Copyright update for binutils
[deliverable/binutils-gdb.git] / gold / mips.cc
1 // mips.cc -- mips target support for gold.
2
3 // Copyright (C) 2011-2016 Free Software Foundation, Inc.
4 // Written by Sasa Stankovic <sasa.stankovic@imgtec.com>
5 // and Aleksandar Simeonov <aleksandar.simeonov@rt-rk.com>.
6 // This file contains borrowed and adapted code from bfd/elfxx-mips.c.
7
8 // This file is part of gold.
9
10 // This program is free software; you can redistribute it and/or modify
11 // it under the terms of the GNU General Public License as published by
12 // the Free Software Foundation; either version 3 of the License, or
13 // (at your option) any later version.
14
15 // This program is distributed in the hope that it will be useful,
16 // but WITHOUT ANY WARRANTY; without even the implied warranty of
17 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 // GNU General Public License for more details.
19
20 // You should have received a copy of the GNU General Public License
21 // along with this program; if not, write to the Free Software
22 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
23 // MA 02110-1301, USA.
24
25 #include "gold.h"
26
27 #include <algorithm>
28 #include <set>
29 #include <sstream>
30 #include "demangle.h"
31
32 #include "elfcpp.h"
33 #include "parameters.h"
34 #include "reloc.h"
35 #include "mips.h"
36 #include "object.h"
37 #include "symtab.h"
38 #include "layout.h"
39 #include "output.h"
40 #include "copy-relocs.h"
41 #include "target.h"
42 #include "target-reloc.h"
43 #include "target-select.h"
44 #include "tls.h"
45 #include "errors.h"
46 #include "gc.h"
47 #include "nacl.h"
48
49 namespace
50 {
51 using namespace gold;
52
53 template<int size, bool big_endian>
54 class Mips_output_data_plt;
55
56 template<int size, bool big_endian>
57 class Mips_output_data_got;
58
59 template<int size, bool big_endian>
60 class Target_mips;
61
62 template<int size, bool big_endian>
63 class Mips_output_section_reginfo;
64
65 template<int size, bool big_endian>
66 class Mips_output_data_la25_stub;
67
68 template<int size, bool big_endian>
69 class Mips_output_data_mips_stubs;
70
71 template<int size>
72 class Mips_symbol;
73
74 template<int size, bool big_endian>
75 class Mips_got_info;
76
77 template<int size, bool big_endian>
78 class Mips_relobj;
79
80 class Mips16_stub_section_base;
81
82 template<int size, bool big_endian>
83 class Mips16_stub_section;
84
85 // The ABI says that every symbol used by dynamic relocations must have
86 // a global GOT entry. Among other things, this provides the dynamic
87 // linker with a free, directly-indexed cache. The GOT can therefore
88 // contain symbols that are not referenced by GOT relocations themselves
89 // (in other words, it may have symbols that are not referenced by things
90 // like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
91
92 // GOT relocations are less likely to overflow if we put the associated
93 // GOT entries towards the beginning. We therefore divide the global
94 // GOT entries into two areas: "normal" and "reloc-only". Entries in
95 // the first area can be used for both dynamic relocations and GP-relative
96 // accesses, while those in the "reloc-only" area are for dynamic
97 // relocations only.
98
99 // These GGA_* ("Global GOT Area") values are organised so that lower
100 // values are more general than higher values. Also, non-GGA_NONE
101 // values are ordered by the position of the area in the GOT.
102
103 enum Global_got_area
104 {
105 GGA_NORMAL = 0,
106 GGA_RELOC_ONLY = 1,
107 GGA_NONE = 2
108 };
109
110 // The types of GOT entries needed for this platform.
111 // These values are exposed to the ABI in an incremental link.
112 // Do not renumber existing values without changing the version
113 // number of the .gnu_incremental_inputs section.
114 enum Got_type
115 {
116 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
117 GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset
118 GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair
119
120 // GOT entries for multi-GOT. We support up to 1024 GOTs in multi-GOT links.
121 GOT_TYPE_STANDARD_MULTIGOT = 3,
122 GOT_TYPE_TLS_OFFSET_MULTIGOT = GOT_TYPE_STANDARD_MULTIGOT + 1024,
123 GOT_TYPE_TLS_PAIR_MULTIGOT = GOT_TYPE_TLS_OFFSET_MULTIGOT + 1024
124 };
125
126 // TLS type of GOT entry.
127 enum Got_tls_type
128 {
129 GOT_TLS_NONE = 0,
130 GOT_TLS_GD = 1,
131 GOT_TLS_LDM = 2,
132 GOT_TLS_IE = 4
133 };
134
135 // Return TRUE if a relocation of type R_TYPE from OBJECT might
136 // require an la25 stub. See also local_pic_function, which determines
137 // whether the destination function ever requires a stub.
138 template<int size, bool big_endian>
139 static inline bool
140 relocation_needs_la25_stub(Mips_relobj<size, big_endian>* object,
141 unsigned int r_type, bool target_is_16_bit_code)
142 {
143 // We specifically ignore branches and jumps from EF_PIC objects,
144 // where the onus is on the compiler or programmer to perform any
145 // necessary initialization of $25. Sometimes such initialization
146 // is unnecessary; for example, -mno-shared functions do not use
147 // the incoming value of $25, and may therefore be called directly.
148 if (object->is_pic())
149 return false;
150
151 switch (r_type)
152 {
153 case elfcpp::R_MIPS_26:
154 case elfcpp::R_MIPS_PC16:
155 case elfcpp::R_MICROMIPS_26_S1:
156 case elfcpp::R_MICROMIPS_PC7_S1:
157 case elfcpp::R_MICROMIPS_PC10_S1:
158 case elfcpp::R_MICROMIPS_PC16_S1:
159 case elfcpp::R_MICROMIPS_PC23_S2:
160 return true;
161
162 case elfcpp::R_MIPS16_26:
163 return !target_is_16_bit_code;
164
165 default:
166 return false;
167 }
168 }
169
170 // Return true if SYM is a locally-defined PIC function, in the sense
171 // that it or its fn_stub might need $25 to be valid on entry.
172 // Note that MIPS16 functions set up $gp using PC-relative instructions,
173 // so they themselves never need $25 to be valid. Only non-MIPS16
174 // entry points are of interest here.
175 template<int size, bool big_endian>
176 static inline bool
177 local_pic_function(Mips_symbol<size>* sym)
178 {
179 bool def_regular = (sym->source() == Symbol::FROM_OBJECT
180 && !sym->object()->is_dynamic()
181 && !sym->is_undefined());
182
183 if (sym->is_defined() && def_regular)
184 {
185 Mips_relobj<size, big_endian>* object =
186 static_cast<Mips_relobj<size, big_endian>*>(sym->object());
187
188 if ((object->is_pic() || sym->is_pic())
189 && (!sym->is_mips16()
190 || (sym->has_mips16_fn_stub() && sym->need_fn_stub())))
191 return true;
192 }
193 return false;
194 }
195
196 static inline bool
197 hi16_reloc(int r_type)
198 {
199 return (r_type == elfcpp::R_MIPS_HI16
200 || r_type == elfcpp::R_MIPS16_HI16
201 || r_type == elfcpp::R_MICROMIPS_HI16);
202 }
203
204 static inline bool
205 lo16_reloc(int r_type)
206 {
207 return (r_type == elfcpp::R_MIPS_LO16
208 || r_type == elfcpp::R_MIPS16_LO16
209 || r_type == elfcpp::R_MICROMIPS_LO16);
210 }
211
212 static inline bool
213 got16_reloc(unsigned int r_type)
214 {
215 return (r_type == elfcpp::R_MIPS_GOT16
216 || r_type == elfcpp::R_MIPS16_GOT16
217 || r_type == elfcpp::R_MICROMIPS_GOT16);
218 }
219
220 static inline bool
221 call_lo16_reloc(unsigned int r_type)
222 {
223 return (r_type == elfcpp::R_MIPS_CALL_LO16
224 || r_type == elfcpp::R_MICROMIPS_CALL_LO16);
225 }
226
227 static inline bool
228 got_lo16_reloc(unsigned int r_type)
229 {
230 return (r_type == elfcpp::R_MIPS_GOT_LO16
231 || r_type == elfcpp::R_MICROMIPS_GOT_LO16);
232 }
233
234 static inline bool
235 got_disp_reloc(unsigned int r_type)
236 {
237 return (r_type == elfcpp::R_MIPS_GOT_DISP
238 || r_type == elfcpp::R_MICROMIPS_GOT_DISP);
239 }
240
241 static inline bool
242 got_page_reloc(unsigned int r_type)
243 {
244 return (r_type == elfcpp::R_MIPS_GOT_PAGE
245 || r_type == elfcpp::R_MICROMIPS_GOT_PAGE);
246 }
247
248 static inline bool
249 tls_gd_reloc(unsigned int r_type)
250 {
251 return (r_type == elfcpp::R_MIPS_TLS_GD
252 || r_type == elfcpp::R_MIPS16_TLS_GD
253 || r_type == elfcpp::R_MICROMIPS_TLS_GD);
254 }
255
256 static inline bool
257 tls_gottprel_reloc(unsigned int r_type)
258 {
259 return (r_type == elfcpp::R_MIPS_TLS_GOTTPREL
260 || r_type == elfcpp::R_MIPS16_TLS_GOTTPREL
261 || r_type == elfcpp::R_MICROMIPS_TLS_GOTTPREL);
262 }
263
264 static inline bool
265 tls_ldm_reloc(unsigned int r_type)
266 {
267 return (r_type == elfcpp::R_MIPS_TLS_LDM
268 || r_type == elfcpp::R_MIPS16_TLS_LDM
269 || r_type == elfcpp::R_MICROMIPS_TLS_LDM);
270 }
271
272 static inline bool
273 mips16_call_reloc(unsigned int r_type)
274 {
275 return (r_type == elfcpp::R_MIPS16_26
276 || r_type == elfcpp::R_MIPS16_CALL16);
277 }
278
279 static inline bool
280 jal_reloc(unsigned int r_type)
281 {
282 return (r_type == elfcpp::R_MIPS_26
283 || r_type == elfcpp::R_MIPS16_26
284 || r_type == elfcpp::R_MICROMIPS_26_S1);
285 }
286
287 static inline bool
288 micromips_branch_reloc(unsigned int r_type)
289 {
290 return (r_type == elfcpp::R_MICROMIPS_26_S1
291 || r_type == elfcpp::R_MICROMIPS_PC16_S1
292 || r_type == elfcpp::R_MICROMIPS_PC10_S1
293 || r_type == elfcpp::R_MICROMIPS_PC7_S1);
294 }
295
296 // Check if R_TYPE is a MIPS16 reloc.
297 static inline bool
298 mips16_reloc(unsigned int r_type)
299 {
300 switch (r_type)
301 {
302 case elfcpp::R_MIPS16_26:
303 case elfcpp::R_MIPS16_GPREL:
304 case elfcpp::R_MIPS16_GOT16:
305 case elfcpp::R_MIPS16_CALL16:
306 case elfcpp::R_MIPS16_HI16:
307 case elfcpp::R_MIPS16_LO16:
308 case elfcpp::R_MIPS16_TLS_GD:
309 case elfcpp::R_MIPS16_TLS_LDM:
310 case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
311 case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
312 case elfcpp::R_MIPS16_TLS_GOTTPREL:
313 case elfcpp::R_MIPS16_TLS_TPREL_HI16:
314 case elfcpp::R_MIPS16_TLS_TPREL_LO16:
315 return true;
316
317 default:
318 return false;
319 }
320 }
321
322 // Check if R_TYPE is a microMIPS reloc.
323 static inline bool
324 micromips_reloc(unsigned int r_type)
325 {
326 switch (r_type)
327 {
328 case elfcpp::R_MICROMIPS_26_S1:
329 case elfcpp::R_MICROMIPS_HI16:
330 case elfcpp::R_MICROMIPS_LO16:
331 case elfcpp::R_MICROMIPS_GPREL16:
332 case elfcpp::R_MICROMIPS_LITERAL:
333 case elfcpp::R_MICROMIPS_GOT16:
334 case elfcpp::R_MICROMIPS_PC7_S1:
335 case elfcpp::R_MICROMIPS_PC10_S1:
336 case elfcpp::R_MICROMIPS_PC16_S1:
337 case elfcpp::R_MICROMIPS_CALL16:
338 case elfcpp::R_MICROMIPS_GOT_DISP:
339 case elfcpp::R_MICROMIPS_GOT_PAGE:
340 case elfcpp::R_MICROMIPS_GOT_OFST:
341 case elfcpp::R_MICROMIPS_GOT_HI16:
342 case elfcpp::R_MICROMIPS_GOT_LO16:
343 case elfcpp::R_MICROMIPS_SUB:
344 case elfcpp::R_MICROMIPS_HIGHER:
345 case elfcpp::R_MICROMIPS_HIGHEST:
346 case elfcpp::R_MICROMIPS_CALL_HI16:
347 case elfcpp::R_MICROMIPS_CALL_LO16:
348 case elfcpp::R_MICROMIPS_SCN_DISP:
349 case elfcpp::R_MICROMIPS_JALR:
350 case elfcpp::R_MICROMIPS_HI0_LO16:
351 case elfcpp::R_MICROMIPS_TLS_GD:
352 case elfcpp::R_MICROMIPS_TLS_LDM:
353 case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
354 case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
355 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
356 case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
357 case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
358 case elfcpp::R_MICROMIPS_GPREL7_S2:
359 case elfcpp::R_MICROMIPS_PC23_S2:
360 return true;
361
362 default:
363 return false;
364 }
365 }
366
367 static inline bool
368 is_matching_lo16_reloc(unsigned int high_reloc, unsigned int lo16_reloc)
369 {
370 switch (high_reloc)
371 {
372 case elfcpp::R_MIPS_HI16:
373 case elfcpp::R_MIPS_GOT16:
374 return lo16_reloc == elfcpp::R_MIPS_LO16;
375 case elfcpp::R_MIPS16_HI16:
376 case elfcpp::R_MIPS16_GOT16:
377 return lo16_reloc == elfcpp::R_MIPS16_LO16;
378 case elfcpp::R_MICROMIPS_HI16:
379 case elfcpp::R_MICROMIPS_GOT16:
380 return lo16_reloc == elfcpp::R_MICROMIPS_LO16;
381 default:
382 return false;
383 }
384 }
385
386 // This class is used to hold information about one GOT entry.
387 // There are three types of entry:
388 //
389 // (1) a SYMBOL + OFFSET address, where SYMBOL is local to an input object
390 // (object != NULL, symndx >= 0, tls_type != GOT_TLS_LDM)
391 // (2) a SYMBOL address, where SYMBOL is not local to an input object
392 // (object != NULL, symndx == -1)
393 // (3) a TLS LDM slot
394 // (object != NULL, symndx == 0, tls_type == GOT_TLS_LDM)
395
396 template<int size, bool big_endian>
397 class Mips_got_entry
398 {
399 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
400
401 public:
402 Mips_got_entry(Mips_relobj<size, big_endian>* object, unsigned int symndx,
403 Mips_address addend, unsigned char tls_type,
404 unsigned int shndx)
405 : object_(object), symndx_(symndx), tls_type_(tls_type), shndx_(shndx)
406 { this->d.addend = addend; }
407
408 Mips_got_entry(Mips_relobj<size, big_endian>* object, Mips_symbol<size>* sym,
409 unsigned char tls_type)
410 : object_(object), symndx_(-1U), tls_type_(tls_type), shndx_(-1U)
411 { this->d.sym = sym; }
412
413 // Return whether this entry is for a local symbol.
414 bool
415 is_for_local_symbol() const
416 { return this->symndx_ != -1U; }
417
418 // Return whether this entry is for a global symbol.
419 bool
420 is_for_global_symbol() const
421 { return this->symndx_ == -1U; }
422
423 // Return the hash of this entry.
424 size_t
425 hash() const
426 {
427 if (this->tls_type_ == GOT_TLS_LDM)
428 return this->symndx_ + (1 << 18);
429 if (this->symndx_ != -1U)
430 {
431 uintptr_t object_id = reinterpret_cast<uintptr_t>(this->object());
432 return this->symndx_ + object_id + this->d.addend;
433 }
434 else
435 {
436 uintptr_t sym_id = reinterpret_cast<uintptr_t>(this->d.sym);
437 return this->symndx_ + sym_id;
438 }
439 }
440
441 // Return whether this entry is equal to OTHER.
442 bool
443 equals(Mips_got_entry<size, big_endian>* other) const
444 {
445 if (this->symndx_ != other->symndx_
446 || this->tls_type_ != other->tls_type_)
447 return false;
448 if (this->tls_type_ == GOT_TLS_LDM)
449 return true;
450 if (this->symndx_ != -1U)
451 return (this->object() == other->object()
452 && this->d.addend == other->d.addend);
453 else
454 return this->d.sym == other->d.sym;
455 }
456
457 // Return input object that needs this GOT entry.
458 Mips_relobj<size, big_endian>*
459 object() const
460 {
461 gold_assert(this->object_ != NULL);
462 return this->object_;
463 }
464
465 // Return local symbol index for local GOT entries.
466 unsigned int
467 symndx() const
468 {
469 gold_assert(this->symndx_ != -1U);
470 return this->symndx_;
471 }
472
473 // Return the relocation addend for local GOT entries.
474 Mips_address
475 addend() const
476 {
477 gold_assert(this->symndx_ != -1U);
478 return this->d.addend;
479 }
480
481 // Return global symbol for global GOT entries.
482 Mips_symbol<size>*
483 sym() const
484 {
485 gold_assert(this->symndx_ == -1U);
486 return this->d.sym;
487 }
488
489 // Return whether this is a TLS GOT entry.
490 bool
491 is_tls_entry() const
492 { return this->tls_type_ != GOT_TLS_NONE; }
493
494 // Return TLS type of this GOT entry.
495 unsigned char
496 tls_type() const
497 { return this->tls_type_; }
498
499 // Return section index of the local symbol for local GOT entries.
500 unsigned int
501 shndx() const
502 { return this->shndx_; }
503
504 private:
505 // The input object that needs the GOT entry.
506 Mips_relobj<size, big_endian>* object_;
507 // The index of the symbol if we have a local symbol; -1 otherwise.
508 unsigned int symndx_;
509
510 union
511 {
512 // If symndx != -1, the addend of the relocation that should be added to the
513 // symbol value.
514 Mips_address addend;
515 // If symndx == -1, the global symbol corresponding to this GOT entry. The
516 // symbol's entry is in the local area if mips_sym->global_got_area is
517 // GGA_NONE, otherwise it is in the global area.
518 Mips_symbol<size>* sym;
519 } d;
520
521 // The TLS type of this GOT entry. An LDM GOT entry will be a local
522 // symbol entry with r_symndx == 0.
523 unsigned char tls_type_;
524
525 // For local GOT entries, section index of the local symbol.
526 unsigned int shndx_;
527 };
528
529 // Hash for Mips_got_entry.
530
531 template<int size, bool big_endian>
532 class Mips_got_entry_hash
533 {
534 public:
535 size_t
536 operator()(Mips_got_entry<size, big_endian>* entry) const
537 { return entry->hash(); }
538 };
539
540 // Equality for Mips_got_entry.
541
542 template<int size, bool big_endian>
543 class Mips_got_entry_eq
544 {
545 public:
546 bool
547 operator()(Mips_got_entry<size, big_endian>* e1,
548 Mips_got_entry<size, big_endian>* e2) const
549 { return e1->equals(e2); }
550 };
551
552 // Got_page_range. This class describes a range of addends: [MIN_ADDEND,
553 // MAX_ADDEND]. The instances form a non-overlapping list that is sorted by
554 // increasing MIN_ADDEND.
555
556 struct Got_page_range
557 {
558 Got_page_range()
559 : next(NULL), min_addend(0), max_addend(0)
560 { }
561
562 Got_page_range* next;
563 int min_addend;
564 int max_addend;
565
566 // Return the maximum number of GOT page entries required.
567 int
568 get_max_pages()
569 { return (this->max_addend - this->min_addend + 0x1ffff) >> 16; }
570 };
571
572 // Got_page_entry. This class describes the range of addends that are applied
573 // to page relocations against a given symbol.
574
575 struct Got_page_entry
576 {
577 Got_page_entry()
578 : object(NULL), symndx(-1U), ranges(NULL), num_pages(0)
579 { }
580
581 Got_page_entry(Object* object_, unsigned int symndx_)
582 : object(object_), symndx(symndx_), ranges(NULL), num_pages(0)
583 { }
584
585 // The input object that needs the GOT page entry.
586 Object* object;
587 // The index of the symbol, as stored in the relocation r_info.
588 unsigned int symndx;
589 // The ranges for this page entry.
590 Got_page_range* ranges;
591 // The maximum number of page entries needed for RANGES.
592 unsigned int num_pages;
593 };
594
595 // Hash for Got_page_entry.
596
597 struct Got_page_entry_hash
598 {
599 size_t
600 operator()(Got_page_entry* entry) const
601 { return reinterpret_cast<uintptr_t>(entry->object) + entry->symndx; }
602 };
603
604 // Equality for Got_page_entry.
605
606 struct Got_page_entry_eq
607 {
608 bool
609 operator()(Got_page_entry* entry1, Got_page_entry* entry2) const
610 {
611 return entry1->object == entry2->object && entry1->symndx == entry2->symndx;
612 }
613 };
614
615 // This class is used to hold .got information when linking.
616
617 template<int size, bool big_endian>
618 class Mips_got_info
619 {
620 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
621 typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
622 Reloc_section;
623 typedef Unordered_map<unsigned int, unsigned int> Got_page_offsets;
624
625 // Unordered set of GOT entries.
626 typedef Unordered_set<Mips_got_entry<size, big_endian>*,
627 Mips_got_entry_hash<size, big_endian>,
628 Mips_got_entry_eq<size, big_endian> > Got_entry_set;
629
630 // Unordered set of GOT page entries.
631 typedef Unordered_set<Got_page_entry*,
632 Got_page_entry_hash, Got_page_entry_eq> Got_page_entry_set;
633
634 public:
635 Mips_got_info()
636 : local_gotno_(0), page_gotno_(0), global_gotno_(0), reloc_only_gotno_(0),
637 tls_gotno_(0), tls_ldm_offset_(-1U), global_got_symbols_(),
638 got_entries_(), got_page_entries_(), got_page_offset_start_(0),
639 got_page_offset_next_(0), got_page_offsets_(), next_(NULL), index_(-1U),
640 offset_(0)
641 { }
642
643 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
644 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
645 void
646 record_local_got_symbol(Mips_relobj<size, big_endian>* object,
647 unsigned int symndx, Mips_address addend,
648 unsigned int r_type, unsigned int shndx);
649
650 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
651 // in OBJECT. FOR_CALL is true if the caller is only interested in
652 // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
653 // relocation.
654 void
655 record_global_got_symbol(Mips_symbol<size>* mips_sym,
656 Mips_relobj<size, big_endian>* object,
657 unsigned int r_type, bool dyn_reloc, bool for_call);
658
659 // Add ENTRY to master GOT and to OBJECT's GOT.
660 void
661 record_got_entry(Mips_got_entry<size, big_endian>* entry,
662 Mips_relobj<size, big_endian>* object);
663
664 // Record that OBJECT has a page relocation against symbol SYMNDX and
665 // that ADDEND is the addend for that relocation.
666 void
667 record_got_page_entry(Mips_relobj<size, big_endian>* object,
668 unsigned int symndx, int addend);
669
670 // Create all entries that should be in the local part of the GOT.
671 void
672 add_local_entries(Target_mips<size, big_endian>* target, Layout* layout);
673
674 // Create GOT page entries.
675 void
676 add_page_entries(Target_mips<size, big_endian>* target, Layout* layout);
677
678 // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
679 void
680 add_global_entries(Target_mips<size, big_endian>* target, Layout* layout,
681 unsigned int non_reloc_only_global_gotno);
682
683 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
684 void
685 add_reloc_only_entries(Mips_output_data_got<size, big_endian>* got);
686
687 // Create TLS GOT entries.
688 void
689 add_tls_entries(Target_mips<size, big_endian>* target, Layout* layout);
690
691 // Decide whether the symbol needs an entry in the global part of the primary
692 // GOT, setting global_got_area accordingly. Count the number of global
693 // symbols that are in the primary GOT only because they have dynamic
694 // relocations R_MIPS_REL32 against them (reloc_only_gotno).
695 void
696 count_got_symbols(Symbol_table* symtab);
697
698 // Return the offset of GOT page entry for VALUE.
699 unsigned int
700 get_got_page_offset(Mips_address value,
701 Mips_output_data_got<size, big_endian>* got);
702
703 // Count the number of GOT entries required.
704 void
705 count_got_entries();
706
707 // Count the number of GOT entries required by ENTRY. Accumulate the result.
708 void
709 count_got_entry(Mips_got_entry<size, big_endian>* entry);
710
711 // Add FROM's GOT entries.
712 void
713 add_got_entries(Mips_got_info<size, big_endian>* from);
714
715 // Add FROM's GOT page entries.
716 void
717 add_got_page_entries(Mips_got_info<size, big_endian>* from);
718
719 // Return GOT size.
720 unsigned int
721 got_size() const
722 { return ((2 + this->local_gotno_ + this->page_gotno_ + this->global_gotno_
723 + this->tls_gotno_) * size/8);
724 }
725
726 // Return the number of local GOT entries.
727 unsigned int
728 local_gotno() const
729 { return this->local_gotno_; }
730
731 // Return the maximum number of page GOT entries needed.
732 unsigned int
733 page_gotno() const
734 { return this->page_gotno_; }
735
736 // Return the number of global GOT entries.
737 unsigned int
738 global_gotno() const
739 { return this->global_gotno_; }
740
741 // Set the number of global GOT entries.
742 void
743 set_global_gotno(unsigned int global_gotno)
744 { this->global_gotno_ = global_gotno; }
745
746 // Return the number of GGA_RELOC_ONLY global GOT entries.
747 unsigned int
748 reloc_only_gotno() const
749 { return this->reloc_only_gotno_; }
750
751 // Return the number of TLS GOT entries.
752 unsigned int
753 tls_gotno() const
754 { return this->tls_gotno_; }
755
756 // Return the GOT type for this GOT. Used for multi-GOT links only.
757 unsigned int
758 multigot_got_type(unsigned int got_type) const
759 {
760 switch (got_type)
761 {
762 case GOT_TYPE_STANDARD:
763 return GOT_TYPE_STANDARD_MULTIGOT + this->index_;
764 case GOT_TYPE_TLS_OFFSET:
765 return GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
766 case GOT_TYPE_TLS_PAIR:
767 return GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
768 default:
769 gold_unreachable();
770 }
771 }
772
773 // Remove lazy-binding stubs for global symbols in this GOT.
774 void
775 remove_lazy_stubs(Target_mips<size, big_endian>* target);
776
777 // Return offset of this GOT from the start of .got section.
778 unsigned int
779 offset() const
780 { return this->offset_; }
781
782 // Set offset of this GOT from the start of .got section.
783 void
784 set_offset(unsigned int offset)
785 { this->offset_ = offset; }
786
787 // Set index of this GOT in multi-GOT links.
788 void
789 set_index(unsigned int index)
790 { this->index_ = index; }
791
792 // Return next GOT in multi-GOT links.
793 Mips_got_info<size, big_endian>*
794 next() const
795 { return this->next_; }
796
797 // Set next GOT in multi-GOT links.
798 void
799 set_next(Mips_got_info<size, big_endian>* next)
800 { this->next_ = next; }
801
802 // Return the offset of TLS LDM entry for this GOT.
803 unsigned int
804 tls_ldm_offset() const
805 { return this->tls_ldm_offset_; }
806
807 // Set the offset of TLS LDM entry for this GOT.
808 void
809 set_tls_ldm_offset(unsigned int tls_ldm_offset)
810 { this->tls_ldm_offset_ = tls_ldm_offset; }
811
812 Unordered_set<Mips_symbol<size>*>&
813 global_got_symbols()
814 { return this->global_got_symbols_; }
815
816 // Return the GOT_TLS_* type required by relocation type R_TYPE.
817 static int
818 mips_elf_reloc_tls_type(unsigned int r_type)
819 {
820 if (tls_gd_reloc(r_type))
821 return GOT_TLS_GD;
822
823 if (tls_ldm_reloc(r_type))
824 return GOT_TLS_LDM;
825
826 if (tls_gottprel_reloc(r_type))
827 return GOT_TLS_IE;
828
829 return GOT_TLS_NONE;
830 }
831
832 // Return the number of GOT slots needed for GOT TLS type TYPE.
833 static int
834 mips_tls_got_entries(unsigned int type)
835 {
836 switch (type)
837 {
838 case GOT_TLS_GD:
839 case GOT_TLS_LDM:
840 return 2;
841
842 case GOT_TLS_IE:
843 return 1;
844
845 case GOT_TLS_NONE:
846 return 0;
847
848 default:
849 gold_unreachable();
850 }
851 }
852
853 private:
854 // The number of local GOT entries.
855 unsigned int local_gotno_;
856 // The maximum number of page GOT entries needed.
857 unsigned int page_gotno_;
858 // The number of global GOT entries.
859 unsigned int global_gotno_;
860 // The number of global GOT entries that are in the GGA_RELOC_ONLY area.
861 unsigned int reloc_only_gotno_;
862 // The number of TLS GOT entries.
863 unsigned int tls_gotno_;
864 // The offset of TLS LDM entry for this GOT.
865 unsigned int tls_ldm_offset_;
866 // All symbols that have global GOT entry.
867 Unordered_set<Mips_symbol<size>*> global_got_symbols_;
868 // A hash table holding GOT entries.
869 Got_entry_set got_entries_;
870 // A hash table of GOT page entries.
871 Got_page_entry_set got_page_entries_;
872 // The offset of first GOT page entry for this GOT.
873 unsigned int got_page_offset_start_;
874 // The offset of next available GOT page entry for this GOT.
875 unsigned int got_page_offset_next_;
876 // A hash table that maps GOT page entry value to the GOT offset where
877 // the entry is located.
878 Got_page_offsets got_page_offsets_;
879 // In multi-GOT links, a pointer to the next GOT.
880 Mips_got_info<size, big_endian>* next_;
881 // Index of this GOT in multi-GOT links.
882 unsigned int index_;
883 // The offset of this GOT in multi-GOT links.
884 unsigned int offset_;
885 };
886
887 // This is a helper class used during relocation scan. It records GOT16 addend.
888
889 template<int size, bool big_endian>
890 struct got16_addend
891 {
892 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
893
894 got16_addend(const Sized_relobj_file<size, big_endian>* _object,
895 unsigned int _shndx, unsigned int _r_type, unsigned int _r_sym,
896 Mips_address _addend)
897 : object(_object), shndx(_shndx), r_type(_r_type), r_sym(_r_sym),
898 addend(_addend)
899 { }
900
901 const Sized_relobj_file<size, big_endian>* object;
902 unsigned int shndx;
903 unsigned int r_type;
904 unsigned int r_sym;
905 Mips_address addend;
906 };
907
908 // Mips_symbol class. Holds additional symbol information needed for Mips.
909
910 template<int size>
911 class Mips_symbol : public Sized_symbol<size>
912 {
913 public:
914 Mips_symbol()
915 : need_fn_stub_(false), has_nonpic_branches_(false), la25_stub_offset_(-1U),
916 has_static_relocs_(false), no_lazy_stub_(false), lazy_stub_offset_(0),
917 pointer_equality_needed_(false), global_got_area_(GGA_NONE),
918 global_gotoffset_(-1U), got_only_for_calls_(true), has_lazy_stub_(false),
919 needs_mips_plt_(false), needs_comp_plt_(false), mips_plt_offset_(-1U),
920 comp_plt_offset_(-1U), mips16_fn_stub_(NULL), mips16_call_stub_(NULL),
921 mips16_call_fp_stub_(NULL), applied_secondary_got_fixup_(false)
922 { }
923
924 // Return whether this is a MIPS16 symbol.
925 bool
926 is_mips16() const
927 {
928 // (st_other & STO_MIPS16) == STO_MIPS16
929 return ((this->nonvis() & (elfcpp::STO_MIPS16 >> 2))
930 == elfcpp::STO_MIPS16 >> 2);
931 }
932
933 // Return whether this is a microMIPS symbol.
934 bool
935 is_micromips() const
936 {
937 // (st_other & STO_MIPS_ISA) == STO_MICROMIPS
938 return ((this->nonvis() & (elfcpp::STO_MIPS_ISA >> 2))
939 == elfcpp::STO_MICROMIPS >> 2);
940 }
941
942 // Return whether the symbol needs MIPS16 fn_stub.
943 bool
944 need_fn_stub() const
945 { return this->need_fn_stub_; }
946
947 // Set that the symbol needs MIPS16 fn_stub.
948 void
949 set_need_fn_stub()
950 { this->need_fn_stub_ = true; }
951
952 // Return whether this symbol is referenced by branch relocations from
953 // any non-PIC input file.
954 bool
955 has_nonpic_branches() const
956 { return this->has_nonpic_branches_; }
957
958 // Set that this symbol is referenced by branch relocations from
959 // any non-PIC input file.
960 void
961 set_has_nonpic_branches()
962 { this->has_nonpic_branches_ = true; }
963
964 // Return the offset of the la25 stub for this symbol from the start of the
965 // la25 stub section.
966 unsigned int
967 la25_stub_offset() const
968 { return this->la25_stub_offset_; }
969
970 // Set the offset of the la25 stub for this symbol from the start of the
971 // la25 stub section.
972 void
973 set_la25_stub_offset(unsigned int offset)
974 { this->la25_stub_offset_ = offset; }
975
976 // Return whether the symbol has la25 stub. This is true if this symbol is
977 // for a PIC function, and there are non-PIC branches and jumps to it.
978 bool
979 has_la25_stub() const
980 { return this->la25_stub_offset_ != -1U; }
981
982 // Return whether there is a relocation against this symbol that must be
983 // resolved by the static linker (that is, the relocation cannot possibly
984 // be made dynamic).
985 bool
986 has_static_relocs() const
987 { return this->has_static_relocs_; }
988
989 // Set that there is a relocation against this symbol that must be resolved
990 // by the static linker (that is, the relocation cannot possibly be made
991 // dynamic).
992 void
993 set_has_static_relocs()
994 { this->has_static_relocs_ = true; }
995
996 // Return whether we must not create a lazy-binding stub for this symbol.
997 bool
998 no_lazy_stub() const
999 { return this->no_lazy_stub_; }
1000
1001 // Set that we must not create a lazy-binding stub for this symbol.
1002 void
1003 set_no_lazy_stub()
1004 { this->no_lazy_stub_ = true; }
1005
1006 // Return the offset of the lazy-binding stub for this symbol from the start
1007 // of .MIPS.stubs section.
1008 unsigned int
1009 lazy_stub_offset() const
1010 { return this->lazy_stub_offset_; }
1011
1012 // Set the offset of the lazy-binding stub for this symbol from the start
1013 // of .MIPS.stubs section.
1014 void
1015 set_lazy_stub_offset(unsigned int offset)
1016 { this->lazy_stub_offset_ = offset; }
1017
1018 // Return whether there are any relocations for this symbol where
1019 // pointer equality matters.
1020 bool
1021 pointer_equality_needed() const
1022 { return this->pointer_equality_needed_; }
1023
1024 // Set that there are relocations for this symbol where pointer equality
1025 // matters.
1026 void
1027 set_pointer_equality_needed()
1028 { this->pointer_equality_needed_ = true; }
1029
1030 // Return global GOT area where this symbol in located.
1031 Global_got_area
1032 global_got_area() const
1033 { return this->global_got_area_; }
1034
1035 // Set global GOT area where this symbol in located.
1036 void
1037 set_global_got_area(Global_got_area global_got_area)
1038 { this->global_got_area_ = global_got_area; }
1039
1040 // Return the global GOT offset for this symbol. For multi-GOT links, this
1041 // returns the offset from the start of .got section to the first GOT entry
1042 // for the symbol. Note that in multi-GOT links the symbol can have entry
1043 // in more than one GOT.
1044 unsigned int
1045 global_gotoffset() const
1046 { return this->global_gotoffset_; }
1047
1048 // Set the global GOT offset for this symbol. Note that in multi-GOT links
1049 // the symbol can have entry in more than one GOT. This method will set
1050 // the offset only if it is less than current offset.
1051 void
1052 set_global_gotoffset(unsigned int offset)
1053 {
1054 if (this->global_gotoffset_ == -1U || offset < this->global_gotoffset_)
1055 this->global_gotoffset_ = offset;
1056 }
1057
1058 // Return whether all GOT relocations for this symbol are for calls.
1059 bool
1060 got_only_for_calls() const
1061 { return this->got_only_for_calls_; }
1062
1063 // Set that there is a GOT relocation for this symbol that is not for call.
1064 void
1065 set_got_not_only_for_calls()
1066 { this->got_only_for_calls_ = false; }
1067
1068 // Return whether this is a PIC symbol.
1069 bool
1070 is_pic() const
1071 {
1072 // (st_other & STO_MIPS_FLAGS) == STO_MIPS_PIC
1073 return ((this->nonvis() & (elfcpp::STO_MIPS_FLAGS >> 2))
1074 == (elfcpp::STO_MIPS_PIC >> 2));
1075 }
1076
1077 // Set the flag in st_other field that marks this symbol as PIC.
1078 void
1079 set_pic()
1080 {
1081 if (this->is_mips16())
1082 // (st_other & ~(STO_MIPS16 | STO_MIPS_FLAGS)) | STO_MIPS_PIC
1083 this->set_nonvis((this->nonvis()
1084 & ~((elfcpp::STO_MIPS16 >> 2)
1085 | (elfcpp::STO_MIPS_FLAGS >> 2)))
1086 | (elfcpp::STO_MIPS_PIC >> 2));
1087 else
1088 // (other & ~STO_MIPS_FLAGS) | STO_MIPS_PIC
1089 this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
1090 | (elfcpp::STO_MIPS_PIC >> 2));
1091 }
1092
1093 // Set the flag in st_other field that marks this symbol as PLT.
1094 void
1095 set_mips_plt()
1096 {
1097 if (this->is_mips16())
1098 // (st_other & (STO_MIPS16 | ~STO_MIPS_FLAGS)) | STO_MIPS_PLT
1099 this->set_nonvis((this->nonvis()
1100 & ((elfcpp::STO_MIPS16 >> 2)
1101 | ~(elfcpp::STO_MIPS_FLAGS >> 2)))
1102 | (elfcpp::STO_MIPS_PLT >> 2));
1103
1104 else
1105 // (st_other & ~STO_MIPS_FLAGS) | STO_MIPS_PLT
1106 this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
1107 | (elfcpp::STO_MIPS_PLT >> 2));
1108 }
1109
1110 // Downcast a base pointer to a Mips_symbol pointer.
1111 static Mips_symbol<size>*
1112 as_mips_sym(Symbol* sym)
1113 { return static_cast<Mips_symbol<size>*>(sym); }
1114
1115 // Downcast a base pointer to a Mips_symbol pointer.
1116 static const Mips_symbol<size>*
1117 as_mips_sym(const Symbol* sym)
1118 { return static_cast<const Mips_symbol<size>*>(sym); }
1119
1120 // Return whether the symbol has lazy-binding stub.
1121 bool
1122 has_lazy_stub() const
1123 { return this->has_lazy_stub_; }
1124
1125 // Set whether the symbol has lazy-binding stub.
1126 void
1127 set_has_lazy_stub(bool has_lazy_stub)
1128 { this->has_lazy_stub_ = has_lazy_stub; }
1129
1130 // Return whether the symbol needs a standard PLT entry.
1131 bool
1132 needs_mips_plt() const
1133 { return this->needs_mips_plt_; }
1134
1135 // Set whether the symbol needs a standard PLT entry.
1136 void
1137 set_needs_mips_plt(bool needs_mips_plt)
1138 { this->needs_mips_plt_ = needs_mips_plt; }
1139
1140 // Return whether the symbol needs a compressed (MIPS16 or microMIPS) PLT
1141 // entry.
1142 bool
1143 needs_comp_plt() const
1144 { return this->needs_comp_plt_; }
1145
1146 // Set whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
1147 void
1148 set_needs_comp_plt(bool needs_comp_plt)
1149 { this->needs_comp_plt_ = needs_comp_plt; }
1150
1151 // Return standard PLT entry offset, or -1 if none.
1152 unsigned int
1153 mips_plt_offset() const
1154 { return this->mips_plt_offset_; }
1155
1156 // Set standard PLT entry offset.
1157 void
1158 set_mips_plt_offset(unsigned int mips_plt_offset)
1159 { this->mips_plt_offset_ = mips_plt_offset; }
1160
1161 // Return whether the symbol has standard PLT entry.
1162 bool
1163 has_mips_plt_offset() const
1164 { return this->mips_plt_offset_ != -1U; }
1165
1166 // Return compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
1167 unsigned int
1168 comp_plt_offset() const
1169 { return this->comp_plt_offset_; }
1170
1171 // Set compressed (MIPS16 or microMIPS) PLT entry offset.
1172 void
1173 set_comp_plt_offset(unsigned int comp_plt_offset)
1174 { this->comp_plt_offset_ = comp_plt_offset; }
1175
1176 // Return whether the symbol has compressed (MIPS16 or microMIPS) PLT entry.
1177 bool
1178 has_comp_plt_offset() const
1179 { return this->comp_plt_offset_ != -1U; }
1180
1181 // Return MIPS16 fn stub for a symbol.
1182 template<bool big_endian>
1183 Mips16_stub_section<size, big_endian>*
1184 get_mips16_fn_stub() const
1185 {
1186 return static_cast<Mips16_stub_section<size, big_endian>*>(mips16_fn_stub_);
1187 }
1188
1189 // Set MIPS16 fn stub for a symbol.
1190 void
1191 set_mips16_fn_stub(Mips16_stub_section_base* stub)
1192 { this->mips16_fn_stub_ = stub; }
1193
1194 // Return whether symbol has MIPS16 fn stub.
1195 bool
1196 has_mips16_fn_stub() const
1197 { return this->mips16_fn_stub_ != NULL; }
1198
1199 // Return MIPS16 call stub for a symbol.
1200 template<bool big_endian>
1201 Mips16_stub_section<size, big_endian>*
1202 get_mips16_call_stub() const
1203 {
1204 return static_cast<Mips16_stub_section<size, big_endian>*>(
1205 mips16_call_stub_);
1206 }
1207
1208 // Set MIPS16 call stub for a symbol.
1209 void
1210 set_mips16_call_stub(Mips16_stub_section_base* stub)
1211 { this->mips16_call_stub_ = stub; }
1212
1213 // Return whether symbol has MIPS16 call stub.
1214 bool
1215 has_mips16_call_stub() const
1216 { return this->mips16_call_stub_ != NULL; }
1217
1218 // Return MIPS16 call_fp stub for a symbol.
1219 template<bool big_endian>
1220 Mips16_stub_section<size, big_endian>*
1221 get_mips16_call_fp_stub() const
1222 {
1223 return static_cast<Mips16_stub_section<size, big_endian>*>(
1224 mips16_call_fp_stub_);
1225 }
1226
1227 // Set MIPS16 call_fp stub for a symbol.
1228 void
1229 set_mips16_call_fp_stub(Mips16_stub_section_base* stub)
1230 { this->mips16_call_fp_stub_ = stub; }
1231
1232 // Return whether symbol has MIPS16 call_fp stub.
1233 bool
1234 has_mips16_call_fp_stub() const
1235 { return this->mips16_call_fp_stub_ != NULL; }
1236
1237 bool
1238 get_applied_secondary_got_fixup() const
1239 { return applied_secondary_got_fixup_; }
1240
1241 void
1242 set_applied_secondary_got_fixup()
1243 { this->applied_secondary_got_fixup_ = true; }
1244
1245 private:
1246 // Whether the symbol needs MIPS16 fn_stub. This is true if this symbol
1247 // appears in any relocs other than a 16 bit call.
1248 bool need_fn_stub_;
1249
1250 // True if this symbol is referenced by branch relocations from
1251 // any non-PIC input file. This is used to determine whether an
1252 // la25 stub is required.
1253 bool has_nonpic_branches_;
1254
1255 // The offset of the la25 stub for this symbol from the start of the
1256 // la25 stub section.
1257 unsigned int la25_stub_offset_;
1258
1259 // True if there is a relocation against this symbol that must be
1260 // resolved by the static linker (that is, the relocation cannot
1261 // possibly be made dynamic).
1262 bool has_static_relocs_;
1263
1264 // Whether we must not create a lazy-binding stub for this symbol.
1265 // This is true if the symbol has relocations related to taking the
1266 // function's address.
1267 bool no_lazy_stub_;
1268
1269 // The offset of the lazy-binding stub for this symbol from the start of
1270 // .MIPS.stubs section.
1271 unsigned int lazy_stub_offset_;
1272
1273 // True if there are any relocations for this symbol where pointer equality
1274 // matters.
1275 bool pointer_equality_needed_;
1276
1277 // Global GOT area where this symbol in located, or GGA_NONE if symbol is not
1278 // in the global part of the GOT.
1279 Global_got_area global_got_area_;
1280
1281 // The global GOT offset for this symbol. For multi-GOT links, this is offset
1282 // from the start of .got section to the first GOT entry for the symbol.
1283 // Note that in multi-GOT links the symbol can have entry in more than one GOT.
1284 unsigned int global_gotoffset_;
1285
1286 // Whether all GOT relocations for this symbol are for calls.
1287 bool got_only_for_calls_;
1288 // Whether the symbol has lazy-binding stub.
1289 bool has_lazy_stub_;
1290 // Whether the symbol needs a standard PLT entry.
1291 bool needs_mips_plt_;
1292 // Whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
1293 bool needs_comp_plt_;
1294 // Standard PLT entry offset, or -1 if none.
1295 unsigned int mips_plt_offset_;
1296 // Compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
1297 unsigned int comp_plt_offset_;
1298 // MIPS16 fn stub for a symbol.
1299 Mips16_stub_section_base* mips16_fn_stub_;
1300 // MIPS16 call stub for a symbol.
1301 Mips16_stub_section_base* mips16_call_stub_;
1302 // MIPS16 call_fp stub for a symbol.
1303 Mips16_stub_section_base* mips16_call_fp_stub_;
1304
1305 bool applied_secondary_got_fixup_;
1306 };
1307
1308 // Mips16_stub_section class.
1309
1310 // The mips16 compiler uses a couple of special sections to handle
1311 // floating point arguments.
1312
1313 // Section names that look like .mips16.fn.FNNAME contain stubs that
1314 // copy floating point arguments from the fp regs to the gp regs and
1315 // then jump to FNNAME. If any 32 bit function calls FNNAME, the
1316 // call should be redirected to the stub instead. If no 32 bit
1317 // function calls FNNAME, the stub should be discarded. We need to
1318 // consider any reference to the function, not just a call, because
1319 // if the address of the function is taken we will need the stub,
1320 // since the address might be passed to a 32 bit function.
1321
1322 // Section names that look like .mips16.call.FNNAME contain stubs
1323 // that copy floating point arguments from the gp regs to the fp
1324 // regs and then jump to FNNAME. If FNNAME is a 32 bit function,
1325 // then any 16 bit function that calls FNNAME should be redirected
1326 // to the stub instead. If FNNAME is not a 32 bit function, the
1327 // stub should be discarded.
1328
1329 // .mips16.call.fp.FNNAME sections are similar, but contain stubs
1330 // which call FNNAME and then copy the return value from the fp regs
1331 // to the gp regs. These stubs store the return address in $18 while
1332 // calling FNNAME; any function which might call one of these stubs
1333 // must arrange to save $18 around the call. (This case is not
1334 // needed for 32 bit functions that call 16 bit functions, because
1335 // 16 bit functions always return floating point values in both
1336 // $f0/$f1 and $2/$3.)
1337
1338 // Note that in all cases FNNAME might be defined statically.
1339 // Therefore, FNNAME is not used literally. Instead, the relocation
1340 // information will indicate which symbol the section is for.
1341
1342 // We record any stubs that we find in the symbol table.
1343
1344 // TODO(sasa): All mips16 stub sections should be emitted in the .text section.
1345
1346 class Mips16_stub_section_base { };
1347
1348 template<int size, bool big_endian>
1349 class Mips16_stub_section : public Mips16_stub_section_base
1350 {
1351 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1352
1353 public:
1354 Mips16_stub_section(Mips_relobj<size, big_endian>* object, unsigned int shndx)
1355 : object_(object), shndx_(shndx), r_sym_(0), gsym_(NULL),
1356 found_r_mips_none_(false)
1357 {
1358 gold_assert(object->is_mips16_fn_stub_section(shndx)
1359 || object->is_mips16_call_stub_section(shndx)
1360 || object->is_mips16_call_fp_stub_section(shndx));
1361 }
1362
1363 // Return the object of this stub section.
1364 Mips_relobj<size, big_endian>*
1365 object() const
1366 { return this->object_; }
1367
1368 // Return the size of a section.
1369 uint64_t
1370 section_size() const
1371 { return this->object_->section_size(this->shndx_); }
1372
1373 // Return section index of this stub section.
1374 unsigned int
1375 shndx() const
1376 { return this->shndx_; }
1377
1378 // Return symbol index, if stub is for a local function.
1379 unsigned int
1380 r_sym() const
1381 { return this->r_sym_; }
1382
1383 // Return symbol, if stub is for a global function.
1384 Mips_symbol<size>*
1385 gsym() const
1386 { return this->gsym_; }
1387
1388 // Return whether stub is for a local function.
1389 bool
1390 is_for_local_function() const
1391 { return this->gsym_ == NULL; }
1392
1393 // This method is called when a new relocation R_TYPE for local symbol R_SYM
1394 // is found in the stub section. Try to find stub target.
1395 void
1396 new_local_reloc_found(unsigned int r_type, unsigned int r_sym)
1397 {
1398 // To find target symbol for this stub, trust the first R_MIPS_NONE
1399 // relocation, if any. Otherwise trust the first relocation, whatever
1400 // its kind.
1401 if (this->found_r_mips_none_)
1402 return;
1403 if (r_type == elfcpp::R_MIPS_NONE)
1404 {
1405 this->r_sym_ = r_sym;
1406 this->gsym_ = NULL;
1407 this->found_r_mips_none_ = true;
1408 }
1409 else if (!is_target_found())
1410 this->r_sym_ = r_sym;
1411 }
1412
1413 // This method is called when a new relocation R_TYPE for global symbol GSYM
1414 // is found in the stub section. Try to find stub target.
