gold/
[deliverable/binutils-gdb.git] / gold / mips.cc
1 // mips.cc -- mips target support for gold.
2
3 // Copyright (C) 2011-2014 Free Software Foundation, Inc.
4 // Written by Sasa Stankovic <sasa.stankovic@imgtec.com>
5 // and Aleksandar Simeonov <aleksandar.simeonov@rt-rk.com>.
6 // This file contains borrowed and adapted code from bfd/elfxx-mips.c.
7
8 // This file is part of gold.
9
10 // This program is free software; you can redistribute it and/or modify
11 // it under the terms of the GNU General Public License as published by
12 // the Free Software Foundation; either version 3 of the License, or
13 // (at your option) any later version.
14
15 // This program is distributed in the hope that it will be useful,
16 // but WITHOUT ANY WARRANTY; without even the implied warranty of
17 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 // GNU General Public License for more details.
19
20 // You should have received a copy of the GNU General Public License
21 // along with this program; if not, write to the Free Software
22 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
23 // MA 02110-1301, USA.
24
25 #include "gold.h"
26
27 #include <algorithm>
28 #include <set>
29 #include <sstream>
30 #include "demangle.h"
31
32 #include "elfcpp.h"
33 #include "parameters.h"
34 #include "reloc.h"
35 #include "mips.h"
36 #include "object.h"
37 #include "symtab.h"
38 #include "layout.h"
39 #include "output.h"
40 #include "copy-relocs.h"
41 #include "target.h"
42 #include "target-reloc.h"
43 #include "target-select.h"
44 #include "tls.h"
45 #include "errors.h"
46 #include "gc.h"
47
48 namespace
49 {
50 using namespace gold;
51
52 template<int size, bool big_endian>
53 class Mips_output_data_plt;
54
55 template<int size, bool big_endian>
56 class Mips_output_data_got;
57
58 template<int size, bool big_endian>
59 class Target_mips;
60
61 template<int size, bool big_endian>
62 class Mips_output_section_reginfo;
63
64 template<int size, bool big_endian>
65 class Mips_output_data_la25_stub;
66
67 template<int size, bool big_endian>
68 class Mips_output_data_mips_stubs;
69
70 template<int size>
71 class Mips_symbol;
72
73 template<int size, bool big_endian>
74 class Mips_got_info;
75
76 template<int size, bool big_endian>
77 class Mips_relobj;
78
79 class Mips16_stub_section_base;
80
81 template<int size, bool big_endian>
82 class Mips16_stub_section;
83
84 // The ABI says that every symbol used by dynamic relocations must have
85 // a global GOT entry. Among other things, this provides the dynamic
86 // linker with a free, directly-indexed cache. The GOT can therefore
87 // contain symbols that are not referenced by GOT relocations themselves
88 // (in other words, it may have symbols that are not referenced by things
89 // like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
90
91 // GOT relocations are less likely to overflow if we put the associated
92 // GOT entries towards the beginning. We therefore divide the global
93 // GOT entries into two areas: "normal" and "reloc-only". Entries in
94 // the first area can be used for both dynamic relocations and GP-relative
95 // accesses, while those in the "reloc-only" area are for dynamic
96 // relocations only.
97
98 // These GGA_* ("Global GOT Area") values are organised so that lower
99 // values are more general than higher values. Also, non-GGA_NONE
100 // values are ordered by the position of the area in the GOT.
101
102 enum Global_got_area
103 {
104 GGA_NORMAL = 0,
105 GGA_RELOC_ONLY = 1,
106 GGA_NONE = 2
107 };
108
109 // The types of GOT entries needed for this platform.
110 // These values are exposed to the ABI in an incremental link.
111 // Do not renumber existing values without changing the version
112 // number of the .gnu_incremental_inputs section.
113 enum Got_type
114 {
115 GOT_TYPE_STANDARD = 0, // GOT entry for a regular symbol
116 GOT_TYPE_TLS_OFFSET = 1, // GOT entry for TLS offset
117 GOT_TYPE_TLS_PAIR = 2, // GOT entry for TLS module/offset pair
118
119 // GOT entries for multi-GOT. We support up to 1024 GOTs in multi-GOT links.
120 GOT_TYPE_STANDARD_MULTIGOT = 3,
121 GOT_TYPE_TLS_OFFSET_MULTIGOT = GOT_TYPE_STANDARD_MULTIGOT + 1024,
122 GOT_TYPE_TLS_PAIR_MULTIGOT = GOT_TYPE_TLS_OFFSET_MULTIGOT + 1024
123 };
124
125 // TLS type of GOT entry.
126 enum Got_tls_type
127 {
128 GOT_TLS_NONE = 0,
129 GOT_TLS_GD = 1,
130 GOT_TLS_LDM = 2,
131 GOT_TLS_IE = 4
132 };
133
134 // Return TRUE if a relocation of type R_TYPE from OBJECT might
135 // require an la25 stub. See also local_pic_function, which determines
136 // whether the destination function ever requires a stub.
137 template<int size, bool big_endian>
138 static inline bool
139 relocation_needs_la25_stub(Mips_relobj<size, big_endian>* object,
140 unsigned int r_type, bool target_is_16_bit_code)
141 {
142 // We specifically ignore branches and jumps from EF_PIC objects,
143 // where the onus is on the compiler or programmer to perform any
144 // necessary initialization of $25. Sometimes such initialization
145 // is unnecessary; for example, -mno-shared functions do not use
146 // the incoming value of $25, and may therefore be called directly.
147 if (object->is_pic())
148 return false;
149
150 switch (r_type)
151 {
152 case elfcpp::R_MIPS_26:
153 case elfcpp::R_MIPS_PC16:
154 case elfcpp::R_MICROMIPS_26_S1:
155 case elfcpp::R_MICROMIPS_PC7_S1:
156 case elfcpp::R_MICROMIPS_PC10_S1:
157 case elfcpp::R_MICROMIPS_PC16_S1:
158 case elfcpp::R_MICROMIPS_PC23_S2:
159 return true;
160
161 case elfcpp::R_MIPS16_26:
162 return !target_is_16_bit_code;
163
164 default:
165 return false;
166 }
167 }
168
169 // Return true if SYM is a locally-defined PIC function, in the sense
170 // that it or its fn_stub might need $25 to be valid on entry.
171 // Note that MIPS16 functions set up $gp using PC-relative instructions,
172 // so they themselves never need $25 to be valid. Only non-MIPS16
173 // entry points are of interest here.
174 template<int size, bool big_endian>
175 static inline bool
176 local_pic_function(Mips_symbol<size>* sym)
177 {
178 bool def_regular = (sym->source() == Symbol::FROM_OBJECT
179 && !sym->object()->is_dynamic()
180 && !sym->is_undefined());
181
182 if (sym->is_defined() && def_regular)
183 {
184 Mips_relobj<size, big_endian>* object =
185 static_cast<Mips_relobj<size, big_endian>*>(sym->object());
186
187 if ((object->is_pic() || sym->is_pic())
188 && (!sym->is_mips16()
189 || (sym->has_mips16_fn_stub() && sym->need_fn_stub())))
190 return true;
191 }
192 return false;
193 }
194
195 static inline bool
196 hi16_reloc(int r_type)
197 {
198 return (r_type == elfcpp::R_MIPS_HI16
199 || r_type == elfcpp::R_MIPS16_HI16
200 || r_type == elfcpp::R_MICROMIPS_HI16);
201 }
202
203 static inline bool
204 lo16_reloc(int r_type)
205 {
206 return (r_type == elfcpp::R_MIPS_LO16
207 || r_type == elfcpp::R_MIPS16_LO16
208 || r_type == elfcpp::R_MICROMIPS_LO16);
209 }
210
211 static inline bool
212 got16_reloc(unsigned int r_type)
213 {
214 return (r_type == elfcpp::R_MIPS_GOT16
215 || r_type == elfcpp::R_MIPS16_GOT16
216 || r_type == elfcpp::R_MICROMIPS_GOT16);
217 }
218
219 static inline bool
220 call_lo16_reloc(unsigned int r_type)
221 {
222 return (r_type == elfcpp::R_MIPS_CALL_LO16
223 || r_type == elfcpp::R_MICROMIPS_CALL_LO16);
224 }
225
226 static inline bool
227 got_lo16_reloc(unsigned int r_type)
228 {
229 return (r_type == elfcpp::R_MIPS_GOT_LO16
230 || r_type == elfcpp::R_MICROMIPS_GOT_LO16);
231 }
232
233 static inline bool
234 got_disp_reloc(unsigned int r_type)
235 {
236 return (r_type == elfcpp::R_MIPS_GOT_DISP
237 || r_type == elfcpp::R_MICROMIPS_GOT_DISP);
238 }
239
240 static inline bool
241 got_page_reloc(unsigned int r_type)
242 {
243 return (r_type == elfcpp::R_MIPS_GOT_PAGE
244 || r_type == elfcpp::R_MICROMIPS_GOT_PAGE);
245 }
246
247 static inline bool
248 tls_gd_reloc(unsigned int r_type)
249 {
250 return (r_type == elfcpp::R_MIPS_TLS_GD
251 || r_type == elfcpp::R_MIPS16_TLS_GD
252 || r_type == elfcpp::R_MICROMIPS_TLS_GD);
253 }
254
255 static inline bool
256 tls_gottprel_reloc(unsigned int r_type)
257 {
258 return (r_type == elfcpp::R_MIPS_TLS_GOTTPREL
259 || r_type == elfcpp::R_MIPS16_TLS_GOTTPREL
260 || r_type == elfcpp::R_MICROMIPS_TLS_GOTTPREL);
261 }
262
263 static inline bool
264 tls_ldm_reloc(unsigned int r_type)
265 {
266 return (r_type == elfcpp::R_MIPS_TLS_LDM
267 || r_type == elfcpp::R_MIPS16_TLS_LDM
268 || r_type == elfcpp::R_MICROMIPS_TLS_LDM);
269 }
270
271 static inline bool
272 mips16_call_reloc(unsigned int r_type)
273 {
274 return (r_type == elfcpp::R_MIPS16_26
275 || r_type == elfcpp::R_MIPS16_CALL16);
276 }
277
278 static inline bool
279 jal_reloc(unsigned int r_type)
280 {
281 return (r_type == elfcpp::R_MIPS_26
282 || r_type == elfcpp::R_MIPS16_26
283 || r_type == elfcpp::R_MICROMIPS_26_S1);
284 }
285
286 static inline bool
287 micromips_branch_reloc(unsigned int r_type)
288 {
289 return (r_type == elfcpp::R_MICROMIPS_26_S1
290 || r_type == elfcpp::R_MICROMIPS_PC16_S1
291 || r_type == elfcpp::R_MICROMIPS_PC10_S1
292 || r_type == elfcpp::R_MICROMIPS_PC7_S1);
293 }
294
295 // Check if R_TYPE is a MIPS16 reloc.
296 static inline bool
297 mips16_reloc(unsigned int r_type)
298 {
299 switch (r_type)
300 {
301 case elfcpp::R_MIPS16_26:
302 case elfcpp::R_MIPS16_GPREL:
303 case elfcpp::R_MIPS16_GOT16:
304 case elfcpp::R_MIPS16_CALL16:
305 case elfcpp::R_MIPS16_HI16:
306 case elfcpp::R_MIPS16_LO16:
307 case elfcpp::R_MIPS16_TLS_GD:
308 case elfcpp::R_MIPS16_TLS_LDM:
309 case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
310 case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
311 case elfcpp::R_MIPS16_TLS_GOTTPREL:
312 case elfcpp::R_MIPS16_TLS_TPREL_HI16:
313 case elfcpp::R_MIPS16_TLS_TPREL_LO16:
314 return true;
315
316 default:
317 return false;
318 }
319 }
320
321 // Check if R_TYPE is a microMIPS reloc.
