free_list::num_allocates = 0;
76 // The total number of nodes visited during calls to Free_list::allocate.
77 unsigned int Free_list::num_allocate_visits = 0;
78
79 // Initialize the free list. Creates a single free list node that
80 // describes the entire region of length LEN. If EXTEND is true,
81 // allocate() is allowed to extend the region beyond its initial
82 // length.
83
84 void
85 Free_list::init(off_t len, bool extend)
86 {
87 this->list_.push_front(Free_list_node(0, len));
88 this->last_remove_ = this->list_.begin();
89 this->extend_ = extend;
90 this->length_ = len;
91 ++Free_list::num_lists;
92 ++Free_list::num_nodes;
93 }
94
95 // Remove a chunk from the free list. Because we start with a single
96 // node that covers the entire section, and remove chunks from it one
97 // at a time, we do not need to coalesce chunks or handle cases that
98 // span more than one free node. We expect to remove chunks from the
99 // free list in order, and we expect to have only a few chunks of free
100 // space left (corresponding to files that have changed since the last
101 // incremental link), so a simple linear list should provide sufficient
102 // performance.
103
104 void
105 Free_list::remove(off_t start, off_t end)
106 {
107 if (start == end)
108 return;
109 gold_assert(start < end);
110
111 ++Free_list::num_removes;
112
113 Iterator p = this->last_remove_;
114 if (p->start_ > start)
115 p = this->list_.begin();
116
117 for (; p != this->list_.end(); ++p)
118 {
119 ++Free_list::num_remove_visits;
120 // Find a node that wholly contains the indicated region.
121 if (p->start_ <= start && p->end_ >= end)
122 {
123 // Case 1: the indicated region spans the whole node.
124 // Add some fuzz to avoid creating tiny free chunks.
125 if (p->start_ + 3 >= start && p->end_ <= end + 3)
126 p = this->list_.erase(p);
127 // Case 2: remove a chunk from the start of the node.
128 else if (p->start_ + 3 >= start)
129 p->start_ = end;
130 // Case 3: remove a chunk from the end of the node.
131 else if (p->end_ <= end + 3)
132 p->end_ = start;
133 // Case 4: remove a chunk from the middle, and split
134 // the node into two.
135 else
136 {
137 Free_list_node newnode(p->start_, start);
138 p->start_ = end;
139 this->list_.insert(p, newnode);
140 ++Free_list::num_nodes;
141 }
142 this->last_remove_ = p;
143 return;
144 }
145 }
146
147 // Did not find a node containing the given chunk. This could happen
148 // because a small chunk was already removed due to the fuzz.
149 gold_debug(DEBUG_INCREMENTAL,
150 "Free_list::remove(%d,%d) not found",
151 static_cast<int>(start), static_cast<int>(end));
152 }
153
154 // Allocate a chunk of size LEN from the free list. Returns -1ULL
155 // if a sufficiently large chunk of free space is not found.
156 // We use a simple first-fit algorithm.
157
158 off_t
159 Free_list::allocate(off_t len, uint64_t align, off_t minoff)
160 {
161 gold_debug(DEBUG_INCREMENTAL,
162 "Free_list::allocate(%08lx, %d, %08lx)",
163 static_cast<long>(len), static_cast<int>(align),
164 static_cast<long>(minoff));
165 if (len == 0)
166 return align_address(minoff, align);
167
168 ++Free_list::num_allocates;
169
170 // We usually want to drop free chunks smaller than 4 bytes.
171 // If we need to guarantee a minimum hole size, though, we need
172 // to keep track of all free chunks.
173 const int fuzz = this->min_hole_ > 0 ? 0 : 3;
174
175 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
176 {
177 ++Free_list::num_allocate_visits;
178 off_t start = p->start_ > minoff ? p->start_ : minoff;
179 start = align_address(start, align);
180 off_t end = start + len;
181 if (end > p->end_ && p->end_ == this->length_ && this->extend_)
182 {
183 this->length_ = end;
184 p->end_ = end;
185 }
186 if (end == p->end_ || (end <= p->end_ - this->min_hole_))
187 {
188 if (p->start_ + fuzz >= start && p->end_ <= end + fuzz)
189 this->list_.erase(p);
190 else if (p->start_ + fuzz >= start)
191 p->start_ = end;
192 else if (p->end_ <= end + fuzz)
193 p->end_ = start;
194 else
195 {
196 Free_list_node newnode(p->start_, start);
197 p->start_ = end;
198 this->list_.insert(p, newnode);
199 ++Free_list::num_nodes;
200 }
201 return start;
202 }
203 }
204 if (this->extend_)
205 {
206 off_t start = align_address(this->length_, align);
207 this->length_ = start + len;
208 return start;
209 }
210 return -1;
211 }
212
213 // Dump the free list (for debugging).
214 void
215 Free_list::dump()
216 {
217 gold_info("Free list:\n start end length\n");
218 for (Iterator p = this->list_.begin(); p != this->list_.end(); ++p)
219 gold_info(" %08lx %08lx %08lx", static_cast<long>(p->start_),
220 static_cast<long>(p->end_),
221 static_cast<long>(p->end_ - p->start_));
222 }
223
224 // Print the statistics for the free lists.
225 void
226 Free_list::print_stats()
227 {
228 fprintf(stderr, _("%s: total free lists: %u\n"),
229 program_name, Free_list::num_lists);
230 fprintf(stderr, _("%s: total free list nodes: %u\n"),
231 program_name, Free_list::num_nodes);
232 fprintf(stderr, _("%s: calls to Free_list::remove: %u\n"),
233 program_name, Free_list::num_removes);
234 fprintf(stderr, _("%s: nodes visited: %u\n"),
235 program_name, Free_list::num_remove_visits);
236 fprintf(stderr, _("%s: calls to Free_list::allocate: %u\n"),
237 program_name, Free_list::num_allocates);
238 fprintf(stderr, _("%s: nodes visited: %u\n"),
239 program_name, Free_list::num_allocate_visits);
240 }
241
242 // A Hash_task computes the MD5 checksum of an array of char.
243
244 class Hash_task : public Task
245 {
246 public:
247 Hash_task(Output_file* of,
248 size_t offset,
249 size_t size,
250 unsigned char* dst,
251 Task_token* final_blocker)
252 : of_(of), offset_(offset), size_(size), dst_(dst),
253 final_blocker_(final_blocker)
254 { }
255
256 void
257 run(Workqueue*)
258 {
259 const unsigned char* iv =
260 this->of_->get_input_view(this->offset_, this->size_);
261 md5_buffer(reinterpret_cast<const char*>(iv), this->size_, this->dst_);
262 this->of_->free_input_view(this->offset_, this->size_, iv);
263 }
264
265 Task_token*
266 is_runnable()
267 { return NULL; }
268
269 // Unblock FINAL_BLOCKER_ when done.
270 void
271 locks(Task_locker* tl)
272 { tl->add(this, this->final_blocker_); }
273
274 std::string
275 get_name() const
276 { return "Hash_task"; }
277
278 private:
279 Output_file* of_;
280 const size_t offset_;
281 const size_t size_;
282 unsigned char* const dst_;
283 Task_token* const final_blocker_;
284 };
285
286 // Layout::Relaxation_debug_check methods.
287
288 // Check that sections and special data are in reset states.
289 // We do not save states for Output_sections and special Output_data.
290 // So we check that they have not assigned any addresses or offsets.
291 // clean_up_after_relaxation simply resets their addresses and offsets.
292 void
293 Layout::Relaxation_debug_check::check_output_data_for_reset_values(
294 const Layout::Section_list& sections,
295 const Layout::Data_list& special_outputs,
296 const Layout::Data_list& relax_outputs)
297 {
298 for(Layout::Section_list::const_iterator p = sections.begin();
299 p != sections.end();
300 ++p)
301 gold_assert((*p)->address_and_file_offset_have_reset_values());
302
303 for(Layout::Data_list::const_iterator p = special_outputs.begin();
304 p != special_outputs.end();
305 ++p)
306 gold_assert((*p)->address_and_file_offset_have_reset_values());
307
308 gold_assert(relax_outputs.empty());
309 }
310
311 // Save information of SECTIONS for checking later.
312
313 void
314 Layout::Relaxation_debug_check::read_sections(
315 const Layout::Section_list& sections)
316 {
317 for(Layout::Section_list::const_iterator p = sections.begin();
318 p != sections.end();
319 ++p)
320 {
321 Output_section* os = *p;
322 Section_info info;
323 info.output_section = os;
324 info.address = os->is_address_valid() ? os->address() : 0;
325 info.data_size = os->is_data_size_valid() ? os->data_size() : -1;
326 info.offset = os->is_offset_valid()? os->offset() : -1 ;
327 this->section_infos_.push_back(info);
328 }
329 }
330
331 // Verify SECTIONS using previously recorded information.
332
333 void
334 Layout::Relaxation_debug_check::verify_sections(
335 const Layout::Section_list& sections)
336 {
337 size_t i = 0;
338 for(Layout::Section_list::const_iterator p = sections.begin();
339 p != sections.end();
340 ++p, ++i)
341 {
342 Output_section* os = *p;
343 uint64_t address = os->is_address_valid() ? os->address() : 0;
344 off_t data_size = os->is_data_size_valid() ? os->data_size() : -1;
345 off_t offset = os->is_offset_valid()? os->offset() : -1 ;
346
347 if (i >= this->section_infos_.size())
348 {
349 gold_fatal("Section_info of %s missing.\n", os->name());
350 }
351 const Section_info& info = this->section_infos_[i];
352 if (os != info.output_section)
353 gold_fatal("Section order changed. Expecting %s but see %s\n",
354 info.output_section->name(), os->name());
355 if (address != info.address
356 || data_size != info.data_size
357 || offset != info.offset)
358 gold_fatal("Section %s changed.\n", os->name());
359 }
360 }
361
362 // Layout_task_runner methods.
363
364 // Lay out the sections. This is called after all the input objects
365 // have been read.
366
367 void
368 Layout_task_runner::run(Workqueue* workqueue, const Task* task)
369 {
370 // See if any of the input definitions violate the One Definition Rule.
371 // TODO: if this is too slow, do this as a task, rather than inline.
372 this->symtab_->detect_odr_violations(task, this->options_.output_file_name());
373
374 Layout* layout = this->layout_;
375 off_t file_size = layout->finalize(this->input_objects_,
376 this->symtab_,
377 this->target_,
378 task);
379
380 // Now we know the final size of the output file and we know where
381 // each piece of information goes.
382
383 if (this->mapfile_ != NULL)
384 {
385 this->mapfile_->print_discarded_sections(this->input_objects_);
386 layout->print_to_mapfile(this->mapfile_);
387 }
388
389 Output_file* of;
390 if (layout->incremental_base() == NULL)
391 {
392 of = new Output_file(parameters->options().output_file_name());
393 if (this->options_.oformat_enum() != General_options::OBJECT_FORMAT_ELF)
394 of->set_is_temporary();
395 of->open(file_size);
396 }
397 else
398 {
399 of = layout->incremental_base()->output_file();
400
401 // Apply the incremental relocations for symbols whose values
402 // have changed. We do this before we resize the file and start
403 // writing anything else to it, so that we can read the old
404 // incremental information from the file before (possibly)
405 // overwriting it.
406 if (parameters->incremental_update())
407 layout->incremental_base()->apply_incremental_relocs(this->symtab_,
408 this->layout_,
409 of);
410
411 of->resize(file_size);
412 }
413
414 // Queue up the final set of tasks.
415 gold::queue_final_tasks(this->options_, this->input_objects_,
416 this->symtab_, layout, workqueue, of);
417 }
418
419 // Layout methods.
420
421 Layout::Layout(int number_of_input_files, Script_options* script_options)
422 : number_of_input_files_(number_of_input_files),
423 script_options_(script_options),
424 namepool_(),
425 sympool_(),
426 dynpool_(),
427 signatures_(),
428 section_name_map_(),
429 segment_list_(),
430 section_list_(),
431 unattached_section_list_(),
432 special_output_list_(),
433 relax_output_list_(),
434 section_headers_(NULL),
435 tls_segment_(NULL),
436 relro_segment_(NULL),
437 interp_segment_(NULL),
438 increase_relro_(0),
439 symtab_section_(NULL),
440 symtab_xindex_(NULL),
441 dynsym_section_(NULL),
442 dynsym_xindex_(NULL),
443 dynamic_section_(NULL),
444 dynamic_symbol_(NULL),
445 dynamic_data_(NULL),
446 eh_frame_section_(NULL),
447 eh_frame_data_(NULL),
448 added_eh_frame_data_(false),
449 eh_frame_hdr_section_(NULL),
450 gdb_index_data_(NULL),
451 build_id_note_(NULL),
452 debug_abbrev_(NULL),
453 debug_info_(NULL),
454 group_signatures_(),
455 output_file_size_(-1),
456 have_added_input_section_(false),
457 sections_are_attached_(false),
458 input_requires_executable_stack_(false),
459 input_with_gnu_stack_note_(false),
460 input_without_gnu_stack_note_(false),
461 has_static_tls_(false),
462 any_postprocessing_sections_(false),
463 resized_signatures_(false),
464 have_stabstr_section_(false),
465 section_ordering_specified_(false),
466 unique_segment_for_sections_specified_(false),
467 incremental_inputs_(NULL),
468 record_output_section_data_from_script_(false),
469 lto_slim_object_(false),
470 script_output_section_data_list_(),
471 segment_states_(NULL),
472 relaxation_debug_check_(NULL),
473 section_order_map_(),
474 section_segment_map_(),
475 input_section_position_(),
476 input_section_glob_(),
477 incremental_base_(NULL),
478 free_list_(),
479 gnu_properties_()
480 {
481 // Make space for more than enough segments for a typical file.
482 // This is just for efficiency--it's OK if we wind up needing more.
483 this->segment_list_.reserve(12);
484
485 // We expect two unattached Output_data objects: the file header and
486 // the segment headers.
487 this->special_output_list_.reserve(2);
488
489 // Initialize structure needed for an incremental build.
490 if (parameters->incremental())
491 this->incremental_inputs_ = new Incremental_inputs;
492
493 // The section name pool is worth optimizing in all cases, because
494 // it is small, but there are often overlaps due to .rel sections.
495 this->namepool_.set_optimize();
496 }
497
498 // For incremental links, record the base file to be modified.
499
500 void
501 Layout::set_incremental_base(Incremental_binary* base)
502 {
503 this->incremental_base_ = base;
504 this->free_list_.init(base->output_file()->filesize(), true);
505 }
506
507 // Hash a key we use to look up an output section mapping.
508
509 size_t
510 Layout::Hash_key::operator()(const Layout::Key& k) const
511 {
512 return k.first + k.second.first + k.second.second;
513 }
514
515 // These are the debug sections that are actually used by gdb.
516 // Currently, we've checked versions of gdb up to and including 7.4.
517 // We only check the part of the name that follows ".debug_" or
518 // ".zdebug_".
519
520 static const char* gdb_sections[] =
521 {
522 "abbrev",
523 "addr", // Fission extension
524 // "aranges", // not used by gdb as of 7.4
525 "frame",
526 "gdb_scripts",
527 "info",
528 "types",
529 "line",
530 "loc",
531 "macinfo",
532 "macro",
533 // "pubnames", // not used by gdb as of 7.4
534 // "pubtypes", // not used by gdb as of 7.4
535 // "gnu_pubnames", // Fission extension
536 // "gnu_pubtypes", // Fission extension
537 "ranges",
538 "str",
539 "str_offsets",
540 };
541
542 // This is the minimum set of sections needed for line numbers.
543
544 static const char* lines_only_debug_sections[] =
545 {
546 "abbrev",
547 // "addr", // Fission extension
548 // "aranges", // not used by gdb as of 7.4
549 // "frame",
550 // "gdb_scripts",
551 "info",
552 // "types",
553 "line",
554 // "loc",
555 // "macinfo",
556 // "macro",
557 // "pubnames", // not used by gdb as of 7.4
558 // "pubtypes", // not used by gdb as of 7.4
559 // "gnu_pubnames", // Fission extension
560 // "gnu_pubtypes", // Fission extension
561 // "ranges",
562 "str",
563 "str_offsets", // Fission extension
564 };
565
566 // These sections are the DWARF fast-lookup tables, and are not needed
567 // when building a .gdb_index section.
568
569 static const char* gdb_fast_lookup_sections[] =
570 {
571 "aranges",
572 "pubnames",
573 "gnu_pubnames",
574 "pubtypes",
575 "gnu_pubtypes",
576 };
577
578 // Returns whether the given debug section is in the list of
579 // debug-sections-used-by-some-version-of-gdb. SUFFIX is the
580 // portion of the name following ".debug_" or ".zdebug_".
581
582 static inline bool
583 is_gdb_debug_section(const char* suffix)
584 {
585 // We can do this faster: binary search or a hashtable. But why bother?
586 for (size_t i = 0; i < sizeof(gdb_sections)/sizeof(*gdb_sections); ++i)
587 if (strcmp(suffix, gdb_sections[i]) == 0)
588 return true;
589 return false;
590 }
591
592 // Returns whether the given section is needed for lines-only debugging.
593
594 static inline bool
595 is_lines_only_debug_section(const char* suffix)
596 {
597 // We can do this faster: binary search or a hashtable. But why bother?
598 for (size_t i = 0;
599 i < sizeof(lines_only_debug_sections)/sizeof(*lines_only_debug_sections);
600 ++i)
601 if (strcmp(suffix, lines_only_debug_sections[i]) == 0)
602 return true;
603 return false;
604 }
605
606 // Returns whether the given section is a fast-lookup section that
607 // will not be needed when building a .gdb_index section.
608
609 static inline bool
610 is_gdb_fast_lookup_section(const char* suffix)
611 {
612 // We can do this faster: binary search or a hashtable. But why bother?
613 for (size_t i = 0;
614 i < sizeof(gdb_fast_lookup_sections)/sizeof(*gdb_fast_lookup_sections);
615 ++i)
616 if (strcmp(suffix, gdb_fast_lookup_sections[i]) == 0)
617 return true;
618 return false;
619 }
620
621 // Sometimes we compress sections. This is typically done for
622 // sections that are not part of normal program execution (such as
623 // .debug_* sections), and where the readers of these sections know
624 // how to deal with compressed sections. This routine doesn't say for
625 // certain whether we'll compress -- it depends on commandline options
626 // as well -- just whether this section is a candidate for compression.
627 // (The Output_compressed_section class decides whether to compress
628 // a given section, and picks the name of the compressed section.)
629
630 static bool
631 is_compressible_debug_section(const char* secname)
632 {
633 return (is_prefix_of(".debug", secname));
634 }
635
636 // We may see compressed debug sections in input files. Return TRUE
637 // if this is the name of a compressed debug section.
638
639 bool
640 is_compressed_debug_section(const char* secname)
641 {
642 return (is_prefix_of(".zdebug", secname));
643 }
644
645 std::string
646 corresponding_uncompressed_section_name(std::string secname)
647 {
648 gold_assert(secname[0] == '.' && secname[1] == 'z');
649 std::string ret(".");
650 ret.append(secname, 2, std::string::npos);
651 return ret;
652 }
653
654 // Whether to include this section in the link.
655
656 template<int size, bool big_endian>
657 bool
658 Layout::include_section(Sized_relobj_file<size, big_endian>*, const char* name,
659 const elfcpp::Shdr<size, big_endian>& shdr)
660 {
661 if (!parameters->options().relocatable()
662 && (shdr.get_sh_flags() & elfcpp::SHF_EXCLUDE))
663 return false;
664
665 elfcpp::Elf_Word sh_type = shdr.get_sh_type();
666
667 if ((sh_type >= elfcpp::SHT_LOOS && sh_type <= elfcpp::SHT_HIOS)
668 || (sh_type >= elfcpp::SHT_LOPROC && sh_type <= elfcpp::SHT_HIPROC))
669 return parameters->target().should_include_section(sh_type);
670
671 switch (sh_type)
672 {
673 case elfcpp::SHT_NULL:
674 case elfcpp::SHT_SYMTAB:
675 case elfcpp::SHT_DYNSYM:
676 case elfcpp::SHT_HASH:
677 case elfcpp::SHT_DYNAMIC:
678 case elfcpp::SHT_SYMTAB_SHNDX:
679 return false;
680
681 case elfcpp::SHT_STRTAB:
682 // Discard the sections which have special meanings in the ELF
683 // ABI. Keep others (e.g., .stabstr). We could also do this by
684 // checking the sh_link fields of the appropriate sections.
685 return (strcmp(name, ".dynstr") != 0
686 && strcmp(name, ".strtab") != 0
687 && strcmp(name, ".shstrtab") != 0);
688
689 case elfcpp::SHT_RELA:
690 case elfcpp::SHT_REL:
691 case elfcpp::SHT_GROUP:
692 // If we are emitting relocations these should be handled
693 // elsewhere.
694 gold_assert(!parameters->options().relocatable());
695 return false;
696
697 case elfcpp::SHT_PROGBITS:
698 if (parameters->options().strip_debug()
699 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
700 {
701 if (is_debug_info_section(name))
702 return false;
703 }
704 if (parameters->options().strip_debug_non_line()
705 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
706 {
707 // Debugging sections can only be recognized by name.
708 if (is_prefix_of(".debug_", name)
709 && !is_lines_only_debug_section(name + 7))
710 return false;
711 if (is_prefix_of(".zdebug_", name)
712 && !is_lines_only_debug_section(name + 8))
713 return false;
714 }
715 if (parameters->options().strip_debug_gdb()
716 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
717 {
718 // Debugging sections can only be recognized by name.
719 if (is_prefix_of(".debug_", name)
720 && !is_gdb_debug_section(name + 7))
721 return false;
722 if (is_prefix_of(".zdebug_", name)
723 && !is_gdb_debug_section(name + 8))
724 return false;
725 }
726 if (parameters->options().gdb_index()
727 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
728 {
729 // When building .gdb_index, we can strip .debug_pubnames,
730 // .debug_pubtypes, and .debug_aranges sections.
731 if (is_prefix_of(".debug_", name)
732 && is_gdb_fast_lookup_section(name + 7))
733 return false;
734 if (is_prefix_of(".zdebug_", name)
735 && is_gdb_fast_lookup_section(name + 8))
736 return false;
737 }
738 if (parameters->options().strip_lto_sections()
739 && !parameters->options().relocatable()
740 && (shdr.get_sh_flags() & elfcpp::SHF_ALLOC) == 0)
741 {
742 // Ignore LTO sections containing intermediate code.
743 if (is_prefix_of(".gnu.lto_", name))
744 return false;
745 }
746 // The GNU linker strips .gnu_debuglink sections, so we do too.
747 // This is a feature used to keep debugging information in
748 // separate files.
749 if (strcmp(name, ".gnu_debuglink") == 0)
750 return false;
751 return true;
752
753 default:
754 return true;
755 }
756 }
757
758 // Return an output section named NAME, or NULL if there is none.
759
760 Output_section*
761 Layout::find_output_section(const char* name) const
762 {
763 for (Section_list::const_iterator p = this->section_list_.begin();
764 p != this->section_list_.end();
765 ++p)
766 if (strcmp((*p)->name(), name) == 0)
767 return *p;
768 return NULL;
769 }
770
771 // Return an output segment of type TYPE, with segment flags SET set
772 // and segment flags CLEAR clear. Return NULL if there is none.
773
774 Output_segment*
775 Layout::find_output_segment(elfcpp::PT type, elfcpp::Elf_Word set,
776 elfcpp::Elf_Word clear) const
777 {
778 for (Segment_list::const_iterator p = this->segment_list_.begin();
779 p != this->segment_list_.end();
780 ++p)
781 if (static_cast<elfcpp::PT>((*p)->type()) == type
782 && ((*p)->flags() & set) == set
783 && ((*p)->flags() & clear) == 0)
784 return *p;
785 return NULL;
786 }
787
788 // When we put a .ctors or .dtors section with more than one word into
789 // a .init_array or .fini_array section, we need to reverse the words
790 // in the .ctors/.dtors section. This is because .init_array executes
791 // constructors front to back, where .ctors executes them back to
792 // front, and vice-versa for .fini_array/.dtors. Although we do want
793 // to remap .ctors/.dtors into .init_array/.fini_array because it can
794 // be more efficient, we don't want to change the order in which
795 // constructors/destructors are run. This set just keeps track of
796 // these sections which need to be reversed. It is only changed by
797 // Layout::layout. It should be a private member of Layout, but that
798 // would require layout.h to #include object.h to get the definition
799 // of Section_id.
800 static Unordered_set<Section_id, Section_id_hash> ctors_sections_in_init_array;
801
802 // Return whether OBJECT/SHNDX is a .ctors/.dtors section mapped to a
803 // .init_array/.fini_array section.
804
805 bool
806 Layout::is_ctors_in_init_array(Relobj* relobj, unsigned int shndx) const
807 {
808 return (ctors_sections_in_init_array.find(Section_id(relobj, shndx))
809 != ctors_sections_in_init_array.end());
810 }
811
812 // Return the output section to use for section NAME with type TYPE
813 // and section flags FLAGS. NAME must be canonicalized in the string
814 // pool, and NAME_KEY is the key. ORDER is where this should appear
815 // in the output sections. IS_RELRO is true for a relro section.
816
817 Output_section*
818 Layout::get_output_section(const char* name, Stringpool::Key name_key,
819 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
820 Output_section_order order, bool is_relro)
821 {
822 elfcpp::Elf_Word lookup_type = type;
823
824 // For lookup purposes, treat INIT_ARRAY, FINI_ARRAY, and
825 // PREINIT_ARRAY like PROGBITS. This ensures that we combine
826 // .init_array, .fini_array, and .preinit_array sections by name
827 // whatever their type in the input file. We do this because the
828 // types are not always right in the input files.
829 if (lookup_type == elfcpp::SHT_INIT_ARRAY
830 || lookup_type == elfcpp::SHT_FINI_ARRAY
831 || lookup_type == elfcpp::SHT_PREINIT_ARRAY)
832 lookup_type = elfcpp::SHT_PROGBITS;
833
834 elfcpp::Elf_Xword lookup_flags = flags;
835
836 // Ignoring SHF_WRITE and SHF_EXECINSTR here means that we combine
837 // read-write with read-only sections. Some other ELF linkers do
838 // not do this. FIXME: Perhaps there should be an option
839 // controlling this.
840 lookup_flags &= ~(elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
841
842 const Key key(name_key, std::make_pair(lookup_type, lookup_flags));
843 const std::pair<Key, Output_section*> v(key, NULL);
844 std::pair<Section_name_map::iterator, bool> ins(
845 this->section_name_map_.insert(v));
846
847 if (!ins.second)
848 return ins.first->second;
849 else
850 {
851 // This is the first time we've seen this name/type/flags
852 // combination. For compatibility with the GNU linker, we
853 // combine sections with contents and zero flags with sections
854 // with non-zero flags. This is a workaround for cases where
855 // assembler code forgets to set section flags. FIXME: Perhaps
856 // there should be an option to control this.
857 Output_section* os = NULL;
858
859 if (lookup_type == elfcpp::SHT_PROGBITS)
860 {
861 if (flags == 0)
862 {
863 Output_section* same_name = this->find_output_section(name);
864 if (same_name != NULL
865 && (same_name->type() == elfcpp::SHT_PROGBITS
866 || same_name->type() == elfcpp::SHT_INIT_ARRAY
867 || same_name->type() == elfcpp::SHT_FINI_ARRAY
868 || same_name->type() == elfcpp::SHT_PREINIT_ARRAY)
869 && (same_name->flags() & elfcpp::SHF_TLS) == 0)
870 os = same_name;
871 }
872 else if ((flags & elfcpp::SHF_TLS) == 0)
873 {
874 elfcpp::Elf_Xword zero_flags = 0;
875 const Key zero_key(name_key, std::make_pair(lookup_type,
876 zero_flags));
877 Section_name_map::iterator p =
878 this->section_name_map_.find(zero_key);
879 if (p != this->section_name_map_.end())
880 os = p->second;
881 }
882 }
883
884 if (os == NULL)
885 os = this->make_output_section(name, type, flags, order, is_relro);
886
887 ins.first->second = os;
888 return os;
889 }
890 }
891
892 // Returns TRUE iff NAME (an input section from RELOBJ) will
893 // be mapped to an output section that should be KEPT.
894
895 bool
896 Layout::keep_input_section(const Relobj* relobj, const char* name)
897 {
898 if (! this->script_options_->saw_sections_clause())
899 return false;
900
901 Script_sections* ss = this->script_options_->script_sections();
902 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
903 Output_section** output_section_slot;
904 Script_sections::Section_type script_section_type;
905 bool keep;
906
907 name = ss->output_section_name(file_name, name, &output_section_slot,
908 &script_section_type, &keep, true);
909 return name != NULL && keep;
910 }
911
912 // Clear the input section flags that should not be copied to the
913 // output section.
914
915 elfcpp::Elf_Xword
916 Layout::get_output_section_flags(elfcpp::Elf_Xword input_section_flags)
917 {
918 // Some flags in the input section should not be automatically
919 // copied to the output section.
920 input_section_flags &= ~ (elfcpp::SHF_INFO_LINK
921 | elfcpp::SHF_GROUP
922 | elfcpp::SHF_COMPRESSED
923 | elfcpp::SHF_MERGE
924 | elfcpp::SHF_STRINGS);
925
926 // We only clear the SHF_LINK_ORDER flag in for
927 // a non-relocatable link.