1415 void
1416 new_global_reloc_found(unsigned int r_type, Mips_symbol<size>* gsym)
1417 {
1418 // To find target symbol for this stub, trust the first R_MIPS_NONE
1419 // relocation, if any. Otherwise trust the first relocation, whatever
1420 // its kind.
1421 if (this->found_r_mips_none_)
1422 return;
1423 if (r_type == elfcpp::R_MIPS_NONE)
1424 {
1425 this->gsym_ = gsym;
1426 this->r_sym_ = 0;
1427 this->found_r_mips_none_ = true;
1428 }
1429 else if (!is_target_found())
1430 this->gsym_ = gsym;
1431 }
1432
1433 // Return whether we found the stub target.
1434 bool
1435 is_target_found() const
1436 { return this->r_sym_ != 0 || this->gsym_ != NULL; }
1437
1438 // Return whether this is a fn stub.
1439 bool
1440 is_fn_stub() const
1441 { return this->object_->is_mips16_fn_stub_section(this->shndx_); }
1442
1443 // Return whether this is a call stub.
1444 bool
1445 is_call_stub() const
1446 { return this->object_->is_mips16_call_stub_section(this->shndx_); }
1447
1448 // Return whether this is a call_fp stub.
1449 bool
1450 is_call_fp_stub() const
1451 { return this->object_->is_mips16_call_fp_stub_section(this->shndx_); }
1452
1453 // Return the output address.
1454 Mips_address
1455 output_address() const
1456 {
1457 return (this->object_->output_section(this->shndx_)->address()
1458 + this->object_->output_section_offset(this->shndx_));
1459 }
1460
1461 private:
1462 // The object of this stub section.
1463 Mips_relobj<size, big_endian>* object_;
1464 // The section index of this stub section.
1465 unsigned int shndx_;
1466 // The symbol index, if stub is for a local function.
1467 unsigned int r_sym_;
1468 // The symbol, if stub is for a global function.
1469 Mips_symbol<size>* gsym_;
1470 // True if we found R_MIPS_NONE relocation in this stub.
1471 bool found_r_mips_none_;
1472 };
1473
1474 // Mips_relobj class.
1475
1476 template<int size, bool big_endian>
1477 class Mips_relobj : public Sized_relobj_file<size, big_endian>
1478 {
1479 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1480 typedef std::map<unsigned int, Mips16_stub_section<size, big_endian>*>
1481 Mips16_stubs_int_map;
1482 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
1483
1484 public:
1485 Mips_relobj(const std::string& name, Input_file* input_file, off_t offset,
1486 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
1487 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
1488 processor_specific_flags_(0), local_symbol_is_mips16_(),
1489 local_symbol_is_micromips_(), mips16_stub_sections_(),
1490 local_non_16bit_calls_(), local_16bit_calls_(), local_mips16_fn_stubs_(),
1491 local_mips16_call_stubs_(), gp_(0), got_info_(NULL),
1492 section_is_mips16_fn_stub_(), section_is_mips16_call_stub_(),
1493 section_is_mips16_call_fp_stub_(), pdr_shndx_(-1U), gprmask_(0),
1494 cprmask1_(0), cprmask2_(0), cprmask3_(0), cprmask4_(0)
1495 {
1496 this->is_pic_ = (ehdr.get_e_flags() & elfcpp::EF_MIPS_PIC) != 0;
1497 this->is_n32_ = elfcpp::abi_n32(ehdr.get_e_flags());
1498 this->is_n64_ = elfcpp::abi_64(ehdr.get_e_ident()[elfcpp::EI_CLASS]);
1499 }
1500
1501 ~Mips_relobj()
1502 { }
1503
1504 // Downcast a base pointer to a Mips_relobj pointer. This is
1505 // not type-safe but we only use Mips_relobj not the base class.
1506 static Mips_relobj<size, big_endian>*
1507 as_mips_relobj(Relobj* relobj)
1508 { return static_cast<Mips_relobj<size, big_endian>*>(relobj); }
1509
1510 // Downcast a base pointer to a Mips_relobj pointer. This is
1511 // not type-safe but we only use Mips_relobj not the base class.
1512 static const Mips_relobj<size, big_endian>*
1513 as_mips_relobj(const Relobj* relobj)
1514 { return static_cast<const Mips_relobj<size, big_endian>*>(relobj); }
1515
1516 // Processor-specific flags in ELF file header. This is valid only after
1517 // reading symbols.
1518 elfcpp::Elf_Word
1519 processor_specific_flags() const
1520 { return this->processor_specific_flags_; }
1521
1522 // Whether a local symbol is MIPS16 symbol. R_SYM is the symbol table
1523 // index. This is only valid after do_count_local_symbol is called.
1524 bool
1525 local_symbol_is_mips16(unsigned int r_sym) const
1526 {
1527 gold_assert(r_sym < this->local_symbol_is_mips16_.size());
1528 return this->local_symbol_is_mips16_[r_sym];
1529 }
1530
1531 // Whether a local symbol is microMIPS symbol. R_SYM is the symbol table
1532 // index. This is only valid after do_count_local_symbol is called.
1533 bool
1534 local_symbol_is_micromips(unsigned int r_sym) const
1535 {
1536 gold_assert(r_sym < this->local_symbol_is_micromips_.size());
1537 return this->local_symbol_is_micromips_[r_sym];
1538 }
1539
1540 // Get or create MIPS16 stub section.
1541 Mips16_stub_section<size, big_endian>*
1542 get_mips16_stub_section(unsigned int shndx)
1543 {
1544 typename Mips16_stubs_int_map::const_iterator it =
1545 this->mips16_stub_sections_.find(shndx);
1546 if (it != this->mips16_stub_sections_.end())
1547 return (*it).second;
1548
1549 Mips16_stub_section<size, big_endian>* stub_section =
1550 new Mips16_stub_section<size, big_endian>(this, shndx);
1551 this->mips16_stub_sections_.insert(
1552 std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1553 stub_section->shndx(), stub_section));
1554 return stub_section;
1555 }
1556
1557 // Return MIPS16 fn stub section for local symbol R_SYM, or NULL if this
1558 // object doesn't have fn stub for R_SYM.
1559 Mips16_stub_section<size, big_endian>*
1560 get_local_mips16_fn_stub(unsigned int r_sym) const
1561 {
1562 typename Mips16_stubs_int_map::const_iterator it =
1563 this->local_mips16_fn_stubs_.find(r_sym);
1564 if (it != this->local_mips16_fn_stubs_.end())
1565 return (*it).second;
1566 return NULL;
1567 }
1568
1569 // Record that this object has MIPS16 fn stub for local symbol. This method
1570 // is only called if we decided not to discard the stub.
1571 void
1572 add_local_mips16_fn_stub(Mips16_stub_section<size, big_endian>* stub)
1573 {
1574 gold_assert(stub->is_for_local_function());
1575 unsigned int r_sym = stub->r_sym();
1576 this->local_mips16_fn_stubs_.insert(
1577 std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1578 r_sym, stub));
1579 }
1580
1581 // Return MIPS16 call stub section for local symbol R_SYM, or NULL if this
1582 // object doesn't have call stub for R_SYM.
1583 Mips16_stub_section<size, big_endian>*
1584 get_local_mips16_call_stub(unsigned int r_sym) const
1585 {
1586 typename Mips16_stubs_int_map::const_iterator it =
1587 this->local_mips16_call_stubs_.find(r_sym);
1588 if (it != this->local_mips16_call_stubs_.end())
1589 return (*it).second;
1590 return NULL;
1591 }
1592
1593 // Record that this object has MIPS16 call stub for local symbol. This method
1594 // is only called if we decided not to discard the stub.
1595 void
1596 add_local_mips16_call_stub(Mips16_stub_section<size, big_endian>* stub)
1597 {
1598 gold_assert(stub->is_for_local_function());
1599 unsigned int r_sym = stub->r_sym();
1600 this->local_mips16_call_stubs_.insert(
1601 std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1602 r_sym, stub));
1603 }
1604
1605 // Record that we found "non 16-bit" call relocation against local symbol
1606 // SYMNDX. This reloc would need to refer to a MIPS16 fn stub, if there
1607 // is one.
1608 void
1609 add_local_non_16bit_call(unsigned int symndx)
1610 { this->local_non_16bit_calls_.insert(symndx); }
1611
1612 // Return true if there is any "non 16-bit" call relocation against local
1613 // symbol SYMNDX in this object.
1614 bool
1615 has_local_non_16bit_call_relocs(unsigned int symndx)
1616 {
1617 return (this->local_non_16bit_calls_.find(symndx)
1618 != this->local_non_16bit_calls_.end());
1619 }
1620
1621 // Record that we found 16-bit call relocation R_MIPS16_26 against local
1622 // symbol SYMNDX. Local MIPS16 call or call_fp stubs will only be needed
1623 // if there is some R_MIPS16_26 relocation that refers to the stub symbol.
1624 void
1625 add_local_16bit_call(unsigned int symndx)
1626 { this->local_16bit_calls_.insert(symndx); }
1627
1628 // Return true if there is any 16-bit call relocation R_MIPS16_26 against local
1629 // symbol SYMNDX in this object.
1630 bool
1631 has_local_16bit_call_relocs(unsigned int symndx)
1632 {
1633 return (this->local_16bit_calls_.find(symndx)
1634 != this->local_16bit_calls_.end());
1635 }
1636
1637 // Get gp value that was used to create this object.
1638 Mips_address
1639 gp_value() const
1640 { return this->gp_; }
1641
1642 // Return whether the object is a PIC object.
1643 bool
1644 is_pic() const
1645 { return this->is_pic_; }
1646
1647 // Return whether the object uses N32 ABI.
1648 bool
1649 is_n32() const
1650 { return this->is_n32_; }
1651
1652 // Return whether the object uses N64 ABI.
1653 bool
1654 is_n64() const
1655 { return this->is_n64_; }
1656
1657 // Return whether the object uses NewABI conventions.
1658 bool
1659 is_newabi() const
1660 { return this->is_n32_ || this->is_n64_; }
1661
1662 // Return Mips_got_info for this object.
1663 Mips_got_info<size, big_endian>*
1664 get_got_info() const
1665 { return this->got_info_; }
1666
1667 // Return Mips_got_info for this object. Create new info if it doesn't exist.
1668 Mips_got_info<size, big_endian>*
1669 get_or_create_got_info()
1670 {
1671 if (!this->got_info_)
1672 this->got_info_ = new Mips_got_info<size, big_endian>();
1673 return this->got_info_;
1674 }
1675
1676 // Set Mips_got_info for this object.
1677 void
1678 set_got_info(Mips_got_info<size, big_endian>* got_info)
1679 { this->got_info_ = got_info; }
1680
1681 // Whether a section SHDNX is a MIPS16 stub section. This is only valid
1682 // after do_read_symbols is called.
1683 bool
1684 is_mips16_stub_section(unsigned int shndx)
1685 {
1686 return (is_mips16_fn_stub_section(shndx)
1687 || is_mips16_call_stub_section(shndx)
1688 || is_mips16_call_fp_stub_section(shndx));
1689 }
1690
1691 // Return TRUE if relocations in section SHNDX can refer directly to a
1692 // MIPS16 function rather than to a hard-float stub. This is only valid
1693 // after do_read_symbols is called.
1694 bool
1695 section_allows_mips16_refs(unsigned int shndx)
1696 {
1697 return (this->is_mips16_stub_section(shndx) || shndx == this->pdr_shndx_);
1698 }
1699
1700 // Whether a section SHDNX is a MIPS16 fn stub section. This is only valid
1701 // after do_read_symbols is called.
1702 bool
1703 is_mips16_fn_stub_section(unsigned int shndx)
1704 {
1705 gold_assert(shndx < this->section_is_mips16_fn_stub_.size());
1706 return this->section_is_mips16_fn_stub_[shndx];
1707 }
1708
1709 // Whether a section SHDNX is a MIPS16 call stub section. This is only valid
1710 // after do_read_symbols is called.
1711 bool
1712 is_mips16_call_stub_section(unsigned int shndx)
1713 {
1714 gold_assert(shndx < this->section_is_mips16_call_stub_.size());
1715 return this->section_is_mips16_call_stub_[shndx];
1716 }
1717
1718 // Whether a section SHDNX is a MIPS16 call_fp stub section. This is only
1719 // valid after do_read_symbols is called.
1720 bool
1721 is_mips16_call_fp_stub_section(unsigned int shndx)
1722 {
1723 gold_assert(shndx < this->section_is_mips16_call_fp_stub_.size());
1724 return this->section_is_mips16_call_fp_stub_[shndx];
1725 }
1726
1727 // Discard MIPS16 stub secions that are not needed.
1728 void
1729 discard_mips16_stub_sections(Symbol_table* symtab);
1730
1731 // Return gprmask from the .reginfo section of this object.
1732 Valtype
1733 gprmask() const
1734 { return this->gprmask_; }
1735
1736 // Return cprmask1 from the .reginfo section of this object.
1737 Valtype
1738 cprmask1() const
1739 { return this->cprmask1_; }
1740
1741 // Return cprmask2 from the .reginfo section of this object.
1742 Valtype
1743 cprmask2() const
1744 { return this->cprmask2_; }
1745
1746 // Return cprmask3 from the .reginfo section of this object.
1747 Valtype
1748 cprmask3() const
1749 { return this->cprmask3_; }
1750
1751 // Return cprmask4 from the .reginfo section of this object.
1752 Valtype
1753 cprmask4() const
1754 { return this->cprmask4_; }
1755
1756 protected:
1757 // Count the local symbols.
1758 void
1759 do_count_local_symbols(Stringpool_template<char>*,
1760 Stringpool_template<char>*);
1761
1762 // Read the symbol information.
1763 void
1764 do_read_symbols(Read_symbols_data* sd);
1765
1766 private:
1767 // processor-specific flags in ELF file header.
1768 elfcpp::Elf_Word processor_specific_flags_;
1769
1770 // Bit vector to tell if a local symbol is a MIPS16 symbol or not.
1771 // This is only valid after do_count_local_symbol is called.
1772 std::vector<bool> local_symbol_is_mips16_;
1773
1774 // Bit vector to tell if a local symbol is a microMIPS symbol or not.
1775 // This is only valid after do_count_local_symbol is called.
1776 std::vector<bool> local_symbol_is_micromips_;
1777
1778 // Map from section index to the MIPS16 stub for that section. This contains
1779 // all stubs found in this object.
1780 Mips16_stubs_int_map mips16_stub_sections_;
1781
1782 // Local symbols that have "non 16-bit" call relocation. This relocation
1783 // would need to refer to a MIPS16 fn stub, if there is one.
1784 std::set<unsigned int> local_non_16bit_calls_;
1785
1786 // Local symbols that have 16-bit call relocation R_MIPS16_26. Local MIPS16
1787 // call or call_fp stubs will only be needed if there is some R_MIPS16_26
1788 // relocation that refers to the stub symbol.
1789 std::set<unsigned int> local_16bit_calls_;
1790
1791 // Map from local symbol index to the MIPS16 fn stub for that symbol.
1792 // This contains only the stubs that we decided not to discard.
1793 Mips16_stubs_int_map local_mips16_fn_stubs_;
1794
1795 // Map from local symbol index to the MIPS16 call stub for that symbol.
1796 // This contains only the stubs that we decided not to discard.
1797 Mips16_stubs_int_map local_mips16_call_stubs_;
1798
1799 // gp value that was used to create this object.
1800 Mips_address gp_;
1801 // Whether the object is a PIC object.
1802 bool is_pic_ : 1;
1803 // Whether the object uses N32 ABI.
1804 bool is_n32_ : 1;
1805 // Whether the object uses N64 ABI.
1806 bool is_n64_ : 1;
1807 // The Mips_got_info for this object.
1808 Mips_got_info<size, big_endian>* got_info_;
1809
1810 // Bit vector to tell if a section is a MIPS16 fn stub section or not.
1811 // This is only valid after do_read_symbols is called.
1812 std::vector<bool> section_is_mips16_fn_stub_;
1813
1814 // Bit vector to tell if a section is a MIPS16 call stub section or not.
1815 // This is only valid after do_read_symbols is called.
1816 std::vector<bool> section_is_mips16_call_stub_;
1817
1818 // Bit vector to tell if a section is a MIPS16 call_fp stub section or not.
1819 // This is only valid after do_read_symbols is called.
1820 std::vector<bool> section_is_mips16_call_fp_stub_;
1821
1822 // .pdr section index.
1823 unsigned int pdr_shndx_;
1824
1825 // gprmask from the .reginfo section of this object.
1826 Valtype gprmask_;
1827 // cprmask1 from the .reginfo section of this object.
1828 Valtype cprmask1_;
1829 // cprmask2 from the .reginfo section of this object.
1830 Valtype cprmask2_;
1831 // cprmask3 from the .reginfo section of this object.
1832 Valtype cprmask3_;
1833 // cprmask4 from the .reginfo section of this object.
1834 Valtype cprmask4_;
1835 };
1836
1837 // Mips_output_data_got class.
1838
1839 template<int size, bool big_endian>
1840 class Mips_output_data_got : public Output_data_got<size, big_endian>
1841 {
1842 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1843 typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
1844 Reloc_section;
1845 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
1846
1847 public:
1848 Mips_output_data_got(Target_mips<size, big_endian>* target,
1849 Symbol_table* symtab, Layout* layout)
1850 : Output_data_got<size, big_endian>(), target_(target),
1851 symbol_table_(symtab), layout_(layout), static_relocs_(), got_view_(NULL),
1852 first_global_got_dynsym_index_(-1U), primary_got_(NULL),
1853 secondary_got_relocs_()
1854 {
1855 this->master_got_info_ = new Mips_got_info<size, big_endian>();
1856 this->set_addralign(16);
1857 }
1858
1859 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
1860 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
1861 void
1862 record_local_got_symbol(Mips_relobj<size, big_endian>* object,
1863 unsigned int symndx, Mips_address addend,
1864 unsigned int r_type, unsigned int shndx)
1865 {
1866 this->master_got_info_->record_local_got_symbol(object, symndx, addend,
1867 r_type, shndx);
1868 }
1869
1870 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
1871 // in OBJECT. FOR_CALL is true if the caller is only interested in
1872 // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
1873 // relocation.
1874 void
1875 record_global_got_symbol(Mips_symbol<size>* mips_sym,
1876 Mips_relobj<size, big_endian>* object,
1877 unsigned int r_type, bool dyn_reloc, bool for_call)
1878 {
1879 this->master_got_info_->record_global_got_symbol(mips_sym, object, r_type,
1880 dyn_reloc, for_call);
1881 }
1882
1883 // Record that OBJECT has a page relocation against symbol SYMNDX and
1884 // that ADDEND is the addend for that relocation.
1885 void
1886 record_got_page_entry(Mips_relobj<size, big_endian>* object,
1887 unsigned int symndx, int addend)
1888 { this->master_got_info_->record_got_page_entry(object, symndx, addend); }
1889
1890 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
1891 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1892 // applied in a static link.
1893 void
1894 add_static_reloc(unsigned int got_offset, unsigned int r_type,
1895 Mips_symbol<size>* gsym)
1896 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1897
1898 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
1899 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
1900 // relocation that needs to be applied in a static link.
1901 void
1902 add_static_reloc(unsigned int got_offset, unsigned int r_type,
1903 Sized_relobj_file<size, big_endian>* relobj,
1904 unsigned int index)
1905 {
1906 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1907 index));
1908 }
1909
1910 // Record that global symbol GSYM has R_TYPE dynamic relocation in the
1911 // secondary GOT at OFFSET.
1912 void
1913 add_secondary_got_reloc(unsigned int got_offset, unsigned int r_type,
1914 Mips_symbol<size>* gsym)
1915 {
1916 this->secondary_got_relocs_.push_back(Static_reloc(got_offset,
1917 r_type, gsym));
1918 }
1919
1920 // Update GOT entry at OFFSET with VALUE.
1921 void
1922 update_got_entry(unsigned int offset, Mips_address value)
1923 {
1924 elfcpp::Swap<size, big_endian>::writeval(this->got_view_ + offset, value);
1925 }
1926
1927 // Return the number of entries in local part of the GOT. This includes
1928 // local entries, page entries and 2 reserved entries.
1929 unsigned int
1930 get_local_gotno() const
1931 {
1932 if (!this->multi_got())
1933 {
1934 return (2 + this->master_got_info_->local_gotno()
1935 + this->master_got_info_->page_gotno());
1936 }
1937 else
1938 return 2 + this->primary_got_->local_gotno() + this->primary_got_->page_gotno();
1939 }
1940
1941 // Return dynamic symbol table index of the first symbol with global GOT
1942 // entry.
1943 unsigned int
1944 first_global_got_dynsym_index() const
1945 { return this->first_global_got_dynsym_index_; }
1946
1947 // Set dynamic symbol table index of the first symbol with global GOT entry.
1948 void
1949 set_first_global_got_dynsym_index(unsigned int index)
1950 { this->first_global_got_dynsym_index_ = index; }
1951
1952 // Lay out the GOT. Add local, global and TLS entries. If GOT is
1953 // larger than 64K, create multi-GOT.
1954 void
1955 lay_out_got(Layout* layout, Symbol_table* symtab,
1956 const Input_objects* input_objects);
1957
1958 // Create multi-GOT. For every GOT, add local, global and TLS entries.
1959 void
1960 lay_out_multi_got(Layout* layout, const Input_objects* input_objects);
1961
1962 // Attempt to merge GOTs of different input objects.
1963 void
1964 merge_gots(const Input_objects* input_objects);
1965
1966 // Consider merging FROM, which is OBJECT's GOT, into TO. Return false if
1967 // this would lead to overflow, true if they were merged successfully.
1968 bool
1969 merge_got_with(Mips_got_info<size, big_endian>* from,
1970 Mips_relobj<size, big_endian>* object,
1971 Mips_got_info<size, big_endian>* to);
1972
1973 // Return the offset of GOT page entry for VALUE. For multi-GOT links,
1974 // use OBJECT's GOT.
1975 unsigned int
1976 get_got_page_offset(Mips_address value,
1977 const Mips_relobj<size, big_endian>* object)
1978 {
1979 Mips_got_info<size, big_endian>* g = (!this->multi_got()
1980 ? this->master_got_info_
1981 : object->get_got_info());
1982 gold_assert(g != NULL);
1983 return g->get_got_page_offset(value, this);
1984 }
1985
1986 // Return the GOT offset of type GOT_TYPE of the global symbol
1987 // GSYM. For multi-GOT links, use OBJECT's GOT.
1988 unsigned int got_offset(const Symbol* gsym, unsigned int got_type,
1989 Mips_relobj<size, big_endian>* object) const
1990 {
1991 if (!this->multi_got())
1992 return gsym->got_offset(got_type);
1993 else
1994 {
1995 Mips_got_info<size, big_endian>* g = object->get_got_info();
1996 gold_assert(g != NULL);
1997 return gsym->got_offset(g->multigot_got_type(got_type));
1998 }
1999 }
2000
2001 // Return the GOT offset of type GOT_TYPE of the local symbol
2002 // SYMNDX.
2003 unsigned int
2004 got_offset(unsigned int symndx, unsigned int got_type,
2005 Sized_relobj_file<size, big_endian>* object) const
2006 { return object->local_got_offset(symndx, got_type); }
2007
2008 // Return the offset of TLS LDM entry. For multi-GOT links, use OBJECT's GOT.
2009 unsigned int
2010 tls_ldm_offset(Mips_relobj<size, big_endian>* object) const
2011 {
2012 Mips_got_info<size, big_endian>* g = (!this->multi_got()
2013 ? this->master_got_info_
2014 : object->get_got_info());
2015 gold_assert(g != NULL);
2016 return g->tls_ldm_offset();
2017 }
2018
2019 // Set the offset of TLS LDM entry. For multi-GOT links, use OBJECT's GOT.
2020 void
2021 set_tls_ldm_offset(unsigned int tls_ldm_offset,
2022 Mips_relobj<size, big_endian>* object)
2023 {
2024 Mips_got_info<size, big_endian>* g = (!this->multi_got()
2025 ? this->master_got_info_
2026 : object->get_got_info());
2027 gold_assert(g != NULL);
2028 g->set_tls_ldm_offset(tls_ldm_offset);
2029 }
2030
2031 // Return true for multi-GOT links.
2032 bool
2033 multi_got() const
2034 { return this->primary_got_ != NULL; }
2035
2036 // Return the offset of OBJECT's GOT from the start of .got section.
2037 unsigned int
2038 get_got_offset(const Mips_relobj<size, big_endian>* object)
2039 {
2040 if (!this->multi_got())
2041 return 0;
2042 else
2043 {
2044 Mips_got_info<size, big_endian>* g = object->get_got_info();
2045 return g != NULL ? g->offset() : 0;
2046 }
2047 }
2048
2049 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
2050 void
2051 add_reloc_only_entries()
2052 { this->master_got_info_->add_reloc_only_entries(this); }
2053
2054 // Return offset of the primary GOT's entry for global symbol.
2055 unsigned int
2056 get_primary_got_offset(const Mips_symbol<size>* sym) const
2057 {
2058 gold_assert(sym->global_got_area() != GGA_NONE);
2059 return (this->get_local_gotno() + sym->dynsym_index()
2060 - this->first_global_got_dynsym_index()) * size/8;
2061 }
2062
2063 // For the entry at offset GOT_OFFSET, return its offset from the gp.
2064 // Input argument GOT_OFFSET is always global offset from the start of
2065 // .got section, for both single and multi-GOT links.
2066 // For single GOT links, this returns GOT_OFFSET - 0x7FF0. For multi-GOT
2067 // links, the return value is object_got_offset - 0x7FF0, where
2068 // object_got_offset is offset in the OBJECT's GOT.
2069 int
2070 gp_offset(unsigned int got_offset,
2071 const Mips_relobj<size, big_endian>* object) const
2072 {
2073 return (this->address() + got_offset
2074 - this->target_->adjusted_gp_value(object));
2075 }
2076
2077 protected:
2078 // Write out the GOT table.
2079 void
2080 do_write(Output_file*);
2081
2082 private:
2083
2084 // This class represent dynamic relocations that need to be applied by
2085 // gold because we are using TLS relocations in a static link.
2086 class Static_reloc
2087 {
2088 public:
2089 Static_reloc(unsigned int got_offset, unsigned int r_type,
2090 Mips_symbol<size>* gsym)
2091 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
2092 { this->u_.global.symbol = gsym; }
2093
2094 Static_reloc(unsigned int got_offset, unsigned int r_type,
2095 Sized_relobj_file<size, big_endian>* relobj, unsigned int index)
2096 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
2097 {
2098 this->u_.local.relobj = relobj;
2099 this->u_.local.index = index;
2100 }
2101
2102 // Return the GOT offset.
2103 unsigned int
2104 got_offset() const
2105 { return this->got_offset_; }
2106
2107 // Relocation type.
2108 unsigned int
2109 r_type() const
2110 { return this->r_type_; }
2111
2112 // Whether the symbol is global or not.
2113 bool
2114 symbol_is_global() const
2115 { return this->symbol_is_global_; }
2116
2117 // For a relocation against a global symbol, the global symbol.
2118 Mips_symbol<size>*
2119 symbol() const
2120 {
2121 gold_assert(this->symbol_is_global_);
2122 return this->u_.global.symbol;
2123 }
2124
2125 // For a relocation against a local symbol, the defining object.
2126 Sized_relobj_file<size, big_endian>*
2127 relobj() const
2128 {
2129 gold_assert(!this->symbol_is_global_);
2130 return this->u_.local.relobj;
2131 }
2132
2133 // For a relocation against a local symbol, the local symbol index.
2134 unsigned int
2135 index() const
2136 {
2137 gold_assert(!this->symbol_is_global_);
2138 return this->u_.local.index;
2139 }
2140
2141 private:
2142 // GOT offset of the entry to which this relocation is applied.
2143 unsigned int got_offset_;
2144 // Type of relocation.
2145 unsigned int r_type_;
2146 // Whether this relocation is against a global symbol.
2147 bool symbol_is_global_;
2148 // A global or local symbol.
2149 union
2150 {
2151 struct
2152 {
2153 // For a global symbol, the symbol itself.
2154 Mips_symbol<size>* symbol;
2155 } global;
2156 struct
2157 {
2158 // For a local symbol, the object defining object.
2159 Sized_relobj_file<size, big_endian>* relobj;
2160 // For a local symbol, the symbol index.
2161 unsigned int index;
2162 } local;
2163 } u_;
2164 };
2165
2166 // The target.
2167 Target_mips<size, big_endian>* target_;
2168 // The symbol table.
2169 Symbol_table* symbol_table_;
2170 // The layout.
2171 Layout* layout_;
2172 // Static relocs to be applied to the GOT.
2173 std::vector<Static_reloc> static_relocs_;
2174 // .got section view.
2175 unsigned char* got_view_;
2176 // The dynamic symbol table index of the first symbol with global GOT entry.
2177 unsigned int first_global_got_dynsym_index_;
2178 // The master GOT information.
2179 Mips_got_info<size, big_endian>* master_got_info_;
2180 // The primary GOT information.
2181 Mips_got_info<size, big_endian>* primary_got_;
2182 // Secondary GOT fixups.
2183 std::vector<Static_reloc> secondary_got_relocs_;
2184 };
2185
2186 // A class to handle LA25 stubs - non-PIC interface to a PIC function. There are
2187 // two ways of creating these interfaces. The first is to add:
2188 //
2189 // lui $25,%hi(func)
2190 // j func
2191 // addiu $25,$25,%lo(func)
2192 //
2193 // to a separate trampoline section. The second is to add:
2194 //
2195 // lui $25,%hi(func)
2196 // addiu $25,$25,%lo(func)
2197 //
2198 // immediately before a PIC function "func", but only if a function is at the
2199 // beginning of the section, and the section is not too heavily aligned (i.e we
2200 // would need to add no more than 2 nops before the stub.)
2201 //
2202 // We only create stubs of the first type.
2203
2204 template<int size, bool big_endian>
2205 class Mips_output_data_la25_stub : public Output_section_data
2206 {
2207 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2208
2209 public:
2210 Mips_output_data_la25_stub()
2211 : Output_section_data(size == 32 ? 4 : 8), symbols_()
2212 { }
2213
2214 // Create LA25 stub for a symbol.
2215 void
2216 create_la25_stub(Symbol_table* symtab, Target_mips<size, big_endian>* target,
2217 Mips_symbol<size>* gsym);
2218
2219 // Return output address of a stub.
2220 Mips_address
2221 stub_address(const Mips_symbol<size>* sym) const
2222 {
2223 gold_assert(sym->has_la25_stub());
2224 return this->address() + sym->la25_stub_offset();
2225 }
2226
2227 protected:
2228 void
2229 do_adjust_output_section(Output_section* os)
2230 { os->set_entsize(0); }
2231
2232 private:
2233 // Template for standard LA25 stub.
2234 static const uint32_t la25_stub_entry[];
2235 // Template for microMIPS LA25 stub.
2236 static const uint32_t la25_stub_micromips_entry[];
2237
2238 // Set the final size.
2239 void
2240 set_final_data_size()
2241 { this->set_data_size(this->symbols_.size() * 16); }
2242
2243 // Create a symbol for SYM stub's value and size, to help make the
2244 // disassembly easier to read.
2245 void
2246 create_stub_symbol(Mips_symbol<size>* sym, Symbol_table* symtab,
2247 Target_mips<size, big_endian>* target, uint64_t symsize);
2248
2249 // Write out the LA25 stub section.
2250 void
2251 do_write(Output_file*);
2252
2253 // Symbols that have LA25 stubs.
2254 Unordered_set<Mips_symbol<size>*> symbols_;
2255 };
2256
2257 // A class to handle the PLT data.
2258
2259 template<int size, bool big_endian>
2260 class Mips_output_data_plt : public Output_section_data
2261 {
2262 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2263 typedef Output_data_reloc<elfcpp::SHT_REL, true,
2264 size, big_endian> Reloc_section;
2265
2266 public:
2267 // Create the PLT section. The ordinary .got section is an argument,
2268 // since we need to refer to the start.
2269 Mips_output_data_plt(Layout* layout, Output_data_space* got_plt,
2270 Target_mips<size, big_endian>* target)
2271 : Output_section_data(size == 32 ? 4 : 8), got_plt_(got_plt), symbols_(),
2272 plt_mips_offset_(0), plt_comp_offset_(0), plt_header_size_(0),
2273 target_(target)
2274 {
2275 this->rel_ = new Reloc_section(false);
2276 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
2277 elfcpp::SHF_ALLOC, this->rel_,
2278 ORDER_DYNAMIC_PLT_RELOCS, false);
2279 }
2280
2281 // Add an entry to the PLT for a symbol referenced by r_type relocation.
2282 void
2283 add_entry(Mips_symbol<size>* gsym, unsigned int r_type);
2284
2285 // Return the .rel.plt section data.
2286 const Reloc_section*
2287 rel_plt() const
2288 { return this->rel_; }
2289
2290 // Return the number of PLT entries.
2291 unsigned int
2292 entry_count() const
2293 { return this->symbols_.size(); }
2294
2295 // Return the offset of the first non-reserved PLT entry.
2296 unsigned int
2297 first_plt_entry_offset() const
2298 { return sizeof(plt0_entry_o32); }
2299
2300 // Return the size of a PLT entry.
2301 unsigned int
2302 plt_entry_size() const
2303 { return sizeof(plt_entry); }
2304
2305 // Set final PLT offsets. For each symbol, determine whether standard or
2306 // compressed (MIPS16 or microMIPS) PLT entry is used.
2307 void
2308 set_plt_offsets();
2309
2310 // Return the offset of the first standard PLT entry.
2311 unsigned int
2312 first_mips_plt_offset() const
2313 { return this->plt_header_size_; }
2314
2315 // Return the offset of the first compressed PLT entry.
2316 unsigned int
2317 first_comp_plt_offset() const
2318 { return this->plt_header_size_ + this->plt_mips_offset_; }
2319
2320 // Return whether there are any standard PLT entries.
2321 bool
2322 has_standard_entries() const
2323 { return this->plt_mips_offset_ > 0; }
2324
2325 // Return the output address of standard PLT entry.
2326 Mips_address
2327 mips_entry_address(const Mips_symbol<size>* sym) const
2328 {
2329 gold_assert (sym->has_mips_plt_offset());
2330 return (this->address() + this->first_mips_plt_offset()
2331 + sym->mips_plt_offset());
2332 }
2333
2334 // Return the output address of compressed (MIPS16 or microMIPS) PLT entry.
2335 Mips_address
2336 comp_entry_address(const Mips_symbol<size>* sym) const
2337 {
2338 gold_assert (sym->has_comp_plt_offset());
2339 return (this->address() + this->first_comp_plt_offset()
2340 + sym->comp_plt_offset());
2341 }
2342
2343 protected:
2344 void
2345 do_adjust_output_section(Output_section* os)
2346 { os->set_entsize(0); }
2347
2348 // Write to a map file.
2349 void
2350 do_print_to_mapfile(Mapfile* mapfile) const
2351 { mapfile->print_output_data(this, _(".plt")); }
2352
2353 private:
2354 // Template for the first PLT entry.
2355 static const uint32_t plt0_entry_o32[];
2356 static const uint32_t plt0_entry_n32[];
2357 static const uint32_t plt0_entry_n64[];
2358 static const uint32_t plt0_entry_micromips_o32[];
2359 static const uint32_t plt0_entry_micromips32_o32[];
2360
2361 // Template for subsequent PLT entries.
2362 static const uint32_t plt_entry[];
2363 static const uint32_t plt_entry_mips16_o32[];
2364 static const uint32_t plt_entry_micromips_o32[];
2365 static const uint32_t plt_entry_micromips32_o32[];
2366
2367 // Set the final size.
2368 void
2369 set_final_data_size()
2370 {
2371 this->set_data_size(this->plt_header_size_ + this->plt_mips_offset_
2372 + this->plt_comp_offset_);
2373 }
2374
2375 // Write out the PLT data.
2376 void
2377 do_write(Output_file*);
2378
2379 // Return whether the plt header contains microMIPS code. For the sake of
2380 // cache alignment always use a standard header whenever any standard entries
2381 // are present even if microMIPS entries are present as well. This also lets
2382 // the microMIPS header rely on the value of $v0 only set by microMIPS
2383 // entries, for a small size reduction.
2384 bool
2385 is_plt_header_compressed() const
2386 {
2387 gold_assert(this->plt_mips_offset_ + this->plt_comp_offset_ != 0);
2388 return this->target_->is_output_micromips() && this->plt_mips_offset_ == 0;
2389 }
2390
2391 // Return the size of the PLT header.
2392 unsigned int
2393 get_plt_header_size() const
2394 {
2395 if (this->target_->is_output_n64())
2396 return 4 * sizeof(plt0_entry_n64) / sizeof(plt0_entry_n64[0]);
2397 else if (this->target_->is_output_n32())
2398 return 4 * sizeof(plt0_entry_n32) / sizeof(plt0_entry_n32[0]);
2399 else if (!this->is_plt_header_compressed())
2400 return 4 * sizeof(plt0_entry_o32) / sizeof(plt0_entry_o32[0]);
2401 else if (this->target_->use_32bit_micromips_instructions())
2402 return (2 * sizeof(plt0_entry_micromips32_o32)
2403 / sizeof(plt0_entry_micromips32_o32[0]));
2404 else
2405 return (2 * sizeof(plt0_entry_micromips_o32)
2406 / sizeof(plt0_entry_micromips_o32[0]));
2407 }
2408
2409 // Return the PLT header entry.
2410 const uint32_t*
2411 get_plt_header_entry() const
2412 {
2413 if (this->target_->is_output_n64())
2414 return plt0_entry_n64;
2415 else if (this->target_->is_output_n32())
2416 return plt0_entry_n32;
2417 else if (!this->is_plt_header_compressed())
2418 return plt0_entry_o32;
2419 else if (this->target_->use_32bit_micromips_instructions())
2420 return plt0_entry_micromips32_o32;
2421 else
2422 return plt0_entry_micromips_o32;
2423 }
2424
2425 // Return the size of the standard PLT entry.
2426 unsigned int
2427 standard_plt_entry_size() const
2428 { return 4 * sizeof(plt_entry) / sizeof(plt_entry[0]); }
2429
2430 // Return the size of the compressed PLT entry.
2431 unsigned int
2432 compressed_plt_entry_size() const
2433 {
2434 gold_assert(!this->target_->is_output_newabi());
2435
2436 if (!this->target_->is_output_micromips())
2437 return (2 * sizeof(plt_entry_mips16_o32)
2438 / sizeof(plt_entry_mips16_o32[0]));
2439 else if (this->target_->use_32bit_micromips_instructions())
2440 return (2 * sizeof(plt_entry_micromips32_o32)
2441 / sizeof(plt_entry_micromips32_o32[0]));
2442 else
2443 return (2 * sizeof(plt_entry_micromips_o32)
2444 / sizeof(plt_entry_micromips_o32[0]));
2445 }
2446
2447 // The reloc section.
2448 Reloc_section* rel_;
2449 // The .got.plt section.
2450 Output_data_space* got_plt_;
2451 // Symbols that have PLT entry.
2452 std::vector<Mips_symbol<size>*> symbols_;
2453 // The offset of the next standard PLT entry to create.
2454 unsigned int plt_mips_offset_;
2455 // The offset of the next compressed PLT entry to create.
2456 unsigned int plt_comp_offset_;
2457 // The size of the PLT header in bytes.
2458 unsigned int plt_header_size_;
2459 // The target.
2460 Target_mips<size, big_endian>* target_;
2461 };
2462
2463 // A class to handle the .MIPS.stubs data.
2464
2465 template<int size, bool big_endian>
2466 class Mips_output_data_mips_stubs : public Output_section_data
2467 {
2468 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2469
2470 public:
2471 Mips_output_data_mips_stubs(Target_mips<size, big_endian>* target)
2472 : Output_section_data(size == 32 ? 4 : 8), symbols_(), dynsym_count_(-1U),
2473 stub_offsets_are_set_(false), target_(target)
2474 { }
2475
2476 // Create entry for a symbol.
2477 void
2478 make_entry(Mips_symbol<size>*);
2479
2480 // Remove entry for a symbol.
2481 void
2482 remove_entry(Mips_symbol<size>* gsym);
2483
2484 // Set stub offsets for symbols. This method expects that the number of
2485 // entries in dynamic symbol table is set.
2486 void
2487 set_lazy_stub_offsets();
2488
2489 void
2490 set_needs_dynsym_value();
2491
2492 // Set the number of entries in dynamic symbol table.
2493 void
2494 set_dynsym_count(unsigned int dynsym_count)
2495 { this->dynsym_count_ = dynsym_count; }
2496
2497 // Return maximum size of the stub, ie. the stub size if the dynamic symbol
2498 // count is greater than 0x10000. If the dynamic symbol count is less than
2499 // 0x10000, the stub will be 4 bytes smaller.
2500 // There's no disadvantage from using microMIPS code here, so for the sake of
2501 // pure-microMIPS binaries we prefer it whenever there's any microMIPS code in
2502 // output produced at all. This has a benefit of stubs being shorter by
2503 // 4 bytes each too, unless in the insn32 mode.
2504 unsigned int
2505 stub_max_size() const
2506 {
2507 if (!this->target_->is_output_micromips()
2508 || this->target_->use_32bit_micromips_instructions())
2509 return 20;
2510 else
2511 return 16;
2512 }
2513
2514 // Return the size of the stub. This method expects that the final dynsym
2515 // count is set.
2516 unsigned int
2517 stub_size() const
2518 {
2519 gold_assert(this->dynsym_count_ != -1U);
2520 if (this->dynsym_count_ > 0x10000)
2521 return this->stub_max_size();
2522 else
2523 return this->stub_max_size() - 4;
2524 }
2525
2526 // Return output address of a stub.
2527 Mips_address
2528 stub_address(const Mips_symbol<size>* sym) const
2529 {
2530 gold_assert(sym->has_lazy_stub());
2531 return this->address() + sym->lazy_stub_offset();
2532 }
2533
2534 protected:
2535 void
2536 do_adjust_output_section(Output_section* os)
2537 { os->set_entsize(0); }
2538
2539 // Write to a map file.
2540 void
2541 do_print_to_mapfile(Mapfile* mapfile) const
2542 { mapfile->print_output_data(this, _(".MIPS.stubs")); }
2543
2544 private:
2545 static const uint32_t lazy_stub_normal_1[];
2546 static const uint32_t lazy_stub_normal_1_n64[];
2547 static const uint32_t lazy_stub_normal_2[];
2548 static const uint32_t lazy_stub_normal_2_n64[];
2549 static const uint32_t lazy_stub_big[];
2550 static const uint32_t lazy_stub_big_n64[];
2551
2552 static const uint32_t lazy_stub_micromips_normal_1[];
2553 static const uint32_t lazy_stub_micromips_normal_1_n64[];
2554 static const uint32_t lazy_stub_micromips_normal_2[];
2555 static const uint32_t lazy_stub_micromips_normal_2_n64[];
2556 static const uint32_t lazy_stub_micromips_big[];
2557 static const uint32_t lazy_stub_micromips_big_n64[];
2558
2559 static const uint32_t lazy_stub_micromips32_normal_1[];
2560 static const uint32_t lazy_stub_micromips32_normal_1_n64[];
2561 static const uint32_t lazy_stub_micromips32_normal_2[];
2562 static const uint32_t lazy_stub_micromips32_normal_2_n64[];
2563 static const uint32_t lazy_stub_micromips32_big[];
2564 static const uint32_t lazy_stub_micromips32_big_n64[];
2565
2566 // Set the final size.
2567 void
2568 set_final_data_size()
2569 { this->set_data_size(this->symbols_.size() * this->stub_max_size()); }
2570
2571 // Write out the .MIPS.stubs data.
2572 void
2573 do_write(Output_file*);
2574
2575 // .MIPS.stubs symbols
2576 Unordered_set<Mips_symbol<size>*> symbols_;
2577 // Number of entries in dynamic symbol table.
2578 unsigned int dynsym_count_;
2579 // Whether the stub offsets are set.
2580 bool stub_offsets_are_set_;
2581 // The target.
2582 Target_mips<size, big_endian>* target_;
2583 };
2584
2585 // This class handles Mips .reginfo output section.
2586
2587 template<int size, bool big_endian>
2588 class Mips_output_section_reginfo : public Output_section
2589 {
2590 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
2591
2592 public:
2593 Mips_output_section_reginfo(const char* name, elfcpp::Elf_Word type,
2594 elfcpp::Elf_Xword flags,
2595 Target_mips<size, big_endian>* target)
2596 : Output_section(name, type, flags), target_(target), gprmask_(0),
2597 cprmask1_(0), cprmask2_(0), cprmask3_(0), cprmask4_(0)
2598 { }
2599
2600 // Downcast a base pointer to a Mips_output_section_reginfo pointer.
2601 static Mips_output_section_reginfo<size, big_endian>*
2602 as_mips_output_section_reginfo(Output_section* os)
2603 { return static_cast<Mips_output_section_reginfo<size, big_endian>*>(os); }
2604
2605 // Set masks of the output .reginfo section.
2606 void
2607 set_masks(Valtype gprmask, Valtype cprmask1, Valtype cprmask2,
2608 Valtype cprmask3, Valtype cprmask4)
2609 {
2610 this->gprmask_ = gprmask;
2611 this->cprmask1_ = cprmask1;
2612 this->cprmask2_ = cprmask2;
2613 this->cprmask3_ = cprmask3;
2614 this->cprmask4_ = cprmask4;
2615 }
2616
2617 protected:
2618 // Set the final data size.
2619 void
2620 set_final_data_size()
2621 { this->set_data_size(24); }
2622
2623 // Write out reginfo section.
2624 void
2625 do_write(Output_file* of);
2626
2627 private:
2628 Target_mips<size, big_endian>* target_;
2629
2630 // gprmask of the output .reginfo section.
2631 Valtype gprmask_;
2632 // cprmask1 of the output .reginfo section.
2633 Valtype cprmask1_;
2634 // cprmask2 of the output .reginfo section.
2635 Valtype cprmask2_;
2636 // cprmask3 of the output .reginfo section.
2637 Valtype cprmask3_;
2638 // cprmask4 of the output .reginfo section.
2639 Valtype cprmask4_;
2640 };
2641
2642 // The MIPS target has relocation types which default handling of relocatable
2643 // relocation cannot process. So we have to extend the default code.
2644
2645 template<bool big_endian, int sh_type, typename Classify_reloc>
2646 class Mips_scan_relocatable_relocs :
2647 public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
2648 {
2649 public:
2650 // Return the strategy to use for a local symbol which is a section
2651 // symbol, given the relocation type.
2652 inline Relocatable_relocs::Reloc_strategy
2653 local_section_strategy(unsigned int r_type, Relobj* object)
2654 {
2655 if (sh_type == elfcpp::SHT_RELA)
2656 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2657 else
2658 {
2659 switch (r_type)
2660 {
2661 case elfcpp::R_MIPS_26:
2662 return Relocatable_relocs::RELOC_SPECIAL;
2663
2664 default:
2665 return Default_scan_relocatable_relocs<sh_type, Classify_reloc>::
2666 local_section_strategy(r_type, object);
2667 }
2668 }
2669 }
2670 };
2671
2672 // Mips_copy_relocs class. The only difference from the base class is the
2673 // method emit_mips, which should be called instead of Copy_reloc_entry::emit.
2674 // Mips cannot convert all relocation types to dynamic relocs. If a reloc
2675 // cannot be made dynamic, a COPY reloc is emitted.
2676
2677 template<int sh_type, int size, bool big_endian>
2678 class Mips_copy_relocs : public Copy_relocs<sh_type, size, big_endian>
2679 {
2680 public:
2681 Mips_copy_relocs()
2682 : Copy_relocs<sh_type, size, big_endian>(elfcpp::R_MIPS_COPY)
2683 { }
2684
2685 // Emit any saved relocations which turn out to be needed. This is
2686 // called after all the relocs have been scanned.
2687 void
2688 emit_mips(Output_data_reloc<sh_type, true, size, big_endian>*,
2689 Symbol_table*, Layout*, Target_mips<size, big_endian>*);
2690
2691 private:
2692 typedef typename Copy_relocs<sh_type, size, big_endian>::Copy_reloc_entry
2693 Copy_reloc_entry;
2694
2695 // Emit this reloc if appropriate. This is called after we have
2696 // scanned all the relocations, so we know whether we emitted a
2697 // COPY relocation for SYM_.
2698 void
2699 emit_entry(Copy_reloc_entry& entry,
2700 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
2701 Symbol_table* symtab, Layout* layout,
2702 Target_mips<size, big_endian>* target);
2703 };
2704
2705
2706 // Return true if the symbol SYM should be considered to resolve local
2707 // to the current module, and false otherwise. The logic is taken from
2708 // GNU ld's method _bfd_elf_symbol_refs_local_p.
2709 static bool
2710 symbol_refs_local(const Symbol* sym, bool has_dynsym_entry,
2711 bool local_protected)
2712 {
2713 // If it's a local sym, of course we resolve locally.
2714 if (sym == NULL)
2715 return true;
2716
2717 // STV_HIDDEN or STV_INTERNAL ones must be local.
2718 if (sym->visibility() == elfcpp::STV_HIDDEN
2719 || sym->visibility() == elfcpp::STV_INTERNAL)
2720 return true;
2721
2722 // If we don't have a definition in a regular file, then we can't
2723 // resolve locally. The sym is either undefined or dynamic.
2724 if (sym->source() != Symbol::FROM_OBJECT || sym->object()->is_dynamic()
2725 || sym->is_undefined())
2726 return false;
2727
2728 // Forced local symbols resolve locally.
2729 if (sym->is_forced_local())
2730 return true;
2731
2732 // As do non-dynamic symbols.
2733 if (!has_dynsym_entry)
2734 return true;
2735
2736 // At this point, we know the symbol is defined and dynamic. In an
2737 // executable it must resolve locally, likewise when building symbolic
2738 // shared libraries.
2739 if (parameters->options().output_is_executable()
2740 || parameters->options().Bsymbolic())
2741 return true;
2742
2743 // Now deal with defined dynamic symbols in shared libraries. Ones
2744 // with default visibility might not resolve locally.
2745 if (sym->visibility() == elfcpp::STV_DEFAULT)
2746 return false;
2747
2748 // STV_PROTECTED non-function symbols are local.
2749 if (sym->type() != elfcpp::STT_FUNC)
2750 return true;
2751
2752 // Function pointer equality tests may require that STV_PROTECTED
2753 // symbols be treated as dynamic symbols. If the address of a
2754 // function not defined in an executable is set to that function's
2755 // plt entry in the executable, then the address of the function in
2756 // a shared library must also be the plt entry in the executable.