322 static inline bool
323 micromips_reloc(unsigned int r_type)
324 {
325 switch (r_type)
326 {
327 case elfcpp::R_MICROMIPS_26_S1:
328 case elfcpp::R_MICROMIPS_HI16:
329 case elfcpp::R_MICROMIPS_LO16:
330 case elfcpp::R_MICROMIPS_GPREL16:
331 case elfcpp::R_MICROMIPS_LITERAL:
332 case elfcpp::R_MICROMIPS_GOT16:
333 case elfcpp::R_MICROMIPS_PC7_S1:
334 case elfcpp::R_MICROMIPS_PC10_S1:
335 case elfcpp::R_MICROMIPS_PC16_S1:
336 case elfcpp::R_MICROMIPS_CALL16:
337 case elfcpp::R_MICROMIPS_GOT_DISP:
338 case elfcpp::R_MICROMIPS_GOT_PAGE:
339 case elfcpp::R_MICROMIPS_GOT_OFST:
340 case elfcpp::R_MICROMIPS_GOT_HI16:
341 case elfcpp::R_MICROMIPS_GOT_LO16:
342 case elfcpp::R_MICROMIPS_SUB:
343 case elfcpp::R_MICROMIPS_HIGHER:
344 case elfcpp::R_MICROMIPS_HIGHEST:
345 case elfcpp::R_MICROMIPS_CALL_HI16:
346 case elfcpp::R_MICROMIPS_CALL_LO16:
347 case elfcpp::R_MICROMIPS_SCN_DISP:
348 case elfcpp::R_MICROMIPS_JALR:
349 case elfcpp::R_MICROMIPS_HI0_LO16:
350 case elfcpp::R_MICROMIPS_TLS_GD:
351 case elfcpp::R_MICROMIPS_TLS_LDM:
352 case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
353 case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
354 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
355 case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
356 case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
357 case elfcpp::R_MICROMIPS_GPREL7_S2:
358 case elfcpp::R_MICROMIPS_PC23_S2:
359 return true;
360
361 default:
362 return false;
363 }
364 }
365
366 static inline bool
367 is_matching_lo16_reloc(unsigned int high_reloc, unsigned int lo16_reloc)
368 {
369 switch (high_reloc)
370 {
371 case elfcpp::R_MIPS_HI16:
372 case elfcpp::R_MIPS_GOT16:
373 return lo16_reloc == elfcpp::R_MIPS_LO16;
374 case elfcpp::R_MIPS16_HI16:
375 case elfcpp::R_MIPS16_GOT16:
376 return lo16_reloc == elfcpp::R_MIPS16_LO16;
377 case elfcpp::R_MICROMIPS_HI16:
378 case elfcpp::R_MICROMIPS_GOT16:
379 return lo16_reloc == elfcpp::R_MICROMIPS_LO16;
380 default:
381 return false;
382 }
383 }
384
385 // This class is used to hold information about one GOT entry.
386 // There are three types of entry:
387 //
388 // (1) a SYMBOL + OFFSET address, where SYMBOL is local to an input object
389 // (object != NULL, symndx >= 0, tls_type != GOT_TLS_LDM)
390 // (2) a SYMBOL address, where SYMBOL is not local to an input object
391 // (object != NULL, symndx == -1)
392 // (3) a TLS LDM slot
393 // (object != NULL, symndx == 0, tls_type == GOT_TLS_LDM)
394
395 template<int size, bool big_endian>
396 class Mips_got_entry
397 {
398 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
399
400 public:
401 Mips_got_entry(Mips_relobj<size, big_endian>* object, unsigned int symndx,
402 Mips_address addend, unsigned char tls_type,
403 unsigned int shndx)
404 : object_(object), symndx_(symndx), tls_type_(tls_type), shndx_(shndx)
405 { this->d.addend = addend; }
406
407 Mips_got_entry(Mips_relobj<size, big_endian>* object, Mips_symbol<size>* sym,
408 unsigned char tls_type)
409 : object_(object), symndx_(-1U), tls_type_(tls_type), shndx_(-1U)
410 { this->d.sym = sym; }
411
412 // Return whether this entry is for a local symbol.
413 bool
414 is_for_local_symbol() const
415 { return this->symndx_ != -1U; }
416
417 // Return whether this entry is for a global symbol.
418 bool
419 is_for_global_symbol() const
420 { return this->symndx_ == -1U; }
421
422 // Return the hash of this entry.
423 size_t
424 hash() const
425 {
426 if (this->tls_type_ == GOT_TLS_LDM)
427 return this->symndx_ + (1 << 18);
428 if (this->symndx_ != -1U)
429 {
430 uintptr_t object_id = reinterpret_cast<uintptr_t>(this->object());
431 return this->symndx_ + object_id + this->d.addend;
432 }
433 else
434 {
435 uintptr_t sym_id = reinterpret_cast<uintptr_t>(this->d.sym);
436 return this->symndx_ + sym_id;
437 }
438 }
439
440 // Return whether this entry is equal to OTHER.
441 bool
442 equals(Mips_got_entry<size, big_endian>* other) const
443 {
444 if (this->symndx_ != other->symndx_
445 || this->tls_type_ != other->tls_type_)
446 return false;
447 if (this->tls_type_ == GOT_TLS_LDM)
448 return true;
449 if (this->symndx_ != -1U)
450 return (this->object() == other->object()
451 && this->d.addend == other->d.addend);
452 else
453 return this->d.sym == other->d.sym;
454 }
455
456 // Return input object that needs this GOT entry.
457 Mips_relobj<size, big_endian>*
458 object() const
459 {
460 gold_assert(this->object_ != NULL);
461 return this->object_;
462 }
463
464 // Return local symbol index for local GOT entries.
465 unsigned int
466 symndx() const
467 {
468 gold_assert(this->symndx_ != -1U);
469 return this->symndx_;
470 }
471
472 // Return the relocation addend for local GOT entries.
473 Mips_address
474 addend() const
475 {
476 gold_assert(this->symndx_ != -1U);
477 return this->d.addend;
478 }
479
480 // Return global symbol for global GOT entries.
481 Mips_symbol<size>*
482 sym() const
483 {
484 gold_assert(this->symndx_ == -1U);
485 return this->d.sym;
486 }
487
488 // Return whether this is a TLS GOT entry.
489 bool
490 is_tls_entry() const
491 { return this->tls_type_ != GOT_TLS_NONE; }
492
493 // Return TLS type of this GOT entry.
494 unsigned char
495 tls_type() const
496 { return this->tls_type_; }
497
498 // Return section index of the local symbol for local GOT entries.
499 unsigned int
500 shndx() const
501 { return this->shndx_; }
502
503 private:
504 // The input object that needs the GOT entry.
505 Mips_relobj<size, big_endian>* object_;
506 // The index of the symbol if we have a local symbol; -1 otherwise.
507 unsigned int symndx_;
508
509 union
510 {
511 // If symndx != -1, the addend of the relocation that should be added to the
512 // symbol value.
513 Mips_address addend;
514 // If symndx == -1, the global symbol corresponding to this GOT entry. The
515 // symbol's entry is in the local area if mips_sym->global_got_area is
516 // GGA_NONE, otherwise it is in the global area.
517 Mips_symbol<size>* sym;
518 } d;
519
520 // The TLS type of this GOT entry. An LDM GOT entry will be a local
521 // symbol entry with r_symndx == 0.
522 unsigned char tls_type_;
523
524 // For local GOT entries, section index of the local symbol.
525 unsigned int shndx_;
526 };
527
528 // Hash for Mips_got_entry.
529
530 template<int size, bool big_endian>
531 class Mips_got_entry_hash
532 {
533 public:
534 size_t
535 operator()(Mips_got_entry<size, big_endian>* entry) const
536 { return entry->hash(); }
537 };
538
539 // Equality for Mips_got_entry.
540
541 template<int size, bool big_endian>
542 class Mips_got_entry_eq
543 {
544 public:
545 bool
546 operator()(Mips_got_entry<size, big_endian>* e1,
547 Mips_got_entry<size, big_endian>* e2) const
548 { return e1->equals(e2); }
549 };
550
551 // Got_page_range. This class describes a range of addends: [MIN_ADDEND,
552 // MAX_ADDEND]. The instances form a non-overlapping list that is sorted by
553 // increasing MIN_ADDEND.
554
555 struct Got_page_range
556 {
557 Got_page_range()
558 : next(NULL), min_addend(0), max_addend(0)
559 { }
560
561 Got_page_range* next;
562 int min_addend;
563 int max_addend;
564
565 // Return the maximum number of GOT page entries required.
566 int
567 get_max_pages()
568 { return (this->max_addend - this->min_addend + 0x1ffff) >> 16; }
569 };
570
571 // Got_page_entry. This class describes the range of addends that are applied
572 // to page relocations against a given symbol.
573
574 struct Got_page_entry
575 {
576 Got_page_entry()
577 : object(NULL), symndx(-1U), ranges(NULL), num_pages(0)
578 { }
579
580 Got_page_entry(Object* object_, unsigned int symndx_)
581 : object(object_), symndx(symndx_), ranges(NULL), num_pages(0)
582 { }
583
584 // The input object that needs the GOT page entry.
585 Object* object;
586 // The index of the symbol, as stored in the relocation r_info.
587 unsigned int symndx;
588 // The ranges for this page entry.
589 Got_page_range* ranges;
590 // The maximum number of page entries needed for RANGES.
591 unsigned int num_pages;
592 };
593
594 // Hash for Got_page_entry.
595
596 struct Got_page_entry_hash
597 {
598 size_t
599 operator()(Got_page_entry* entry) const
600 { return reinterpret_cast<uintptr_t>(entry->object) + entry->symndx; }
601 };
602
603 // Equality for Got_page_entry.
604
605 struct Got_page_entry_eq
606 {
607 bool
608 operator()(Got_page_entry* entry1, Got_page_entry* entry2) const
609 {
610 return entry1->object == entry2->object && entry1->symndx == entry2->symndx;
611 }
612 };
613
614 // This class is used to hold .got information when linking.
615
616 template<int size, bool big_endian>
617 class Mips_got_info
618 {
619 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
620 typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
621 Reloc_section;
622 typedef Unordered_map<unsigned int, unsigned int> Got_page_offsets;
623
624 // Unordered set of GOT entries.
625 typedef Unordered_set<Mips_got_entry<size, big_endian>*,
626 Mips_got_entry_hash<size, big_endian>,
627 Mips_got_entry_eq<size, big_endian> > Got_entry_set;
628
629 // Unordered set of GOT page entries.
630 typedef Unordered_set<Got_page_entry*,
631 Got_page_entry_hash, Got_page_entry_eq> Got_page_entry_set;
632
633 public:
634 Mips_got_info()
635 : local_gotno_(0), page_gotno_(0), global_gotno_(0), reloc_only_gotno_(0),
636 tls_gotno_(0), tls_ldm_offset_(-1U), global_got_symbols_(),
637 got_entries_(), got_page_entries_(), got_page_offset_start_(0),
638 got_page_offset_next_(0), got_page_offsets_(), next_(NULL), index_(-1U),
639 offset_(0)
640 { }
641
642 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
643 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
644 void
645 record_local_got_symbol(Mips_relobj<size, big_endian>* object,
646 unsigned int symndx, Mips_address addend,
647 unsigned int r_type, unsigned int shndx);
648
649 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
650 // in OBJECT. FOR_CALL is true if the caller is only interested in
651 // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
652 // relocation.
653 void
654 record_global_got_symbol(Mips_symbol<size>* mips_sym,
655 Mips_relobj<size, big_endian>* object,
656 unsigned int r_type, bool dyn_reloc, bool for_call);
657
658 // Add ENTRY to master GOT and to OBJECT's GOT.
659 void
660 record_got_entry(Mips_got_entry<size, big_endian>* entry,
661 Mips_relobj<size, big_endian>* object);
662
663 // Record that OBJECT has a page relocation against symbol SYMNDX and
664 // that ADDEND is the addend for that relocation.
665 void
666 record_got_page_entry(Mips_relobj<size, big_endian>* object,
667 unsigned int symndx, int addend);
668
669 // Create all entries that should be in the local part of the GOT.
670 void
671 add_local_entries(Target_mips<size, big_endian>* target, Layout* layout);
672
673 // Create GOT page entries.
674 void
675 add_page_entries(Target_mips<size, big_endian>* target, Layout* layout);
676
677 // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
678 void
679 add_global_entries(Target_mips<size, big_endian>* target, Layout* layout,
680 unsigned int non_reloc_only_global_gotno);
681
682 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
683 void
684 add_reloc_only_entries(Mips_output_data_got<size, big_endian>* got);
685
686 // Create TLS GOT entries.