928 if (!parameters->options().relocatable())
929 input_section_flags &= ~elfcpp::SHF_LINK_ORDER;
930
931 return input_section_flags;
932 }
933
934 // Pick the output section to use for section NAME, in input file
935 // RELOBJ, with type TYPE and flags FLAGS. RELOBJ may be NULL for a
936 // linker created section. IS_INPUT_SECTION is true if we are
937 // choosing an output section for an input section found in a input
938 // file. ORDER is where this section should appear in the output
939 // sections. IS_RELRO is true for a relro section. This will return
940 // NULL if the input section should be discarded. MATCH_INPUT_SPEC
941 // is true if the section name should be matched against input specs
942 // in a linker script.
943
944 Output_section*
945 Layout::choose_output_section(const Relobj* relobj, const char* name,
946 elfcpp::Elf_Word type, elfcpp::Elf_Xword flags,
947 bool is_input_section, Output_section_order order,
948 bool is_relro, bool is_reloc,
949 bool match_input_spec)
950 {
951 // We should not see any input sections after we have attached
952 // sections to segments.
953 gold_assert(!is_input_section || !this->sections_are_attached_);
954
955 flags = this->get_output_section_flags(flags);
956
957 if (this->script_options_->saw_sections_clause() && !is_reloc)
958 {
959 // We are using a SECTIONS clause, so the output section is
960 // chosen based only on the name.
961
962 Script_sections* ss = this->script_options_->script_sections();
963 const char* file_name = relobj == NULL ? NULL : relobj->name().c_str();
964 Output_section** output_section_slot;
965 Script_sections::Section_type script_section_type;
966 const char* orig_name = name;
967 bool keep;
968 name = ss->output_section_name(file_name, name, &output_section_slot,
969 &script_section_type, &keep,
970 match_input_spec);
971
972 if (name == NULL)
973 {
974 gold_debug(DEBUG_SCRIPT, _("Unable to create output section '%s' "
975 "because it is not allowed by the "
976 "SECTIONS clause of the linker script"),
977 orig_name);
978 // The SECTIONS clause says to discard this input section.
979 return NULL;
980 }
981
982 // We can only handle script section types ST_NONE and ST_NOLOAD.
983 switch (script_section_type)
984 {
985 case Script_sections::ST_NONE:
986 break;
987 case Script_sections::ST_NOLOAD:
988 flags &= elfcpp::SHF_ALLOC;
989 break;
990 default:
991 gold_unreachable();
992 }
993
994 // If this is an orphan section--one not mentioned in the linker
995 // script--then OUTPUT_SECTION_SLOT will be NULL, and we do the
996 // default processing below.
997
998 if (output_section_slot != NULL)
999 {
1000 if (*output_section_slot != NULL)
1001 {
1002 (*output_section_slot)->update_flags_for_input_section(flags);
1003 return *output_section_slot;
1004 }
1005
1006 // We don't put sections found in the linker script into
1007 // SECTION_NAME_MAP_. That keeps us from getting confused
1008 // if an orphan section is mapped to a section with the same
1009 // name as one in the linker script.
1010
1011 name = this->namepool_.add(name, false, NULL);
1012
1013 Output_section* os = this->make_output_section(name, type, flags,
1014 order, is_relro);
1015
1016 os->set_found_in_sections_clause();
1017
1018 // Special handling for NOLOAD sections.
1019 if (script_section_type == Script_sections::ST_NOLOAD)
1020 {
1021 os->set_is_noload();
1022
1023 // The constructor of Output_section sets addresses of non-ALLOC
1024 // sections to 0 by default. We don't want that for NOLOAD
1025 // sections even if they have no SHF_ALLOC flag.
1026 if ((os->flags() & elfcpp::SHF_ALLOC) == 0
1027 && os->is_address_valid())
1028 {
1029 gold_assert(os->address() == 0
1030 && !os->is_offset_valid()
1031 && !os->is_data_size_valid());
1032 os->reset_address_and_file_offset();
1033 }
1034 }
1035
1036 *output_section_slot = os;
1037 return os;
1038 }
1039 }
1040
1041 // FIXME: Handle SHF_OS_NONCONFORMING somewhere.
1042
1043 size_t len = strlen(name);
1044 std::string uncompressed_name;
1045
1046 // Compressed debug sections should be mapped to the corresponding
1047 // uncompressed section.
1048 if (is_compressed_debug_section(name))
1049 {
1050 uncompressed_name =
1051 corresponding_uncompressed_section_name(std::string(name, len));
1052 name = uncompressed_name.c_str();
1053 len = uncompressed_name.length();
1054 }
1055
1056 // Turn NAME from the name of the input section into the name of the
1057 // output section.
1058 if (is_input_section
1059 && !this->script_options_->saw_sections_clause()
1060 && !parameters->options().relocatable())
1061 {
1062 const char *orig_name = name;
1063 name = parameters->target().output_section_name(relobj, name, &len);
1064 if (name == NULL)
1065 name = Layout::output_section_name(relobj, orig_name, &len);
1066 }
1067
1068 Stringpool::Key name_key;
1069 name = this->namepool_.add_with_length(name, len, true, &name_key);
1070
1071 // Find or make the output section. The output section is selected
1072 // based on the section name, type, and flags.
1073 return this->get_output_section(name, name_key, type, flags, order, is_relro);
1074 }
1075
1076 // For incremental links, record the initial fixed layout of a section
1077 // from the base file, and return a pointer to the Output_section.
1078
1079 template<int size, bool big_endian>
1080 Output_section*
1081 Layout::init_fixed_output_section(const char* name,
1082 elfcpp::Shdr<size, big_endian>& shdr)
1083 {
1084 unsigned int sh_type = shdr.get_sh_type();
1085
1086 // We preserve the layout of PROGBITS, NOBITS, INIT_ARRAY, FINI_ARRAY,
1087 // PRE_INIT_ARRAY, and NOTE sections.
1088 // All others will be created from scratch and reallocated.
1089 if (!can_incremental_update(sh_type))
1090 return NULL;
1091
1092 // If we're generating a .gdb_index section, we need to regenerate
1093 // it from scratch.
1094 if (parameters->options().gdb_index()
1095 && sh_type == elfcpp::SHT_PROGBITS
1096 && strcmp(name, ".gdb_index") == 0)
1097 return NULL;
1098
1099 typename elfcpp::Elf_types<size>::Elf_Addr sh_addr = shdr.get_sh_addr();
1100 typename elfcpp::Elf_types<size>::Elf_Off sh_offset = shdr.get_sh_offset();
1101 typename elfcpp::Elf_types<size>::Elf_WXword sh_size = shdr.get_sh_size();
1102 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
1103 typename elfcpp::Elf_types<size>::Elf_WXword sh_addralign =
1104 shdr.get_sh_addralign();
1105
1106 // Make the output section.
1107 Stringpool::Key name_key;
1108 name = this->namepool_.add(name, true, &name_key);
1109 Output_section* os = this->get_output_section(name, name_key, sh_type,
1110 sh_flags, ORDER_INVALID, false);
1111 os->set_fixed_layout(sh_addr, sh_offset, sh_size, sh_addralign);
1112 if (sh_type != elfcpp::SHT_NOBITS)
1113 this->free_list_.remove(sh_offset, sh_offset + sh_size);
1114 return os;
1115 }
1116
1117 // Return the index by which an input section should be ordered. This
1118 // is used to sort some .text sections, for compatibility with GNU ld.
1119
1120 int
1121 Layout::special_ordering_of_input_section(const char* name)
1122 {
1123 // The GNU linker has some special handling for some sections that
1124 // wind up in the .text section. Sections that start with these
1125 // prefixes must appear first, and must appear in the order listed
1126 // here.
1127 static const char* const text_section_sort[] =
1128 {
1129 ".text.unlikely",
1130 ".text.exit",
1131 ".text.startup",
1132 ".text.hot",
1133 ".text.sorted"
1134 };
1135
1136 for (size_t i = 0;
1137 i < sizeof(text_section_sort) / sizeof(text_section_sort[0]);
1138 i++)
1139 if (is_prefix_of(text_section_sort[i], name))
1140 return i;
1141
1142 return -1;
1143 }
1144
1145 // Return the output section to use for input section SHNDX, with name
1146 // NAME, with header HEADER, from object OBJECT. RELOC_SHNDX is the
1147 // index of a relocation section which applies to this section, or 0
1148 // if none, or -1U if more than one. RELOC_TYPE is the type of the
1149 // relocation section if there is one. Set *OFF to the offset of this
1150 // input section without the output section. Return NULL if the
1151 // section should be discarded. Set *OFF to -1 if the section
1152 // contents should not be written directly to the output file, but
1153 // will instead receive special handling.
1154
1155 template<int size, bool big_endian>
1156 Output_section*
1157 Layout::layout(Sized_relobj_file<size, big_endian>* object, unsigned int shndx,
1158 const char* name, const elfcpp::Shdr<size, big_endian>& shdr,
1159 unsigned int sh_type, unsigned int reloc_shndx,
1160 unsigned int, off_t* off)
1161 {
1162 *off = 0;
1163
1164 if (!this->include_section(object, name, shdr))
1165 return NULL;
1166
1167 // In a relocatable link a grouped section must not be combined with
1168 // any other sections.
1169 Output_section* os;
1170 if (parameters->options().relocatable()
1171 && (shdr.get_sh_flags() & elfcpp::SHF_GROUP) != 0)
1172 {
1173 // Some flags in the input section should not be automatically
1174 // copied to the output section.
1175 elfcpp::Elf_Xword flags = (shdr.get_sh_flags()
1176 & ~ elfcpp::SHF_COMPRESSED);
1177 name = this->namepool_.add(name, true, NULL);
1178 os = this->make_output_section(name, sh_type, flags,
1179 ORDER_INVALID, false);
1180 }
1181 else
1182 {
1183 // All ".text.unlikely.*" sections can be moved to a unique
1184 // segment with --text-unlikely-segment option.
1185 bool text_unlikely_segment
1186 = (parameters->options().text_unlikely_segment()
1187 && is_prefix_of(".text.unlikely",
1188 object->section_name(shndx).c_str()));
1189 if (text_unlikely_segment)
1190 {
1191 elfcpp::Elf_Xword flags
1192 = this->get_output_section_flags(shdr.get_sh_flags());
1193
1194 Stringpool::Key name_key;
1195 const char* os_name = this->namepool_.add(".text.unlikely", true,
1196 &name_key);
1197 os = this->get_output_section(os_name, name_key, sh_type, flags,
1198 ORDER_INVALID, false);
1199 // Map this output section to a unique segment. This is done to
1200 // separate "text" that is not likely to be executed from "text"
1201 // that is likely executed.
1202 os->set_is_unique_segment();
1203 }
1204 else
1205 {
1206 // Plugins can choose to place one or more subsets of sections in
1207 // unique segments and this is done by mapping these section subsets
1208 // to unique output sections. Check if this section needs to be
1209 // remapped to a unique output section.
1210 Section_segment_map::iterator it
1211 = this->section_segment_map_.find(Const_section_id(object, shndx));
1212 if (it == this->section_segment_map_.end())
1213 {
1214 os = this->choose_output_section(object, name, sh_type,
1215 shdr.get_sh_flags(), true,
1216 ORDER_INVALID, false, false,
1217 true);
1218 }
1219 else
1220 {
1221 // We know the name of the output section, directly call
1222 // get_output_section here by-passing choose_output_section.
1223 elfcpp::Elf_Xword flags
1224 = this->get_output_section_flags(shdr.get_sh_flags());
1225
1226 const char* os_name = it->second->name;
1227 Stringpool::Key name_key;
1228 os_name = this->namepool_.add(os_name, true, &name_key);
1229 os = this->get_output_section(os_name, name_key, sh_type, flags,
1230 ORDER_INVALID, false);
1231 if (!os->is_unique_segment())
1232 {
1233 os->set_is_unique_segment();
1234 os->set_extra_segment_flags(it->second->flags);
1235 os->set_segment_alignment(it->second->align);
1236 }
1237 }
1238 }
1239 if (os == NULL)
1240 return NULL;
1241 }
1242
1243 // By default the GNU linker sorts input sections whose names match
1244 // .ctors.*, .dtors.*, .init_array.*, or .fini_array.*. The
1245 // sections are sorted by name. This is used to implement
1246 // constructor priority ordering. We are compatible. When we put
1247 // .ctor sections in .init_array and .dtor sections in .fini_array,
1248 // we must also sort plain .ctor and .dtor sections.
1249 if (!this->script_options_->saw_sections_clause()
1250 && !parameters->options().relocatable()
1251 && (is_prefix_of(".ctors.", name)
1252 || is_prefix_of(".dtors.", name)
1253 || is_prefix_of(".init_array.", name)
1254 || is_prefix_of(".fini_array.", name)
1255 || (parameters->options().ctors_in_init_array()
1256 && (strcmp(name, ".ctors") == 0
1257 || strcmp(name, ".dtors") == 0))))
1258 os->set_must_sort_attached_input_sections();
1259
1260 // By default the GNU linker sorts some special text sections ahead
1261 // of others. We are compatible.
1262 if (parameters->options().text_reorder()
1263 && !this->script_options_->saw_sections_clause()
1264 && !this->is_section_ordering_specified()
1265 && !parameters->options().relocatable()
1266 && Layout::special_ordering_of_input_section(name) >= 0)
1267 os->set_must_sort_attached_input_sections();
1268
1269 // If this is a .ctors or .ctors.* section being mapped to a
1270 // .init_array section, or a .dtors or .dtors.* section being mapped
1271 // to a .fini_array section, we will need to reverse the words if
1272 // there is more than one. Record this section for later. See
1273 // ctors_sections_in_init_array above.
1274 if (!this->script_options_->saw_sections_clause()
1275 && !parameters->options().relocatable()
1276 && shdr.get_sh_size() > size / 8
1277 && (((strcmp(name, ".ctors") == 0
1278 || is_prefix_of(".ctors.", name))
1279 && strcmp(os->name(), ".init_array") == 0)
1280 || ((strcmp(name, ".dtors") == 0
1281 || is_prefix_of(".dtors.", name))
1282 && strcmp(os->name(), ".fini_array") == 0)))
1283 ctors_sections_in_init_array.insert(Section_id(object, shndx));
1284
1285 // FIXME: Handle SHF_LINK_ORDER somewhere.
1286
1287 elfcpp::Elf_Xword orig_flags = os->flags();
1288
1289 *off = os->add_input_section(this, object, shndx, name, shdr, reloc_shndx,
1290 this->script_options_->saw_sections_clause());
1291
1292 // If the flags changed, we may have to change the order.
1293 if ((orig_flags & elfcpp::SHF_ALLOC) != 0)
1294 {
1295 orig_flags &= (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1296 elfcpp::Elf_Xword new_flags =
1297 os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR);
1298 if (orig_flags != new_flags)
1299 os->set_order(this->default_section_order(os, false));
1300 }
1301
1302 this->have_added_input_section_ = true;
1303
1304 return os;
1305 }
1306
1307 // Maps section SECN to SEGMENT s.
1308 void
1309 Layout::insert_section_segment_map(Const_section_id secn,
1310 Unique_segment_info *s)
1311 {
1312 gold_assert(this->unique_segment_for_sections_specified_);
1313 this->section_segment_map_[secn] = s;
1314 }
1315
1316 // Handle a relocation section when doing a relocatable link.
1317
1318 template<int size, bool big_endian>
1319 Output_section*
1320 Layout::layout_reloc(Sized_relobj_file<size, big_endian>*,
1321 unsigned int,
1322 const elfcpp::Shdr<size, big_endian>& shdr,
1323 Output_section* data_section,
1324 Relocatable_relocs* rr)
1325 {
1326 gold_assert(parameters->options().relocatable()
1327 || parameters->options().emit_relocs());
1328
1329 int sh_type = shdr.get_sh_type();
1330
1331 std::string name;
1332 if (sh_type == elfcpp::SHT_REL)
1333 name = ".rel";
1334 else if (sh_type == elfcpp::SHT_RELA)
1335 name = ".rela";
1336 else
1337 gold_unreachable();
1338 name += data_section->name();
1339
1340 // If the output data section already has a reloc section, use that;
1341 // otherwise, make a new one.
1342 Output_section* os = data_section->reloc_section();
1343 if (os == NULL)
1344 {
1345 const char* n = this->namepool_.add(name.c_str(), true, NULL);
1346 os = this->make_output_section(n, sh_type, shdr.get_sh_flags(),
1347 ORDER_INVALID, false);
1348 os->set_should_link_to_symtab();
1349 os->set_info_section(data_section);
1350 data_section->set_reloc_section(os);
1351 }
1352
1353 Output_section_data* posd;
1354 if (sh_type == elfcpp::SHT_REL)
1355 {
1356 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1357 posd = new Output_relocatable_relocs<elfcpp::SHT_REL,
1358 size,
1359 big_endian>(rr);
1360 }
1361 else if (sh_type == elfcpp::SHT_RELA)
1362 {
1363 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1364 posd = new Output_relocatable_relocs<elfcpp::SHT_RELA,
1365 size,
1366 big_endian>(rr);
1367 }
1368 else
1369 gold_unreachable();
1370
1371 os->add_output_section_data(posd);
1372 rr->set_output_data(posd);
1373
1374 return os;
1375 }
1376
1377 // Handle a group section when doing a relocatable link.
1378
1379 template<int size, bool big_endian>
1380 void
1381 Layout::layout_group(Symbol_table* symtab,
1382 Sized_relobj_file<size, big_endian>* object,
1383 unsigned int,
1384 const char* group_section_name,
1385 const char* signature,
1386 const elfcpp::Shdr<size, big_endian>& shdr,
1387 elfcpp::Elf_Word flags,
1388 std::vector<unsigned int>* shndxes)
1389 {
1390 gold_assert(parameters->options().relocatable());
1391 gold_assert(shdr.get_sh_type() == elfcpp::SHT_GROUP);
1392 group_section_name = this->namepool_.add(group_section_name, true, NULL);
1393 Output_section* os = this->make_output_section(group_section_name,
1394 elfcpp::SHT_GROUP,
1395 shdr.get_sh_flags(),
1396 ORDER_INVALID, false);
1397
1398 // We need to find a symbol with the signature in the symbol table.
1399 // If we don't find one now, we need to look again later.
1400 Symbol* sym = symtab->lookup(signature, NULL);
1401 if (sym != NULL)
1402 os->set_info_symndx(sym);
1403 else
1404 {
1405 // Reserve some space to minimize reallocations.
1406 if (this->group_signatures_.empty())
1407 this->group_signatures_.reserve(this->number_of_input_files_ * 16);
1408
1409 // We will wind up using a symbol whose name is the signature.
1410 // So just put the signature in the symbol name pool to save it.
1411 signature = symtab->canonicalize_name(signature);
1412 this->group_signatures_.push_back(Group_signature(os, signature));
1413 }
1414
1415 os->set_should_link_to_symtab();
1416 os->set_entsize(4);
1417
1418 section_size_type entry_count =
1419 convert_to_section_size_type(shdr.get_sh_size() / 4);
1420 Output_section_data* posd =
1421 new Output_data_group<size, big_endian>(object, entry_count, flags,
1422 shndxes);
1423 os->add_output_section_data(posd);
1424 }
1425
1426 // Special GNU handling of sections name .eh_frame. They will
1427 // normally hold exception frame data as defined by the C++ ABI
1428 // (http://codesourcery.com/cxx-abi/).
1429
1430 template<int size, bool big_endian>
1431 Output_section*
1432 Layout::layout_eh_frame(Sized_relobj_file<size, big_endian>* object,
1433 const unsigned char* symbols,
1434 off_t symbols_size,
1435 const unsigned char* symbol_names,
1436 off_t symbol_names_size,
1437 unsigned int shndx,
1438 const elfcpp::Shdr<size, big_endian>& shdr,
1439 unsigned int reloc_shndx, unsigned int reloc_type,
1440 off_t* off)
1441 {
1442 const unsigned int unwind_section_type =
1443 parameters->target().unwind_section_type();
1444
1445 gold_assert(shdr.get_sh_type() == elfcpp::SHT_PROGBITS
1446 || shdr.get_sh_type() == unwind_section_type);
1447 gold_assert((shdr.get_sh_flags() & elfcpp::SHF_ALLOC) != 0);
1448
1449 Output_section* os = this->make_eh_frame_section(object);
1450 if (os == NULL)
1451 return NULL;
1452
1453 gold_assert(this->eh_frame_section_ == os);
1454
1455 elfcpp::Elf_Xword orig_flags = os->flags();
1456
1457 Eh_frame::Eh_frame_section_disposition disp =
1458 Eh_frame::EH_UNRECOGNIZED_SECTION;
1459 if (!parameters->incremental())
1460 {
1461 disp = this->eh_frame_data_->add_ehframe_input_section(object,
1462 symbols,
1463 symbols_size,
1464 symbol_names,
1465 symbol_names_size,
1466 shndx,
1467 reloc_shndx,
1468 reloc_type);
1469 }
1470
1471 if (disp == Eh_frame::EH_OPTIMIZABLE_SECTION)
1472 {
1473 os->update_flags_for_input_section(shdr.get_sh_flags());
1474
1475 // A writable .eh_frame section is a RELRO section.
1476 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1477 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1478 {
1479 os->set_is_relro();
1480 os->set_order(ORDER_RELRO);
1481 }
1482
1483 *off = -1;
1484 return os;
1485 }
1486
1487 if (disp == Eh_frame::EH_END_MARKER_SECTION && !this->added_eh_frame_data_)
1488 {
1489 // We found the end marker section, so now we can add the set of
1490 // optimized sections to the output section. We need to postpone
1491 // adding this until we've found a section we can optimize so that
1492 // the .eh_frame section in crtbeginT.o winds up at the start of
1493 // the output section.
1494 os->add_output_section_data(this->eh_frame_data_);
1495 this->added_eh_frame_data_ = true;
1496 }
1497
1498 // We couldn't handle this .eh_frame section for some reason.
1499 // Add it as a normal section.
1500 bool saw_sections_clause = this->script_options_->saw_sections_clause();
1501 *off = os->add_input_section(this, object, shndx, ".eh_frame", shdr,
1502 reloc_shndx, saw_sections_clause);
1503 this->have_added_input_section_ = true;
1504
1505 if ((orig_flags & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR))
1506 != (os->flags() & (elfcpp::SHF_WRITE | elfcpp::SHF_EXECINSTR)))
1507 os->set_order(this->default_section_order(os, false));
1508
1509 return os;
1510 }
1511
1512 void
1513 Layout::finalize_eh_frame_section()
1514 {
1515 // If we never found an end marker section, we need to add the
1516 // optimized eh sections to the output section now.
1517 if (!parameters->incremental()
1518 && this->eh_frame_section_ != NULL
1519 && !this->added_eh_frame_data_)
1520 {
1521 this->eh_frame_section_->add_output_section_data(this->eh_frame_data_);
1522 this->added_eh_frame_data_ = true;
1523 }
1524 }
1525
1526 // Create and return the magic .eh_frame section. Create
1527 // .eh_frame_hdr also if appropriate. OBJECT is the object with the
1528 // input .eh_frame section; it may be NULL.
1529
1530 Output_section*
1531 Layout::make_eh_frame_section(const Relobj* object)
1532 {
1533 const unsigned int unwind_section_type =
1534 parameters->target().unwind_section_type();
1535
1536 Output_section* os = this->choose_output_section(object, ".eh_frame",
1537 unwind_section_type,
1538 elfcpp::SHF_ALLOC, false,
1539 ORDER_EHFRAME, false, false,
1540 false);
1541 if (os == NULL)
1542 return NULL;
1543
1544 if (this->eh_frame_section_ == NULL)
1545 {
1546 this->eh_frame_section_ = os;
1547 this->eh_frame_data_ = new Eh_frame();
1548
1549 // For incremental linking, we do not optimize .eh_frame sections
1550 // or create a .eh_frame_hdr section.
1551 if (parameters->options().eh_frame_hdr() && !parameters->incremental())
1552 {
1553 Output_section* hdr_os =
1554 this->choose_output_section(NULL, ".eh_frame_hdr",
1555 unwind_section_type,
1556 elfcpp::SHF_ALLOC, false,
1557 ORDER_EHFRAME, false, false,
1558 false);
1559
1560 if (hdr_os != NULL)
1561 {
1562 Eh_frame_hdr* hdr_posd = new Eh_frame_hdr(os,
1563 this->eh_frame_data_);
1564 hdr_os->add_output_section_data(hdr_posd);
1565
1566 hdr_os->set_after_input_sections();
1567
1568 if (!this->script_options_->saw_phdrs_clause())
1569 {
1570 Output_segment* hdr_oseg;
1571 hdr_oseg = this->make_output_segment(elfcpp::PT_GNU_EH_FRAME,
1572 elfcpp::PF_R);
1573 hdr_oseg->add_output_section_to_nonload(hdr_os,
1574 elfcpp::PF_R);
1575 }
1576
1577 this->eh_frame_data_->set_eh_frame_hdr(hdr_posd);
1578 }
1579 }
1580 }
1581
1582 return os;
1583 }
1584
1585 // Add an exception frame for a PLT. This is called from target code.
1586
1587 void
1588 Layout::add_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1589 size_t cie_length, const unsigned char* fde_data,
1590 size_t fde_length)
1591 {
1592 if (parameters->incremental())
1593 {
1594 // FIXME: Maybe this could work some day....
1595 return;
1596 }
1597 Output_section* os = this->make_eh_frame_section(NULL);
1598 if (os == NULL)
1599 return;
1600 this->eh_frame_data_->add_ehframe_for_plt(plt, cie_data, cie_length,
1601 fde_data, fde_length);
1602 if (!this->added_eh_frame_data_)
1603 {
1604 os->add_output_section_data(this->eh_frame_data_);
1605 this->added_eh_frame_data_ = true;
1606 }
1607 }
1608
1609 // Remove all post-map .eh_frame information for a PLT.
1610
1611 void
1612 Layout::remove_eh_frame_for_plt(Output_data* plt, const unsigned char* cie_data,
1613 size_t cie_length)
1614 {
1615 if (parameters->incremental())
1616 {
1617 // FIXME: Maybe this could work some day....
1618 return;
1619 }
1620 this->eh_frame_data_->remove_ehframe_for_plt(plt, cie_data, cie_length);
1621 }
1622
1623 // Scan a .debug_info or .debug_types section, and add summary
1624 // information to the .gdb_index section.
1625
1626 template<int size, bool big_endian>
1627 void
1628 Layout::add_to_gdb_index(bool is_type_unit,
1629 Sized_relobj<size, big_endian>* object,
1630 const unsigned char* symbols,
1631 off_t symbols_size,
1632 unsigned int shndx,
1633 unsigned int reloc_shndx,
1634 unsigned int reloc_type)
1635 {
1636 if (this->gdb_index_data_ == NULL)
1637 {
1638 Output_section* os = this->choose_output_section(NULL, ".gdb_index",
1639 elfcpp::SHT_PROGBITS, 0,
1640 false, ORDER_INVALID,
1641 false, false, false);
1642 if (os == NULL)
1643 return;
1644
1645 this->gdb_index_data_ = new Gdb_index(os);
1646 os->add_output_section_data(this->gdb_index_data_);
1647 os->set_after_input_sections();
1648 }
1649
1650 this->gdb_index_data_->scan_debug_info(is_type_unit, object, symbols,
1651 symbols_size, shndx, reloc_shndx,
1652 reloc_type);
1653 }
1654
1655 // Add POSD to an output section using NAME, TYPE, and FLAGS. Return
1656 // the output section.
1657
1658 Output_section*
1659 Layout::add_output_section_data(const char* name, elfcpp::Elf_Word type,
1660 elfcpp::Elf_Xword flags,
1661 Output_section_data* posd,
1662 Output_section_order order, bool is_relro)
1663 {
1664 Output_section* os = this->choose_output_section(NULL, name, type, flags,
1665 false, order, is_relro,
1666 false, false);
1667 if (os != NULL)
1668 os->add_output_section_data(posd);
1669 return os;
1670 }
1671
1672 // Map section flags to segment flags.
1673
1674 elfcpp::Elf_Word
1675 Layout::section_flags_to_segment(elfcpp::Elf_Xword flags)
1676 {
1677 elfcpp::Elf_Word ret = elfcpp::PF_R;
1678 if ((flags & elfcpp::SHF_WRITE) != 0)
1679 ret |= elfcpp::PF_W;
1680 if ((flags & elfcpp::SHF_EXECINSTR) != 0)
1681 ret |= elfcpp::PF_X;
1682 return ret;
1683 }
1684
1685 // Make a new Output_section, and attach it to segments as
1686 // appropriate. ORDER is the order in which this section should
1687 // appear in the output segment. IS_RELRO is true if this is a relro
1688 // (read-only after relocations) section.
1689
1690 Output_section*
1691 Layout::make_output_section(const char* name, elfcpp::Elf_Word type,
1692 elfcpp::Elf_Xword flags,
1693 Output_section_order order, bool is_relro)
1694 {
1695 Output_section* os;
1696 if ((flags & elfcpp::SHF_ALLOC) == 0
1697 && strcmp(parameters->options().compress_debug_sections(), "none") != 0
1698 && is_compressible_debug_section(name))
1699 os = new Output_compressed_section(&parameters->options(), name, type,
1700 flags);
1701 else if ((flags & elfcpp::SHF_ALLOC) == 0
1702 && parameters->options().strip_debug_non_line()
1703 && strcmp(".debug_abbrev", name) == 0)
1704 {
1705 os = this->debug_abbrev_ = new Output_reduced_debug_abbrev_section(
1706 name, type, flags);
1707 if (this->debug_info_)
1708 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1709 }
1710 else if ((flags & elfcpp::SHF_ALLOC) == 0
1711 && parameters->options().strip_debug_non_line()
1712 && strcmp(".debug_info", name) == 0)
1713 {
1714 os = this->debug_info_ = new Output_reduced_debug_info_section(
1715 name, type, flags);
1716 if (this->debug_abbrev_)
1717 this->debug_info_->set_abbreviations(this->debug_abbrev_);
1718 }
1719 else
1720 {
1721 // Sometimes .init_array*, .preinit_array* and .fini_array* do
1722 // not have correct section types. Force them here.