2757 return local_protected;
2758 }
2759
2760 // Return TRUE if references to this symbol always reference the symbol in this
2761 // object.
2762 static bool
2763 symbol_references_local(const Symbol* sym, bool has_dynsym_entry)
2764 {
2765 return symbol_refs_local(sym, has_dynsym_entry, false);
2766 }
2767
2768 // Return TRUE if calls to this symbol always call the version in this object.
2769 static bool
2770 symbol_calls_local(const Symbol* sym, bool has_dynsym_entry)
2771 {
2772 return symbol_refs_local(sym, has_dynsym_entry, true);
2773 }
2774
2775 // Compare GOT offsets of two symbols.
2776
2777 template<int size, bool big_endian>
2778 static bool
2779 got_offset_compare(Symbol* sym1, Symbol* sym2)
2780 {
2781 Mips_symbol<size>* mips_sym1 = Mips_symbol<size>::as_mips_sym(sym1);
2782 Mips_symbol<size>* mips_sym2 = Mips_symbol<size>::as_mips_sym(sym2);
2783 unsigned int area1 = mips_sym1->global_got_area();
2784 unsigned int area2 = mips_sym2->global_got_area();
2785 gold_assert(area1 != GGA_NONE && area1 != GGA_NONE);
2786
2787 // GGA_NORMAL entries always come before GGA_RELOC_ONLY.
2788 if (area1 != area2)
2789 return area1 < area2;
2790
2791 return mips_sym1->global_gotoffset() < mips_sym2->global_gotoffset();
2792 }
2793
2794 // This method divides dynamic symbols into symbols that have GOT entry, and
2795 // symbols that don't have GOT entry. It also sorts symbols with the GOT entry.
2796 // Mips ABI requires that symbols with the GOT entry must be at the end of
2797 // dynamic symbol table, and the order in dynamic symbol table must match the
2798 // order in GOT.
2799
2800 template<int size, bool big_endian>
2801 static void
2802 reorder_dyn_symbols(std::vector<Symbol*>* dyn_symbols,
2803 std::vector<Symbol*>* non_got_symbols,
2804 std::vector<Symbol*>* got_symbols)
2805 {
2806 for (std::vector<Symbol*>::iterator p = dyn_symbols->begin();
2807 p != dyn_symbols->end();
2808 ++p)
2809 {
2810 Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(*p);
2811 if (mips_sym->global_got_area() == GGA_NORMAL
2812 || mips_sym->global_got_area() == GGA_RELOC_ONLY)
2813 got_symbols->push_back(mips_sym);
2814 else
2815 non_got_symbols->push_back(mips_sym);
2816 }
2817
2818 std::sort(got_symbols->begin(), got_symbols->end(),
2819 got_offset_compare<size, big_endian>);
2820 }
2821
2822 // Functor class for processing the global symbol table.
2823
2824 template<int size, bool big_endian>
2825 class Symbol_visitor_check_symbols
2826 {
2827 public:
2828 Symbol_visitor_check_symbols(Target_mips<size, big_endian>* target,
2829 Layout* layout, Symbol_table* symtab)
2830 : target_(target), layout_(layout), symtab_(symtab)
2831 { }
2832
2833 void
2834 operator()(Sized_symbol<size>* sym)
2835 {
2836 Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);
2837 if (local_pic_function<size, big_endian>(mips_sym))
2838 {
2839 // SYM is a function that might need $25 to be valid on entry.
2840 // If we're creating a non-PIC relocatable object, mark SYM as
2841 // being PIC. If we're creating a non-relocatable object with
2842 // non-PIC branches and jumps to SYM, make sure that SYM has an la25
2843 // stub.
2844 if (parameters->options().relocatable())
2845 {
2846 if (!parameters->options().output_is_position_independent())
2847 mips_sym->set_pic();
2848 }
2849 else if (mips_sym->has_nonpic_branches())
2850 {
2851 this->target_->la25_stub_section(layout_)
2852 ->create_la25_stub(this->symtab_, this->target_, mips_sym);
2853 }
2854 }
2855 }
2856
2857 private:
2858 Target_mips<size, big_endian>* target_;
2859 Layout* layout_;
2860 Symbol_table* symtab_;
2861 };
2862
2863 template<int size, bool big_endian>
2864 class Target_mips : public Sized_target<size, big_endian>
2865 {
2866 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2867 typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
2868 Reloc_section;
2869 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
2870 Reloca_section;
2871 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
2872 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
2873
2874 public:
2875 Target_mips(const Target::Target_info* info = &mips_info)
2876 : Sized_target<size, big_endian>(info), got_(NULL), gp_(NULL), plt_(NULL),
2877 got_plt_(NULL), rel_dyn_(NULL), copy_relocs_(),
2878 dyn_relocs_(), la25_stub_(NULL), mips_mach_extensions_(),
2879 mips_stubs_(NULL), ei_class_(0), mach_(0), layout_(NULL),
2880 got16_addends_(), entry_symbol_is_compressed_(false), insn32_(false)
2881 {
2882 this->add_machine_extensions();
2883 }
2884
2885 // The offset of $gp from the beginning of the .got section.
2886 static const unsigned int MIPS_GP_OFFSET = 0x7ff0;
2887
2888 // The maximum size of the GOT for it to be addressable using 16-bit
2889 // offsets from $gp.
2890 static const unsigned int MIPS_GOT_MAX_SIZE = MIPS_GP_OFFSET + 0x7fff;
2891
2892 // Make a new symbol table entry for the Mips target.
2893 Sized_symbol<size>*
2894 make_symbol() const
2895 { return new Mips_symbol<size>(); }
2896
2897 // Process the relocations to determine unreferenced sections for
2898 // garbage collection.
2899 void
2900 gc_process_relocs(Symbol_table* symtab,
2901 Layout* layout,
2902 Sized_relobj_file<size, big_endian>* object,
2903 unsigned int data_shndx,
2904 unsigned int sh_type,
2905 const unsigned char* prelocs,
2906 size_t reloc_count,
2907 Output_section* output_section,
2908 bool needs_special_offset_handling,
2909 size_t local_symbol_count,
2910 const unsigned char* plocal_symbols);
2911
2912 // Scan the relocations to look for symbol adjustments.
2913 void
2914 scan_relocs(Symbol_table* symtab,
2915 Layout* layout,
2916 Sized_relobj_file<size, big_endian>* object,
2917 unsigned int data_shndx,
2918 unsigned int sh_type,
2919 const unsigned char* prelocs,
2920 size_t reloc_count,
2921 Output_section* output_section,
2922 bool needs_special_offset_handling,
2923 size_t local_symbol_count,
2924 const unsigned char* plocal_symbols);
2925
2926 // Finalize the sections.
2927 void
2928 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2929
2930 // Relocate a section.
2931 void
2932 relocate_section(const Relocate_info<size, big_endian>*,
2933 unsigned int sh_type,
2934 const unsigned char* prelocs,
2935 size_t reloc_count,
2936 Output_section* output_section,
2937 bool needs_special_offset_handling,
2938 unsigned char* view,
2939 Mips_address view_address,
2940 section_size_type view_size,
2941 const Reloc_symbol_changes*);
2942
2943 // Scan the relocs during a relocatable link.
2944 void
2945 scan_relocatable_relocs(Symbol_table* symtab,
2946 Layout* layout,
2947 Sized_relobj_file<size, big_endian>* object,
2948 unsigned int data_shndx,
2949 unsigned int sh_type,
2950 const unsigned char* prelocs,
2951 size_t reloc_count,
2952 Output_section* output_section,
2953 bool needs_special_offset_handling,
2954 size_t local_symbol_count,
2955 const unsigned char* plocal_symbols,
2956 Relocatable_relocs*);
2957
2958 // Emit relocations for a section.
2959 void
2960 relocate_relocs(const Relocate_info<size, big_endian>*,
2961 unsigned int sh_type,
2962 const unsigned char* prelocs,
2963 size_t reloc_count,
2964 Output_section* output_section,
2965 typename elfcpp::Elf_types<size>::Elf_Off
2966 offset_in_output_section,
2967 unsigned char* view,
2968 Mips_address view_address,
2969 section_size_type view_size,
2970 unsigned char* reloc_view,
2971 section_size_type reloc_view_size);
2972
2973 // Perform target-specific processing in a relocatable link. This is
2974 // only used if we use the relocation strategy RELOC_SPECIAL.
2975 void
2976 relocate_special_relocatable(const Relocate_info<size, big_endian>* relinfo,
2977 unsigned int sh_type,
2978 const unsigned char* preloc_in,
2979 size_t relnum,
2980 Output_section* output_section,
2981 typename elfcpp::Elf_types<size>::Elf_Off
2982 offset_in_output_section,
2983 unsigned char* view,
2984 Mips_address view_address,
2985 section_size_type view_size,
2986 unsigned char* preloc_out);
2987
2988 // Return whether SYM is defined by the ABI.
2989 bool
2990 do_is_defined_by_abi(const Symbol* sym) const
2991 {
2992 return ((strcmp(sym->name(), "__gnu_local_gp") == 0)
2993 || (strcmp(sym->name(), "_gp_disp") == 0)
2994 || (strcmp(sym->name(), "___tls_get_addr") == 0));
2995 }
2996
2997 // Return the number of entries in the GOT.
2998 unsigned int
2999 got_entry_count() const
3000 {
3001 if (!this->has_got_section())
3002 return 0;
3003 return this->got_size() / (size/8);
3004 }
3005
3006 // Return the number of entries in the PLT.
3007 unsigned int
3008 plt_entry_count() const
3009 {
3010 if (this->plt_ == NULL)
3011 return 0;
3012 return this->plt_->entry_count();
3013 }
3014
3015 // Return the offset of the first non-reserved PLT entry.
3016 unsigned int
3017 first_plt_entry_offset() const
3018 { return this->plt_->first_plt_entry_offset(); }
3019
3020 // Return the size of each PLT entry.
3021 unsigned int
3022 plt_entry_size() const
3023 { return this->plt_->plt_entry_size(); }
3024
3025 // Get the GOT section, creating it if necessary.
3026 Mips_output_data_got<size, big_endian>*
3027 got_section(Symbol_table*, Layout*);
3028
3029 // Get the GOT section.
3030 Mips_output_data_got<size, big_endian>*
3031 got_section() const
3032 {
3033 gold_assert(this->got_ != NULL);
3034 return this->got_;
3035 }
3036
3037 // Get the .MIPS.stubs section, creating it if necessary.
3038 Mips_output_data_mips_stubs<size, big_endian>*
3039 mips_stubs_section(Layout* layout);
3040
3041 // Get the .MIPS.stubs section.
3042 Mips_output_data_mips_stubs<size, big_endian>*
3043 mips_stubs_section() const
3044 {
3045 gold_assert(this->mips_stubs_ != NULL);
3046 return this->mips_stubs_;
3047 }
3048
3049 // Get the LA25 stub section, creating it if necessary.
3050 Mips_output_data_la25_stub<size, big_endian>*
3051 la25_stub_section(Layout*);
3052
3053 // Get the LA25 stub section.
3054 Mips_output_data_la25_stub<size, big_endian>*
3055 la25_stub_section()
3056 {
3057 gold_assert(this->la25_stub_ != NULL);
3058 return this->la25_stub_;
3059 }
3060
3061 // Get gp value. It has the value of .got + 0x7FF0.
3062 Mips_address
3063 gp_value() const
3064 {
3065 if (this->gp_ != NULL)
3066 return this->gp_->value();
3067 return 0;
3068 }
3069
3070 // Get gp value. It has the value of .got + 0x7FF0. Adjust it for
3071 // multi-GOT links so that OBJECT's GOT + 0x7FF0 is returned.
3072 Mips_address
3073 adjusted_gp_value(const Mips_relobj<size, big_endian>* object)
3074 {
3075 if (this->gp_ == NULL)
3076 return 0;
3077
3078 bool multi_got = false;
3079 if (this->has_got_section())
3080 multi_got = this->got_section()->multi_got();
3081 if (!multi_got)
3082 return this->gp_->value();
3083 else
3084 return this->gp_->value() + this->got_section()->get_got_offset(object);
3085 }
3086
3087 // Get the dynamic reloc section, creating it if necessary.
3088 Reloc_section*
3089 rel_dyn_section(Layout*);
3090
3091 bool
3092 do_has_custom_set_dynsym_indexes() const
3093 { return true; }
3094
3095 // Don't emit input .reginfo sections to output .reginfo.
3096 bool
3097 do_should_include_section(elfcpp::Elf_Word sh_type) const
3098 { return sh_type != elfcpp::SHT_MIPS_REGINFO; }
3099
3100 // Set the dynamic symbol indexes. INDEX is the index of the first
3101 // global dynamic symbol. Pointers to the symbols are stored into the
3102 // vector SYMS. The names are added to DYNPOOL. This returns an
3103 // updated dynamic symbol index.
3104 unsigned int
3105 do_set_dynsym_indexes(std::vector<Symbol*>* dyn_symbols, unsigned int index,
3106 std::vector<Symbol*>* syms, Stringpool* dynpool,
3107 Versions* versions, Symbol_table* symtab) const;
3108
3109 // Remove .MIPS.stubs entry for a symbol.
3110 void
3111 remove_lazy_stub_entry(Mips_symbol<size>* sym)
3112 {
3113 if (this->mips_stubs_ != NULL)
3114 this->mips_stubs_->remove_entry(sym);
3115 }
3116
3117 // The value to write into got[1] for SVR4 targets, to identify it is
3118 // a GNU object. The dynamic linker can then use got[1] to store the
3119 // module pointer.
3120 uint64_t
3121 mips_elf_gnu_got1_mask()
3122 {
3123 if (this->is_output_n64())
3124 return (uint64_t)1 << 63;
3125 else
3126 return 1 << 31;
3127 }
3128
3129 // Whether the output has microMIPS code. This is valid only after
3130 // merge_processor_specific_flags() is called.
3131 bool
3132 is_output_micromips() const
3133 {
3134 gold_assert(this->are_processor_specific_flags_set());
3135 return elfcpp::is_micromips(this->processor_specific_flags());
3136 }
3137
3138 // Whether the output uses N32 ABI. This is valid only after
3139 // merge_processor_specific_flags() is called.
3140 bool
3141 is_output_n32() const
3142 {
3143 gold_assert(this->are_processor_specific_flags_set());
3144 return elfcpp::abi_n32(this->processor_specific_flags());
3145 }
3146
3147 // Whether the output uses N64 ABI. This is valid only after
3148 // merge_processor_specific_flags() is called.
3149 bool
3150 is_output_n64() const
3151 {
3152 gold_assert(this->are_processor_specific_flags_set());
3153 return elfcpp::abi_64(this->ei_class_);
3154 }
3155
3156 // Whether the output uses NEWABI. This is valid only after
3157 // merge_processor_specific_flags() is called.
3158 bool
3159 is_output_newabi() const
3160 { return this->is_output_n32() || this->is_output_n64(); }
3161
3162 // Whether we can only use 32-bit microMIPS instructions.
3163 bool
3164 use_32bit_micromips_instructions() const
3165 { return this->insn32_; }
3166
3167 protected:
3168 // Return the value to use for a dynamic symbol which requires special
3169 // treatment. This is how we support equality comparisons of function
3170 // pointers across shared library boundaries, as described in the
3171 // processor specific ABI supplement.
3172 uint64_t
3173 do_dynsym_value(const Symbol* gsym) const;
3174
3175 // Make an ELF object.
3176 Object*
3177 do_make_elf_object(const std::string&, Input_file*, off_t,
3178 const elfcpp::Ehdr<size, big_endian>& ehdr);
3179
3180 Object*
3181 do_make_elf_object(const std::string&, Input_file*, off_t,
3182 const elfcpp::Ehdr<size, !big_endian>&)
3183 { gold_unreachable(); }
3184
3185 // Make an output section.
3186 Output_section*
3187 do_make_output_section(const char* name, elfcpp::Elf_Word type,
3188 elfcpp::Elf_Xword flags)
3189 {
3190 if (type == elfcpp::SHT_MIPS_REGINFO)
3191 return new Mips_output_section_reginfo<size, big_endian>(name, type,
3192 flags, this);
3193 else
3194 return new Output_section(name, type, flags);
3195 }
3196
3197 // Adjust ELF file header.
3198 void
3199 do_adjust_elf_header(unsigned char* view, int len);
3200
3201 // Get the custom dynamic tag value.
3202 unsigned int
3203 do_dynamic_tag_custom_value(elfcpp::DT) const;
3204
3205 // Adjust the value written to the dynamic symbol table.
3206 virtual void
3207 do_adjust_dyn_symbol(const Symbol* sym, unsigned char* view) const
3208 {
3209 elfcpp::Sym<size, big_endian> isym(view);
3210 elfcpp::Sym_write<size, big_endian> osym(view);
3211 const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);
3212
3213 // Keep dynamic compressed symbols odd. This allows the dynamic linker
3214 // to treat compressed symbols like any other.
3215 Mips_address value = isym.get_st_value();
3216 if (mips_sym->is_mips16() && value != 0)
3217 {
3218 if (!mips_sym->has_mips16_fn_stub())
3219 value |= 1;
3220 else
3221 {
3222 // If we have a MIPS16 function with a stub, the dynamic symbol
3223 // must refer to the stub, since only the stub uses the standard
3224 // calling conventions. Stub contains MIPS32 code, so don't add +1
3225 // in this case.
3226
3227 // There is a code which does this in the method
3228 // Target_mips::do_dynsym_value, but that code will only be
3229 // executed if the symbol is from dynobj.
3230 // TODO(sasa): GNU ld also changes the value in non-dynamic symbol
3231 // table.
3232
3233 Mips16_stub_section<size, big_endian>* fn_stub =
3234 mips_sym->template get_mips16_fn_stub<big_endian>();
3235 value = fn_stub->output_address();
3236 osym.put_st_size(fn_stub->section_size());
3237 }
3238
3239 osym.put_st_value(value);
3240 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
3241 mips_sym->nonvis() - (elfcpp::STO_MIPS16 >> 2)));
3242 }
3243 else if ((mips_sym->is_micromips()
3244 // Stubs are always microMIPS if there is any microMIPS code in
3245 // the output.
3246 || (this->is_output_micromips() && mips_sym->has_lazy_stub()))
3247 && value != 0)
3248 {
3249 osym.put_st_value(value | 1);
3250 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
3251 mips_sym->nonvis() - (elfcpp::STO_MICROMIPS >> 2)));
3252 }
3253 }
3254
3255 private:
3256 // The class which scans relocations.
3257 class Scan
3258 {
3259 public:
3260 Scan()
3261 { }
3262
3263 static inline int
3264 get_reference_flags(unsigned int r_type);
3265
3266 inline void
3267 local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3268 Sized_relobj_file<size, big_endian>* object,
3269 unsigned int data_shndx,
3270 Output_section* output_section,
3271 const elfcpp::Rel<size, big_endian>& reloc, unsigned int r_type,
3272 const elfcpp::Sym<size, big_endian>& lsym,
3273 bool is_discarded);
3274
3275 inline void
3276 local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3277 Sized_relobj_file<size, big_endian>* object,
3278 unsigned int data_shndx,
3279 Output_section* output_section,
3280 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
3281 const elfcpp::Sym<size, big_endian>& lsym,
3282 bool is_discarded);
3283
3284 inline void
3285 local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3286 Sized_relobj_file<size, big_endian>* object,
3287 unsigned int data_shndx,
3288 Output_section* output_section,
3289 const elfcpp::Rela<size, big_endian>* rela,
3290 const elfcpp::Rel<size, big_endian>* rel,
3291 unsigned int rel_type,
3292 unsigned int r_type,
3293 const elfcpp::Sym<size, big_endian>& lsym,
3294 bool is_discarded);
3295
3296 inline void
3297 global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3298 Sized_relobj_file<size, big_endian>* object,
3299 unsigned int data_shndx,
3300 Output_section* output_section,
3301 const elfcpp::Rel<size, big_endian>& reloc, unsigned int r_type,
3302 Symbol* gsym);
3303
3304 inline void
3305 global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3306 Sized_relobj_file<size, big_endian>* object,
3307 unsigned int data_shndx,
3308 Output_section* output_section,
3309 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
3310 Symbol* gsym);
3311
3312 inline void
3313 global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3314 Sized_relobj_file<size, big_endian>* object,
3315 unsigned int data_shndx,
3316 Output_section* output_section,
3317 const elfcpp::Rela<size, big_endian>* rela,
3318 const elfcpp::Rel<size, big_endian>* rel,
3319 unsigned int rel_type,
3320 unsigned int r_type,
3321 Symbol* gsym);
3322
3323 inline bool
3324 local_reloc_may_be_function_pointer(Symbol_table* , Layout*,
3325 Target_mips*,
3326 Sized_relobj_file<size, big_endian>*,
3327 unsigned int,
3328 Output_section*,
3329 const elfcpp::Rel<size, big_endian>&,
3330 unsigned int,
3331 const elfcpp::Sym<size, big_endian>&)
3332 { return false; }
3333
3334 inline bool
3335 global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3336 Target_mips*,
3337 Sized_relobj_file<size, big_endian>*,
3338 unsigned int,
3339 Output_section*,
3340 const elfcpp::Rel<size, big_endian>&,
3341 unsigned int, Symbol*)
3342 { return false; }
3343
3344 inline bool
3345 local_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3346 Target_mips*,
3347 Sized_relobj_file<size, big_endian>*,
3348 unsigned int,
3349 Output_section*,
3350 const elfcpp::Rela<size, big_endian>&,
3351 unsigned int,
3352 const elfcpp::Sym<size, big_endian>&)
3353 { return false; }
3354
3355 inline bool
3356 global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3357 Target_mips*,
3358 Sized_relobj_file<size, big_endian>*,
3359 unsigned int,
3360 Output_section*,
3361 const elfcpp::Rela<size, big_endian>&,
3362 unsigned int, Symbol*)
3363 { return false; }
3364 private:
3365 static void
3366 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
3367 unsigned int r_type);
3368
3369 static void
3370 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
3371 unsigned int r_type, Symbol*);
3372 };
3373
3374 // The class which implements relocation.
3375 class Relocate
3376 {
3377 public:
3378 Relocate()
3379 { }
3380
3381 ~Relocate()
3382 { }
3383
3384 // Return whether the R_MIPS_32 relocation needs to be applied.
3385 inline bool
3386 should_apply_r_mips_32_reloc(const Mips_symbol<size>* gsym,
3387 unsigned int r_type,
3388 Output_section* output_section,
3389 Target_mips* target);
3390
3391 // Do a relocation. Return false if the caller should not issue
3392 // any warnings about this relocation.
3393 inline bool
3394 relocate(const Relocate_info<size, big_endian>*, unsigned int,
3395 Target_mips*, Output_section*, size_t, const unsigned char*,
3396 const Sized_symbol<size>*, const Symbol_value<size>*,
3397 unsigned char*, Mips_address, section_size_type);
3398 };
3399
3400 // A class which returns the size required for a relocation type,
3401 // used while scanning relocs during a relocatable link.
3402 class Relocatable_size_for_reloc
3403 {
3404 public:
3405 unsigned int
3406 get_size_for_reloc(unsigned int, Relobj*);
3407 };
3408
3409 // This POD class holds the dynamic relocations that should be emitted instead
3410 // of R_MIPS_32, R_MIPS_REL32 and R_MIPS_64 relocations. We will emit these
3411 // relocations if it turns out that the symbol does not have static
3412 // relocations.
3413 class Dyn_reloc
3414 {
3415 public:
3416 Dyn_reloc(Mips_symbol<size>* sym, unsigned int r_type,
3417 Mips_relobj<size, big_endian>* relobj, unsigned int shndx,
3418 Output_section* output_section, Mips_address r_offset)
3419 : sym_(sym), r_type_(r_type), relobj_(relobj),
3420 shndx_(shndx), output_section_(output_section),
3421 r_offset_(r_offset)
3422 { }
3423
3424 // Emit this reloc if appropriate. This is called after we have
3425 // scanned all the relocations, so we know whether the symbol has
3426 // static relocations.
3427 void
3428 emit(Reloc_section* rel_dyn, Mips_output_data_got<size, big_endian>* got,
3429 Symbol_table* symtab)
3430 {
3431 if (!this->sym_->has_static_relocs())
3432 {
3433 got->record_global_got_symbol(this->sym_, this->relobj_,
3434 this->r_type_, true, false);
3435 if (!symbol_references_local(this->sym_,
3436 this->sym_->should_add_dynsym_entry(symtab)))
3437 rel_dyn->add_global(this->sym_, this->r_type_,
3438 this->output_section_, this->relobj_,
3439 this->shndx_, this->r_offset_);
3440 else
3441 rel_dyn->add_symbolless_global_addend(this->sym_, this->r_type_,
3442 this->output_section_, this->relobj_,
3443 this->shndx_, this->r_offset_);
3444 }
3445 }
3446
3447 private:
3448 Mips_symbol<size>* sym_;
3449 unsigned int r_type_;
3450 Mips_relobj<size, big_endian>* relobj_;
3451 unsigned int shndx_;
3452 Output_section* output_section_;
3453 Mips_address r_offset_;
3454 };
3455
3456 // Adjust TLS relocation type based on the options and whether this
3457 // is a local symbol.
3458 static tls::Tls_optimization
3459 optimize_tls_reloc(bool is_final, int r_type);
3460
3461 // Return whether there is a GOT section.
3462 bool
3463 has_got_section() const
3464 { return this->got_ != NULL; }
3465
3466 // Check whether the given ELF header flags describe a 32-bit binary.
3467 bool
3468 mips_32bit_flags(elfcpp::Elf_Word);
3469
3470 enum Mips_mach {
3471 mach_mips3000 = 3000,
3472 mach_mips3900 = 3900,
3473 mach_mips4000 = 4000,
3474 mach_mips4010 = 4010,
3475 mach_mips4100 = 4100,
3476 mach_mips4111 = 4111,
3477 mach_mips4120 = 4120,
3478 mach_mips4300 = 4300,
3479 mach_mips4400 = 4400,
3480 mach_mips4600 = 4600,
3481 mach_mips4650 = 4650,
3482 mach_mips5000 = 5000,
3483 mach_mips5400 = 5400,
3484 mach_mips5500 = 5500,
3485 mach_mips6000 = 6000,
3486 mach_mips7000 = 7000,
3487 mach_mips8000 = 8000,
3488 mach_mips9000 = 9000,
3489 mach_mips10000 = 10000,
3490 mach_mips12000 = 12000,
3491 mach_mips14000 = 14000,
3492 mach_mips16000 = 16000,
3493 mach_mips16 = 16,
3494 mach_mips5 = 5,
3495 mach_mips_loongson_2e = 3001,
3496 mach_mips_loongson_2f = 3002,
3497 mach_mips_loongson_3a = 3003,
3498 mach_mips_sb1 = 12310201, // octal 'SB', 01
3499 mach_mips_octeon = 6501,
3500 mach_mips_octeonp = 6601,
3501 mach_mips_octeon2 = 6502,
3502 mach_mips_xlr = 887682, // decimal 'XLR'
3503 mach_mipsisa32 = 32,
3504 mach_mipsisa32r2 = 33,
3505 mach_mipsisa64 = 64,
3506 mach_mipsisa64r2 = 65,
3507 mach_mips_micromips = 96
3508 };
3509
3510 // Return the MACH for a MIPS e_flags value.
3511 unsigned int
3512 elf_mips_mach(elfcpp::Elf_Word);
3513
3514 // Check whether machine EXTENSION is an extension of machine BASE.
3515 bool
3516 mips_mach_extends(unsigned int, unsigned int);
3517
3518 // Merge processor specific flags.
3519 void
3520 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word,
3521 unsigned char, bool);
3522
3523 // True if we are linking for CPUs that are faster if JAL is converted to BAL.
3524 static inline bool
3525 jal_to_bal()
3526 { return false; }
3527
3528 // True if we are linking for CPUs that are faster if JALR is converted to
3529 // BAL. This should be safe for all architectures. We enable this predicate
3530 // for all CPUs.
3531 static inline bool
3532 jalr_to_bal()
3533 { return true; }
3534
3535 // True if we are linking for CPUs that are faster if JR is converted to B.
3536 // This should be safe for all architectures. We enable this predicate for
3537 // all CPUs.
3538 static inline bool
3539 jr_to_b()
3540 { return true; }
3541
3542 // Return the size of the GOT section.
3543 section_size_type
3544 got_size() const
3545 {
3546 gold_assert(this->got_ != NULL);
3547 return this->got_->data_size();
3548 }
3549
3550 // Create a PLT entry for a global symbol referenced by r_type relocation.
3551 void
3552 make_plt_entry(Symbol_table*, Layout*, Mips_symbol<size>*,
3553 unsigned int r_type);
3554
3555 // Get the PLT section.
3556 Mips_output_data_plt<size, big_endian>*
3557 plt_section() const
3558 {
3559 gold_assert(this->plt_ != NULL);
3560 return this->plt_;
3561 }
3562
3563 // Get the GOT PLT section.
3564 const Mips_output_data_plt<size, big_endian>*
3565 got_plt_section() const
3566 {
3567 gold_assert(this->got_plt_ != NULL);
3568 return this->got_plt_;
3569 }
3570
3571 // Copy a relocation against a global symbol.
3572 void
3573 copy_reloc(Symbol_table* symtab, Layout* layout,
3574 Sized_relobj_file<size, big_endian>* object,
3575 unsigned int shndx, Output_section* output_section,
3576 Symbol* sym, const elfcpp::Rel<size, big_endian>& reloc)
3577 {
3578 unsigned int r_type = elfcpp::elf_r_type<size>(reloc.get_r_info());
3579 this->copy_relocs_.copy_reloc(symtab, layout,
3580 symtab->get_sized_symbol<size>(sym),
3581 object, shndx, output_section,
3582 r_type, reloc.get_r_offset(), 0,
3583 this->rel_dyn_section(layout));
3584 }
3585
3586 void
3587 dynamic_reloc(Mips_symbol<size>* sym, unsigned int r_type,
3588 Mips_relobj<size, big_endian>* relobj,
3589 unsigned int shndx, Output_section* output_section,
3590 Mips_address r_offset)
3591 {
3592 this->dyn_relocs_.push_back(Dyn_reloc(sym, r_type, relobj, shndx,
3593 output_section, r_offset));
3594 }
3595
3596 // Calculate value of _gp symbol.
3597 void
3598 set_gp(Layout*, Symbol_table*);
3599
3600 const char*
3601 elf_mips_abi_name(elfcpp::Elf_Word e_flags, unsigned char ei_class);
3602 const char*
3603 elf_mips_mach_name(elfcpp::Elf_Word e_flags);
3604
3605 // Adds entries that describe how machines relate to one another. The entries
3606 // are ordered topologically with MIPS I extensions listed last. First
3607 // element is extension, second element is base.
3608 void
3609 add_machine_extensions()
3610 {
3611 // MIPS64r2 extensions.
3612 this->add_extension(mach_mips_octeon2, mach_mips_octeonp);
3613 this->add_extension(mach_mips_octeonp, mach_mips_octeon);
3614 this->add_extension(mach_mips_octeon, mach_mipsisa64r2);
3615
3616 // MIPS64 extensions.
3617 this->add_extension(mach_mipsisa64r2, mach_mipsisa64);
3618 this->add_extension(mach_mips_sb1, mach_mipsisa64);
3619 this->add_extension(mach_mips_xlr, mach_mipsisa64);
3620 this->add_extension(mach_mips_loongson_3a, mach_mipsisa64);
3621
3622 // MIPS V extensions.
3623 this->add_extension(mach_mipsisa64, mach_mips5);
3624
3625 // R10000 extensions.
3626 this->add_extension(mach_mips12000, mach_mips10000);
3627 this->add_extension(mach_mips14000, mach_mips10000);
3628 this->add_extension(mach_mips16000, mach_mips10000);
3629
3630 // R5000 extensions. Note: the vr5500 ISA is an extension of the core
3631 // vr5400 ISA, but doesn't include the multimedia stuff. It seems
3632 // better to allow vr5400 and vr5500 code to be merged anyway, since
3633 // many libraries will just use the core ISA. Perhaps we could add
3634 // some sort of ASE flag if this ever proves a problem.
3635 this->add_extension(mach_mips5500, mach_mips5400);
3636 this->add_extension(mach_mips5400, mach_mips5000);
3637
3638 // MIPS IV extensions.
3639 this->add_extension(mach_mips5, mach_mips8000);
3640 this->add_extension(mach_mips10000, mach_mips8000);
3641 this->add_extension(mach_mips5000, mach_mips8000);
3642 this->add_extension(mach_mips7000, mach_mips8000);
3643 this->add_extension(mach_mips9000, mach_mips8000);
3644
3645 // VR4100 extensions.
3646 this->add_extension(mach_mips4120, mach_mips4100);
3647 this->add_extension(mach_mips4111, mach_mips4100);
3648
3649 // MIPS III extensions.
3650 this->add_extension(mach_mips_loongson_2e, mach_mips4000);
3651 this->add_extension(mach_mips_loongson_2f, mach_mips4000);
3652 this->add_extension(mach_mips8000, mach_mips4000);
3653 this->add_extension(mach_mips4650, mach_mips4000);
3654 this->add_extension(mach_mips4600, mach_mips4000);
3655 this->add_extension(mach_mips4400, mach_mips4000);
3656 this->add_extension(mach_mips4300, mach_mips4000);
3657 this->add_extension(mach_mips4100, mach_mips4000);
3658 this->add_extension(mach_mips4010, mach_mips4000);
3659
3660 // MIPS32 extensions.
3661 this->add_extension(mach_mipsisa32r2, mach_mipsisa32);
3662
3663 // MIPS II extensions.
3664 this->add_extension(mach_mips4000, mach_mips6000);
3665 this->add_extension(mach_mipsisa32, mach_mips6000);
3666
3667 // MIPS I extensions.
3668 this->add_extension(mach_mips6000, mach_mips3000);
3669 this->add_extension(mach_mips3900, mach_mips3000);
3670 }
3671
3672 // Add value to MIPS extenstions.
3673 void
3674 add_extension(unsigned int base, unsigned int extension)
3675 {
3676 std::pair<unsigned int, unsigned int> ext(base, extension);
3677 this->mips_mach_extensions_.push_back(ext);
3678 }
3679
3680 // Return the number of entries in the .dynsym section.
3681 unsigned int get_dt_mips_symtabno() const
3682 {
3683 return ((unsigned int)(this->layout_->dynsym_section()->data_size()
3684 / elfcpp::Elf_sizes<size>::sym_size));
3685 // TODO(sasa): Entry size is MIPS_ELF_SYM_SIZE.
3686 }
3687
3688 // Information about this specific target which we pass to the
3689 // general Target structure.
3690 static const Target::Target_info mips_info;
3691 // The GOT section.
3692 Mips_output_data_got<size, big_endian>* got_;
3693 // gp symbol. It has the value of .got + 0x7FF0.
3694 Sized_symbol<size>* gp_;
3695 // The PLT section.
3696 Mips_output_data_plt<size, big_endian>* plt_;
3697 // The GOT PLT section.
3698 Output_data_space* got_plt_;
3699 // The dynamic reloc section.
3700 Reloc_section* rel_dyn_;
3701 // Relocs saved to avoid a COPY reloc.
3702 Mips_copy_relocs<elfcpp::SHT_REL, size, big_endian> copy_relocs_;
3703
3704 // A list of dyn relocs to be saved.
3705 std::vector<Dyn_reloc> dyn_relocs_;
3706
3707 // The LA25 stub section.
3708 Mips_output_data_la25_stub<size, big_endian>* la25_stub_;
3709 // Architecture extensions.
3710 std::vector<std::pair<unsigned int, unsigned int> > mips_mach_extensions_;
3711 // .MIPS.stubs
3712 Mips_output_data_mips_stubs<size, big_endian>* mips_stubs_;
3713
3714 unsigned char ei_class_;
3715 unsigned int mach_;
3716 Layout* layout_;
3717
3718 typename std::list<got16_addend<size, big_endian> > got16_addends_;
3719
3720 // Whether the entry symbol is mips16 or micromips.
3721 bool entry_symbol_is_compressed_;
3722
3723 // Whether we can use only 32-bit microMIPS instructions.
3724 // TODO(sasa): This should be a linker option.
3725 bool insn32_;
3726 };
3727
3728
3729 // Helper structure for R_MIPS*_HI16/LO16 and R_MIPS*_GOT16/LO16 relocations.
3730 // It records high part of the relocation pair.
3731
3732 template<int size, bool big_endian>
3733 struct reloc_high
3734 {
3735 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
3736
3737 reloc_high(unsigned char* _view, const Mips_relobj<size, big_endian>* _object,
3738 const Symbol_value<size>* _psymval, Mips_address _addend,
3739 unsigned int _r_type, unsigned int _r_sym, bool _extract_addend,
3740 Mips_address _address = 0, bool _gp_disp = false)
3741 : view(_view), object(_object), psymval(_psymval), addend(_addend),
3742 r_type(_r_type), r_sym(_r_sym), extract_addend(_extract_addend),
3743 address(_address), gp_disp(_gp_disp)
3744 { }
3745
3746 unsigned char* view;
3747 const Mips_relobj<size, big_endian>* object;
3748 const Symbol_value<size>* psymval;
3749 Mips_address addend;
3750 unsigned int r_type;
3751 unsigned int r_sym;
3752 bool extract_addend;
3753 Mips_address address;
3754 bool gp_disp;
3755 };
3756
3757 template<int size, bool big_endian>
3758 class Mips_relocate_functions : public Relocate_functions<size, big_endian>
3759 {
3760 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
3761 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype16;
3762 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
3763
3764 public:
3765 typedef enum
3766 {
3767 STATUS_OKAY, // No error during relocation.
3768 STATUS_OVERFLOW, // Relocation overflow.
3769 STATUS_BAD_RELOC // Relocation cannot be applied.
3770 } Status;
3771
3772 private:
3773 typedef Relocate_functions<size, big_endian> Base;
3774 typedef Mips_relocate_functions<size, big_endian> This;
3775
3776 static typename std::list<reloc_high<size, big_endian> > hi16_relocs;
3777 static typename std::list<reloc_high<size, big_endian> > got16_relocs;
3778
3779 // R_MIPS16_26 is used for the mips16 jal and jalx instructions.
3780 // Most mips16 instructions are 16 bits, but these instructions
3781 // are 32 bits.
3782 //
3783 // The format of these instructions is:
3784 //
3785 // +--------------+--------------------------------+
3786 // | JALX | X| Imm 20:16 | Imm 25:21 |
3787 // +--------------+--------------------------------+
3788 // | Immediate 15:0 |
3789 // +-----------------------------------------------+
3790 //
3791 // JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
3792 // Note that the immediate value in the first word is swapped.
3793 //
3794 // When producing a relocatable object file, R_MIPS16_26 is
3795 // handled mostly like R_MIPS_26. In particular, the addend is
3796 // stored as a straight 26-bit value in a 32-bit instruction.
3797 // (gas makes life simpler for itself by never adjusting a
3798 // R_MIPS16_26 reloc to be against a section, so the addend is
3799 // always zero). However, the 32 bit instruction is stored as 2
3800 // 16-bit values, rather than a single 32-bit value. In a
3801 // big-endian file, the result is the same; in a little-endian
3802 // file, the two 16-bit halves of the 32 bit value are swapped.
3803 // This is so that a disassembler can recognize the jal
3804 // instruction.
3805 //
3806 // When doing a final link, R_MIPS16_26 is treated as a 32 bit
3807 // instruction stored as two 16-bit values. The addend A is the
3808 // contents of the targ26 field. The calculation is the same as
3809 // R_MIPS_26. When storing the calculated value, reorder the
3810 // immediate value as shown above, and don't forget to store the
3811 // value as two 16-bit values.
3812 //
3813 // To put it in MIPS ABI terms, the relocation field is T-targ26-16,
3814 // defined as
3815 //
3816 // big-endian:
3817 // +--------+----------------------+
3818 // | | |
3819 // | | targ26-16 |
3820 // |31 26|25 0|
3821 // +--------+----------------------+
3822 //
3823 // little-endian:
3824 // +----------+------+-------------+
3825 // | | | |
3826 // | sub1 | | sub2 |
3827 // |0 9|10 15|16 31|
3828 // +----------+--------------------+
3829 // where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
3830 // ((sub1 << 16) | sub2)).
3831 //
3832 // When producing a relocatable object file, the calculation is
3833 // (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3834 // When producing a fully linked file, the calculation is
3835 // let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3836 // ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
3837 //
3838 // The table below lists the other MIPS16 instruction relocations.
3839 // Each one is calculated in the same way as the non-MIPS16 relocation
3840 // given on the right, but using the extended MIPS16 layout of 16-bit
3841 // immediate fields:
3842 //
3843 // R_MIPS16_GPREL R_MIPS_GPREL16
3844 // R_MIPS16_GOT16 R_MIPS_GOT16
3845 // R_MIPS16_CALL16 R_MIPS_CALL16
3846 // R_MIPS16_HI16 R_MIPS_HI16
3847 // R_MIPS16_LO16 R_MIPS_LO16
3848 //
3849 // A typical instruction will have a format like this:
3850 //
3851 // +--------------+--------------------------------+
3852 // | EXTEND | Imm 10:5 | Imm 15:11 |
3853 // +--------------+--------------------------------+
3854 // | Major | rx | ry | Imm 4:0 |
3855 // +--------------+--------------------------------+
3856 //
3857 // EXTEND is the five bit value 11110. Major is the instruction
3858 // opcode.
3859 //
3860 // All we need to do here is shuffle the bits appropriately.
3861 // As above, the two 16-bit halves must be swapped on a
3862 // little-endian system.
3863
3864 // Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
3865 // on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
3866 // and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions.
3867
3868 static inline bool
3869 should_shuffle_micromips_reloc(unsigned int r_type)
3870 {
3871 return (micromips_reloc(r_type)
3872 && r_type != elfcpp::R_MICROMIPS_PC7_S1
3873 && r_type != elfcpp::R_MICROMIPS_PC10_S1);
3874 }
3875
3876 static void
3877 mips_reloc_unshuffle(unsigned char* view, unsigned int r_type,
3878 bool jal_shuffle)
3879 {
3880 if (!mips16_reloc(r_type)
3881 && !should_shuffle_micromips_reloc(r_type))
3882 return;
3883
3884 // Pick up the first and second halfwords of the instruction.
3885 Valtype16 first = elfcpp::Swap<16, big_endian>::readval(view);
3886 Valtype16 second = elfcpp::Swap<16, big_endian>::readval(view + 2);
3887 Valtype32 val;
3888
3889 if (micromips_reloc(r_type)
3890 || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
3891 val = first << 16 | second;
3892 else if (r_type != elfcpp::R_MIPS16_26)
3893 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
3894 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
3895 else
3896 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
3897 | ((first & 0x1f) << 21) | second);
3898
3899 elfcpp::Swap<32, big_endian>::writeval(view, val);
3900 }
3901
3902 static void
3903 mips_reloc_shuffle(unsigned char* view, unsigned int r_type, bool jal_shuffle)
3904 {
3905 if (!mips16_reloc(r_type)
3906 && !should_shuffle_micromips_reloc(r_type))
3907 return;
3908
3909 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
3910 Valtype16 first, second;
3911
3912 if (micromips_reloc(r_type)
3913 || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
3914 {
3915 second = val & 0xffff;
3916 first = val >> 16;
3917 }
3918 else if (r_type != elfcpp::R_MIPS16_26)
3919 {
3920 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
3921 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
3922 }
3923 else
3924 {
3925 second = val & 0xffff;
3926 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
3927 | ((val >> 21) & 0x1f);
3928 }
3929
3930 elfcpp::Swap<16, big_endian>::writeval(view + 2, second);
3931 elfcpp::Swap<16, big_endian>::writeval(view, first);
3932 }
3933
3934 public:
3935 // R_MIPS_16: S + sign-extend(A)
3936 static inline typename This::Status
3937 rel16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
3938 const Symbol_value<size>* psymval, Mips_address addend_a,
3939 bool extract_addend, unsigned int r_type)
3940 {
3941 mips_reloc_unshuffle(view, r_type, false);
3942 Valtype16* wv = reinterpret_cast<Valtype16*>(view);
3943 Valtype16 val = elfcpp::Swap<16, big_endian>::readval(wv);
3944
3945 Valtype32 addend = (extract_addend ? Bits<16>::sign_extend32(val)
3946 : Bits<16>::sign_extend32(addend_a));
3947
3948 Valtype32 x = psymval->value(object, addend);
3949 val = Bits<16>::bit_select32(val, x, 0xffffU);
3950 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3951 mips_reloc_shuffle(view, r_type, false);
3952 return (Bits<16>::has_overflow32(x)
3953 ? This::STATUS_OVERFLOW
3954 : This::STATUS_OKAY);
3955 }
3956
3957 // R_MIPS_32: S + A
3958 static inline typename This::Status
3959 rel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
3960 const Symbol_value<size>* psymval, Mips_address addend_a,
3961 bool extract_addend, unsigned int r_type)
3962 {
3963 mips_reloc_unshuffle(view, r_type, false);
3964 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
3965 Valtype32 addend = (extract_addend
3966 ? elfcpp::Swap<32, big_endian>::readval(wv)
3967 : Bits<32>::sign_extend32(addend_a));
3968 Valtype32 x = psymval->value(object, addend);
3969 elfcpp::Swap<32, big_endian>::writeval(wv, x);
3970 mips_reloc_shuffle(view, r_type, false);
3971 return This::STATUS_OKAY;
3972 }
3973
3974 // R_MIPS_JALR, R_MICROMIPS_JALR
3975 static inline typename This::Status
3976 reljalr(unsigned char* view, const Mips_relobj<size, big_endian>* object,
3977 const Symbol_value<size>* psymval, Mips_address address,
3978 Mips_address addend_a, bool extract_addend, bool cross_mode_jump,
3979 unsigned int r_type, bool jalr_to_bal, bool jr_to_b)
3980 {
3981 mips_reloc_unshuffle(view, r_type, false);
3982 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
3983 Valtype32 addend = extract_addend ? 0 : addend_a;
3984 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
3985
3986 // Try converting J(AL)R to B(AL), if the target is in range.
3987 if (!parameters->options().relocatable()
3988 && r_type == elfcpp::R_MIPS_JALR
3989 && !cross_mode_jump
3990 && ((jalr_to_bal && val == 0x0320f809) // jalr t9
3991 || (jr_to_b && val == 0x03200008))) // jr t9
3992 {
3993 int offset = psymval->value(object, addend) - (address + 4);
3994 if (!Bits<18>::has_overflow32(offset))
3995 {
3996 if (val == 0x03200008) // jr t9
3997 val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff); // b addr
3998 else
3999 val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
4000 }
4001 }
4002
4003 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4004 mips_reloc_shuffle(view, r_type, false);
4005 return This::STATUS_OKAY;
4006 }
4007
4008 // R_MIPS_PC32: S + A - P
4009 static inline typename This::Status
4010 relpc32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4011 const Symbol_value<size>* psymval, Mips_address address,
4012 Mips_address addend_a, bool extract_addend, unsigned int r_type)
4013 {
4014 mips_reloc_unshuffle(view, r_type, false);
4015 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4016 Valtype32 addend = (extract_addend
4017 ? elfcpp::Swap<32, big_endian>::readval(wv)
4018 : Bits<32>::sign_extend32(addend_a));
4019 Valtype32 x = psymval->value(object, addend) - address;
4020 elfcpp::Swap<32, big_endian>::writeval(wv, x);
4021 mips_reloc_shuffle(view, r_type, false);
4022 return This::STATUS_OKAY;
4023 }
4024
4025 // R_MIPS_26, R_MIPS16_26, R_MICROMIPS_26_S1
4026 static inline typename This::Status
4027 rel26(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4028 const Symbol_value<size>* psymval, Mips_address address,
4029 bool local, Mips_address addend_a, bool extract_addend,
4030 const Symbol* gsym, bool cross_mode_jump, unsigned int r_type,
4031 bool jal_to_bal)
4032 {
4033 mips_reloc_unshuffle(view, r_type, false);
4034 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4035 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4036
4037 Valtype32 addend;
4038 if (extract_addend)
4039 {
4040 if (r_type == elfcpp::R_MICROMIPS_26_S1)
4041 addend = (val & 0x03ffffff) << 1;
4042 else
4043 addend = (val & 0x03ffffff) << 2;
4044 }
4045 else
4046 addend = addend_a;
4047
4048 // Make sure the target of JALX is word-aligned. Bit 0 must be
4049 // the correct ISA mode selector and bit 1 must be 0.
4050 if (cross_mode_jump
4051 && (psymval->value(object, 0) & 3) != (r_type == elfcpp::R_MIPS_26))
4052 {
4053 gold_warning(_("JALX to a non-word-aligned address"));
4054 mips_reloc_shuffle(view, r_type, !parameters->options().relocatable());
4055 return This::STATUS_BAD_RELOC;
4056 }
4057
4058 // Shift is 2, unusually, for microMIPS JALX.
4059 unsigned int shift =
4060 (!cross_mode_jump && r_type == elfcpp::R_MICROMIPS_26_S1) ? 1 : 2;
4061
4062 Valtype32 x;
4063 if (local)
4064 x = addend | ((address + 4) & (0xfc000000 << shift));
4065 else
4066 {
4067 if (shift == 1)
4068 x = Bits<27>::sign_extend32(addend);
4069 else
4070 x = Bits<28>::sign_extend32(addend);
4071 }
4072 x = psymval->value(object, x) >> shift;
4073
4074 if (!local && !gsym->is_weak_undefined())
4075 {
4076 if ((x >> 26) != ((address + 4) >> (26 + shift)))
4077 {
4078 gold_error(_("relocation truncated to fit: %u against '%s'"),
4079 r_type, gsym->name());
4080 return This::STATUS_OVERFLOW;
4081 }
4082 }
4083
4084 val = Bits<32>::bit_select32(val, x, 0x03ffffff);
4085
4086 // If required, turn JAL into JALX.
4087 if (cross_mode_jump)
4088 {
4089 bool ok;
4090 Valtype32 opcode = val >> 26;
4091 Valtype32 jalx_opcode;
4092
4093 // Check to see if the opcode is already JAL or JALX.