687 void
688 add_tls_entries(Target_mips<size, big_endian>* target, Layout* layout);
689
690 // Decide whether the symbol needs an entry in the global part of the primary
691 // GOT, setting global_got_area accordingly. Count the number of global
692 // symbols that are in the primary GOT only because they have dynamic
693 // relocations R_MIPS_REL32 against them (reloc_only_gotno).
694 void
695 count_got_symbols(Symbol_table* symtab);
696
697 // Return the offset of GOT page entry for VALUE.
698 unsigned int
699 get_got_page_offset(Mips_address value,
700 Mips_output_data_got<size, big_endian>* got);
701
702 // Count the number of GOT entries required.
703 void
704 count_got_entries();
705
706 // Count the number of GOT entries required by ENTRY. Accumulate the result.
707 void
708 count_got_entry(Mips_got_entry<size, big_endian>* entry);
709
710 // Add FROM's GOT entries.
711 void
712 add_got_entries(Mips_got_info<size, big_endian>* from);
713
714 // Add FROM's GOT page entries.
715 void
716 add_got_page_entries(Mips_got_info<size, big_endian>* from);
717
718 // Return GOT size.
719 unsigned int
720 got_size() const
721 { return ((2 + this->local_gotno_ + this->page_gotno_ + this->global_gotno_
722 + this->tls_gotno_) * size/8);
723 }
724
725 // Return the number of local GOT entries.
726 unsigned int
727 local_gotno() const
728 { return this->local_gotno_; }
729
730 // Return the maximum number of page GOT entries needed.
731 unsigned int
732 page_gotno() const
733 { return this->page_gotno_; }
734
735 // Return the number of global GOT entries.
736 unsigned int
737 global_gotno() const
738 { return this->global_gotno_; }
739
740 // Set the number of global GOT entries.
741 void
742 set_global_gotno(unsigned int global_gotno)
743 { this->global_gotno_ = global_gotno; }
744
745 // Return the number of GGA_RELOC_ONLY global GOT entries.
746 unsigned int
747 reloc_only_gotno() const
748 { return this->reloc_only_gotno_; }
749
750 // Return the number of TLS GOT entries.
751 unsigned int
752 tls_gotno() const
753 { return this->tls_gotno_; }
754
755 // Return the GOT type for this GOT. Used for multi-GOT links only.
756 unsigned int
757 multigot_got_type(unsigned int got_type) const
758 {
759 switch (got_type)
760 {
761 case GOT_TYPE_STANDARD:
762 return GOT_TYPE_STANDARD_MULTIGOT + this->index_;
763 case GOT_TYPE_TLS_OFFSET:
764 return GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
765 case GOT_TYPE_TLS_PAIR:
766 return GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
767 default:
768 gold_unreachable();
769 }
770 }
771
772 // Remove lazy-binding stubs for global symbols in this GOT.
773 void
774 remove_lazy_stubs(Target_mips<size, big_endian>* target);
775
776 // Return offset of this GOT from the start of .got section.
777 unsigned int
778 offset() const
779 { return this->offset_; }
780
781 // Set offset of this GOT from the start of .got section.
782 void
783 set_offset(unsigned int offset)
784 { this->offset_ = offset; }
785
786 // Set index of this GOT in multi-GOT links.
787 void
788 set_index(unsigned int index)
789 { this->index_ = index; }
790
791 // Return next GOT in multi-GOT links.
792 Mips_got_info<size, big_endian>*
793 next() const
794 { return this->next_; }
795
796 // Set next GOT in multi-GOT links.
797 void
798 set_next(Mips_got_info<size, big_endian>* next)
799 { this->next_ = next; }
800
801 // Return the offset of TLS LDM entry for this GOT.
802 unsigned int
803 tls_ldm_offset() const
804 { return this->tls_ldm_offset_; }
805
806 // Set the offset of TLS LDM entry for this GOT.
807 void
808 set_tls_ldm_offset(unsigned int tls_ldm_offset)
809 { this->tls_ldm_offset_ = tls_ldm_offset; }
810
811 Unordered_set<Mips_symbol<size>*>&
812 global_got_symbols()
813 { return this->global_got_symbols_; }
814
815 // Return the GOT_TLS_* type required by relocation type R_TYPE.
816 static int
817 mips_elf_reloc_tls_type(unsigned int r_type)
818 {
819 if (tls_gd_reloc(r_type))
820 return GOT_TLS_GD;
821
822 if (tls_ldm_reloc(r_type))
823 return GOT_TLS_LDM;
824
825 if (tls_gottprel_reloc(r_type))
826 return GOT_TLS_IE;
827
828 return GOT_TLS_NONE;
829 }
830
831 // Return the number of GOT slots needed for GOT TLS type TYPE.
832 static int
833 mips_tls_got_entries(unsigned int type)
834 {
835 switch (type)
836 {
837 case GOT_TLS_GD:
838 case GOT_TLS_LDM:
839 return 2;
840
841 case GOT_TLS_IE:
842 return 1;
843
844 case GOT_TLS_NONE:
845 return 0;
846
847 default:
848 gold_unreachable();
849 }
850 }
851
852 private:
853 // The number of local GOT entries.
854 unsigned int local_gotno_;
855 // The maximum number of page GOT entries needed.
856 unsigned int page_gotno_;
857 // The number of global GOT entries.
858 unsigned int global_gotno_;
859 // The number of global GOT entries that are in the GGA_RELOC_ONLY area.
860 unsigned int reloc_only_gotno_;
861 // The number of TLS GOT entries.
862 unsigned int tls_gotno_;
863 // The offset of TLS LDM entry for this GOT.
864 unsigned int tls_ldm_offset_;
865 // All symbols that have global GOT entry.
866 Unordered_set<Mips_symbol<size>*> global_got_symbols_;
867 // A hash table holding GOT entries.
868 Got_entry_set got_entries_;
869 // A hash table of GOT page entries.
870 Got_page_entry_set got_page_entries_;
871 // The offset of first GOT page entry for this GOT.
872 unsigned int got_page_offset_start_;
873 // The offset of next available GOT page entry for this GOT.
874 unsigned int got_page_offset_next_;
875 // A hash table that maps GOT page entry value to the GOT offset where
876 // the entry is located.
877 Got_page_offsets got_page_offsets_;
878 // In multi-GOT links, a pointer to the next GOT.
879 Mips_got_info<size, big_endian>* next_;
880 // Index of this GOT in multi-GOT links.
881 unsigned int index_;
882 // The offset of this GOT in multi-GOT links.
883 unsigned int offset_;
884 };
885
886 // This is a helper class used during relocation scan. It records GOT16 addend.
887
888 template<int size, bool big_endian>
889 struct got16_addend
890 {
891 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
892
893 got16_addend(const Sized_relobj_file<size, big_endian>* _object,
894 unsigned int _shndx, unsigned int _r_type, unsigned int _r_sym,
895 Mips_address _addend)
896 : object(_object), shndx(_shndx), r_type(_r_type), r_sym(_r_sym),
897 addend(_addend)
898 { }
899
900 const Sized_relobj_file<size, big_endian>* object;
901 unsigned int shndx;
902 unsigned int r_type;
903 unsigned int r_sym;
904 Mips_address addend;
905 };
906
907 // Mips_symbol class. Holds additional symbol information needed for Mips.
908
909 template<int size>
910 class Mips_symbol : public Sized_symbol<size>
911 {
912 public:
913 Mips_symbol()
914 : need_fn_stub_(false), has_nonpic_branches_(false), la25_stub_offset_(-1U),
915 has_static_relocs_(false), no_lazy_stub_(false), lazy_stub_offset_(0),
916 pointer_equality_needed_(false), global_got_area_(GGA_NONE),
917 global_gotoffset_(-1U), got_only_for_calls_(true), has_lazy_stub_(false),
918 needs_mips_plt_(false), needs_comp_plt_(false), mips_plt_offset_(-1U),
919 comp_plt_offset_(-1U), mips16_fn_stub_(NULL), mips16_call_stub_(NULL),
920 mips16_call_fp_stub_(NULL), applied_secondary_got_fixup_(false)
921 { }
922
923 // Return whether this is a MIPS16 symbol.
924 bool
925 is_mips16() const
926 {
927 // (st_other & STO_MIPS16) == STO_MIPS16
928 return ((this->nonvis() & (elfcpp::STO_MIPS16 >> 2))
929 == elfcpp::STO_MIPS16 >> 2);
930 }
931
932 // Return whether this is a microMIPS symbol.
933 bool
934 is_micromips() const
935 {
936 // (st_other & STO_MIPS_ISA) == STO_MICROMIPS
937 return ((this->nonvis() & (elfcpp::STO_MIPS_ISA >> 2))
938 == elfcpp::STO_MICROMIPS >> 2);
939 }
940
941 // Return whether the symbol needs MIPS16 fn_stub.
942 bool
943 need_fn_stub() const
944 { return this->need_fn_stub_; }
945
946 // Set that the symbol needs MIPS16 fn_stub.
947 void
948 set_need_fn_stub()
949 { this->need_fn_stub_ = true; }
950
951 // Return whether this symbol is referenced by branch relocations from
952 // any non-PIC input file.
953 bool
954 has_nonpic_branches() const
955 { return this->has_nonpic_branches_; }
956
957 // Set that this symbol is referenced by branch relocations from
958 // any non-PIC input file.
959 void
960 set_has_nonpic_branches()
961 { this->has_nonpic_branches_ = true; }
962
963 // Return the offset of the la25 stub for this symbol from the start of the
964 // la25 stub section.
965 unsigned int
966 la25_stub_offset() const
967 { return this->la25_stub_offset_; }
968
969 // Set the offset of the la25 stub for this symbol from the start of the
970 // la25 stub section.
971 void
972 set_la25_stub_offset(unsigned int offset)
973 { this->la25_stub_offset_ = offset; }
974
975 // Return whether the symbol has la25 stub. This is true if this symbol is
976 // for a PIC function, and there are non-PIC branches and jumps to it.
977 bool
978 has_la25_stub() const
979 { return this->la25_stub_offset_ != -1U; }
980
981 // Return whether there is a relocation against this symbol that must be
982 // resolved by the static linker (that is, the relocation cannot possibly
983 // be made dynamic).
984 bool
985 has_static_relocs() const
986 { return this->has_static_relocs_; }
987
988 // Set that there is a relocation against this symbol that must be resolved
989 // by the static linker (that is, the relocation cannot possibly be made
990 // dynamic).
991 void
992 set_has_static_relocs()
993 { this->has_static_relocs_ = true; }
994
995 // Return whether we must not create a lazy-binding stub for this symbol.
996 bool
997 no_lazy_stub() const
998 { return this->no_lazy_stub_; }
999
1000 // Set that we must not create a lazy-binding stub for this symbol.
1001 void
1002 set_no_lazy_stub()
1003 { this->no_lazy_stub_ = true; }
1004
1005 // Return the offset of the lazy-binding stub for this symbol from the start
1006 // of .MIPS.stubs section.
1007 unsigned int
1008 lazy_stub_offset() const
1009 { return this->lazy_stub_offset_; }
1010
1011 // Set the offset of the lazy-binding stub for this symbol from the start
1012 // of .MIPS.stubs section.
1013 void
1014 set_lazy_stub_offset(unsigned int offset)
1015 { this->lazy_stub_offset_ = offset; }
1016
1017 // Return whether there are any relocations for this symbol where
1018 // pointer equality matters.
1019 bool
1020 pointer_equality_needed() const
1021 { return this->pointer_equality_needed_; }
1022
1023 // Set that there are relocations for this symbol where pointer equality
1024 // matters.
1025 void
1026 set_pointer_equality_needed()
1027 { this->pointer_equality_needed_ = true; }
1028
1029 // Return global GOT area where this symbol in located.
1030 Global_got_area
1031 global_got_area() const
1032 { return this->global_got_area_; }
1033
1034 // Set global GOT area where this symbol in located.
1035 void
1036 set_global_got_area(Global_got_area global_got_area)
1037 { this->global_got_area_ = global_got_area; }
1038
1039 // Return the global GOT offset for this symbol. For multi-GOT links, this
1040 // returns the offset from the start of .got section to the first GOT entry
1041 // for the symbol. Note that in multi-GOT links the symbol can have entry
1042 // in more than one GOT.