1723 if (type == elfcpp::SHT_PROGBITS)
1724 {
1725 if (is_prefix_of(".init_array", name))
1726 type = elfcpp::SHT_INIT_ARRAY;
1727 else if (is_prefix_of(".preinit_array", name))
1728 type = elfcpp::SHT_PREINIT_ARRAY;
1729 else if (is_prefix_of(".fini_array", name))
1730 type = elfcpp::SHT_FINI_ARRAY;
1731 }
1732
1733 // FIXME: const_cast is ugly.
1734 Target* target = const_cast<Target*>(&parameters->target());
1735 os = target->make_output_section(name, type, flags);
1736 }
1737
1738 // With -z relro, we have to recognize the special sections by name.
1739 // There is no other way.
1740 bool is_relro_local = false;
1741 if (!this->script_options_->saw_sections_clause()
1742 && parameters->options().relro()
1743 && (flags & elfcpp::SHF_ALLOC) != 0
1744 && (flags & elfcpp::SHF_WRITE) != 0)
1745 {
1746 if (type == elfcpp::SHT_PROGBITS)
1747 {
1748 if ((flags & elfcpp::SHF_TLS) != 0)
1749 is_relro = true;
1750 else if (strcmp(name, ".data.rel.ro") == 0)
1751 is_relro = true;
1752 else if (strcmp(name, ".data.rel.ro.local") == 0)
1753 {
1754 is_relro = true;
1755 is_relro_local = true;
1756 }
1757 else if (strcmp(name, ".ctors") == 0
1758 || strcmp(name, ".dtors") == 0
1759 || strcmp(name, ".jcr") == 0)
1760 is_relro = true;
1761 }
1762 else if (type == elfcpp::SHT_INIT_ARRAY
1763 || type == elfcpp::SHT_FINI_ARRAY
1764 || type == elfcpp::SHT_PREINIT_ARRAY)
1765 is_relro = true;
1766 }
1767
1768 if (is_relro)
1769 os->set_is_relro();
1770
1771 if (order == ORDER_INVALID && (flags & elfcpp::SHF_ALLOC) != 0)
1772 order = this->default_section_order(os, is_relro_local);
1773
1774 os->set_order(order);
1775
1776 parameters->target().new_output_section(os);
1777
1778 this->section_list_.push_back(os);
1779
1780 // The GNU linker by default sorts some sections by priority, so we
1781 // do the same. We need to know that this might happen before we
1782 // attach any input sections.
1783 if (!this->script_options_->saw_sections_clause()
1784 && !parameters->options().relocatable()
1785 && (strcmp(name, ".init_array") == 0
1786 || strcmp(name, ".fini_array") == 0
1787 || (!parameters->options().ctors_in_init_array()
1788 && (strcmp(name, ".ctors") == 0
1789 || strcmp(name, ".dtors") == 0))))
1790 os->set_may_sort_attached_input_sections();
1791
1792 // The GNU linker by default sorts .text.{unlikely,exit,startup,hot}
1793 // sections before other .text sections. We are compatible. We
1794 // need to know that this might happen before we attach any input
1795 // sections.
1796 if (parameters->options().text_reorder()
1797 && !this->script_options_->saw_sections_clause()
1798 && !this->is_section_ordering_specified()
1799 && !parameters->options().relocatable()
1800 && strcmp(name, ".text") == 0)
1801 os->set_may_sort_attached_input_sections();
1802
1803 // GNU linker sorts section by name with --sort-section=name.
1804 if (strcmp(parameters->options().sort_section(), "name") == 0)
1805 os->set_must_sort_attached_input_sections();
1806
1807 // Check for .stab*str sections, as .stab* sections need to link to
1808 // them.
1809 if (type == elfcpp::SHT_STRTAB
1810 && !this->have_stabstr_section_
1811 && strncmp(name, ".stab", 5) == 0
1812 && strcmp(name + strlen(name) - 3, "str") == 0)
1813 this->have_stabstr_section_ = true;
1814
1815 // During a full incremental link, we add patch space to most
1816 // PROGBITS and NOBITS sections. Flag those that may be
1817 // arbitrarily padded.
1818 if ((type == elfcpp::SHT_PROGBITS || type == elfcpp::SHT_NOBITS)
1819 && order != ORDER_INTERP
1820 && order != ORDER_INIT
1821 && order != ORDER_PLT
1822 && order != ORDER_FINI
1823 && order != ORDER_RELRO_LAST
1824 && order != ORDER_NON_RELRO_FIRST
1825 && strcmp(name, ".eh_frame") != 0
1826 && strcmp(name, ".ctors") != 0
1827 && strcmp(name, ".dtors") != 0
1828 && strcmp(name, ".jcr") != 0)
1829 {
1830 os->set_is_patch_space_allowed();
1831
1832 // Certain sections require "holes" to be filled with
1833 // specific fill patterns. These fill patterns may have
1834 // a minimum size, so we must prevent allocations from the
1835 // free list that leave a hole smaller than the minimum.
1836 if (strcmp(name, ".debug_info") == 0)
1837 os->set_free_space_fill(new Output_fill_debug_info(false));
1838 else if (strcmp(name, ".debug_types") == 0)
1839 os->set_free_space_fill(new Output_fill_debug_info(true));
1840 else if (strcmp(name, ".debug_line") == 0)
1841 os->set_free_space_fill(new Output_fill_debug_line());
1842 }
1843
1844 // If we have already attached the sections to segments, then we
1845 // need to attach this one now. This happens for sections created
1846 // directly by the linker.
1847 if (this->sections_are_attached_)
1848 this->attach_section_to_segment(&parameters->target(), os);
1849
1850 return os;
1851 }
1852
1853 // Return the default order in which a section should be placed in an
1854 // output segment. This function captures a lot of the ideas in
1855 // ld/scripttempl/elf.sc in the GNU linker. Note that the order of a
1856 // linker created section is normally set when the section is created;
1857 // this function is used for input sections.
1858
1859 Output_section_order
1860 Layout::default_section_order(Output_section* os, bool is_relro_local)
1861 {
1862 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
1863 bool is_write = (os->flags() & elfcpp::SHF_WRITE) != 0;
1864 bool is_execinstr = (os->flags() & elfcpp::SHF_EXECINSTR) != 0;
1865 bool is_bss = false;
1866
1867 switch (os->type())
1868 {
1869 default:
1870 case elfcpp::SHT_PROGBITS:
1871 break;
1872 case elfcpp::SHT_NOBITS:
1873 is_bss = true;
1874 break;
1875 case elfcpp::SHT_RELA:
1876 case elfcpp::SHT_REL:
1877 if (!is_write)
1878 return ORDER_DYNAMIC_RELOCS;
1879 break;
1880 case elfcpp::SHT_HASH:
1881 case elfcpp::SHT_DYNAMIC:
1882 case elfcpp::SHT_SHLIB:
1883 case elfcpp::SHT_DYNSYM:
1884 case elfcpp::SHT_GNU_HASH:
1885 case elfcpp::SHT_GNU_verdef:
1886 case elfcpp::SHT_GNU_verneed:
1887 case elfcpp::SHT_GNU_versym:
1888 if (!is_write)
1889 return ORDER_DYNAMIC_LINKER;
1890 break;
1891 case elfcpp::SHT_NOTE:
1892 return is_write ? ORDER_RW_NOTE : ORDER_RO_NOTE;
1893 }
1894
1895 if ((os->flags() & elfcpp::SHF_TLS) != 0)
1896 return is_bss ? ORDER_TLS_BSS : ORDER_TLS_DATA;
1897
1898 if (!is_bss && !is_write)
1899 {
1900 if (is_execinstr)
1901 {
1902 if (strcmp(os->name(), ".init") == 0)
1903 return ORDER_INIT;
1904 else if (strcmp(os->name(), ".fini") == 0)
1905 return ORDER_FINI;
1906 else if (parameters->options().keep_text_section_prefix())
1907 {
1908 // -z,keep-text-section-prefix introduces additional
1909 // output sections.
1910 if (strcmp(os->name(), ".text.hot") == 0)
1911 return ORDER_TEXT_HOT;
1912 else if (strcmp(os->name(), ".text.startup") == 0)
1913 return ORDER_TEXT_STARTUP;
1914 else if (strcmp(os->name(), ".text.exit") == 0)
1915 return ORDER_TEXT_EXIT;
1916 else if (strcmp(os->name(), ".text.unlikely") == 0)
1917 return ORDER_TEXT_UNLIKELY;
1918 }
1919 }
1920 return is_execinstr ? ORDER_TEXT : ORDER_READONLY;
1921 }
1922
1923 if (os->is_relro())
1924 return is_relro_local ? ORDER_RELRO_LOCAL : ORDER_RELRO;
1925
1926 if (os->is_small_section())
1927 return is_bss ? ORDER_SMALL_BSS : ORDER_SMALL_DATA;
1928 if (os->is_large_section())
1929 return is_bss ? ORDER_LARGE_BSS : ORDER_LARGE_DATA;
1930
1931 return is_bss ? ORDER_BSS : ORDER_DATA;
1932 }
1933
1934 // Attach output sections to segments. This is called after we have
1935 // seen all the input sections.
1936
1937 void
1938 Layout::attach_sections_to_segments(const Target* target)
1939 {
1940 for (Section_list::iterator p = this->section_list_.begin();
1941 p != this->section_list_.end();
1942 ++p)
1943 this->attach_section_to_segment(target, *p);
1944
1945 this->sections_are_attached_ = true;
1946 }
1947
1948 // Attach an output section to a segment.
1949
1950 void
1951 Layout::attach_section_to_segment(const Target* target, Output_section* os)
1952 {
1953 if ((os->flags() & elfcpp::SHF_ALLOC) == 0)
1954 this->unattached_section_list_.push_back(os);
1955 else
1956 this->attach_allocated_section_to_segment(target, os);
1957 }
1958
1959 // Attach an allocated output section to a segment.
1960
1961 void
1962 Layout::attach_allocated_section_to_segment(const Target* target,
1963 Output_section* os)
1964 {
1965 elfcpp::Elf_Xword flags = os->flags();
1966 gold_assert((flags & elfcpp::SHF_ALLOC) != 0);
1967
1968 if (parameters->options().relocatable())
1969 return;
1970
1971 // If we have a SECTIONS clause, we can't handle the attachment to
1972 // segments until after we've seen all the sections.
1973 if (this->script_options_->saw_sections_clause())
1974 return;
1975
1976 gold_assert(!this->script_options_->saw_phdrs_clause());
1977
1978 // This output section goes into a PT_LOAD segment.
1979
1980 elfcpp::Elf_Word seg_flags = Layout::section_flags_to_segment(flags);
1981
1982 // If this output section's segment has extra flags that need to be set,
1983 // coming from a linker plugin, do that.
1984 seg_flags |= os->extra_segment_flags();
1985
1986 // Check for --section-start.
1987 uint64_t addr;
1988 bool is_address_set = parameters->options().section_start(os->name(), &addr);
1989
1990 // In general the only thing we really care about for PT_LOAD
1991 // segments is whether or not they are writable or executable,
1992 // so that is how we search for them.
1993 // Large data sections also go into their own PT_LOAD segment.
1994 // People who need segments sorted on some other basis will
1995 // have to use a linker script.
1996
1997 Segment_list::const_iterator p;
1998 if (!os->is_unique_segment())
1999 {
2000 for (p = this->segment_list_.begin();
2001 p != this->segment_list_.end();
2002 ++p)
2003 {
2004 if ((*p)->type() != elfcpp::PT_LOAD)
2005 continue;
2006 if ((*p)->is_unique_segment())
2007 continue;
2008 if (!parameters->options().omagic()
2009 && ((*p)->flags() & elfcpp::PF_W) != (seg_flags & elfcpp::PF_W))
2010 continue;
2011 if ((target->isolate_execinstr() || parameters->options().rosegment())
2012 && ((*p)->flags() & elfcpp::PF_X) != (seg_flags & elfcpp::PF_X))
2013 continue;
2014 // If -Tbss was specified, we need to separate the data and BSS
2015 // segments.
2016 if (parameters->options().user_set_Tbss())
2017 {
2018 if ((os->type() == elfcpp::SHT_NOBITS)
2019 == (*p)->has_any_data_sections())
2020 continue;
2021 }
2022 if (os->is_large_data_section() && !(*p)->is_large_data_segment())
2023 continue;
2024
2025 if (is_address_set)
2026 {
2027 if ((*p)->are_addresses_set())
2028 continue;
2029
2030 (*p)->add_initial_output_data(os);
2031 (*p)->update_flags_for_output_section(seg_flags);
2032 (*p)->set_addresses(addr, addr);
2033 break;
2034 }
2035
2036 (*p)->add_output_section_to_load(this, os, seg_flags);
2037 break;
2038 }
2039 }
2040
2041 if (p == this->segment_list_.end()
2042 || os->is_unique_segment())
2043 {
2044 Output_segment* oseg = this->make_output_segment(elfcpp::PT_LOAD,
2045 seg_flags);
2046 if (os->is_large_data_section())
2047 oseg->set_is_large_data_segment();
2048 oseg->add_output_section_to_load(this, os, seg_flags);
2049 if (is_address_set)
2050 oseg->set_addresses(addr, addr);
2051 // Check if segment should be marked unique. For segments marked
2052 // unique by linker plugins, set the new alignment if specified.
2053 if (os->is_unique_segment())
2054 {
2055 oseg->set_is_unique_segment();
2056 if (os->segment_alignment() != 0)
2057 oseg->set_minimum_p_align(os->segment_alignment());
2058 }
2059 }
2060
2061 // If we see a loadable SHT_NOTE section, we create a PT_NOTE
2062 // segment.
2063 if (os->type() == elfcpp::SHT_NOTE)
2064 {
2065 // See if we already have an equivalent PT_NOTE segment.
2066 for (p = this->segment_list_.begin();
2067 p != segment_list_.end();
2068 ++p)
2069 {
2070 if ((*p)->type() == elfcpp::PT_NOTE
2071 && (((*p)->flags() & elfcpp::PF_W)
2072 == (seg_flags & elfcpp::PF_W)))
2073 {
2074 (*p)->add_output_section_to_nonload(os, seg_flags);
2075 break;
2076 }
2077 }
2078
2079 if (p == this->segment_list_.end())
2080 {
2081 Output_segment* oseg = this->make_output_segment(elfcpp::PT_NOTE,
2082 seg_flags);
2083 oseg->add_output_section_to_nonload(os, seg_flags);
2084 }
2085 }
2086
2087 // If we see a loadable SHF_TLS section, we create a PT_TLS
2088 // segment. There can only be one such segment.
2089 if ((flags & elfcpp::SHF_TLS) != 0)
2090 {
2091 if (this->tls_segment_ == NULL)
2092 this->make_output_segment(elfcpp::PT_TLS, seg_flags);
2093 this->tls_segment_->add_output_section_to_nonload(os, seg_flags);
2094 }
2095
2096 // If -z relro is in effect, and we see a relro section, we create a
2097 // PT_GNU_RELRO segment. There can only be one such segment.
2098 if (os->is_relro() && parameters->options().relro())
2099 {
2100 gold_assert(seg_flags == (elfcpp::PF_R | elfcpp::PF_W));
2101 if (this->relro_segment_ == NULL)
2102 this->make_output_segment(elfcpp::PT_GNU_RELRO, seg_flags);
2103 this->relro_segment_->add_output_section_to_nonload(os, seg_flags);
2104 }
2105
2106 // If we see a section named .interp, put it into a PT_INTERP
2107 // segment. This seems broken to me, but this is what GNU ld does,
2108 // and glibc expects it.
2109 if (strcmp(os->name(), ".interp") == 0
2110 && !this->script_options_->saw_phdrs_clause())
2111 {
2112 if (this->interp_segment_ == NULL)
2113 this->make_output_segment(elfcpp::PT_INTERP, seg_flags);
2114 else
2115 gold_warning(_("multiple '.interp' sections in input files "
2116 "may cause confusing PT_INTERP segment"));
2117 this->interp_segment_->add_output_section_to_nonload(os, seg_flags);
2118 }
2119 }
2120
2121 // Make an output section for a script.
2122
2123 Output_section*
2124 Layout::make_output_section_for_script(
2125 const char* name,
2126 Script_sections::Section_type section_type)
2127 {
2128 name = this->namepool_.add(name, false, NULL);
2129 elfcpp::Elf_Xword sh_flags = elfcpp::SHF_ALLOC;
2130 if (section_type == Script_sections::ST_NOLOAD)
2131 sh_flags = 0;
2132 Output_section* os = this->make_output_section(name, elfcpp::SHT_PROGBITS,
2133 sh_flags, ORDER_INVALID,
2134 false);
2135 os->set_found_in_sections_clause();
2136 if (section_type == Script_sections::ST_NOLOAD)
2137 os->set_is_noload();
2138 return os;
2139 }
2140
2141 // Return the number of segments we expect to see.
2142
2143 size_t
2144 Layout::expected_segment_count() const
2145 {
2146 size_t ret = this->segment_list_.size();
2147
2148 // If we didn't see a SECTIONS clause in a linker script, we should
2149 // already have the complete list of segments. Otherwise we ask the
2150 // SECTIONS clause how many segments it expects, and add in the ones
2151 // we already have (PT_GNU_STACK, PT_GNU_EH_FRAME, etc.)
2152
2153 if (!this->script_options_->saw_sections_clause())
2154 return ret;
2155 else
2156 {
2157 const Script_sections* ss = this->script_options_->script_sections();
2158 return ret + ss->expected_segment_count(this);
2159 }
2160 }
2161
2162 // Handle the .note.GNU-stack section at layout time. SEEN_GNU_STACK
2163 // is whether we saw a .note.GNU-stack section in the object file.
2164 // GNU_STACK_FLAGS is the section flags. The flags give the
2165 // protection required for stack memory. We record this in an
2166 // executable as a PT_GNU_STACK segment. If an object file does not
2167 // have a .note.GNU-stack segment, we must assume that it is an old
2168 // object. On some targets that will force an executable stack.
2169
2170 void
2171 Layout::layout_gnu_stack(bool seen_gnu_stack, uint64_t gnu_stack_flags,
2172 const Object* obj)
2173 {
2174 if (!seen_gnu_stack)
2175 {
2176 this->input_without_gnu_stack_note_ = true;
2177 if (parameters->options().warn_execstack()
2178 && parameters->target().is_default_stack_executable())
2179 gold_warning(_("%s: missing .note.GNU-stack section"
2180 " implies executable stack"),
2181 obj->name().c_str());
2182 }
2183 else
2184 {
2185 this->input_with_gnu_stack_note_ = true;
2186 if ((gnu_stack_flags & elfcpp::SHF_EXECINSTR) != 0)
2187 {
2188 this->input_requires_executable_stack_ = true;
2189 if (parameters->options().warn_execstack())
2190 gold_warning(_("%s: requires executable stack"),
2191 obj->name().c_str());
2192 }
2193 }
2194 }
2195
2196 // Read a value with given size and endianness.
2197
2198 static inline uint64_t
2199 read_sized_value(size_t size, const unsigned char* buf, bool is_big_endian,
2200 const Object* object)
2201 {
2202 uint64_t val = 0;
2203 if (size == 4)
2204 {
2205 if (is_big_endian)
2206 val = elfcpp::Swap<32, true>::readval(buf);
2207 else
2208 val = elfcpp::Swap<32, false>::readval(buf);
2209 }
2210 else if (size == 8)
2211 {
2212 if (is_big_endian)
2213 val = elfcpp::Swap<64, true>::readval(buf);
2214 else
2215 val = elfcpp::Swap<64, false>::readval(buf);
2216 }
2217 else
2218 {
2219 gold_warning(_("%s: in .note.gnu.property section, "
2220 "pr_datasz must be 4 or 8"),
2221 object->name().c_str());
2222 }
2223 return val;
2224 }
2225
2226 // Write a value with given size and endianness.
2227
2228 static inline void
2229 write_sized_value(uint64_t value, size_t size, unsigned char* buf,
2230 bool is_big_endian)
2231 {
2232 if (size == 4)
2233 {
2234 if (is_big_endian)
2235 elfcpp::Swap<32, true>::writeval(buf, static_cast<uint32_t>(value));
2236 else
2237 elfcpp::Swap<32, false>::writeval(buf, static_cast<uint32_t>(value));
2238 }
2239 else if (size == 8)
2240 {
2241 if (is_big_endian)
2242 elfcpp::Swap<64, true>::writeval(buf, value);
2243 else
2244 elfcpp::Swap<64, false>::writeval(buf, value);
2245 }
2246 else
2247 {
2248 // We will have already complained about this.
2249 }
2250 }
2251
2252 // Handle the .note.gnu.property section at layout time.
2253
2254 void
2255 Layout::layout_gnu_property(unsigned int note_type,
2256 unsigned int pr_type,
2257 size_t pr_datasz,
2258 const unsigned char* pr_data,
2259 const Object* object)
2260 {
2261 // We currently support only the one note type.
2262 gold_assert(note_type == elfcpp::NT_GNU_PROPERTY_TYPE_0);
2263
2264 if (pr_type >= elfcpp::GNU_PROPERTY_LOPROC
2265 && pr_type < elfcpp::GNU_PROPERTY_HIPROC)
2266 {
2267 // Target-dependent property value; call the target to record.
2268 const int size = parameters->target().get_size();
2269 const bool is_big_endian = parameters->target().is_big_endian();
2270 if (size == 32)
2271 {
2272 if (is_big_endian)
2273 {
2274 #ifdef HAVE_TARGET_32_BIG
2275 parameters->sized_target<32, true>()->
2276 record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
2277 object);
2278 #else
2279 gold_unreachable();
2280 #endif
2281 }
2282 else
2283 {
2284 #ifdef HAVE_TARGET_32_LITTLE
2285 parameters->sized_target<32, false>()->
2286 record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
2287 object);
2288 #else
2289 gold_unreachable();
2290 #endif
2291 }
2292 }
2293 else if (size == 64)
2294 {
2295 if (is_big_endian)
2296 {
2297 #ifdef HAVE_TARGET_64_BIG
2298 parameters->sized_target<64, true>()->
2299 record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
2300 object);
2301 #else
2302 gold_unreachable();
2303 #endif
2304 }
2305 else
2306 {
2307 #ifdef HAVE_TARGET_64_LITTLE
2308 parameters->sized_target<64, false>()->
2309 record_gnu_property(note_type, pr_type, pr_datasz, pr_data,
2310 object);
2311 #else
2312 gold_unreachable();
2313 #endif
2314 }
2315 }
2316 else
2317 gold_unreachable();
2318 return;
2319 }
2320
2321 Gnu_properties::iterator pprop = this->gnu_properties_.find(pr_type);
2322 if (pprop == this->gnu_properties_.end())
2323 {
2324 Gnu_property prop;
2325 prop.pr_datasz = pr_datasz;
2326 prop.pr_data = new unsigned char[pr_datasz];
2327 memcpy(prop.pr_data, pr_data, pr_datasz);
2328 this->gnu_properties_[pr_type] = prop;
2329 }
2330 else
2331 {
2332 const bool is_big_endian = parameters->target().is_big_endian();
2333 switch (pr_type)
2334 {
2335 case elfcpp::GNU_PROPERTY_STACK_SIZE:
2336 // Record the maximum value seen.
2337 {
2338 uint64_t val1 = read_sized_value(pprop->second.pr_datasz,
2339 pprop->second.pr_data,
2340 is_big_endian, object);
2341 uint64_t val2 = read_sized_value(pr_datasz, pr_data,
2342 is_big_endian, object);
2343 if (val2 > val1)
2344 write_sized_value(val2, pprop->second.pr_datasz,
2345 pprop->second.pr_data, is_big_endian);
2346 }
2347 break;
2348 case elfcpp::GNU_PROPERTY_NO_COPY_ON_PROTECTED:
2349 // No data to merge.
2350 break;
2351 default:
2352 gold_warning(_("%s: unknown program property type %d "
2353 "in .note.gnu.property section"),
2354 object->name().c_str(), pr_type);
2355 }
2356 }
2357 }
2358
2359 // Merge per-object properties with program properties.
2360 // This lets the target identify objects that are missing certain
2361 // properties, in cases where properties must be ANDed together.
2362
2363 void
2364 Layout::merge_gnu_properties(const Object* object)
2365 {
2366 const int size = parameters->target().get_size();
2367 const bool is_big_endian = parameters->target().is_big_endian();
2368 if (size == 32)
2369 {
2370 if (is_big_endian)
2371 {
2372 #ifdef HAVE_TARGET_32_BIG
2373 parameters->sized_target<32, true>()->merge_gnu_properties(object);
2374 #else
2375 gold_unreachable();
2376 #endif
2377 }
2378 else
2379 {
2380 #ifdef HAVE_TARGET_32_LITTLE
2381 parameters->sized_target<32, false>()->merge_gnu_properties(object);
2382 #else
2383 gold_unreachable();
2384 #endif
2385 }
2386 }
2387 else if (size == 64)
2388 {
2389 if (is_big_endian)
2390 {
2391 #ifdef HAVE_TARGET_64_BIG
2392 parameters->sized_target<64, true>()->merge_gnu_properties(object);
2393 #else
2394 gold_unreachable();
2395 #endif
2396 }
2397 else
2398 {
2399 #ifdef HAVE_TARGET_64_LITTLE
2400 parameters->sized_target<64, false>()->merge_gnu_properties(object);
2401 #else
2402 gold_unreachable();
2403 #endif
2404 }
2405 }
2406 else
2407 gold_unreachable();
2408 }
2409
2410 // Add a target-specific property for the output .note.gnu.property section.
2411
2412 void
2413 Layout::add_gnu_property(unsigned int note_type,
2414 unsigned int pr_type,
2415 size_t pr_datasz,
2416 const unsigned char* pr_data)
2417 {
2418 gold_assert(note_type == elfcpp::NT_GNU_PROPERTY_TYPE_0);
2419
2420 Gnu_property prop;
2421 prop.pr_datasz = pr_datasz;
2422 prop.pr_data = new unsigned char[pr_datasz];
2423 memcpy(prop.pr_data, pr_data, pr_datasz);
2424 this->gnu_properties_[pr_type] = prop;
2425 }
2426
2427 // Create automatic note sections.
2428
2429 void
2430 Layout::create_notes()
2431 {
2432 this->create_gnu_properties_note();
2433 this->create_gold_note();
2434 this->create_stack_segment();
2435 this->create_build_id();
2436 }
2437
2438 // Create the dynamic sections which are needed before we read the
2439 // relocs.
2440
2441 void
2442 Layout::create_initial_dynamic_sections(Symbol_table* symtab)
2443 {
2444 if (parameters->doing_static_link())
2445 return;
2446
2447 this->dynamic_section_ = this->choose_output_section(NULL, ".dynamic",
2448 elfcpp::SHT_DYNAMIC,
2449 (elfcpp::SHF_ALLOC
2450 | elfcpp::SHF_WRITE),
2451 false, ORDER_RELRO,
2452 true, false, false);
2453
2454 // A linker script may discard .dynamic, so check for NULL.
2455 if (this->dynamic_section_ != NULL)
2456 {
2457 this->dynamic_symbol_ =
2458 symtab->define_in_output_data("_DYNAMIC", NULL,
2459 Symbol_table::PREDEFINED,
2460 this->dynamic_section_, 0, 0,
2461 elfcpp::STT_OBJECT, elfcpp::STB_LOCAL,
2462 elfcpp::STV_HIDDEN, 0, false, false);
2463
2464 this->dynamic_data_ = new Output_data_dynamic(&this->dynpool_);
2465
2466 this->dynamic_section_->add_output_section_data(this->dynamic_data_);
2467 }
2468 }
2469
2470 // For each output section whose name can be represented as C symbol,
2471 // define __start and __stop symbols for the section. This is a GNU
2472 // extension.
2473
2474 void
2475 Layout::define_section_symbols(Symbol_table* symtab)
2476 {
2477 for (Section_list::const_iterator p = this->section_list_.begin();
2478 p != this->section_list_.end();
2479 ++p)
2480 {
2481 const char* const name = (*p)->name();
2482 if (is_cident(name))
2483 {
2484 const std::string name_string(name);
2485 const std::string start_name(cident_section_start_prefix
2486 + name_string);
2487 const std::string stop_name(cident_section_stop_prefix
2488 + name_string);
2489
2490 symtab->define_in_output_data(start_name.c_str(),
2491 NULL, // version
2492 Symbol_table::PREDEFINED,
2493 *p,
2494 0, // value
2495 0, // symsize
2496 elfcpp::STT_NOTYPE,
2497 elfcpp::STB_GLOBAL,
2498 elfcpp::STV_PROTECTED,
2499 0, // nonvis
2500 false, // offset_is_from_end
2501 true); // only_if_ref
2502
2503 symtab->define_in_output_data(stop_name.c_str(),
2504 NULL, // version
2505 Symbol_table::PREDEFINED,
2506 *p,
2507 0, // value
2508 0, // symsize
2509 elfcpp::STT_NOTYPE,
2510 elfcpp::STB_GLOBAL,
2511 elfcpp::STV_PROTECTED,
2512 0, // nonvis
2513 true, // offset_is_from_end
2514 true); // only_if_ref
2515 }
2516 }
2517 }
2518
2519 // Define symbols for group signatures.