4094 if (r_type == elfcpp::R_MIPS16_26)
4095 {
4096 ok = (opcode == 0x6) || (opcode == 0x7);
4097 jalx_opcode = 0x7;
4098 }
4099 else if (r_type == elfcpp::R_MICROMIPS_26_S1)
4100 {
4101 ok = (opcode == 0x3d) || (opcode == 0x3c);
4102 jalx_opcode = 0x3c;
4103 }
4104 else
4105 {
4106 ok = (opcode == 0x3) || (opcode == 0x1d);
4107 jalx_opcode = 0x1d;
4108 }
4109
4110 // If the opcode is not JAL or JALX, there's a problem. We cannot
4111 // convert J or JALS to JALX.
4112 if (!ok)
4113 {
4114 gold_error(_("Unsupported jump between ISA modes; consider "
4115 "recompiling with interlinking enabled."));
4116 return This::STATUS_BAD_RELOC;
4117 }
4118
4119 // Make this the JALX opcode.
4120 val = (val & ~(0x3f << 26)) | (jalx_opcode << 26);
4121 }
4122
4123 // Try converting JAL to BAL, if the target is in range.
4124 if (!parameters->options().relocatable()
4125 && !cross_mode_jump
4126 && ((jal_to_bal
4127 && r_type == elfcpp::R_MIPS_26
4128 && (val >> 26) == 0x3))) // jal addr
4129 {
4130 Valtype32 dest = (x << 2) | (((address + 4) >> 28) << 28);
4131 int offset = dest - (address + 4);
4132 if (!Bits<18>::has_overflow32(offset))
4133 {
4134 if (val == 0x03200008) // jr t9
4135 val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff); // b addr
4136 else
4137 val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
4138 }
4139 }
4140
4141 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4142 mips_reloc_shuffle(view, r_type, !parameters->options().relocatable());
4143 return This::STATUS_OKAY;
4144 }
4145
4146 // R_MIPS_PC16
4147 static inline typename This::Status
4148 relpc16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4149 const Symbol_value<size>* psymval, Mips_address address,
4150 Mips_address addend_a, bool extract_addend, unsigned int r_type)
4151 {
4152 mips_reloc_unshuffle(view, r_type, false);
4153 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4154 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4155
4156 Valtype32 addend = extract_addend ? (val & 0xffff) << 2 : addend_a;
4157 addend = Bits<18>::sign_extend32(addend);
4158
4159 Valtype32 x = psymval->value(object, addend) - address;
4160 val = Bits<16>::bit_select32(val, x >> 2, 0xffff);
4161 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4162 mips_reloc_shuffle(view, r_type, false);
4163 return (Bits<18>::has_overflow32(x)
4164 ? This::STATUS_OVERFLOW
4165 : This::STATUS_OKAY);
4166 }
4167
4168 // R_MICROMIPS_PC7_S1
4169 static inline typename This::Status
4170 relmicromips_pc7_s1(unsigned char* view,
4171 const Mips_relobj<size, big_endian>* object,
4172 const Symbol_value<size>* psymval, Mips_address address,
4173 Mips_address addend_a, bool extract_addend,
4174 unsigned int r_type)
4175 {
4176 mips_reloc_unshuffle(view, r_type, false);
4177 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4178 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4179
4180 Valtype32 addend = extract_addend ? (val & 0x7f) << 1 : addend_a;
4181 addend = Bits<8>::sign_extend32(addend);
4182
4183 Valtype32 x = psymval->value(object, addend) - address;
4184 val = Bits<16>::bit_select32(val, x >> 1, 0x7f);
4185 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4186 mips_reloc_shuffle(view, r_type, false);
4187 return (Bits<8>::has_overflow32(x)
4188 ? This::STATUS_OVERFLOW
4189 : This::STATUS_OKAY);
4190 }
4191
4192 // R_MICROMIPS_PC10_S1
4193 static inline typename This::Status
4194 relmicromips_pc10_s1(unsigned char* view,
4195 const Mips_relobj<size, big_endian>* object,
4196 const Symbol_value<size>* psymval, Mips_address address,
4197 Mips_address addend_a, bool extract_addend,
4198 unsigned int r_type)
4199 {
4200 mips_reloc_unshuffle(view, r_type, false);
4201 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4202 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4203
4204 Valtype32 addend = extract_addend ? (val & 0x3ff) << 1 : addend_a;
4205 addend = Bits<11>::sign_extend32(addend);
4206
4207 Valtype32 x = psymval->value(object, addend) - address;
4208 val = Bits<16>::bit_select32(val, x >> 1, 0x3ff);
4209 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4210 mips_reloc_shuffle(view, r_type, false);
4211 return (Bits<11>::has_overflow32(x)
4212 ? This::STATUS_OVERFLOW
4213 : This::STATUS_OKAY);
4214 }
4215
4216 // R_MICROMIPS_PC16_S1
4217 static inline typename This::Status
4218 relmicromips_pc16_s1(unsigned char* view,
4219 const Mips_relobj<size, big_endian>* object,
4220 const Symbol_value<size>* psymval, Mips_address address,
4221 Mips_address addend_a, bool extract_addend,
4222 unsigned int r_type)
4223 {
4224 mips_reloc_unshuffle(view, r_type, false);
4225 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4226 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4227
4228 Valtype32 addend = extract_addend ? (val & 0xffff) << 1 : addend_a;
4229 addend = Bits<17>::sign_extend32(addend);
4230
4231 Valtype32 x = psymval->value(object, addend) - address;
4232 val = Bits<16>::bit_select32(val, x >> 1, 0xffff);
4233 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4234 mips_reloc_shuffle(view, r_type, false);
4235 return (Bits<17>::has_overflow32(x)
4236 ? This::STATUS_OVERFLOW
4237 : This::STATUS_OKAY);
4238 }
4239
4240 // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
4241 static inline typename This::Status
4242 relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4243 const Symbol_value<size>* psymval, Mips_address addend,
4244 Mips_address address, bool gp_disp, unsigned int r_type,
4245 unsigned int r_sym, bool extract_addend)
4246 {
4247 // Record the relocation. It will be resolved when we find lo16 part.
4248 hi16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
4249 addend, r_type, r_sym, extract_addend, address,
4250 gp_disp));
4251 return This::STATUS_OKAY;
4252 }
4253
4254 // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
4255 static inline typename This::Status
4256 do_relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4257 const Symbol_value<size>* psymval, Mips_address addend_hi,
4258 Mips_address address, bool is_gp_disp, unsigned int r_type,
4259 bool extract_addend, Valtype32 addend_lo,
4260 Target_mips<size, big_endian>* target)
4261 {
4262 mips_reloc_unshuffle(view, r_type, false);
4263 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4264 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4265
4266 Valtype32 addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
4267 : addend_hi);
4268
4269 Valtype32 value;
4270 if (!is_gp_disp)
4271 value = psymval->value(object, addend);
4272 else
4273 {
4274 // For MIPS16 ABI code we generate this sequence
4275 // 0: li $v0,%hi(_gp_disp)
4276 // 4: addiupc $v1,%lo(_gp_disp)
4277 // 8: sll $v0,16
4278 // 12: addu $v0,$v1
4279 // 14: move $gp,$v0
4280 // So the offsets of hi and lo relocs are the same, but the
4281 // base $pc is that used by the ADDIUPC instruction at $t9 + 4.
4282 // ADDIUPC clears the low two bits of the instruction address,
4283 // so the base is ($t9 + 4) & ~3.
4284 Valtype32 gp_disp;
4285 if (r_type == elfcpp::R_MIPS16_HI16)
4286 gp_disp = (target->adjusted_gp_value(object)
4287 - ((address + 4) & ~0x3));
4288 // The microMIPS .cpload sequence uses the same assembly
4289 // instructions as the traditional psABI version, but the
4290 // incoming $t9 has the low bit set.
4291 else if (r_type == elfcpp::R_MICROMIPS_HI16)
4292 gp_disp = target->adjusted_gp_value(object) - address - 1;
4293 else
4294 gp_disp = target->adjusted_gp_value(object) - address;
4295 value = gp_disp + addend;
4296 }
4297 Valtype32 x = ((value + 0x8000) >> 16) & 0xffff;
4298 val = Bits<32>::bit_select32(val, x, 0xffff);
4299 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4300 mips_reloc_shuffle(view, r_type, false);
4301 return (is_gp_disp && Bits<16>::has_overflow32(x)
4302 ? This::STATUS_OVERFLOW
4303 : This::STATUS_OKAY);
4304 }
4305
4306 // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
4307 static inline typename This::Status
4308 relgot16_local(unsigned char* view,
4309 const Mips_relobj<size, big_endian>* object,
4310 const Symbol_value<size>* psymval, Mips_address addend_a,
4311 bool extract_addend, unsigned int r_type, unsigned int r_sym)
4312 {
4313 // Record the relocation. It will be resolved when we find lo16 part.
4314 got16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
4315 addend_a, r_type, r_sym, extract_addend));
4316 return This::STATUS_OKAY;
4317 }
4318
4319 // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
4320 static inline typename This::Status
4321 do_relgot16_local(unsigned char* view,
4322 const Mips_relobj<size, big_endian>* object,
4323 const Symbol_value<size>* psymval, Mips_address addend_hi,
4324 unsigned int r_type, bool extract_addend,
4325 Valtype32 addend_lo, Target_mips<size, big_endian>* target)
4326 {
4327 mips_reloc_unshuffle(view, r_type, false);
4328 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4329 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4330
4331 Valtype32 addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
4332 : addend_hi);
4333
4334 // Find GOT page entry.
4335 Mips_address value = ((psymval->value(object, addend) + 0x8000) >> 16)
4336 & 0xffff;
4337 value <<= 16;
4338 unsigned int got_offset =
4339 target->got_section()->get_got_page_offset(value, object);
4340
4341 // Resolve the relocation.
4342 Valtype32 x = target->got_section()->gp_offset(got_offset, object);
4343 val = Bits<32>::bit_select32(val, x, 0xffff);
4344 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4345 mips_reloc_shuffle(view, r_type, false);
4346 return (Bits<16>::has_overflow32(x)
4347 ? This::STATUS_OVERFLOW
4348 : This::STATUS_OKAY);
4349 }
4350
4351 // R_MIPS_LO16, R_MIPS16_LO16, R_MICROMIPS_LO16, R_MICROMIPS_HI0_LO16
4352 static inline typename This::Status
4353 rello16(Target_mips<size, big_endian>* target, unsigned char* view,
4354 const Mips_relobj<size, big_endian>* object,
4355 const Symbol_value<size>* psymval, Mips_address addend_a,
4356 bool extract_addend, Mips_address address, bool is_gp_disp,
4357 unsigned int r_type, unsigned int r_sym)
4358 {
4359 mips_reloc_unshuffle(view, r_type, false);
4360 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4361 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4362
4363 Valtype32 addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
4364 : addend_a);
4365
4366 // Resolve pending R_MIPS_HI16 relocations.
4367 typename std::list<reloc_high<size, big_endian> >::iterator it =
4368 hi16_relocs.begin();
4369 while (it != hi16_relocs.end())
4370 {
4371 reloc_high<size, big_endian> hi16 = *it;
4372 if (hi16.r_sym == r_sym
4373 && is_matching_lo16_reloc(hi16.r_type, r_type))
4374 {
4375 if (do_relhi16(hi16.view, hi16.object, hi16.psymval, hi16.addend,
4376 hi16.address, hi16.gp_disp, hi16.r_type,
4377 hi16.extract_addend, addend, target)
4378 == This::STATUS_OVERFLOW)
4379 return This::STATUS_OVERFLOW;
4380 it = hi16_relocs.erase(it);
4381 }
4382 else
4383 ++it;
4384 }
4385
4386 // Resolve pending local R_MIPS_GOT16 relocations.
4387 typename std::list<reloc_high<size, big_endian> >::iterator it2 =
4388 got16_relocs.begin();
4389 while (it2 != got16_relocs.end())
4390 {
4391 reloc_high<size, big_endian> got16 = *it2;
4392 if (got16.r_sym == r_sym
4393 && is_matching_lo16_reloc(got16.r_type, r_type))
4394 {
4395 if (do_relgot16_local(got16.view, got16.object, got16.psymval,
4396 got16.addend, got16.r_type,
4397 got16.extract_addend, addend,
4398 target) == This::STATUS_OVERFLOW)
4399 return This::STATUS_OVERFLOW;
4400 it2 = got16_relocs.erase(it2);
4401 }
4402 else
4403 ++it2;
4404 }
4405
4406 // Resolve R_MIPS_LO16 relocation.
4407 Valtype32 x;
4408 if (!is_gp_disp)
4409 x = psymval->value(object, addend);
4410 else
4411 {
4412 // See the comment for R_MIPS16_HI16 above for the reason
4413 // for this conditional.
4414 Valtype32 gp_disp;
4415 if (r_type == elfcpp::R_MIPS16_LO16)
4416 gp_disp = target->adjusted_gp_value(object) - (address & ~0x3);
4417 else if (r_type == elfcpp::R_MICROMIPS_LO16
4418 || r_type == elfcpp::R_MICROMIPS_HI0_LO16)
4419 gp_disp = target->adjusted_gp_value(object) - address + 3;
4420 else
4421 gp_disp = target->adjusted_gp_value(object) - address + 4;
4422 // The MIPS ABI requires checking the R_MIPS_LO16 relocation
4423 // for overflow. Relocations against _gp_disp are normally
4424 // generated from the .cpload pseudo-op. It generates code
4425 // that normally looks like this:
4426
4427 // lui $gp,%hi(_gp_disp)
4428 // addiu $gp,$gp,%lo(_gp_disp)
4429 // addu $gp,$gp,$t9
4430
4431 // Here $t9 holds the address of the function being called,
4432 // as required by the MIPS ELF ABI. The R_MIPS_LO16
4433 // relocation can easily overflow in this situation, but the
4434 // R_MIPS_HI16 relocation will handle the overflow.
4435 // Therefore, we consider this a bug in the MIPS ABI, and do
4436 // not check for overflow here.
4437 x = gp_disp + addend;
4438 }
4439 val = Bits<32>::bit_select32(val, x, 0xffff);
4440 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4441 mips_reloc_shuffle(view, r_type, false);
4442 return This::STATUS_OKAY;
4443 }
4444
4445 // R_MIPS_CALL16, R_MIPS16_CALL16, R_MICROMIPS_CALL16
4446 // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
4447 // R_MIPS_TLS_GD, R_MIPS16_TLS_GD, R_MICROMIPS_TLS_GD
4448 // R_MIPS_TLS_GOTTPREL, R_MIPS16_TLS_GOTTPREL, R_MICROMIPS_TLS_GOTTPREL
4449 // R_MIPS_TLS_LDM, R_MIPS16_TLS_LDM, R_MICROMIPS_TLS_LDM
4450 // R_MIPS_GOT_DISP, R_MICROMIPS_GOT_DISP
4451 static inline typename This::Status
4452 relgot(unsigned char* view, int gp_offset, unsigned int r_type)
4453 {
4454 mips_reloc_unshuffle(view, r_type, false);
4455 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4456 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4457 Valtype32 x = gp_offset;
4458 val = Bits<32>::bit_select32(val, x, 0xffff);
4459 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4460 mips_reloc_shuffle(view, r_type, false);
4461 return (Bits<16>::has_overflow32(x)
4462 ? This::STATUS_OVERFLOW
4463 : This::STATUS_OKAY);
4464 }
4465
4466 // R_MIPS_GOT_PAGE, R_MICROMIPS_GOT_PAGE
4467 static inline typename This::Status
4468 relgotpage(Target_mips<size, big_endian>* target, unsigned char* view,
4469 const Mips_relobj<size, big_endian>* object,
4470 const Symbol_value<size>* psymval, Mips_address addend_a,
4471 bool extract_addend, unsigned int r_type)
4472 {
4473 mips_reloc_unshuffle(view, r_type, false);
4474 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4475 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
4476 Valtype32 addend = extract_addend ? val & 0xffff : addend_a;
4477
4478 // Find a GOT page entry that points to within 32KB of symbol + addend.
4479 Mips_address value = (psymval->value(object, addend) + 0x8000) & ~0xffff;
4480 unsigned int got_offset =
4481 target->got_section()->get_got_page_offset(value, object);
4482
4483 Valtype32 x = target->got_section()->gp_offset(got_offset, object);
4484 val = Bits<32>::bit_select32(val, x, 0xffff);
4485 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4486 mips_reloc_shuffle(view, r_type, false);
4487 return (Bits<16>::has_overflow32(x)
4488 ? This::STATUS_OVERFLOW
4489 : This::STATUS_OKAY);
4490 }
4491
4492 // R_MIPS_GOT_OFST, R_MICROMIPS_GOT_OFST
4493 static inline typename This::Status
4494 relgotofst(Target_mips<size, big_endian>* target, unsigned char* view,
4495 const Mips_relobj<size, big_endian>* object,
4496 const Symbol_value<size>* psymval, Mips_address addend_a,
4497 bool extract_addend, bool local, unsigned int r_type)
4498 {
4499 mips_reloc_unshuffle(view, r_type, false);
4500 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4501 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
4502 Valtype32 addend = extract_addend ? val & 0xffff : addend_a;
4503
4504 // For a local symbol, find a GOT page entry that points to within 32KB of
4505 // symbol + addend. Relocation value is the offset of the GOT page entry's
4506 // value from symbol + addend.
4507 // For a global symbol, relocation value is addend.
4508 Valtype32 x;
4509 if (local)
4510 {
4511 // Find GOT page entry.
4512 Mips_address value = ((psymval->value(object, addend) + 0x8000)
4513 & ~0xffff);
4514 target->got_section()->get_got_page_offset(value, object);
4515
4516 x = psymval->value(object, addend) - value;
4517 }
4518 else
4519 x = addend;
4520 val = Bits<32>::bit_select32(val, x, 0xffff);
4521 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4522 mips_reloc_shuffle(view, r_type, false);
4523 return (Bits<16>::has_overflow32(x)
4524 ? This::STATUS_OVERFLOW
4525 : This::STATUS_OKAY);
4526 }
4527
4528 // R_MIPS_GOT_HI16, R_MIPS_CALL_HI16,
4529 // R_MICROMIPS_GOT_HI16, R_MICROMIPS_CALL_HI16
4530 static inline typename This::Status
4531 relgot_hi16(unsigned char* view, int gp_offset, unsigned int r_type)
4532 {
4533 mips_reloc_unshuffle(view, r_type, false);
4534 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4535 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4536 Valtype32 x = gp_offset;
4537 x = ((x + 0x8000) >> 16) & 0xffff;
4538 val = Bits<32>::bit_select32(val, x, 0xffff);
4539 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4540 mips_reloc_shuffle(view, r_type, false);
4541 return This::STATUS_OKAY;
4542 }
4543
4544 // R_MIPS_GOT_LO16, R_MIPS_CALL_LO16,
4545 // R_MICROMIPS_GOT_LO16, R_MICROMIPS_CALL_LO16
4546 static inline typename This::Status
4547 relgot_lo16(unsigned char* view, int gp_offset, unsigned int r_type)
4548 {
4549 mips_reloc_unshuffle(view, r_type, false);
4550 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4551 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4552 Valtype32 x = gp_offset;
4553 val = Bits<32>::bit_select32(val, x, 0xffff);
4554 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4555 mips_reloc_shuffle(view, r_type, false);
4556 return This::STATUS_OKAY;
4557 }
4558
4559 // R_MIPS_GPREL16, R_MIPS16_GPREL, R_MIPS_LITERAL, R_MICROMIPS_LITERAL
4560 // R_MICROMIPS_GPREL7_S2, R_MICROMIPS_GPREL16
4561 static inline typename This::Status
4562 relgprel(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4563 const Symbol_value<size>* psymval, Mips_address gp,
4564 Mips_address addend_a, bool extract_addend, bool local,
4565 unsigned int r_type)
4566 {
4567 mips_reloc_unshuffle(view, r_type, false);
4568 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4569 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4570
4571 Valtype32 addend;
4572 if (extract_addend)
4573 {
4574 if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2)
4575 addend = (val & 0x7f) << 2;
4576 else
4577 addend = val & 0xffff;
4578 // Only sign-extend the addend if it was extracted from the
4579 // instruction. If the addend was separate, leave it alone,
4580 // otherwise we may lose significant bits.
4581 addend = Bits<16>::sign_extend32(addend);
4582 }
4583 else
4584 addend = addend_a;
4585
4586 Valtype32 x = psymval->value(object, addend) - gp;
4587
4588 // If the symbol was local, any earlier relocatable links will
4589 // have adjusted its addend with the gp offset, so compensate
4590 // for that now. Don't do it for symbols forced local in this
4591 // link, though, since they won't have had the gp offset applied
4592 // to them before.
4593 if (local)
4594 x += object->gp_value();
4595
4596 if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2)
4597 val = Bits<32>::bit_select32(val, x, 0x7f);
4598 else
4599 val = Bits<32>::bit_select32(val, x, 0xffff);
4600 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4601 mips_reloc_shuffle(view, r_type, false);
4602 if (Bits<16>::has_overflow32(x))
4603 {
4604 gold_error(_("small-data section exceeds 64KB; lower small-data size "
4605 "limit (see option -G)"));
4606 return This::STATUS_OVERFLOW;
4607 }
4608 return This::STATUS_OKAY;
4609 }
4610
4611 // R_MIPS_GPREL32
4612 static inline typename This::Status
4613 relgprel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4614 const Symbol_value<size>* psymval, Mips_address gp,
4615 Mips_address addend_a, bool extract_addend, unsigned int r_type)
4616 {
4617 mips_reloc_unshuffle(view, r_type, false);
4618 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4619 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4620 Valtype32 addend = extract_addend ? val : addend_a;
4621
4622 // R_MIPS_GPREL32 relocations are defined for local symbols only.
4623 Valtype32 x = psymval->value(object, addend) + object->gp_value() - gp;
4624 elfcpp::Swap<32, big_endian>::writeval(wv, x);
4625 mips_reloc_shuffle(view, r_type, false);
4626 return This::STATUS_OKAY;
4627 }
4628
4629 // R_MIPS_TLS_TPREL_HI16, R_MIPS16_TLS_TPREL_HI16, R_MICROMIPS_TLS_TPREL_HI16
4630 // R_MIPS_TLS_DTPREL_HI16, R_MIPS16_TLS_DTPREL_HI16,
4631 // R_MICROMIPS_TLS_DTPREL_HI16
4632 static inline typename This::Status
4633 tlsrelhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4634 const Symbol_value<size>* psymval, Valtype32 tp_offset,
4635 Mips_address addend_a, bool extract_addend, unsigned int r_type)
4636 {
4637 mips_reloc_unshuffle(view, r_type, false);
4638 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4639 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4640 Valtype32 addend = extract_addend ? val & 0xffff : addend_a;
4641
4642 // tls symbol values are relative to tls_segment()->vaddr()
4643 Valtype32 x = ((psymval->value(object, addend) - tp_offset) + 0x8000) >> 16;
4644 val = Bits<32>::bit_select32(val, x, 0xffff);
4645 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4646 mips_reloc_shuffle(view, r_type, false);
4647 return This::STATUS_OKAY;
4648 }
4649
4650 // R_MIPS_TLS_TPREL_LO16, R_MIPS16_TLS_TPREL_LO16, R_MICROMIPS_TLS_TPREL_LO16,
4651 // R_MIPS_TLS_DTPREL_LO16, R_MIPS16_TLS_DTPREL_LO16,
4652 // R_MICROMIPS_TLS_DTPREL_LO16,
4653 static inline typename This::Status
4654 tlsrello16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4655 const Symbol_value<size>* psymval, Valtype32 tp_offset,
4656 Mips_address addend_a, bool extract_addend, unsigned int r_type)
4657 {
4658 mips_reloc_unshuffle(view, r_type, false);
4659 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4660 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4661 Valtype32 addend = extract_addend ? val & 0xffff : addend_a;
4662
4663 // tls symbol values are relative to tls_segment()->vaddr()
4664 Valtype32 x = psymval->value(object, addend) - tp_offset;
4665 val = Bits<32>::bit_select32(val, x, 0xffff);
4666 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4667 mips_reloc_shuffle(view, r_type, false);
4668 return This::STATUS_OKAY;
4669 }
4670
4671 // R_MIPS_TLS_TPREL32, R_MIPS_TLS_TPREL64,
4672 // R_MIPS_TLS_DTPREL32, R_MIPS_TLS_DTPREL64
4673 static inline typename This::Status
4674 tlsrel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4675 const Symbol_value<size>* psymval, Valtype32 tp_offset,
4676 Mips_address addend_a, bool extract_addend, unsigned int r_type)
4677 {
4678 mips_reloc_unshuffle(view, r_type, false);
4679 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4680 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4681 Valtype32 addend = extract_addend ? val : addend_a;
4682
4683 // tls symbol values are relative to tls_segment()->vaddr()
4684 Valtype32 x = psymval->value(object, addend) - tp_offset;
4685 elfcpp::Swap<32, big_endian>::writeval(wv, x);
4686 mips_reloc_shuffle(view, r_type, false);
4687 return This::STATUS_OKAY;
4688 }
4689
4690 // R_MIPS_SUB, R_MICROMIPS_SUB
4691 static inline typename This::Status
4692 relsub(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4693 const Symbol_value<size>* psymval, Mips_address addend_a,
4694 bool extract_addend, unsigned int r_type)
4695 {
4696 mips_reloc_unshuffle(view, r_type, false);
4697 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4698 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4699 Valtype32 addend = extract_addend ? val : addend_a;
4700
4701 Valtype32 x = psymval->value(object, -addend);
4702 elfcpp::Swap<32, big_endian>::writeval(wv, x);
4703 mips_reloc_shuffle(view, r_type, false);
4704 return This::STATUS_OKAY;
4705 }
4706 };
4707
4708 template<int size, bool big_endian>
4709 typename std::list<reloc_high<size, big_endian> >
4710 Mips_relocate_functions<size, big_endian>::hi16_relocs;
4711
4712 template<int size, bool big_endian>
4713 typename std::list<reloc_high<size, big_endian> >
4714 Mips_relocate_functions<size, big_endian>::got16_relocs;
4715
4716 // Mips_got_info methods.
4717
4718 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
4719 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
4720
4721 template<int size, bool big_endian>
4722 void
4723 Mips_got_info<size, big_endian>::record_local_got_symbol(
4724 Mips_relobj<size, big_endian>* object, unsigned int symndx,
4725 Mips_address addend, unsigned int r_type, unsigned int shndx)
4726 {
4727 Mips_got_entry<size, big_endian>* entry =
4728 new Mips_got_entry<size, big_endian>(object, symndx, addend,
4729 mips_elf_reloc_tls_type(r_type),
4730 shndx);
4731 this->record_got_entry(entry, object);
4732 }
4733
4734 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
4735 // in OBJECT. FOR_CALL is true if the caller is only interested in
4736 // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
4737 // relocation.
4738
4739 template<int size, bool big_endian>
4740 void
4741 Mips_got_info<size, big_endian>::record_global_got_symbol(
4742 Mips_symbol<size>* mips_sym, Mips_relobj<size, big_endian>* object,
4743 unsigned int r_type, bool dyn_reloc, bool for_call)
4744 {
4745 if (!for_call)
4746 mips_sym->set_got_not_only_for_calls();
4747
4748 // A global symbol in the GOT must also be in the dynamic symbol table.
4749 if (!mips_sym->needs_dynsym_entry())
4750 {
4751 switch (mips_sym->visibility())
4752 {
4753 case elfcpp::STV_INTERNAL:
4754 case elfcpp::STV_HIDDEN:
4755 mips_sym->set_is_forced_local();
4756 break;
4757 default:
4758 mips_sym->set_needs_dynsym_entry();
4759 break;
4760 }
4761 }
4762
4763 unsigned char tls_type = mips_elf_reloc_tls_type(r_type);
4764 if (tls_type == GOT_TLS_NONE)
4765 this->global_got_symbols_.insert(mips_sym);
4766
4767 if (dyn_reloc)
4768 {
4769 if (mips_sym->global_got_area() == GGA_NONE)
4770 mips_sym->set_global_got_area(GGA_RELOC_ONLY);
4771 return;
4772 }
4773
4774 Mips_got_entry<size, big_endian>* entry =
4775 new Mips_got_entry<size, big_endian>(object, mips_sym, tls_type);
4776
4777 this->record_got_entry(entry, object);
4778 }
4779
4780 // Add ENTRY to master GOT and to OBJECT's GOT.
4781
4782 template<int size, bool big_endian>
4783 void
4784 Mips_got_info<size, big_endian>::record_got_entry(
4785 Mips_got_entry<size, big_endian>* entry,
4786 Mips_relobj<size, big_endian>* object)
4787 {
4788 if (this->got_entries_.find(entry) == this->got_entries_.end())
4789 this->got_entries_.insert(entry);
4790
4791 // Create the GOT entry for the OBJECT's GOT.
4792 Mips_got_info<size, big_endian>* g = object->get_or_create_got_info();
4793 Mips_got_entry<size, big_endian>* entry2 =
4794 new Mips_got_entry<size, big_endian>(*entry);
4795
4796 if (g->got_entries_.find(entry2) == g->got_entries_.end())
4797 g->got_entries_.insert(entry2);
4798 }
4799
4800 // Record that OBJECT has a page relocation against symbol SYMNDX and
4801 // that ADDEND is the addend for that relocation.
4802 // This function creates an upper bound on the number of GOT slots
4803 // required; no attempt is made to combine references to non-overridable
4804 // global symbols across multiple input files.
4805
4806 template<int size, bool big_endian>
4807 void
4808 Mips_got_info<size, big_endian>::record_got_page_entry(
4809 Mips_relobj<size, big_endian>* object, unsigned int symndx, int addend)
4810 {
4811 struct Got_page_range **range_ptr, *range;
4812 int old_pages, new_pages;
4813
4814 // Find the Got_page_entry for this symbol.
4815 Got_page_entry* entry = new Got_page_entry(object, symndx);
4816 typename Got_page_entry_set::iterator it =
4817 this->got_page_entries_.find(entry);
4818 if (it != this->got_page_entries_.end())
4819 entry = *it;
4820 else
4821 this->got_page_entries_.insert(entry);
4822
4823 // Add the same entry to the OBJECT's GOT.
4824 Got_page_entry* entry2 = NULL;
4825 Mips_got_info<size, big_endian>* g2 = object->get_or_create_got_info();
4826 if (g2->got_page_entries_.find(entry) == g2->got_page_entries_.end())
4827 {
4828 entry2 = new Got_page_entry(*entry);
4829 g2->got_page_entries_.insert(entry2);
4830 }
4831
4832 // Skip over ranges whose maximum extent cannot share a page entry
4833 // with ADDEND.
4834 range_ptr = &entry->ranges;
4835 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4836 range_ptr = &(*range_ptr)->next;
4837
4838 // If we scanned to the end of the list, or found a range whose
4839 // minimum extent cannot share a page entry with ADDEND, create
4840 // a new singleton range.
4841 range = *range_ptr;
4842 if (!range || addend < range->min_addend - 0xffff)
4843 {
4844 range = new Got_page_range();
4845 range->next = *range_ptr;
4846 range->min_addend = addend;
4847 range->max_addend = addend;
4848
4849 *range_ptr = range;
4850 ++entry->num_pages;
4851 if (entry2 != NULL)
4852 ++entry2->num_pages;
4853 ++this->page_gotno_;
4854 ++g2->page_gotno_;
4855 return;
4856 }
4857
4858 // Remember how many pages the old range contributed.
4859 old_pages = range->get_max_pages();
4860
4861 // Update the ranges.
4862 if (addend < range->min_addend)
4863 range->min_addend = addend;
4864 else if (addend > range->max_addend)
4865 {
4866 if (range->next && addend >= range->next->min_addend - 0xffff)
4867 {
4868 old_pages += range->next->get_max_pages();
4869 range->max_addend = range->next->max_addend;
4870 range->next = range->next->next;
4871 }
4872 else
4873 range->max_addend = addend;
4874 }
4875
4876 // Record any change in the total estimate.
4877 new_pages = range->get_max_pages();
4878 if (old_pages != new_pages)
4879 {
4880 entry->num_pages += new_pages - old_pages;
4881 if (entry2 != NULL)
4882 entry2->num_pages += new_pages - old_pages;
4883 this->page_gotno_ += new_pages - old_pages;
4884 g2->page_gotno_ += new_pages - old_pages;
4885 }
4886 }
4887
4888 // Create all entries that should be in the local part of the GOT.
4889
4890 template<int size, bool big_endian>
4891 void
4892 Mips_got_info<size, big_endian>::add_local_entries(
4893 Target_mips<size, big_endian>* target, Layout* layout)
4894 {
4895 Mips_output_data_got<size, big_endian>* got = target->got_section();
4896 // First two GOT entries are reserved. The first entry will be filled at
4897 // runtime. The second entry will be used by some runtime loaders.
4898 got->add_constant(0);
4899 got->add_constant(target->mips_elf_gnu_got1_mask());
4900
4901 for (typename Got_entry_set::iterator
4902 p = this->got_entries_.begin();
4903 p != this->got_entries_.end();
4904 ++p)
4905 {
4906 Mips_got_entry<size, big_endian>* entry = *p;
4907 if (entry->is_for_local_symbol() && !entry->is_tls_entry())
4908 {
4909 got->add_local(entry->object(), entry->symndx(),
4910 GOT_TYPE_STANDARD);
4911 unsigned int got_offset = entry->object()->local_got_offset(
4912 entry->symndx(), GOT_TYPE_STANDARD);
4913 if (got->multi_got() && this->index_ > 0
4914 && parameters->options().output_is_position_independent())
4915 target->rel_dyn_section(layout)->add_local(entry->object(),
4916 entry->symndx(), elfcpp::R_MIPS_REL32, got, got_offset);
4917 }
4918 }
4919
4920 this->add_page_entries(target, layout);
4921
4922 // Add global entries that should be in the local area.
4923 for (typename Got_entry_set::iterator
4924 p = this->got_entries_.begin();
4925 p != this->got_entries_.end();
4926 ++p)
4927 {
4928 Mips_got_entry<size, big_endian>* entry = *p;
4929 if (!entry->is_for_global_symbol())
4930 continue;
4931
4932 Mips_symbol<size>* mips_sym = entry->sym();
4933 if (mips_sym->global_got_area() == GGA_NONE && !entry->is_tls_entry())
4934 {
4935 unsigned int got_type;
4936 if (!got->multi_got())
4937 got_type = GOT_TYPE_STANDARD;
4938 else
4939 got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
4940 if (got->add_global(mips_sym, got_type))
4941 {
4942 mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
4943 if (got->multi_got() && this->index_ > 0
4944 && parameters->options().output_is_position_independent())
4945 target->rel_dyn_section(layout)->add_symbolless_global_addend(
4946 mips_sym, elfcpp::R_MIPS_REL32, got,
4947 mips_sym->got_offset(got_type));
4948 }
4949 }
4950 }
4951 }
4952
4953 // Create GOT page entries.
4954
4955 template<int size, bool big_endian>
4956 void
4957 Mips_got_info<size, big_endian>::add_page_entries(
4958 Target_mips<size, big_endian>* target, Layout* layout)
4959 {
4960 if (this->page_gotno_ == 0)
4961 return;
4962
4963 Mips_output_data_got<size, big_endian>* got = target->got_section();
4964 this->got_page_offset_start_ = got->add_constant(0);
4965 if (got->multi_got() && this->index_ > 0
4966 && parameters->options().output_is_position_independent())
4967 target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
4968 this->got_page_offset_start_);
4969 int num_entries = this->page_gotno_;
4970 unsigned int prev_offset = this->got_page_offset_start_;
4971 while (--num_entries > 0)
4972 {
4973 unsigned int next_offset = got->add_constant(0);
4974 if (got->multi_got() && this->index_ > 0
4975 && parameters->options().output_is_position_independent())
4976 target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
4977 next_offset);
4978 gold_assert(next_offset == prev_offset + size/8);
4979 prev_offset = next_offset;
4980 }
4981 this->got_page_offset_next_ = this->got_page_offset_start_;
4982 }
4983
4984 // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
4985
4986 template<int size, bool big_endian>
4987 void
4988 Mips_got_info<size, big_endian>::add_global_entries(
4989 Target_mips<size, big_endian>* target, Layout* layout,
4990 unsigned int non_reloc_only_global_gotno)
4991 {
4992 Mips_output_data_got<size, big_endian>* got = target->got_section();
4993 // Add GGA_NORMAL entries.
4994 unsigned int count = 0;
4995 for (typename Got_entry_set::iterator
4996 p = this->got_entries_.begin();
4997 p != this->got_entries_.end();
4998 ++p)
4999 {
5000 Mips_got_entry<size, big_endian>* entry = *p;
5001 if (!entry->is_for_global_symbol())
5002 continue;
5003
5004 Mips_symbol<size>* mips_sym = entry->sym();
5005 if (mips_sym->global_got_area() != GGA_NORMAL)
5006 continue;
5007
5008 unsigned int got_type;
5009 if (!got->multi_got())
5010 got_type = GOT_TYPE_STANDARD;
5011 else
5012 // In multi-GOT links, global symbol can be in both primary and
5013 // secondary GOT(s). By creating custom GOT type
5014 // (GOT_TYPE_STANDARD_MULTIGOT + got_index) we ensure that symbol
5015 // is added to secondary GOT(s).
5016 got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
5017 if (!got->add_global(mips_sym, got_type))
5018 continue;
5019
5020 mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5021 if (got->multi_got() && this->index_ == 0)
5022 count++;
5023 if (got->multi_got() && this->index_ > 0)
5024 {
5025 if (parameters->options().output_is_position_independent()
5026 || (!parameters->doing_static_link()
5027 && mips_sym->is_from_dynobj() && !mips_sym->is_undefined()))
5028 {
5029 target->rel_dyn_section(layout)->add_global(
5030 mips_sym, elfcpp::R_MIPS_REL32, got,
5031 mips_sym->got_offset(got_type));
5032 got->add_secondary_got_reloc(mips_sym->got_offset(got_type),
5033 elfcpp::R_MIPS_REL32, mips_sym);
5034 }
5035 }
5036 }
5037
5038 if (!got->multi_got() || this->index_ == 0)
5039 {
5040 if (got->multi_got())
5041 {
5042 // We need to allocate space in the primary GOT for GGA_NORMAL entries
5043 // of secondary GOTs, to ensure that GOT offsets of GGA_RELOC_ONLY
5044 // entries correspond to dynamic symbol indexes.
5045 while (count < non_reloc_only_global_gotno)
5046 {
5047 got->add_constant(0);
5048 ++count;
5049 }
5050 }
5051
5052 // Add GGA_RELOC_ONLY entries.
5053 got->add_reloc_only_entries();
5054 }
5055 }
5056
5057 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
5058
5059 template<int size, bool big_endian>
5060 void
5061 Mips_got_info<size, big_endian>::add_reloc_only_entries(
5062 Mips_output_data_got<size, big_endian>* got)
5063 {
5064 for (typename Unordered_set<Mips_symbol<size>*>::iterator
5065 p = this->global_got_symbols_.begin();
5066 p != this->global_got_symbols_.end();
5067 ++p)
5068 {
5069 Mips_symbol<size>* mips_sym = *p;
5070 if (mips_sym->global_got_area() == GGA_RELOC_ONLY)
5071 {
5072 unsigned int got_type;
5073 if (!got->multi_got())
5074 got_type = GOT_TYPE_STANDARD;
5075 else
5076 got_type = GOT_TYPE_STANDARD_MULTIGOT;
5077 if (got->add_global(mips_sym, got_type))
5078 mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5079 }
5080 }
5081 }
5082
5083 // Create TLS GOT entries.
5084
5085 template<int size, bool big_endian>
5086 void
5087 Mips_got_info<size, big_endian>::add_tls_entries(
5088 Target_mips<size, big_endian>* target, Layout* layout)
5089 {
5090 Mips_output_data_got<size, big_endian>* got = target->got_section();
5091 // Add local tls entries.
5092 for (typename Got_entry_set::iterator
5093 p = this->got_entries_.begin();
5094 p != this->got_entries_.end();
5095 ++p)
5096 {
5097 Mips_got_entry<size, big_endian>* entry = *p;
5098 if (!entry->is_tls_entry() || !entry->is_for_local_symbol())
5099 continue;
5100
5101 if (entry->tls_type() == GOT_TLS_GD)
5102 {
5103 unsigned int got_type = GOT_TYPE_TLS_PAIR;
5104 unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
5105 : elfcpp::R_MIPS_TLS_DTPMOD64);
5106 unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
5107 : elfcpp::R_MIPS_TLS_DTPREL64);
5108
5109 if (!parameters->doing_static_link())
5110 {
5111 got->add_local_pair_with_rel(entry->object(), entry->symndx(),
5112 entry->shndx(), got_type,
5113 target->rel_dyn_section(layout),
5114 r_type1);
5115 unsigned int got_offset =
5116 entry->object()->local_got_offset(entry->symndx(), got_type);
5117 got->add_static_reloc(got_offset + size/8, r_type2,
5118 entry->object(), entry->symndx());
5119 }
5120 else
5121 {
5122 // We are doing a static link. Mark it as belong to module 1,
5123 // the executable.
5124 unsigned int got_offset = got->add_constant(1);
5125 entry->object()->set_local_got_offset(entry->symndx(), got_type,
5126 got_offset);
5127 got->add_constant(0);
5128 got->add_static_reloc(got_offset + size/8, r_type2,
5129 entry->object(), entry->symndx());
5130 }
5131 }
5132 else if (entry->tls_type() == GOT_TLS_IE)
5133 {
5134 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
5135 unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
5136 : elfcpp::R_MIPS_TLS_TPREL64);
5137 if (!parameters->doing_static_link())
5138 got->add_local_with_rel(entry->object(), entry->symndx(), got_type,
5139 target->rel_dyn_section(layout), r_type);
5140 else
5141 {
5142 got->add_local(entry->object(), entry->symndx(), got_type);
5143 unsigned int got_offset =
5144 entry->object()->local_got_offset(entry->symndx(), got_type);
5145 got->add_static_reloc(got_offset, r_type, entry->object(),
5146 entry->symndx());
5147 }
5148 }
5149 else if (entry->tls_type() == GOT_TLS_LDM)
5150 {
5151 unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
5152 : elfcpp::R_MIPS_TLS_DTPMOD64);
5153 unsigned int got_offset;
5154 if (!parameters->doing_static_link())
5155 {
5156 got_offset = got->add_constant(0);
5157 target->rel_dyn_section(layout)->add_local(
5158 entry->object(), 0, r_type, got, got_offset);
5159 }
5160 else
5161 // We are doing a static link. Just mark it as belong to module 1,
5162 // the executable.
5163 got_offset = got->add_constant(1);
5164
5165 got->add_constant(0);
5166 got->set_tls_ldm_offset(got_offset, entry->object());
5167 }
5168 else
5169 gold_unreachable();
5170 }
5171
5172 // Add global tls entries.
5173 for (typename Got_entry_set::iterator
5174 p = this->got_entries_.begin();
5175 p != this->got_entries_.end();
5176 ++p)
5177 {
5178 Mips_got_entry<size, big_endian>* entry = *p;
5179 if (!entry->is_tls_entry() || !entry->is_for_global_symbol())
5180 continue;
5181
5182 Mips_symbol<size>* mips_sym = entry->sym();
5183 if (entry->tls_type() == GOT_TLS_GD)
5184 {
5185 unsigned int got_type;
5186 if (!got->multi_got())
5187 got_type = GOT_TYPE_TLS_PAIR;
5188 else
5189 got_type = GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
5190 unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
5191 : elfcpp::R_MIPS_TLS_DTPMOD64);
5192 unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
5193 : elfcpp::R_MIPS_TLS_DTPREL64);
5194 if (!parameters->doing_static_link())
5195 got->add_global_pair_with_rel(mips_sym, got_type,
5196 target->rel_dyn_section(layout), r_type1, r_type2);
5197 else
5198 {
5199 // Add a GOT pair for for R_MIPS_TLS_GD. The creates a pair of
5200 // GOT entries. The first one is initialized to be 1, which is the
5201 // module index for the main executable and the second one 0. A
5202 // reloc of the type R_MIPS_TLS_DTPREL32/64 will be created for
5203 // the second GOT entry and will be applied by gold.
5204 unsigned int got_offset = got->add_constant(1);
5205 mips_sym->set_got_offset(got_type, got_offset);
5206 got->add_constant(0);
5207 got->add_static_reloc(got_offset + size/8, r_type2, mips_sym);
5208 }
5209 }
5210 else if (entry->tls_type() == GOT_TLS_IE)
5211 {
5212 unsigned int got_type;
5213 if (!got->multi_got())
5214 got_type = GOT_TYPE_TLS_OFFSET;
5215 else
5216 got_type = GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
5217 unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
5218 : elfcpp::R_MIPS_TLS_TPREL64);
5219 if (!parameters->doing_static_link())
5220 got->add_global_with_rel(mips_sym, got_type,
5221 target->rel_dyn_section(layout), r_type);
5222 else
5223 {
5224 got->add_global(mips_sym, got_type);
5225 unsigned int got_offset = mips_sym->got_offset(got_type);
5226 got->add_static_reloc(got_offset, r_type, mips_sym);
5227 }
5228 }
5229 else
5230 gold_unreachable();
5231 }
5232 }
5233
5234 // Decide whether the symbol needs an entry in the global part of the primary
5235 // GOT, setting global_got_area accordingly. Count the number of global
5236 // symbols that are in the primary GOT only because they have dynamic
5237 // relocations R_MIPS_REL32 against them (reloc_only_gotno).
5238
5239 template<int size, bool big_endian>
5240 void
5241 Mips_got_info<size, big_endian>::count_got_symbols(Symbol_table* symtab)
5242 {
5243 for (typename Unordered_set<Mips_symbol<size>*>::iterator
5244 p = this->global_got_symbols_.begin();
5245 p != this->global_got_symbols_.end();
5246 ++p)
5247 {
5248 Mips_symbol<size>* sym = *p;
5249 // Make a final decision about whether the symbol belongs in the
5250 // local or global GOT. Symbols that bind locally can (and in the
5251 // case of forced-local symbols, must) live in the local GOT.
5252 // Those that are aren't in the dynamic symbol table must also
5253 // live in the local GOT.
5254
5255 if (!sym->should_add_dynsym_entry(symtab)
5256 || (sym->got_only_for_calls()
5257 ? symbol_calls_local(sym, sym->should_add_dynsym_entry(symtab))
5258 : symbol_references_local(sym,
5259 sym->should_add_dynsym_entry(symtab))))
5260 // The symbol belongs in the local GOT. We no longer need this
5261 // entry if it was only used for relocations; those relocations
5262 // will be against the null or section symbol instead.
5263 sym->set_global_got_area(GGA_NONE);
5264 else if (sym->global_got_area() == GGA_RELOC_ONLY)
5265 {
5266 ++this->reloc_only_gotno_;
5267 ++this->global_gotno_ ;
5268 }
5269 }
5270 }
5271
5272 // Return the offset of GOT page entry for VALUE. Initialize the entry with
5273 // VALUE if it is not initialized.
5274
5275 template<int size, bool big_endian>
5276 unsigned int
5277 Mips_got_info<size, big_endian>::get_got_page_offset(Mips_address value,
5278 Mips_output_data_got<size, big_endian>* got)
5279 {
5280 typename Got_page_offsets::iterator it = this->got_page_offsets_.find(value);
5281 if (it != this->got_page_offsets_.end())
5282 return it->second;
5283
5284 gold_assert(this->got_page_offset_next_ < this->got_page_offset_start_
5285 + (size/8) * this->page_gotno_);
5286
5287 unsigned int got_offset = this->got_page_offset_next_;
5288 this->got_page_offsets_[value] = got_offset;
5289 this->got_page_offset_next_ += size/8;
5290 got->update_got_entry(got_offset, value);
5291 return got_offset;
5292 }
5293
5294 // Remove lazy-binding stubs for global symbols in this GOT.
5295
5296 template<int size, bool big_endian>
5297 void
5298 Mips_got_info<size, big_endian>::remove_lazy_stubs(
5299 Target_mips<size, big_endian>* target)
5300 {
5301 for (typename Got_entry_set::iterator
5302 p = this->got_entries_.begin();
5303 p != this->got_entries_.end();
5304 ++p)
5305 {
5306 Mips_got_entry<size, big_endian>* entry = *p;
5307 if (entry->is_for_global_symbol())
5308 target->remove_lazy_stub_entry(entry->sym());
5309 }
5310 }
5311
5312 // Count the number of GOT entries required.
5313
5314 template<int size, bool big_endian>
5315 void
5316 Mips_got_info<size, big_endian>::count_got_entries()
5317 {
5318 for (typename Got_entry_set::iterator
5319 p = this->got_entries_.begin();
5320 p != this->got_entries_.end();
5321 ++p)
5322 {
5323 this->count_got_entry(*p);
5324 }
5325 }
5326
5327 // Count the number of GOT entries required by ENTRY. Accumulate the result.
5328
5329 template<int size, bool big_endian>
5330 void
5331 Mips_got_info<size, big_endian>::count_got_entry(
5332 Mips_got_entry<size, big_endian>* entry)
5333 {
5334 if (entry->is_tls_entry())
5335 this->tls_gotno_ += mips_tls_got_entries(entry->tls_type());
5336 else if (entry->is_for_local_symbol()
5337 || entry->sym()->global_got_area() == GGA_NONE)
5338 ++this->local_gotno_;
5339 else
5340 ++this->global_gotno_;
5341 }
5342
5343 // Add FROM's GOT entries.
5344
5345 template<int size, bool big_endian>
5346 void
5347 Mips_got_info<size, big_endian>::add_got_entries(
5348 Mips_got_info<size, big_endian>* from)
5349 {
5350 for (typename Got_entry_set::iterator
5351 p = from->got_entries_.begin();
5352 p != from->got_entries_.end();
5353 ++p)
5354 {
5355 Mips_got_entry<size, big_endian>* entry = *p;
5356 if (this->got_entries_.find(entry) == this->got_entries_.end())
5357 {
5358 Mips_got_entry<size, big_endian>* entry2 =
5359 new Mips_got_entry<size, big_endian>(*entry);
5360 this->got_entries_.insert(entry2);
5361 this->count_got_entry(entry);
5362 }
5363 }
5364 }
5365
5366 // Add FROM's GOT page entries.
5367
5368 template<int size, bool big_endian>
5369 void
5370 Mips_got_info<size, big_endian>::add_got_page_entries(
5371 Mips_got_info<size, big_endian>* from)
5372 {
5373 for (typename Got_page_entry_set::iterator
5374 p = from->got_page_entries_.begin();
5375 p != from->got_page_entries_.end();
5376 ++p)
5377 {
5378 Got_page_entry* entry = *p;
5379 if (this->got_page_entries_.find(entry) == this->got_page_entries_.end())
5380 {
5381 Got_page_entry* entry2 = new Got_page_entry(*entry);
5382 this->got_page_entries_.insert(entry2);
5383 this->page_gotno_ += entry->num_pages;
5384 }
5385 }
5386 }
5387
5388 // Mips_output_data_got methods.