1043 unsigned int
1044 global_gotoffset() const
1045 { return this->global_gotoffset_; }
1046
1047 // Set the global GOT offset for this symbol. Note that in multi-GOT links
1048 // the symbol can have entry in more than one GOT. This method will set
1049 // the offset only if it is less than current offset.
1050 void
1051 set_global_gotoffset(unsigned int offset)
1052 {
1053 if (this->global_gotoffset_ == -1U || offset < this->global_gotoffset_)
1054 this->global_gotoffset_ = offset;
1055 }
1056
1057 // Return whether all GOT relocations for this symbol are for calls.
1058 bool
1059 got_only_for_calls() const
1060 { return this->got_only_for_calls_; }
1061
1062 // Set that there is a GOT relocation for this symbol that is not for call.
1063 void
1064 set_got_not_only_for_calls()
1065 { this->got_only_for_calls_ = false; }
1066
1067 // Return whether this is a PIC symbol.
1068 bool
1069 is_pic() const
1070 {
1071 // (st_other & STO_MIPS_FLAGS) == STO_MIPS_PIC
1072 return ((this->nonvis() & (elfcpp::STO_MIPS_FLAGS >> 2))
1073 == (elfcpp::STO_MIPS_PIC >> 2));
1074 }
1075
1076 // Set the flag in st_other field that marks this symbol as PIC.
1077 void
1078 set_pic()
1079 {
1080 if (this->is_mips16())
1081 // (st_other & ~(STO_MIPS16 | STO_MIPS_FLAGS)) | STO_MIPS_PIC
1082 this->set_nonvis((this->nonvis()
1083 & ~((elfcpp::STO_MIPS16 >> 2)
1084 | (elfcpp::STO_MIPS_FLAGS >> 2)))
1085 | (elfcpp::STO_MIPS_PIC >> 2));
1086 else
1087 // (other & ~STO_MIPS_FLAGS) | STO_MIPS_PIC
1088 this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
1089 | (elfcpp::STO_MIPS_PIC >> 2));
1090 }
1091
1092 // Set the flag in st_other field that marks this symbol as PLT.
1093 void
1094 set_mips_plt()
1095 {
1096 if (this->is_mips16())
1097 // (st_other & (STO_MIPS16 | ~STO_MIPS_FLAGS)) | STO_MIPS_PLT
1098 this->set_nonvis((this->nonvis()
1099 & ((elfcpp::STO_MIPS16 >> 2)
1100 | ~(elfcpp::STO_MIPS_FLAGS >> 2)))
1101 | (elfcpp::STO_MIPS_PLT >> 2));
1102
1103 else
1104 // (st_other & ~STO_MIPS_FLAGS) | STO_MIPS_PLT
1105 this->set_nonvis((this->nonvis() & ~(elfcpp::STO_MIPS_FLAGS >> 2))
1106 | (elfcpp::STO_MIPS_PLT >> 2));
1107 }
1108
1109 // Downcast a base pointer to a Mips_symbol pointer.
1110 static Mips_symbol<size>*
1111 as_mips_sym(Symbol* sym)
1112 { return static_cast<Mips_symbol<size>*>(sym); }
1113
1114 // Downcast a base pointer to a Mips_symbol pointer.
1115 static const Mips_symbol<size>*
1116 as_mips_sym(const Symbol* sym)
1117 { return static_cast<const Mips_symbol<size>*>(sym); }
1118
1119 // Return whether the symbol has lazy-binding stub.
1120 bool
1121 has_lazy_stub() const
1122 { return this->has_lazy_stub_; }
1123
1124 // Set whether the symbol has lazy-binding stub.
1125 void
1126 set_has_lazy_stub(bool has_lazy_stub)
1127 { this->has_lazy_stub_ = has_lazy_stub; }
1128
1129 // Return whether the symbol needs a standard PLT entry.
1130 bool
1131 needs_mips_plt() const
1132 { return this->needs_mips_plt_; }
1133
1134 // Set whether the symbol needs a standard PLT entry.
1135 void
1136 set_needs_mips_plt(bool needs_mips_plt)
1137 { this->needs_mips_plt_ = needs_mips_plt; }
1138
1139 // Return whether the symbol needs a compressed (MIPS16 or microMIPS) PLT
1140 // entry.
1141 bool
1142 needs_comp_plt() const
1143 { return this->needs_comp_plt_; }
1144
1145 // Set whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
1146 void
1147 set_needs_comp_plt(bool needs_comp_plt)
1148 { this->needs_comp_plt_ = needs_comp_plt; }
1149
1150 // Return standard PLT entry offset, or -1 if none.
1151 unsigned int
1152 mips_plt_offset() const
1153 { return this->mips_plt_offset_; }
1154
1155 // Set standard PLT entry offset.
1156 void
1157 set_mips_plt_offset(unsigned int mips_plt_offset)
1158 { this->mips_plt_offset_ = mips_plt_offset; }
1159
1160 // Return whether the symbol has standard PLT entry.
1161 bool
1162 has_mips_plt_offset() const
1163 { return this->mips_plt_offset_ != -1U; }
1164
1165 // Return compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
1166 unsigned int
1167 comp_plt_offset() const
1168 { return this->comp_plt_offset_; }
1169
1170 // Set compressed (MIPS16 or microMIPS) PLT entry offset.
1171 void
1172 set_comp_plt_offset(unsigned int comp_plt_offset)
1173 { this->comp_plt_offset_ = comp_plt_offset; }
1174
1175 // Return whether the symbol has compressed (MIPS16 or microMIPS) PLT entry.
1176 bool
1177 has_comp_plt_offset() const
1178 { return this->comp_plt_offset_ != -1U; }
1179
1180 // Return MIPS16 fn stub for a symbol.
1181 template<bool big_endian>
1182 Mips16_stub_section<size, big_endian>*
1183 get_mips16_fn_stub() const
1184 {
1185 return static_cast<Mips16_stub_section<size, big_endian>*>(mips16_fn_stub_);
1186 }
1187
1188 // Set MIPS16 fn stub for a symbol.
1189 void
1190 set_mips16_fn_stub(Mips16_stub_section_base* stub)
1191 { this->mips16_fn_stub_ = stub; }
1192
1193 // Return whether symbol has MIPS16 fn stub.
1194 bool
1195 has_mips16_fn_stub() const
1196 { return this->mips16_fn_stub_ != NULL; }
1197
1198 // Return MIPS16 call stub for a symbol.
1199 template<bool big_endian>
1200 Mips16_stub_section<size, big_endian>*
1201 get_mips16_call_stub() const
1202 {
1203 return static_cast<Mips16_stub_section<size, big_endian>*>(
1204 mips16_call_stub_);
1205 }
1206
1207 // Set MIPS16 call stub for a symbol.
1208 void
1209 set_mips16_call_stub(Mips16_stub_section_base* stub)
1210 { this->mips16_call_stub_ = stub; }
1211
1212 // Return whether symbol has MIPS16 call stub.
1213 bool
1214 has_mips16_call_stub() const
1215 { return this->mips16_call_stub_ != NULL; }
1216
1217 // Return MIPS16 call_fp stub for a symbol.
1218 template<bool big_endian>
1219 Mips16_stub_section<size, big_endian>*
1220 get_mips16_call_fp_stub() const
1221 {
1222 return static_cast<Mips16_stub_section<size, big_endian>*>(
1223 mips16_call_fp_stub_);
1224 }
1225
1226 // Set MIPS16 call_fp stub for a symbol.
1227 void
1228 set_mips16_call_fp_stub(Mips16_stub_section_base* stub)
1229 { this->mips16_call_fp_stub_ = stub; }
1230
1231 // Return whether symbol has MIPS16 call_fp stub.
1232 bool
1233 has_mips16_call_fp_stub() const
1234 { return this->mips16_call_fp_stub_ != NULL; }
1235
1236 bool
1237 get_applied_secondary_got_fixup() const
1238 { return applied_secondary_got_fixup_; }
1239
1240 void
1241 set_applied_secondary_got_fixup()
1242 { this->applied_secondary_got_fixup_ = true; }
1243
1244 private:
1245 // Whether the symbol needs MIPS16 fn_stub. This is true if this symbol
1246 // appears in any relocs other than a 16 bit call.
1247 bool need_fn_stub_;
1248
1249 // True if this symbol is referenced by branch relocations from
1250 // any non-PIC input file. This is used to determine whether an
1251 // la25 stub is required.
1252 bool has_nonpic_branches_;
1253
1254 // The offset of the la25 stub for this symbol from the start of the
1255 // la25 stub section.
1256 unsigned int la25_stub_offset_;
1257
1258 // True if there is a relocation against this symbol that must be
1259 // resolved by the static linker (that is, the relocation cannot
1260 // possibly be made dynamic).
1261 bool has_static_relocs_;
1262
1263 // Whether we must not create a lazy-binding stub for this symbol.
1264 // This is true if the symbol has relocations related to taking the
1265 // function's address.
1266 bool no_lazy_stub_;
1267
1268 // The offset of the lazy-binding stub for this symbol from the start of
1269 // .MIPS.stubs section.
1270 unsigned int lazy_stub_offset_;
1271
1272 // True if there are any relocations for this symbol where pointer equality
1273 // matters.
1274 bool pointer_equality_needed_;
1275
1276 // Global GOT area where this symbol in located, or GGA_NONE if symbol is not
1277 // in the global part of the GOT.
1278 Global_got_area global_got_area_;
1279
1280 // The global GOT offset for this symbol. For multi-GOT links, this is offset
1281 // from the start of .got section to the first GOT entry for the symbol.
1282 // Note that in multi-GOT links the symbol can have entry in more than one GOT.
1283 unsigned int global_gotoffset_;
1284
1285 // Whether all GOT relocations for this symbol are for calls.
1286 bool got_only_for_calls_;
1287 // Whether the symbol has lazy-binding stub.
1288 bool has_lazy_stub_;
1289 // Whether the symbol needs a standard PLT entry.
1290 bool needs_mips_plt_;
1291 // Whether the symbol needs a compressed (MIPS16 or microMIPS) PLT entry.
1292 bool needs_comp_plt_;
1293 // Standard PLT entry offset, or -1 if none.
1294 unsigned int mips_plt_offset_;
1295 // Compressed (MIPS16 or microMIPS) PLT entry offset, or -1 if none.
1296 unsigned int comp_plt_offset_;
1297 // MIPS16 fn stub for a symbol.
1298 Mips16_stub_section_base* mips16_fn_stub_;
1299 // MIPS16 call stub for a symbol.
1300 Mips16_stub_section_base* mips16_call_stub_;
1301 // MIPS16 call_fp stub for a symbol.
1302 Mips16_stub_section_base* mips16_call_fp_stub_;
1303
1304 bool applied_secondary_got_fixup_;
1305 };
1306
1307 // Mips16_stub_section class.
1308
1309 // The mips16 compiler uses a couple of special sections to handle
1310 // floating point arguments.
1311
1312 // Section names that look like .mips16.fn.FNNAME contain stubs that
1313 // copy floating point arguments from the fp regs to the gp regs and
1314 // then jump to FNNAME. If any 32 bit function calls FNNAME, the
1315 // call should be redirected to the stub instead. If no 32 bit
1316 // function calls FNNAME, the stub should be discarded. We need to
1317 // consider any reference to the function, not just a call, because
1318 // if the address of the function is taken we will need the stub,
1319 // since the address might be passed to a 32 bit function.
1320
1321 // Section names that look like .mips16.call.FNNAME contain stubs
1322 // that copy floating point arguments from the gp regs to the fp
1323 // regs and then jump to FNNAME. If FNNAME is a 32 bit function,
1324 // then any 16 bit function that calls FNNAME should be redirected
1325 // to the stub instead. If FNNAME is not a 32 bit function, the
1326 // stub should be discarded.
1327
1328 // .mips16.call.fp.FNNAME sections are similar, but contain stubs
1329 // which call FNNAME and then copy the return value from the fp regs
1330 // to the gp regs. These stubs store the return address in $18 while
1331 // calling FNNAME; any function which might call one of these stubs
1332 // must arrange to save $18 around the call. (This case is not
1333 // needed for 32 bit functions that call 16 bit functions, because
1334 // 16 bit functions always return floating point values in both
1335 // $f0/$f1 and $2/$3.)