2520
2521 void
2522 Layout::define_group_signatures(Symbol_table* symtab)
2523 {
2524 for (Group_signatures::iterator p = this->group_signatures_.begin();
2525 p != this->group_signatures_.end();
2526 ++p)
2527 {
2528 Symbol* sym = symtab->lookup(p->signature, NULL);
2529 if (sym != NULL)
2530 p->section->set_info_symndx(sym);
2531 else
2532 {
2533 // Force the name of the group section to the group
2534 // signature, and use the group's section symbol as the
2535 // signature symbol.
2536 if (strcmp(p->section->name(), p->signature) != 0)
2537 {
2538 const char* name = this->namepool_.add(p->signature,
2539 true, NULL);
2540 p->section->set_name(name);
2541 }
2542 p->section->set_needs_symtab_index();
2543 p->section->set_info_section_symndx(p->section);
2544 }
2545 }
2546
2547 this->group_signatures_.clear();
2548 }
2549
2550 // Find the first read-only PT_LOAD segment, creating one if
2551 // necessary.
2552
2553 Output_segment*
2554 Layout::find_first_load_seg(const Target* target)
2555 {
2556 Output_segment* best = NULL;
2557 for (Segment_list::const_iterator p = this->segment_list_.begin();
2558 p != this->segment_list_.end();
2559 ++p)
2560 {
2561 if ((*p)->type() == elfcpp::PT_LOAD
2562 && ((*p)->flags() & elfcpp::PF_R) != 0
2563 && (parameters->options().omagic()
2564 || ((*p)->flags() & elfcpp::PF_W) == 0)
2565 && (!target->isolate_execinstr()
2566 || ((*p)->flags() & elfcpp::PF_X) == 0))
2567 {
2568 if (best == NULL || this->segment_precedes(*p, best))
2569 best = *p;
2570 }
2571 }
2572 if (best != NULL)
2573 return best;
2574
2575 gold_assert(!this->script_options_->saw_phdrs_clause());
2576
2577 Output_segment* load_seg = this->make_output_segment(elfcpp::PT_LOAD,
2578 elfcpp::PF_R);
2579 return load_seg;
2580 }
2581
2582 // Save states of all current output segments. Store saved states
2583 // in SEGMENT_STATES.
2584
2585 void
2586 Layout::save_segments(Segment_states* segment_states)
2587 {
2588 for (Segment_list::const_iterator p = this->segment_list_.begin();
2589 p != this->segment_list_.end();
2590 ++p)
2591 {
2592 Output_segment* segment = *p;
2593 // Shallow copy.
2594 Output_segment* copy = new Output_segment(*segment);
2595 (*segment_states)[segment] = copy;
2596 }
2597 }
2598
2599 // Restore states of output segments and delete any segment not found in
2600 // SEGMENT_STATES.
2601
2602 void
2603 Layout::restore_segments(const Segment_states* segment_states)
2604 {
2605 // Go through the segment list and remove any segment added in the
2606 // relaxation loop.
2607 this->tls_segment_ = NULL;
2608 this->relro_segment_ = NULL;
2609 Segment_list::iterator list_iter = this->segment_list_.begin();
2610 while (list_iter != this->segment_list_.end())
2611 {
2612 Output_segment* segment = *list_iter;
2613 Segment_states::const_iterator states_iter =
2614 segment_states->find(segment);
2615 if (states_iter != segment_states->end())
2616 {
2617 const Output_segment* copy = states_iter->second;
2618 // Shallow copy to restore states.
2619 *segment = *copy;
2620
2621 // Also fix up TLS and RELRO segment pointers as appropriate.
2622 if (segment->type() == elfcpp::PT_TLS)
2623 this->tls_segment_ = segment;
2624 else if (segment->type() == elfcpp::PT_GNU_RELRO)
2625 this->relro_segment_ = segment;
2626
2627 ++list_iter;
2628 }
2629 else
2630 {
2631 list_iter = this->segment_list_.erase(list_iter);
2632 // This is a segment created during section layout. It should be
2633 // safe to remove it since we should have removed all pointers to it.
2634 delete segment;
2635 }
2636 }
2637 }
2638
2639 // Clean up after relaxation so that sections can be laid out again.
2640
2641 void
2642 Layout::clean_up_after_relaxation()
2643 {
2644 // Restore the segments to point state just prior to the relaxation loop.
2645 Script_sections* script_section = this->script_options_->script_sections();
2646 script_section->release_segments();
2647 this->restore_segments(this->segment_states_);
2648
2649 // Reset section addresses and file offsets
2650 for (Section_list::iterator p = this->section_list_.begin();
2651 p != this->section_list_.end();
2652 ++p)
2653 {
2654 (*p)->restore_states();
2655
2656 // If an input section changes size because of relaxation,
2657 // we need to adjust the section offsets of all input sections.
2658 // after such a section.
2659 if ((*p)->section_offsets_need_adjustment())
2660 (*p)->adjust_section_offsets();
2661
2662 (*p)->reset_address_and_file_offset();
2663 }
2664
2665 // Reset special output object address and file offsets.
2666 for (Data_list::iterator p = this->special_output_list_.begin();
2667 p != this->special_output_list_.end();
2668 ++p)
2669 (*p)->reset_address_and_file_offset();
2670
2671 // A linker script may have created some output section data objects.
2672 // They are useless now.
2673 for (Output_section_data_list::const_iterator p =
2674 this->script_output_section_data_list_.begin();
2675 p != this->script_output_section_data_list_.end();
2676 ++p)
2677 delete *p;
2678 this->script_output_section_data_list_.clear();
2679
2680 // Special-case fill output objects are recreated each time through
2681 // the relaxation loop.
2682 this->reset_relax_output();
2683 }
2684
2685 void
2686 Layout::reset_relax_output()
2687 {
2688 for (Data_list::const_iterator p = this->relax_output_list_.begin();
2689 p != this->relax_output_list_.end();
2690 ++p)
2691 delete *p;
2692 this->relax_output_list_.clear();
2693 }
2694
2695 // Prepare for relaxation.
2696
2697 void
2698 Layout::prepare_for_relaxation()
2699 {
2700 // Create an relaxation debug check if in debugging mode.
2701 if (is_debugging_enabled(DEBUG_RELAXATION))
2702 this->relaxation_debug_check_ = new Relaxation_debug_check();
2703
2704 // Save segment states.
2705 this->segment_states_ = new Segment_states();
2706 this->save_segments(this->segment_states_);
2707
2708 for(Section_list::const_iterator p = this->section_list_.begin();
2709 p != this->section_list_.end();
2710 ++p)
2711 (*p)->save_states();
2712
2713 if (is_debugging_enabled(DEBUG_RELAXATION))
2714 this->relaxation_debug_check_->check_output_data_for_reset_values(
2715 this->section_list_, this->special_output_list_,
2716 this->relax_output_list_);
2717
2718 // Also enable recording of output section data from scripts.
2719 this->record_output_section_data_from_script_ = true;
2720 }
2721
2722 // If the user set the address of the text segment, that may not be
2723 // compatible with putting the segment headers and file headers into
2724 // that segment. For isolate_execinstr() targets, it's the rodata
2725 // segment rather than text where we might put the headers.
2726 static inline bool
2727 load_seg_unusable_for_headers(const Target* target)
2728 {
2729 const General_options& options = parameters->options();
2730 if (target->isolate_execinstr())
2731 return (options.user_set_Trodata_segment()
2732 && options.Trodata_segment() % target->abi_pagesize() != 0);
2733 else
2734 return (options.user_set_Ttext()
2735 && options.Ttext() % target->abi_pagesize() != 0);
2736 }
2737
2738 // Relaxation loop body: If target has no relaxation, this runs only once
2739 // Otherwise, the target relaxation hook is called at the end of
2740 // each iteration. If the hook returns true, it means re-layout of
2741 // section is required.
2742 //
2743 // The number of segments created by a linking script without a PHDRS
2744 // clause may be affected by section sizes and alignments. There is
2745 // a remote chance that relaxation causes different number of PT_LOAD
2746 // segments are created and sections are attached to different segments.
2747 // Therefore, we always throw away all segments created during section
2748 // layout. In order to be able to restart the section layout, we keep
2749 // a copy of the segment list right before the relaxation loop and use
2750 // that to restore the segments.
2751 //
2752 // PASS is the current relaxation pass number.
2753 // SYMTAB is a symbol table.
2754 // PLOAD_SEG is the address of a pointer for the load segment.
2755 // PHDR_SEG is a pointer to the PHDR segment.
2756 // SEGMENT_HEADERS points to the output segment header.
2757 // FILE_HEADER points to the output file header.
2758 // PSHNDX is the address to store the output section index.
2759
2760 off_t inline
2761 Layout::relaxation_loop_body(
2762 int pass,
2763 Target* target,
2764 Symbol_table* symtab,
2765 Output_segment** pload_seg,
2766 Output_segment* phdr_seg,
2767 Output_segment_headers* segment_headers,
2768 Output_file_header* file_header,
2769 unsigned int* pshndx)
2770 {
2771 // If this is not the first iteration, we need to clean up after
2772 // relaxation so that we can lay out the sections again.
2773 if (pass != 0)
2774 this->clean_up_after_relaxation();
2775
2776 // If there is a SECTIONS clause, put all the input sections into
2777 // the required order.
2778 Output_segment* load_seg;
2779 if (this->script_options_->saw_sections_clause())
2780 load_seg = this->set_section_addresses_from_script(symtab);
2781 else if (parameters->options().relocatable())
2782 load_seg = NULL;
2783 else
2784 load_seg = this->find_first_load_seg(target);
2785
2786 if (parameters->options().oformat_enum()
2787 != General_options::OBJECT_FORMAT_ELF)
2788 load_seg = NULL;
2789
2790 if (load_seg_unusable_for_headers(target))
2791 {
2792 load_seg = NULL;
2793 phdr_seg = NULL;
2794 }
2795
2796 gold_assert(phdr_seg == NULL
2797 || load_seg != NULL
2798 || this->script_options_->saw_sections_clause());
2799
2800 // If the address of the load segment we found has been set by
2801 // --section-start rather than by a script, then adjust the VMA and
2802 // LMA downward if possible to include the file and section headers.
2803 uint64_t header_gap = 0;
2804 if (load_seg != NULL
2805 && load_seg->are_addresses_set()
2806 && !this->script_options_->saw_sections_clause()
2807 && !parameters->options().relocatable())
2808 {
2809 file_header->finalize_data_size();
2810 segment_headers->finalize_data_size();
2811 size_t sizeof_headers = (file_header->data_size()
2812 + segment_headers->data_size());
2813 const uint64_t abi_pagesize = target->abi_pagesize();
2814 uint64_t hdr_paddr = load_seg->paddr() - sizeof_headers;
2815 hdr_paddr &= ~(abi_pagesize - 1);
2816 uint64_t subtract = load_seg->paddr() - hdr_paddr;
2817 if (load_seg->paddr() < subtract || load_seg->vaddr() < subtract)
2818 load_seg = NULL;
2819 else
2820 {
2821 load_seg->set_addresses(load_seg->vaddr() - subtract,
2822 load_seg->paddr() - subtract);
2823 header_gap = subtract - sizeof_headers;
2824 }
2825 }
2826
2827 // Lay out the segment headers.
2828 if (!parameters->options().relocatable())
2829 {
2830 gold_assert(segment_headers != NULL);
2831 if (header_gap != 0 && load_seg != NULL)
2832 {
2833 Output_data_zero_fill* z = new Output_data_zero_fill(header_gap, 1);
2834 load_seg->add_initial_output_data(z);
2835 }
2836 if (load_seg != NULL)
2837 load_seg->add_initial_output_data(segment_headers);
2838 if (phdr_seg != NULL)
2839 phdr_seg->add_initial_output_data(segment_headers);
2840 }
2841
2842 // Lay out the file header.
2843 if (load_seg != NULL)
2844 load_seg->add_initial_output_data(file_header);
2845
2846 if (this->script_options_->saw_phdrs_clause()
2847 && !parameters->options().relocatable())
2848 {
2849 // Support use of FILEHDRS and PHDRS attachments in a PHDRS
2850 // clause in a linker script.
2851 Script_sections* ss = this->script_options_->script_sections();
2852 ss->put_headers_in_phdrs(file_header, segment_headers);
2853 }
2854
2855 // We set the output section indexes in set_segment_offsets and
2856 // set_section_indexes.
2857 *pshndx = 1;
2858
2859 // Set the file offsets of all the segments, and all the sections
2860 // they contain.
2861 off_t off;
2862 if (!parameters->options().relocatable())
2863 off = this->set_segment_offsets(target, load_seg, pshndx);
2864 else
2865 off = this->set_relocatable_section_offsets(file_header, pshndx);
2866
2867 // Verify that the dummy relaxation does not change anything.
2868 if (is_debugging_enabled(DEBUG_RELAXATION))
2869 {
2870 if (pass == 0)
2871 this->relaxation_debug_check_->read_sections(this->section_list_);
2872 else
2873 this->relaxation_debug_check_->verify_sections(this->section_list_);
2874 }
2875
2876 *pload_seg = load_seg;
2877 return off;
2878 }
2879
2880 // Search the list of patterns and find the position of the given section
2881 // name in the output section. If the section name matches a glob
2882 // pattern and a non-glob name, then the non-glob position takes
2883 // precedence. Return 0 if no match is found.
2884
2885 unsigned int
2886 Layout::find_section_order_index(const std::string& section_name)
2887 {
2888 Unordered_map<std::string, unsigned int>::iterator map_it;
2889 map_it = this->input_section_position_.find(section_name);
2890 if (map_it != this->input_section_position_.end())
2891 return map_it->second;
2892
2893 // Absolute match failed. Linear search the glob patterns.
2894 std::vector<std::string>::iterator it;
2895 for (it = this->input_section_glob_.begin();
2896 it != this->input_section_glob_.end();
2897 ++it)
2898 {
2899 if (fnmatch((*it).c_str(), section_name.c_str(), FNM_NOESCAPE) == 0)
2900 {
2901 map_it = this->input_section_position_.find(*it);
2902 gold_assert(map_it != this->input_section_position_.end());
2903 return map_it->second;
2904 }
2905 }
2906 return 0;
2907 }
2908
2909 // Read the sequence of input sections from the file specified with
2910 // option --section-ordering-file.
2911
2912 void
2913 Layout::read_layout_from_file()
2914 {
2915 const char* filename = parameters->options().section_ordering_file();
2916 std::ifstream in;
2917 std::string line;
2918
2919 in.open(filename);
2920 if (!in)
2921 gold_fatal(_("unable to open --section-ordering-file file %s: %s"),
2922 filename, strerror(errno));
2923
2924 std::getline(in, line); // this chops off the trailing \n, if any
2925 unsigned int position = 1;
2926 this->set_section_ordering_specified();
2927
2928 while (in)
2929 {
2930 if (!line.empty() && line[line.length() - 1] == '\r') // Windows
2931 line.resize(line.length() - 1);
2932 // Ignore comments, beginning with '#'
2933 if (line[0] == '#')
2934 {
2935 std::getline(in, line);
2936 continue;
2937 }
2938 this->input_section_position_[line] = position;
2939 // Store all glob patterns in a vector.
2940 if (is_wildcard_string(line.c_str()))
2941 this->input_section_glob_.push_back(line);
2942 position++;
2943 std::getline(in, line);
2944 }
2945 }
2946
2947 // Finalize the layout. When this is called, we have created all the
2948 // output sections and all the output segments which are based on
2949 // input sections. We have several things to do, and we have to do
2950 // them in the right order, so that we get the right results correctly
2951 // and efficiently.
2952
2953 // 1) Finalize the list of output segments and create the segment
2954 // table header.
2955
2956 // 2) Finalize the dynamic symbol table and associated sections.
2957
2958 // 3) Determine the final file offset of all the output segments.
2959
2960 // 4) Determine the final file offset of all the SHF_ALLOC output
2961 // sections.
2962
2963 // 5) Create the symbol table sections and the section name table
2964 // section.
2965
2966 // 6) Finalize the symbol table: set symbol values to their final
2967 // value and make a final determination of which symbols are going
2968 // into the output symbol table.
2969
2970 // 7) Create the section table header.
2971
2972 // 8) Determine the final file offset of all the output sections which
2973 // are not SHF_ALLOC, including the section table header.
2974
2975 // 9) Finalize the ELF file header.
2976
2977 // This function returns the size of the output file.
2978
2979 off_t
2980 Layout::finalize(const Input_objects* input_objects, Symbol_table* symtab,
2981 Target* target, const Task* task)
2982 {
2983 unsigned int local_dynamic_count = 0;
2984 unsigned int forced_local_dynamic_count = 0;
2985
2986 target->finalize_sections(this, input_objects, symtab);
2987
2988 this->count_local_symbols(task, input_objects);
2989
2990 this->link_stabs_sections();
2991
2992 Output_segment* phdr_seg = NULL;
2993 if (!parameters->options().relocatable() && !parameters->doing_static_link())
2994 {
2995 // There was a dynamic object in the link. We need to create
2996 // some information for the dynamic linker.
2997
2998 // Create the PT_PHDR segment which will hold the program
2999 // headers.
3000 if (!this->script_options_->saw_phdrs_clause())
3001 phdr_seg = this->make_output_segment(elfcpp::PT_PHDR, elfcpp::PF_R);
3002
3003 // Create the dynamic symbol table, including the hash table.
3004 Output_section* dynstr;
3005 std::vector<Symbol*> dynamic_symbols;
3006 Versions versions(*this->script_options()->version_script_info(),
3007 &this->dynpool_);
3008 this->create_dynamic_symtab(input_objects, symtab, &dynstr,
3009 &local_dynamic_count,
3010 &forced_local_dynamic_count,
3011 &dynamic_symbols,
3012 &versions);
3013
3014 // Create the .interp section to hold the name of the
3015 // interpreter, and put it in a PT_INTERP segment. Don't do it
3016 // if we saw a .interp section in an input file.
3017 if ((!parameters->options().shared()
3018 || parameters->options().dynamic_linker() != NULL)
3019 && this->interp_segment_ == NULL)
3020 this->create_interp(target);
3021
3022 // Finish the .dynamic section to hold the dynamic data, and put
3023 // it in a PT_DYNAMIC segment.
3024 this->finish_dynamic_section(input_objects, symtab);
3025
3026 // We should have added everything we need to the dynamic string
3027 // table.
3028 this->dynpool_.set_string_offsets();
3029
3030 // Create the version sections. We can't do this until the
3031 // dynamic string table is complete.
3032 this->create_version_sections(&versions, symtab,
3033 (local_dynamic_count
3034 + forced_local_dynamic_count),
3035 dynamic_symbols, dynstr);
3036
3037 // Set the size of the _DYNAMIC symbol. We can't do this until
3038 // after we call create_version_sections.
3039 this->set_dynamic_symbol_size(symtab);
3040 }
3041
3042 // Create segment headers.
3043 Output_segment_headers* segment_headers =
3044 (parameters->options().relocatable()
3045 ? NULL
3046 : new Output_segment_headers(this->segment_list_));
3047
3048 // Lay out the file header.
3049 Output_file_header* file_header = new Output_file_header(target, symtab,
3050 segment_headers);
3051
3052 this->special_output_list_.push_back(file_header);
3053 if (segment_headers != NULL)
3054 this->special_output_list_.push_back(segment_headers);
3055
3056 // Find approriate places for orphan output sections if we are using
3057 // a linker script.
3058 if (this->script_options_->saw_sections_clause())
3059 this->place_orphan_sections_in_script();
3060
3061 Output_segment* load_seg;
3062 off_t off;
3063 unsigned int shndx;
3064 int pass = 0;
3065
3066 // Take a snapshot of the section layout as needed.
3067 if (target->may_relax())
3068 this->prepare_for_relaxation();
3069
3070 // Run the relaxation loop to lay out sections.
3071 do
3072 {
3073 off = this->relaxation_loop_body(pass, target, symtab, &load_seg,
3074 phdr_seg, segment_headers, file_header,
3075 &shndx);
3076 pass++;
3077 }
3078 while (target->may_relax()
3079 && target->relax(pass, input_objects, symtab, this, task));
3080
3081 // If there is a load segment that contains the file and program headers,
3082 // provide a symbol __ehdr_start pointing there.
3083 // A program can use this to examine itself robustly.
3084 Symbol *ehdr_start = symtab->lookup("__ehdr_start");
3085 if (ehdr_start != NULL && ehdr_start->is_predefined())
3086 {
3087 if (load_seg != NULL)
3088 ehdr_start->set_output_segment(load_seg, Symbol::SEGMENT_START);
3089 else
3090 ehdr_start->set_undefined();
3091 }
3092
3093 // Set the file offsets of all the non-data sections we've seen so
3094 // far which don't have to wait for the input sections. We need
3095 // this in order to finalize local symbols in non-allocated
3096 // sections.
3097 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
3098
3099 // Set the section indexes of all unallocated sections seen so far,
3100 // in case any of them are somehow referenced by a symbol.
3101 shndx = this->set_section_indexes(shndx);
3102
3103 // Create the symbol table sections.
3104 this->create_symtab_sections(input_objects, symtab, shndx, &off,
3105 local_dynamic_count);
3106 if (!parameters->doing_static_link())
3107 this->assign_local_dynsym_offsets(input_objects);
3108
3109 // Process any symbol assignments from a linker script. This must
3110 // be called after the symbol table has been finalized.
3111 this->script_options_->finalize_symbols(symtab, this);
3112
3113 // Create the incremental inputs sections.
3114 if (this->incremental_inputs_)
3115 {
3116 this->incremental_inputs_->finalize();
3117 this->create_incremental_info_sections(symtab);
3118 }
3119
3120 // Create the .shstrtab section.
3121 Output_section* shstrtab_section = this->create_shstrtab();
3122
3123 // Set the file offsets of the rest of the non-data sections which
3124 // don't have to wait for the input sections.
3125 off = this->set_section_offsets(off, BEFORE_INPUT_SECTIONS_PASS);
3126
3127 // Now that all sections have been created, set the section indexes
3128 // for any sections which haven't been done yet.
3129 shndx = this->set_section_indexes(shndx);
3130
3131 // Create the section table header.
3132 this->create_shdrs(shstrtab_section, &off);
3133
3134 // If there are no sections which require postprocessing, we can
3135 // handle the section names now, and avoid a resize later.
3136 if (!this->any_postprocessing_sections_)
3137 {
3138 off = this->set_section_offsets(off,
3139 POSTPROCESSING_SECTIONS_PASS);
3140 off =
3141 this->set_section_offsets(off,
3142 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
3143 }
3144
3145 file_header->set_section_info(this->section_headers_, shstrtab_section);
3146
3147 // Now we know exactly where everything goes in the output file
3148 // (except for non-allocated sections which require postprocessing).
3149 Output_data::layout_complete();
3150
3151 this->output_file_size_ = off;
3152
3153 return off;
3154 }
3155
3156 // Create a note header following the format defined in the ELF ABI.
3157 // NAME is the name, NOTE_TYPE is the type, SECTION_NAME is the name
3158 // of the section to create, DESCSZ is the size of the descriptor.
3159 // ALLOCATE is true if the section should be allocated in memory.
3160 // This returns the new note section. It sets *TRAILING_PADDING to
3161 // the number of trailing zero bytes required.
3162
3163 Output_section*
3164 Layout::create_note(const char* name, int note_type,
3165 const char* section_name, size_t descsz,
3166 bool allocate, size_t* trailing_padding)
3167 {
3168 // Authorities all agree that the values in a .note field should
3169 // be aligned on 4-byte boundaries for 32-bit binaries. However,
3170 // they differ on what the alignment is for 64-bit binaries.
3171 // The GABI says unambiguously they take 8-byte alignment:
3172 // http://sco.com/developers/gabi/latest/ch5.pheader.html#note_section
3173 // Other documentation says alignment should always be 4 bytes:
3174 // http://www.netbsd.org/docs/kernel/elf-notes.html#note-format
3175 // GNU ld and GNU readelf both support the latter (at least as of
3176 // version 2.16.91), and glibc always generates the latter for
3177 // .note.ABI-tag (as of version 1.6), so that's the one we go with
3178 // here.
3179 #ifdef GABI_FORMAT_FOR_DOTNOTE_SECTION // This is not defined by default.
3180 const int size = parameters->target().get_size();
3181 #else
3182 const int size = 32;
3183 #endif
3184
3185 // The contents of the .note section.
3186 size_t namesz = strlen(name) + 1;
3187 size_t aligned_namesz = align_address(namesz, size / 8);
3188 size_t aligned_descsz = align_address(descsz, size / 8);
3189
3190 size_t notehdrsz = 3 * (size / 8) + aligned_namesz;
3191
3192 unsigned char* buffer = new unsigned char[notehdrsz];
3193 memset(buffer, 0, notehdrsz);
3194
3195 bool is_big_endian = parameters->target().is_big_endian();
3196
3197 if (size == 32)
3198 {
3199 if (!is_big_endian)
3200 {
3201 elfcpp::Swap<32, false>::writeval(buffer, namesz);
3202 elfcpp::Swap<32, false>::writeval(buffer + 4, descsz);
3203 elfcpp::Swap<32, false>::writeval(buffer + 8, note_type);
3204 }
3205 else
3206 {
3207 elfcpp::Swap<32, true>::writeval(buffer, namesz);
3208 elfcpp::Swap<32, true>::writeval(buffer + 4, descsz);
3209 elfcpp::Swap<32, true>::writeval(buffer + 8, note_type);
3210 }
3211 }
3212 else if (size == 64)
3213 {
3214 if (!is_big_endian)
3215 {
3216 elfcpp::Swap<64, false>::writeval(buffer, namesz);
3217 elfcpp::Swap<64, false>::writeval(buffer + 8, descsz);
3218 elfcpp::Swap<64, false>::writeval(buffer + 16, note_type);
3219 }
3220 else
3221 {
3222 elfcpp::Swap<64, true>::writeval(buffer, namesz);
3223 elfcpp::Swap<64, true>::writeval(buffer + 8, descsz);
3224 elfcpp::Swap<64, true>::writeval(buffer + 16, note_type);
3225 }
3226 }
3227 else
3228 gold_unreachable();
3229
3230 memcpy(buffer + 3 * (size / 8), name, namesz);
3231
3232 elfcpp::Elf_Xword flags = 0;
3233 Output_section_order order = ORDER_INVALID;
3234 if (allocate)
3235 {
3236 flags = elfcpp::SHF_ALLOC;
3237 order = ORDER_RO_NOTE;
3238 }
3239 Output_section* os = this->choose_output_section(NULL, section_name,
3240 elfcpp::SHT_NOTE,
3241 flags, false, order, false,
3242 false, true);
3243 if (os == NULL)
3244 return NULL;
3245
3246 Output_section_data* posd = new Output_data_const_buffer(buffer, notehdrsz,
3247 size / 8,
3248 "** note header");
3249 os->add_output_section_data(posd);
3250
3251 *trailing_padding = aligned_descsz - descsz;
3252
3253 return os;
3254 }
3255
3256 // Create a .note.gnu.property section to record program properties
3257 // accumulated from the input files.
3258
3259 void
3260 Layout::create_gnu_properties_note()
3261 {
3262 parameters->target().finalize_gnu_properties(this);
3263
3264 if (this->gnu_properties_.empty())
3265 return;
3266
3267 const unsigned int size = parameters->target().get_size();
3268 const bool is_big_endian = parameters->target().is_big_endian();
3269
3270 // Compute the total size of the properties array.
3271 size_t descsz = 0;
3272 for (Gnu_properties::const_iterator prop = this->gnu_properties_.begin();
3273 prop != this->gnu_properties_.end();
3274 ++prop)
3275 {
3276 descsz = align_address(descsz + 8 + prop->second.pr_datasz, size / 8);
3277 }
3278
3279 // Create the note section.
3280 size_t trailing_padding;
3281 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_PROPERTY_TYPE_0,
3282 ".note.gnu.property", descsz,
3283 true, &trailing_padding);
3284 if (os == NULL)
3285 return;
3286 gold_assert(trailing_padding == 0);
3287
3288 // Allocate and fill the properties array.
3289 unsigned char* desc = new unsigned char[descsz];
3290 unsigned char* p = desc;
3291 for (Gnu_properties::const_iterator prop = this->gnu_properties_.begin();
3292 prop != this->gnu_properties_.end();
3293 ++prop)
3294 {
3295 size_t datasz = prop->second.pr_datasz;
3296 size_t aligned_datasz = align_address(prop->second.pr_datasz, size / 8);
3297 write_sized_value(prop->first, 4, p, is_big_endian);
3298 write_sized_value(datasz, 4, p + 4, is_big_endian);
3299 memcpy(p + 8, prop->second.pr_data, datasz);
3300 if (aligned_datasz > datasz)
3301 memset(p + 8 + datasz, 0, aligned_datasz - datasz);
3302 p += 8 + aligned_datasz;
3303 }
3304 Output_section_data* posd = new Output_data_const(desc, descsz, 4);
3305 os->add_output_section_data(posd);
3306 }
3307
3308 // For an executable or shared library, create a note to record the
3309 // version of gold used to create the binary.