5389
5390 // Lay out the GOT. Add local, global and TLS entries. If GOT is
5391 // larger than 64K, create multi-GOT.
5392
5393 template<int size, bool big_endian>
5394 void
5395 Mips_output_data_got<size, big_endian>::lay_out_got(Layout* layout,
5396 Symbol_table* symtab, const Input_objects* input_objects)
5397 {
5398 // Decide which symbols need to go in the global part of the GOT and
5399 // count the number of reloc-only GOT symbols.
5400 this->master_got_info_->count_got_symbols(symtab);
5401
5402 // Count the number of GOT entries.
5403 this->master_got_info_->count_got_entries();
5404
5405 unsigned int got_size = this->master_got_info_->got_size();
5406 if (got_size > Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE)
5407 this->lay_out_multi_got(layout, input_objects);
5408 else
5409 {
5410 // Record that all objects use single GOT.
5411 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
5412 p != input_objects->relobj_end();
5413 ++p)
5414 {
5415 Mips_relobj<size, big_endian>* object =
5416 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
5417 if (object->get_got_info() != NULL)
5418 object->set_got_info(this->master_got_info_);
5419 }
5420
5421 this->master_got_info_->add_local_entries(this->target_, layout);
5422 this->master_got_info_->add_global_entries(this->target_, layout,
5423 /*not used*/-1U);
5424 this->master_got_info_->add_tls_entries(this->target_, layout);
5425 }
5426 }
5427
5428 // Create multi-GOT. For every GOT, add local, global and TLS entries.
5429
5430 template<int size, bool big_endian>
5431 void
5432 Mips_output_data_got<size, big_endian>::lay_out_multi_got(Layout* layout,
5433 const Input_objects* input_objects)
5434 {
5435 // Try to merge the GOTs of input objects together, as long as they
5436 // don't seem to exceed the maximum GOT size, choosing one of them
5437 // to be the primary GOT.
5438 this->merge_gots(input_objects);
5439
5440 // Every symbol that is referenced in a dynamic relocation must be
5441 // present in the primary GOT.
5442 this->primary_got_->set_global_gotno(this->master_got_info_->global_gotno());
5443
5444 // Add GOT entries.
5445 unsigned int i = 0;
5446 unsigned int offset = 0;
5447 Mips_got_info<size, big_endian>* g = this->primary_got_;
5448 do
5449 {
5450 g->set_index(i);
5451 g->set_offset(offset);
5452
5453 g->add_local_entries(this->target_, layout);
5454 if (i == 0)
5455 g->add_global_entries(this->target_, layout,
5456 (this->master_got_info_->global_gotno()
5457 - this->master_got_info_->reloc_only_gotno()));
5458 else
5459 g->add_global_entries(this->target_, layout, /*not used*/-1U);
5460 g->add_tls_entries(this->target_, layout);
5461
5462 // Forbid global symbols in every non-primary GOT from having
5463 // lazy-binding stubs.
5464 if (i > 0)
5465 g->remove_lazy_stubs(this->target_);
5466
5467 ++i;
5468 offset += g->got_size();
5469 g = g->next();
5470 }
5471 while (g);
5472 }
5473
5474 // Attempt to merge GOTs of different input objects. Try to use as much as
5475 // possible of the primary GOT, since it doesn't require explicit dynamic
5476 // relocations, but don't use objects that would reference global symbols
5477 // out of the addressable range. Failing the primary GOT, attempt to merge
5478 // with the current GOT, or finish the current GOT and then make make the new
5479 // GOT current.
5480
5481 template<int size, bool big_endian>
5482 void
5483 Mips_output_data_got<size, big_endian>::merge_gots(
5484 const Input_objects* input_objects)
5485 {
5486 gold_assert(this->primary_got_ == NULL);
5487 Mips_got_info<size, big_endian>* current = NULL;
5488
5489 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
5490 p != input_objects->relobj_end();
5491 ++p)
5492 {
5493 Mips_relobj<size, big_endian>* object =
5494 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
5495
5496 Mips_got_info<size, big_endian>* g = object->get_got_info();
5497 if (g == NULL)
5498 continue;
5499
5500 g->count_got_entries();
5501
5502 // Work out the number of page, local and TLS entries.
5503 unsigned int estimate = this->master_got_info_->page_gotno();
5504 if (estimate > g->page_gotno())
5505 estimate = g->page_gotno();
5506 estimate += g->local_gotno() + g->tls_gotno();
5507
5508 // We place TLS GOT entries after both locals and globals. The globals
5509 // for the primary GOT may overflow the normal GOT size limit, so be
5510 // sure not to merge a GOT which requires TLS with the primary GOT in that
5511 // case. This doesn't affect non-primary GOTs.
5512 estimate += (g->tls_gotno() > 0 ? this->master_got_info_->global_gotno()
5513 : g->global_gotno());
5514
5515 unsigned int max_count =
5516 Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
5517 if (estimate <= max_count)
5518 {
5519 // If we don't have a primary GOT, use it as
5520 // a starting point for the primary GOT.
5521 if (!this->primary_got_)
5522 {
5523 this->primary_got_ = g;
5524 continue;
5525 }
5526
5527 // Try merging with the primary GOT.
5528 if (this->merge_got_with(g, object, this->primary_got_))
5529 continue;
5530 }
5531
5532 // If we can merge with the last-created GOT, do it.
5533 if (current && this->merge_got_with(g, object, current))
5534 continue;
5535
5536 // Well, we couldn't merge, so create a new GOT. Don't check if it
5537 // fits; if it turns out that it doesn't, we'll get relocation
5538 // overflows anyway.
5539 g->set_next(current);
5540 current = g;
5541 }
5542
5543 // If we do not find any suitable primary GOT, create an empty one.
5544 if (this->primary_got_ == NULL)
5545 this->primary_got_ = new Mips_got_info<size, big_endian>();
5546
5547 // Link primary GOT with secondary GOTs.
5548 this->primary_got_->set_next(current);
5549 }
5550
5551 // Consider merging FROM, which is OBJECT's GOT, into TO. Return false if
5552 // this would lead to overflow, true if they were merged successfully.
5553
5554 template<int size, bool big_endian>
5555 bool
5556 Mips_output_data_got<size, big_endian>::merge_got_with(
5557 Mips_got_info<size, big_endian>* from,
5558 Mips_relobj<size, big_endian>* object,
5559 Mips_got_info<size, big_endian>* to)
5560 {
5561 // Work out how many page entries we would need for the combined GOT.
5562 unsigned int estimate = this->master_got_info_->page_gotno();
5563 if (estimate >= from->page_gotno() + to->page_gotno())
5564 estimate = from->page_gotno() + to->page_gotno();
5565
5566 // Conservatively estimate how many local and TLS entries would be needed.
5567 estimate += from->local_gotno() + to->local_gotno();
5568 estimate += from->tls_gotno() + to->tls_gotno();
5569
5570 // If we're merging with the primary got, any TLS relocations will
5571 // come after the full set of global entries. Otherwise estimate those
5572 // conservatively as well.
5573 if (to == this->primary_got_ && (from->tls_gotno() + to->tls_gotno()) > 0)
5574 estimate += this->master_got_info_->global_gotno();
5575 else
5576 estimate += from->global_gotno() + to->global_gotno();
5577
5578 // Bail out if the combined GOT might be too big.
5579 unsigned int max_count =
5580 Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
5581 if (estimate > max_count)
5582 return false;
5583
5584 // Transfer the object's GOT information from FROM to TO.
5585 to->add_got_entries(from);
5586 to->add_got_page_entries(from);
5587
5588 // Record that OBJECT should use output GOT TO.
5589 object->set_got_info(to);
5590
5591 return true;
5592 }
5593
5594 // Write out the GOT.
5595
5596 template<int size, bool big_endian>
5597 void
5598 Mips_output_data_got<size, big_endian>::do_write(Output_file* of)
5599 {
5600 // Call parent to write out GOT.
5601 Output_data_got<size, big_endian>::do_write(of);
5602
5603 const off_t offset = this->offset();
5604 const section_size_type oview_size =
5605 convert_to_section_size_type(this->data_size());
5606 unsigned char* const oview = of->get_output_view(offset, oview_size);
5607
5608 // Needed for fixing values of .got section.
5609 this->got_view_ = oview;
5610
5611 // Write lazy stub addresses.
5612 for (typename Unordered_set<Mips_symbol<size>*>::iterator
5613 p = this->master_got_info_->global_got_symbols().begin();
5614 p != this->master_got_info_->global_got_symbols().end();
5615 ++p)
5616 {
5617 Mips_symbol<size>* mips_sym = *p;
5618 if (mips_sym->has_lazy_stub())
5619 {
5620 Valtype* wv = reinterpret_cast<Valtype*>(
5621 oview + this->get_primary_got_offset(mips_sym));
5622 Valtype value =
5623 this->target_->mips_stubs_section()->stub_address(mips_sym);
5624 elfcpp::Swap<size, big_endian>::writeval(wv, value);
5625 }
5626 }
5627
5628 // Add +1 to GGA_NONE nonzero MIPS16 and microMIPS entries.
5629 for (typename Unordered_set<Mips_symbol<size>*>::iterator
5630 p = this->master_got_info_->global_got_symbols().begin();
5631 p != this->master_got_info_->global_got_symbols().end();
5632 ++p)
5633 {
5634 Mips_symbol<size>* mips_sym = *p;
5635 if (!this->multi_got()
5636 && (mips_sym->is_mips16() || mips_sym->is_micromips())
5637 && mips_sym->global_got_area() == GGA_NONE
5638 && mips_sym->has_got_offset(GOT_TYPE_STANDARD))
5639 {
5640 Valtype* wv = reinterpret_cast<Valtype*>(
5641 oview + mips_sym->got_offset(GOT_TYPE_STANDARD));
5642 Valtype value = elfcpp::Swap<size, big_endian>::readval(wv);
5643 if (value != 0)
5644 {
5645 value |= 1;
5646 elfcpp::Swap<size, big_endian>::writeval(wv, value);
5647 }
5648 }
5649 }
5650
5651 if (!this->secondary_got_relocs_.empty())
5652 {
5653 // Fixup for the secondary GOT R_MIPS_REL32 relocs. For global
5654 // secondary GOT entries with non-zero initial value copy the value
5655 // to the corresponding primary GOT entry, and set the secondary GOT
5656 // entry to zero.
5657 // TODO(sasa): This is workaround. It needs to be investigated further.
5658
5659 for (size_t i = 0; i < this->secondary_got_relocs_.size(); ++i)
5660 {
5661 Static_reloc& reloc(this->secondary_got_relocs_[i]);
5662 if (reloc.symbol_is_global())
5663 {
5664 Mips_symbol<size>* gsym = reloc.symbol();
5665 gold_assert(gsym != NULL);
5666
5667 unsigned got_offset = reloc.got_offset();
5668 gold_assert(got_offset < oview_size);
5669
5670 // Find primary GOT entry.
5671 Valtype* wv_prim = reinterpret_cast<Valtype*>(
5672 oview + this->get_primary_got_offset(gsym));
5673
5674 // Find secondary GOT entry.
5675 Valtype* wv_sec = reinterpret_cast<Valtype*>(oview + got_offset);
5676
5677 Valtype value = elfcpp::Swap<size, big_endian>::readval(wv_sec);
5678 if (value != 0)
5679 {
5680 elfcpp::Swap<size, big_endian>::writeval(wv_prim, value);
5681 elfcpp::Swap<size, big_endian>::writeval(wv_sec, 0);
5682 gsym->set_applied_secondary_got_fixup();
5683 }
5684 }
5685 }
5686
5687 of->write_output_view(offset, oview_size, oview);
5688 }
5689
5690 // We are done if there is no fix up.
5691 if (this->static_relocs_.empty())
5692 return;
5693
5694 Output_segment* tls_segment = this->layout_->tls_segment();
5695 gold_assert(tls_segment != NULL);
5696
5697 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
5698 {
5699 Static_reloc& reloc(this->static_relocs_[i]);
5700
5701 Mips_address value;
5702 if (!reloc.symbol_is_global())
5703 {
5704 Sized_relobj_file<size, big_endian>* object = reloc.relobj();
5705 const Symbol_value<size>* psymval =
5706 object->local_symbol(reloc.index());
5707
5708 // We are doing static linking. Issue an error and skip this
5709 // relocation if the symbol is undefined or in a discarded_section.
5710 bool is_ordinary;
5711 unsigned int shndx = psymval->input_shndx(&is_ordinary);
5712 if ((shndx == elfcpp::SHN_UNDEF)
5713 || (is_ordinary
5714 && shndx != elfcpp::SHN_UNDEF
5715 && !object->is_section_included(shndx)
5716 && !this->symbol_table_->is_section_folded(object, shndx)))
5717 {
5718 gold_error(_("undefined or discarded local symbol %u from "
5719 " object %s in GOT"),
5720 reloc.index(), reloc.relobj()->name().c_str());
5721 continue;
5722 }
5723
5724 value = psymval->value(object, 0);
5725 }
5726 else
5727 {
5728 const Mips_symbol<size>* gsym = reloc.symbol();
5729 gold_assert(gsym != NULL);
5730
5731 // We are doing static linking. Issue an error and skip this
5732 // relocation if the symbol is undefined or in a discarded_section
5733 // unless it is a weakly_undefined symbol.
5734 if ((gsym->is_defined_in_discarded_section() || gsym->is_undefined())
5735 && !gsym->is_weak_undefined())
5736 {
5737 gold_error(_("undefined or discarded symbol %s in GOT"),
5738 gsym->name());
5739 continue;
5740 }
5741
5742 if (!gsym->is_weak_undefined())
5743 value = gsym->value();
5744 else
5745 value = 0;
5746 }
5747
5748 unsigned got_offset = reloc.got_offset();
5749 gold_assert(got_offset < oview_size);
5750
5751 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
5752 Valtype x;
5753
5754 switch (reloc.r_type())
5755 {
5756 case elfcpp::R_MIPS_TLS_DTPMOD32:
5757 case elfcpp::R_MIPS_TLS_DTPMOD64:
5758 x = value;
5759 break;
5760 case elfcpp::R_MIPS_TLS_DTPREL32:
5761 case elfcpp::R_MIPS_TLS_DTPREL64:
5762 x = value - elfcpp::DTP_OFFSET;
5763 break;
5764 case elfcpp::R_MIPS_TLS_TPREL32:
5765 case elfcpp::R_MIPS_TLS_TPREL64:
5766 x = value - elfcpp::TP_OFFSET;
5767 break;
5768 default:
5769 gold_unreachable();
5770 break;
5771 }
5772
5773 elfcpp::Swap<size, big_endian>::writeval(wv, x);
5774 }
5775
5776 of->write_output_view(offset, oview_size, oview);
5777 }
5778
5779 // Mips_relobj methods.
5780
5781 // Count the local symbols. The Mips backend needs to know if a symbol
5782 // is a MIPS16 or microMIPS function or not. For global symbols, it is easy
5783 // because the Symbol object keeps the ELF symbol type and st_other field.
5784 // For local symbol it is harder because we cannot access this information.
5785 // So we override the do_count_local_symbol in parent and scan local symbols to
5786 // mark MIPS16 and microMIPS functions. This is not the most efficient way but
5787 // I do not want to slow down other ports by calling a per symbol target hook
5788 // inside Sized_relobj_file<size, big_endian>::do_count_local_symbols.
5789
5790 template<int size, bool big_endian>
5791 void
5792 Mips_relobj<size, big_endian>::do_count_local_symbols(
5793 Stringpool_template<char>* pool,
5794 Stringpool_template<char>* dynpool)
5795 {
5796 // Ask parent to count the local symbols.
5797 Sized_relobj_file<size, big_endian>::do_count_local_symbols(pool, dynpool);
5798 const unsigned int loccount = this->local_symbol_count();
5799 if (loccount == 0)
5800 return;
5801
5802 // Initialize the mips16 and micromips function bit-vector.
5803 this->local_symbol_is_mips16_.resize(loccount, false);
5804 this->local_symbol_is_micromips_.resize(loccount, false);
5805
5806 // Read the symbol table section header.
5807 const unsigned int symtab_shndx = this->symtab_shndx();
5808 elfcpp::Shdr<size, big_endian>
5809 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
5810 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
5811
5812 // Read the local symbols.
5813 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
5814 gold_assert(loccount == symtabshdr.get_sh_info());
5815 off_t locsize = loccount * sym_size;
5816 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
5817 locsize, true, true);
5818
5819 // Loop over the local symbols and mark any MIPS16 or microMIPS local symbols.
5820
5821 // Skip the first dummy symbol.
5822 psyms += sym_size;
5823 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
5824 {
5825 elfcpp::Sym<size, big_endian> sym(psyms);
5826 unsigned char st_other = sym.get_st_other();
5827 this->local_symbol_is_mips16_[i] = elfcpp::elf_st_is_mips16(st_other);
5828 this->local_symbol_is_micromips_[i] =
5829 elfcpp::elf_st_is_micromips(st_other);
5830 }
5831 }
5832
5833 // Read the symbol information.
5834
5835 template<int size, bool big_endian>
5836 void
5837 Mips_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
5838 {
5839 // Call parent class to read symbol information.
5840 this->base_read_symbols(sd);
5841
5842 // Read processor-specific flags in ELF file header.
5843 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
5844 elfcpp::Elf_sizes<size>::ehdr_size,
5845 true, false);
5846 elfcpp::Ehdr<size, big_endian> ehdr(pehdr);
5847 this->processor_specific_flags_ = ehdr.get_e_flags();
5848
5849 // Get the section names.
5850 const unsigned char* pnamesu = sd->section_names->data();
5851 const char* pnames = reinterpret_cast<const char*>(pnamesu);
5852
5853 // Initialize the mips16 stub section bit-vectors.
5854 this->section_is_mips16_fn_stub_.resize(this->shnum(), false);
5855 this->section_is_mips16_call_stub_.resize(this->shnum(), false);
5856 this->section_is_mips16_call_fp_stub_.resize(this->shnum(), false);
5857
5858 const size_t shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
5859 const unsigned char* pshdrs = sd->section_headers->data();
5860 const unsigned char* ps = pshdrs + shdr_size;
5861 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
5862 {
5863 elfcpp::Shdr<size, big_endian> shdr(ps);
5864
5865 if (shdr.get_sh_type() == elfcpp::SHT_MIPS_REGINFO)
5866 {
5867 // Read the gp value that was used to create this object. We need the
5868 // gp value while processing relocs. The .reginfo section is not used
5869 // in the 64-bit MIPS ELF ABI.
5870 section_offset_type section_offset = shdr.get_sh_offset();
5871 section_size_type section_size =
5872 convert_to_section_size_type(shdr.get_sh_size());
5873 const unsigned char* view =
5874 this->get_view(section_offset, section_size, true, false);
5875
5876 this->gp_ = elfcpp::Swap<size, big_endian>::readval(view + 20);
5877
5878 // Read the rest of .reginfo.
5879 this->gprmask_ = elfcpp::Swap<size, big_endian>::readval(view);
5880 this->cprmask1_ = elfcpp::Swap<size, big_endian>::readval(view + 4);
5881 this->cprmask2_ = elfcpp::Swap<size, big_endian>::readval(view + 8);
5882 this->cprmask3_ = elfcpp::Swap<size, big_endian>::readval(view + 12);
5883 this->cprmask4_ = elfcpp::Swap<size, big_endian>::readval(view + 16);
5884 }
5885
5886 const char* name = pnames + shdr.get_sh_name();
5887 this->section_is_mips16_fn_stub_[i] = is_prefix_of(".mips16.fn", name);
5888 this->section_is_mips16_call_stub_[i] =
5889 is_prefix_of(".mips16.call.", name);
5890 this->section_is_mips16_call_fp_stub_[i] =
5891 is_prefix_of(".mips16.call.fp.", name);
5892
5893 if (strcmp(name, ".pdr") == 0)
5894 {
5895 gold_assert(this->pdr_shndx_ == -1U);
5896 this->pdr_shndx_ = i;
5897 }
5898 }
5899 }
5900
5901 // Discard MIPS16 stub secions that are not needed.
5902
5903 template<int size, bool big_endian>
5904 void
5905 Mips_relobj<size, big_endian>::discard_mips16_stub_sections(Symbol_table* symtab)
5906 {
5907 for (typename Mips16_stubs_int_map::const_iterator
5908 it = this->mips16_stub_sections_.begin();
5909 it != this->mips16_stub_sections_.end(); ++it)
5910 {
5911 Mips16_stub_section<size, big_endian>* stub_section = it->second;
5912 if (!stub_section->is_target_found())
5913 {
5914 gold_error(_("no relocation found in mips16 stub section '%s'"),
5915 stub_section->object()
5916 ->section_name(stub_section->shndx()).c_str());
5917 }
5918
5919 bool discard = false;
5920 if (stub_section->is_for_local_function())
5921 {
5922 if (stub_section->is_fn_stub())
5923 {
5924 // This stub is for a local symbol. This stub will only
5925 // be needed if there is some relocation in this object,
5926 // other than a 16 bit function call, which refers to this
5927 // symbol.
5928 if (!this->has_local_non_16bit_call_relocs(stub_section->r_sym()))
5929 discard = true;
5930 else
5931 this->add_local_mips16_fn_stub(stub_section);
5932 }
5933 else
5934 {
5935 // This stub is for a local symbol. This stub will only
5936 // be needed if there is some relocation (R_MIPS16_26) in
5937 // this object that refers to this symbol.
5938 gold_assert(stub_section->is_call_stub()
5939 || stub_section->is_call_fp_stub());
5940 if (!this->has_local_16bit_call_relocs(stub_section->r_sym()))
5941 discard = true;
5942 else
5943 this->add_local_mips16_call_stub(stub_section);
5944 }
5945 }
5946 else
5947 {
5948 Mips_symbol<size>* gsym = stub_section->gsym();
5949 if (stub_section->is_fn_stub())
5950 {
5951 if (gsym->has_mips16_fn_stub())
5952 // We already have a stub for this function.
5953 discard = true;
5954 else
5955 {
5956 gsym->set_mips16_fn_stub(stub_section);
5957 if (gsym->should_add_dynsym_entry(symtab))
5958 {
5959 // If we have a MIPS16 function with a stub, the
5960 // dynamic symbol must refer to the stub, since only
5961 // the stub uses the standard calling conventions.
5962 gsym->set_need_fn_stub();
5963 if (gsym->is_from_dynobj())
5964 gsym->set_needs_dynsym_value();
5965 }
5966 }
5967 if (!gsym->need_fn_stub())
5968 discard = true;
5969 }
5970 else if (stub_section->is_call_stub())
5971 {
5972 if (gsym->is_mips16())
5973 // We don't need the call_stub; this is a 16 bit
5974 // function, so calls from other 16 bit functions are
5975 // OK.
5976 discard = true;
5977 else if (gsym->has_mips16_call_stub())
5978 // We already have a stub for this function.
5979 discard = true;
5980 else
5981 gsym->set_mips16_call_stub(stub_section);
5982 }
5983 else
5984 {
5985 gold_assert(stub_section->is_call_fp_stub());
5986 if (gsym->is_mips16())
5987 // We don't need the call_stub; this is a 16 bit
5988 // function, so calls from other 16 bit functions are
5989 // OK.
5990 discard = true;
5991 else if (gsym->has_mips16_call_fp_stub())
5992 // We already have a stub for this function.
5993 discard = true;
5994 else
5995 gsym->set_mips16_call_fp_stub(stub_section);
5996 }
5997 }
5998 if (discard)
5999 this->set_output_section(stub_section->shndx(), NULL);
6000 }
6001 }
6002
6003 // Mips_output_data_la25_stub methods.
6004
6005 // Template for standard LA25 stub.
6006 template<int size, bool big_endian>
6007 const uint32_t
6008 Mips_output_data_la25_stub<size, big_endian>::la25_stub_entry[] =
6009 {
6010 0x3c190000, // lui $25,%hi(func)
6011 0x08000000, // j func
6012 0x27390000, // add $25,$25,%lo(func)
6013 0x00000000 // nop
6014 };
6015
6016 // Template for microMIPS LA25 stub.
6017 template<int size, bool big_endian>
6018 const uint32_t
6019 Mips_output_data_la25_stub<size, big_endian>::la25_stub_micromips_entry[] =
6020 {
6021 0x41b9, 0x0000, // lui t9,%hi(func)
6022 0xd400, 0x0000, // j func
6023 0x3339, 0x0000, // addiu t9,t9,%lo(func)
6024 0x0000, 0x0000 // nop
6025 };
6026
6027 // Create la25 stub for a symbol.
6028
6029 template<int size, bool big_endian>
6030 void
6031 Mips_output_data_la25_stub<size, big_endian>::create_la25_stub(
6032 Symbol_table* symtab, Target_mips<size, big_endian>* target,
6033 Mips_symbol<size>* gsym)
6034 {
6035 if (!gsym->has_la25_stub())
6036 {
6037 gsym->set_la25_stub_offset(this->symbols_.size() * 16);
6038 this->symbols_.insert(gsym);
6039 this->create_stub_symbol(gsym, symtab, target, 16);
6040 }
6041 }
6042
6043 // Create a symbol for SYM stub's value and size, to help make the disassembly
6044 // easier to read.
6045
6046 template<int size, bool big_endian>
6047 void
6048 Mips_output_data_la25_stub<size, big_endian>::create_stub_symbol(
6049 Mips_symbol<size>* sym, Symbol_table* symtab,
6050 Target_mips<size, big_endian>* target, uint64_t symsize)
6051 {
6052 std::string name(".pic.");
6053 name += sym->name();
6054
6055 unsigned int offset = sym->la25_stub_offset();
6056 if (sym->is_micromips())
6057 offset |= 1;
6058
6059 // Make it a local function.
6060 Symbol* new_sym = symtab->define_in_output_data(name.c_str(), NULL,
6061 Symbol_table::PREDEFINED,
6062 target->la25_stub_section(),
6063 offset, symsize, elfcpp::STT_FUNC,
6064 elfcpp::STB_LOCAL,
6065 elfcpp::STV_DEFAULT, 0,
6066 false, false);
6067 new_sym->set_is_forced_local();
6068 }
6069
6070 // Write out la25 stubs. This uses the hand-coded instructions above,
6071 // and adjusts them as needed.
6072
6073 template<int size, bool big_endian>
6074 void
6075 Mips_output_data_la25_stub<size, big_endian>::do_write(Output_file* of)
6076 {
6077 const off_t offset = this->offset();
6078 const section_size_type oview_size =
6079 convert_to_section_size_type(this->data_size());
6080 unsigned char* const oview = of->get_output_view(offset, oview_size);
6081
6082 for (typename Unordered_set<Mips_symbol<size>*>::iterator
6083 p = this->symbols_.begin();
6084 p != this->symbols_.end();
6085 ++p)
6086 {
6087 Mips_symbol<size>* sym = *p;
6088 unsigned char* pov = oview + sym->la25_stub_offset();
6089
6090 Mips_address target = sym->value();
6091 if (!sym->is_micromips())
6092 {
6093 elfcpp::Swap<32, big_endian>::writeval(pov,
6094 la25_stub_entry[0] | (((target + 0x8000) >> 16) & 0xffff));
6095 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
6096 la25_stub_entry[1] | ((target >> 2) & 0x3ffffff));
6097 elfcpp::Swap<32, big_endian>::writeval(pov + 8,
6098 la25_stub_entry[2] | (target & 0xffff));
6099 elfcpp::Swap<32, big_endian>::writeval(pov + 12, la25_stub_entry[3]);
6100 }
6101 else
6102 {
6103 target |= 1;
6104 // First stub instruction. Paste high 16-bits of the target.
6105 elfcpp::Swap<16, big_endian>::writeval(pov,
6106 la25_stub_micromips_entry[0]);
6107 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
6108 ((target + 0x8000) >> 16) & 0xffff);
6109 // Second stub instruction. Paste low 26-bits of the target, shifted
6110 // right by 1.
6111 elfcpp::Swap<16, big_endian>::writeval(pov + 4,
6112 la25_stub_micromips_entry[2] | ((target >> 17) & 0x3ff));
6113 elfcpp::Swap<16, big_endian>::writeval(pov + 6,
6114 la25_stub_micromips_entry[3] | ((target >> 1) & 0xffff));
6115 // Third stub instruction. Paste low 16-bits of the target.
6116 elfcpp::Swap<16, big_endian>::writeval(pov + 8,
6117 la25_stub_micromips_entry[4]);
6118 elfcpp::Swap<16, big_endian>::writeval(pov + 10, target & 0xffff);
6119 // Fourth stub instruction.
6120 elfcpp::Swap<16, big_endian>::writeval(pov + 12,
6121 la25_stub_micromips_entry[6]);
6122 elfcpp::Swap<16, big_endian>::writeval(pov + 14,
6123 la25_stub_micromips_entry[7]);
6124 }
6125 }
6126
6127 of->write_output_view(offset, oview_size, oview);
6128 }
6129
6130 // Mips_output_data_plt methods.
6131
6132 // The format of the first PLT entry in an O32 executable.
6133 template<int size, bool big_endian>
6134 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_o32[] =
6135 {
6136 0x3c1c0000, // lui $28, %hi(&GOTPLT[0])
6137 0x8f990000, // lw $25, %lo(&GOTPLT[0])($28)
6138 0x279c0000, // addiu $28, $28, %lo(&GOTPLT[0])
6139 0x031cc023, // subu $24, $24, $28
6140 0x03e07825, // or $15, $31, zero
6141 0x0018c082, // srl $24, $24, 2
6142 0x0320f809, // jalr $25
6143 0x2718fffe // subu $24, $24, 2
6144 };
6145
6146 // The format of the first PLT entry in an N32 executable. Different
6147 // because gp ($28) is not available; we use t2 ($14) instead.
6148 template<int size, bool big_endian>
6149 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n32[] =
6150 {
6151 0x3c0e0000, // lui $14, %hi(&GOTPLT[0])
6152 0x8dd90000, // lw $25, %lo(&GOTPLT[0])($14)
6153 0x25ce0000, // addiu $14, $14, %lo(&GOTPLT[0])
6154 0x030ec023, // subu $24, $24, $14
6155 0x03e07825, // or $15, $31, zero
6156 0x0018c082, // srl $24, $24, 2
6157 0x0320f809, // jalr $25
6158 0x2718fffe // subu $24, $24, 2
6159 };
6160
6161 // The format of the first PLT entry in an N64 executable. Different
6162 // from N32 because of the increased size of GOT entries.
6163 template<int size, bool big_endian>
6164 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n64[] =
6165 {
6166 0x3c0e0000, // lui $14, %hi(&GOTPLT[0])
6167 0xddd90000, // ld $25, %lo(&GOTPLT[0])($14)
6168 0x25ce0000, // addiu $14, $14, %lo(&GOTPLT[0])
6169 0x030ec023, // subu $24, $24, $14
6170 0x03e07825, // or $15, $31, zero
6171 0x0018c0c2, // srl $24, $24, 3
6172 0x0320f809, // jalr $25
6173 0x2718fffe // subu $24, $24, 2
6174 };
6175
6176 // The format of the microMIPS first PLT entry in an O32 executable.
6177 // We rely on v0 ($2) rather than t8 ($24) to contain the address
6178 // of the GOTPLT entry handled, so this stub may only be used when
6179 // all the subsequent PLT entries are microMIPS code too.
6180 //
6181 // The trailing NOP is for alignment and correct disassembly only.
6182 template<int size, bool big_endian>
6183 const uint32_t Mips_output_data_plt<size, big_endian>::
6184 plt0_entry_micromips_o32[] =
6185 {
6186 0x7980, 0x0000, // addiupc $3, (&GOTPLT[0]) - .
6187 0xff23, 0x0000, // lw $25, 0($3)
6188 0x0535, // subu $2, $2, $3
6189 0x2525, // srl $2, $2, 2
6190 0x3302, 0xfffe, // subu $24, $2, 2
6191 0x0dff, // move $15, $31
6192 0x45f9, // jalrs $25
6193 0x0f83, // move $28, $3
6194 0x0c00 // nop
6195 };
6196
6197 // The format of the microMIPS first PLT entry in an O32 executable
6198 // in the insn32 mode.
6199 template<int size, bool big_endian>
6200 const uint32_t Mips_output_data_plt<size, big_endian>::
6201 plt0_entry_micromips32_o32[] =
6202 {
6203 0x41bc, 0x0000, // lui $28, %hi(&GOTPLT[0])
6204 0xff3c, 0x0000, // lw $25, %lo(&GOTPLT[0])($28)
6205 0x339c, 0x0000, // addiu $28, $28, %lo(&GOTPLT[0])
6206 0x0398, 0xc1d0, // subu $24, $24, $28
6207 0x001f, 0x7a90, // or $15, $31, zero
6208 0x0318, 0x1040, // srl $24, $24, 2
6209 0x03f9, 0x0f3c, // jalr $25
6210 0x3318, 0xfffe // subu $24, $24, 2
6211 };
6212
6213 // The format of subsequent standard entries in the PLT.
6214 template<int size, bool big_endian>
6215 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry[] =
6216 {
6217 0x3c0f0000, // lui $15, %hi(.got.plt entry)
6218 0x8df90000, // l[wd] $25, %lo(.got.plt entry)($15)
6219 0x03200008, // jr $25
6220 0x25f80000 // addiu $24, $15, %lo(.got.plt entry)
6221 };
6222
6223 // The format of subsequent MIPS16 o32 PLT entries. We use v1 ($3) as a
6224 // temporary because t8 ($24) and t9 ($25) are not directly addressable.
6225 // Note that this differs from the GNU ld which uses both v0 ($2) and v1 ($3).
6226 // We cannot use v0 because MIPS16 call stubs from the CS toolchain expect
6227 // target function address in register v0.
6228 template<int size, bool big_endian>
6229 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry_mips16_o32[] =
6230 {
6231 0xb303, // lw $3, 12($pc)
6232 0x651b, // move $24, $3
6233 0x9b60, // lw $3, 0($3)
6234 0xeb00, // jr $3
6235 0x653b, // move $25, $3
6236 0x6500, // nop
6237 0x0000, 0x0000 // .word (.got.plt entry)
6238 };
6239
6240 // The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
6241 // as a temporary because t8 ($24) is not addressable with ADDIUPC.
6242 template<int size, bool big_endian>
6243 const uint32_t Mips_output_data_plt<size, big_endian>::
6244 plt_entry_micromips_o32[] =
6245 {
6246 0x7900, 0x0000, // addiupc $2, (.got.plt entry) - .
6247 0xff22, 0x0000, // lw $25, 0($2)
6248 0x4599, // jr $25
6249 0x0f02 // move $24, $2
6250 };
6251
6252 // The format of subsequent microMIPS o32 PLT entries in the insn32 mode.
6253 template<int size, bool big_endian>
6254 const uint32_t Mips_output_data_plt<size, big_endian>::
6255 plt_entry_micromips32_o32[] =
6256 {
6257 0x41af, 0x0000, // lui $15, %hi(.got.plt entry)
6258 0xff2f, 0x0000, // lw $25, %lo(.got.plt entry)($15)
6259 0x0019, 0x0f3c, // jr $25
6260 0x330f, 0x0000 // addiu $24, $15, %lo(.got.plt entry)
6261 };
6262
6263 // Add an entry to the PLT for a symbol referenced by r_type relocation.
6264
6265 template<int size, bool big_endian>
6266 void
6267 Mips_output_data_plt<size, big_endian>::add_entry(Mips_symbol<size>* gsym,
6268 unsigned int r_type)
6269 {
6270 gold_assert(!gsym->has_plt_offset());
6271
6272 // Final PLT offset for a symbol will be set in method set_plt_offsets().
6273 gsym->set_plt_offset(this->entry_count() * sizeof(plt_entry)
6274 + sizeof(plt0_entry_o32));
6275 this->symbols_.push_back(gsym);
6276
6277 // Record whether the relocation requires a standard MIPS
6278 // or a compressed code entry.
6279 if (jal_reloc(r_type))
6280 {
6281 if (r_type == elfcpp::R_MIPS_26)
6282 gsym->set_needs_mips_plt(true);
6283 else
6284 gsym->set_needs_comp_plt(true);
6285 }
6286
6287 section_offset_type got_offset = this->got_plt_->current_data_size();
6288
6289 // Every PLT entry needs a GOT entry which points back to the PLT
6290 // entry (this will be changed by the dynamic linker, normally
6291 // lazily when the function is called).
6292 this->got_plt_->set_current_data_size(got_offset + size/8);
6293
6294 gsym->set_needs_dynsym_entry();
6295 this->rel_->add_global(gsym, elfcpp::R_MIPS_JUMP_SLOT, this->got_plt_,
6296 got_offset);
6297 }
6298
6299 // Set final PLT offsets. For each symbol, determine whether standard or
6300 // compressed (MIPS16 or microMIPS) PLT entry is used.
6301
6302 template<int size, bool big_endian>
6303 void
6304 Mips_output_data_plt<size, big_endian>::set_plt_offsets()
6305 {
6306 // The sizes of individual PLT entries.
6307 unsigned int plt_mips_entry_size = this->standard_plt_entry_size();
6308 unsigned int plt_comp_entry_size = (!this->target_->is_output_newabi()
6309 ? this->compressed_plt_entry_size() : 0);
6310
6311 for (typename std::vector<Mips_symbol<size>*>::const_iterator
6312 p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
6313 {
6314 Mips_symbol<size>* mips_sym = *p;
6315
6316 // There are no defined MIPS16 or microMIPS PLT entries for n32 or n64,
6317 // so always use a standard entry there.
6318 //
6319 // If the symbol has a MIPS16 call stub and gets a PLT entry, then
6320 // all MIPS16 calls will go via that stub, and there is no benefit
6321 // to having a MIPS16 entry. And in the case of call_stub a
6322 // standard entry actually has to be used as the stub ends with a J
6323 // instruction.
6324 if (this->target_->is_output_newabi()
6325 || mips_sym->has_mips16_call_stub()
6326 || mips_sym->has_mips16_call_fp_stub())
6327 {
6328 mips_sym->set_needs_mips_plt(true);
6329 mips_sym->set_needs_comp_plt(false);
6330 }
6331
6332 // Otherwise, if there are no direct calls to the function, we
6333 // have a free choice of whether to use standard or compressed
6334 // entries. Prefer microMIPS entries if the object is known to
6335 // contain microMIPS code, so that it becomes possible to create
6336 // pure microMIPS binaries. Prefer standard entries otherwise,
6337 // because MIPS16 ones are no smaller and are usually slower.
6338 if (!mips_sym->needs_mips_plt() && !mips_sym->needs_comp_plt())
6339 {
6340 if (this->target_->is_output_micromips())
6341 mips_sym->set_needs_comp_plt(true);
6342 else
6343 mips_sym->set_needs_mips_plt(true);
6344 }
6345
6346 if (mips_sym->needs_mips_plt())
6347 {
6348 mips_sym->set_mips_plt_offset(this->plt_mips_offset_);
6349 this->plt_mips_offset_ += plt_mips_entry_size;
6350 }
6351 if (mips_sym->needs_comp_plt())
6352 {
6353 mips_sym->set_comp_plt_offset(this->plt_comp_offset_);
6354 this->plt_comp_offset_ += plt_comp_entry_size;
6355 }
6356 }
6357
6358 // Figure out the size of the PLT header if we know that we are using it.
6359 if (this->plt_mips_offset_ + this->plt_comp_offset_ != 0)
6360 this->plt_header_size_ = this->get_plt_header_size();
6361 }
6362
6363 // Write out the PLT. This uses the hand-coded instructions above,
6364 // and adjusts them as needed.
6365
6366 template<int size, bool big_endian>
6367 void
6368 Mips_output_data_plt<size, big_endian>::do_write(Output_file* of)
6369 {
6370 const off_t offset = this->offset();
6371 const section_size_type oview_size =
6372 convert_to_section_size_type(this->data_size());
6373 unsigned char* const oview = of->get_output_view(offset, oview_size);
6374
6375 const off_t gotplt_file_offset = this->got_plt_->offset();
6376 const section_size_type gotplt_size =
6377 convert_to_section_size_type(this->got_plt_->data_size());
6378 unsigned char* const gotplt_view = of->get_output_view(gotplt_file_offset,
6379 gotplt_size);
6380 unsigned char* pov = oview;
6381
6382 Mips_address plt_address = this->address();
6383
6384 // Calculate the address of .got.plt.
6385 Mips_address gotplt_addr = this->got_plt_->address();
6386 Mips_address gotplt_addr_high = ((gotplt_addr + 0x8000) >> 16) & 0xffff;
6387 Mips_address gotplt_addr_low = gotplt_addr & 0xffff;
6388
6389 // The PLT sequence is not safe for N64 if .got.plt's address can
6390 // not be loaded in two instructions.
6391 gold_assert((gotplt_addr & ~(Mips_address) 0x7fffffff) == 0
6392 || ~(gotplt_addr | 0x7fffffff) == 0);
6393
6394 // Write the PLT header.
6395 const uint32_t* plt0_entry = this->get_plt_header_entry();
6396 if (plt0_entry == plt0_entry_micromips_o32)
6397 {
6398 // Write microMIPS PLT header.
6399 gold_assert(gotplt_addr % 4 == 0);
6400
6401 Mips_address gotpc_offset = gotplt_addr - ((plt_address | 3) ^ 3);
6402
6403 // ADDIUPC has a span of +/-16MB, check we're in range.
6404 if (gotpc_offset + 0x1000000 >= 0x2000000)
6405 {
6406 gold_error(_(".got.plt offset of %ld from .plt beyond the range of "
6407 "ADDIUPC"), (long)gotpc_offset);
6408 return;
6409 }
6410
6411 elfcpp::Swap<16, big_endian>::writeval(pov,
6412 plt0_entry[0] | ((gotpc_offset >> 18) & 0x7f));
6413 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
6414 (gotpc_offset >> 2) & 0xffff);
6415 pov += 4;
6416 for (unsigned int i = 2;
6417 i < (sizeof(plt0_entry_micromips_o32)
6418 / sizeof(plt0_entry_micromips_o32[0]));
6419 i++)
6420 {
6421 elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
6422 pov += 2;
6423 }
6424 }
6425 else if (plt0_entry == plt0_entry_micromips32_o32)
6426 {
6427 // Write microMIPS PLT header in insn32 mode.
6428 elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[0]);
6429 elfcpp::Swap<16, big_endian>::writeval(pov + 2, gotplt_addr_high);
6430 elfcpp::Swap<16, big_endian>::writeval(pov + 4, plt0_entry[2]);
6431 elfcpp::Swap<16, big_endian>::writeval(pov + 6, gotplt_addr_low);
6432 elfcpp::Swap<16, big_endian>::writeval(pov + 8, plt0_entry[4]);
6433 elfcpp::Swap<16, big_endian>::writeval(pov + 10, gotplt_addr_low);
6434 pov += 12;
6435 for (unsigned int i = 6;
6436 i < (sizeof(plt0_entry_micromips32_o32)
6437 / sizeof(plt0_entry_micromips32_o32[0]));
6438 i++)
6439 {
6440 elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
6441 pov += 2;
6442 }
6443 }
6444 else
6445 {
6446 // Write standard PLT header.
6447 elfcpp::Swap<32, big_endian>::writeval(pov,
6448 plt0_entry[0] | gotplt_addr_high);
6449 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
6450 plt0_entry[1] | gotplt_addr_low);
6451 elfcpp::Swap<32, big_endian>::writeval(pov + 8,
6452 plt0_entry[2] | gotplt_addr_low);
6453 pov += 12;
6454 for (int i = 3; i < 8; i++)
6455 {
6456 elfcpp::Swap<32, big_endian>::writeval(pov, plt0_entry[i]);
6457 pov += 4;
6458 }
6459 }
6460
6461
6462 unsigned char* gotplt_pov = gotplt_view;
6463 unsigned int got_entry_size = size/8; // TODO(sasa): MIPS_ELF_GOT_SIZE
6464
6465 // The first two entries in .got.plt are reserved.
6466 elfcpp::Swap<size, big_endian>::writeval(gotplt_pov, 0);
6467 elfcpp::Swap<size, big_endian>::writeval(gotplt_pov + got_entry_size, 0);
6468
6469 unsigned int gotplt_offset = 2 * got_entry_size;
6470 gotplt_pov += 2 * got_entry_size;
6471
6472 // Calculate the address of the PLT header.
6473 Mips_address header_address = (plt_address
6474 + (this->is_plt_header_compressed() ? 1 : 0));
6475
6476 // Initialize compressed PLT area view.
6477 unsigned char* pov2 = pov + this->plt_mips_offset_;
6478
6479 // Write the PLT entries.
6480 for (typename std::vector<Mips_symbol<size>*>::const_iterator
6481 p = this->symbols_.begin();
6482 p != this->symbols_.end();
6483 ++p, gotplt_pov += got_entry_size, gotplt_offset += got_entry_size)
6484 {
6485 Mips_symbol<size>* mips_sym = *p;
6486
6487 // Calculate the address of the .got.plt entry.
6488 uint32_t gotplt_entry_addr = (gotplt_addr + gotplt_offset);
6489 uint32_t gotplt_entry_addr_hi = (((gotplt_entry_addr + 0x8000) >> 16)
6490 & 0xffff);
6491 uint32_t gotplt_entry_addr_lo = gotplt_entry_addr & 0xffff;
6492
6493 // Initially point the .got.plt entry at the PLT header.
6494 if (this->target_->is_output_n64())
6495 elfcpp::Swap<64, big_endian>::writeval(gotplt_pov, header_address);
6496 else
6497 elfcpp::Swap<32, big_endian>::writeval(gotplt_pov, header_address);
6498
6499 // Now handle the PLT itself. First the standard entry.
6500 if (mips_sym->has_mips_plt_offset())
6501 {
6502 // Pick the load opcode (LW or LD).
6503 uint64_t load = this->target_->is_output_n64() ? 0xdc000000
6504 : 0x8c000000;
6505
6506 // Fill in the PLT entry itself.
6507 elfcpp::Swap<32, big_endian>::writeval(pov,
6508 plt_entry[0] | gotplt_entry_addr_hi);
6509 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
6510 plt_entry[1] | gotplt_entry_addr_lo | load);
6511 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_entry[2]);
6512 elfcpp::Swap<32, big_endian>::writeval(pov + 12,
6513 plt_entry[3] | gotplt_entry_addr_lo);
6514 pov += 16;
6515 }
6516
6517 // Now the compressed entry. They come after any standard ones.
6518 if (mips_sym->has_comp_plt_offset())
6519 {
6520 if (!this->target_->is_output_micromips())
6521 {
6522 // Write MIPS16 PLT entry.
6523 const uint32_t* plt_entry = plt_entry_mips16_o32;
6524
6525 elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
6526 elfcpp::Swap<16, big_endian>::writeval(pov2 + 2, plt_entry[1]);
6527 elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
6528 elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
6529 elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
6530 elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
6531 elfcpp::Swap<32, big_endian>::writeval(pov2 + 12,
6532 gotplt_entry_addr);
6533 pov2 += 16;
6534 }
6535 else if (this->target_->use_32bit_micromips_instructions())
6536 {
6537 // Write microMIPS PLT entry in insn32 mode.
6538 const uint32_t* plt_entry = plt_entry_micromips32_o32;
6539
6540 elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
6541 elfcpp::Swap<16, big_endian>::writeval(pov2 + 2,
6542 gotplt_entry_addr_hi);
6543 elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
6544 elfcpp::Swap<16, big_endian>::writeval(pov2 + 6,
6545 gotplt_entry_addr_lo);
6546 elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
6547 elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
6548 elfcpp::Swap<16, big_endian>::writeval(pov2 + 12, plt_entry[6]);
6549 elfcpp::Swap<16, big_endian>::writeval(pov2 + 14,
6550 gotplt_entry_addr_lo);
6551 pov2 += 16;
6552 }
6553 else
6554 {
6555 // Write microMIPS PLT entry.
6556 const uint32_t* plt_entry = plt_entry_micromips_o32;
6557
6558 gold_assert(gotplt_entry_addr % 4 == 0);
6559
6560 Mips_address loc_address = plt_address + pov2 - oview;
6561 int gotpc_offset = gotplt_entry_addr - ((loc_address | 3) ^ 3);
6562
6563 // ADDIUPC has a span of +/-16MB, check we're in range.
6564 if (gotpc_offset + 0x1000000 >= 0x2000000)
6565 {
6566 gold_error(_(".got.plt offset of %ld from .plt beyond the "
6567 "range of ADDIUPC"), (long)gotpc_offset);
6568 return;
6569 }
6570
6571 elfcpp::Swap<16, big_endian>::writeval(pov2,
6572 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f));
6573 elfcpp::Swap<16, big_endian>::writeval(
6574 pov2 + 2, (gotpc_offset >> 2) & 0xffff);
6575 elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
6576 elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
6577 elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
6578 elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
6579 pov2 += 12;
6580 }
6581 }
6582 }
6583
6584 // Check the number of bytes written for standard entries.
6585 gold_assert(static_cast<section_size_type>(
6586 pov - oview - this->plt_header_size_) == this->plt_mips_offset_);
6587 // Check the number of bytes written for compressed entries.
6588 gold_assert((static_cast<section_size_type>(pov2 - pov)
6589 == this->plt_comp_offset_));
6590 // Check the total number of bytes written.
6591 gold_assert(static_cast<section_size_type>(pov2 - oview) == oview_size);
6592
6593 gold_assert(static_cast<section_size_type>(gotplt_pov - gotplt_view)
6594 == gotplt_size);
6595
6596 of->write_output_view(offset, oview_size, oview);
6597 of->write_output_view(gotplt_file_offset, gotplt_size, gotplt_view);
6598 }
6599
6600 // Mips_output_data_mips_stubs methods.
6601
6602 // The format of the lazy binding stub when dynamic symbol count is less than
6603 // 64K, dynamic symbol index is less than 32K, and ABI is not N64.
6604 template<int size, bool big_endian>
6605 const uint32_t
6606 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1[4] =
6607 {
6608 0x8f998010, // lw t9,0x8010(gp)
6609 0x03e07825, // or t7,ra,zero
6610 0x0320f809, // jalr t9,ra
6611 0x24180000 // addiu t8,zero,DYN_INDEX sign extended
6612 };
6613
6614 // The format of the lazy binding stub when dynamic symbol count is less than
6615 // 64K, dynamic symbol index is less than 32K, and ABI is N64.