1336
1337 // Note that in all cases FNNAME might be defined statically.
1338 // Therefore, FNNAME is not used literally. Instead, the relocation
1339 // information will indicate which symbol the section is for.
1340
1341 // We record any stubs that we find in the symbol table.
1342
1343 // TODO(sasa): All mips16 stub sections should be emitted in the .text section.
1344
1345 class Mips16_stub_section_base { };
1346
1347 template<int size, bool big_endian>
1348 class Mips16_stub_section : public Mips16_stub_section_base
1349 {
1350 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1351
1352 public:
1353 Mips16_stub_section(Mips_relobj<size, big_endian>* object, unsigned int shndx)
1354 : object_(object), shndx_(shndx), r_sym_(0), gsym_(NULL),
1355 found_r_mips_none_(false)
1356 {
1357 gold_assert(object->is_mips16_fn_stub_section(shndx)
1358 || object->is_mips16_call_stub_section(shndx)
1359 || object->is_mips16_call_fp_stub_section(shndx));
1360 }
1361
1362 // Return the object of this stub section.
1363 Mips_relobj<size, big_endian>*
1364 object() const
1365 { return this->object_; }
1366
1367 // Return the size of a section.
1368 uint64_t
1369 section_size() const
1370 { return this->object_->section_size(this->shndx_); }
1371
1372 // Return section index of this stub section.
1373 unsigned int
1374 shndx() const
1375 { return this->shndx_; }
1376
1377 // Return symbol index, if stub is for a local function.
1378 unsigned int
1379 r_sym() const
1380 { return this->r_sym_; }
1381
1382 // Return symbol, if stub is for a global function.
1383 Mips_symbol<size>*
1384 gsym() const
1385 { return this->gsym_; }
1386
1387 // Return whether stub is for a local function.
1388 bool
1389 is_for_local_function() const
1390 { return this->gsym_ == NULL; }
1391
1392 // This method is called when a new relocation R_TYPE for local symbol R_SYM
1393 // is found in the stub section. Try to find stub target.
1394 void
1395 new_local_reloc_found(unsigned int r_type, unsigned int r_sym)
1396 {
1397 // To find target symbol for this stub, trust the first R_MIPS_NONE
1398 // relocation, if any. Otherwise trust the first relocation, whatever
1399 // its kind.
1400 if (this->found_r_mips_none_)
1401 return;
1402 if (r_type == elfcpp::R_MIPS_NONE)
1403 {
1404 this->r_sym_ = r_sym;
1405 this->gsym_ = NULL;
1406 this->found_r_mips_none_ = true;
1407 }
1408 else if (!is_target_found())
1409 this->r_sym_ = r_sym;
1410 }
1411
1412 // This method is called when a new relocation R_TYPE for global symbol GSYM
1413 // is found in the stub section. Try to find stub target.
1414 void
1415 new_global_reloc_found(unsigned int r_type, Mips_symbol<size>* gsym)
1416 {
1417 // To find target symbol for this stub, trust the first R_MIPS_NONE
1418 // relocation, if any. Otherwise trust the first relocation, whatever
1419 // its kind.
1420 if (this->found_r_mips_none_)
1421 return;
1422 if (r_type == elfcpp::R_MIPS_NONE)
1423 {
1424 this->gsym_ = gsym;
1425 this->r_sym_ = 0;
1426 this->found_r_mips_none_ = true;
1427 }
1428 else if (!is_target_found())
1429 this->gsym_ = gsym;
1430 }
1431
1432 // Return whether we found the stub target.
1433 bool
1434 is_target_found() const
1435 { return this->r_sym_ != 0 || this->gsym_ != NULL; }
1436
1437 // Return whether this is a fn stub.
1438 bool
1439 is_fn_stub() const
1440 { return this->object_->is_mips16_fn_stub_section(this->shndx_); }
1441
1442 // Return whether this is a call stub.
1443 bool
1444 is_call_stub() const
1445 { return this->object_->is_mips16_call_stub_section(this->shndx_); }
1446
1447 // Return whether this is a call_fp stub.
1448 bool
1449 is_call_fp_stub() const
1450 { return this->object_->is_mips16_call_fp_stub_section(this->shndx_); }
1451
1452 // Return the output address.
1453 Mips_address
1454 output_address() const
1455 {
1456 return (this->object_->output_section(this->shndx_)->address()
1457 + this->object_->output_section_offset(this->shndx_));
1458 }
1459
1460 private:
1461 // The object of this stub section.
1462 Mips_relobj<size, big_endian>* object_;
1463 // The section index of this stub section.
1464 unsigned int shndx_;
1465 // The symbol index, if stub is for a local function.
1466 unsigned int r_sym_;
1467 // The symbol, if stub is for a global function.
1468 Mips_symbol<size>* gsym_;
1469 // True if we found R_MIPS_NONE relocation in this stub.
1470 bool found_r_mips_none_;
1471 };
1472
1473 // Mips_relobj class.
1474
1475 template<int size, bool big_endian>
1476 class Mips_relobj : public Sized_relobj_file<size, big_endian>
1477 {
1478 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1479 typedef std::map<unsigned int, Mips16_stub_section<size, big_endian>*>
1480 Mips16_stubs_int_map;
1481 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
1482
1483 public:
1484 Mips_relobj(const std::string& name, Input_file* input_file, off_t offset,
1485 const typename elfcpp::Ehdr<size, big_endian>& ehdr)
1486 : Sized_relobj_file<size, big_endian>(name, input_file, offset, ehdr),
1487 processor_specific_flags_(0), local_symbol_is_mips16_(),
1488 local_symbol_is_micromips_(), mips16_stub_sections_(),
1489 local_non_16bit_calls_(), local_16bit_calls_(), local_mips16_fn_stubs_(),
1490 local_mips16_call_stubs_(), gp_(0), got_info_(NULL),
1491 section_is_mips16_fn_stub_(), section_is_mips16_call_stub_(),
1492 section_is_mips16_call_fp_stub_(), pdr_shndx_(-1U), gprmask_(0),
1493 cprmask1_(0), cprmask2_(0), cprmask3_(0), cprmask4_(0)
1494 {
1495 this->is_pic_ = (ehdr.get_e_flags() & elfcpp::EF_MIPS_PIC) != 0;
1496 this->is_n32_ = elfcpp::abi_n32(ehdr.get_e_flags());
1497 this->is_n64_ = elfcpp::abi_64(ehdr.get_e_ident()[elfcpp::EI_CLASS]);
1498 }
1499
1500 ~Mips_relobj()
1501 { }
1502
1503 // Downcast a base pointer to a Mips_relobj pointer. This is
1504 // not type-safe but we only use Mips_relobj not the base class.
1505 static Mips_relobj<size, big_endian>*
1506 as_mips_relobj(Relobj* relobj)
1507 { return static_cast<Mips_relobj<size, big_endian>*>(relobj); }
1508
1509 // Downcast a base pointer to a Mips_relobj pointer. This is
1510 // not type-safe but we only use Mips_relobj not the base class.
1511 static const Mips_relobj<size, big_endian>*
1512 as_mips_relobj(const Relobj* relobj)
1513 { return static_cast<const Mips_relobj<size, big_endian>*>(relobj); }
1514
1515 // Processor-specific flags in ELF file header. This is valid only after
1516 // reading symbols.
1517 elfcpp::Elf_Word
1518 processor_specific_flags() const
1519 { return this->processor_specific_flags_; }
1520
1521 // Whether a local symbol is MIPS16 symbol. R_SYM is the symbol table
1522 // index. This is only valid after do_count_local_symbol is called.
1523 bool
1524 local_symbol_is_mips16(unsigned int r_sym) const
1525 {
1526 gold_assert(r_sym < this->local_symbol_is_mips16_.size());
1527 return this->local_symbol_is_mips16_[r_sym];
1528 }
1529
1530 // Whether a local symbol is microMIPS symbol. R_SYM is the symbol table
1531 // index. This is only valid after do_count_local_symbol is called.
1532 bool
1533 local_symbol_is_micromips(unsigned int r_sym) const
1534 {
1535 gold_assert(r_sym < this->local_symbol_is_micromips_.size());
1536 return this->local_symbol_is_micromips_[r_sym];
1537 }
1538
1539 // Get or create MIPS16 stub section.
1540 Mips16_stub_section<size, big_endian>*
1541 get_mips16_stub_section(unsigned int shndx)
1542 {
1543 typename Mips16_stubs_int_map::const_iterator it =
1544 this->mips16_stub_sections_.find(shndx);
1545 if (it != this->mips16_stub_sections_.end())
1546 return (*it).second;
1547
1548 Mips16_stub_section<size, big_endian>* stub_section =
1549 new Mips16_stub_section<size, big_endian>(this, shndx);
1550 this->mips16_stub_sections_.insert(
1551 std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1552 stub_section->shndx(), stub_section));
1553 return stub_section;
1554 }
1555
1556 // Return MIPS16 fn stub section for local symbol R_SYM, or NULL if this
1557 // object doesn't have fn stub for R_SYM.
1558 Mips16_stub_section<size, big_endian>*
1559 get_local_mips16_fn_stub(unsigned int r_sym) const
1560 {
1561 typename Mips16_stubs_int_map::const_iterator it =
1562 this->local_mips16_fn_stubs_.find(r_sym);
1563 if (it != this->local_mips16_fn_stubs_.end())
1564 return (*it).second;
1565 return NULL;
1566 }
1567
1568 // Record that this object has MIPS16 fn stub for local symbol. This method
1569 // is only called if we decided not to discard the stub.
1570 void
1571 add_local_mips16_fn_stub(Mips16_stub_section<size, big_endian>* stub)
1572 {
1573 gold_assert(stub->is_for_local_function());
1574 unsigned int r_sym = stub->r_sym();
1575 this->local_mips16_fn_stubs_.insert(
1576 std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1577 r_sym, stub));
1578 }
1579
1580 // Return MIPS16 call stub section for local symbol R_SYM, or NULL if this
1581 // object doesn't have call stub for R_SYM.
1582 Mips16_stub_section<size, big_endian>*
1583 get_local_mips16_call_stub(unsigned int r_sym) const
1584 {
1585 typename Mips16_stubs_int_map::const_iterator it =
1586 this->local_mips16_call_stubs_.find(r_sym);
1587 if (it != this->local_mips16_call_stubs_.end())
1588 return (*it).second;
1589 return NULL;
1590 }
1591
1592 // Record that this object has MIPS16 call stub for local symbol. This method
1593 // is only called if we decided not to discard the stub.
1594 void
1595 add_local_mips16_call_stub(Mips16_stub_section<size, big_endian>* stub)
1596 {
1597 gold_assert(stub->is_for_local_function());
1598 unsigned int r_sym = stub->r_sym();
1599 this->local_mips16_call_stubs_.insert(
1600 std::pair<unsigned int, Mips16_stub_section<size, big_endian>*>(
1601 r_sym, stub));
1602 }
1603
1604 // Record that we found "non 16-bit" call relocation against local symbol
1605 // SYMNDX. This reloc would need to refer to a MIPS16 fn stub, if there
1606 // is one.
1607 void
1608 add_local_non_16bit_call(unsigned int symndx)
1609 { this->local_non_16bit_calls_.insert(symndx); }
1610
1611 // Return true if there is any "non 16-bit" call relocation against local
1612 // symbol SYMNDX in this object.
1613 bool
1614 has_local_non_16bit_call_relocs(unsigned int symndx)
1615 {
1616 return (this->local_non_16bit_calls_.find(symndx)
1617 != this->local_non_16bit_calls_.end());
1618 }
1619
1620 // Record that we found 16-bit call relocation R_MIPS16_26 against local
1621 // symbol SYMNDX. Local MIPS16 call or call_fp stubs will only be needed
1622 // if there is some R_MIPS16_26 relocation that refers to the stub symbol.
1623 void
1624 add_local_16bit_call(unsigned int symndx)
1625 { this->local_16bit_calls_.insert(symndx); }
1626
1627 // Return true if there is any 16-bit call relocation R_MIPS16_26 against local
1628 // symbol SYMNDX in this object.
1629 bool
1630 has_local_16bit_call_relocs(unsigned int symndx)
1631 {
1632 return (this->local_16bit_calls_.find(symndx)
1633 != this->local_16bit_calls_.end());
1634 }
1635
1636 // Get gp value that was used to create this object.