3310
3311 void
3312 Layout::create_gold_note()
3313 {
3314 if (parameters->options().relocatable()
3315 || parameters->incremental_update())
3316 return;
3317
3318 std::string desc = std::string("gold ") + gold::get_version_string();
3319
3320 size_t trailing_padding;
3321 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_GOLD_VERSION,
3322 ".note.gnu.gold-version", desc.size(),
3323 false, &trailing_padding);
3324 if (os == NULL)
3325 return;
3326
3327 Output_section_data* posd = new Output_data_const(desc, 4);
3328 os->add_output_section_data(posd);
3329
3330 if (trailing_padding > 0)
3331 {
3332 posd = new Output_data_zero_fill(trailing_padding, 0);
3333 os->add_output_section_data(posd);
3334 }
3335 }
3336
3337 // Record whether the stack should be executable. This can be set
3338 // from the command line using the -z execstack or -z noexecstack
3339 // options. Otherwise, if any input file has a .note.GNU-stack
3340 // section with the SHF_EXECINSTR flag set, the stack should be
3341 // executable. Otherwise, if at least one input file a
3342 // .note.GNU-stack section, and some input file has no .note.GNU-stack
3343 // section, we use the target default for whether the stack should be
3344 // executable. If -z stack-size was used to set a p_memsz value for
3345 // PT_GNU_STACK, we generate the segment regardless. Otherwise, we
3346 // don't generate a stack note. When generating a object file, we
3347 // create a .note.GNU-stack section with the appropriate marking.
3348 // When generating an executable or shared library, we create a
3349 // PT_GNU_STACK segment.
3350
3351 void
3352 Layout::create_stack_segment()
3353 {
3354 bool is_stack_executable;
3355 if (parameters->options().is_execstack_set())
3356 {
3357 is_stack_executable = parameters->options().is_stack_executable();
3358 if (!is_stack_executable
3359 && this->input_requires_executable_stack_
3360 && parameters->options().warn_execstack())
3361 gold_warning(_("one or more inputs require executable stack, "
3362 "but -z noexecstack was given"));
3363 }
3364 else if (!this->input_with_gnu_stack_note_
3365 && (!parameters->options().user_set_stack_size()
3366 || parameters->options().relocatable()))
3367 return;
3368 else
3369 {
3370 if (this->input_requires_executable_stack_)
3371 is_stack_executable = true;
3372 else if (this->input_without_gnu_stack_note_)
3373 is_stack_executable =
3374 parameters->target().is_default_stack_executable();
3375 else
3376 is_stack_executable = false;
3377 }
3378
3379 if (parameters->options().relocatable())
3380 {
3381 const char* name = this->namepool_.add(".note.GNU-stack", false, NULL);
3382 elfcpp::Elf_Xword flags = 0;
3383 if (is_stack_executable)
3384 flags |= elfcpp::SHF_EXECINSTR;
3385 this->make_output_section(name, elfcpp::SHT_PROGBITS, flags,
3386 ORDER_INVALID, false);
3387 }
3388 else
3389 {
3390 if (this->script_options_->saw_phdrs_clause())
3391 return;
3392 int flags = elfcpp::PF_R | elfcpp::PF_W;
3393 if (is_stack_executable)
3394 flags |= elfcpp::PF_X;
3395 Output_segment* seg =
3396 this->make_output_segment(elfcpp::PT_GNU_STACK, flags);
3397 seg->set_size(parameters->options().stack_size());
3398 // BFD lets targets override this default alignment, but the only
3399 // targets that do so are ones that Gold does not support so far.
3400 seg->set_minimum_p_align(16);
3401 }
3402 }
3403
3404 // If --build-id was used, set up the build ID note.
3405
3406 void
3407 Layout::create_build_id()
3408 {
3409 if (!parameters->options().user_set_build_id())
3410 return;
3411
3412 const char* style = parameters->options().build_id();
3413 if (strcmp(style, "none") == 0)
3414 return;
3415
3416 // Set DESCSZ to the size of the note descriptor. When possible,
3417 // set DESC to the note descriptor contents.
3418 size_t descsz;
3419 std::string desc;
3420 if (strcmp(style, "md5") == 0)
3421 descsz = 128 / 8;
3422 else if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
3423 descsz = 160 / 8;
3424 else if (strcmp(style, "uuid") == 0)
3425 {
3426 #ifndef __MINGW32__
3427 const size_t uuidsz = 128 / 8;
3428
3429 char buffer[uuidsz];
3430 memset(buffer, 0, uuidsz);
3431
3432 int descriptor = open_descriptor(-1, "/dev/urandom", O_RDONLY);
3433 if (descriptor < 0)
3434 gold_error(_("--build-id=uuid failed: could not open /dev/urandom: %s"),
3435 strerror(errno));
3436 else
3437 {
3438 ssize_t got = ::read(descriptor, buffer, uuidsz);
3439 release_descriptor(descriptor, true);
3440 if (got < 0)
3441 gold_error(_("/dev/urandom: read failed: %s"), strerror(errno));
3442 else if (static_cast<size_t>(got) != uuidsz)
3443 gold_error(_("/dev/urandom: expected %zu bytes, got %zd bytes"),
3444 uuidsz, got);
3445 }
3446
3447 desc.assign(buffer, uuidsz);
3448 descsz = uuidsz;
3449 #else // __MINGW32__
3450 UUID uuid;
3451 typedef RPC_STATUS (RPC_ENTRY *UuidCreateFn)(UUID *Uuid);
3452
3453 HMODULE rpc_library = LoadLibrary("rpcrt4.dll");
3454 if (!rpc_library)
3455 gold_error(_("--build-id=uuid failed: could not load rpcrt4.dll"));
3456 else
3457 {
3458 UuidCreateFn uuid_create = reinterpret_cast<UuidCreateFn>(
3459 GetProcAddress(rpc_library, "UuidCreate"));
3460 if (!uuid_create)
3461 gold_error(_("--build-id=uuid failed: could not find UuidCreate"));
3462 else if (uuid_create(&uuid) != RPC_S_OK)
3463 gold_error(_("__build_id=uuid failed: call UuidCreate() failed"));
3464 FreeLibrary(rpc_library);
3465 }
3466 desc.assign(reinterpret_cast<const char *>(&uuid), sizeof(UUID));
3467 descsz = sizeof(UUID);
3468 #endif // __MINGW32__
3469 }
3470 else if (strncmp(style, "0x", 2) == 0)
3471 {
3472 hex_init();
3473 const char* p = style + 2;
3474 while (*p != '\0')
3475 {
3476 if (hex_p(p[0]) && hex_p(p[1]))
3477 {
3478 char c = (hex_value(p[0]) << 4) | hex_value(p[1]);
3479 desc += c;
3480 p += 2;
3481 }
3482 else if (*p == '-' || *p == ':')
3483 ++p;
3484 else
3485 gold_fatal(_("--build-id argument '%s' not a valid hex number"),
3486 style);
3487 }
3488 descsz = desc.size();
3489 }
3490 else
3491 gold_fatal(_("unrecognized --build-id argument '%s'"), style);
3492
3493 // Create the note.
3494 size_t trailing_padding;
3495 Output_section* os = this->create_note("GNU", elfcpp::NT_GNU_BUILD_ID,
3496 ".note.gnu.build-id", descsz, true,
3497 &trailing_padding);
3498 if (os == NULL)
3499 return;
3500
3501 if (!desc.empty())
3502 {
3503 // We know the value already, so we fill it in now.
3504 gold_assert(desc.size() == descsz);
3505
3506 Output_section_data* posd = new Output_data_const(desc, 4);
3507 os->add_output_section_data(posd);
3508
3509 if (trailing_padding != 0)
3510 {
3511 posd = new Output_data_zero_fill(trailing_padding, 0);
3512 os->add_output_section_data(posd);
3513 }
3514 }
3515 else
3516 {
3517 // We need to compute a checksum after we have completed the
3518 // link.
3519 gold_assert(trailing_padding == 0);
3520 this->build_id_note_ = new Output_data_zero_fill(descsz, 4);
3521 os->add_output_section_data(this->build_id_note_);
3522 }
3523 }
3524
3525 // If we have both .stabXX and .stabXXstr sections, then the sh_link
3526 // field of the former should point to the latter. I'm not sure who
3527 // started this, but the GNU linker does it, and some tools depend
3528 // upon it.
3529
3530 void
3531 Layout::link_stabs_sections()
3532 {
3533 if (!this->have_stabstr_section_)
3534 return;
3535
3536 for (Section_list::iterator p = this->section_list_.begin();
3537 p != this->section_list_.end();
3538 ++p)
3539 {
3540 if ((*p)->type() != elfcpp::SHT_STRTAB)
3541 continue;
3542
3543 const char* name = (*p)->name();
3544 if (strncmp(name, ".stab", 5) != 0)
3545 continue;
3546
3547 size_t len = strlen(name);
3548 if (strcmp(name + len - 3, "str") != 0)
3549 continue;
3550
3551 std::string stab_name(name, len - 3);
3552 Output_section* stab_sec;
3553 stab_sec = this->find_output_section(stab_name.c_str());
3554 if (stab_sec != NULL)
3555 stab_sec->set_link_section(*p);
3556 }
3557 }
3558
3559 // Create .gnu_incremental_inputs and related sections needed
3560 // for the next run of incremental linking to check what has changed.
3561
3562 void
3563 Layout::create_incremental_info_sections(Symbol_table* symtab)
3564 {
3565 Incremental_inputs* incr = this->incremental_inputs_;
3566
3567 gold_assert(incr != NULL);
3568
3569 // Create the .gnu_incremental_inputs, _symtab, and _relocs input sections.
3570 incr->create_data_sections(symtab);
3571
3572 // Add the .gnu_incremental_inputs section.
3573 const char* incremental_inputs_name =
3574 this->namepool_.add(".gnu_incremental_inputs", false, NULL);
3575 Output_section* incremental_inputs_os =
3576 this->make_output_section(incremental_inputs_name,
3577 elfcpp::SHT_GNU_INCREMENTAL_INPUTS, 0,
3578 ORDER_INVALID, false);
3579 incremental_inputs_os->add_output_section_data(incr->inputs_section());
3580
3581 // Add the .gnu_incremental_symtab section.
3582 const char* incremental_symtab_name =
3583 this->namepool_.add(".gnu_incremental_symtab", false, NULL);
3584 Output_section* incremental_symtab_os =
3585 this->make_output_section(incremental_symtab_name,
3586 elfcpp::SHT_GNU_INCREMENTAL_SYMTAB, 0,
3587 ORDER_INVALID, false);
3588 incremental_symtab_os->add_output_section_data(incr->symtab_section());
3589 incremental_symtab_os->set_entsize(4);
3590
3591 // Add the .gnu_incremental_relocs section.
3592 const char* incremental_relocs_name =
3593 this->namepool_.add(".gnu_incremental_relocs", false, NULL);
3594 Output_section* incremental_relocs_os =
3595 this->make_output_section(incremental_relocs_name,
3596 elfcpp::SHT_GNU_INCREMENTAL_RELOCS, 0,
3597 ORDER_INVALID, false);
3598 incremental_relocs_os->add_output_section_data(incr->relocs_section());
3599 incremental_relocs_os->set_entsize(incr->relocs_entsize());
3600
3601 // Add the .gnu_incremental_got_plt section.
3602 const char* incremental_got_plt_name =
3603 this->namepool_.add(".gnu_incremental_got_plt", false, NULL);
3604 Output_section* incremental_got_plt_os =
3605 this->make_output_section(incremental_got_plt_name,
3606 elfcpp::SHT_GNU_INCREMENTAL_GOT_PLT, 0,
3607 ORDER_INVALID, false);
3608 incremental_got_plt_os->add_output_section_data(incr->got_plt_section());
3609
3610 // Add the .gnu_incremental_strtab section.
3611 const char* incremental_strtab_name =
3612 this->namepool_.add(".gnu_incremental_strtab", false, NULL);
3613 Output_section* incremental_strtab_os = this->make_output_section(incremental_strtab_name,
3614 elfcpp::SHT_STRTAB, 0,
3615 ORDER_INVALID, false);
3616 Output_data_strtab* strtab_data =
3617 new Output_data_strtab(incr->get_stringpool());
3618 incremental_strtab_os->add_output_section_data(strtab_data);
3619
3620 incremental_inputs_os->set_after_input_sections();
3621 incremental_symtab_os->set_after_input_sections();
3622 incremental_relocs_os->set_after_input_sections();
3623 incremental_got_plt_os->set_after_input_sections();
3624
3625 incremental_inputs_os->set_link_section(incremental_strtab_os);
3626 incremental_symtab_os->set_link_section(incremental_inputs_os);
3627 incremental_relocs_os->set_link_section(incremental_inputs_os);
3628 incremental_got_plt_os->set_link_section(incremental_inputs_os);
3629 }
3630
3631 // Return whether SEG1 should be before SEG2 in the output file. This
3632 // is based entirely on the segment type and flags. When this is
3633 // called the segment addresses have normally not yet been set.
3634
3635 bool
3636 Layout::segment_precedes(const Output_segment* seg1,
3637 const Output_segment* seg2)
3638 {
3639 // In order to produce a stable ordering if we're called with the same pointer
3640 // return false.
3641 if (seg1 == seg2)
3642 return false;
3643
3644 elfcpp::Elf_Word type1 = seg1->type();
3645 elfcpp::Elf_Word type2 = seg2->type();
3646
3647 // The single PT_PHDR segment is required to precede any loadable
3648 // segment. We simply make it always first.
3649 if (type1 == elfcpp::PT_PHDR)
3650 {
3651 gold_assert(type2 != elfcpp::PT_PHDR);
3652 return true;
3653 }
3654 if (type2 == elfcpp::PT_PHDR)
3655 return false;
3656
3657 // The single PT_INTERP segment is required to precede any loadable
3658 // segment. We simply make it always second.
3659 if (type1 == elfcpp::PT_INTERP)
3660 {
3661 gold_assert(type2 != elfcpp::PT_INTERP);
3662 return true;
3663 }
3664 if (type2 == elfcpp::PT_INTERP)
3665 return false;
3666
3667 // We then put PT_LOAD segments before any other segments.
3668 if (type1 == elfcpp::PT_LOAD && type2 != elfcpp::PT_LOAD)
3669 return true;
3670 if (type2 == elfcpp::PT_LOAD && type1 != elfcpp::PT_LOAD)
3671 return false;
3672
3673 // We put the PT_TLS segment last except for the PT_GNU_RELRO
3674 // segment, because that is where the dynamic linker expects to find
3675 // it (this is just for efficiency; other positions would also work
3676 // correctly).
3677 if (type1 == elfcpp::PT_TLS
3678 && type2 != elfcpp::PT_TLS
3679 && type2 != elfcpp::PT_GNU_RELRO)
3680 return false;
3681 if (type2 == elfcpp::PT_TLS
3682 && type1 != elfcpp::PT_TLS
3683 && type1 != elfcpp::PT_GNU_RELRO)
3684 return true;
3685
3686 // We put the PT_GNU_RELRO segment last, because that is where the
3687 // dynamic linker expects to find it (as with PT_TLS, this is just
3688 // for efficiency).
3689 if (type1 == elfcpp::PT_GNU_RELRO && type2 != elfcpp::PT_GNU_RELRO)
3690 return false;
3691 if (type2 == elfcpp::PT_GNU_RELRO && type1 != elfcpp::PT_GNU_RELRO)
3692 return true;
3693
3694 const elfcpp::Elf_Word flags1 = seg1->flags();
3695 const elfcpp::Elf_Word flags2 = seg2->flags();
3696
3697 // The order of non-PT_LOAD segments is unimportant. We simply sort
3698 // by the numeric segment type and flags values. There should not
3699 // be more than one segment with the same type and flags, except
3700 // when a linker script specifies such.
3701 if (type1 != elfcpp::PT_LOAD)
3702 {
3703 if (type1 != type2)
3704 return type1 < type2;
3705 gold_assert(flags1 != flags2
3706 || this->script_options_->saw_phdrs_clause());
3707 return flags1 < flags2;
3708 }
3709
3710 // If the addresses are set already, sort by load address.
3711 if (seg1->are_addresses_set())
3712 {
3713 if (!seg2->are_addresses_set())
3714 return true;
3715
3716 unsigned int section_count1 = seg1->output_section_count();
3717 unsigned int section_count2 = seg2->output_section_count();
3718 if (section_count1 == 0 && section_count2 > 0)
3719 return true;
3720 if (section_count1 > 0 && section_count2 == 0)
3721 return false;
3722
3723 uint64_t paddr1 = (seg1->are_addresses_set()
3724 ? seg1->paddr()
3725 : seg1->first_section_load_address());
3726 uint64_t paddr2 = (seg2->are_addresses_set()
3727 ? seg2->paddr()
3728 : seg2->first_section_load_address());
3729
3730 if (paddr1 != paddr2)
3731 return paddr1 < paddr2;
3732 }
3733 else if (seg2->are_addresses_set())
3734 return false;
3735
3736 // A segment which holds large data comes after a segment which does
3737 // not hold large data.
3738 if (seg1->is_large_data_segment())
3739 {
3740 if (!seg2->is_large_data_segment())
3741 return false;
3742 }
3743 else if (seg2->is_large_data_segment())
3744 return true;
3745
3746 // Otherwise, we sort PT_LOAD segments based on the flags. Readonly
3747 // segments come before writable segments. Then writable segments
3748 // with data come before writable segments without data. Then
3749 // executable segments come before non-executable segments. Then
3750 // the unlikely case of a non-readable segment comes before the
3751 // normal case of a readable segment. If there are multiple
3752 // segments with the same type and flags, we require that the
3753 // address be set, and we sort by virtual address and then physical
3754 // address.
3755 if ((flags1 & elfcpp::PF_W) != (flags2 & elfcpp::PF_W))
3756 return (flags1 & elfcpp::PF_W) == 0;
3757 if ((flags1 & elfcpp::PF_W) != 0
3758 && seg1->has_any_data_sections() != seg2->has_any_data_sections())
3759 return seg1->has_any_data_sections();
3760 if ((flags1 & elfcpp::PF_X) != (flags2 & elfcpp::PF_X))
3761 return (flags1 & elfcpp::PF_X) != 0;
3762 if ((flags1 & elfcpp::PF_R) != (flags2 & elfcpp::PF_R))
3763 return (flags1 & elfcpp::PF_R) == 0;
3764
3765 // We shouldn't get here--we shouldn't create segments which we
3766 // can't distinguish. Unless of course we are using a weird linker
3767 // script or overlapping --section-start options. We could also get
3768 // here if plugins want unique segments for subsets of sections.
3769 gold_assert(this->script_options_->saw_phdrs_clause()
3770 || parameters->options().any_section_start()
3771 || this->is_unique_segment_for_sections_specified()
3772 || parameters->options().text_unlikely_segment());
3773 return false;
3774 }
3775
3776 // Increase OFF so that it is congruent to ADDR modulo ABI_PAGESIZE.
3777
3778 static off_t
3779 align_file_offset(off_t off, uint64_t addr, uint64_t abi_pagesize)
3780 {
3781 uint64_t unsigned_off = off;
3782 uint64_t aligned_off = ((unsigned_off & ~(abi_pagesize - 1))
3783 | (addr & (abi_pagesize - 1)));
3784 if (aligned_off < unsigned_off)
3785 aligned_off += abi_pagesize;
3786 return aligned_off;
3787 }
3788
3789 // On targets where the text segment contains only executable code,
3790 // a non-executable segment is never the text segment.
3791
3792 static inline bool
3793 is_text_segment(const Target* target, const Output_segment* seg)
3794 {
3795 elfcpp::Elf_Xword flags = seg->flags();
3796 if ((flags & elfcpp::PF_W) != 0)
3797 return false;
3798 if ((flags & elfcpp::PF_X) == 0)
3799 return !target->isolate_execinstr();
3800 return true;
3801 }
3802
3803 // Set the file offsets of all the segments, and all the sections they
3804 // contain. They have all been created. LOAD_SEG must be laid out
3805 // first. Return the offset of the data to follow.
3806
3807 off_t
3808 Layout::set_segment_offsets(const Target* target, Output_segment* load_seg,
3809 unsigned int* pshndx)
3810 {
3811 // Sort them into the final order. We use a stable sort so that we
3812 // don't randomize the order of indistinguishable segments created
3813 // by linker scripts.
3814 std::stable_sort(this->segment_list_.begin(), this->segment_list_.end(),
3815 Layout::Compare_segments(this));
3816
3817 // Find the PT_LOAD segments, and set their addresses and offsets
3818 // and their section's addresses and offsets.
3819 uint64_t start_addr;
3820 if (parameters->options().user_set_Ttext())
3821 start_addr = parameters->options().Ttext();
3822 else if (parameters->options().output_is_position_independent())
3823 start_addr = 0;
3824 else
3825 start_addr = target->default_text_segment_address();
3826
3827 uint64_t addr = start_addr;
3828 off_t off = 0;
3829
3830 // If LOAD_SEG is NULL, then the file header and segment headers
3831 // will not be loadable. But they still need to be at offset 0 in
3832 // the file. Set their offsets now.
3833 if (load_seg == NULL)
3834 {
3835 for (Data_list::iterator p = this->special_output_list_.begin();
3836 p != this->special_output_list_.end();
3837 ++p)
3838 {
3839 off = align_address(off, (*p)->addralign());
3840 (*p)->set_address_and_file_offset(0, off);
3841 off += (*p)->data_size();
3842 }
3843 }
3844
3845 unsigned int increase_relro = this->increase_relro_;
3846 if (this->script_options_->saw_sections_clause())
3847 increase_relro = 0;
3848
3849 const bool check_sections = parameters->options().check_sections();
3850 Output_segment* last_load_segment = NULL;
3851
3852 unsigned int shndx_begin = *pshndx;
3853 unsigned int shndx_load_seg = *pshndx;
3854
3855 for (Segment_list::iterator p = this->segment_list_.begin();
3856 p != this->segment_list_.end();
3857 ++p)
3858 {
3859 if ((*p)->type() == elfcpp::PT_LOAD)
3860 {
3861 if (target->isolate_execinstr())
3862 {
3863 // When we hit the segment that should contain the
3864 // file headers, reset the file offset so we place
3865 // it and subsequent segments appropriately.
3866 // We'll fix up the preceding segments below.
3867 if (load_seg == *p)
3868 {
3869 if (off == 0)
3870 load_seg = NULL;
3871 else
3872 {
3873 off = 0;
3874 shndx_load_seg = *pshndx;
3875 }
3876 }
3877 }
3878 else
3879 {
3880 // Verify that the file headers fall into the first segment.
3881 if (load_seg != NULL && load_seg != *p)
3882 gold_unreachable();
3883 load_seg = NULL;
3884 }
3885
3886 bool are_addresses_set = (*p)->are_addresses_set();
3887 if (are_addresses_set)
3888 {
3889 // When it comes to setting file offsets, we care about
3890 // the physical address.
3891 addr = (*p)->paddr();
3892 }
3893 else if (parameters->options().user_set_Ttext()
3894 && (parameters->options().omagic()
3895 || is_text_segment(target, *p)))
3896 {
3897 are_addresses_set = true;
3898 }
3899 else if (parameters->options().user_set_Trodata_segment()
3900 && ((*p)->flags() & (elfcpp::PF_W | elfcpp::PF_X)) == 0)
3901 {
3902 addr = parameters->options().Trodata_segment();
3903 are_addresses_set = true;
3904 }
3905 else if (parameters->options().user_set_Tdata()
3906 && ((*p)->flags() & elfcpp::PF_W) != 0
3907 && (!parameters->options().user_set_Tbss()
3908 || (*p)->has_any_data_sections()))
3909 {
3910 addr = parameters->options().Tdata();
3911 are_addresses_set = true;
3912 }
3913 else if (parameters->options().user_set_Tbss()
3914 && ((*p)->flags() & elfcpp::PF_W) != 0
3915 && !(*p)->has_any_data_sections())
3916 {
3917 addr = parameters->options().Tbss();
3918 are_addresses_set = true;
3919 }
3920
3921 uint64_t orig_addr = addr;
3922 uint64_t orig_off = off;
3923
3924 uint64_t aligned_addr = 0;
3925 uint64_t abi_pagesize = target->abi_pagesize();
3926 uint64_t common_pagesize = target->common_pagesize();
3927
3928 if (!parameters->options().nmagic()
3929 && !parameters->options().omagic())
3930 (*p)->set_minimum_p_align(abi_pagesize);
3931
3932 if (!are_addresses_set)
3933 {
3934 // Skip the address forward one page, maintaining the same
3935 // position within the page. This lets us store both segments
3936 // overlapping on a single page in the file, but the loader will
3937 // put them on different pages in memory. We will revisit this
3938 // decision once we know the size of the segment.
3939
3940 uint64_t max_align = (*p)->maximum_alignment();
3941 if (max_align > abi_pagesize)
3942 addr = align_address(addr, max_align);
3943 aligned_addr = addr;
3944
3945 if (load_seg == *p)
3946 {
3947 // This is the segment that will contain the file
3948 // headers, so its offset will have to be exactly zero.
3949 gold_assert(orig_off == 0);
3950
3951 // If the target wants a fixed minimum distance from the
3952 // text segment to the read-only segment, move up now.
3953 uint64_t min_addr =
3954 start_addr + (parameters->options().user_set_rosegment_gap()
3955 ? parameters->options().rosegment_gap()
3956 : target->rosegment_gap());
3957 if (addr < min_addr)
3958 addr = min_addr;
3959
3960 // But this is not the first segment! To make its
3961 // address congruent with its offset, that address better
3962 // be aligned to the ABI-mandated page size.
3963 addr = align_address(addr, abi_pagesize);
3964 aligned_addr = addr;
3965 }
3966 else
3967 {
3968 if ((addr & (abi_pagesize - 1)) != 0)
3969 addr = addr + abi_pagesize;
3970
3971 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
3972 }
3973 }
3974
3975 if (!parameters->options().nmagic()
3976 && !parameters->options().omagic())
3977 {
3978 // Here we are also taking care of the case when
3979 // the maximum segment alignment is larger than the page size.
3980 off = align_file_offset(off, addr,
3981 std::max(abi_pagesize,
3982 (*p)->maximum_alignment()));
3983 }
3984 else
3985 {
3986 // This is -N or -n with a section script which prevents
3987 // us from using a load segment. We need to ensure that
3988 // the file offset is aligned to the alignment of the
3989 // segment. This is because the linker script
3990 // implicitly assumed a zero offset. If we don't align
3991 // here, then the alignment of the sections in the
3992 // linker script may not match the alignment of the
3993 // sections in the set_section_addresses call below,
3994 // causing an error about dot moving backward.
3995 off = align_address(off, (*p)->maximum_alignment());
3996 }
3997
3998 unsigned int shndx_hold = *pshndx;
3999 bool has_relro = false;
4000 uint64_t new_addr = (*p)->set_section_addresses(target, this,
4001 false, addr,
4002 &increase_relro,
4003 &has_relro,
4004 &off, pshndx);
4005
4006 // Now that we know the size of this segment, we may be able
4007 // to save a page in memory, at the cost of wasting some
4008 // file space, by instead aligning to the start of a new
4009 // page. Here we use the real machine page size rather than
4010 // the ABI mandated page size. If the segment has been
4011 // aligned so that the relro data ends at a page boundary,
4012 // we do not try to realign it.
4013
4014 if (!are_addresses_set
4015 && !has_relro
4016 && aligned_addr != addr
4017 && !parameters->incremental())
4018 {
4019 uint64_t first_off = (common_pagesize
4020 - (aligned_addr
4021 & (common_pagesize - 1)));
4022 uint64_t last_off = new_addr & (common_pagesize - 1);
4023 if (first_off > 0
4024 && last_off > 0
4025 && ((aligned_addr & ~ (common_pagesize - 1))
4026 != (new_addr & ~ (common_pagesize - 1)))
4027 && first_off + last_off <= common_pagesize)
4028 {
4029 *pshndx = shndx_hold;
4030 addr = align_address(aligned_addr, common_pagesize);
4031 addr = align_address(addr, (*p)->maximum_alignment());
4032 if ((addr & (abi_pagesize - 1)) != 0)
4033 addr = addr + abi_pagesize;
4034 off = orig_off + ((addr - orig_addr) & (abi_pagesize - 1));
4035 off = align_file_offset(off, addr, abi_pagesize);
4036
4037 increase_relro = this->increase_relro_;
4038 if (this->script_options_->saw_sections_clause())
4039 increase_relro = 0;
4040 has_relro = false;
4041
4042 new_addr = (*p)->set_section_addresses(target, this,
4043 true, addr,
4044 &increase_relro,
4045 &has_relro,
4046 &off, pshndx);
4047 }
4048 }
4049
4050 addr = new_addr;
4051
4052 // Implement --check-sections. We know that the segments
4053 // are sorted by LMA.
4054 if (check_sections && last_load_segment != NULL)
4055 {
4056 gold_assert(last_load_segment->paddr() <= (*p)->paddr());
4057 if (last_load_segment->paddr() + last_load_segment->memsz()
4058 > (*p)->paddr())
4059 {
4060 unsigned long long lb1 = last_load_segment->paddr();
4061 unsigned long long le1 = lb1 + last_load_segment->memsz();
4062 unsigned long long lb2 = (*p)->paddr();
4063 unsigned long long le2 = lb2 + (*p)->memsz();
4064 gold_error(_("load segment overlap [0x%llx -> 0x%llx] and "
4065 "[0x%llx -> 0x%llx]"),
4066 lb1, le1, lb2, le2);
4067 }
4068 }
4069 last_load_segment = *p;
4070 }
4071 }
4072
4073 if (load_seg != NULL && target->isolate_execinstr())
4074 {
4075 // Process the early segments again, setting their file offsets
4076 // so they land after the segments starting at LOAD_SEG.