6616 template<int size, bool big_endian>
6617 const uint32_t
6618 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1_n64[4] =
6619 {
6620 0xdf998010, // ld t9,0x8010(gp)
6621 0x03e07825, // or t7,ra,zero
6622 0x0320f809, // jalr t9,ra
6623 0x64180000 // daddiu t8,zero,DYN_INDEX sign extended
6624 };
6625
6626 // The format of the lazy binding stub when dynamic symbol count is less than
6627 // 64K, dynamic symbol index is between 32K and 64K, and ABI is not N64.
6628 template<int size, bool big_endian>
6629 const uint32_t
6630 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2[4] =
6631 {
6632 0x8f998010, // lw t9,0x8010(gp)
6633 0x03e07825, // or t7,ra,zero
6634 0x0320f809, // jalr t9,ra
6635 0x34180000 // ori t8,zero,DYN_INDEX unsigned
6636 };
6637
6638 // The format of the lazy binding stub when dynamic symbol count is less than
6639 // 64K, dynamic symbol index is between 32K and 64K, and ABI is N64.
6640 template<int size, bool big_endian>
6641 const uint32_t
6642 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2_n64[4] =
6643 {
6644 0xdf998010, // ld t9,0x8010(gp)
6645 0x03e07825, // or t7,ra,zero
6646 0x0320f809, // jalr t9,ra
6647 0x34180000 // ori t8,zero,DYN_INDEX unsigned
6648 };
6649
6650 // The format of the lazy binding stub when dynamic symbol count is greater than
6651 // 64K, and ABI is not N64.
6652 template<int size, bool big_endian>
6653 const uint32_t Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big[5] =
6654 {
6655 0x8f998010, // lw t9,0x8010(gp)
6656 0x03e07825, // or t7,ra,zero
6657 0x3c180000, // lui t8,DYN_INDEX
6658 0x0320f809, // jalr t9,ra
6659 0x37180000 // ori t8,t8,DYN_INDEX
6660 };
6661
6662 // The format of the lazy binding stub when dynamic symbol count is greater than
6663 // 64K, and ABI is N64.
6664 template<int size, bool big_endian>
6665 const uint32_t
6666 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big_n64[5] =
6667 {
6668 0xdf998010, // ld t9,0x8010(gp)
6669 0x03e07825, // or t7,ra,zero
6670 0x3c180000, // lui t8,DYN_INDEX
6671 0x0320f809, // jalr t9,ra
6672 0x37180000 // ori t8,t8,DYN_INDEX
6673 };
6674
6675 // microMIPS stubs.
6676
6677 // The format of the microMIPS lazy binding stub when dynamic symbol count is
6678 // less than 64K, dynamic symbol index is less than 32K, and ABI is not N64.
6679 template<int size, bool big_endian>
6680 const uint32_t
6681 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_1[] =
6682 {
6683 0xff3c, 0x8010, // lw t9,0x8010(gp)
6684 0x0dff, // move t7,ra
6685 0x45d9, // jalr t9
6686 0x3300, 0x0000 // addiu t8,zero,DYN_INDEX sign extended
6687 };
6688
6689 // The format of the microMIPS lazy binding stub when dynamic symbol count is
6690 // less than 64K, dynamic symbol index is less than 32K, and ABI is N64.
6691 template<int size, bool big_endian>
6692 const uint32_t
6693 Mips_output_data_mips_stubs<size, big_endian>::
6694 lazy_stub_micromips_normal_1_n64[] =
6695 {
6696 0xdf3c, 0x8010, // ld t9,0x8010(gp)
6697 0x0dff, // move t7,ra
6698 0x45d9, // jalr t9
6699 0x5f00, 0x0000 // daddiu t8,zero,DYN_INDEX sign extended
6700 };
6701
6702 // The format of the microMIPS lazy binding stub when dynamic symbol
6703 // count is less than 64K, dynamic symbol index is between 32K and 64K,
6704 // and ABI is not N64.
6705 template<int size, bool big_endian>
6706 const uint32_t
6707 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_2[] =
6708 {
6709 0xff3c, 0x8010, // lw t9,0x8010(gp)
6710 0x0dff, // move t7,ra
6711 0x45d9, // jalr t9
6712 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
6713 };
6714
6715 // The format of the microMIPS lazy binding stub when dynamic symbol
6716 // count is less than 64K, dynamic symbol index is between 32K and 64K,
6717 // and ABI is N64.
6718 template<int size, bool big_endian>
6719 const uint32_t
6720 Mips_output_data_mips_stubs<size, big_endian>::
6721 lazy_stub_micromips_normal_2_n64[] =
6722 {
6723 0xdf3c, 0x8010, // ld t9,0x8010(gp)
6724 0x0dff, // move t7,ra
6725 0x45d9, // jalr t9
6726 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
6727 };
6728
6729 // The format of the microMIPS lazy binding stub when dynamic symbol count is
6730 // greater than 64K, and ABI is not N64.
6731 template<int size, bool big_endian>
6732 const uint32_t
6733 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big[] =
6734 {
6735 0xff3c, 0x8010, // lw t9,0x8010(gp)
6736 0x0dff, // move t7,ra
6737 0x41b8, 0x0000, // lui t8,DYN_INDEX
6738 0x45d9, // jalr t9
6739 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
6740 };
6741
6742 // The format of the microMIPS lazy binding stub when dynamic symbol count is
6743 // greater than 64K, and ABI is N64.
6744 template<int size, bool big_endian>
6745 const uint32_t
6746 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big_n64[] =
6747 {
6748 0xdf3c, 0x8010, // ld t9,0x8010(gp)
6749 0x0dff, // move t7,ra
6750 0x41b8, 0x0000, // lui t8,DYN_INDEX
6751 0x45d9, // jalr t9
6752 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
6753 };
6754
6755 // 32-bit microMIPS stubs.
6756
6757 // The format of the microMIPS lazy binding stub when dynamic symbol count is
6758 // less than 64K, dynamic symbol index is less than 32K, ABI is not N64, and we
6759 // can use only 32-bit instructions.
6760 template<int size, bool big_endian>
6761 const uint32_t
6762 Mips_output_data_mips_stubs<size, big_endian>::
6763 lazy_stub_micromips32_normal_1[] =
6764 {
6765 0xff3c, 0x8010, // lw t9,0x8010(gp)
6766 0x001f, 0x7a90, // or t7,ra,zero
6767 0x03f9, 0x0f3c, // jalr ra,t9
6768 0x3300, 0x0000 // addiu t8,zero,DYN_INDEX sign extended
6769 };
6770
6771 // The format of the microMIPS lazy binding stub when dynamic symbol count is
6772 // less than 64K, dynamic symbol index is less than 32K, ABI is N64, and we can
6773 // use only 32-bit instructions.
6774 template<int size, bool big_endian>
6775 const uint32_t
6776 Mips_output_data_mips_stubs<size, big_endian>::
6777 lazy_stub_micromips32_normal_1_n64[] =
6778 {
6779 0xdf3c, 0x8010, // ld t9,0x8010(gp)
6780 0x001f, 0x7a90, // or t7,ra,zero
6781 0x03f9, 0x0f3c, // jalr ra,t9
6782 0x5f00, 0x0000 // daddiu t8,zero,DYN_INDEX sign extended
6783 };
6784
6785 // The format of the microMIPS lazy binding stub when dynamic symbol
6786 // count is less than 64K, dynamic symbol index is between 32K and 64K,
6787 // ABI is not N64, and we can use only 32-bit instructions.
6788 template<int size, bool big_endian>
6789 const uint32_t
6790 Mips_output_data_mips_stubs<size, big_endian>::
6791 lazy_stub_micromips32_normal_2[] =
6792 {
6793 0xff3c, 0x8010, // lw t9,0x8010(gp)
6794 0x001f, 0x7a90, // or t7,ra,zero
6795 0x03f9, 0x0f3c, // jalr ra,t9
6796 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
6797 };
6798
6799 // The format of the microMIPS lazy binding stub when dynamic symbol
6800 // count is less than 64K, dynamic symbol index is between 32K and 64K,
6801 // ABI is N64, and we can use only 32-bit instructions.
6802 template<int size, bool big_endian>
6803 const uint32_t
6804 Mips_output_data_mips_stubs<size, big_endian>::
6805 lazy_stub_micromips32_normal_2_n64[] =
6806 {
6807 0xdf3c, 0x8010, // ld t9,0x8010(gp)
6808 0x001f, 0x7a90, // or t7,ra,zero
6809 0x03f9, 0x0f3c, // jalr ra,t9
6810 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
6811 };
6812
6813 // The format of the microMIPS lazy binding stub when dynamic symbol count is
6814 // greater than 64K, ABI is not N64, and we can use only 32-bit instructions.
6815 template<int size, bool big_endian>
6816 const uint32_t
6817 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big[] =
6818 {
6819 0xff3c, 0x8010, // lw t9,0x8010(gp)
6820 0x001f, 0x7a90, // or t7,ra,zero
6821 0x41b8, 0x0000, // lui t8,DYN_INDEX
6822 0x03f9, 0x0f3c, // jalr ra,t9
6823 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
6824 };
6825
6826 // The format of the microMIPS lazy binding stub when dynamic symbol count is
6827 // greater than 64K, ABI is N64, and we can use only 32-bit instructions.
6828 template<int size, bool big_endian>
6829 const uint32_t
6830 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big_n64[] =
6831 {
6832 0xdf3c, 0x8010, // ld t9,0x8010(gp)
6833 0x001f, 0x7a90, // or t7,ra,zero
6834 0x41b8, 0x0000, // lui t8,DYN_INDEX
6835 0x03f9, 0x0f3c, // jalr ra,t9
6836 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
6837 };
6838
6839 // Create entry for a symbol.
6840
6841 template<int size, bool big_endian>
6842 void
6843 Mips_output_data_mips_stubs<size, big_endian>::make_entry(
6844 Mips_symbol<size>* gsym)
6845 {
6846 if (!gsym->has_lazy_stub() && !gsym->has_plt_offset())
6847 {
6848 this->symbols_.insert(gsym);
6849 gsym->set_has_lazy_stub(true);
6850 }
6851 }
6852
6853 // Remove entry for a symbol.
6854
6855 template<int size, bool big_endian>
6856 void
6857 Mips_output_data_mips_stubs<size, big_endian>::remove_entry(
6858 Mips_symbol<size>* gsym)
6859 {
6860 if (gsym->has_lazy_stub())
6861 {
6862 this->symbols_.erase(gsym);
6863 gsym->set_has_lazy_stub(false);
6864 }
6865 }
6866
6867 // Set stub offsets for symbols. This method expects that the number of
6868 // entries in dynamic symbol table is set.
6869
6870 template<int size, bool big_endian>
6871 void
6872 Mips_output_data_mips_stubs<size, big_endian>::set_lazy_stub_offsets()
6873 {
6874 gold_assert(this->dynsym_count_ != -1U);
6875
6876 if (this->stub_offsets_are_set_)
6877 return;
6878
6879 unsigned int stub_size = this->stub_size();
6880 unsigned int offset = 0;
6881 for (typename Unordered_set<Mips_symbol<size>*>::const_iterator
6882 p = this->symbols_.begin();
6883 p != this->symbols_.end();
6884 ++p, offset += stub_size)
6885 {
6886 Mips_symbol<size>* mips_sym = *p;
6887 mips_sym->set_lazy_stub_offset(offset);
6888 }
6889 this->stub_offsets_are_set_ = true;
6890 }
6891
6892 template<int size, bool big_endian>
6893 void
6894 Mips_output_data_mips_stubs<size, big_endian>::set_needs_dynsym_value()
6895 {
6896 for (typename Unordered_set<Mips_symbol<size>*>::const_iterator
6897 p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
6898 {
6899 Mips_symbol<size>* sym = *p;
6900 if (sym->is_from_dynobj())
6901 sym->set_needs_dynsym_value();
6902 }
6903 }
6904
6905 // Write out the .MIPS.stubs. This uses the hand-coded instructions and
6906 // adjusts them as needed.
6907
6908 template<int size, bool big_endian>
6909 void
6910 Mips_output_data_mips_stubs<size, big_endian>::do_write(Output_file* of)
6911 {
6912 const off_t offset = this->offset();
6913 const section_size_type oview_size =
6914 convert_to_section_size_type(this->data_size());
6915 unsigned char* const oview = of->get_output_view(offset, oview_size);
6916
6917 bool big_stub = this->dynsym_count_ > 0x10000;
6918
6919 unsigned char* pov = oview;
6920 for (typename Unordered_set<Mips_symbol<size>*>::const_iterator
6921 p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
6922 {
6923 Mips_symbol<size>* sym = *p;
6924 const uint32_t* lazy_stub;
6925 bool n64 = this->target_->is_output_n64();
6926
6927 if (!this->target_->is_output_micromips())
6928 {
6929 // Write standard (non-microMIPS) stub.
6930 if (!big_stub)
6931 {
6932 if (sym->dynsym_index() & ~0x7fff)
6933 // Dynsym index is between 32K and 64K.
6934 lazy_stub = n64 ? lazy_stub_normal_2_n64 : lazy_stub_normal_2;
6935 else
6936 // Dynsym index is less than 32K.
6937 lazy_stub = n64 ? lazy_stub_normal_1_n64 : lazy_stub_normal_1;
6938 }
6939 else
6940 lazy_stub = n64 ? lazy_stub_big_n64 : lazy_stub_big;
6941
6942 unsigned int i = 0;
6943 elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
6944 elfcpp::Swap<32, big_endian>::writeval(pov + 4, lazy_stub[i + 1]);
6945 pov += 8;
6946
6947 i += 2;
6948 if (big_stub)
6949 {
6950 // LUI instruction of the big stub. Paste high 16 bits of the
6951 // dynsym index.
6952 elfcpp::Swap<32, big_endian>::writeval(pov,
6953 lazy_stub[i] | ((sym->dynsym_index() >> 16) & 0x7fff));
6954 pov += 4;
6955 i += 1;
6956 }
6957 elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
6958 // Last stub instruction. Paste low 16 bits of the dynsym index.
6959 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
6960 lazy_stub[i + 1] | (sym->dynsym_index() & 0xffff));
6961 pov += 8;
6962 }
6963 else if (this->target_->use_32bit_micromips_instructions())
6964 {
6965 // Write microMIPS stub in insn32 mode.
6966 if (!big_stub)
6967 {
6968 if (sym->dynsym_index() & ~0x7fff)
6969 // Dynsym index is between 32K and 64K.
6970 lazy_stub = n64 ? lazy_stub_micromips32_normal_2_n64
6971 : lazy_stub_micromips32_normal_2;
6972 else
6973 // Dynsym index is less than 32K.
6974 lazy_stub = n64 ? lazy_stub_micromips32_normal_1_n64
6975 : lazy_stub_micromips32_normal_1;
6976 }
6977 else
6978 lazy_stub = n64 ? lazy_stub_micromips32_big_n64
6979 : lazy_stub_micromips32_big;
6980
6981 unsigned int i = 0;
6982 // First stub instruction. We emit 32-bit microMIPS instructions by
6983 // emitting two 16-bit parts because on microMIPS the 16-bit part of
6984 // the instruction where the opcode is must always come first, for
6985 // both little and big endian.
6986 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
6987 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
6988 // Second stub instruction.
6989 elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
6990 elfcpp::Swap<16, big_endian>::writeval(pov + 6, lazy_stub[i + 3]);
6991 pov += 8;
6992 i += 4;
6993 if (big_stub)
6994 {
6995 // LUI instruction of the big stub. Paste high 16 bits of the
6996 // dynsym index.
6997 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
6998 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
6999 (sym->dynsym_index() >> 16) & 0x7fff);
7000 pov += 4;
7001 i += 2;
7002 }
7003 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
7004 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
7005 // Last stub instruction. Paste low 16 bits of the dynsym index.
7006 elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
7007 elfcpp::Swap<16, big_endian>::writeval(pov + 6,
7008 sym->dynsym_index() & 0xffff);
7009 pov += 8;
7010 }
7011 else
7012 {
7013 // Write microMIPS stub.
7014 if (!big_stub)
7015 {
7016 if (sym->dynsym_index() & ~0x7fff)
7017 // Dynsym index is between 32K and 64K.
7018 lazy_stub = n64 ? lazy_stub_micromips_normal_2_n64
7019 : lazy_stub_micromips_normal_2;
7020 else
7021 // Dynsym index is less than 32K.
7022 lazy_stub = n64 ? lazy_stub_micromips_normal_1_n64
7023 : lazy_stub_micromips_normal_1;
7024 }
7025 else
7026 lazy_stub = n64 ? lazy_stub_micromips_big_n64
7027 : lazy_stub_micromips_big;
7028
7029 unsigned int i = 0;
7030 // First stub instruction. We emit 32-bit microMIPS instructions by
7031 // emitting two 16-bit parts because on microMIPS the 16-bit part of
7032 // the instruction where the opcode is must always come first, for
7033 // both little and big endian.
7034 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
7035 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
7036 // Second stub instruction.
7037 elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
7038 pov += 6;
7039 i += 3;
7040 if (big_stub)
7041 {
7042 // LUI instruction of the big stub. Paste high 16 bits of the
7043 // dynsym index.
7044 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
7045 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
7046 (sym->dynsym_index() >> 16) & 0x7fff);
7047 pov += 4;
7048 i += 2;
7049 }
7050 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
7051 // Last stub instruction. Paste low 16 bits of the dynsym index.
7052 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
7053 elfcpp::Swap<16, big_endian>::writeval(pov + 4,
7054 sym->dynsym_index() & 0xffff);
7055 pov += 6;
7056 }
7057 }
7058
7059 // We always allocate 20 bytes for every stub, because final dynsym count is
7060 // not known in method do_finalize_sections. There are 4 unused bytes per
7061 // stub if final dynsym count is less than 0x10000.
7062 unsigned int used = pov - oview;
7063 unsigned int unused = big_stub ? 0 : this->symbols_.size() * 4;
7064 gold_assert(static_cast<section_size_type>(used + unused) == oview_size);
7065
7066 // Fill the unused space with zeroes.
7067 // TODO(sasa): Can we strip unused bytes during the relaxation?
7068 if (unused > 0)
7069 memset(pov, 0, unused);
7070
7071 of->write_output_view(offset, oview_size, oview);
7072 }
7073
7074 // Mips_output_section_reginfo methods.
7075
7076 template<int size, bool big_endian>
7077 void
7078 Mips_output_section_reginfo<size, big_endian>::do_write(Output_file* of)
7079 {
7080 off_t offset = this->offset();
7081 off_t data_size = this->data_size();
7082
7083 unsigned char* view = of->get_output_view(offset, data_size);
7084 elfcpp::Swap<size, big_endian>::writeval(view, this->gprmask_);
7085 elfcpp::Swap<size, big_endian>::writeval(view + 4, this->cprmask1_);
7086 elfcpp::Swap<size, big_endian>::writeval(view + 8, this->cprmask2_);
7087 elfcpp::Swap<size, big_endian>::writeval(view + 12, this->cprmask3_);
7088 elfcpp::Swap<size, big_endian>::writeval(view + 16, this->cprmask4_);
7089 // Write the gp value.
7090 elfcpp::Swap<size, big_endian>::writeval(view + 20,
7091 this->target_->gp_value());
7092
7093 of->write_output_view(offset, data_size, view);
7094 }
7095
7096 // Mips_copy_relocs methods.
7097
7098 // Emit any saved relocs.
7099
7100 template<int sh_type, int size, bool big_endian>
7101 void
7102 Mips_copy_relocs<sh_type, size, big_endian>::emit_mips(
7103 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
7104 Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
7105 {
7106 for (typename Copy_relocs<sh_type, size, big_endian>::
7107 Copy_reloc_entries::iterator p = this->entries_.begin();
7108 p != this->entries_.end();
7109 ++p)
7110 emit_entry(*p, reloc_section, symtab, layout, target);
7111
7112 // We no longer need the saved information.
7113 this->entries_.clear();
7114 }
7115
7116 // Emit the reloc if appropriate.
7117
7118 template<int sh_type, int size, bool big_endian>
7119 void
7120 Mips_copy_relocs<sh_type, size, big_endian>::emit_entry(
7121 Copy_reloc_entry& entry,
7122 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
7123 Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
7124 {
7125 // If the symbol is no longer defined in a dynamic object, then we
7126 // emitted a COPY relocation, and we do not want to emit this
7127 // dynamic relocation.
7128 if (!entry.sym_->is_from_dynobj())
7129 return;
7130
7131 bool can_make_dynamic = (entry.reloc_type_ == elfcpp::R_MIPS_32
7132 || entry.reloc_type_ == elfcpp::R_MIPS_REL32
7133 || entry.reloc_type_ == elfcpp::R_MIPS_64);
7134
7135 Mips_symbol<size>* sym = Mips_symbol<size>::as_mips_sym(entry.sym_);
7136 if (can_make_dynamic && !sym->has_static_relocs())
7137 {
7138 Mips_relobj<size, big_endian>* object =
7139 Mips_relobj<size, big_endian>::as_mips_relobj(entry.relobj_);
7140 target->got_section(symtab, layout)->record_global_got_symbol(
7141 sym, object, entry.reloc_type_, true, false);
7142 if (!symbol_references_local(sym, sym->should_add_dynsym_entry(symtab)))
7143 target->rel_dyn_section(layout)->add_global(sym, elfcpp::R_MIPS_REL32,
7144 entry.output_section_, entry.relobj_, entry.shndx_, entry.address_);
7145 else
7146 target->rel_dyn_section(layout)->add_symbolless_global_addend(
7147 sym, elfcpp::R_MIPS_REL32, entry.output_section_, entry.relobj_,
7148 entry.shndx_, entry.address_);
7149 }
7150 else
7151 this->make_copy_reloc(symtab, layout,
7152 static_cast<Sized_symbol<size>*>(entry.sym_),
7153 reloc_section);
7154 }
7155
7156 // Target_mips methods.
7157
7158 // Return the value to use for a dynamic symbol which requires special
7159 // treatment. This is how we support equality comparisons of function
7160 // pointers across shared library boundaries, as described in the
7161 // processor specific ABI supplement.
7162
7163 template<int size, bool big_endian>
7164 uint64_t
7165 Target_mips<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
7166 {
7167 uint64_t value = 0;
7168 const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
7169
7170 if (!mips_sym->has_lazy_stub())
7171 {
7172 if (mips_sym->has_plt_offset())
7173 {
7174 // We distinguish between PLT entries and lazy-binding stubs by
7175 // giving the former an st_other value of STO_MIPS_PLT. Set the
7176 // value to the stub address if there are any relocations in the
7177 // binary where pointer equality matters.
7178 if (mips_sym->pointer_equality_needed())
7179 {
7180 // Prefer a standard MIPS PLT entry.
7181 if (mips_sym->has_mips_plt_offset())
7182 value = this->plt_section()->mips_entry_address(mips_sym);
7183 else
7184 value = this->plt_section()->comp_entry_address(mips_sym) + 1;
7185 }
7186 else
7187 value = 0;
7188 }
7189 }
7190 else
7191 {
7192 // First, set stub offsets for symbols. This method expects that the
7193 // number of entries in dynamic symbol table is set.
7194 this->mips_stubs_section()->set_lazy_stub_offsets();
7195
7196 // The run-time linker uses the st_value field of the symbol
7197 // to reset the global offset table entry for this external
7198 // to its stub address when unlinking a shared object.
7199 value = this->mips_stubs_section()->stub_address(mips_sym);
7200 }
7201
7202 if (mips_sym->has_mips16_fn_stub())
7203 {
7204 // If we have a MIPS16 function with a stub, the dynamic symbol must
7205 // refer to the stub, since only the stub uses the standard calling
7206 // conventions.
7207 value = mips_sym->template
7208 get_mips16_fn_stub<big_endian>()->output_address();
7209 }
7210
7211 return value;
7212 }
7213
7214 // Get the dynamic reloc section, creating it if necessary. It's always
7215 // .rel.dyn, even for MIPS64.
7216
7217 template<int size, bool big_endian>
7218 typename Target_mips<size, big_endian>::Reloc_section*
7219 Target_mips<size, big_endian>::rel_dyn_section(Layout* layout)
7220 {
7221 if (this->rel_dyn_ == NULL)
7222 {
7223 gold_assert(layout != NULL);
7224 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
7225 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
7226 elfcpp::SHF_ALLOC, this->rel_dyn_,
7227 ORDER_DYNAMIC_RELOCS, false);
7228
7229 // First entry in .rel.dyn has to be null.
7230 // This is hack - we define dummy output data and set its address to 0,
7231 // and define absolute R_MIPS_NONE relocation with offset 0 against it.
7232 // This ensures that the entry is null.
7233 Output_data* od = new Output_data_zero_fill(0, 0);
7234 od->set_address(0);
7235 this->rel_dyn_->add_absolute(elfcpp::R_MIPS_NONE, od, 0);
7236 }
7237 return this->rel_dyn_;
7238 }
7239
7240 // Get the GOT section, creating it if necessary.
7241
7242 template<int size, bool big_endian>
7243 Mips_output_data_got<size, big_endian>*
7244 Target_mips<size, big_endian>::got_section(Symbol_table* symtab,
7245 Layout* layout)
7246 {
7247 if (this->got_ == NULL)
7248 {
7249 gold_assert(symtab != NULL && layout != NULL);
7250
7251 this->got_ = new Mips_output_data_got<size, big_endian>(this, symtab,
7252 layout);
7253 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
7254 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE |
7255 elfcpp::SHF_MIPS_GPREL),
7256 this->got_, ORDER_DATA, false);
7257
7258 // Define _GLOBAL_OFFSET_TABLE_ at the start of the .got section.
7259 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
7260 Symbol_table::PREDEFINED,
7261 this->got_,
7262 0, 0, elfcpp::STT_OBJECT,
7263 elfcpp::STB_GLOBAL,
7264 elfcpp::STV_DEFAULT, 0,
7265 false, false);
7266 }
7267
7268 return this->got_;
7269 }
7270
7271 // Calculate value of _gp symbol.
7272
7273 template<int size, bool big_endian>
7274 void
7275 Target_mips<size, big_endian>::set_gp(Layout* layout, Symbol_table* symtab)
7276 {
7277 if (this->gp_ != NULL)
7278 return;
7279
7280 Output_data* section = layout->find_output_section(".got");
7281 if (section == NULL)
7282 {
7283 // If there is no .got section, gp should be based on .sdata.
7284 // TODO(sasa): This is probably not needed. This was needed for older
7285 // MIPS architectures which accessed both GOT and .sdata section using
7286 // gp-relative addressing. Modern Mips Linux ELF architectures don't
7287 // access .sdata using gp-relative addressing.
7288 for (Layout::Section_list::const_iterator
7289 p = layout->section_list().begin();
7290 p != layout->section_list().end();
7291 ++p)
7292 {
7293 if (strcmp((*p)->name(), ".sdata") == 0)
7294 {
7295 section = *p;
7296 break;
7297 }
7298 }
7299 }
7300
7301 Sized_symbol<size>* gp =
7302 static_cast<Sized_symbol<size>*>(symtab->lookup("_gp"));
7303 if (gp != NULL)
7304 {
7305 if (gp->source() != Symbol::IS_CONSTANT && section != NULL)
7306 gp->init_output_data(gp->name(), NULL, section, MIPS_GP_OFFSET, 0,
7307 elfcpp::STT_OBJECT,
7308 elfcpp::STB_GLOBAL,
7309 elfcpp::STV_DEFAULT, 0,
7310 false, false);
7311 this->gp_ = gp;
7312 }
7313 else if (section != NULL)
7314 {
7315 gp = static_cast<Sized_symbol<size>*>(symtab->define_in_output_data(
7316 "_gp", NULL, Symbol_table::PREDEFINED,
7317 section, MIPS_GP_OFFSET, 0,
7318 elfcpp::STT_OBJECT,
7319 elfcpp::STB_GLOBAL,
7320 elfcpp::STV_DEFAULT,
7321 0, false, false));
7322 this->gp_ = gp;
7323 }
7324 }
7325
7326 // Set the dynamic symbol indexes. INDEX is the index of the first
7327 // global dynamic symbol. Pointers to the symbols are stored into the
7328 // vector SYMS. The names are added to DYNPOOL. This returns an
7329 // updated dynamic symbol index.
7330
7331 template<int size, bool big_endian>
7332 unsigned int
7333 Target_mips<size, big_endian>::do_set_dynsym_indexes(
7334 std::vector<Symbol*>* dyn_symbols, unsigned int index,
7335 std::vector<Symbol*>* syms, Stringpool* dynpool,
7336 Versions* versions, Symbol_table* symtab) const
7337 {
7338 std::vector<Symbol*> non_got_symbols;
7339 std::vector<Symbol*> got_symbols;
7340
7341 reorder_dyn_symbols<size, big_endian>(dyn_symbols, &non_got_symbols,
7342 &got_symbols);
7343
7344 for (std::vector<Symbol*>::iterator p = non_got_symbols.begin();
7345 p != non_got_symbols.end();
7346 ++p)
7347 {
7348 Symbol* sym = *p;
7349
7350 // Note that SYM may already have a dynamic symbol index, since
7351 // some symbols appear more than once in the symbol table, with
7352 // and without a version.
7353
7354 if (!sym->has_dynsym_index())
7355 {
7356 sym->set_dynsym_index(index);
7357 ++index;
7358 syms->push_back(sym);
7359 dynpool->add(sym->name(), false, NULL);
7360
7361 // Record any version information.
7362 if (sym->version() != NULL)
7363 versions->record_version(symtab, dynpool, sym);
7364
7365 // If the symbol is defined in a dynamic object and is
7366 // referenced in a regular object, then mark the dynamic
7367 // object as needed. This is used to implement --as-needed.
7368 if (sym->is_from_dynobj() && sym->in_reg())
7369 sym->object()->set_is_needed();
7370 }
7371 }
7372
7373 for (std::vector<Symbol*>::iterator p = got_symbols.begin();
7374 p != got_symbols.end();
7375 ++p)
7376 {
7377 Symbol* sym = *p;
7378 if (!sym->has_dynsym_index())
7379 {
7380 // Record any version information.
7381 if (sym->version() != NULL)
7382 versions->record_version(symtab, dynpool, sym);
7383 }
7384 }
7385
7386 index = versions->finalize(symtab, index, syms);
7387
7388 int got_sym_count = 0;
7389 for (std::vector<Symbol*>::iterator p = got_symbols.begin();
7390 p != got_symbols.end();
7391 ++p)
7392 {
7393 Symbol* sym = *p;
7394
7395 if (!sym->has_dynsym_index())
7396 {
7397 ++got_sym_count;
7398 sym->set_dynsym_index(index);
7399 ++index;
7400 syms->push_back(sym);
7401 dynpool->add(sym->name(), false, NULL);
7402
7403 // If the symbol is defined in a dynamic object and is
7404 // referenced in a regular object, then mark the dynamic
7405 // object as needed. This is used to implement --as-needed.
7406 if (sym->is_from_dynobj() && sym->in_reg())
7407 sym->object()->set_is_needed();
7408 }
7409 }
7410
7411 // Set index of the first symbol that has .got entry.
7412 this->got_->set_first_global_got_dynsym_index(
7413 got_sym_count > 0 ? index - got_sym_count : -1U);
7414
7415 if (this->mips_stubs_ != NULL)
7416 this->mips_stubs_->set_dynsym_count(index);
7417
7418 return index;
7419 }
7420
7421 // Create a PLT entry for a global symbol referenced by r_type relocation.
7422
7423 template<int size, bool big_endian>
7424 void
7425 Target_mips<size, big_endian>::make_plt_entry(Symbol_table* symtab,
7426 Layout* layout,
7427 Mips_symbol<size>* gsym,
7428 unsigned int r_type)
7429 {
7430 if (gsym->has_lazy_stub() || gsym->has_plt_offset())
7431 return;
7432
7433 if (this->plt_ == NULL)
7434 {
7435 // Create the GOT section first.
7436 this->got_section(symtab, layout);
7437
7438 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
7439 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
7440 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
7441 this->got_plt_, ORDER_DATA, false);
7442
7443 // The first two entries are reserved.
7444 this->got_plt_->set_current_data_size(2 * size/8);
7445
7446 this->plt_ = new Mips_output_data_plt<size, big_endian>(layout,
7447 this->got_plt_,
7448 this);
7449 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7450 (elfcpp::SHF_ALLOC
7451 | elfcpp::SHF_EXECINSTR),
7452 this->plt_, ORDER_PLT, false);
7453 }
7454
7455 this->plt_->add_entry(gsym, r_type);
7456 }
7457
7458
7459 // Get the .MIPS.stubs section, creating it if necessary.
7460
7461 template<int size, bool big_endian>
7462 Mips_output_data_mips_stubs<size, big_endian>*
7463 Target_mips<size, big_endian>::mips_stubs_section(Layout* layout)
7464 {
7465 if (this->mips_stubs_ == NULL)
7466 {
7467 this->mips_stubs_ =
7468 new Mips_output_data_mips_stubs<size, big_endian>(this);
7469 layout->add_output_section_data(".MIPS.stubs", elfcpp::SHT_PROGBITS,
7470 (elfcpp::SHF_ALLOC
7471 | elfcpp::SHF_EXECINSTR),
7472 this->mips_stubs_, ORDER_PLT, false);
7473 }
7474 return this->mips_stubs_;
7475 }
7476
7477 // Get the LA25 stub section, creating it if necessary.
7478
7479 template<int size, bool big_endian>
7480 Mips_output_data_la25_stub<size, big_endian>*
7481 Target_mips<size, big_endian>::la25_stub_section(Layout* layout)
7482 {
7483 if (this->la25_stub_ == NULL)
7484 {
7485 this->la25_stub_ = new Mips_output_data_la25_stub<size, big_endian>();
7486 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
7487 (elfcpp::SHF_ALLOC
7488 | elfcpp::SHF_EXECINSTR),
7489 this->la25_stub_, ORDER_TEXT, false);
7490 }
7491 return this->la25_stub_;
7492 }
7493
7494 // Process the relocations to determine unreferenced sections for
7495 // garbage collection.
7496
7497 template<int size, bool big_endian>
7498 void
7499 Target_mips<size, big_endian>::gc_process_relocs(
7500 Symbol_table* symtab,
7501 Layout* layout,
7502 Sized_relobj_file<size, big_endian>* object,
7503 unsigned int data_shndx,
7504 unsigned int,
7505 const unsigned char* prelocs,
7506 size_t reloc_count,
7507 Output_section* output_section,
7508 bool needs_special_offset_handling,
7509 size_t local_symbol_count,
7510 const unsigned char* plocal_symbols)
7511 {
7512 typedef Target_mips<size, big_endian> Mips;
7513 typedef typename Target_mips<size, big_endian>::Scan Scan;
7514
7515 gold::gc_process_relocs<size, big_endian, Mips, elfcpp::SHT_REL, Scan,
7516 typename Target_mips::Relocatable_size_for_reloc>(
7517 symtab,
7518 layout,
7519 this,
7520 object,
7521 data_shndx,
7522 prelocs,
7523 reloc_count,
7524 output_section,
7525 needs_special_offset_handling,
7526 local_symbol_count,
7527 plocal_symbols);
7528 }
7529
7530 // Scan relocations for a section.
7531
7532 template<int size, bool big_endian>
7533 void
7534 Target_mips<size, big_endian>::scan_relocs(
7535 Symbol_table* symtab,
7536 Layout* layout,
7537 Sized_relobj_file<size, big_endian>* object,
7538 unsigned int data_shndx,
7539 unsigned int sh_type,
7540 const unsigned char* prelocs,
7541 size_t reloc_count,
7542 Output_section* output_section,
7543 bool needs_special_offset_handling,
7544 size_t local_symbol_count,
7545 const unsigned char* plocal_symbols)
7546 {
7547 typedef Target_mips<size, big_endian> Mips;
7548 typedef typename Target_mips<size, big_endian>::Scan Scan;
7549
7550 if (sh_type == elfcpp::SHT_REL)
7551 gold::scan_relocs<size, big_endian, Mips, elfcpp::SHT_REL, Scan>(
7552 symtab,
7553 layout,
7554 this,
7555 object,
7556 data_shndx,
7557 prelocs,
7558 reloc_count,
7559 output_section,
7560 needs_special_offset_handling,
7561 local_symbol_count,
7562 plocal_symbols);
7563 else if (sh_type == elfcpp::SHT_RELA)
7564 gold::scan_relocs<size, big_endian, Mips, elfcpp::SHT_RELA, Scan>(
7565 symtab,
7566 layout,
7567 this,
7568 object,
7569 data_shndx,
7570 prelocs,
7571 reloc_count,
7572 output_section,
7573 needs_special_offset_handling,
7574 local_symbol_count,
7575 plocal_symbols);
7576 }
7577
7578 template<int size, bool big_endian>
7579 bool
7580 Target_mips<size, big_endian>::mips_32bit_flags(elfcpp::Elf_Word flags)
7581 {
7582 return ((flags & elfcpp::EF_MIPS_32BITMODE) != 0
7583 || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_O32
7584 || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_EABI32
7585 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_1
7586 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_2
7587 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32
7588 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32R2);
7589 }
7590
7591 // Return the MACH for a MIPS e_flags value.
7592 template<int size, bool big_endian>
7593 unsigned int
7594 Target_mips<size, big_endian>::elf_mips_mach(elfcpp::Elf_Word flags)
7595 {
7596 switch (flags & elfcpp::EF_MIPS_MACH)
7597 {
7598 case elfcpp::E_MIPS_MACH_3900:
7599 return mach_mips3900;
7600
7601 case elfcpp::E_MIPS_MACH_4010:
7602 return mach_mips4010;
7603
7604 case elfcpp::E_MIPS_MACH_4100:
7605 return mach_mips4100;
7606
7607 case elfcpp::E_MIPS_MACH_4111:
7608 return mach_mips4111;
7609
7610 case elfcpp::E_MIPS_MACH_4120:
7611 return mach_mips4120;
7612
7613 case elfcpp::E_MIPS_MACH_4650:
7614 return mach_mips4650;
7615
7616 case elfcpp::E_MIPS_MACH_5400:
7617 return mach_mips5400;
7618
7619 case elfcpp::E_MIPS_MACH_5500:
7620 return mach_mips5500;
7621
7622 case elfcpp::E_MIPS_MACH_9000:
7623 return mach_mips9000;
7624
7625 case elfcpp::E_MIPS_MACH_SB1:
7626 return mach_mips_sb1;
7627
7628 case elfcpp::E_MIPS_MACH_LS2E:
7629 return mach_mips_loongson_2e;
7630
7631 case elfcpp::E_MIPS_MACH_LS2F:
7632 return mach_mips_loongson_2f;
7633
7634 case elfcpp::E_MIPS_MACH_LS3A:
7635 return mach_mips_loongson_3a;
7636
7637 case elfcpp::E_MIPS_MACH_OCTEON2:
7638 return mach_mips_octeon2;
7639
7640 case elfcpp::E_MIPS_MACH_OCTEON:
7641 return mach_mips_octeon;
7642
7643 case elfcpp::E_MIPS_MACH_XLR:
7644 return mach_mips_xlr;
7645
7646 default:
7647 switch (flags & elfcpp::EF_MIPS_ARCH)
7648 {
7649 default:
7650 case elfcpp::E_MIPS_ARCH_1:
7651 return mach_mips3000;
7652
7653 case elfcpp::E_MIPS_ARCH_2:
7654 return mach_mips6000;
7655
7656 case elfcpp::E_MIPS_ARCH_3:
7657 return mach_mips4000;
7658
7659 case elfcpp::E_MIPS_ARCH_4:
7660 return mach_mips8000;
7661
7662 case elfcpp::E_MIPS_ARCH_5:
7663 return mach_mips5;
7664
7665 case elfcpp::E_MIPS_ARCH_32:
7666 return mach_mipsisa32;
7667
7668 case elfcpp::E_MIPS_ARCH_64:
7669 return mach_mipsisa64;
7670
7671 case elfcpp::E_MIPS_ARCH_32R2:
7672 return mach_mipsisa32r2;
7673
7674 case elfcpp::E_MIPS_ARCH_64R2:
7675 return mach_mipsisa64r2;
7676 }
7677 }
7678
7679 return 0;
7680 }
7681
7682 // Check whether machine EXTENSION is an extension of machine BASE.
7683 template<int size, bool big_endian>
7684 bool
7685 Target_mips<size, big_endian>::mips_mach_extends(unsigned int base,
7686 unsigned int extension)
7687 {
7688 if (extension == base)
7689 return true;
7690
7691 if ((base == mach_mipsisa32)
7692 && this->mips_mach_extends(mach_mipsisa64, extension))
7693 return true;
7694
7695 if ((base == mach_mipsisa32r2)
7696 && this->mips_mach_extends(mach_mipsisa64r2, extension))
7697 return true;
7698
7699 for (unsigned int i = 0; i < this->mips_mach_extensions_.size(); ++i)
7700 if (extension == this->mips_mach_extensions_[i].first)
7701 {
7702 extension = this->mips_mach_extensions_[i].second;
7703 if (extension == base)
7704 return true;
7705 }
7706
7707 return false;
7708 }
7709
7710 template<int size, bool big_endian>
7711 void
7712 Target_mips<size, big_endian>::merge_processor_specific_flags(
7713 const std::string& name, elfcpp::Elf_Word in_flags,
7714 unsigned char in_ei_class, bool dyn_obj)
7715 {
7716 // If flags are not set yet, just copy them.
7717 if (!this->are_processor_specific_flags_set())
7718 {
7719 this->set_processor_specific_flags(in_flags);
7720 this->ei_class_ = in_ei_class;
7721 this->mach_ = this->elf_mips_mach(in_flags);
7722 return;
7723 }
7724
7725 elfcpp::Elf_Word new_flags = in_flags;
7726 elfcpp::Elf_Word old_flags = this->processor_specific_flags();
7727 elfcpp::Elf_Word merged_flags = this->processor_specific_flags();
7728 merged_flags |= new_flags & elfcpp::EF_MIPS_NOREORDER;
7729
7730 // Check flag compatibility.
7731 new_flags &= ~elfcpp::EF_MIPS_NOREORDER;
7732 old_flags &= ~elfcpp::EF_MIPS_NOREORDER;
7733
7734 // Some IRIX 6 BSD-compatibility objects have this bit set. It
7735 // doesn't seem to matter.
7736 new_flags &= ~elfcpp::EF_MIPS_XGOT;
7737 old_flags &= ~elfcpp::EF_MIPS_XGOT;
7738
7739 // MIPSpro generates ucode info in n64 objects. Again, we should
7740 // just be able to ignore this.
7741 new_flags &= ~elfcpp::EF_MIPS_UCODE;
7742 old_flags &= ~elfcpp::EF_MIPS_UCODE;
7743
7744 // DSOs should only be linked with CPIC code.
7745 if (dyn_obj)
7746 new_flags |= elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC;
7747
7748 if (new_flags == old_flags)
7749 {
7750 this->set_processor_specific_flags(merged_flags);
7751 return;
7752 }
7753
7754 if (((new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0)
7755 != ((old_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0))
7756 gold_warning(_("%s: linking abicalls files with non-abicalls files"),
7757 name.c_str());
7758
7759 if (new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC))
7760 merged_flags |= elfcpp::EF_MIPS_CPIC;
7761 if (!(new_flags & elfcpp::EF_MIPS_PIC))
7762 merged_flags &= ~elfcpp::EF_MIPS_PIC;
7763
7764 new_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);
7765 old_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);
7766
7767 // Compare the ISAs.
7768 if (mips_32bit_flags(old_flags) != mips_32bit_flags(new_flags))
7769 gold_error(_("%s: linking 32-bit code with 64-bit code"), name.c_str());
7770 else if (!this->mips_mach_extends(this->elf_mips_mach(in_flags), this->mach_))
7771 {
7772 // Output ISA isn't the same as, or an extension of, input ISA.
7773 if (this->mips_mach_extends(this->mach_, this->elf_mips_mach(in_flags)))
7774 {
7775 // Copy the architecture info from input object to output. Also copy
7776 // the 32-bit flag (if set) so that we continue to recognise
7777 // output as a 32-bit binary.
7778 this->mach_ = this->elf_mips_mach(in_flags);
7779 merged_flags &= ~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH);
7780 merged_flags |= (new_flags & (elfcpp::EF_MIPS_ARCH
7781 | elfcpp::EF_MIPS_MACH | elfcpp::EF_MIPS_32BITMODE));
7782
7783 // Copy across the ABI flags if output doesn't use them
7784 // and if that was what caused us to treat input object as 32-bit.
7785 if ((old_flags & elfcpp::EF_MIPS_ABI) == 0
7786 && this->mips_32bit_flags(new_flags)
7787 && !this->mips_32bit_flags(new_flags & ~elfcpp::EF_MIPS_ABI))
7788 merged_flags |= new_flags & elfcpp::EF_MIPS_ABI;
7789 }
7790 else
7791 // The ISAs aren't compatible.
7792 gold_error(_("%s: linking %s module with previous %s modules"),
7793 name.c_str(), this->elf_mips_mach_name(in_flags),
7794 this->elf_mips_mach_name(merged_flags));
7795 }
7796
7797 new_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
7798 | elfcpp::EF_MIPS_32BITMODE));
7799 old_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
7800 | elfcpp::EF_MIPS_32BITMODE));
7801
7802 // Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it does set
7803 // EI_CLASS differently from any 32-bit ABI.
7804 if ((new_flags & elfcpp::EF_MIPS_ABI) != (old_flags & elfcpp::EF_MIPS_ABI)
7805 || (in_ei_class != this->ei_class_))
7806 {
7807 // Only error if both are set (to different values).
7808 if (((new_flags & elfcpp::EF_MIPS_ABI)
7809 && (old_flags & elfcpp::EF_MIPS_ABI))
7810 || (in_ei_class != this->ei_class_))
7811 gold_error(_("%s: ABI mismatch: linking %s module with "
7812 "previous %s modules"), name.c_str(),
7813 this->elf_mips_abi_name(in_flags, in_ei_class),
7814 this->elf_mips_abi_name(merged_flags, this->ei_class_));
7815
7816 new_flags &= ~elfcpp::EF_MIPS_ABI;
7817 old_flags &= ~elfcpp::EF_MIPS_ABI;
7818 }
7819
7820 // Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
7821 // and allow arbitrary mixing of the remaining ASEs (retain the union).
7822 if ((new_flags & elfcpp::EF_MIPS_ARCH_ASE)
7823 != (old_flags & elfcpp::EF_MIPS_ARCH_ASE))
7824 {
7825 int old_micro = old_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
7826 int new_micro = new_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
7827 int old_m16 = old_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
7828 int new_m16 = new_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
7829 int micro_mis = old_m16 && new_micro;
7830 int m16_mis = old_micro && new_m16;
7831
7832 if (m16_mis || micro_mis)
7833 gold_error(_("%s: ASE mismatch: linking %s module with "
7834 "previous %s modules"), name.c_str(),
7835 m16_mis ? "MIPS16" : "microMIPS",
7836 m16_mis ? "microMIPS" : "MIPS16");
7837
7838 merged_flags |= new_flags & elfcpp::EF_MIPS_ARCH_ASE;
7839
7840 new_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
7841 old_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
7842 }
7843
7844 // Warn about any other mismatches.
7845 if (new_flags != old_flags)
7846 gold_error(_("%s: uses different e_flags (0x%x) fields than previous "
7847 "modules (0x%x)"), name.c_str(), new_flags, old_flags);
7848
7849 this->set_processor_specific_flags(merged_flags);
7850 }
7851
7852 // Adjust ELF file header.
7853
7854 template<int size, bool big_endian>
7855 void
7856 Target_mips<size, big_endian>::do_adjust_elf_header(
7857 unsigned char* view,
7858 int len)
7859 {
7860 gold_assert(len == elfcpp::Elf_sizes<size>::ehdr_size);
7861
7862 elfcpp::Ehdr<size, big_endian> ehdr(view);
7863 unsigned char e_ident[elfcpp::EI_NIDENT];
7864 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
7865
7866 e_ident[elfcpp::EI_CLASS] = this->ei_class_;
7867
7868 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
7869 oehdr.put_e_ident(e_ident);
7870 if (this->entry_symbol_is_compressed_)
7871 oehdr.put_e_entry(ehdr.get_e_entry() + 1);
7872 }
7873
7874 // do_make_elf_object to override the same function in the base class.
7875 // We need to use a target-specific sub-class of
7876 // Sized_relobj_file<size, big_endian> to store Mips specific information.
7877 // Hence we need to have our own ELF object creation.
7878
7879 template<int size, bool big_endian>
7880 Object*
7881 Target_mips<size, big_endian>::do_make_elf_object(
7882 const std::string& name,
7883 Input_file* input_file,
7884 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
7885 {
7886 int et = ehdr.get_e_type();
7887 // ET_EXEC files are valid input for --just-symbols/-R,
7888 // and we treat them as relocatable objects.
7889 if (et == elfcpp::ET_REL
7890 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
7891 {
7892 Mips_relobj<size, big_endian>* obj =
7893 new Mips_relobj<size, big_endian>(name, input_file, offset, ehdr);
7894 obj->setup();
7895 return obj;
7896 }
7897 else if (et == elfcpp::ET_DYN)
7898 {
7899 // TODO(sasa): Should we create Mips_dynobj?
7900 return Target::do_make_elf_object(name, input_file, offset, ehdr);
7901 }
7902 else
7903 {
7904 gold_error(_("%s: unsupported ELF file type %d"),
7905 name.c_str(), et);
7906 return NULL;
7907 }
7908 }
7909
7910 // Finalize the sections.
7911
7912 template <int size, bool big_endian>
7913 void
7914 Target_mips<size, big_endian>::do_finalize_sections(Layout* layout,
7915 const Input_objects* input_objects,
7916 Symbol_table* symtab)
7917 {
7918 // Add +1 to MIPS16 and microMIPS init_ and _fini symbols so that DT_INIT and
7919 // DT_FINI have correct values.
7920 Mips_symbol<size>* init = static_cast<Mips_symbol<size>*>(
7921 symtab->lookup(parameters->options().init()));
7922 if (init != NULL && (init->is_mips16() || init->is_micromips()))
7923 init->set_value(init->value() | 1);
7924 Mips_symbol<size>* fini = static_cast<Mips_symbol<size>*>(
7925 symtab->lookup(parameters->options().fini()));
7926 if (fini != NULL && (fini->is_mips16() || fini->is_micromips()))
7927 fini->set_value(fini->value() | 1);
7928
7929 // Check whether the entry symbol is mips16 or micromips. This is needed to
7930 // adjust entry address in ELF header.