1637 Mips_address
1638 gp_value() const
1639 { return this->gp_; }
1640
1641 // Return whether the object is a PIC object.
1642 bool
1643 is_pic() const
1644 { return this->is_pic_; }
1645
1646 // Return whether the object uses N32 ABI.
1647 bool
1648 is_n32() const
1649 { return this->is_n32_; }
1650
1651 // Return whether the object uses N64 ABI.
1652 bool
1653 is_n64() const
1654 { return this->is_n64_; }
1655
1656 // Return whether the object uses NewABI conventions.
1657 bool
1658 is_newabi() const
1659 { return this->is_n32_ || this->is_n64_; }
1660
1661 // Return Mips_got_info for this object.
1662 Mips_got_info<size, big_endian>*
1663 get_got_info() const
1664 { return this->got_info_; }
1665
1666 // Return Mips_got_info for this object. Create new info if it doesn't exist.
1667 Mips_got_info<size, big_endian>*
1668 get_or_create_got_info()
1669 {
1670 if (!this->got_info_)
1671 this->got_info_ = new Mips_got_info<size, big_endian>();
1672 return this->got_info_;
1673 }
1674
1675 // Set Mips_got_info for this object.
1676 void
1677 set_got_info(Mips_got_info<size, big_endian>* got_info)
1678 { this->got_info_ = got_info; }
1679
1680 // Whether a section SHDNX is a MIPS16 stub section. This is only valid
1681 // after do_read_symbols is called.
1682 bool
1683 is_mips16_stub_section(unsigned int shndx)
1684 {
1685 return (is_mips16_fn_stub_section(shndx)
1686 || is_mips16_call_stub_section(shndx)
1687 || is_mips16_call_fp_stub_section(shndx));
1688 }
1689
1690 // Return TRUE if relocations in section SHNDX can refer directly to a
1691 // MIPS16 function rather than to a hard-float stub. This is only valid
1692 // after do_read_symbols is called.
1693 bool
1694 section_allows_mips16_refs(unsigned int shndx)
1695 {
1696 return (this->is_mips16_stub_section(shndx) || shndx == this->pdr_shndx_);
1697 }
1698
1699 // Whether a section SHDNX is a MIPS16 fn stub section. This is only valid
1700 // after do_read_symbols is called.
1701 bool
1702 is_mips16_fn_stub_section(unsigned int shndx)
1703 {
1704 gold_assert(shndx < this->section_is_mips16_fn_stub_.size());
1705 return this->section_is_mips16_fn_stub_[shndx];
1706 }
1707
1708 // Whether a section SHDNX is a MIPS16 call stub section. This is only valid
1709 // after do_read_symbols is called.
1710 bool
1711 is_mips16_call_stub_section(unsigned int shndx)
1712 {
1713 gold_assert(shndx < this->section_is_mips16_call_stub_.size());
1714 return this->section_is_mips16_call_stub_[shndx];
1715 }
1716
1717 // Whether a section SHDNX is a MIPS16 call_fp stub section. This is only
1718 // valid after do_read_symbols is called.
1719 bool
1720 is_mips16_call_fp_stub_section(unsigned int shndx)
1721 {
1722 gold_assert(shndx < this->section_is_mips16_call_fp_stub_.size());
1723 return this->section_is_mips16_call_fp_stub_[shndx];
1724 }
1725
1726 // Discard MIPS16 stub secions that are not needed.
1727 void
1728 discard_mips16_stub_sections(Symbol_table* symtab);
1729
1730 // Return gprmask from the .reginfo section of this object.
1731 Valtype
1732 gprmask() const
1733 { return this->gprmask_; }
1734
1735 // Return cprmask1 from the .reginfo section of this object.
1736 Valtype
1737 cprmask1() const
1738 { return this->cprmask1_; }
1739
1740 // Return cprmask2 from the .reginfo section of this object.
1741 Valtype
1742 cprmask2() const
1743 { return this->cprmask2_; }
1744
1745 // Return cprmask3 from the .reginfo section of this object.
1746 Valtype
1747 cprmask3() const
1748 { return this->cprmask3_; }
1749
1750 // Return cprmask4 from the .reginfo section of this object.
1751 Valtype
1752 cprmask4() const
1753 { return this->cprmask4_; }
1754
1755 protected:
1756 // Count the local symbols.
1757 void
1758 do_count_local_symbols(Stringpool_template<char>*,
1759 Stringpool_template<char>*);
1760
1761 // Read the symbol information.
1762 void
1763 do_read_symbols(Read_symbols_data* sd);
1764
1765 private:
1766 // processor-specific flags in ELF file header.
1767 elfcpp::Elf_Word processor_specific_flags_;
1768
1769 // Bit vector to tell if a local symbol is a MIPS16 symbol or not.
1770 // This is only valid after do_count_local_symbol is called.
1771 std::vector<bool> local_symbol_is_mips16_;
1772
1773 // Bit vector to tell if a local symbol is a microMIPS symbol or not.
1774 // This is only valid after do_count_local_symbol is called.
1775 std::vector<bool> local_symbol_is_micromips_;
1776
1777 // Map from section index to the MIPS16 stub for that section. This contains
1778 // all stubs found in this object.
1779 Mips16_stubs_int_map mips16_stub_sections_;
1780
1781 // Local symbols that have "non 16-bit" call relocation. This relocation
1782 // would need to refer to a MIPS16 fn stub, if there is one.
1783 std::set<unsigned int> local_non_16bit_calls_;
1784
1785 // Local symbols that have 16-bit call relocation R_MIPS16_26. Local MIPS16
1786 // call or call_fp stubs will only be needed if there is some R_MIPS16_26
1787 // relocation that refers to the stub symbol.
1788 std::set<unsigned int> local_16bit_calls_;
1789
1790 // Map from local symbol index to the MIPS16 fn stub for that symbol.
1791 // This contains only the stubs that we decided not to discard.
1792 Mips16_stubs_int_map local_mips16_fn_stubs_;
1793
1794 // Map from local symbol index to the MIPS16 call stub for that symbol.
1795 // This contains only the stubs that we decided not to discard.
1796 Mips16_stubs_int_map local_mips16_call_stubs_;
1797
1798 // gp value that was used to create this object.
1799 Mips_address gp_;
1800 // Whether the object is a PIC object.
1801 bool is_pic_ : 1;
1802 // Whether the object uses N32 ABI.
1803 bool is_n32_ : 1;
1804 // Whether the object uses N64 ABI.
1805 bool is_n64_ : 1;
1806 // The Mips_got_info for this object.
1807 Mips_got_info<size, big_endian>* got_info_;
1808
1809 // Bit vector to tell if a section is a MIPS16 fn stub section or not.
1810 // This is only valid after do_read_symbols is called.
1811 std::vector<bool> section_is_mips16_fn_stub_;
1812
1813 // Bit vector to tell if a section is a MIPS16 call stub section or not.
1814 // This is only valid after do_read_symbols is called.
1815 std::vector<bool> section_is_mips16_call_stub_;
1816
1817 // Bit vector to tell if a section is a MIPS16 call_fp stub section or not.
1818 // This is only valid after do_read_symbols is called.
1819 std::vector<bool> section_is_mips16_call_fp_stub_;
1820
1821 // .pdr section index.
1822 unsigned int pdr_shndx_;
1823
1824 // gprmask from the .reginfo section of this object.
1825 Valtype gprmask_;
1826 // cprmask1 from the .reginfo section of this object.
1827 Valtype cprmask1_;
1828 // cprmask2 from the .reginfo section of this object.
1829 Valtype cprmask2_;
1830 // cprmask3 from the .reginfo section of this object.
1831 Valtype cprmask3_;
1832 // cprmask4 from the .reginfo section of this object.
1833 Valtype cprmask4_;
1834 };
1835
1836 // Mips_output_data_got class.
1837
1838 template<int size, bool big_endian>
1839 class Mips_output_data_got : public Output_data_got<size, big_endian>
1840 {
1841 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
1842 typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
1843 Reloc_section;
1844 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
1845
1846 public:
1847 Mips_output_data_got(Target_mips<size, big_endian>* target,
1848 Symbol_table* symtab, Layout* layout)
1849 : Output_data_got<size, big_endian>(), target_(target),
1850 symbol_table_(symtab), layout_(layout), static_relocs_(), got_view_(NULL),
1851 first_global_got_dynsym_index_(-1U), primary_got_(NULL),
1852 secondary_got_relocs_()
1853 {
1854 this->master_got_info_ = new Mips_got_info<size, big_endian>();
1855 this->set_addralign(16);
1856 }
1857
1858 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
1859 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
1860 void
1861 record_local_got_symbol(Mips_relobj<size, big_endian>* object,
1862 unsigned int symndx, Mips_address addend,
1863 unsigned int r_type, unsigned int shndx)
1864 {
1865 this->master_got_info_->record_local_got_symbol(object, symndx, addend,
1866 r_type, shndx);
1867 }
1868
1869 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
1870 // in OBJECT. FOR_CALL is true if the caller is only interested in
1871 // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
1872 // relocation.
1873 void
1874 record_global_got_symbol(Mips_symbol<size>* mips_sym,
1875 Mips_relobj<size, big_endian>* object,
1876 unsigned int r_type, bool dyn_reloc, bool for_call)
1877 {
1878 this->master_got_info_->record_global_got_symbol(mips_sym, object, r_type,
1879 dyn_reloc, for_call);
1880 }
1881
1882 // Record that OBJECT has a page relocation against symbol SYMNDX and
1883 // that ADDEND is the addend for that relocation.
1884 void
1885 record_got_page_entry(Mips_relobj<size, big_endian>* object,
1886 unsigned int symndx, int addend)
1887 { this->master_got_info_->record_got_page_entry(object, symndx, addend); }
1888
1889 // Add a static entry for the GOT entry at OFFSET. GSYM is a global
1890 // symbol and R_TYPE is the code of a dynamic relocation that needs to be
1891 // applied in a static link.
1892 void
1893 add_static_reloc(unsigned int got_offset, unsigned int r_type,
1894 Mips_symbol<size>* gsym)
1895 { this->static_relocs_.push_back(Static_reloc(got_offset, r_type, gsym)); }
1896
1897 // Add a static reloc for the GOT entry at OFFSET. RELOBJ is an object
1898 // defining a local symbol with INDEX. R_TYPE is the code of a dynamic
1899 // relocation that needs to be applied in a static link.
1900 void
1901 add_static_reloc(unsigned int got_offset, unsigned int r_type,
1902 Sized_relobj_file<size, big_endian>* relobj,
1903 unsigned int index)
1904 {
1905 this->static_relocs_.push_back(Static_reloc(got_offset, r_type, relobj,
1906 index));
1907 }
1908
1909 // Record that global symbol GSYM has R_TYPE dynamic relocation in the
1910 // secondary GOT at OFFSET.
1911 void
1912 add_secondary_got_reloc(unsigned int got_offset, unsigned int r_type,
1913 Mips_symbol<size>* gsym)
1914 {
1915 this->secondary_got_relocs_.push_back(Static_reloc(got_offset,
1916 r_type, gsym));
1917 }
1918
1919 // Update GOT entry at OFFSET with VALUE.
1920 void
1921 update_got_entry(unsigned int offset, Mips_address value)
1922 {
1923 elfcpp::Swap<size, big_endian>::writeval(this->got_view_ + offset, value);
1924 }
1925
1926 // Return the number of entries in local part of the GOT. This includes
1927 // local entries, page entries and 2 reserved entries.
1928 unsigned int
1929 get_local_gotno() const
1930 {
1931 if (!this->multi_got())
1932 {
1933 return (2 + this->master_got_info_->local_gotno()
1934 + this->master_got_info_->page_gotno());
1935 }
1936 else
1937 return 2 + this->primary_got_->local_gotno() + this->primary_got_->page_gotno();
1938 }
1939
1940 // Return dynamic symbol table index of the first symbol with global GOT
1941 // entry.
1942 unsigned int
1943 first_global_got_dynsym_index() const
1944 { return this->first_global_got_dynsym_index_; }
1945
1946 // Set dynamic symbol table index of the first symbol with global GOT entry.