4077 off = align_file_offset(off, 0, target->abi_pagesize());
4078
4079 this->reset_relax_output();
4080
4081 for (Segment_list::iterator p = this->segment_list_.begin();
4082 *p != load_seg;
4083 ++p)
4084 {
4085 if ((*p)->type() == elfcpp::PT_LOAD)
4086 {
4087 // We repeat the whole job of assigning addresses and
4088 // offsets, but we really only want to change the offsets and
4089 // must ensure that the addresses all come out the same as
4090 // they did the first time through.
4091 bool has_relro = false;
4092 const uint64_t old_addr = (*p)->vaddr();
4093 const uint64_t old_end = old_addr + (*p)->memsz();
4094 uint64_t new_addr = (*p)->set_section_addresses(target, this,
4095 true, old_addr,
4096 &increase_relro,
4097 &has_relro,
4098 &off,
4099 &shndx_begin);
4100 gold_assert(new_addr == old_end);
4101 }
4102 }
4103
4104 gold_assert(shndx_begin == shndx_load_seg);
4105 }
4106
4107 // Handle the non-PT_LOAD segments, setting their offsets from their
4108 // section's offsets.
4109 for (Segment_list::iterator p = this->segment_list_.begin();
4110 p != this->segment_list_.end();
4111 ++p)
4112 {
4113 // PT_GNU_STACK was set up correctly when it was created.
4114 if ((*p)->type() != elfcpp::PT_LOAD
4115 && (*p)->type() != elfcpp::PT_GNU_STACK)
4116 (*p)->set_offset((*p)->type() == elfcpp::PT_GNU_RELRO
4117 ? increase_relro
4118 : 0);
4119 }
4120
4121 // Set the TLS offsets for each section in the PT_TLS segment.
4122 if (this->tls_segment_ != NULL)
4123 this->tls_segment_->set_tls_offsets();
4124
4125 return off;
4126 }
4127
4128 // Set the offsets of all the allocated sections when doing a
4129 // relocatable link. This does the same jobs as set_segment_offsets,
4130 // only for a relocatable link.
4131
4132 off_t
4133 Layout::set_relocatable_section_offsets(Output_data* file_header,
4134 unsigned int* pshndx)
4135 {
4136 off_t off = 0;
4137
4138 file_header->set_address_and_file_offset(0, 0);
4139 off += file_header->data_size();
4140
4141 for (Section_list::iterator p = this->section_list_.begin();
4142 p != this->section_list_.end();
4143 ++p)
4144 {
4145 // We skip unallocated sections here, except that group sections
4146 // have to come first.
4147 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
4148 && (*p)->type() != elfcpp::SHT_GROUP)
4149 continue;
4150
4151 off = align_address(off, (*p)->addralign());
4152
4153 // The linker script might have set the address.
4154 if (!(*p)->is_address_valid())
4155 (*p)->set_address(0);
4156 (*p)->set_file_offset(off);
4157 (*p)->finalize_data_size();
4158 if ((*p)->type() != elfcpp::SHT_NOBITS)
4159 off += (*p)->data_size();
4160
4161 (*p)->set_out_shndx(*pshndx);
4162 ++*pshndx;
4163 }
4164
4165 return off;
4166 }
4167
4168 // Set the file offset of all the sections not associated with a
4169 // segment.
4170
4171 off_t
4172 Layout::set_section_offsets(off_t off, Layout::Section_offset_pass pass)
4173 {
4174 off_t startoff = off;
4175 off_t maxoff = off;
4176
4177 for (Section_list::iterator p = this->unattached_section_list_.begin();
4178 p != this->unattached_section_list_.end();
4179 ++p)
4180 {
4181 // The symtab section is handled in create_symtab_sections.
4182 if (*p == this->symtab_section_)
4183 continue;
4184
4185 // If we've already set the data size, don't set it again.
4186 if ((*p)->is_offset_valid() && (*p)->is_data_size_valid())
4187 continue;
4188
4189 if (pass == BEFORE_INPUT_SECTIONS_PASS
4190 && (*p)->requires_postprocessing())
4191 {
4192 (*p)->create_postprocessing_buffer();
4193 this->any_postprocessing_sections_ = true;
4194 }
4195
4196 if (pass == BEFORE_INPUT_SECTIONS_PASS
4197 && (*p)->after_input_sections())
4198 continue;
4199 else if (pass == POSTPROCESSING_SECTIONS_PASS
4200 && (!(*p)->after_input_sections()
4201 || (*p)->type() == elfcpp::SHT_STRTAB))
4202 continue;
4203 else if (pass == STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS
4204 && (!(*p)->after_input_sections()
4205 || (*p)->type() != elfcpp::SHT_STRTAB))
4206 continue;
4207
4208 if (!parameters->incremental_update())
4209 {
4210 off = align_address(off, (*p)->addralign());
4211 (*p)->set_file_offset(off);
4212 (*p)->finalize_data_size();
4213 }
4214 else
4215 {
4216 // Incremental update: allocate file space from free list.
4217 (*p)->pre_finalize_data_size();
4218 off_t current_size = (*p)->current_data_size();
4219 off = this->allocate(current_size, (*p)->addralign(), startoff);
4220 if (off == -1)
4221 {
4222 if (is_debugging_enabled(DEBUG_INCREMENTAL))
4223 this->free_list_.dump();
4224 gold_assert((*p)->output_section() != NULL);
4225 gold_fallback(_("out of patch space for section %s; "
4226 "relink with --incremental-full"),
4227 (*p)->output_section()->name());
4228 }
4229 (*p)->set_file_offset(off);
4230 (*p)->finalize_data_size();
4231 if ((*p)->data_size() > current_size)
4232 {
4233 gold_assert((*p)->output_section() != NULL);
4234 gold_fallback(_("%s: section changed size; "
4235 "relink with --incremental-full"),
4236 (*p)->output_section()->name());
4237 }
4238 gold_debug(DEBUG_INCREMENTAL,
4239 "set_section_offsets: %08lx %08lx %s",
4240 static_cast<long>(off),
4241 static_cast<long>((*p)->data_size()),
4242 ((*p)->output_section() != NULL
4243 ? (*p)->output_section()->name() : "(special)"));
4244 }
4245
4246 off += (*p)->data_size();
4247 if (off > maxoff)
4248 maxoff = off;
4249
4250 // At this point the name must be set.
4251 if (pass != STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS)
4252 this->namepool_.add((*p)->name(), false, NULL);
4253 }
4254 return maxoff;
4255 }
4256
4257 // Set the section indexes of all the sections not associated with a
4258 // segment.
4259
4260 unsigned int
4261 Layout::set_section_indexes(unsigned int shndx)
4262 {
4263 for (Section_list::iterator p = this->unattached_section_list_.begin();
4264 p != this->unattached_section_list_.end();
4265 ++p)
4266 {
4267 if (!(*p)->has_out_shndx())
4268 {
4269 (*p)->set_out_shndx(shndx);
4270 ++shndx;
4271 }
4272 }
4273 return shndx;
4274 }
4275
4276 // Set the section addresses according to the linker script. This is
4277 // only called when we see a SECTIONS clause. This returns the
4278 // program segment which should hold the file header and segment
4279 // headers, if any. It will return NULL if they should not be in a
4280 // segment.
4281
4282 Output_segment*
4283 Layout::set_section_addresses_from_script(Symbol_table* symtab)
4284 {
4285 Script_sections* ss = this->script_options_->script_sections();
4286 gold_assert(ss->saw_sections_clause());
4287 return this->script_options_->set_section_addresses(symtab, this);
4288 }
4289
4290 // Place the orphan sections in the linker script.
4291
4292 void
4293 Layout::place_orphan_sections_in_script()
4294 {
4295 Script_sections* ss = this->script_options_->script_sections();
4296 gold_assert(ss->saw_sections_clause());
4297
4298 // Place each orphaned output section in the script.
4299 for (Section_list::iterator p = this->section_list_.begin();
4300 p != this->section_list_.end();
4301 ++p)
4302 {
4303 if (!(*p)->found_in_sections_clause())
4304 ss->place_orphan(*p);
4305 }
4306 }
4307
4308 // Count the local symbols in the regular symbol table and the dynamic
4309 // symbol table, and build the respective string pools.
4310
4311 void
4312 Layout::count_local_symbols(const Task* task,
4313 const Input_objects* input_objects)
4314 {
4315 // First, figure out an upper bound on the number of symbols we'll
4316 // be inserting into each pool. This helps us create the pools with
4317 // the right size, to avoid unnecessary hashtable resizing.
4318 unsigned int symbol_count = 0;
4319 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4320 p != input_objects->relobj_end();
4321 ++p)
4322 symbol_count += (*p)->local_symbol_count();
4323
4324 // Go from "upper bound" to "estimate." We overcount for two
4325 // reasons: we double-count symbols that occur in more than one
4326 // object file, and we count symbols that are dropped from the
4327 // output. Add it all together and assume we overcount by 100%.
4328 symbol_count /= 2;
4329
4330 // We assume all symbols will go into both the sympool and dynpool.
4331 this->sympool_.reserve(symbol_count);
4332 this->dynpool_.reserve(symbol_count);
4333
4334 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4335 p != input_objects->relobj_end();
4336 ++p)
4337 {
4338 Task_lock_obj<Object> tlo(task, *p);
4339 (*p)->count_local_symbols(&this->sympool_, &this->dynpool_);
4340 }
4341 }
4342
4343 // Create the symbol table sections. Here we also set the final
4344 // values of the symbols. At this point all the loadable sections are
4345 // fully laid out. SHNUM is the number of sections so far.
4346
4347 void
4348 Layout::create_symtab_sections(const Input_objects* input_objects,
4349 Symbol_table* symtab,
4350 unsigned int shnum,
4351 off_t* poff,
4352 unsigned int local_dynamic_count)
4353 {
4354 int symsize;
4355 unsigned int align;
4356 if (parameters->target().get_size() == 32)
4357 {
4358 symsize = elfcpp::Elf_sizes<32>::sym_size;
4359 align = 4;
4360 }
4361 else if (parameters->target().get_size() == 64)
4362 {
4363 symsize = elfcpp::Elf_sizes<64>::sym_size;
4364 align = 8;
4365 }
4366 else
4367 gold_unreachable();
4368
4369 // Compute file offsets relative to the start of the symtab section.
4370 off_t off = 0;
4371
4372 // Save space for the dummy symbol at the start of the section. We
4373 // never bother to write this out--it will just be left as zero.
4374 off += symsize;
4375 unsigned int local_symbol_index = 1;
4376
4377 // Add STT_SECTION symbols for each Output section which needs one.
4378 for (Section_list::iterator p = this->section_list_.begin();
4379 p != this->section_list_.end();
4380 ++p)
4381 {
4382 if (!(*p)->needs_symtab_index())
4383 (*p)->set_symtab_index(-1U);
4384 else
4385 {
4386 (*p)->set_symtab_index(local_symbol_index);
4387 ++local_symbol_index;
4388 off += symsize;
4389 }
4390 }
4391
4392 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4393 p != input_objects->relobj_end();
4394 ++p)
4395 {
4396 unsigned int index = (*p)->finalize_local_symbols(local_symbol_index,
4397 off, symtab);
4398 off += (index - local_symbol_index) * symsize;
4399 local_symbol_index = index;
4400 }
4401
4402 unsigned int local_symcount = local_symbol_index;
4403 gold_assert(static_cast<off_t>(local_symcount * symsize) == off);
4404
4405 off_t dynoff;
4406 size_t dyncount;
4407 if (this->dynsym_section_ == NULL)
4408 {
4409 dynoff = 0;
4410 dyncount = 0;
4411 }
4412 else
4413 {
4414 off_t locsize = local_dynamic_count * this->dynsym_section_->entsize();
4415 dynoff = this->dynsym_section_->offset() + locsize;
4416 dyncount = (this->dynsym_section_->data_size() - locsize) / symsize;
4417 gold_assert(static_cast<off_t>(dyncount * symsize)
4418 == this->dynsym_section_->data_size() - locsize);
4419 }
4420
4421 off_t global_off = off;
4422 off = symtab->finalize(off, dynoff, local_dynamic_count, dyncount,
4423 &this->sympool_, &local_symcount);
4424
4425 if (!parameters->options().strip_all())
4426 {
4427 this->sympool_.set_string_offsets();
4428
4429 const char* symtab_name = this->namepool_.add(".symtab", false, NULL);
4430 Output_section* osymtab = this->make_output_section(symtab_name,
4431 elfcpp::SHT_SYMTAB,
4432 0, ORDER_INVALID,
4433 false);
4434 this->symtab_section_ = osymtab;
4435
4436 Output_section_data* pos = new Output_data_fixed_space(off, align,
4437 "** symtab");
4438 osymtab->add_output_section_data(pos);
4439
4440 // We generate a .symtab_shndx section if we have more than
4441 // SHN_LORESERVE sections. Technically it is possible that we
4442 // don't need one, because it is possible that there are no
4443 // symbols in any of sections with indexes larger than
4444 // SHN_LORESERVE. That is probably unusual, though, and it is
4445 // easier to always create one than to compute section indexes
4446 // twice (once here, once when writing out the symbols).
4447 if (shnum >= elfcpp::SHN_LORESERVE)
4448 {
4449 const char* symtab_xindex_name = this->namepool_.add(".symtab_shndx",
4450 false, NULL);
4451 Output_section* osymtab_xindex =
4452 this->make_output_section(symtab_xindex_name,
4453 elfcpp::SHT_SYMTAB_SHNDX, 0,
4454 ORDER_INVALID, false);
4455
4456 size_t symcount = off / symsize;
4457 this->symtab_xindex_ = new Output_symtab_xindex(symcount);
4458
4459 osymtab_xindex->add_output_section_data(this->symtab_xindex_);
4460
4461 osymtab_xindex->set_link_section(osymtab);
4462 osymtab_xindex->set_addralign(4);
4463 osymtab_xindex->set_entsize(4);
4464
4465 osymtab_xindex->set_after_input_sections();
4466
4467 // This tells the driver code to wait until the symbol table
4468 // has written out before writing out the postprocessing
4469 // sections, including the .symtab_shndx section.
4470 this->any_postprocessing_sections_ = true;
4471 }
4472
4473 const char* strtab_name = this->namepool_.add(".strtab", false, NULL);
4474 Output_section* ostrtab = this->make_output_section(strtab_name,
4475 elfcpp::SHT_STRTAB,
4476 0, ORDER_INVALID,
4477 false);
4478
4479 Output_section_data* pstr = new Output_data_strtab(&this->sympool_);
4480 ostrtab->add_output_section_data(pstr);
4481
4482 off_t symtab_off;
4483 if (!parameters->incremental_update())
4484 symtab_off = align_address(*poff, align);
4485 else
4486 {
4487 symtab_off = this->allocate(off, align, *poff);
4488 if (off == -1)
4489 gold_fallback(_("out of patch space for symbol table; "
4490 "relink with --incremental-full"));
4491 gold_debug(DEBUG_INCREMENTAL,
4492 "create_symtab_sections: %08lx %08lx .symtab",
4493 static_cast<long>(symtab_off),
4494 static_cast<long>(off));
4495 }
4496
4497 symtab->set_file_offset(symtab_off + global_off);
4498 osymtab->set_file_offset(symtab_off);
4499 osymtab->finalize_data_size();
4500 osymtab->set_link_section(ostrtab);
4501 osymtab->set_info(local_symcount);
4502 osymtab->set_entsize(symsize);
4503
4504 if (symtab_off + off > *poff)
4505 *poff = symtab_off + off;
4506 }
4507 }
4508
4509 // Create the .shstrtab section, which holds the names of the
4510 // sections. At the time this is called, we have created all the
4511 // output sections except .shstrtab itself.
4512
4513 Output_section*
4514 Layout::create_shstrtab()
4515 {
4516 // FIXME: We don't need to create a .shstrtab section if we are
4517 // stripping everything.
4518
4519 const char* name = this->namepool_.add(".shstrtab", false, NULL);
4520
4521 Output_section* os = this->make_output_section(name, elfcpp::SHT_STRTAB, 0,
4522 ORDER_INVALID, false);
4523
4524 if (strcmp(parameters->options().compress_debug_sections(), "none") != 0)
4525 {
4526 // We can't write out this section until we've set all the
4527 // section names, and we don't set the names of compressed
4528 // output sections until relocations are complete. FIXME: With
4529 // the current names we use, this is unnecessary.
4530 os->set_after_input_sections();
4531 }
4532
4533 Output_section_data* posd = new Output_data_strtab(&this->namepool_);
4534 os->add_output_section_data(posd);
4535
4536 return os;
4537 }
4538
4539 // Create the section headers. SIZE is 32 or 64. OFF is the file
4540 // offset.
4541
4542 void
4543 Layout::create_shdrs(const Output_section* shstrtab_section, off_t* poff)
4544 {
4545 Output_section_headers* oshdrs;
4546 oshdrs = new Output_section_headers(this,
4547 &this->segment_list_,
4548 &this->section_list_,
4549 &this->unattached_section_list_,
4550 &this->namepool_,
4551 shstrtab_section);
4552 off_t off;
4553 if (!parameters->incremental_update())
4554 off = align_address(*poff, oshdrs->addralign());
4555 else
4556 {
4557 oshdrs->pre_finalize_data_size();
4558 off = this->allocate(oshdrs->data_size(), oshdrs->addralign(), *poff);
4559 if (off == -1)
4560 gold_fallback(_("out of patch space for section header table; "
4561 "relink with --incremental-full"));
4562 gold_debug(DEBUG_INCREMENTAL,
4563 "create_shdrs: %08lx %08lx (section header table)",
4564 static_cast<long>(off),
4565 static_cast<long>(off + oshdrs->data_size()));
4566 }
4567 oshdrs->set_address_and_file_offset(0, off);
4568 off += oshdrs->data_size();
4569 if (off > *poff)
4570 *poff = off;
4571 this->section_headers_ = oshdrs;
4572 }
4573
4574 // Count the allocated sections.
4575
4576 size_t
4577 Layout::allocated_output_section_count() const
4578 {
4579 size_t section_count = 0;
4580 for (Segment_list::const_iterator p = this->segment_list_.begin();
4581 p != this->segment_list_.end();
4582 ++p)
4583 section_count += (*p)->output_section_count();
4584 return section_count;
4585 }
4586
4587 // Create the dynamic symbol table.
4588 // *PLOCAL_DYNAMIC_COUNT will be set to the number of local symbols
4589 // from input objects, and *PFORCED_LOCAL_DYNAMIC_COUNT will be set
4590 // to the number of global symbols that have been forced local.
4591 // We need to remember the former because the forced-local symbols are
4592 // written along with the global symbols in Symtab::write_globals().
4593
4594 void
4595 Layout::create_dynamic_symtab(const Input_objects* input_objects,
4596 Symbol_table* symtab,
4597 Output_section** pdynstr,
4598 unsigned int* plocal_dynamic_count,
4599 unsigned int* pforced_local_dynamic_count,
4600 std::vector<Symbol*>* pdynamic_symbols,
4601 Versions* pversions)
4602 {
4603 // Count all the symbols in the dynamic symbol table, and set the
4604 // dynamic symbol indexes.
4605
4606 // Skip symbol 0, which is always all zeroes.
4607 unsigned int index = 1;
4608
4609 // Add STT_SECTION symbols for each Output section which needs one.
4610 for (Section_list::iterator p = this->section_list_.begin();
4611 p != this->section_list_.end();
4612 ++p)
4613 {
4614 if (!(*p)->needs_dynsym_index())
4615 (*p)->set_dynsym_index(-1U);
4616 else
4617 {
4618 (*p)->set_dynsym_index(index);
4619 ++index;
4620 }
4621 }
4622
4623 // Count the local symbols that need to go in the dynamic symbol table,
4624 // and set the dynamic symbol indexes.
4625 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4626 p != input_objects->relobj_end();
4627 ++p)
4628 {
4629 unsigned int new_index = (*p)->set_local_dynsym_indexes(index);
4630 index = new_index;
4631 }
4632
4633 unsigned int local_symcount = index;
4634 unsigned int forced_local_count = 0;
4635
4636 index = symtab->set_dynsym_indexes(index, &forced_local_count,
4637 pdynamic_symbols, &this->dynpool_,
4638 pversions);
4639
4640 *plocal_dynamic_count = local_symcount;
4641 *pforced_local_dynamic_count = forced_local_count;
4642
4643 int symsize;
4644 unsigned int align;
4645 const int size = parameters->target().get_size();
4646 if (size == 32)
4647 {
4648 symsize = elfcpp::Elf_sizes<32>::sym_size;
4649 align = 4;
4650 }
4651 else if (size == 64)
4652 {
4653 symsize = elfcpp::Elf_sizes<64>::sym_size;
4654 align = 8;
4655 }
4656 else
4657 gold_unreachable();
4658
4659 // Create the dynamic symbol table section.
4660
4661 Output_section* dynsym = this->choose_output_section(NULL, ".dynsym",
4662 elfcpp::SHT_DYNSYM,
4663 elfcpp::SHF_ALLOC,
4664 false,
4665 ORDER_DYNAMIC_LINKER,
4666 false, false, false);
4667
4668 // Check for NULL as a linker script may discard .dynsym.
4669 if (dynsym != NULL)
4670 {
4671 Output_section_data* odata = new Output_data_fixed_space(index * symsize,
4672 align,
4673 "** dynsym");
4674 dynsym->add_output_section_data(odata);
4675
4676 dynsym->set_info(local_symcount + forced_local_count);
4677 dynsym->set_entsize(symsize);
4678 dynsym->set_addralign(align);
4679
4680 this->dynsym_section_ = dynsym;
4681 }
4682
4683 Output_data_dynamic* const odyn = this->dynamic_data_;
4684 if (odyn != NULL)
4685 {
4686 odyn->add_section_address(elfcpp::DT_SYMTAB, dynsym);
4687 odyn->add_constant(elfcpp::DT_SYMENT, symsize);
4688 }
4689
4690 // If there are more than SHN_LORESERVE allocated sections, we
4691 // create a .dynsym_shndx section. It is possible that we don't
4692 // need one, because it is possible that there are no dynamic
4693 // symbols in any of the sections with indexes larger than
4694 // SHN_LORESERVE. This is probably unusual, though, and at this
4695 // time we don't know the actual section indexes so it is
4696 // inconvenient to check.
4697 if (this->allocated_output_section_count() >= elfcpp::SHN_LORESERVE)
4698 {
4699 Output_section* dynsym_xindex =
4700 this->choose_output_section(NULL, ".dynsym_shndx",
4701 elfcpp::SHT_SYMTAB_SHNDX,
4702 elfcpp::SHF_ALLOC,
4703 false, ORDER_DYNAMIC_LINKER, false, false,
4704 false);
4705
4706 if (dynsym_xindex != NULL)
4707 {
4708 this->dynsym_xindex_ = new Output_symtab_xindex(index);
4709
4710 dynsym_xindex->add_output_section_data(this->dynsym_xindex_);
4711
4712 dynsym_xindex->set_link_section(dynsym);
4713 dynsym_xindex->set_addralign(4);
4714 dynsym_xindex->set_entsize(4);
4715
4716 dynsym_xindex->set_after_input_sections();
4717
4718 // This tells the driver code to wait until the symbol table
4719 // has written out before writing out the postprocessing
4720 // sections, including the .dynsym_shndx section.
4721 this->any_postprocessing_sections_ = true;
4722 }
4723 }
4724
4725 // Create the dynamic string table section.
4726
4727 Output_section* dynstr = this->choose_output_section(NULL, ".dynstr",
4728 elfcpp::SHT_STRTAB,
4729 elfcpp::SHF_ALLOC,
4730 false,
4731 ORDER_DYNAMIC_LINKER,
4732 false, false, false);
4733 *pdynstr = dynstr;
4734 if (dynstr != NULL)
4735 {
4736 Output_section_data* strdata = new Output_data_strtab(&this->dynpool_);
4737 dynstr->add_output_section_data(strdata);
4738
4739 if (dynsym != NULL)
4740 dynsym->set_link_section(dynstr);
4741 if (this->dynamic_section_ != NULL)
4742 this->dynamic_section_->set_link_section(dynstr);
4743
4744 if (odyn != NULL)
4745 {
4746 odyn->add_section_address(elfcpp::DT_STRTAB, dynstr);
4747 odyn->add_section_size(elfcpp::DT_STRSZ, dynstr);
4748 }
4749 }
4750
4751 // Create the hash tables. The Gnu-style hash table must be
4752 // built first, because it changes the order of the symbols
4753 // in the dynamic symbol table.
4754
4755 if (strcmp(parameters->options().hash_style(), "gnu") == 0
4756 || strcmp(parameters->options().hash_style(), "both") == 0)
4757 {
4758 unsigned char* phash;
4759 unsigned int hashlen;
4760 Dynobj::create_gnu_hash_table(*pdynamic_symbols,
4761 local_symcount + forced_local_count,
4762 &phash, &hashlen);
4763
4764 Output_section* hashsec =
4765 this->choose_output_section(NULL, ".gnu.hash", elfcpp::SHT_GNU_HASH,
4766 elfcpp::SHF_ALLOC, false,
4767 ORDER_DYNAMIC_LINKER, false, false,
4768 false);
4769
4770 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4771 hashlen,
4772 align,
4773 "** hash");
4774 if (hashsec != NULL && hashdata != NULL)
4775 hashsec->add_output_section_data(hashdata);
4776
4777 if (hashsec != NULL)
4778 {
4779 if (dynsym != NULL)
4780 hashsec->set_link_section(dynsym);
4781
4782 // For a 64-bit target, the entries in .gnu.hash do not have
4783 // a uniform size, so we only set the entry size for a
4784 // 32-bit target.
4785 if (parameters->target().get_size() == 32)
4786 hashsec->set_entsize(4);
4787
4788 if (odyn != NULL)
4789 odyn->add_section_address(elfcpp::DT_GNU_HASH, hashsec);
4790 }
4791 }
4792
4793 if (strcmp(parameters->options().hash_style(), "sysv") == 0
4794 || strcmp(parameters->options().hash_style(), "both") == 0)
4795 {
4796 unsigned char* phash;
4797 unsigned int hashlen;
4798 Dynobj::create_elf_hash_table(*pdynamic_symbols,
4799 local_symcount + forced_local_count,
4800 &phash, &hashlen);
4801
4802 Output_section* hashsec =
4803 this->choose_output_section(NULL, ".hash", elfcpp::SHT_HASH,
4804 elfcpp::SHF_ALLOC, false,
4805 ORDER_DYNAMIC_LINKER, false, false,
4806 false);
4807
4808 Output_section_data* hashdata = new Output_data_const_buffer(phash,
4809 hashlen,
4810 align,
4811 "** hash");
4812 if (hashsec != NULL && hashdata != NULL)
4813 hashsec->add_output_section_data(hashdata);
4814
4815 if (hashsec != NULL)
4816 {
4817 if (dynsym != NULL)
4818 hashsec->set_link_section(dynsym);
4819 hashsec->set_entsize(parameters->target().hash_entry_size() / 8);
4820 }
4821
4822 if (odyn != NULL)
4823 odyn->add_section_address(elfcpp::DT_HASH, hashsec);
4824 }
4825 }
4826
4827 // Assign offsets to each local portion of the dynamic symbol table.
4828
4829 void
4830 Layout::assign_local_dynsym_offsets(const Input_objects* input_objects)
4831 {
4832 Output_section* dynsym = this->dynsym_section_;
4833 if (dynsym == NULL)
4834 return;
4835
4836 off_t off = dynsym->offset();
4837
4838 // Skip the dummy symbol at the start of the section.
4839 off += dynsym->entsize();
4840
4841 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
4842 p != input_objects->relobj_end();
4843 ++p)
4844 {
4845 unsigned int count = (*p)->set_local_dynsym_offset(off);
4846 off += count * dynsym->entsize();
4847 }
4848 }
4849
4850 // Create the version sections.
4851
4852 void
4853 Layout::create_version_sections(const Versions* versions,
4854 const Symbol_table* symtab,
4855 unsigned int local_symcount,
4856 const std::vector<Symbol*>& dynamic_symbols,
4857 const Output_section* dynstr)
4858 {
4859 if (!versions->any_defs() && !versions->any_needs())
4860 return;
4861
4862 switch (parameters->size_and_endianness())
4863 {
4864 #ifdef HAVE_TARGET_32_LITTLE
4865 case Parameters::TARGET_32_LITTLE:
4866 this->sized_create_version_sections<32, false>(versions, symtab,
4867 local_symcount,
4868 dynamic_symbols, dynstr);
4869 break;
4870 #endif
4871 #ifdef HAVE_TARGET_32_BIG
4872 case Parameters::TARGET_32_BIG:
4873 this->sized_create_version_sections<32, true>(versions, symtab,
4874 local_symcount,
4875 dynamic_symbols, dynstr);
4876 break;
4877 #endif
4878 #ifdef HAVE_TARGET_64_LITTLE
4879 case Parameters::TARGET_64_LITTLE:
4880 this->sized_create_version_sections<64, false>(versions, symtab,
4881 local_symcount,
4882 dynamic_symbols, dynstr);
4883 break;
4884 #endif
4885 #ifdef HAVE_TARGET_64_BIG
4886 case Parameters::TARGET_64_BIG:
4887 this->sized_create_version_sections<64, true>(versions, symtab,
4888 local_symcount,
4889 dynamic_symbols, dynstr);
4890 break;
4891 #endif
4892 default:
4893 gold_unreachable();
4894 }
4895 }
4896
4897 // Create the version sections, sized version.