7931 Mips_symbol<size>* entry =
7932 static_cast<Mips_symbol<size>*>(symtab->lookup(this->entry_symbol_name()));
7933 this->entry_symbol_is_compressed_ = (entry != NULL && (entry->is_mips16()
7934 || entry->is_micromips()));
7935
7936 if (!parameters->doing_static_link()
7937 && (strcmp(parameters->options().hash_style(), "gnu") == 0
7938 || strcmp(parameters->options().hash_style(), "both") == 0))
7939 {
7940 // .gnu.hash and the MIPS ABI require .dynsym to be sorted in different
7941 // ways. .gnu.hash needs symbols to be grouped by hash code whereas the
7942 // MIPS ABI requires a mapping between the GOT and the symbol table.
7943 gold_error(".gnu.hash is incompatible with the MIPS ABI");
7944 }
7945
7946 // Check whether the final section that was scanned has HI16 or GOT16
7947 // relocations without the corresponding LO16 part.
7948 if (this->got16_addends_.size() > 0)
7949 gold_error("Can't find matching LO16 reloc");
7950
7951 // Set _gp value.
7952 this->set_gp(layout, symtab);
7953
7954 // Check for any mips16 stub sections that we can discard.
7955 if (!parameters->options().relocatable())
7956 {
7957 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
7958 p != input_objects->relobj_end();
7959 ++p)
7960 {
7961 Mips_relobj<size, big_endian>* object =
7962 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
7963 object->discard_mips16_stub_sections(symtab);
7964 }
7965 }
7966
7967 // Merge processor-specific flags.
7968 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
7969 p != input_objects->relobj_end();
7970 ++p)
7971 {
7972 Mips_relobj<size, big_endian>* relobj =
7973 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
7974
7975 Input_file::Format format = relobj->input_file()->format();
7976 if (format == Input_file::FORMAT_ELF)
7977 {
7978 // Read processor-specific flags in ELF file header.
7979 const unsigned char* pehdr = relobj->get_view(
7980 elfcpp::file_header_offset,
7981 elfcpp::Elf_sizes<size>::ehdr_size,
7982 true, false);
7983
7984 elfcpp::Ehdr<size, big_endian> ehdr(pehdr);
7985 elfcpp::Elf_Word in_flags = ehdr.get_e_flags();
7986 unsigned char ei_class = ehdr.get_e_ident()[elfcpp::EI_CLASS];
7987
7988 this->merge_processor_specific_flags(relobj->name(), in_flags,
7989 ei_class, false);
7990 }
7991 }
7992
7993 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
7994 p != input_objects->dynobj_end();
7995 ++p)
7996 {
7997 Sized_dynobj<size, big_endian>* dynobj =
7998 static_cast<Sized_dynobj<size, big_endian>*>(*p);
7999
8000 // Read processor-specific flags.
8001 const unsigned char* pehdr = dynobj->get_view(elfcpp::file_header_offset,
8002 elfcpp::Elf_sizes<size>::ehdr_size,
8003 true, false);
8004
8005 elfcpp::Ehdr<size, big_endian> ehdr(pehdr);
8006 elfcpp::Elf_Word in_flags = ehdr.get_e_flags();
8007 unsigned char ei_class = ehdr.get_e_ident()[elfcpp::EI_CLASS];
8008
8009 this->merge_processor_specific_flags(dynobj->name(), in_flags, ei_class,
8010 true);
8011 }
8012
8013 // Merge .reginfo contents of input objects.
8014 Valtype gprmask = 0;
8015 Valtype cprmask1 = 0;
8016 Valtype cprmask2 = 0;
8017 Valtype cprmask3 = 0;
8018 Valtype cprmask4 = 0;
8019 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
8020 p != input_objects->relobj_end();
8021 ++p)
8022 {
8023 Mips_relobj<size, big_endian>* relobj =
8024 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
8025
8026 gprmask |= relobj->gprmask();
8027 cprmask1 |= relobj->cprmask1();
8028 cprmask2 |= relobj->cprmask2();
8029 cprmask3 |= relobj->cprmask3();
8030 cprmask4 |= relobj->cprmask4();
8031 }
8032
8033 if (this->plt_ != NULL)
8034 {
8035 // Set final PLT offsets for symbols.
8036 this->plt_section()->set_plt_offsets();
8037
8038 // Define _PROCEDURE_LINKAGE_TABLE_ at the start of the .plt section.
8039 // Set STO_MICROMIPS flag if the output has microMIPS code, but only if
8040 // there are no standard PLT entries present.
8041 unsigned char nonvis = 0;
8042 if (this->is_output_micromips()
8043 && !this->plt_section()->has_standard_entries())
8044 nonvis = elfcpp::STO_MICROMIPS >> 2;
8045 symtab->define_in_output_data("_PROCEDURE_LINKAGE_TABLE_", NULL,
8046 Symbol_table::PREDEFINED,
8047 this->plt_,
8048 0, 0, elfcpp::STT_FUNC,
8049 elfcpp::STB_LOCAL,
8050 elfcpp::STV_DEFAULT, nonvis,
8051 false, false);
8052 }
8053
8054 if (this->mips_stubs_ != NULL)
8055 {
8056 // Define _MIPS_STUBS_ at the start of the .MIPS.stubs section.
8057 unsigned char nonvis = 0;
8058 if (this->is_output_micromips())
8059 nonvis = elfcpp::STO_MICROMIPS >> 2;
8060 symtab->define_in_output_data("_MIPS_STUBS_", NULL,
8061 Symbol_table::PREDEFINED,
8062 this->mips_stubs_,
8063 0, 0, elfcpp::STT_FUNC,
8064 elfcpp::STB_LOCAL,
8065 elfcpp::STV_DEFAULT, nonvis,
8066 false, false);
8067 }
8068
8069 if (!parameters->options().relocatable() && !parameters->doing_static_link())
8070 // In case there is no .got section, create one.
8071 this->got_section(symtab, layout);
8072
8073 // Emit any relocs we saved in an attempt to avoid generating COPY
8074 // relocs.
8075 if (this->copy_relocs_.any_saved_relocs())
8076 this->copy_relocs_.emit_mips(this->rel_dyn_section(layout), symtab, layout,
8077 this);
8078
8079 // Emit dynamic relocs.
8080 for (typename std::vector<Dyn_reloc>::iterator p = this->dyn_relocs_.begin();
8081 p != this->dyn_relocs_.end();
8082 ++p)
8083 p->emit(this->rel_dyn_section(layout), this->got_section(), symtab);
8084
8085 if (this->has_got_section())
8086 this->got_section()->lay_out_got(layout, symtab, input_objects);
8087
8088 if (this->mips_stubs_ != NULL)
8089 this->mips_stubs_->set_needs_dynsym_value();
8090
8091 // Check for functions that might need $25 to be valid on entry.
8092 // TODO(sasa): Can we do this without iterating over all symbols?
8093 typedef Symbol_visitor_check_symbols<size, big_endian> Symbol_visitor;
8094 symtab->for_all_symbols<size, Symbol_visitor>(Symbol_visitor(this, layout,
8095 symtab));
8096
8097 // Add NULL segment.
8098 if (!parameters->options().relocatable())
8099 layout->make_output_segment(elfcpp::PT_NULL, 0);
8100
8101 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
8102 p != layout->section_list().end();
8103 ++p)
8104 {
8105 if ((*p)->type() == elfcpp::SHT_MIPS_REGINFO)
8106 {
8107 Mips_output_section_reginfo<size, big_endian>* reginfo =
8108 Mips_output_section_reginfo<size, big_endian>::
8109 as_mips_output_section_reginfo(*p);
8110
8111 reginfo->set_masks(gprmask, cprmask1, cprmask2, cprmask3, cprmask4);
8112
8113 if (!parameters->options().relocatable())
8114 {
8115 Output_segment* reginfo_segment =
8116 layout->make_output_segment(elfcpp::PT_MIPS_REGINFO,
8117 elfcpp::PF_R);
8118 reginfo_segment->add_output_section_to_nonload(reginfo,
8119 elfcpp::PF_R);
8120 }
8121 }
8122 }
8123
8124 // Fill in some more dynamic tags.
8125 // TODO(sasa): Add more dynamic tags.
8126 const Reloc_section* rel_plt = (this->plt_ == NULL
8127 ? NULL : this->plt_->rel_plt());
8128 layout->add_target_dynamic_tags(true, this->got_, rel_plt,
8129 this->rel_dyn_, true, false);
8130
8131 Output_data_dynamic* const odyn = layout->dynamic_data();
8132 if (odyn != NULL
8133 && !parameters->options().relocatable()
8134 && !parameters->doing_static_link())
8135 {
8136 unsigned int d_val;
8137 // This element holds a 32-bit version id for the Runtime
8138 // Linker Interface. This will start at integer value 1.
8139 d_val = 0x01;
8140 odyn->add_constant(elfcpp::DT_MIPS_RLD_VERSION, d_val);
8141
8142 // Dynamic flags
8143 d_val = elfcpp::RHF_NOTPOT;
8144 odyn->add_constant(elfcpp::DT_MIPS_FLAGS, d_val);
8145
8146 // Save layout for using when emiting custom dynamic tags.
8147 this->layout_ = layout;
8148
8149 // This member holds the base address of the segment.
8150 odyn->add_custom(elfcpp::DT_MIPS_BASE_ADDRESS);
8151
8152 // This member holds the number of entries in the .dynsym section.
8153 odyn->add_custom(elfcpp::DT_MIPS_SYMTABNO);
8154
8155 // This member holds the index of the first dynamic symbol
8156 // table entry that corresponds to an entry in the global offset table.
8157 odyn->add_custom(elfcpp::DT_MIPS_GOTSYM);
8158
8159 // This member holds the number of local GOT entries.
8160 odyn->add_constant(elfcpp::DT_MIPS_LOCAL_GOTNO,
8161 this->got_->get_local_gotno());
8162
8163 if (this->plt_ != NULL)
8164 // DT_MIPS_PLTGOT dynamic tag
8165 odyn->add_section_address(elfcpp::DT_MIPS_PLTGOT, this->got_plt_);
8166 }
8167 }
8168
8169 // Get the custom dynamic tag value.
8170 template<int size, bool big_endian>
8171 unsigned int
8172 Target_mips<size, big_endian>::do_dynamic_tag_custom_value(elfcpp::DT tag) const
8173 {
8174 switch (tag)
8175 {
8176 case elfcpp::DT_MIPS_BASE_ADDRESS:
8177 {
8178 // The base address of the segment.
8179 // At this point, the segment list has been sorted into final order,
8180 // so just return vaddr of the first readable PT_LOAD segment.
8181 Output_segment* seg =
8182 this->layout_->find_output_segment(elfcpp::PT_LOAD, elfcpp::PF_R, 0);
8183 gold_assert(seg != NULL);
8184 return seg->vaddr();
8185 }
8186
8187 case elfcpp::DT_MIPS_SYMTABNO:
8188 // The number of entries in the .dynsym section.
8189 return this->get_dt_mips_symtabno();
8190
8191 case elfcpp::DT_MIPS_GOTSYM:
8192 {
8193 // The index of the first dynamic symbol table entry that corresponds
8194 // to an entry in the GOT.
8195 if (this->got_->first_global_got_dynsym_index() != -1U)
8196 return this->got_->first_global_got_dynsym_index();
8197 else
8198 // In case if we don't have global GOT symbols we default to setting
8199 // DT_MIPS_GOTSYM to the same value as DT_MIPS_SYMTABNO.
8200 return this->get_dt_mips_symtabno();
8201 }
8202
8203 default:
8204 gold_error(_("Unknown dynamic tag 0x%x"), (unsigned int)tag);
8205 }
8206
8207 return (unsigned int)-1;
8208 }
8209
8210 // Relocate section data.
8211
8212 template<int size, bool big_endian>
8213 void
8214 Target_mips<size, big_endian>::relocate_section(
8215 const Relocate_info<size, big_endian>* relinfo,
8216 unsigned int sh_type,
8217 const unsigned char* prelocs,
8218 size_t reloc_count,
8219 Output_section* output_section,
8220 bool needs_special_offset_handling,
8221 unsigned char* view,
8222 Mips_address address,
8223 section_size_type view_size,
8224 const Reloc_symbol_changes* reloc_symbol_changes)
8225 {
8226 typedef Target_mips<size, big_endian> Mips;
8227 typedef typename Target_mips<size, big_endian>::Relocate Mips_relocate;
8228
8229 if (sh_type == elfcpp::SHT_REL)
8230 gold::relocate_section<size, big_endian, Mips, elfcpp::SHT_REL,
8231 Mips_relocate, gold::Default_comdat_behavior>(
8232 relinfo,
8233 this,
8234 prelocs,
8235 reloc_count,
8236 output_section,
8237 needs_special_offset_handling,
8238 view,
8239 address,
8240 view_size,
8241 reloc_symbol_changes);
8242 else if (sh_type == elfcpp::SHT_RELA)
8243 gold::relocate_section<size, big_endian, Mips, elfcpp::SHT_RELA,
8244 Mips_relocate, gold::Default_comdat_behavior>(
8245 relinfo,
8246 this,
8247 prelocs,
8248 reloc_count,
8249 output_section,
8250 needs_special_offset_handling,
8251 view,
8252 address,
8253 view_size,
8254 reloc_symbol_changes);
8255 }
8256
8257 // Return the size of a relocation while scanning during a relocatable
8258 // link.
8259
8260 template<int size, bool big_endian>
8261 unsigned int
8262 Target_mips<size, big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
8263 unsigned int r_type,
8264 Relobj* object)
8265 {
8266 switch (r_type)
8267 {
8268 case elfcpp::R_MIPS_NONE:
8269 case elfcpp::R_MIPS_TLS_DTPMOD64:
8270 case elfcpp::R_MIPS_TLS_DTPREL64:
8271 case elfcpp::R_MIPS_TLS_TPREL64:
8272 return 0;
8273
8274 case elfcpp::R_MIPS_32:
8275 case elfcpp::R_MIPS_TLS_DTPMOD32:
8276 case elfcpp::R_MIPS_TLS_DTPREL32:
8277 case elfcpp::R_MIPS_TLS_TPREL32:
8278 case elfcpp::R_MIPS_REL32:
8279 case elfcpp::R_MIPS_PC32:
8280 case elfcpp::R_MIPS_GPREL32:
8281 case elfcpp::R_MIPS_JALR:
8282 return 4;
8283
8284 case elfcpp::R_MIPS_16:
8285 case elfcpp::R_MIPS_HI16:
8286 case elfcpp::R_MIPS_LO16:
8287 case elfcpp::R_MIPS_GPREL16:
8288 case elfcpp::R_MIPS16_HI16:
8289 case elfcpp::R_MIPS16_LO16:
8290 case elfcpp::R_MIPS_PC16:
8291 case elfcpp::R_MIPS_GOT16:
8292 case elfcpp::R_MIPS16_GOT16:
8293 case elfcpp::R_MIPS_CALL16:
8294 case elfcpp::R_MIPS16_CALL16:
8295 case elfcpp::R_MIPS_GOT_HI16:
8296 case elfcpp::R_MIPS_CALL_HI16:
8297 case elfcpp::R_MIPS_GOT_LO16:
8298 case elfcpp::R_MIPS_CALL_LO16:
8299 case elfcpp::R_MIPS_TLS_DTPREL_HI16:
8300 case elfcpp::R_MIPS_TLS_DTPREL_LO16:
8301 case elfcpp::R_MIPS_TLS_TPREL_HI16:
8302 case elfcpp::R_MIPS_TLS_TPREL_LO16:
8303 case elfcpp::R_MIPS16_GPREL:
8304 case elfcpp::R_MIPS_GOT_DISP:
8305 case elfcpp::R_MIPS_LITERAL:
8306 case elfcpp::R_MIPS_GOT_PAGE:
8307 case elfcpp::R_MIPS_GOT_OFST:
8308 case elfcpp::R_MIPS_TLS_GD:
8309 case elfcpp::R_MIPS_TLS_LDM:
8310 case elfcpp::R_MIPS_TLS_GOTTPREL:
8311 return 2;
8312
8313 // These relocations are not byte sized
8314 case elfcpp::R_MIPS_26:
8315 case elfcpp::R_MIPS16_26:
8316 return 4;
8317
8318 case elfcpp::R_MIPS_COPY:
8319 case elfcpp::R_MIPS_JUMP_SLOT:
8320 object->error(_("unexpected reloc %u in object file"), r_type);
8321 return 0;
8322
8323 default:
8324 object->error(_("unsupported reloc %u in object file"), r_type);
8325 return 0;
8326 }
8327 }
8328
8329 // Scan the relocs during a relocatable link.
8330
8331 template<int size, bool big_endian>
8332 void
8333 Target_mips<size, big_endian>::scan_relocatable_relocs(
8334 Symbol_table* symtab,
8335 Layout* layout,
8336 Sized_relobj_file<size, big_endian>* object,
8337 unsigned int data_shndx,
8338 unsigned int sh_type,
8339 const unsigned char* prelocs,
8340 size_t reloc_count,
8341 Output_section* output_section,
8342 bool needs_special_offset_handling,
8343 size_t local_symbol_count,
8344 const unsigned char* plocal_symbols,
8345 Relocatable_relocs* rr)
8346 {
8347 gold_assert(sh_type == elfcpp::SHT_REL);
8348
8349 typedef Mips_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
8350 Relocatable_size_for_reloc> Scan_relocatable_relocs;
8351
8352 gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_REL,
8353 Scan_relocatable_relocs>(
8354 symtab,
8355 layout,
8356 object,
8357 data_shndx,
8358 prelocs,
8359 reloc_count,
8360 output_section,
8361 needs_special_offset_handling,
8362 local_symbol_count,
8363 plocal_symbols,
8364 rr);
8365 }
8366
8367 // Emit relocations for a section.
8368
8369 template<int size, bool big_endian>
8370 void
8371 Target_mips<size, big_endian>::relocate_relocs(
8372 const Relocate_info<size, big_endian>* relinfo,
8373 unsigned int sh_type,
8374 const unsigned char* prelocs,
8375 size_t reloc_count,
8376 Output_section* output_section,
8377 typename elfcpp::Elf_types<size>::Elf_Off
8378 offset_in_output_section,
8379 unsigned char* view,
8380 Mips_address view_address,
8381 section_size_type view_size,
8382 unsigned char* reloc_view,
8383 section_size_type reloc_view_size)
8384 {
8385 gold_assert(sh_type == elfcpp::SHT_REL);
8386
8387 gold::relocate_relocs<size, big_endian, elfcpp::SHT_REL>(
8388 relinfo,
8389 prelocs,
8390 reloc_count,
8391 output_section,
8392 offset_in_output_section,
8393 view,
8394 view_address,
8395 view_size,
8396 reloc_view,
8397 reloc_view_size);
8398 }
8399
8400 // Perform target-specific processing in a relocatable link. This is
8401 // only used if we use the relocation strategy RELOC_SPECIAL.
8402
8403 template<int size, bool big_endian>
8404 void
8405 Target_mips<size, big_endian>::relocate_special_relocatable(
8406 const Relocate_info<size, big_endian>* relinfo,
8407 unsigned int sh_type,
8408 const unsigned char* preloc_in,
8409 size_t relnum,
8410 Output_section* output_section,
8411 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
8412 unsigned char* view,
8413 Mips_address view_address,
8414 section_size_type,
8415 unsigned char* preloc_out)
8416 {
8417 // We can only handle REL type relocation sections.
8418 gold_assert(sh_type == elfcpp::SHT_REL);
8419
8420 typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc
8421 Reltype;
8422 typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc_write
8423 Reltype_write;
8424
8425 typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;
8426
8427 const Mips_address invalid_address = static_cast<Mips_address>(0) - 1;
8428
8429 Mips_relobj<size, big_endian>* object =
8430 Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);
8431 const unsigned int local_count = object->local_symbol_count();
8432
8433 Reltype reloc(preloc_in);
8434 Reltype_write reloc_write(preloc_out);
8435
8436 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
8437 const unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
8438 const unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
8439
8440 // Get the new symbol index.
8441 // We only use RELOC_SPECIAL strategy in local relocations.
8442 gold_assert(r_sym < local_count);
8443
8444 // We are adjusting a section symbol. We need to find
8445 // the symbol table index of the section symbol for
8446 // the output section corresponding to input section
8447 // in which this symbol is defined.
8448 bool is_ordinary;
8449 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
8450 gold_assert(is_ordinary);
8451 Output_section* os = object->output_section(shndx);
8452 gold_assert(os != NULL);
8453 gold_assert(os->needs_symtab_index());
8454 unsigned int new_symndx = os->symtab_index();
8455
8456 // Get the new offset--the location in the output section where
8457 // this relocation should be applied.
8458
8459 Mips_address offset = reloc.get_r_offset();
8460 Mips_address new_offset;
8461 if (offset_in_output_section != invalid_address)
8462 new_offset = offset + offset_in_output_section;
8463 else
8464 {
8465 section_offset_type sot_offset =
8466 convert_types<section_offset_type, Mips_address>(offset);
8467 section_offset_type new_sot_offset =
8468 output_section->output_offset(object, relinfo->data_shndx,
8469 sot_offset);
8470 gold_assert(new_sot_offset != -1);
8471 new_offset = new_sot_offset;
8472 }
8473
8474 // In an object file, r_offset is an offset within the section.
8475 // In an executable or dynamic object, generated by
8476 // --emit-relocs, r_offset is an absolute address.
8477 if (!parameters->options().relocatable())
8478 {
8479 new_offset += view_address;
8480 if (offset_in_output_section != invalid_address)
8481 new_offset -= offset_in_output_section;
8482 }
8483
8484 reloc_write.put_r_offset(new_offset);
8485 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
8486
8487 // Handle the reloc addend.
8488 // The relocation uses a section symbol in the input file.
8489 // We are adjusting it to use a section symbol in the output
8490 // file. The input section symbol refers to some address in
8491 // the input section. We need the relocation in the output
8492 // file to refer to that same address. This adjustment to
8493 // the addend is the same calculation we use for a simple
8494 // absolute relocation for the input section symbol.
8495
8496 const Symbol_value<size>* psymval = object->local_symbol(r_sym);
8497
8498 unsigned char* paddend = view + offset;
8499 typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;
8500 switch (r_type)
8501 {
8502 case elfcpp::R_MIPS_26:
8503 reloc_status = Reloc_funcs::rel26(paddend, object, psymval,
8504 offset_in_output_section, true, 0, sh_type == elfcpp::SHT_REL, NULL,
8505 false /*TODO(sasa): cross mode jump*/, r_type, this->jal_to_bal());
8506 break;
8507
8508 default:
8509 gold_unreachable();
8510 }
8511
8512 // Report any errors.
8513 switch (reloc_status)
8514 {
8515 case Reloc_funcs::STATUS_OKAY:
8516 break;
8517 case Reloc_funcs::STATUS_OVERFLOW:
8518 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
8519 _("relocation overflow"));
8520 break;
8521 case Reloc_funcs::STATUS_BAD_RELOC:
8522 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
8523 _("unexpected opcode while processing relocation"));
8524 break;
8525 default:
8526 gold_unreachable();
8527 }
8528 }
8529
8530 // Optimize the TLS relocation type based on what we know about the
8531 // symbol. IS_FINAL is true if the final address of this symbol is
8532 // known at link time.
8533
8534 template<int size, bool big_endian>
8535 tls::Tls_optimization
8536 Target_mips<size, big_endian>::optimize_tls_reloc(bool, int)
8537 {
8538 // FIXME: Currently we do not do any TLS optimization.
8539 return tls::TLSOPT_NONE;
8540 }
8541
8542 // Scan a relocation for a local symbol.
8543
8544 template<int size, bool big_endian>
8545 inline void
8546 Target_mips<size, big_endian>::Scan::local(
8547 Symbol_table* symtab,
8548 Layout* layout,
8549 Target_mips<size, big_endian>* target,
8550 Sized_relobj_file<size, big_endian>* object,
8551 unsigned int data_shndx,
8552 Output_section* output_section,
8553 const elfcpp::Rela<size, big_endian>* rela,
8554 const elfcpp::Rel<size, big_endian>* rel,
8555 unsigned int rel_type,
8556 unsigned int r_type,
8557 const elfcpp::Sym<size, big_endian>& lsym,
8558 bool is_discarded)
8559 {
8560 if (is_discarded)
8561 return;
8562
8563 Mips_address r_offset;
8564 typename elfcpp::Elf_types<size>::Elf_WXword r_info;
8565 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
8566
8567 if (rel_type == elfcpp::SHT_RELA)
8568 {
8569 r_offset = rela->get_r_offset();
8570 r_info = rela->get_r_info();
8571 r_addend = rela->get_r_addend();
8572 }
8573 else
8574 {
8575 r_offset = rel->get_r_offset();
8576 r_info = rel->get_r_info();
8577 r_addend = 0;
8578 }
8579
8580 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
8581 Mips_relobj<size, big_endian>* mips_obj =
8582 Mips_relobj<size, big_endian>::as_mips_relobj(object);
8583
8584 if (mips_obj->is_mips16_stub_section(data_shndx))
8585 {
8586 mips_obj->get_mips16_stub_section(data_shndx)
8587 ->new_local_reloc_found(r_type, r_sym);
8588 }
8589
8590 if (r_type == elfcpp::R_MIPS_NONE)
8591 // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
8592 // mips16 stub.
8593 return;
8594
8595 if (!mips16_call_reloc(r_type)
8596 && !mips_obj->section_allows_mips16_refs(data_shndx))
8597 // This reloc would need to refer to a MIPS16 hard-float stub, if
8598 // there is one. We ignore MIPS16 stub sections and .pdr section when
8599 // looking for relocs that would need to refer to MIPS16 stubs.
8600 mips_obj->add_local_non_16bit_call(r_sym);
8601
8602 if (r_type == elfcpp::R_MIPS16_26
8603 && !mips_obj->section_allows_mips16_refs(data_shndx))
8604 mips_obj->add_local_16bit_call(r_sym);
8605
8606 switch (r_type)
8607 {
8608 case elfcpp::R_MIPS_GOT16:
8609 case elfcpp::R_MIPS_CALL16:
8610 case elfcpp::R_MIPS_CALL_HI16:
8611 case elfcpp::R_MIPS_CALL_LO16:
8612 case elfcpp::R_MIPS_GOT_HI16:
8613 case elfcpp::R_MIPS_GOT_LO16:
8614 case elfcpp::R_MIPS_GOT_PAGE:
8615 case elfcpp::R_MIPS_GOT_OFST:
8616 case elfcpp::R_MIPS_GOT_DISP:
8617 case elfcpp::R_MIPS_TLS_GOTTPREL:
8618 case elfcpp::R_MIPS_TLS_GD:
8619 case elfcpp::R_MIPS_TLS_LDM:
8620 case elfcpp::R_MIPS16_GOT16:
8621 case elfcpp::R_MIPS16_CALL16:
8622 case elfcpp::R_MIPS16_TLS_GOTTPREL:
8623 case elfcpp::R_MIPS16_TLS_GD:
8624 case elfcpp::R_MIPS16_TLS_LDM:
8625 case elfcpp::R_MICROMIPS_GOT16:
8626 case elfcpp::R_MICROMIPS_CALL16:
8627 case elfcpp::R_MICROMIPS_CALL_HI16:
8628 case elfcpp::R_MICROMIPS_CALL_LO16:
8629 case elfcpp::R_MICROMIPS_GOT_HI16:
8630 case elfcpp::R_MICROMIPS_GOT_LO16:
8631 case elfcpp::R_MICROMIPS_GOT_PAGE:
8632 case elfcpp::R_MICROMIPS_GOT_OFST:
8633 case elfcpp::R_MICROMIPS_GOT_DISP:
8634 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
8635 case elfcpp::R_MICROMIPS_TLS_GD:
8636 case elfcpp::R_MICROMIPS_TLS_LDM:
8637 // We need a GOT section.
8638 target->got_section(symtab, layout);
8639 break;
8640
8641 default:
8642 break;
8643 }
8644
8645 if (call_lo16_reloc(r_type)
8646 || got_lo16_reloc(r_type)
8647 || got_disp_reloc(r_type))
8648 {
8649 // We may need a local GOT entry for this relocation. We
8650 // don't count R_MIPS_GOT_PAGE because we can estimate the
8651 // maximum number of pages needed by looking at the size of
8652 // the segment. Similar comments apply to R_MIPS*_GOT16 and
8653 // R_MIPS*_CALL16. We don't count R_MIPS_GOT_HI16, or
8654 // R_MIPS_CALL_HI16 because these are always followed by an
8655 // R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.
8656 Mips_output_data_got<size, big_endian>* got =
8657 target->got_section(symtab, layout);
8658 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
8659 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type, -1U);
8660 }
8661
8662 switch (r_type)
8663 {
8664 case elfcpp::R_MIPS_CALL16:
8665 case elfcpp::R_MIPS16_CALL16:
8666 case elfcpp::R_MICROMIPS_CALL16:
8667 gold_error(_("CALL16 reloc at 0x%lx not against global symbol "),
8668 (unsigned long)r_offset);
8669 return;
8670
8671 case elfcpp::R_MIPS_GOT_PAGE:
8672 case elfcpp::R_MICROMIPS_GOT_PAGE:
8673 case elfcpp::R_MIPS16_GOT16:
8674 case elfcpp::R_MIPS_GOT16:
8675 case elfcpp::R_MIPS_GOT_HI16:
8676 case elfcpp::R_MIPS_GOT_LO16:
8677 case elfcpp::R_MICROMIPS_GOT16:
8678 case elfcpp::R_MICROMIPS_GOT_HI16:
8679 case elfcpp::R_MICROMIPS_GOT_LO16:
8680 {
8681 // This relocation needs a page entry in the GOT.
8682 // Get the section contents.
8683 section_size_type view_size = 0;
8684 const unsigned char* view = object->section_contents(data_shndx,
8685 &view_size, false);
8686 view += r_offset;
8687
8688 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
8689 Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
8690 : r_addend);
8691
8692 if (rel_type == elfcpp::SHT_REL && got16_reloc(r_type))
8693 target->got16_addends_.push_back(got16_addend<size, big_endian>(
8694 object, data_shndx, r_type, r_sym, addend));
8695 else
8696 target->got_section()->record_got_page_entry(mips_obj, r_sym, addend);
8697 break;
8698 }
8699
8700 case elfcpp::R_MIPS_HI16:
8701 case elfcpp::R_MIPS16_HI16:
8702 case elfcpp::R_MICROMIPS_HI16:
8703 // Record the reloc so that we can check whether the corresponding LO16
8704 // part exists.
8705 if (rel_type == elfcpp::SHT_REL)
8706 target->got16_addends_.push_back(got16_addend<size, big_endian>(
8707 object, data_shndx, r_type, r_sym, 0));
8708 break;
8709
8710 case elfcpp::R_MIPS_LO16:
8711 case elfcpp::R_MIPS16_LO16:
8712 case elfcpp::R_MICROMIPS_LO16:
8713 {
8714 if (rel_type != elfcpp::SHT_REL)
8715 break;
8716
8717 // Find corresponding GOT16/HI16 relocation.
8718
8719 // According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8720 // be immediately following. However, for the IRIX6 ABI, the next
8721 // relocation may be a composed relocation consisting of several
8722 // relocations for the same address. In that case, the R_MIPS_LO16
8723 // relocation may occur as one of these. We permit a similar
8724 // extension in general, as that is useful for GCC.
8725
8726 // In some cases GCC dead code elimination removes the LO16 but
8727 // keeps the corresponding HI16. This is strictly speaking a
8728 // violation of the ABI but not immediately harmful.
8729
8730 typename std::list<got16_addend<size, big_endian> >::iterator it =
8731 target->got16_addends_.begin();
8732 while (it != target->got16_addends_.end())
8733 {
8734 got16_addend<size, big_endian> _got16_addend = *it;
8735
8736 // TODO(sasa): Split got16_addends_ list into two lists - one for
8737 // GOT16 relocs and the other for HI16 relocs.
8738
8739 // Report an error if we find HI16 or GOT16 reloc from the
8740 // previous section without the matching LO16 part.
8741 if (_got16_addend.object != object
8742 || _got16_addend.shndx != data_shndx)
8743 {
8744 gold_error("Can't find matching LO16 reloc");
8745 break;
8746 }
8747
8748 if (_got16_addend.r_sym != r_sym
8749 || !is_matching_lo16_reloc(_got16_addend.r_type, r_type))
8750 {
8751 ++it;
8752 continue;
8753 }
8754
8755 // We found a matching HI16 or GOT16 reloc for this LO16 reloc.
8756 // For GOT16, we need to calculate combined addend and record GOT page
8757 // entry.
8758 if (got16_reloc(_got16_addend.r_type))
8759 {
8760
8761 section_size_type view_size = 0;
8762 const unsigned char* view = object->section_contents(data_shndx,
8763 &view_size,
8764 false);
8765 view += r_offset;
8766
8767 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
8768 int32_t addend = Bits<16>::sign_extend32(val & 0xffff);
8769
8770 addend = (_got16_addend.addend << 16) + addend;
8771 target->got_section()->record_got_page_entry(mips_obj, r_sym,
8772 addend);
8773 }
8774
8775 it = target->got16_addends_.erase(it);
8776 }
8777 break;
8778 }
8779 }
8780
8781 switch (r_type)
8782 {
8783 case elfcpp::R_MIPS_32:
8784 case elfcpp::R_MIPS_REL32:
8785 case elfcpp::R_MIPS_64:
8786 {
8787 if (parameters->options().output_is_position_independent())
8788 {
8789 // If building a shared library (or a position-independent
8790 // executable), we need to create a dynamic relocation for
8791 // this location.
8792 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8793 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
8794 rel_dyn->add_symbolless_local_addend(object, r_sym,
8795 elfcpp::R_MIPS_REL32,
8796 output_section, data_shndx,
8797 r_offset);
8798 }
8799 break;
8800 }
8801
8802 case elfcpp::R_MIPS_TLS_GOTTPREL:
8803 case elfcpp::R_MIPS16_TLS_GOTTPREL:
8804 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
8805 case elfcpp::R_MIPS_TLS_LDM:
8806 case elfcpp::R_MIPS16_TLS_LDM:
8807 case elfcpp::R_MICROMIPS_TLS_LDM:
8808 case elfcpp::R_MIPS_TLS_GD:
8809 case elfcpp::R_MIPS16_TLS_GD:
8810 case elfcpp::R_MICROMIPS_TLS_GD:
8811 {
8812 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
8813 bool output_is_shared = parameters->options().shared();
8814 const tls::Tls_optimization optimized_type
8815 = Target_mips<size, big_endian>::optimize_tls_reloc(
8816 !output_is_shared, r_type);
8817 switch (r_type)
8818 {
8819 case elfcpp::R_MIPS_TLS_GD:
8820 case elfcpp::R_MIPS16_TLS_GD:
8821 case elfcpp::R_MICROMIPS_TLS_GD:
8822 if (optimized_type == tls::TLSOPT_NONE)
8823 {
8824 // Create a pair of GOT entries for the module index and
8825 // dtv-relative offset.
8826 Mips_output_data_got<size, big_endian>* got =
8827 target->got_section(symtab, layout);
8828 unsigned int shndx = lsym.get_st_shndx();
8829 bool is_ordinary;
8830 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
8831 if (!is_ordinary)
8832 {
8833 object->error(_("local symbol %u has bad shndx %u"),
8834 r_sym, shndx);
8835 break;
8836 }
8837 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
8838 shndx);
8839 }
8840 else
8841 {
8842 // FIXME: TLS optimization not supported yet.
8843 gold_unreachable();
8844 }
8845 break;
8846
8847 case elfcpp::R_MIPS_TLS_LDM:
8848 case elfcpp::R_MIPS16_TLS_LDM:
8849 case elfcpp::R_MICROMIPS_TLS_LDM:
8850 if (optimized_type == tls::TLSOPT_NONE)
8851 {
8852 // We always record LDM symbols as local with index 0.
8853 target->got_section()->record_local_got_symbol(mips_obj, 0,
8854 r_addend, r_type,
8855 -1U);
8856 }
8857 else
8858 {
8859 // FIXME: TLS optimization not supported yet.
8860 gold_unreachable();
8861 }
8862 break;
8863 case elfcpp::R_MIPS_TLS_GOTTPREL:
8864 case elfcpp::R_MIPS16_TLS_GOTTPREL:
8865 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
8866 layout->set_has_static_tls();
8867 if (optimized_type == tls::TLSOPT_NONE)
8868 {
8869 // Create a GOT entry for the tp-relative offset.
8870 Mips_output_data_got<size, big_endian>* got =
8871 target->got_section(symtab, layout);
8872 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
8873 -1U);
8874 }
8875 else
8876 {
8877 // FIXME: TLS optimization not supported yet.
8878 gold_unreachable();
8879 }
8880 break;
8881
8882 default:
8883 gold_unreachable();
8884 }
8885 }
8886 break;
8887
8888 default:
8889 break;
8890 }
8891
8892 // Refuse some position-dependent relocations when creating a
8893 // shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8894 // not PIC, but we can create dynamic relocations and the result
8895 // will be fine. Also do not refuse R_MIPS_LO16, which can be
8896 // combined with R_MIPS_GOT16.
8897 if (parameters->options().shared())
8898 {
8899 switch (r_type)
8900 {
8901 case elfcpp::R_MIPS16_HI16:
8902 case elfcpp::R_MIPS_HI16:
8903 case elfcpp::R_MICROMIPS_HI16:
8904 // Don't refuse a high part relocation if it's against
8905 // no symbol (e.g. part of a compound relocation).
8906 if (r_sym == 0)
8907 break;
8908
8909 // FALLTHROUGH
8910
8911 case elfcpp::R_MIPS16_26:
8912 case elfcpp::R_MIPS_26:
8913 case elfcpp::R_MICROMIPS_26_S1:
8914 gold_error(_("%s: relocation %u against `%s' can not be used when "
8915 "making a shared object; recompile with -fPIC"),
8916 object->name().c_str(), r_type, "a local symbol");
8917 default:
8918 break;
8919 }
8920 }
8921 }
8922
8923 template<int size, bool big_endian>
8924 inline void
8925 Target_mips<size, big_endian>::Scan::local(
8926 Symbol_table* symtab,
8927 Layout* layout,
8928 Target_mips<size, big_endian>* target,
8929 Sized_relobj_file<size, big_endian>* object,
8930 unsigned int data_shndx,
8931 Output_section* output_section,
8932 const elfcpp::Rel<size, big_endian>& reloc,
8933 unsigned int r_type,
8934 const elfcpp::Sym<size, big_endian>& lsym,
8935 bool is_discarded)
8936 {
8937 if (is_discarded)
8938 return;
8939
8940 local(
8941 symtab,
8942 layout,
8943 target,
8944 object,
8945 data_shndx,
8946 output_section,
8947 (const elfcpp::Rela<size, big_endian>*) NULL,
8948 &reloc,
8949 elfcpp::SHT_REL,
8950 r_type,
8951 lsym, is_discarded);
8952 }
8953
8954
8955 template<int size, bool big_endian>
8956 inline void
8957 Target_mips<size, big_endian>::Scan::local(
8958 Symbol_table* symtab,
8959 Layout* layout,
8960 Target_mips<size, big_endian>* target,
8961 Sized_relobj_file<size, big_endian>* object,
8962 unsigned int data_shndx,
8963 Output_section* output_section,
8964 const elfcpp::Rela<size, big_endian>& reloc,
8965 unsigned int r_type,
8966 const elfcpp::Sym<size, big_endian>& lsym,
8967 bool is_discarded)
8968 {
8969 if (is_discarded)
8970 return;
8971
8972 local(
8973 symtab,
8974 layout,
8975 target,
8976 object,
8977 data_shndx,
8978 output_section,
8979 &reloc,
8980 (const elfcpp::Rel<size, big_endian>*) NULL,
8981 elfcpp::SHT_RELA,
8982 r_type,
8983 lsym, is_discarded);
8984 }
8985
8986 // Scan a relocation for a global symbol.
8987
8988 template<int size, bool big_endian>
8989 inline void
8990 Target_mips<size, big_endian>::Scan::global(
8991 Symbol_table* symtab,
8992 Layout* layout,
8993 Target_mips<size, big_endian>* target,
8994 Sized_relobj_file<size, big_endian>* object,
8995 unsigned int data_shndx,
8996 Output_section* output_section,
8997 const elfcpp::Rela<size, big_endian>* rela,
8998 const elfcpp::Rel<size, big_endian>* rel,
8999 unsigned int rel_type,
9000 unsigned int r_type,
9001 Symbol* gsym)
9002 {
9003 Mips_address r_offset;
9004 typename elfcpp::Elf_types<size>::Elf_WXword r_info;
9005 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
9006
9007 if (rel_type == elfcpp::SHT_RELA)
9008 {
9009 r_offset = rela->get_r_offset();
9010 r_info = rela->get_r_info();
9011 r_addend = rela->get_r_addend();
9012 }
9013 else
9014 {
9015 r_offset = rel->get_r_offset();
9016 r_info = rel->get_r_info();
9017 r_addend = 0;
9018 }
9019
9020 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
9021 Mips_relobj<size, big_endian>* mips_obj =
9022 Mips_relobj<size, big_endian>::as_mips_relobj(object);
9023 Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
9024
9025 if (mips_obj->is_mips16_stub_section(data_shndx))
9026 {
9027 mips_obj->get_mips16_stub_section(data_shndx)
9028 ->new_global_reloc_found(r_type, mips_sym);
9029 }
9030
9031 if (r_type == elfcpp::R_MIPS_NONE)
9032 // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
9033 // mips16 stub.
9034 return;
9035
9036 if (!mips16_call_reloc(r_type)
9037 && !mips_obj->section_allows_mips16_refs(data_shndx))
9038 // This reloc would need to refer to a MIPS16 hard-float stub, if
9039 // there is one. We ignore MIPS16 stub sections and .pdr section when
9040 // looking for relocs that would need to refer to MIPS16 stubs.
9041 mips_sym->set_need_fn_stub();
9042
9043 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
9044 // section. We check here to avoid creating a dynamic reloc against
9045 // _GLOBAL_OFFSET_TABLE_.
9046 if (!target->has_got_section()
9047 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
9048 target->got_section(symtab, layout);
9049
9050 // We need PLT entries if there are static-only relocations against
9051 // an externally-defined function. This can technically occur for
9052 // shared libraries if there are branches to the symbol, although it
9053 // is unlikely that this will be used in practice due to the short
9054 // ranges involved. It can occur for any relative or absolute relocation
9055 // in executables; in that case, the PLT entry becomes the function's
9056 // canonical address.
9057 bool static_reloc = false;
9058
9059 // Set CAN_MAKE_DYNAMIC to true if we can convert this
9060 // relocation into a dynamic one.
9061 bool can_make_dynamic = false;
9062 switch (r_type)
9063 {
9064 case elfcpp::R_MIPS_GOT16:
9065 case elfcpp::R_MIPS_CALL16:
9066 case elfcpp::R_MIPS_CALL_HI16:
9067 case elfcpp::R_MIPS_CALL_LO16:
9068 case elfcpp::R_MIPS_GOT_HI16:
9069 case elfcpp::R_MIPS_GOT_LO16:
9070 case elfcpp::R_MIPS_GOT_PAGE:
9071 case elfcpp::R_MIPS_GOT_OFST:
9072 case elfcpp::R_MIPS_GOT_DISP:
9073 case elfcpp::R_MIPS_TLS_GOTTPREL:
9074 case elfcpp::R_MIPS_TLS_GD:
9075 case elfcpp::R_MIPS_TLS_LDM:
9076 case elfcpp::R_MIPS16_GOT16:
9077 case elfcpp::R_MIPS16_CALL16:
9078 case elfcpp::R_MIPS16_TLS_GOTTPREL:
9079 case elfcpp::R_MIPS16_TLS_GD:
9080 case elfcpp::R_MIPS16_TLS_LDM:
9081 case elfcpp::R_MICROMIPS_GOT16:
9082 case elfcpp::R_MICROMIPS_CALL16:
9083 case elfcpp::R_MICROMIPS_CALL_HI16:
9084 case elfcpp::R_MICROMIPS_CALL_LO16:
9085 case elfcpp::R_MICROMIPS_GOT_HI16:
9086 case elfcpp::R_MICROMIPS_GOT_LO16:
9087 case elfcpp::R_MICROMIPS_GOT_PAGE:
9088 case elfcpp::R_MICROMIPS_GOT_OFST:
9089 case elfcpp::R_MICROMIPS_GOT_DISP:
9090 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
9091 case elfcpp::R_MICROMIPS_TLS_GD:
9092 case elfcpp::R_MICROMIPS_TLS_LDM:
9093 // We need a GOT section.
9094 target->got_section(symtab, layout);
9095 break;
9096
9097 // This is just a hint; it can safely be ignored. Don't set
9098 // has_static_relocs for the corresponding symbol.
9099 case elfcpp::R_MIPS_JALR:
9100 case elfcpp::R_MICROMIPS_JALR:
9101 break;
9102
9103 case elfcpp::R_MIPS_GPREL16:
9104 case elfcpp::R_MIPS_GPREL32:
9105 case elfcpp::R_MIPS16_GPREL:
9106 case elfcpp::R_MICROMIPS_GPREL16:
9107 // TODO(sasa)
9108 // GP-relative relocations always resolve to a definition in a
9109 // regular input file, ignoring the one-definition rule. This is
9110 // important for the GP setup sequence in NewABI code, which
9111 // always resolves to a local function even if other relocations
9112 // against the symbol wouldn't.
9113 //constrain_symbol_p = FALSE;
9114 break;
9115
9116 case elfcpp::R_MIPS_32:
9117 case elfcpp::R_MIPS_REL32:
9118 case elfcpp::R_MIPS_64:
9119 if (parameters->options().shared()
9120 || strcmp(gsym->name(), "__gnu_local_gp") != 0)
9121 {
9122 if (r_type != elfcpp::R_MIPS_REL32)
9123 {
9124 static_reloc = true;
9125 mips_sym->set_pointer_equality_needed();
9126 }
9127 can_make_dynamic = true;
9128 break;
9129 }
9130 // Fall through.
9131
9132 default:
9133 // Most static relocations require pointer equality, except
9134 // for branches.
9135 mips_sym->set_pointer_equality_needed();
9136
9137 // Fall through.
9138
9139 case elfcpp::R_MIPS_26:
9140 case elfcpp::R_MIPS_PC16:
9141 case elfcpp::R_MIPS16_26:
9142 case elfcpp::R_MICROMIPS_26_S1:
9143 case elfcpp::R_MICROMIPS_PC7_S1:
9144 case elfcpp::R_MICROMIPS_PC10_S1:
9145 case elfcpp::R_MICROMIPS_PC16_S1:
9146 case elfcpp::R_MICROMIPS_PC23_S2:
9147 static_reloc = true;
9148 mips_sym->set_has_static_relocs();
9149 break;
9150 }
9151
9152 // If there are call relocations against an externally-defined symbol,
9153 // see whether we can create a MIPS lazy-binding stub for it. We can
9154 // only do this if all references to the function are through call
9155 // relocations, and in that case, the traditional lazy-binding stubs
9156 // are much more efficient than PLT entries.
9157 switch (r_type)
9158 {
9159 case elfcpp::R_MIPS16_CALL16:
9160 case elfcpp::R_MIPS_CALL16:
9161 case elfcpp::R_MIPS_CALL_HI16:
9162 case elfcpp::R_MIPS_CALL_LO16:
9163 case elfcpp::R_MIPS_JALR:
9164 case elfcpp::R_MICROMIPS_CALL16:
9165 case elfcpp::R_MICROMIPS_CALL_HI16:
9166 case elfcpp::R_MICROMIPS_CALL_LO16:
9167 case elfcpp::R_MICROMIPS_JALR:
9168 if (!mips_sym->no_lazy_stub())
9169 {
9170 if ((mips_sym->needs_plt_entry() && mips_sym->is_from_dynobj())
9171 // Calls from shared objects to undefined symbols of type
9172 // STT_NOTYPE need lazy-binding stub.
9173 || (mips_sym->is_undefined() && parameters->options().shared()))
9174 target->mips_stubs_section(layout)->make_entry(mips_sym);
9175 }
9176 break;
9177 default:
9178 {
9179 // We must not create a stub for a symbol that has relocations
9180 // related to taking the function's address.
9181 mips_sym->set_no_lazy_stub();
9182 target->remove_lazy_stub_entry(mips_sym);
9183 break;
9184 }
9185 }
9186
9187 if (relocation_needs_la25_stub<size, big_endian>(mips_obj, r_type,
9188 mips_sym->is_mips16()))
9189 mips_sym->set_has_nonpic_branches();
9190
9191 // R_MIPS_HI16 against _gp_disp is used for $gp setup,
9192 // and has a special meaning.
9193 bool gp_disp_against_hi16 = (!mips_obj->is_newabi()
9194 && strcmp(gsym->name(), "_gp_disp") == 0
9195 && (hi16_reloc(r_type) || lo16_reloc(r_type)));
9196 if (static_reloc && gsym->needs_plt_entry())
9197 {
9198 target->make_plt_entry(symtab, layout, mips_sym, r_type);
9199
9200 // Since this is not a PC-relative relocation, we may be
9201 // taking the address of a function. In that case we need to
9202 // set the entry in the dynamic symbol table to the address of
9203 // the PLT entry.
9204 if (gsym->is_from_dynobj() && !parameters->options().shared())
9205 {
9206 gsym->set_needs_dynsym_value();
9207 // We distinguish between PLT entries and lazy-binding stubs by
9208 // giving the former an st_other value of STO_MIPS_PLT. Set the
9209 // flag if there are any relocations in the binary where pointer
9210 // equality matters.
9211 if (mips_sym->pointer_equality_needed())
9212 mips_sym->set_mips_plt();
9213 }
9214 }
9215 if ((static_reloc || can_make_dynamic) && !gp_disp_against_hi16)
9216 {
9217 // Absolute addressing relocations.
9218 // Make a dynamic relocation if necessary.
9219 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
9220 {
9221 if (gsym->may_need_copy_reloc())
9222 {
9223 target->copy_reloc(symtab, layout, object,
9224 data_shndx, output_section, gsym, *rel);
9225 }
9226 else if (can_make_dynamic)
9227 {
9228 // Create .rel.dyn section.