1947 void
1948 set_first_global_got_dynsym_index(unsigned int index)
1949 { this->first_global_got_dynsym_index_ = index; }
1950
1951 // Lay out the GOT. Add local, global and TLS entries. If GOT is
1952 // larger than 64K, create multi-GOT.
1953 void
1954 lay_out_got(Layout* layout, Symbol_table* symtab,
1955 const Input_objects* input_objects);
1956
1957 // Create multi-GOT. For every GOT, add local, global and TLS entries.
1958 void
1959 lay_out_multi_got(Layout* layout, const Input_objects* input_objects);
1960
1961 // Attempt to merge GOTs of different input objects.
1962 void
1963 merge_gots(const Input_objects* input_objects);
1964
1965 // Consider merging FROM, which is OBJECT's GOT, into TO. Return false if
1966 // this would lead to overflow, true if they were merged successfully.
1967 bool
1968 merge_got_with(Mips_got_info<size, big_endian>* from,
1969 Mips_relobj<size, big_endian>* object,
1970 Mips_got_info<size, big_endian>* to);
1971
1972 // Return the offset of GOT page entry for VALUE. For multi-GOT links,
1973 // use OBJECT's GOT.
1974 unsigned int
1975 get_got_page_offset(Mips_address value,
1976 const Mips_relobj<size, big_endian>* object)
1977 {
1978 Mips_got_info<size, big_endian>* g = (!this->multi_got()
1979 ? this->master_got_info_
1980 : object->get_got_info());
1981 gold_assert(g != NULL);
1982 return g->get_got_page_offset(value, this);
1983 }
1984
1985 // Return the GOT offset of type GOT_TYPE of the global symbol
1986 // GSYM. For multi-GOT links, use OBJECT's GOT.
1987 unsigned int got_offset(const Symbol* gsym, unsigned int got_type,
1988 Mips_relobj<size, big_endian>* object) const
1989 {
1990 if (!this->multi_got())
1991 return gsym->got_offset(got_type);
1992 else
1993 {
1994 Mips_got_info<size, big_endian>* g = object->get_got_info();
1995 gold_assert(g != NULL);
1996 return gsym->got_offset(g->multigot_got_type(got_type));
1997 }
1998 }
1999
2000 // Return the GOT offset of type GOT_TYPE of the local symbol
2001 // SYMNDX.
2002 unsigned int
2003 got_offset(unsigned int symndx, unsigned int got_type,
2004 Sized_relobj_file<size, big_endian>* object) const
2005 { return object->local_got_offset(symndx, got_type); }
2006
2007 // Return the offset of TLS LDM entry. For multi-GOT links, use OBJECT's GOT.
2008 unsigned int
2009 tls_ldm_offset(Mips_relobj<size, big_endian>* object) const
2010 {
2011 Mips_got_info<size, big_endian>* g = (!this->multi_got()
2012 ? this->master_got_info_
2013 : object->get_got_info());
2014 gold_assert(g != NULL);
2015 return g->tls_ldm_offset();
2016 }
2017
2018 // Set the offset of TLS LDM entry. For multi-GOT links, use OBJECT's GOT.
2019 void
2020 set_tls_ldm_offset(unsigned int tls_ldm_offset,
2021 Mips_relobj<size, big_endian>* object)
2022 {
2023 Mips_got_info<size, big_endian>* g = (!this->multi_got()
2024 ? this->master_got_info_
2025 : object->get_got_info());
2026 gold_assert(g != NULL);
2027 g->set_tls_ldm_offset(tls_ldm_offset);
2028 }
2029
2030 // Return true for multi-GOT links.
2031 bool
2032 multi_got() const
2033 { return this->primary_got_ != NULL; }
2034
2035 // Return the offset of OBJECT's GOT from the start of .got section.
2036 unsigned int
2037 get_got_offset(const Mips_relobj<size, big_endian>* object)
2038 {
2039 if (!this->multi_got())
2040 return 0;
2041 else
2042 {
2043 Mips_got_info<size, big_endian>* g = object->get_got_info();
2044 return g != NULL ? g->offset() : 0;
2045 }
2046 }
2047
2048 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
2049 void
2050 add_reloc_only_entries()
2051 { this->master_got_info_->add_reloc_only_entries(this); }
2052
2053 // Return offset of the primary GOT's entry for global symbol.
2054 unsigned int
2055 get_primary_got_offset(const Mips_symbol<size>* sym) const
2056 {
2057 gold_assert(sym->global_got_area() != GGA_NONE);
2058 return (this->get_local_gotno() + sym->dynsym_index()
2059 - this->first_global_got_dynsym_index()) * size/8;
2060 }
2061
2062 // For the entry at offset GOT_OFFSET, return its offset from the gp.
2063 // Input argument GOT_OFFSET is always global offset from the start of
2064 // .got section, for both single and multi-GOT links.
2065 // For single GOT links, this returns GOT_OFFSET - 0x7FF0. For multi-GOT
2066 // links, the return value is object_got_offset - 0x7FF0, where
2067 // object_got_offset is offset in the OBJECT's GOT.
2068 int
2069 gp_offset(unsigned int got_offset,
2070 const Mips_relobj<size, big_endian>* object) const
2071 {
2072 return (this->address() + got_offset
2073 - this->target_->adjusted_gp_value(object));
2074 }
2075
2076 protected:
2077 // Write out the GOT table.
2078 void
2079 do_write(Output_file*);
2080
2081 private:
2082
2083 // This class represent dynamic relocations that need to be applied by
2084 // gold because we are using TLS relocations in a static link.
2085 class Static_reloc
2086 {
2087 public:
2088 Static_reloc(unsigned int got_offset, unsigned int r_type,
2089 Mips_symbol<size>* gsym)
2090 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(true)
2091 { this->u_.global.symbol = gsym; }
2092
2093 Static_reloc(unsigned int got_offset, unsigned int r_type,
2094 Sized_relobj_file<size, big_endian>* relobj, unsigned int index)
2095 : got_offset_(got_offset), r_type_(r_type), symbol_is_global_(false)
2096 {
2097 this->u_.local.relobj = relobj;
2098 this->u_.local.index = index;
2099 }
2100
2101 // Return the GOT offset.
2102 unsigned int
2103 got_offset() const
2104 { return this->got_offset_; }
2105
2106 // Relocation type.
2107 unsigned int
2108 r_type() const
2109 { return this->r_type_; }
2110
2111 // Whether the symbol is global or not.
2112 bool
2113 symbol_is_global() const
2114 { return this->symbol_is_global_; }
2115
2116 // For a relocation against a global symbol, the global symbol.
2117 Mips_symbol<size>*
2118 symbol() const
2119 {
2120 gold_assert(this->symbol_is_global_);
2121 return this->u_.global.symbol;
2122 }
2123
2124 // For a relocation against a local symbol, the defining object.
2125 Sized_relobj_file<size, big_endian>*
2126 relobj() const
2127 {
2128 gold_assert(!this->symbol_is_global_);
2129 return this->u_.local.relobj;
2130 }
2131
2132 // For a relocation against a local symbol, the local symbol index.
2133 unsigned int
2134 index() const
2135 {
2136 gold_assert(!this->symbol_is_global_);
2137 return this->u_.local.index;
2138 }
2139
2140 private:
2141 // GOT offset of the entry to which this relocation is applied.
2142 unsigned int got_offset_;
2143 // Type of relocation.
2144 unsigned int r_type_;
2145 // Whether this relocation is against a global symbol.
2146 bool symbol_is_global_;
2147 // A global or local symbol.
2148 union
2149 {
2150 struct
2151 {
2152 // For a global symbol, the symbol itself.
2153 Mips_symbol<size>* symbol;
2154 } global;
2155 struct
2156 {
2157 // For a local symbol, the object defining object.
2158 Sized_relobj_file<size, big_endian>* relobj;
2159 // For a local symbol, the symbol index.
2160 unsigned int index;
2161 } local;
2162 } u_;
2163 };
2164
2165 // The target.
2166 Target_mips<size, big_endian>* target_;
2167 // The symbol table.
2168 Symbol_table* symbol_table_;
2169 // The layout.
2170 Layout* layout_;
2171 // Static relocs to be applied to the GOT.
2172 std::vector<Static_reloc> static_relocs_;
2173 // .got section view.
2174 unsigned char* got_view_;
2175 // The dynamic symbol table index of the first symbol with global GOT entry.
2176 unsigned int first_global_got_dynsym_index_;
2177 // The master GOT information.
2178 Mips_got_info<size, big_endian>* master_got_info_;
2179 // The primary GOT information.
2180 Mips_got_info<size, big_endian>* primary_got_;
2181 // Secondary GOT fixups.
2182 std::vector<Static_reloc> secondary_got_relocs_;
2183 };
2184
2185 // A class to handle LA25 stubs - non-PIC interface to a PIC function. There are
2186 // two ways of creating these interfaces. The first is to add:
2187 //
2188 // lui $25,%hi(func)
2189 // j func
2190 // addiu $25,$25,%lo(func)
2191 //
2192 // to a separate trampoline section. The second is to add:
2193 //
2194 // lui $25,%hi(func)
2195 // addiu $25,$25,%lo(func)
2196 //
2197 // immediately before a PIC function "func", but only if a function is at the
2198 // beginning of the section, and the section is not too heavily aligned (i.e we
2199 // would need to add no more than 2 nops before the stub.)
2200 //
2201 // We only create stubs of the first type.
2202
2203 template<int size, bool big_endian>
2204 class Mips_output_data_la25_stub : public Output_section_data
2205 {
2206 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2207
2208 public:
2209 Mips_output_data_la25_stub()
2210 : Output_section_data(size == 32 ? 4 : 8), symbols_()
2211 { }
2212
2213 // Create LA25 stub for a symbol.
2214 void
2215 create_la25_stub(Symbol_table* symtab, Target_mips<size, big_endian>* target,
2216 Mips_symbol<size>* gsym);
2217
2218 // Return output address of a stub.
2219 Mips_address
2220 stub_address(const Mips_symbol<size>* sym) const
2221 {
2222 gold_assert(sym->has_la25_stub());
2223 return this->address() + sym->la25_stub_offset();
2224 }
2225
2226 protected:
2227 void
2228 do_adjust_output_section(Output_section* os)
2229 { os->set_entsize(0); }
2230
2231 private:
2232 // Template for standard LA25 stub.
2233 static const uint32_t la25_stub_entry[];
2234 // Template for microMIPS LA25 stub.
2235 static const uint32_t la25_stub_micromips_entry[];
2236
2237 // Set the final size.
2238 void
2239 set_final_data_size()
2240 { this->set_data_size(this->symbols_.size() * 16); }
2241
2242 // Create a symbol for SYM stub's value and size, to help make the
2243 // disassembly easier to read.
2244 void
2245 create_stub_symbol(Mips_symbol<size>* sym, Symbol_table* symtab,
2246 Target_mips<size, big_endian>* target, uint64_t symsize);
2247
2248 // Write out the LA25 stub section.
2249 void
2250 do_write(Output_file*);
2251
2252 // Symbols that have LA25 stubs.
2253 Unordered_set<Mips_symbol<size>*> symbols_;
2254 };
2255
2256 // A class to handle the PLT data.
2257
2258 template<int size, bool big_endian>
2259 class Mips_output_data_plt : public Output_section_data
2260 {
2261 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2262 typedef Output_data_reloc<elfcpp::SHT_REL, true,
2263 size, big_endian> Reloc_section;
2264
2265 public:
2266 // Create the PLT section. The ordinary .got section is an argument,
2267 // since we need to refer to the start.
2268 Mips_output_data_plt(Layout* layout, Output_data_space* got_plt,
2269 Target_mips<size, big_endian>* target)
2270 : Output_section_data(size == 32 ? 4 : 8), got_plt_(got_plt), symbols_(),
2271 plt_mips_offset_(0), plt_comp_offset_(0), plt_header_size_(0),
2272 target_(target)
2273 {
2274 this->rel_ = new Reloc_section(false);
2275 layout->add_output_section_data(".rel.plt", elfcpp::SHT_REL,
2276 elfcpp::SHF_ALLOC, this->rel_,
2277 ORDER_DYNAMIC_PLT_RELOCS, false);
2278 }
2279
2280 // Add an entry to the PLT for a symbol referenced by r_type relocation.