4898
4899 template<int size, bool big_endian>
4900 void
4901 Layout::sized_create_version_sections(
4902 const Versions* versions,
4903 const Symbol_table* symtab,
4904 unsigned int local_symcount,
4905 const std::vector<Symbol*>& dynamic_symbols,
4906 const Output_section* dynstr)
4907 {
4908 Output_section* vsec = this->choose_output_section(NULL, ".gnu.version",
4909 elfcpp::SHT_GNU_versym,
4910 elfcpp::SHF_ALLOC,
4911 false,
4912 ORDER_DYNAMIC_LINKER,
4913 false, false, false);
4914
4915 // Check for NULL since a linker script may discard this section.
4916 if (vsec != NULL)
4917 {
4918 unsigned char* vbuf;
4919 unsigned int vsize;
4920 versions->symbol_section_contents<size, big_endian>(symtab,
4921 &this->dynpool_,
4922 local_symcount,
4923 dynamic_symbols,
4924 &vbuf, &vsize);
4925
4926 Output_section_data* vdata = new Output_data_const_buffer(vbuf, vsize, 2,
4927 "** versions");
4928
4929 vsec->add_output_section_data(vdata);
4930 vsec->set_entsize(2);
4931 vsec->set_link_section(this->dynsym_section_);
4932 }
4933
4934 Output_data_dynamic* const odyn = this->dynamic_data_;
4935 if (odyn != NULL && vsec != NULL)
4936 odyn->add_section_address(elfcpp::DT_VERSYM, vsec);
4937
4938 if (versions->any_defs())
4939 {
4940 Output_section* vdsec;
4941 vdsec = this->choose_output_section(NULL, ".gnu.version_d",
4942 elfcpp::SHT_GNU_verdef,
4943 elfcpp::SHF_ALLOC,
4944 false, ORDER_DYNAMIC_LINKER, false,
4945 false, false);
4946
4947 if (vdsec != NULL)
4948 {
4949 unsigned char* vdbuf;
4950 unsigned int vdsize;
4951 unsigned int vdentries;
4952 versions->def_section_contents<size, big_endian>(&this->dynpool_,
4953 &vdbuf, &vdsize,
4954 &vdentries);
4955
4956 Output_section_data* vddata =
4957 new Output_data_const_buffer(vdbuf, vdsize, 4, "** version defs");
4958
4959 vdsec->add_output_section_data(vddata);
4960 vdsec->set_link_section(dynstr);
4961 vdsec->set_info(vdentries);
4962
4963 if (odyn != NULL)
4964 {
4965 odyn->add_section_address(elfcpp::DT_VERDEF, vdsec);
4966 odyn->add_constant(elfcpp::DT_VERDEFNUM, vdentries);
4967 }
4968 }
4969 }
4970
4971 if (versions->any_needs())
4972 {
4973 Output_section* vnsec;
4974 vnsec = this->choose_output_section(NULL, ".gnu.version_r",
4975 elfcpp::SHT_GNU_verneed,
4976 elfcpp::SHF_ALLOC,
4977 false, ORDER_DYNAMIC_LINKER, false,
4978 false, false);
4979
4980 if (vnsec != NULL)
4981 {
4982 unsigned char* vnbuf;
4983 unsigned int vnsize;
4984 unsigned int vnentries;
4985 versions->need_section_contents<size, big_endian>(&this->dynpool_,
4986 &vnbuf, &vnsize,
4987 &vnentries);
4988
4989 Output_section_data* vndata =
4990 new Output_data_const_buffer(vnbuf, vnsize, 4, "** version refs");
4991
4992 vnsec->add_output_section_data(vndata);
4993 vnsec->set_link_section(dynstr);
4994 vnsec->set_info(vnentries);
4995
4996 if (odyn != NULL)
4997 {
4998 odyn->add_section_address(elfcpp::DT_VERNEED, vnsec);
4999 odyn->add_constant(elfcpp::DT_VERNEEDNUM, vnentries);
5000 }
5001 }
5002 }
5003 }
5004
5005 // Create the .interp section and PT_INTERP segment.
5006
5007 void
5008 Layout::create_interp(const Target* target)
5009 {
5010 gold_assert(this->interp_segment_ == NULL);
5011
5012 const char* interp = parameters->options().dynamic_linker();
5013 if (interp == NULL)
5014 {
5015 interp = target->dynamic_linker();
5016 gold_assert(interp != NULL);
5017 }
5018
5019 size_t len = strlen(interp) + 1;
5020
5021 Output_section_data* odata = new Output_data_const(interp, len, 1);
5022
5023 Output_section* osec = this->choose_output_section(NULL, ".interp",
5024 elfcpp::SHT_PROGBITS,
5025 elfcpp::SHF_ALLOC,
5026 false, ORDER_INTERP,
5027 false, false, false);
5028 if (osec != NULL)
5029 osec->add_output_section_data(odata);
5030 }
5031
5032 // Add dynamic tags for the PLT and the dynamic relocs. This is
5033 // called by the target-specific code. This does nothing if not doing
5034 // a dynamic link.
5035
5036 // USE_REL is true for REL relocs rather than RELA relocs.
5037
5038 // If PLT_GOT is not NULL, then DT_PLTGOT points to it.
5039
5040 // If PLT_REL is not NULL, it is used for DT_PLTRELSZ, and DT_JMPREL,
5041 // and we also set DT_PLTREL. We use PLT_REL's output section, since
5042 // some targets have multiple reloc sections in PLT_REL.
5043
5044 // If DYN_REL is not NULL, it is used for DT_REL/DT_RELA,
5045 // DT_RELSZ/DT_RELASZ, DT_RELENT/DT_RELAENT. Again we use the output
5046 // section.
5047
5048 // If ADD_DEBUG is true, we add a DT_DEBUG entry when generating an
5049 // executable.
5050
5051 void
5052 Layout::add_target_dynamic_tags(bool use_rel, const Output_data* plt_got,
5053 const Output_data* plt_rel,
5054 const Output_data_reloc_generic* dyn_rel,
5055 bool add_debug, bool dynrel_includes_plt)
5056 {
5057 Output_data_dynamic* odyn = this->dynamic_data_;
5058 if (odyn == NULL)
5059 return;
5060
5061 if (plt_got != NULL && plt_got->output_section() != NULL)
5062 odyn->add_section_address(elfcpp::DT_PLTGOT, plt_got);
5063
5064 if (plt_rel != NULL && plt_rel->output_section() != NULL)
5065 {
5066 odyn->add_section_size(elfcpp::DT_PLTRELSZ, plt_rel->output_section());
5067 odyn->add_section_address(elfcpp::DT_JMPREL, plt_rel->output_section());
5068 odyn->add_constant(elfcpp::DT_PLTREL,
5069 use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA);
5070 }
5071
5072 if ((dyn_rel != NULL && dyn_rel->output_section() != NULL)
5073 || (dynrel_includes_plt
5074 && plt_rel != NULL
5075 && plt_rel->output_section() != NULL))
5076 {
5077 bool have_dyn_rel = dyn_rel != NULL && dyn_rel->output_section() != NULL;
5078 bool have_plt_rel = plt_rel != NULL && plt_rel->output_section() != NULL;
5079 odyn->add_section_address(use_rel ? elfcpp::DT_REL : elfcpp::DT_RELA,
5080 (have_dyn_rel
5081 ? dyn_rel->output_section()
5082 : plt_rel->output_section()));
5083 elfcpp::DT size_tag = use_rel ? elfcpp::DT_RELSZ : elfcpp::DT_RELASZ;
5084 if (have_dyn_rel && have_plt_rel && dynrel_includes_plt)
5085 odyn->add_section_size(size_tag,
5086 dyn_rel->output_section(),
5087 plt_rel->output_section());
5088 else if (have_dyn_rel)
5089 odyn->add_section_size(size_tag, dyn_rel->output_section());
5090 else
5091 odyn->add_section_size(size_tag, plt_rel->output_section());
5092 const int size = parameters->target().get_size();
5093 elfcpp::DT rel_tag;
5094 int rel_size;
5095 if (use_rel)
5096 {
5097 rel_tag = elfcpp::DT_RELENT;
5098 if (size == 32)
5099 rel_size = Reloc_types<elfcpp::SHT_REL, 32, false>::reloc_size;
5100 else if (size == 64)
5101 rel_size = Reloc_types<elfcpp::SHT_REL, 64, false>::reloc_size;
5102 else
5103 gold_unreachable();
5104 }
5105 else
5106 {
5107 rel_tag = elfcpp::DT_RELAENT;
5108 if (size == 32)
5109 rel_size = Reloc_types<elfcpp::SHT_RELA, 32, false>::reloc_size;
5110 else if (size == 64)
5111 rel_size = Reloc_types<elfcpp::SHT_RELA, 64, false>::reloc_size;
5112 else
5113 gold_unreachable();
5114 }
5115 odyn->add_constant(rel_tag, rel_size);
5116
5117 if (parameters->options().combreloc() && have_dyn_rel)
5118 {
5119 size_t c = dyn_rel->relative_reloc_count();
5120 if (c > 0)
5121 odyn->add_constant((use_rel
5122 ? elfcpp::DT_RELCOUNT
5123 : elfcpp::DT_RELACOUNT),
5124 c);
5125 }
5126 }
5127
5128 if (add_debug && !parameters->options().shared())
5129 {
5130 // The value of the DT_DEBUG tag is filled in by the dynamic
5131 // linker at run time, and used by the debugger.
5132 odyn->add_constant(elfcpp::DT_DEBUG, 0);
5133 }
5134 }
5135
5136 void
5137 Layout::add_target_specific_dynamic_tag(elfcpp::DT tag, unsigned int val)
5138 {
5139 Output_data_dynamic* odyn = this->dynamic_data_;
5140 if (odyn == NULL)
5141 return;
5142 odyn->add_constant(tag, val);
5143 }
5144
5145 // Finish the .dynamic section and PT_DYNAMIC segment.
5146
5147 void
5148 Layout::finish_dynamic_section(const Input_objects* input_objects,
5149 const Symbol_table* symtab)
5150 {
5151 if (!this->script_options_->saw_phdrs_clause()
5152 && this->dynamic_section_ != NULL)
5153 {
5154 Output_segment* oseg = this->make_output_segment(elfcpp::PT_DYNAMIC,
5155 (elfcpp::PF_R
5156 | elfcpp::PF_W));
5157 oseg->add_output_section_to_nonload(this->dynamic_section_,
5158 elfcpp::PF_R | elfcpp::PF_W);
5159 }
5160
5161 Output_data_dynamic* const odyn = this->dynamic_data_;
5162 if (odyn == NULL)
5163 return;
5164
5165 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
5166 p != input_objects->dynobj_end();
5167 ++p)
5168 {
5169 if (!(*p)->is_needed() && (*p)->as_needed())
5170 {
5171 // This dynamic object was linked with --as-needed, but it
5172 // is not needed.
5173 continue;
5174 }
5175
5176 odyn->add_string(elfcpp::DT_NEEDED, (*p)->soname());
5177 }
5178
5179 if (parameters->options().shared())
5180 {
5181 const char* soname = parameters->options().soname();
5182 if (soname != NULL)
5183 odyn->add_string(elfcpp::DT_SONAME, soname);
5184 }
5185
5186 Symbol* sym = symtab->lookup(parameters->options().init());
5187 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
5188 odyn->add_symbol(elfcpp::DT_INIT, sym);
5189
5190 sym = symtab->lookup(parameters->options().fini());
5191 if (sym != NULL && sym->is_defined() && !sym->is_from_dynobj())
5192 odyn->add_symbol(elfcpp::DT_FINI, sym);
5193
5194 // Look for .init_array, .preinit_array and .fini_array by checking
5195 // section types.
5196 for(Layout::Section_list::const_iterator p = this->section_list_.begin();
5197 p != this->section_list_.end();
5198 ++p)
5199 switch((*p)->type())
5200 {
5201 case elfcpp::SHT_FINI_ARRAY:
5202 odyn->add_section_address(elfcpp::DT_FINI_ARRAY, *p);
5203 odyn->add_section_size(elfcpp::DT_FINI_ARRAYSZ, *p);
5204 break;
5205 case elfcpp::SHT_INIT_ARRAY:
5206 odyn->add_section_address(elfcpp::DT_INIT_ARRAY, *p);
5207 odyn->add_section_size(elfcpp::DT_INIT_ARRAYSZ, *p);
5208 break;
5209 case elfcpp::SHT_PREINIT_ARRAY:
5210 odyn->add_section_address(elfcpp::DT_PREINIT_ARRAY, *p);
5211 odyn->add_section_size(elfcpp::DT_PREINIT_ARRAYSZ, *p);
5212 break;
5213 default:
5214 break;
5215 }
5216
5217 // Add a DT_RPATH entry if needed.
5218 const General_options::Dir_list& rpath(parameters->options().rpath());
5219 if (!rpath.empty())
5220 {
5221 std::string rpath_val;
5222 for (General_options::Dir_list::const_iterator p = rpath.begin();
5223 p != rpath.end();
5224 ++p)
5225 {
5226 if (rpath_val.empty())
5227 rpath_val = p->name();
5228 else
5229 {
5230 // Eliminate duplicates.
5231 General_options::Dir_list::const_iterator q;
5232 for (q = rpath.begin(); q != p; ++q)
5233 if (q->name() == p->name())
5234 break;
5235 if (q == p)
5236 {
5237 rpath_val += ':';
5238 rpath_val += p->name();
5239 }
5240 }
5241 }
5242
5243 if (!parameters->options().enable_new_dtags())
5244 odyn->add_string(elfcpp::DT_RPATH, rpath_val);
5245 else
5246 odyn->add_string(elfcpp::DT_RUNPATH, rpath_val);
5247 }
5248
5249 // Look for text segments that have dynamic relocations.
5250 bool have_textrel = false;
5251 if (!this->script_options_->saw_sections_clause())
5252 {
5253 for (Segment_list::const_iterator p = this->segment_list_.begin();
5254 p != this->segment_list_.end();
5255 ++p)
5256 {
5257 if ((*p)->type() == elfcpp::PT_LOAD
5258 && ((*p)->flags() & elfcpp::PF_W) == 0
5259 && (*p)->has_dynamic_reloc())
5260 {
5261 have_textrel = true;
5262 break;
5263 }
5264 }
5265 }
5266 else
5267 {
5268 // We don't know the section -> segment mapping, so we are
5269 // conservative and just look for readonly sections with
5270 // relocations. If those sections wind up in writable segments,
5271 // then we have created an unnecessary DT_TEXTREL entry.
5272 for (Section_list::const_iterator p = this->section_list_.begin();
5273 p != this->section_list_.end();
5274 ++p)
5275 {
5276 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0
5277 && ((*p)->flags() & elfcpp::SHF_WRITE) == 0
5278 && (*p)->has_dynamic_reloc())
5279 {
5280 have_textrel = true;
5281 break;
5282 }
5283 }
5284 }
5285
5286 if (parameters->options().filter() != NULL)
5287 odyn->add_string(elfcpp::DT_FILTER, parameters->options().filter());
5288 if (parameters->options().any_auxiliary())
5289 {
5290 for (options::String_set::const_iterator p =
5291 parameters->options().auxiliary_begin();
5292 p != parameters->options().auxiliary_end();
5293 ++p)
5294 odyn->add_string(elfcpp::DT_AUXILIARY, *p);
5295 }
5296
5297 // Add a DT_FLAGS entry if necessary.
5298 unsigned int flags = 0;
5299 if (have_textrel)
5300 {
5301 // Add a DT_TEXTREL for compatibility with older loaders.
5302 odyn->add_constant(elfcpp::DT_TEXTREL, 0);
5303 flags |= elfcpp::DF_TEXTREL;
5304
5305 if (parameters->options().text())
5306 gold_error(_("read-only segment has dynamic relocations"));
5307 else if (parameters->options().warn_shared_textrel()
5308 && parameters->options().shared())
5309 gold_warning(_("shared library text segment is not shareable"));
5310 }
5311 if (parameters->options().shared() && this->has_static_tls())
5312 flags |= elfcpp::DF_STATIC_TLS;
5313 if (parameters->options().origin())
5314 flags |= elfcpp::DF_ORIGIN;
5315 if (parameters->options().Bsymbolic()
5316 && !parameters->options().have_dynamic_list())
5317 {
5318 flags |= elfcpp::DF_SYMBOLIC;
5319 // Add DT_SYMBOLIC for compatibility with older loaders.
5320 odyn->add_constant(elfcpp::DT_SYMBOLIC, 0);
5321 }
5322 if (parameters->options().now())
5323 flags |= elfcpp::DF_BIND_NOW;
5324 if (flags != 0)
5325 odyn->add_constant(elfcpp::DT_FLAGS, flags);
5326
5327 flags = 0;
5328 if (parameters->options().global())
5329 flags |= elfcpp::DF_1_GLOBAL;
5330 if (parameters->options().initfirst())
5331 flags |= elfcpp::DF_1_INITFIRST;
5332 if (parameters->options().interpose())
5333 flags |= elfcpp::DF_1_INTERPOSE;
5334 if (parameters->options().loadfltr())
5335 flags |= elfcpp::DF_1_LOADFLTR;
5336 if (parameters->options().nodefaultlib())
5337 flags |= elfcpp::DF_1_NODEFLIB;
5338 if (parameters->options().nodelete())
5339 flags |= elfcpp::DF_1_NODELETE;
5340 if (parameters->options().nodlopen())
5341 flags |= elfcpp::DF_1_NOOPEN;
5342 if (parameters->options().nodump())
5343 flags |= elfcpp::DF_1_NODUMP;
5344 if (!parameters->options().shared())
5345 flags &= ~(elfcpp::DF_1_INITFIRST
5346 | elfcpp::DF_1_NODELETE
5347 | elfcpp::DF_1_NOOPEN);
5348 if (parameters->options().origin())
5349 flags |= elfcpp::DF_1_ORIGIN;
5350 if (parameters->options().now())
5351 flags |= elfcpp::DF_1_NOW;
5352 if (parameters->options().Bgroup())
5353 flags |= elfcpp::DF_1_GROUP;
5354 if (flags != 0)
5355 odyn->add_constant(elfcpp::DT_FLAGS_1, flags);
5356 }
5357
5358 // Set the size of the _DYNAMIC symbol table to be the size of the
5359 // dynamic data.
5360
5361 void
5362 Layout::set_dynamic_symbol_size(const Symbol_table* symtab)
5363 {
5364 Output_data_dynamic* const odyn = this->dynamic_data_;
5365 if (odyn == NULL)
5366 return;
5367 odyn->finalize_data_size();
5368 if (this->dynamic_symbol_ == NULL)
5369 return;
5370 off_t data_size = odyn->data_size();
5371 const int size = parameters->target().get_size();
5372 if (size == 32)
5373 symtab->get_sized_symbol<32>(this->dynamic_symbol_)->set_symsize(data_size);
5374 else if (size == 64)
5375 symtab->get_sized_symbol<64>(this->dynamic_symbol_)->set_symsize(data_size);
5376 else
5377 gold_unreachable();
5378 }
5379
5380 // The mapping of input section name prefixes to output section names.
5381 // In some cases one prefix is itself a prefix of another prefix; in
5382 // such a case the longer prefix must come first. These prefixes are
5383 // based on the GNU linker default ELF linker script.
5384
5385 #define MAPPING_INIT(f, t) { f, sizeof(f) - 1, t, sizeof(t) - 1 }
5386 #define MAPPING_INIT_EXACT(f, t) { f, 0, t, sizeof(t) - 1 }
5387 const Layout::Section_name_mapping Layout::section_name_mapping[] =
5388 {
5389 MAPPING_INIT(".text.", ".text"),
5390 MAPPING_INIT(".rodata.", ".rodata"),
5391 MAPPING_INIT(".data.rel.ro.local.", ".data.rel.ro.local"),
5392 MAPPING_INIT_EXACT(".data.rel.ro.local", ".data.rel.ro.local"),
5393 MAPPING_INIT(".data.rel.ro.", ".data.rel.ro"),
5394 MAPPING_INIT_EXACT(".data.rel.ro", ".data.rel.ro"),
5395 MAPPING_INIT(".data.", ".data"),
5396 MAPPING_INIT(".bss.", ".bss"),
5397 MAPPING_INIT(".tdata.", ".tdata"),
5398 MAPPING_INIT(".tbss.", ".tbss"),
5399 MAPPING_INIT(".init_array.", ".init_array"),
5400 MAPPING_INIT(".fini_array.", ".fini_array"),
5401 MAPPING_INIT(".sdata.", ".sdata"),
5402 MAPPING_INIT(".sbss.", ".sbss"),
5403 // FIXME: In the GNU linker, .sbss2 and .sdata2 are handled
5404 // differently depending on whether it is creating a shared library.
5405 MAPPING_INIT(".sdata2.", ".sdata"),
5406 MAPPING_INIT(".sbss2.", ".sbss"),
5407 MAPPING_INIT(".lrodata.", ".lrodata"),
5408 MAPPING_INIT(".ldata.", ".ldata"),
5409 MAPPING_INIT(".lbss.", ".lbss"),
5410 MAPPING_INIT(".gcc_except_table.", ".gcc_except_table"),
5411 MAPPING_INIT(".gnu.linkonce.d.rel.ro.local.", ".data.rel.ro.local"),
5412 MAPPING_INIT(".gnu.linkonce.d.rel.ro.", ".data.rel.ro"),
5413 MAPPING_INIT(".gnu.linkonce.t.", ".text"),
5414 MAPPING_INIT(".gnu.linkonce.r.", ".rodata"),
5415 MAPPING_INIT(".gnu.linkonce.d.", ".data"),
5416 MAPPING_INIT(".gnu.linkonce.b.", ".bss"),
5417 MAPPING_INIT(".gnu.linkonce.s.", ".sdata"),
5418 MAPPING_INIT(".gnu.linkonce.sb.", ".sbss"),
5419 MAPPING_INIT(".gnu.linkonce.s2.", ".sdata"),
5420 MAPPING_INIT(".gnu.linkonce.sb2.", ".sbss"),
5421 MAPPING_INIT(".gnu.linkonce.wi.", ".debug_info"),
5422 MAPPING_INIT(".gnu.linkonce.td.", ".tdata"),
5423 MAPPING_INIT(".gnu.linkonce.tb.", ".tbss"),
5424 MAPPING_INIT(".gnu.linkonce.lr.", ".lrodata"),
5425 MAPPING_INIT(".gnu.linkonce.l.", ".ldata"),
5426 MAPPING_INIT(".gnu.linkonce.lb.", ".lbss"),
5427 MAPPING_INIT(".ARM.extab", ".ARM.extab"),
5428 MAPPING_INIT(".gnu.linkonce.armextab.", ".ARM.extab"),
5429 MAPPING_INIT(".ARM.exidx", ".ARM.exidx"),
5430 MAPPING_INIT(".gnu.linkonce.armexidx.", ".ARM.exidx"),
5431 MAPPING_INIT(".gnu.build.attributes.", ".gnu.build.attributes"),
5432 };
5433
5434 // Mapping for ".text" section prefixes with -z,keep-text-section-prefix.
5435 const Layout::Section_name_mapping Layout::text_section_name_mapping[] =
5436 {
5437 MAPPING_INIT(".text.hot.", ".text.hot"),
5438 MAPPING_INIT_EXACT(".text.hot", ".text.hot"),
5439 MAPPING_INIT(".text.unlikely.", ".text.unlikely"),
5440 MAPPING_INIT_EXACT(".text.unlikely", ".text.unlikely"),
5441 MAPPING_INIT(".text.startup.", ".text.startup"),
5442 MAPPING_INIT_EXACT(".text.startup", ".text.startup"),
5443 MAPPING_INIT(".text.exit.", ".text.exit"),
5444 MAPPING_INIT_EXACT(".text.exit", ".text.exit"),
5445 MAPPING_INIT(".text.", ".text"),
5446 };
5447 #undef MAPPING_INIT
5448 #undef MAPPING_INIT_EXACT
5449
5450 const int Layout::section_name_mapping_count =
5451 (sizeof(Layout::section_name_mapping)
5452 / sizeof(Layout::section_name_mapping[0]));
5453
5454 const int Layout::text_section_name_mapping_count =
5455 (sizeof(Layout::text_section_name_mapping)
5456 / sizeof(Layout::text_section_name_mapping[0]));
5457
5458 // Find section name NAME in PSNM and return the mapped name if found
5459 // with the length set in PLEN.
5460 const char *
5461 Layout::match_section_name(const Layout::Section_name_mapping* psnm,
5462 const int count,
5463 const char* name, size_t* plen)
5464 {
5465 for (int i = 0; i < count; ++i, ++psnm)
5466 {
5467 if (psnm->fromlen > 0)
5468 {
5469 if (strncmp(name, psnm->from, psnm->fromlen) == 0)
5470 {
5471 *plen = psnm->tolen;
5472 return psnm->to;
5473 }
5474 }
5475 else
5476 {
5477 if (strcmp(name, psnm->from) == 0)
5478 {
5479 *plen = psnm->tolen;
5480 return psnm->to;
5481 }
5482 }
5483 }
5484 return NULL;
5485 }
5486
5487 // Choose the output section name to use given an input section name.
5488 // Set *PLEN to the length of the name. *PLEN is initialized to the
5489 // length of NAME.
5490
5491 const char*
5492 Layout::output_section_name(const Relobj* relobj, const char* name,
5493 size_t* plen)
5494 {
5495 // gcc 4.3 generates the following sorts of section names when it
5496 // needs a section name specific to a function:
5497 // .text.FN
5498 // .rodata.FN
5499 // .sdata2.FN
5500 // .data.FN
5501 // .data.rel.FN
5502 // .data.rel.local.FN
5503 // .data.rel.ro.FN
5504 // .data.rel.ro.local.FN
5505 // .sdata.FN
5506 // .bss.FN
5507 // .sbss.FN
5508 // .tdata.FN
5509 // .tbss.FN
5510
5511 // The GNU linker maps all of those to the part before the .FN,
5512 // except that .data.rel.local.FN is mapped to .data, and
5513 // .data.rel.ro.local.FN is mapped to .data.rel.ro. The sections
5514 // beginning with .data.rel.ro.local are grouped together.
5515
5516 // For an anonymous namespace, the string FN can contain a '.'.
5517
5518 // Also of interest: .rodata.strN.N, .rodata.cstN, both of which the
5519 // GNU linker maps to .rodata.
5520
5521 // The .data.rel.ro sections are used with -z relro. The sections
5522 // are recognized by name. We use the same names that the GNU
5523 // linker does for these sections.
5524
5525 // It is hard to handle this in a principled way, so we don't even
5526 // try. We use a table of mappings. If the input section name is
5527 // not found in the table, we simply use it as the output section
5528 // name.
5529
5530 if (parameters->options().keep_text_section_prefix()
5531 && is_prefix_of(".text", name))
5532 {
5533 const char* match = match_section_name(text_section_name_mapping,
5534 text_section_name_mapping_count,
5535 name, plen);
5536 if (match != NULL)
5537 return match;
5538 }
5539
5540 const char* match = match_section_name(section_name_mapping,
5541 section_name_mapping_count, name, plen);
5542 if (match != NULL)
5543 return match;
5544
5545 // As an additional complication, .ctors sections are output in
5546 // either .ctors or .init_array sections, and .dtors sections are
5547 // output in either .dtors or .fini_array sections.
5548 if (is_prefix_of(".ctors.", name) || is_prefix_of(".dtors.", name))
5549 {
5550 if (parameters->options().ctors_in_init_array())
5551 {
5552 *plen = 11;
5553 return name[1] == 'c' ? ".init_array" : ".fini_array";
5554 }
5555 else
5556 {
5557 *plen = 6;
5558 return name[1] == 'c' ? ".ctors" : ".dtors";
5559 }
5560 }
5561 if (parameters->options().ctors_in_init_array()
5562 && (strcmp(name, ".ctors") == 0 || strcmp(name, ".dtors") == 0))
5563 {
5564 // To make .init_array/.fini_array work with gcc we must exclude
5565 // .ctors and .dtors sections from the crtbegin and crtend
5566 // files.
5567 if (relobj == NULL
5568 || (!Layout::match_file_name(relobj, "crtbegin")
5569 && !Layout::match_file_name(relobj, "crtend")))
5570 {
5571 *plen = 11;
5572 return name[1] == 'c' ? ".init_array" : ".fini_array";
5573 }
5574 }
5575
5576 return name;
5577 }
5578
5579 // Return true if RELOBJ is an input file whose base name matches
5580 // FILE_NAME. The base name must have an extension of ".o", and must
5581 // be exactly FILE_NAME.o or FILE_NAME, one character, ".o". This is
5582 // to match crtbegin.o as well as crtbeginS.o without getting confused
5583 // by other possibilities. Overall matching the file name this way is
5584 // a dreadful hack, but the GNU linker does it in order to better
5585 // support gcc, and we need to be compatible.