9229 target->rel_dyn_section(layout);
9230 target->dynamic_reloc(mips_sym, elfcpp::R_MIPS_REL32, mips_obj,
9231 data_shndx, output_section, r_offset);
9232 }
9233 else
9234 gold_error(_("non-dynamic relocations refer to dynamic symbol %s"),
9235 gsym->name());
9236 }
9237 }
9238
9239 bool for_call = false;
9240 switch (r_type)
9241 {
9242 case elfcpp::R_MIPS_CALL16:
9243 case elfcpp::R_MIPS16_CALL16:
9244 case elfcpp::R_MICROMIPS_CALL16:
9245 case elfcpp::R_MIPS_CALL_HI16:
9246 case elfcpp::R_MIPS_CALL_LO16:
9247 case elfcpp::R_MICROMIPS_CALL_HI16:
9248 case elfcpp::R_MICROMIPS_CALL_LO16:
9249 for_call = true;
9250 // Fall through.
9251
9252 case elfcpp::R_MIPS16_GOT16:
9253 case elfcpp::R_MIPS_GOT16:
9254 case elfcpp::R_MIPS_GOT_HI16:
9255 case elfcpp::R_MIPS_GOT_LO16:
9256 case elfcpp::R_MICROMIPS_GOT16:
9257 case elfcpp::R_MICROMIPS_GOT_HI16:
9258 case elfcpp::R_MICROMIPS_GOT_LO16:
9259 case elfcpp::R_MIPS_GOT_DISP:
9260 case elfcpp::R_MICROMIPS_GOT_DISP:
9261 {
9262 // The symbol requires a GOT entry.
9263 Mips_output_data_got<size, big_endian>* got =
9264 target->got_section(symtab, layout);
9265 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
9266 for_call);
9267 mips_sym->set_global_got_area(GGA_NORMAL);
9268 }
9269 break;
9270
9271 case elfcpp::R_MIPS_GOT_PAGE:
9272 case elfcpp::R_MICROMIPS_GOT_PAGE:
9273 {
9274 // This relocation needs a page entry in the GOT.
9275 // Get the section contents.
9276 section_size_type view_size = 0;
9277 const unsigned char* view =
9278 object->section_contents(data_shndx, &view_size, false);
9279 view += r_offset;
9280
9281 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
9282 Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
9283 : r_addend);
9284 Mips_output_data_got<size, big_endian>* got =
9285 target->got_section(symtab, layout);
9286 got->record_got_page_entry(mips_obj, r_sym, addend);
9287
9288 // If this is a global, overridable symbol, GOT_PAGE will
9289 // decay to GOT_DISP, so we'll need a GOT entry for it.
9290 bool def_regular = (mips_sym->source() == Symbol::FROM_OBJECT
9291 && !mips_sym->object()->is_dynamic()
9292 && !mips_sym->is_undefined());
9293 if (!def_regular
9294 || (parameters->options().output_is_position_independent()
9295 && !parameters->options().Bsymbolic()
9296 && !mips_sym->is_forced_local()))
9297 {
9298 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
9299 for_call);
9300 mips_sym->set_global_got_area(GGA_NORMAL);
9301 }
9302 }
9303 break;
9304
9305 case elfcpp::R_MIPS_TLS_GOTTPREL:
9306 case elfcpp::R_MIPS16_TLS_GOTTPREL:
9307 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
9308 case elfcpp::R_MIPS_TLS_LDM:
9309 case elfcpp::R_MIPS16_TLS_LDM:
9310 case elfcpp::R_MICROMIPS_TLS_LDM:
9311 case elfcpp::R_MIPS_TLS_GD:
9312 case elfcpp::R_MIPS16_TLS_GD:
9313 case elfcpp::R_MICROMIPS_TLS_GD:
9314 {
9315 const bool is_final = gsym->final_value_is_known();
9316 const tls::Tls_optimization optimized_type =
9317 Target_mips<size, big_endian>::optimize_tls_reloc(is_final, r_type);
9318
9319 switch (r_type)
9320 {
9321 case elfcpp::R_MIPS_TLS_GD:
9322 case elfcpp::R_MIPS16_TLS_GD:
9323 case elfcpp::R_MICROMIPS_TLS_GD:
9324 if (optimized_type == tls::TLSOPT_NONE)
9325 {
9326 // Create a pair of GOT entries for the module index and
9327 // dtv-relative offset.
9328 Mips_output_data_got<size, big_endian>* got =
9329 target->got_section(symtab, layout);
9330 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
9331 false);
9332 }
9333 else
9334 {
9335 // FIXME: TLS optimization not supported yet.
9336 gold_unreachable();
9337 }
9338 break;
9339
9340 case elfcpp::R_MIPS_TLS_LDM:
9341 case elfcpp::R_MIPS16_TLS_LDM:
9342 case elfcpp::R_MICROMIPS_TLS_LDM:
9343 if (optimized_type == tls::TLSOPT_NONE)
9344 {
9345 // We always record LDM symbols as local with index 0.
9346 target->got_section()->record_local_got_symbol(mips_obj, 0,
9347 r_addend, r_type,
9348 -1U);
9349 }
9350 else
9351 {
9352 // FIXME: TLS optimization not supported yet.
9353 gold_unreachable();
9354 }
9355 break;
9356 case elfcpp::R_MIPS_TLS_GOTTPREL:
9357 case elfcpp::R_MIPS16_TLS_GOTTPREL:
9358 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
9359 layout->set_has_static_tls();
9360 if (optimized_type == tls::TLSOPT_NONE)
9361 {
9362 // Create a GOT entry for the tp-relative offset.
9363 Mips_output_data_got<size, big_endian>* got =
9364 target->got_section(symtab, layout);
9365 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
9366 false);
9367 }
9368 else
9369 {
9370 // FIXME: TLS optimization not supported yet.
9371 gold_unreachable();
9372 }
9373 break;
9374
9375 default:
9376 gold_unreachable();
9377 }
9378 }
9379 break;
9380 case elfcpp::R_MIPS_COPY:
9381 case elfcpp::R_MIPS_JUMP_SLOT:
9382 // These are relocations which should only be seen by the
9383 // dynamic linker, and should never be seen here.
9384 gold_error(_("%s: unexpected reloc %u in object file"),
9385 object->name().c_str(), r_type);
9386 break;
9387
9388 default:
9389 break;
9390 }
9391
9392 // Refuse some position-dependent relocations when creating a
9393 // shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
9394 // not PIC, but we can create dynamic relocations and the result
9395 // will be fine. Also do not refuse R_MIPS_LO16, which can be
9396 // combined with R_MIPS_GOT16.
9397 if (parameters->options().shared())
9398 {
9399 switch (r_type)
9400 {
9401 case elfcpp::R_MIPS16_HI16:
9402 case elfcpp::R_MIPS_HI16:
9403 case elfcpp::R_MICROMIPS_HI16:
9404 // Don't refuse a high part relocation if it's against
9405 // no symbol (e.g. part of a compound relocation).
9406 if (r_sym == 0)
9407 break;
9408
9409 // R_MIPS_HI16 against _gp_disp is used for $gp setup,
9410 // and has a special meaning.
9411 if (!mips_obj->is_newabi() && strcmp(gsym->name(), "_gp_disp") == 0)
9412 break;
9413
9414 // FALLTHROUGH
9415
9416 case elfcpp::R_MIPS16_26:
9417 case elfcpp::R_MIPS_26:
9418 case elfcpp::R_MICROMIPS_26_S1:
9419 gold_error(_("%s: relocation %u against `%s' can not be used when "
9420 "making a shared object; recompile with -fPIC"),
9421 object->name().c_str(), r_type, gsym->name());
9422 default:
9423 break;
9424 }
9425 }
9426 }
9427
9428 template<int size, bool big_endian>
9429 inline void
9430 Target_mips<size, big_endian>::Scan::global(
9431 Symbol_table* symtab,
9432 Layout* layout,
9433 Target_mips<size, big_endian>* target,
9434 Sized_relobj_file<size, big_endian>* object,
9435 unsigned int data_shndx,
9436 Output_section* output_section,
9437 const elfcpp::Rela<size, big_endian>& reloc,
9438 unsigned int r_type,
9439 Symbol* gsym)
9440 {
9441 global(
9442 symtab,
9443 layout,
9444 target,
9445 object,
9446 data_shndx,
9447 output_section,
9448 &reloc,
9449 (const elfcpp::Rel<size, big_endian>*) NULL,
9450 elfcpp::SHT_RELA,
9451 r_type,
9452 gsym);
9453 }
9454
9455 template<int size, bool big_endian>
9456 inline void
9457 Target_mips<size, big_endian>::Scan::global(
9458 Symbol_table* symtab,
9459 Layout* layout,
9460 Target_mips<size, big_endian>* target,
9461 Sized_relobj_file<size, big_endian>* object,
9462 unsigned int data_shndx,
9463 Output_section* output_section,
9464 const elfcpp::Rel<size, big_endian>& reloc,
9465 unsigned int r_type,
9466 Symbol* gsym)
9467 {
9468 global(
9469 symtab,
9470 layout,
9471 target,
9472 object,
9473 data_shndx,
9474 output_section,
9475 (const elfcpp::Rela<size, big_endian>*) NULL,
9476 &reloc,
9477 elfcpp::SHT_REL,
9478 r_type,
9479 gsym);
9480 }
9481
9482 // Return whether a R_MIPS_32 relocation needs to be applied.
9483
9484 template<int size, bool big_endian>
9485 inline bool
9486 Target_mips<size, big_endian>::Relocate::should_apply_r_mips_32_reloc(
9487 const Mips_symbol<size>* gsym,
9488 unsigned int r_type,
9489 Output_section* output_section,
9490 Target_mips* target)
9491 {
9492 // If the output section is not allocated, then we didn't call
9493 // scan_relocs, we didn't create a dynamic reloc, and we must apply
9494 // the reloc here.
9495 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
9496 return true;
9497
9498 if (gsym == NULL)
9499 return true;
9500 else
9501 {
9502 // For global symbols, we use the same helper routines used in the
9503 // scan pass.
9504 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type))
9505 && !gsym->may_need_copy_reloc())
9506 {
9507 // We have generated dynamic reloc (R_MIPS_REL32).
9508
9509 bool multi_got = false;
9510 if (target->has_got_section())
9511 multi_got = target->got_section()->multi_got();
9512 bool has_got_offset;
9513 if (!multi_got)
9514 has_got_offset = gsym->has_got_offset(GOT_TYPE_STANDARD);
9515 else
9516 has_got_offset = gsym->global_gotoffset() != -1U;
9517 if (!has_got_offset)
9518 return true;
9519 else
9520 // Apply the relocation only if the symbol is in the local got.
9521 // Do not apply the relocation if the symbol is in the global
9522 // got.
9523 return symbol_references_local(gsym, gsym->has_dynsym_index());
9524 }
9525 else
9526 // We have not generated dynamic reloc.
9527 return true;
9528 }
9529 }
9530
9531 // Perform a relocation.
9532
9533 template<int size, bool big_endian>
9534 inline bool
9535 Target_mips<size, big_endian>::Relocate::relocate(
9536 const Relocate_info<size, big_endian>* relinfo,
9537 unsigned int rel_type,
9538 Target_mips* target,
9539 Output_section* output_section,
9540 size_t relnum,
9541 const unsigned char* preloc,
9542 const Sized_symbol<size>* gsym,
9543 const Symbol_value<size>* psymval,
9544 unsigned char* view,
9545 Mips_address address,
9546 section_size_type)
9547 {
9548 Mips_address r_offset;
9549 typename elfcpp::Elf_types<size>::Elf_WXword r_info;
9550 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
9551
9552 if (rel_type == elfcpp::SHT_RELA)
9553 {
9554 const elfcpp::Rela<size, big_endian> rela(preloc);
9555 r_offset = rela.get_r_offset();
9556 r_info = rela.get_r_info();
9557 r_addend = rela.get_r_addend();
9558 }
9559 else
9560 {
9561 const elfcpp::Rel<size, big_endian> rel(preloc);
9562 r_offset = rel.get_r_offset();
9563 r_info = rel.get_r_info();
9564 r_addend = 0;
9565 }
9566 unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
9567
9568 typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;
9569 typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;
9570
9571 Mips_relobj<size, big_endian>* object =
9572 Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);
9573
9574 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
9575 bool target_is_16_bit_code = false;
9576 bool target_is_micromips_code = false;
9577 bool cross_mode_jump;
9578
9579 Symbol_value<size> symval;
9580
9581 const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
9582
9583 bool changed_symbol_value = false;
9584 if (gsym == NULL)
9585 {
9586 target_is_16_bit_code = object->local_symbol_is_mips16(r_sym);
9587 target_is_micromips_code = object->local_symbol_is_micromips(r_sym);
9588 if (target_is_16_bit_code || target_is_micromips_code)
9589 {
9590 // MIPS16/microMIPS text labels should be treated as odd.
9591 symval.set_output_value(psymval->value(object, 1));
9592 psymval = &symval;
9593 changed_symbol_value = true;
9594 }
9595 }
9596 else
9597 {
9598 target_is_16_bit_code = mips_sym->is_mips16();
9599 target_is_micromips_code = mips_sym->is_micromips();
9600
9601 // If this is a mips16/microMIPS text symbol, add 1 to the value to make
9602 // it odd. This will cause something like .word SYM to come up with
9603 // the right value when it is loaded into the PC.
9604
9605 if ((mips_sym->is_mips16() || mips_sym->is_micromips())
9606 && psymval->value(object, 0) != 0)
9607 {
9608 symval.set_output_value(psymval->value(object, 0) | 1);
9609 psymval = &symval;
9610 changed_symbol_value = true;
9611 }
9612
9613 // Pick the value to use for symbols defined in shared objects.
9614 if (mips_sym->use_plt_offset(Scan::get_reference_flags(r_type))
9615 || mips_sym->has_lazy_stub())
9616 {
9617 Mips_address value;
9618 if (!mips_sym->has_lazy_stub())
9619 {
9620 // Prefer a standard MIPS PLT entry.
9621 if (mips_sym->has_mips_plt_offset())
9622 {
9623 value = target->plt_section()->mips_entry_address(mips_sym);
9624 target_is_micromips_code = false;
9625 target_is_16_bit_code = false;
9626 }
9627 else
9628 {
9629 value = (target->plt_section()->comp_entry_address(mips_sym)
9630 + 1);
9631 if (target->is_output_micromips())
9632 target_is_micromips_code = true;
9633 else
9634 target_is_16_bit_code = true;
9635 }
9636 }
9637 else
9638 value = target->mips_stubs_section()->stub_address(mips_sym);
9639
9640 symval.set_output_value(value);
9641 psymval = &symval;
9642 }
9643 }
9644
9645 // TRUE if the symbol referred to by this relocation is "_gp_disp".
9646 // Note that such a symbol must always be a global symbol.
9647 bool gp_disp = (gsym != NULL && (strcmp(gsym->name(), "_gp_disp") == 0)
9648 && !object->is_newabi());
9649
9650 // TRUE if the symbol referred to by this relocation is "__gnu_local_gp".
9651 // Note that such a symbol must always be a global symbol.
9652 bool gnu_local_gp = gsym && (strcmp(gsym->name(), "__gnu_local_gp") == 0);
9653
9654
9655 if (gp_disp)
9656 {
9657 if (!hi16_reloc(r_type) && !lo16_reloc(r_type))
9658 gold_error_at_location(relinfo, relnum, r_offset,
9659 _("relocations against _gp_disp are permitted only"
9660 " with R_MIPS_HI16 and R_MIPS_LO16 relocations."));
9661 }
9662 else if (gnu_local_gp)
9663 {
9664 // __gnu_local_gp is _gp symbol.
9665 symval.set_output_value(target->adjusted_gp_value(object));
9666 psymval = &symval;
9667 }
9668
9669 // If this is a reference to a 16-bit function with a stub, we need
9670 // to redirect the relocation to the stub unless:
9671 //
9672 // (a) the relocation is for a MIPS16 JAL;
9673 //
9674 // (b) the relocation is for a MIPS16 PIC call, and there are no
9675 // non-MIPS16 uses of the GOT slot; or
9676 //
9677 // (c) the section allows direct references to MIPS16 functions.
9678 if (r_type != elfcpp::R_MIPS16_26
9679 && !parameters->options().relocatable()
9680 && ((mips_sym != NULL
9681 && mips_sym->has_mips16_fn_stub()
9682 && (r_type != elfcpp::R_MIPS16_CALL16 || mips_sym->need_fn_stub()))
9683 || (mips_sym == NULL
9684 && object->get_local_mips16_fn_stub(r_sym) != NULL))
9685 && !object->section_allows_mips16_refs(relinfo->data_shndx))
9686 {
9687 // This is a 32- or 64-bit call to a 16-bit function. We should
9688 // have already noticed that we were going to need the
9689 // stub.
9690 Mips_address value;
9691 if (mips_sym == NULL)
9692 value = object->get_local_mips16_fn_stub(r_sym)->output_address();
9693 else
9694 {
9695 gold_assert(mips_sym->need_fn_stub());
9696 if (mips_sym->has_la25_stub())
9697 value = target->la25_stub_section()->stub_address(mips_sym);
9698 else
9699 {
9700 value = mips_sym->template
9701 get_mips16_fn_stub<big_endian>()->output_address();
9702 }
9703 }
9704 symval.set_output_value(value);
9705 psymval = &symval;
9706 changed_symbol_value = true;
9707
9708 // The target is 16-bit, but the stub isn't.
9709 target_is_16_bit_code = false;
9710 }
9711 // If this is a MIPS16 call with a stub, that is made through the PLT or
9712 // to a standard MIPS function, we need to redirect the call to the stub.
9713 // Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
9714 // indirect calls should use an indirect stub instead.
9715 else if (r_type == elfcpp::R_MIPS16_26 && !parameters->options().relocatable()
9716 && ((mips_sym != NULL
9717 && (mips_sym->has_mips16_call_stub()
9718 || mips_sym->has_mips16_call_fp_stub()))
9719 || (mips_sym == NULL
9720 && object->get_local_mips16_call_stub(r_sym) != NULL))
9721 && ((mips_sym != NULL && mips_sym->has_plt_offset())
9722 || !target_is_16_bit_code))
9723 {
9724 Mips16_stub_section<size, big_endian>* call_stub;
9725 if (mips_sym == NULL)
9726 call_stub = object->get_local_mips16_call_stub(r_sym);
9727 else
9728 {
9729 // If both call_stub and call_fp_stub are defined, we can figure
9730 // out which one to use by checking which one appears in the input
9731 // file.
9732 if (mips_sym->has_mips16_call_stub()
9733 && mips_sym->has_mips16_call_fp_stub())
9734 {
9735 call_stub = NULL;
9736 for (unsigned int i = 1; i < object->shnum(); ++i)
9737 {
9738 if (object->is_mips16_call_fp_stub_section(i))
9739 {
9740 call_stub = mips_sym->template
9741 get_mips16_call_fp_stub<big_endian>();
9742 break;
9743 }
9744
9745 }
9746 if (call_stub == NULL)
9747 call_stub =
9748 mips_sym->template get_mips16_call_stub<big_endian>();
9749 }
9750 else if (mips_sym->has_mips16_call_stub())
9751 call_stub = mips_sym->template get_mips16_call_stub<big_endian>();
9752 else
9753 call_stub = mips_sym->template get_mips16_call_fp_stub<big_endian>();
9754 }
9755
9756 symval.set_output_value(call_stub->output_address());
9757 psymval = &symval;
9758 changed_symbol_value = true;
9759 }
9760 // If this is a direct call to a PIC function, redirect to the
9761 // non-PIC stub.
9762 else if (mips_sym != NULL
9763 && mips_sym->has_la25_stub()
9764 && relocation_needs_la25_stub<size, big_endian>(
9765 object, r_type, target_is_16_bit_code))
9766 {
9767 Mips_address value = target->la25_stub_section()->stub_address(mips_sym);
9768 if (mips_sym->is_micromips())
9769 value += 1;
9770 symval.set_output_value(value);
9771 psymval = &symval;
9772 }
9773 // For direct MIPS16 and microMIPS calls make sure the compressed PLT
9774 // entry is used if a standard PLT entry has also been made.
9775 else if ((r_type == elfcpp::R_MIPS16_26
9776 || r_type == elfcpp::R_MICROMIPS_26_S1)
9777 && !parameters->options().relocatable()
9778 && mips_sym != NULL
9779 && mips_sym->has_plt_offset()
9780 && mips_sym->has_comp_plt_offset()
9781 && mips_sym->has_mips_plt_offset())
9782 {
9783 Mips_address value = (target->plt_section()->comp_entry_address(mips_sym)
9784 + 1);
9785 symval.set_output_value(value);
9786 psymval = &symval;
9787
9788 target_is_16_bit_code = !target->is_output_micromips();
9789 target_is_micromips_code = target->is_output_micromips();
9790 }
9791
9792 // Make sure MIPS16 and microMIPS are not used together.
9793 if ((r_type == elfcpp::R_MIPS16_26 && target_is_micromips_code)
9794 || (micromips_branch_reloc(r_type) && target_is_16_bit_code))
9795 {
9796 gold_error(_("MIPS16 and microMIPS functions cannot call each other"));
9797 }
9798
9799 // Calls from 16-bit code to 32-bit code and vice versa require the
9800 // mode change. However, we can ignore calls to undefined weak symbols,
9801 // which should never be executed at runtime. This exception is important
9802 // because the assembly writer may have "known" that any definition of the
9803 // symbol would be 16-bit code, and that direct jumps were therefore
9804 // acceptable.
9805 cross_mode_jump =
9806 (!parameters->options().relocatable()
9807 && !(gsym != NULL && gsym->is_weak_undefined())
9808 && ((r_type == elfcpp::R_MIPS16_26 && !target_is_16_bit_code)
9809 || (r_type == elfcpp::R_MICROMIPS_26_S1 && !target_is_micromips_code)
9810 || ((r_type == elfcpp::R_MIPS_26 || r_type == elfcpp::R_MIPS_JALR)
9811 && (target_is_16_bit_code || target_is_micromips_code))));
9812
9813 bool local = (mips_sym == NULL
9814 || (mips_sym->got_only_for_calls()
9815 ? symbol_calls_local(mips_sym, mips_sym->has_dynsym_index())
9816 : symbol_references_local(mips_sym,
9817 mips_sym->has_dynsym_index())));
9818
9819 // Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
9820 // to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
9821 // corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST.
9822 if (got_page_reloc(r_type) && !local)
9823 r_type = (micromips_reloc(r_type) ? elfcpp::R_MICROMIPS_GOT_DISP
9824 : elfcpp::R_MIPS_GOT_DISP);
9825
9826 unsigned int got_offset = 0;
9827 int gp_offset = 0;
9828
9829 bool update_got_entry = false;
9830 bool extract_addend = rel_type == elfcpp::SHT_REL;
9831 switch (r_type)
9832 {
9833 case elfcpp::R_MIPS_NONE:
9834 break;
9835 case elfcpp::R_MIPS_16:
9836 reloc_status = Reloc_funcs::rel16(view, object, psymval, r_addend,
9837 extract_addend, r_type);
9838 break;
9839
9840 case elfcpp::R_MIPS_32:
9841 if (should_apply_r_mips_32_reloc(mips_sym, r_type, output_section,
9842 target))
9843 reloc_status = Reloc_funcs::rel32(view, object, psymval, r_addend,
9844 extract_addend, r_type);
9845 if (mips_sym != NULL
9846 && (mips_sym->is_mips16() || mips_sym->is_micromips())
9847 && mips_sym->global_got_area() == GGA_RELOC_ONLY)
9848 {
9849 // If mips_sym->has_mips16_fn_stub() is false, symbol value is
9850 // already updated by adding +1.
9851 if (mips_sym->has_mips16_fn_stub())
9852 {
9853 gold_assert(mips_sym->need_fn_stub());
9854 Mips16_stub_section<size, big_endian>* fn_stub =
9855 mips_sym->template get_mips16_fn_stub<big_endian>();
9856
9857 symval.set_output_value(fn_stub->output_address());
9858 psymval = &symval;
9859 }
9860 got_offset = mips_sym->global_gotoffset();
9861 update_got_entry = true;
9862 }
9863 break;
9864
9865 case elfcpp::R_MIPS_REL32:
9866 gold_unreachable();
9867
9868 case elfcpp::R_MIPS_PC32:
9869 reloc_status = Reloc_funcs::relpc32(view, object, psymval, address,
9870 r_addend, extract_addend, r_type);
9871 break;
9872
9873 case elfcpp::R_MIPS16_26:
9874 // The calculation for R_MIPS16_26 is just the same as for an
9875 // R_MIPS_26. It's only the storage of the relocated field into
9876 // the output file that's different. So, we just fall through to the
9877 // R_MIPS_26 case here.
9878 case elfcpp::R_MIPS_26:
9879 case elfcpp::R_MICROMIPS_26_S1:
9880 reloc_status = Reloc_funcs::rel26(view, object, psymval, address,
9881 gsym == NULL, r_addend, extract_addend, gsym, cross_mode_jump, r_type,
9882 target->jal_to_bal());
9883 break;
9884
9885 case elfcpp::R_MIPS_HI16:
9886 case elfcpp::R_MIPS16_HI16:
9887 case elfcpp::R_MICROMIPS_HI16:
9888 reloc_status = Reloc_funcs::relhi16(view, object, psymval, r_addend,
9889 address, gp_disp, r_type, r_sym,
9890 extract_addend);
9891 break;
9892
9893 case elfcpp::R_MIPS_LO16:
9894 case elfcpp::R_MIPS16_LO16:
9895 case elfcpp::R_MICROMIPS_LO16:
9896 case elfcpp::R_MICROMIPS_HI0_LO16:
9897 reloc_status = Reloc_funcs::rello16(target, view, object, psymval,
9898 r_addend, extract_addend, address,
9899 gp_disp, r_type, r_sym);
9900 break;
9901
9902 case elfcpp::R_MIPS_LITERAL:
9903 case elfcpp::R_MICROMIPS_LITERAL:
9904 // Because we don't merge literal sections, we can handle this
9905 // just like R_MIPS_GPREL16. In the long run, we should merge
9906 // shared literals, and then we will need to additional work
9907 // here.
9908
9909 // Fall through.
9910
9911 case elfcpp::R_MIPS_GPREL16:
9912 case elfcpp::R_MIPS16_GPREL:
9913 case elfcpp::R_MICROMIPS_GPREL7_S2:
9914 case elfcpp::R_MICROMIPS_GPREL16:
9915 reloc_status = Reloc_funcs::relgprel(view, object, psymval,
9916 target->adjusted_gp_value(object),
9917 r_addend, extract_addend,
9918 gsym == NULL, r_type);
9919 break;
9920
9921 case elfcpp::R_MIPS_PC16:
9922 reloc_status = Reloc_funcs::relpc16(view, object, psymval, address,
9923 r_addend, extract_addend, r_type);
9924 break;
9925 case elfcpp::R_MICROMIPS_PC7_S1:
9926 reloc_status = Reloc_funcs::relmicromips_pc7_s1(view, object, psymval,
9927 address, r_addend,
9928 extract_addend, r_type);
9929 break;
9930 case elfcpp::R_MICROMIPS_PC10_S1:
9931 reloc_status = Reloc_funcs::relmicromips_pc10_s1(view, object, psymval,
9932 address, r_addend,
9933 extract_addend, r_type);
9934 break;
9935 case elfcpp::R_MICROMIPS_PC16_S1:
9936 reloc_status = Reloc_funcs::relmicromips_pc16_s1(view, object, psymval,
9937 address, r_addend,
9938 extract_addend, r_type);
9939 break;
9940 case elfcpp::R_MIPS_GPREL32:
9941 reloc_status = Reloc_funcs::relgprel32(view, object, psymval,
9942 target->adjusted_gp_value(object),
9943 r_addend, extract_addend, r_type);
9944 break;
9945 case elfcpp::R_MIPS_GOT_HI16:
9946 case elfcpp::R_MIPS_CALL_HI16:
9947 case elfcpp::R_MICROMIPS_GOT_HI16:
9948 case elfcpp::R_MICROMIPS_CALL_HI16:
9949 if (gsym != NULL)
9950 got_offset = target->got_section()->got_offset(gsym, GOT_TYPE_STANDARD,
9951 object);
9952 else
9953 got_offset = target->got_section()->got_offset(r_sym, GOT_TYPE_STANDARD,
9954 object);
9955 gp_offset = target->got_section()->gp_offset(got_offset, object);
9956 reloc_status = Reloc_funcs::relgot_hi16(view, gp_offset, r_type);
9957 update_got_entry = changed_symbol_value;
9958 break;
9959
9960 case elfcpp::R_MIPS_GOT_LO16:
9961 case elfcpp::R_MIPS_CALL_LO16:
9962 case elfcpp::R_MICROMIPS_GOT_LO16:
9963 case elfcpp::R_MICROMIPS_CALL_LO16:
9964 if (gsym != NULL)
9965 got_offset = target->got_section()->got_offset(gsym, GOT_TYPE_STANDARD,
9966 object);
9967 else
9968 got_offset = target->got_section()->got_offset(r_sym, GOT_TYPE_STANDARD,
9969 object);
9970 gp_offset = target->got_section()->gp_offset(got_offset, object);
9971 reloc_status = Reloc_funcs::relgot_lo16(view, gp_offset, r_type);
9972 update_got_entry = changed_symbol_value;
9973 break;
9974
9975 case elfcpp::R_MIPS_GOT_DISP:
9976 case elfcpp::R_MICROMIPS_GOT_DISP:
9977 if (gsym != NULL)
9978 got_offset = target->got_section()->got_offset(gsym, GOT_TYPE_STANDARD,
9979 object);
9980 else
9981 got_offset = target->got_section()->got_offset(r_sym, GOT_TYPE_STANDARD,
9982 object);
9983 gp_offset = target->got_section()->gp_offset(got_offset, object);
9984 reloc_status = Reloc_funcs::relgot(view, gp_offset, r_type);
9985 break;
9986
9987 case elfcpp::R_MIPS_CALL16:
9988 case elfcpp::R_MIPS16_CALL16:
9989 case elfcpp::R_MICROMIPS_CALL16:
9990 gold_assert(gsym != NULL);
9991 got_offset = target->got_section()->got_offset(gsym, GOT_TYPE_STANDARD,
9992 object);
9993 gp_offset = target->got_section()->gp_offset(got_offset, object);
9994 reloc_status = Reloc_funcs::relgot(view, gp_offset, r_type);
9995 // TODO(sasa): We should also initialize update_got_entry in other places
9996 // where relgot is called.
9997 update_got_entry = changed_symbol_value;
9998 break;
9999
10000 case elfcpp::R_MIPS_GOT16:
10001 case elfcpp::R_MIPS16_GOT16:
10002 case elfcpp::R_MICROMIPS_GOT16:
10003 if (gsym != NULL)
10004 {
10005 got_offset = target->got_section()->got_offset(gsym,
10006 GOT_TYPE_STANDARD,
10007 object);
10008 gp_offset = target->got_section()->gp_offset(got_offset, object);
10009 reloc_status = Reloc_funcs::relgot(view, gp_offset, r_type);
10010 }
10011 else
10012 reloc_status = Reloc_funcs::relgot16_local(view, object, psymval,
10013 r_addend, extract_addend,
10014 r_type, r_sym);
10015 update_got_entry = changed_symbol_value;
10016 break;
10017
10018 case elfcpp::R_MIPS_TLS_GD:
10019 case elfcpp::R_MIPS16_TLS_GD:
10020 case elfcpp::R_MICROMIPS_TLS_GD:
10021 if (gsym != NULL)
10022 got_offset = target->got_section()->got_offset(gsym, GOT_TYPE_TLS_PAIR,
10023 object);
10024 else
10025 got_offset = target->got_section()->got_offset(r_sym, GOT_TYPE_TLS_PAIR,
10026 object);
10027 gp_offset = target->got_section()->gp_offset(got_offset, object);
10028 reloc_status = Reloc_funcs::relgot(view, gp_offset, r_type);
10029 break;
10030
10031 case elfcpp::R_MIPS_TLS_GOTTPREL:
10032 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10033 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10034 if (gsym != NULL)
10035 got_offset = target->got_section()->got_offset(gsym,
10036 GOT_TYPE_TLS_OFFSET,
10037 object);
10038 else
10039 got_offset = target->got_section()->got_offset(r_sym,
10040 GOT_TYPE_TLS_OFFSET,
10041 object);
10042 gp_offset = target->got_section()->gp_offset(got_offset, object);
10043 reloc_status = Reloc_funcs::relgot(view, gp_offset, r_type);
10044 break;
10045
10046 case elfcpp::R_MIPS_TLS_LDM:
10047 case elfcpp::R_MIPS16_TLS_LDM:
10048 case elfcpp::R_MICROMIPS_TLS_LDM:
10049 // Relocate the field with the offset of the GOT entry for
10050 // the module index.
10051 got_offset = target->got_section()->tls_ldm_offset(object);
10052 gp_offset = target->got_section()->gp_offset(got_offset, object);
10053 reloc_status = Reloc_funcs::relgot(view, gp_offset, r_type);
10054 break;
10055
10056 case elfcpp::R_MIPS_GOT_PAGE:
10057 case elfcpp::R_MICROMIPS_GOT_PAGE:
10058 reloc_status = Reloc_funcs::relgotpage(target, view, object, psymval,
10059 r_addend, extract_addend, r_type);
10060 break;
10061
10062 case elfcpp::R_MIPS_GOT_OFST:
10063 case elfcpp::R_MICROMIPS_GOT_OFST:
10064 reloc_status = Reloc_funcs::relgotofst(target, view, object, psymval,
10065 r_addend, extract_addend, local,
10066 r_type);
10067 break;
10068
10069 case elfcpp::R_MIPS_JALR:
10070 case elfcpp::R_MICROMIPS_JALR:
10071 // This relocation is only a hint. In some cases, we optimize
10072 // it into a bal instruction. But we don't try to optimize
10073 // when the symbol does not resolve locally.
10074 if (gsym == NULL || symbol_calls_local(gsym, gsym->has_dynsym_index()))
10075 reloc_status = Reloc_funcs::reljalr(view, object, psymval, address,
10076 r_addend, extract_addend,
10077 cross_mode_jump, r_type,
10078 target->jalr_to_bal(),
10079 target->jr_to_b());
10080 break;
10081
10082 case elfcpp::R_MIPS_TLS_DTPREL_HI16:
10083 case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
10084 case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
10085 reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
10086 elfcpp::DTP_OFFSET, r_addend,
10087 extract_addend, r_type);
10088 break;
10089 case elfcpp::R_MIPS_TLS_DTPREL_LO16:
10090 case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
10091 case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
10092 reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
10093 elfcpp::DTP_OFFSET, r_addend,
10094 extract_addend, r_type);
10095 break;
10096 case elfcpp::R_MIPS_TLS_DTPREL32:
10097 case elfcpp::R_MIPS_TLS_DTPREL64:
10098 reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
10099 elfcpp::DTP_OFFSET, r_addend,
10100 extract_addend, r_type);
10101 break;
10102 case elfcpp::R_MIPS_TLS_TPREL_HI16:
10103 case elfcpp::R_MIPS16_TLS_TPREL_HI16:
10104 case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
10105 reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
10106 elfcpp::TP_OFFSET, r_addend,
10107 extract_addend, r_type);
10108 break;
10109 case elfcpp::R_MIPS_TLS_TPREL_LO16:
10110 case elfcpp::R_MIPS16_TLS_TPREL_LO16:
10111 case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
10112 reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
10113 elfcpp::TP_OFFSET, r_addend,
10114 extract_addend, r_type);
10115 break;
10116 case elfcpp::R_MIPS_TLS_TPREL32:
10117 case elfcpp::R_MIPS_TLS_TPREL64:
10118 reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
10119 elfcpp::TP_OFFSET, r_addend,
10120 extract_addend, r_type);
10121 break;
10122 case elfcpp::R_MIPS_SUB:
10123 case elfcpp::R_MICROMIPS_SUB:
10124 reloc_status = Reloc_funcs::relsub(view, object, psymval, r_addend,
10125 extract_addend, r_type);
10126 break;
10127 default:
10128 gold_error_at_location(relinfo, relnum, r_offset,
10129 _("unsupported reloc %u"), r_type);
10130 break;
10131 }
10132
10133 if (update_got_entry)
10134 {
10135 Mips_output_data_got<size, big_endian>* got = target->got_section();
10136 if (mips_sym != NULL && mips_sym->get_applied_secondary_got_fixup())
10137 got->update_got_entry(got->get_primary_got_offset(mips_sym),
10138 psymval->value(object, 0));
10139 else
10140 got->update_got_entry(got_offset, psymval->value(object, 0));
10141 }
10142
10143 // Report any errors.
10144 switch (reloc_status)
10145 {
10146 case Reloc_funcs::STATUS_OKAY:
10147 break;
10148 case Reloc_funcs::STATUS_OVERFLOW:
10149 gold_error_at_location(relinfo, relnum, r_offset,
10150 _("relocation overflow"));
10151 break;
10152 case Reloc_funcs::STATUS_BAD_RELOC:
10153 gold_error_at_location(relinfo, relnum, r_offset,
10154 _("unexpected opcode while processing relocation"));
10155 break;
10156 default:
10157 gold_unreachable();
10158 }
10159
10160 return true;
10161 }
10162
10163 // Get the Reference_flags for a particular relocation.
10164
10165 template<int size, bool big_endian>
10166 int
10167 Target_mips<size, big_endian>::Scan::get_reference_flags(
10168 unsigned int r_type)
10169 {
10170 switch (r_type)
10171 {
10172 case elfcpp::R_MIPS_NONE:
10173 // No symbol reference.
10174 return 0;
10175
10176 case elfcpp::R_MIPS_16:
10177 case elfcpp::R_MIPS_32:
10178 case elfcpp::R_MIPS_64:
10179 case elfcpp::R_MIPS_HI16:
10180 case elfcpp::R_MIPS_LO16:
10181 case elfcpp::R_MIPS16_HI16:
10182 case elfcpp::R_MIPS16_LO16:
10183 case elfcpp::R_MICROMIPS_HI16:
10184 case elfcpp::R_MICROMIPS_LO16:
10185 return Symbol::ABSOLUTE_REF;
10186
10187 case elfcpp::R_MIPS_26:
10188 case elfcpp::R_MIPS16_26:
10189 case elfcpp::R_MICROMIPS_26_S1:
10190 return Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
10191
10192 case elfcpp::R_MIPS_GPREL32:
10193 case elfcpp::R_MIPS_GPREL16:
10194 case elfcpp::R_MIPS_REL32:
10195 case elfcpp::R_MIPS16_GPREL:
10196 return Symbol::RELATIVE_REF;
10197
10198 case elfcpp::R_MIPS_PC16:
10199 case elfcpp::R_MIPS_PC32:
10200 case elfcpp::R_MIPS_JALR:
10201 case elfcpp::R_MICROMIPS_JALR:
10202 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
10203
10204 case elfcpp::R_MIPS_GOT16:
10205 case elfcpp::R_MIPS_CALL16:
10206 case elfcpp::R_MIPS_GOT_DISP:
10207 case elfcpp::R_MIPS_GOT_HI16:
10208 case elfcpp::R_MIPS_GOT_LO16:
10209 case elfcpp::R_MIPS_CALL_HI16:
10210 case elfcpp::R_MIPS_CALL_LO16:
10211 case elfcpp::R_MIPS_LITERAL:
10212 case elfcpp::R_MIPS_GOT_PAGE:
10213 case elfcpp::R_MIPS_GOT_OFST:
10214 case elfcpp::R_MIPS16_GOT16:
10215 case elfcpp::R_MIPS16_CALL16:
10216 case elfcpp::R_MICROMIPS_GOT16:
10217 case elfcpp::R_MICROMIPS_CALL16:
10218 case elfcpp::R_MICROMIPS_GOT_HI16:
10219 case elfcpp::R_MICROMIPS_GOT_LO16:
10220 case elfcpp::R_MICROMIPS_CALL_HI16:
10221 case elfcpp::R_MICROMIPS_CALL_LO16:
10222 // Absolute in GOT.
10223 return Symbol::RELATIVE_REF;
10224
10225 case elfcpp::R_MIPS_TLS_DTPMOD32:
10226 case elfcpp::R_MIPS_TLS_DTPREL32:
10227 case elfcpp::R_MIPS_TLS_DTPMOD64:
10228 case elfcpp::R_MIPS_TLS_DTPREL64:
10229 case elfcpp::R_MIPS_TLS_GD:
10230 case elfcpp::R_MIPS_TLS_LDM:
10231 case elfcpp::R_MIPS_TLS_DTPREL_HI16:
10232 case elfcpp::R_MIPS_TLS_DTPREL_LO16:
10233 case elfcpp::R_MIPS_TLS_GOTTPREL:
10234 case elfcpp::R_MIPS_TLS_TPREL32:
10235 case elfcpp::R_MIPS_TLS_TPREL64:
10236 case elfcpp::R_MIPS_TLS_TPREL_HI16:
10237 case elfcpp::R_MIPS_TLS_TPREL_LO16:
10238 case elfcpp::R_MIPS16_TLS_GD:
10239 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10240 case elfcpp::R_MICROMIPS_TLS_GD:
10241 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10242 case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
10243 case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
10244 return Symbol::TLS_REF;
10245
10246 case elfcpp::R_MIPS_COPY:
10247 case elfcpp::R_MIPS_JUMP_SLOT:
10248 default:
10249 gold_unreachable();
10250 // Not expected. We will give an error later.
10251 return 0;
10252 }
10253 }
10254
10255 // Report an unsupported relocation against a local symbol.
10256
10257 template<int size, bool big_endian>
10258 void
10259 Target_mips<size, big_endian>::Scan::unsupported_reloc_local(
10260 Sized_relobj_file<size, big_endian>* object,
10261 unsigned int r_type)
10262 {
10263 gold_error(_("%s: unsupported reloc %u against local symbol"),
10264 object->name().c_str(), r_type);
10265 }
10266
10267 // Report an unsupported relocation against a global symbol.
10268
10269 template<int size, bool big_endian>
10270 void
10271 Target_mips<size, big_endian>::Scan::unsupported_reloc_global(
10272 Sized_relobj_file<size, big_endian>* object,
10273 unsigned int r_type,
10274 Symbol* gsym)
10275 {
10276 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
10277 object->name().c_str(), r_type, gsym->demangled_name().c_str());
10278 }
10279
10280 // Return printable name for ABI.
10281 template<int size, bool big_endian>
10282 const char*
10283 Target_mips<size, big_endian>::elf_mips_abi_name(elfcpp::Elf_Word e_flags,
10284 unsigned char ei_class)
10285 {
10286 switch (e_flags & elfcpp::EF_MIPS_ABI)
10287 {
10288 case 0:
10289 if ((e_flags & elfcpp::EF_MIPS_ABI2) != 0)
10290 return "N32";
10291 else if (elfcpp::abi_64(ei_class))
10292 return "64";
10293 else
10294 return "none";
10295 case elfcpp::E_MIPS_ABI_O32:
10296 return "O32";
10297 case elfcpp::E_MIPS_ABI_O64:
10298 return "O64";
10299 case elfcpp::E_MIPS_ABI_EABI32:
10300 return "EABI32";
10301 case elfcpp::E_MIPS_ABI_EABI64:
10302 return "EABI64";
10303 default:
10304 return "unknown abi";
10305 }
10306 }
10307
10308 template<int size, bool big_endian>
10309 const char*
10310 Target_mips<size, big_endian>::elf_mips_mach_name(elfcpp::Elf_Word e_flags)
10311 {
10312 switch (e_flags & elfcpp::EF_MIPS_MACH)
10313 {
10314 case elfcpp::E_MIPS_MACH_3900:
10315 return "mips:3900";
10316 case elfcpp::E_MIPS_MACH_4010:
10317 return "mips:4010";
10318 case elfcpp::E_MIPS_MACH_4100:
10319 return "mips:4100";
10320 case elfcpp::E_MIPS_MACH_4111:
10321 return "mips:4111";
10322 case elfcpp::E_MIPS_MACH_4120:
10323 return "mips:4120";
10324 case elfcpp::E_MIPS_MACH_4650:
10325 return "mips:4650";
10326 case elfcpp::E_MIPS_MACH_5400:
10327 return "mips:5400";
10328 case elfcpp::E_MIPS_MACH_5500:
10329 return "mips:5500";
10330 case elfcpp::E_MIPS_MACH_SB1:
10331 return "mips:sb1";
10332 case elfcpp::E_MIPS_MACH_9000:
10333 return "mips:9000";
10334 case elfcpp::E_MIPS_MACH_LS2E:
10335 return "mips:loongson-2e";
10336 case elfcpp::E_MIPS_MACH_LS2F:
10337 return "mips:loongson-2f";
10338 case elfcpp::E_MIPS_MACH_LS3A:
10339 return "mips:loongson-3a";
10340 case elfcpp::E_MIPS_MACH_OCTEON:
10341 return "mips:octeon";
10342 case elfcpp::E_MIPS_MACH_OCTEON2:
10343 return "mips:octeon2";
10344 case elfcpp::E_MIPS_MACH_XLR:
10345 return "mips:xlr";
10346 default:
10347 switch (e_flags & elfcpp::EF_MIPS_ARCH)
10348 {
10349 default:
10350 case elfcpp::E_MIPS_ARCH_1:
10351 return "mips:3000";
10352
10353 case elfcpp::E_MIPS_ARCH_2:
10354 return "mips:6000";
10355
10356 case elfcpp::E_MIPS_ARCH_3:
10357 return "mips:4000";
10358
10359 case elfcpp::E_MIPS_ARCH_4:
10360 return "mips:8000";
10361
10362 case elfcpp::E_MIPS_ARCH_5:
10363 return "mips:mips5";
10364
10365 case elfcpp::E_MIPS_ARCH_32:
10366 return "mips:isa32";
10367
10368 case elfcpp::E_MIPS_ARCH_64:
10369 return "mips:isa64";
10370
10371 case elfcpp::E_MIPS_ARCH_32R2:
10372 return "mips:isa32r2";
10373
10374 case elfcpp::E_MIPS_ARCH_64R2:
10375 return "mips:isa64r2";
10376 }
10377 }
10378 return "unknown CPU";
10379 }
10380
10381 template<int size, bool big_endian>
10382 const Target::Target_info Target_mips<size, big_endian>::mips_info =
10383 {
10384 size, // size
10385 big_endian, // is_big_endian
10386 elfcpp::EM_MIPS, // machine_code
10387 true, // has_make_symbol
10388 false, // has_resolve
10389 false, // has_code_fill
10390 true, // is_default_stack_executable
10391 false, // can_icf_inline_merge_sections
10392 '\0', // wrap_char
10393 "/lib/ld.so.1", // dynamic_linker
10394 0x400000, // default_text_segment_address
10395 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
10396 4 * 1024, // common_pagesize (overridable by -z common-page-size)
10397 false, // isolate_execinstr
10398 0, // rosegment_gap
10399 elfcpp::SHN_UNDEF, // small_common_shndx
10400 elfcpp::SHN_UNDEF, // large_common_shndx
10401 0, // small_common_section_flags
10402 0, // large_common_section_flags
10403 NULL, // attributes_section
10404 NULL, // attributes_vendor
10405 "__start", // entry_symbol_name
10406 32, // hash_entry_size
10407 };
10408
10409 template<int size, bool big_endian>
10410 class Target_mips_nacl : public Target_mips<size, big_endian>
10411 {
10412 public:
10413 Target_mips_nacl()
10414 : Target_mips<size, big_endian>(&mips_nacl_info)
10415 { }
10416
10417 private:
10418 static const Target::Target_info mips_nacl_info;
10419 };
10420
10421 template<int size, bool big_endian>
10422 const Target::Target_info Target_mips_nacl<size, big_endian>::mips_nacl_info =
10423 {
10424 size, // size
10425 big_endian, // is_big_endian
10426 elfcpp::EM_MIPS, // machine_code
10427 true, // has_make_symbol
10428 false, // has_resolve
10429 false, // has_code_fill
10430 true, // is_default_stack_executable
10431 false, // can_icf_inline_merge_sections
10432 '\0', // wrap_char
10433 "/lib/ld.so.1", // dynamic_linker
10434 0x20000, // default_text_segment_address
10435 0x10000, // abi_pagesize (overridable by -z max-page-size)
10436 0x10000, // common_pagesize (overridable by -z common-page-size)
10437 true, // isolate_execinstr
10438 0x10000000, // rosegment_gap
10439 elfcpp::SHN_UNDEF, // small_common_shndx
10440 elfcpp::SHN_UNDEF, // large_common_shndx
10441 0, // small_common_section_flags
10442 0, // large_common_section_flags
10443 NULL, // attributes_section
10444 NULL, // attributes_vendor
10445 "_start", // entry_symbol_name
10446 32, // hash_entry_size
10447 };
10448
10449 // Target selector for Mips. Note this is never instantiated directly.
10450 // It's only used in Target_selector_mips_nacl, below.
10451
10452 template<int size, bool big_endian>
10453 class Target_selector_mips : public Target_selector
10454 {
10455 public:
10456 Target_selector_mips()
10457 : Target_selector(elfcpp::EM_MIPS, size, big_endian,
10458 (size == 64 ?
10459 (big_endian ? "elf64-tradbigmips" : "elf64-tradlittlemips") :
10460 (big_endian ? "elf32-tradbigmips" : "elf32-tradlittlemips")),
10461 (size == 64 ?
10462 (big_endian ? "elf64-tradbigmips" : "elf64-tradlittlemips") :
10463 (big_endian ? "elf32-tradbigmips" : "elf32-tradlittlemips")))
10464 { }
10465
10466 Target* do_instantiate_target()
10467 { return new Target_mips<size, big_endian>(); }
10468 };
10469
10470 template<int size, bool big_endian>
10471 class Target_selector_mips_nacl
10472 : public Target_selector_nacl<Target_selector_mips<size, big_endian>,
10473 Target_mips_nacl<size, big_endian> >
10474 {
10475 public:
10476 Target_selector_mips_nacl()
10477 : Target_selector_nacl<Target_selector_mips<size, big_endian>,
10478 Target_mips_nacl<size, big_endian> >(
10479 // NaCl currently supports only MIPS32 little-endian.
10480 "mipsel", "elf32-tradlittlemips-nacl", "elf32-tradlittlemips-nacl")
10481 { }
10482 };
10483
10484 Target_selector_mips_nacl<32, true> target_selector_mips32;
10485 Target_selector_mips_nacl<32, false> target_selector_mips32el;
10486 Target_selector_mips_nacl<64, true> target_selector_mips64;
10487 Target_selector_mips_nacl<64, false> target_selector_mips64el;
10488
10489 } // End anonymous namespace.
This page took 0.247896 seconds and 4 git commands to generate.