5586
5587 bool
5588 Layout::match_file_name(const Relobj* relobj, const char* match)
5589 {
5590 const std::string& file_name(relobj->name());
5591 const char* base_name = lbasename(file_name.c_str());
5592 size_t match_len = strlen(match);
5593 if (strncmp(base_name, match, match_len) != 0)
5594 return false;
5595 size_t base_len = strlen(base_name);
5596 if (base_len != match_len + 2 && base_len != match_len + 3)
5597 return false;
5598 return memcmp(base_name + base_len - 2, ".o", 2) == 0;
5599 }
5600
5601 // Check if a comdat group or .gnu.linkonce section with the given
5602 // NAME is selected for the link. If there is already a section,
5603 // *KEPT_SECTION is set to point to the existing section and the
5604 // function returns false. Otherwise, OBJECT, SHNDX, IS_COMDAT, and
5605 // IS_GROUP_NAME are recorded for this NAME in the layout object,
5606 // *KEPT_SECTION is set to the internal copy and the function returns
5607 // true.
5608
5609 bool
5610 Layout::find_or_add_kept_section(const std::string& name,
5611 Relobj* object,
5612 unsigned int shndx,
5613 bool is_comdat,
5614 bool is_group_name,
5615 Kept_section** kept_section)
5616 {
5617 // It's normal to see a couple of entries here, for the x86 thunk
5618 // sections. If we see more than a few, we're linking a C++
5619 // program, and we resize to get more space to minimize rehashing.
5620 if (this->signatures_.size() > 4
5621 && !this->resized_signatures_)
5622 {
5623 reserve_unordered_map(&this->signatures_,
5624 this->number_of_input_files_ * 64);
5625 this->resized_signatures_ = true;
5626 }
5627
5628 Kept_section candidate;
5629 std::pair<Signatures::iterator, bool> ins =
5630 this->signatures_.insert(std::make_pair(name, candidate));
5631
5632 if (kept_section != NULL)
5633 *kept_section = &ins.first->second;
5634 if (ins.second)
5635 {
5636 // This is the first time we've seen this signature.
5637 ins.first->second.set_object(object);
5638 ins.first->second.set_shndx(shndx);
5639 if (is_comdat)
5640 ins.first->second.set_is_comdat();
5641 if (is_group_name)
5642 ins.first->second.set_is_group_name();
5643 return true;
5644 }
5645
5646 // We have already seen this signature.
5647
5648 if (ins.first->second.is_group_name())
5649 {
5650 // We've already seen a real section group with this signature.
5651 // If the kept group is from a plugin object, and we're in the
5652 // replacement phase, accept the new one as a replacement.
5653 if (ins.first->second.object() == NULL
5654 && parameters->options().plugins()->in_replacement_phase())
5655 {
5656 ins.first->second.set_object(object);
5657 ins.first->second.set_shndx(shndx);
5658 return true;
5659 }
5660 return false;
5661 }
5662 else if (is_group_name)
5663 {
5664 // This is a real section group, and we've already seen a
5665 // linkonce section with this signature. Record that we've seen
5666 // a section group, and don't include this section group.
5667 ins.first->second.set_is_group_name();
5668 return false;
5669 }
5670 else
5671 {
5672 // We've already seen a linkonce section and this is a linkonce
5673 // section. These don't block each other--this may be the same
5674 // symbol name with different section types.
5675 return true;
5676 }
5677 }
5678
5679 // Store the allocated sections into the section list.
5680
5681 void
5682 Layout::get_allocated_sections(Section_list* section_list) const
5683 {
5684 for (Section_list::const_iterator p = this->section_list_.begin();
5685 p != this->section_list_.end();
5686 ++p)
5687 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
5688 section_list->push_back(*p);
5689 }
5690
5691 // Store the executable sections into the section list.
5692
5693 void
5694 Layout::get_executable_sections(Section_list* section_list) const
5695 {
5696 for (Section_list::const_iterator p = this->section_list_.begin();
5697 p != this->section_list_.end();
5698 ++p)
5699 if (((*p)->flags() & (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5700 == (elfcpp::SHF_ALLOC | elfcpp::SHF_EXECINSTR))
5701 section_list->push_back(*p);
5702 }
5703
5704 // Create an output segment.
5705
5706 Output_segment*
5707 Layout::make_output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
5708 {
5709 gold_assert(!parameters->options().relocatable());
5710 Output_segment* oseg = new Output_segment(type, flags);
5711 this->segment_list_.push_back(oseg);
5712
5713 if (type == elfcpp::PT_TLS)
5714 this->tls_segment_ = oseg;
5715 else if (type == elfcpp::PT_GNU_RELRO)
5716 this->relro_segment_ = oseg;
5717 else if (type == elfcpp::PT_INTERP)
5718 this->interp_segment_ = oseg;
5719
5720 return oseg;
5721 }
5722
5723 // Return the file offset of the normal symbol table.
5724
5725 off_t
5726 Layout::symtab_section_offset() const
5727 {
5728 if (this->symtab_section_ != NULL)
5729 return this->symtab_section_->offset();
5730 return 0;
5731 }
5732
5733 // Return the section index of the normal symbol table. It may have
5734 // been stripped by the -s/--strip-all option.
5735
5736 unsigned int
5737 Layout::symtab_section_shndx() const
5738 {
5739 if (this->symtab_section_ != NULL)
5740 return this->symtab_section_->out_shndx();
5741 return 0;
5742 }
5743
5744 // Write out the Output_sections. Most won't have anything to write,
5745 // since most of the data will come from input sections which are
5746 // handled elsewhere. But some Output_sections do have Output_data.
5747
5748 void
5749 Layout::write_output_sections(Output_file* of) const
5750 {
5751 for (Section_list::const_iterator p = this->section_list_.begin();
5752 p != this->section_list_.end();
5753 ++p)
5754 {
5755 if (!(*p)->after_input_sections())
5756 (*p)->write(of);
5757 }
5758 }
5759
5760 // Write out data not associated with a section or the symbol table.
5761
5762 void
5763 Layout::write_data(const Symbol_table* symtab, Output_file* of) const
5764 {
5765 if (!parameters->options().strip_all())
5766 {
5767 const Output_section* symtab_section = this->symtab_section_;
5768 for (Section_list::const_iterator p = this->section_list_.begin();
5769 p != this->section_list_.end();
5770 ++p)
5771 {
5772 if ((*p)->needs_symtab_index())
5773 {
5774 gold_assert(symtab_section != NULL);
5775 unsigned int index = (*p)->symtab_index();
5776 gold_assert(index > 0 && index != -1U);
5777 off_t off = (symtab_section->offset()
5778 + index * symtab_section->entsize());
5779 symtab->write_section_symbol(*p, this->symtab_xindex_, of, off);
5780 }
5781 }
5782 }
5783
5784 const Output_section* dynsym_section = this->dynsym_section_;
5785 for (Section_list::const_iterator p = this->section_list_.begin();
5786 p != this->section_list_.end();
5787 ++p)
5788 {
5789 if ((*p)->needs_dynsym_index())
5790 {
5791 gold_assert(dynsym_section != NULL);
5792 unsigned int index = (*p)->dynsym_index();
5793 gold_assert(index > 0 && index != -1U);
5794 off_t off = (dynsym_section->offset()
5795 + index * dynsym_section->entsize());
5796 symtab->write_section_symbol(*p, this->dynsym_xindex_, of, off);
5797 }
5798 }
5799
5800 // Write out the Output_data which are not in an Output_section.
5801 for (Data_list::const_iterator p = this->special_output_list_.begin();
5802 p != this->special_output_list_.end();
5803 ++p)
5804 (*p)->write(of);
5805
5806 // Write out the Output_data which are not in an Output_section
5807 // and are regenerated in each iteration of relaxation.
5808 for (Data_list::const_iterator p = this->relax_output_list_.begin();
5809 p != this->relax_output_list_.end();
5810 ++p)
5811 (*p)->write(of);
5812 }
5813
5814 // Write out the Output_sections which can only be written after the
5815 // input sections are complete.
5816
5817 void
5818 Layout::write_sections_after_input_sections(Output_file* of)
5819 {
5820 // Determine the final section offsets, and thus the final output
5821 // file size. Note we finalize the .shstrab last, to allow the
5822 // after_input_section sections to modify their section-names before
5823 // writing.
5824 if (this->any_postprocessing_sections_)
5825 {
5826 off_t off = this->output_file_size_;
5827 off = this->set_section_offsets(off, POSTPROCESSING_SECTIONS_PASS);
5828
5829 // Now that we've finalized the names, we can finalize the shstrab.
5830 off =
5831 this->set_section_offsets(off,
5832 STRTAB_AFTER_POSTPROCESSING_SECTIONS_PASS);
5833
5834 if (off > this->output_file_size_)
5835 {
5836 of->resize(off);
5837 this->output_file_size_ = off;
5838 }
5839 }
5840
5841 for (Section_list::const_iterator p = this->section_list_.begin();
5842 p != this->section_list_.end();
5843 ++p)
5844 {
5845 if ((*p)->after_input_sections())
5846 (*p)->write(of);
5847 }
5848
5849 this->section_headers_->write(of);
5850 }
5851
5852 // If a tree-style build ID was requested, the parallel part of that computation
5853 // is already done, and the final hash-of-hashes is computed here. For other
5854 // types of build IDs, all the work is done here.
5855
5856 void
5857 Layout::write_build_id(Output_file* of, unsigned char* array_of_hashes,
5858 size_t size_of_hashes) const
5859 {
5860 if (this->build_id_note_ == NULL)
5861 return;
5862
5863 unsigned char* ov = of->get_output_view(this->build_id_note_->offset(),
5864 this->build_id_note_->data_size());
5865
5866 if (array_of_hashes == NULL)
5867 {
5868 const size_t output_file_size = this->output_file_size();
5869 const unsigned char* iv = of->get_input_view(0, output_file_size);
5870 const char* style = parameters->options().build_id();
5871
5872 // If we get here with style == "tree" then the output must be
5873 // too small for chunking, and we use SHA-1 in that case.
5874 if ((strcmp(style, "sha1") == 0) || (strcmp(style, "tree") == 0))
5875 sha1_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5876 else if (strcmp(style, "md5") == 0)
5877 md5_buffer(reinterpret_cast<const char*>(iv), output_file_size, ov);
5878 else
5879 gold_unreachable();
5880
5881 of->free_input_view(0, output_file_size, iv);
5882 }
5883 else
5884 {
5885 // Non-overlapping substrings of the output file have been hashed.
5886 // Compute SHA-1 hash of the hashes.
5887 sha1_buffer(reinterpret_cast<const char*>(array_of_hashes),
5888 size_of_hashes, ov);
5889 delete[] array_of_hashes;
5890 }
5891
5892 of->write_output_view(this->build_id_note_->offset(),
5893 this->build_id_note_->data_size(),
5894 ov);
5895 }
5896
5897 // Write out a binary file. This is called after the link is
5898 // complete. IN is the temporary output file we used to generate the
5899 // ELF code. We simply walk through the segments, read them from
5900 // their file offset in IN, and write them to their load address in
5901 // the output file. FIXME: with a bit more work, we could support
5902 // S-records and/or Intel hex format here.
5903
5904 void
5905 Layout::write_binary(Output_file* in) const
5906 {
5907 gold_assert(parameters->options().oformat_enum()
5908 == General_options::OBJECT_FORMAT_BINARY);
5909
5910 // Get the size of the binary file.
5911 uint64_t max_load_address = 0;
5912 for (Segment_list::const_iterator p = this->segment_list_.begin();
5913 p != this->segment_list_.end();
5914 ++p)
5915 {
5916 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5917 {
5918 uint64_t max_paddr = (*p)->paddr() + (*p)->filesz();
5919 if (max_paddr > max_load_address)
5920 max_load_address = max_paddr;
5921 }
5922 }
5923
5924 Output_file out(parameters->options().output_file_name());
5925 out.open(max_load_address);
5926
5927 for (Segment_list::const_iterator p = this->segment_list_.begin();
5928 p != this->segment_list_.end();
5929 ++p)
5930 {
5931 if ((*p)->type() == elfcpp::PT_LOAD && (*p)->filesz() > 0)
5932 {
5933 const unsigned char* vin = in->get_input_view((*p)->offset(),
5934 (*p)->filesz());
5935 unsigned char* vout = out.get_output_view((*p)->paddr(),
5936 (*p)->filesz());
5937 memcpy(vout, vin, (*p)->filesz());
5938 out.write_output_view((*p)->paddr(), (*p)->filesz(), vout);
5939 in->free_input_view((*p)->offset(), (*p)->filesz(), vin);
5940 }
5941 }
5942
5943 out.close();
5944 }
5945
5946 // Print the output sections to the map file.
5947
5948 void
5949 Layout::print_to_mapfile(Mapfile* mapfile) const
5950 {
5951 for (Segment_list::const_iterator p = this->segment_list_.begin();
5952 p != this->segment_list_.end();
5953 ++p)
5954 (*p)->print_sections_to_mapfile(mapfile);
5955 for (Section_list::const_iterator p = this->unattached_section_list_.begin();
5956 p != this->unattached_section_list_.end();
5957 ++p)
5958 (*p)->print_to_mapfile(mapfile);
5959 }
5960
5961 // Print statistical information to stderr. This is used for --stats.
5962
5963 void
5964 Layout::print_stats() const
5965 {
5966 this->namepool_.print_stats("section name pool");
5967 this->sympool_.print_stats("output symbol name pool");
5968 this->dynpool_.print_stats("dynamic name pool");
5969
5970 for (Section_list::const_iterator p = this->section_list_.begin();
5971 p != this->section_list_.end();
5972 ++p)
5973 (*p)->print_merge_stats();
5974 }
5975
5976 // Write_sections_task methods.
5977
5978 // We can always run this task.
5979
5980 Task_token*
5981 Write_sections_task::is_runnable()
5982 {
5983 return NULL;
5984 }
5985
5986 // We need to unlock both OUTPUT_SECTIONS_BLOCKER and FINAL_BLOCKER
5987 // when finished.
5988
5989 void
5990 Write_sections_task::locks(Task_locker* tl)
5991 {
5992 tl->add(this, this->output_sections_blocker_);
5993 if (this->input_sections_blocker_ != NULL)
5994 tl->add(this, this->input_sections_blocker_);
5995 tl->add(this, this->final_blocker_);
5996 }
5997
5998 // Run the task--write out the data.
5999
6000 void
6001 Write_sections_task::run(Workqueue*)
6002 {
6003 this->layout_->write_output_sections(this->of_);
6004 }
6005
6006 // Write_data_task methods.
6007
6008 // We can always run this task.
6009
6010 Task_token*
6011 Write_data_task::is_runnable()
6012 {
6013 return NULL;
6014 }
6015
6016 // We need to unlock FINAL_BLOCKER when finished.
6017
6018 void
6019 Write_data_task::locks(Task_locker* tl)
6020 {
6021 tl->add(this, this->final_blocker_);
6022 }
6023
6024 // Run the task--write out the data.
6025
6026 void
6027 Write_data_task::run(Workqueue*)
6028 {
6029 this->layout_->write_data(this->symtab_, this->of_);
6030 }
6031
6032 // Write_symbols_task methods.
6033
6034 // We can always run this task.
6035
6036 Task_token*
6037 Write_symbols_task::is_runnable()
6038 {
6039 return NULL;
6040 }
6041
6042 // We need to unlock FINAL_BLOCKER when finished.
6043
6044 void
6045 Write_symbols_task::locks(Task_locker* tl)
6046 {
6047 tl->add(this, this->final_blocker_);
6048 }
6049
6050 // Run the task--write out the symbols.
6051
6052 void
6053 Write_symbols_task::run(Workqueue*)
6054 {
6055 this->symtab_->write_globals(this->sympool_, this->dynpool_,
6056 this->layout_->symtab_xindex(),
6057 this->layout_->dynsym_xindex(), this->of_);
6058 }
6059
6060 // Write_after_input_sections_task methods.
6061
6062 // We can only run this task after the input sections have completed.
6063
6064 Task_token*
6065 Write_after_input_sections_task::is_runnable()
6066 {
6067 if (this->input_sections_blocker_->is_blocked())
6068 return this->input_sections_blocker_;
6069 return NULL;
6070 }
6071
6072 // We need to unlock FINAL_BLOCKER when finished.
6073
6074 void
6075 Write_after_input_sections_task::locks(Task_locker* tl)
6076 {
6077 tl->add(this, this->final_blocker_);
6078 }
6079
6080 // Run the task.
6081
6082 void
6083 Write_after_input_sections_task::run(Workqueue*)
6084 {
6085 this->layout_->write_sections_after_input_sections(this->of_);
6086 }
6087
6088 // Build IDs can be computed as a "flat" sha1 or md5 of a string of bytes,
6089 // or as a "tree" where each chunk of the string is hashed and then those
6090 // hashes are put into a (much smaller) string which is hashed with sha1.
6091 // We compute a checksum over the entire file because that is simplest.
6092
6093 void
6094 Build_id_task_runner::run(Workqueue* workqueue, const Task*)
6095 {
6096 Task_token* post_hash_tasks_blocker = new Task_token(true);
6097 const Layout* layout = this->layout_;
6098 Output_file* of = this->of_;
6099 const size_t filesize = (layout->output_file_size() <= 0 ? 0
6100 : static_cast<size_t>(layout->output_file_size()));
6101 unsigned char* array_of_hashes = NULL;
6102 size_t size_of_hashes = 0;
6103
6104 if (strcmp(this->options_->build_id(), "tree") == 0
6105 && this->options_->build_id_chunk_size_for_treehash() > 0
6106 && filesize > 0
6107 && (filesize >= this->options_->build_id_min_file_size_for_treehash()))
6108 {
6109 static const size_t MD5_OUTPUT_SIZE_IN_BYTES = 16;
6110 const size_t chunk_size =
6111 this->options_->build_id_chunk_size_for_treehash();
6112 const size_t num_hashes = ((filesize - 1) / chunk_size) + 1;
6113 post_hash_tasks_blocker->add_blockers(num_hashes);
6114 size_of_hashes = num_hashes * MD5_OUTPUT_SIZE_IN_BYTES;
6115 array_of_hashes = new unsigned char[size_of_hashes];
6116 unsigned char *dst = array_of_hashes;
6117 for (size_t i = 0, src_offset = 0; i < num_hashes;
6118 i++, dst += MD5_OUTPUT_SIZE_IN_BYTES, src_offset += chunk_size)
6119 {
6120 size_t size = std::min(chunk_size, filesize - src_offset);
6121 workqueue->queue(new Hash_task(of,
6122 src_offset,
6123 size,
6124 dst,
6125 post_hash_tasks_blocker));
6126 }
6127 }
6128
6129 // Queue the final task to write the build id and close the output file.
6130 workqueue->queue(new Task_function(new Close_task_runner(this->options_,
6131 layout,
6132 of,
6133 array_of_hashes,
6134 size_of_hashes),
6135 post_hash_tasks_blocker,
6136 "Task_function Close_task_runner"));
6137 }
6138
6139 // Close_task_runner methods.
6140
6141 // Finish up the build ID computation, if necessary, and write a binary file,
6142 // if necessary. Then close the output file.
6143
6144 void
6145 Close_task_runner::run(Workqueue*, const Task*)
6146 {
6147 // At this point the multi-threaded part of the build ID computation,
6148 // if any, is done. See Build_id_task_runner.
6149 this->layout_->write_build_id(this->of_, this->array_of_hashes_,
6150 this->size_of_hashes_);
6151
6152 // If we've been asked to create a binary file, we do so here.
6153 if (this->options_->oformat_enum() != General_options::OBJECT_FORMAT_ELF)
6154 this->layout_->write_binary(this->of_);
6155
6156 this->of_->close();
6157 }
6158
6159 // Instantiate the templates we need. We could use the configure
6160 // script to restrict this to only the ones for implemented targets.
6161
6162 #ifdef HAVE_TARGET_32_LITTLE
6163 template
6164 Output_section*
6165 Layout::init_fixed_output_section<32, false>(
6166 const char* name,
6167 elfcpp::Shdr<32, false>& shdr);
6168 #endif
6169
6170 #ifdef HAVE_TARGET_32_BIG
6171 template
6172 Output_section*
6173 Layout::init_fixed_output_section<32, true>(
6174 const char* name,
6175 elfcpp::Shdr<32, true>& shdr);
6176 #endif
6177
6178 #ifdef HAVE_TARGET_64_LITTLE
6179 template
6180 Output_section*
6181 Layout::init_fixed_output_section<64, false>(
6182 const char* name,
6183 elfcpp::Shdr<64, false>& shdr);
6184 #endif
6185
6186 #ifdef HAVE_TARGET_64_BIG
6187 template
6188 Output_section*
6189 Layout::init_fixed_output_section<64, true>(
6190 const char* name,
6191 elfcpp::Shdr<64, true>& shdr);
6192 #endif
6193
6194 #ifdef HAVE_TARGET_32_LITTLE
6195 template
6196 Output_section*
6197 Layout::layout<32, false>(Sized_relobj_file<32, false>* object,
6198 unsigned int shndx,
6199 const char* name,
6200 const elfcpp::Shdr<32, false>& shdr,
6201 unsigned int, unsigned int, unsigned int, off_t*);
6202 #endif
6203
6204 #ifdef HAVE_TARGET_32_BIG
6205 template
6206 Output_section*
6207 Layout::layout<32, true>(Sized_relobj_file<32, true>* object,
6208 unsigned int shndx,
6209 const char* name,
6210 const elfcpp::Shdr<32, true>& shdr,
6211 unsigned int, unsigned int, unsigned int, off_t*);
6212 #endif
6213
6214 #ifdef HAVE_TARGET_64_LITTLE
6215 template
6216 Output_section*
6217 Layout::layout<64, false>(Sized_relobj_file<64, false>* object,
6218 unsigned int shndx,
6219 const char* name,
6220 const elfcpp::Shdr<64, false>& shdr,
6221 unsigned int, unsigned int, unsigned int, off_t*);
6222 #endif
6223
6224 #ifdef HAVE_TARGET_64_BIG
6225 template
6226 Output_section*
6227 Layout::layout<64, true>(Sized_relobj_file<64, true>* object,
6228 unsigned int shndx,
6229 const char* name,
6230 const elfcpp::Shdr<64, true>& shdr,
6231 unsigned int, unsigned int, unsigned int, off_t*);
6232 #endif
6233
6234 #ifdef HAVE_TARGET_32_LITTLE
6235 template
6236 Output_section*
6237 Layout::layout_reloc<32, false>(Sized_relobj_file<32, false>* object,
6238 unsigned int reloc_shndx,
6239 const elfcpp::Shdr<32, false>& shdr,
6240 Output_section* data_section,
6241 Relocatable_relocs* rr);
6242 #endif
6243
6244 #ifdef HAVE_TARGET_32_BIG
6245 template
6246 Output_section*
6247 Layout::layout_reloc<32, true>(Sized_relobj_file<32, true>* object,
6248 unsigned int reloc_shndx,
6249 const elfcpp::Shdr<32, true>& shdr,
6250 Output_section* data_section,
6251 Relocatable_relocs* rr);
6252 #endif
6253
6254 #ifdef HAVE_TARGET_64_LITTLE
6255 template
6256 Output_section*
6257 Layout::layout_reloc<64, false>(Sized_relobj_file<64, false>* object,
6258 unsigned int reloc_shndx,
6259 const elfcpp::Shdr<64, false>& shdr,
6260 Output_section* data_section,
6261 Relocatable_relocs* rr);
6262 #endif
6263
6264 #ifdef HAVE_TARGET_64_BIG
6265 template
6266 Output_section*
6267 Layout::layout_reloc<64, true>(Sized_relobj_file<64, true>* object,
6268 unsigned int reloc_shndx,
6269 const elfcpp::Shdr<64, true>& shdr,
6270 Output_section* data_section,
6271 Relocatable_relocs* rr);
6272 #endif
6273
6274 #ifdef HAVE_TARGET_32_LITTLE
6275 template
6276 void
6277 Layout::layout_group<32, false>(Symbol_table* symtab,
6278 Sized_relobj_file<32, false>* object,
6279 unsigned int,
6280 const char* group_section_name,
6281 const char* signature,
6282 const elfcpp::Shdr<32, false>& shdr,
6283 elfcpp::Elf_Word flags,
6284 std::vector<unsigned int>* shndxes);
6285 #endif
6286
6287 #ifdef HAVE_TARGET_32_BIG
6288 template
6289 void
6290 Layout::layout_group<32, true>(Symbol_table* symtab,
6291 Sized_relobj_file<32, true>* object,
6292 unsigned int,
6293 const char* group_section_name,
6294 const char* signature,
6295 const elfcpp::Shdr<32, true>& shdr,
6296 elfcpp::Elf_Word flags,
6297 std::vector<unsigned int>* shndxes);
6298 #endif
6299
6300 #ifdef HAVE_TARGET_64_LITTLE
6301 template
6302 void
6303 Layout::layout_group<64, false>(Symbol_table* symtab,
6304 Sized_relobj_file<64, false>* object,
6305 unsigned int,
6306 const char* group_section_name,
6307 const char* signature,
6308 const elfcpp::Shdr<64, false>& shdr,
6309 elfcpp::Elf_Word flags,
6310 std::vector<unsigned int>* shndxes);
6311 #endif
6312
6313 #ifdef HAVE_TARGET_64_BIG
6314 template
6315 void
6316 Layout::layout_group<64, true>(Symbol_table* symtab,
6317 Sized_relobj_file<64, true>* object,
6318 unsigned int,
6319 const char* group_section_name,
6320 const char* signature,
6321 const elfcpp::Shdr<64, true>& shdr,
6322 elfcpp::Elf_Word flags,
6323 std::vector<unsigned int>* shndxes);
6324 #endif
6325
6326 #ifdef HAVE_TARGET_32_LITTLE
6327 template
6328 Output_section*
6329 Layout::layout_eh_frame<32, false>(Sized_relobj_file<32, false>* object,
6330 const unsigned char* symbols,
6331 off_t symbols_size,
6332 const unsigned char* symbol_names,
6333 off_t symbol_names_size,
6334 unsigned int shndx,
6335 const elfcpp::Shdr<32, false>& shdr,
6336 unsigned int reloc_shndx,
6337 unsigned int reloc_type,
6338 off_t* off);
6339 #endif
6340
6341 #ifdef HAVE_TARGET_32_BIG
6342 template
6343 Output_section*
6344 Layout::layout_eh_frame<32, true>(Sized_relobj_file<32, true>* object,
6345 const unsigned char* symbols,
6346 off_t symbols_size,
6347 const unsigned char* symbol_names,
6348 off_t symbol_names_size,
6349 unsigned int shndx,
6350 const elfcpp::Shdr<32, true>& shdr,
6351 unsigned int reloc_shndx,
6352 unsigned int reloc_type,
6353 off_t* off);
6354 #endif
6355
6356 #ifdef HAVE_TARGET_64_LITTLE
6357 template
6358 Output_section*
6359 Layout::layout_eh_frame<64, false>(Sized_relobj_file<64, false>* object,
6360 const unsigned char* symbols,
6361 off_t symbols_size,
6362 const unsigned char* symbol_names,
6363 off_t symbol_names_size,
6364 unsigned int shndx,
6365 const elfcpp::Shdr<64, false>& shdr,
6366 unsigned int reloc_shndx,
6367 unsigned int reloc_type,
6368 off_t* off);
6369 #endif
6370
6371 #ifdef HAVE_TARGET_64_BIG
6372 template
6373 Output_section*
6374 Layout::layout_eh_frame<64, true>(Sized_relobj_file<64, true>* object,
6375 const unsigned char* symbols,
6376 off_t symbols_size,
6377 const unsigned char* symbol_names,
6378 off_t symbol_names_size,
6379 unsigned int shndx,
6380 const elfcpp::Shdr<64, true>& shdr,
6381 unsigned int reloc_shndx,
6382 unsigned int reloc_type,
6383 off_t* off);
6384 #endif
6385
6386 #ifdef HAVE_TARGET_32_LITTLE
6387 template
6388 void
6389 Layout::add_to_gdb_index(bool is_type_unit,
6390 Sized_relobj<32, false>* object,
6391 const unsigned char* symbols,
6392 off_t symbols_size,
6393 unsigned int shndx,
6394 unsigned int reloc_shndx,
6395 unsigned int reloc_type);
6396 #endif
6397
6398 #ifdef HAVE_TARGET_32_BIG
6399 template
6400 void
6401 Layout::add_to_gdb_index(bool is_type_unit,
6402 Sized_relobj<32, true>* object,
6403 const unsigned char* symbols,
6404 off_t symbols_size,
6405 unsigned int shndx,
6406 unsigned int reloc_shndx,
6407 unsigned int reloc_type);
6408 #endif
6409
6410 #ifdef HAVE_TARGET_64_LITTLE
6411 template
6412 void
6413 Layout::add_to_gdb_index(bool is_type_unit,
6414 Sized_relobj<64, false>* object,
6415 const unsigned char* symbols,
6416 off_t symbols_size,
6417 unsigned int shndx,
6418 unsigned int reloc_shndx,
6419 unsigned int reloc_type);
6420 #endif
6421
6422 #ifdef HAVE_TARGET_64_BIG
6423 template
6424 void
6425 Layout::add_to_gdb_index(bool is_type_unit,
6426 Sized_relobj<64, true>* object,
6427 const unsigned char* symbols,
6428 off_t symbols_size,
6429 unsigned int shndx,
6430 unsigned int reloc_shndx,
6431 unsigned int reloc_type);
6432 #endif
6433
6434 } // End namespace gold.
This page took 0.164672 seconds and 4 git commands to generate.