2281 void
2282 add_entry(Mips_symbol<size>* gsym, unsigned int r_type);
2283
2284 // Return the .rel.plt section data.
2285 const Reloc_section*
2286 rel_plt() const
2287 { return this->rel_; }
2288
2289 // Return the number of PLT entries.
2290 unsigned int
2291 entry_count() const
2292 { return this->symbols_.size(); }
2293
2294 // Return the offset of the first non-reserved PLT entry.
2295 unsigned int
2296 first_plt_entry_offset() const
2297 { return sizeof(plt0_entry_o32); }
2298
2299 // Return the size of a PLT entry.
2300 unsigned int
2301 plt_entry_size() const
2302 { return sizeof(plt_entry); }
2303
2304 // Set final PLT offsets. For each symbol, determine whether standard or
2305 // compressed (MIPS16 or microMIPS) PLT entry is used.
2306 void
2307 set_plt_offsets();
2308
2309 // Return the offset of the first standard PLT entry.
2310 unsigned int
2311 first_mips_plt_offset() const
2312 { return this->plt_header_size_; }
2313
2314 // Return the offset of the first compressed PLT entry.
2315 unsigned int
2316 first_comp_plt_offset() const
2317 { return this->plt_header_size_ + this->plt_mips_offset_; }
2318
2319 // Return whether there are any standard PLT entries.
2320 bool
2321 has_standard_entries() const
2322 { return this->plt_mips_offset_ > 0; }
2323
2324 // Return the output address of standard PLT entry.
2325 Mips_address
2326 mips_entry_address(const Mips_symbol<size>* sym) const
2327 {
2328 gold_assert (sym->has_mips_plt_offset());
2329 return (this->address() + this->first_mips_plt_offset()
2330 + sym->mips_plt_offset());
2331 }
2332
2333 // Return the output address of compressed (MIPS16 or microMIPS) PLT entry.
2334 Mips_address
2335 comp_entry_address(const Mips_symbol<size>* sym) const
2336 {
2337 gold_assert (sym->has_comp_plt_offset());
2338 return (this->address() + this->first_comp_plt_offset()
2339 + sym->comp_plt_offset());
2340 }
2341
2342 protected:
2343 void
2344 do_adjust_output_section(Output_section* os)
2345 { os->set_entsize(0); }
2346
2347 // Write to a map file.
2348 void
2349 do_print_to_mapfile(Mapfile* mapfile) const
2350 { mapfile->print_output_data(this, _(".plt")); }
2351
2352 private:
2353 // Template for the first PLT entry.
2354 static const uint32_t plt0_entry_o32[];
2355 static const uint32_t plt0_entry_n32[];
2356 static const uint32_t plt0_entry_n64[];
2357 static const uint32_t plt0_entry_micromips_o32[];
2358 static const uint32_t plt0_entry_micromips32_o32[];
2359
2360 // Template for subsequent PLT entries.
2361 static const uint32_t plt_entry[];
2362 static const uint32_t plt_entry_mips16_o32[];
2363 static const uint32_t plt_entry_micromips_o32[];
2364 static const uint32_t plt_entry_micromips32_o32[];
2365
2366 // Set the final size.
2367 void
2368 set_final_data_size()
2369 {
2370 this->set_data_size(this->plt_header_size_ + this->plt_mips_offset_
2371 + this->plt_comp_offset_);
2372 }
2373
2374 // Write out the PLT data.
2375 void
2376 do_write(Output_file*);
2377
2378 // Return whether the plt header contains microMIPS code. For the sake of
2379 // cache alignment always use a standard header whenever any standard entries
2380 // are present even if microMIPS entries are present as well. This also lets
2381 // the microMIPS header rely on the value of $v0 only set by microMIPS
2382 // entries, for a small size reduction.
2383 bool
2384 is_plt_header_compressed() const
2385 {
2386 gold_assert(this->plt_mips_offset_ + this->plt_comp_offset_ != 0);
2387 return this->target_->is_output_micromips() && this->plt_mips_offset_ == 0;
2388 }
2389
2390 // Return the size of the PLT header.
2391 unsigned int
2392 get_plt_header_size() const
2393 {
2394 if (this->target_->is_output_n64())
2395 return 4 * sizeof(plt0_entry_n64) / sizeof(plt0_entry_n64[0]);
2396 else if (this->target_->is_output_n32())
2397 return 4 * sizeof(plt0_entry_n32) / sizeof(plt0_entry_n32[0]);
2398 else if (!this->is_plt_header_compressed())
2399 return 4 * sizeof(plt0_entry_o32) / sizeof(plt0_entry_o32[0]);
2400 else if (this->target_->use_32bit_micromips_instructions())
2401 return (2 * sizeof(plt0_entry_micromips32_o32)
2402 / sizeof(plt0_entry_micromips32_o32[0]));
2403 else
2404 return (2 * sizeof(plt0_entry_micromips_o32)
2405 / sizeof(plt0_entry_micromips_o32[0]));
2406 }
2407
2408 // Return the PLT header entry.
2409 const uint32_t*
2410 get_plt_header_entry() const
2411 {
2412 if (this->target_->is_output_n64())
2413 return plt0_entry_n64;
2414 else if (this->target_->is_output_n32())
2415 return plt0_entry_n32;
2416 else if (!this->is_plt_header_compressed())
2417 return plt0_entry_o32;
2418 else if (this->target_->use_32bit_micromips_instructions())
2419 return plt0_entry_micromips32_o32;
2420 else
2421 return plt0_entry_micromips_o32;
2422 }
2423
2424 // Return the size of the standard PLT entry.
2425 unsigned int
2426 standard_plt_entry_size() const
2427 { return 4 * sizeof(plt_entry) / sizeof(plt_entry[0]); }
2428
2429 // Return the size of the compressed PLT entry.
2430 unsigned int
2431 compressed_plt_entry_size() const
2432 {
2433 gold_assert(!this->target_->is_output_newabi());
2434
2435 if (!this->target_->is_output_micromips())
2436 return (2 * sizeof(plt_entry_mips16_o32)
2437 / sizeof(plt_entry_mips16_o32[0]));
2438 else if (this->target_->use_32bit_micromips_instructions())
2439 return (2 * sizeof(plt_entry_micromips32_o32)
2440 / sizeof(plt_entry_micromips32_o32[0]));
2441 else
2442 return (2 * sizeof(plt_entry_micromips_o32)
2443 / sizeof(plt_entry_micromips_o32[0]));
2444 }
2445
2446 // The reloc section.
2447 Reloc_section* rel_;
2448 // The .got.plt section.
2449 Output_data_space* got_plt_;
2450 // Symbols that have PLT entry.
2451 std::vector<Mips_symbol<size>*> symbols_;
2452 // The offset of the next standard PLT entry to create.
2453 unsigned int plt_mips_offset_;
2454 // The offset of the next compressed PLT entry to create.
2455 unsigned int plt_comp_offset_;
2456 // The size of the PLT header in bytes.
2457 unsigned int plt_header_size_;
2458 // The target.
2459 Target_mips<size, big_endian>* target_;
2460 };
2461
2462 // A class to handle the .MIPS.stubs data.
2463
2464 template<int size, bool big_endian>
2465 class Mips_output_data_mips_stubs : public Output_section_data
2466 {
2467 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2468
2469 public:
2470 Mips_output_data_mips_stubs(Target_mips<size, big_endian>* target)
2471 : Output_section_data(size == 32 ? 4 : 8), symbols_(), dynsym_count_(-1U),
2472 stub_offsets_are_set_(false), target_(target)
2473 { }
2474
2475 // Create entry for a symbol.
2476 void
2477 make_entry(Mips_symbol<size>*);
2478
2479 // Remove entry for a symbol.
2480 void
2481 remove_entry(Mips_symbol<size>* gsym);
2482
2483 // Set stub offsets for symbols. This method expects that the number of
2484 // entries in dynamic symbol table is set.
2485 void
2486 set_lazy_stub_offsets();
2487
2488 void
2489 set_needs_dynsym_value();
2490
2491 // Set the number of entries in dynamic symbol table.
2492 void
2493 set_dynsym_count(unsigned int dynsym_count)
2494 { this->dynsym_count_ = dynsym_count; }
2495
2496 // Return maximum size of the stub, ie. the stub size if the dynamic symbol
2497 // count is greater than 0x10000. If the dynamic symbol count is less than
2498 // 0x10000, the stub will be 4 bytes smaller.
2499 // There's no disadvantage from using microMIPS code here, so for the sake of
2500 // pure-microMIPS binaries we prefer it whenever there's any microMIPS code in
2501 // output produced at all. This has a benefit of stubs being shorter by
2502 // 4 bytes each too, unless in the insn32 mode.
2503 unsigned int
2504 stub_max_size() const
2505 {
2506 if (!this->target_->is_output_micromips()
2507 || this->target_->use_32bit_micromips_instructions())
2508 return 20;
2509 else
2510 return 16;
2511 }
2512
2513 // Return the size of the stub. This method expects that the final dynsym
2514 // count is set.
2515 unsigned int
2516 stub_size() const
2517 {
2518 gold_assert(this->dynsym_count_ != -1U);
2519 if (this->dynsym_count_ > 0x10000)
2520 return this->stub_max_size();
2521 else
2522 return this->stub_max_size() - 4;
2523 }
2524
2525 // Return output address of a stub.
2526 Mips_address
2527 stub_address(const Mips_symbol<size>* sym) const
2528 {
2529 gold_assert(sym->has_lazy_stub());
2530 return this->address() + sym->lazy_stub_offset();
2531 }
2532
2533 protected:
2534 void
2535 do_adjust_output_section(Output_section* os)
2536 { os->set_entsize(0); }
2537
2538 // Write to a map file.
2539 void
2540 do_print_to_mapfile(Mapfile* mapfile) const
2541 { mapfile->print_output_data(this, _(".MIPS.stubs")); }
2542
2543 private:
2544 static const uint32_t lazy_stub_normal_1[];
2545 static const uint32_t lazy_stub_normal_1_n64[];
2546 static const uint32_t lazy_stub_normal_2[];
2547 static const uint32_t lazy_stub_normal_2_n64[];
2548 static const uint32_t lazy_stub_big[];
2549 static const uint32_t lazy_stub_big_n64[];
2550
2551 static const uint32_t lazy_stub_micromips_normal_1[];
2552 static const uint32_t lazy_stub_micromips_normal_1_n64[];
2553 static const uint32_t lazy_stub_micromips_normal_2[];
2554 static const uint32_t lazy_stub_micromips_normal_2_n64[];
2555 static const uint32_t lazy_stub_micromips_big[];
2556 static const uint32_t lazy_stub_micromips_big_n64[];
2557
2558 static const uint32_t lazy_stub_micromips32_normal_1[];
2559 static const uint32_t lazy_stub_micromips32_normal_1_n64[];
2560 static const uint32_t lazy_stub_micromips32_normal_2[];
2561 static const uint32_t lazy_stub_micromips32_normal_2_n64[];
2562 static const uint32_t lazy_stub_micromips32_big[];
2563 static const uint32_t lazy_stub_micromips32_big_n64[];
2564
2565 // Set the final size.
2566 void
2567 set_final_data_size()
2568 { this->set_data_size(this->symbols_.size() * this->stub_max_size()); }
2569
2570 // Write out the .MIPS.stubs data.
2571 void
2572 do_write(Output_file*);
2573
2574 // .MIPS.stubs symbols
2575 Unordered_set<Mips_symbol<size>*> symbols_;
2576 // Number of entries in dynamic symbol table.
2577 unsigned int dynsym_count_;
2578 // Whether the stub offsets are set.
2579 bool stub_offsets_are_set_;
2580 // The target.
2581 Target_mips<size, big_endian>* target_;
2582 };
2583
2584 // This class handles Mips .reginfo output section.
2585
2586 template<int size, bool big_endian>
2587 class Mips_output_section_reginfo : public Output_section
2588 {
2589 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
2590
2591 public:
2592 Mips_output_section_reginfo(const char* name, elfcpp::Elf_Word type,
2593 elfcpp::Elf_Xword flags,
2594 Target_mips<size, big_endian>* target)
2595 : Output_section(name, type, flags), target_(target), gprmask_(0),
2596 cprmask1_(0), cprmask2_(0), cprmask3_(0), cprmask4_(0)
2597 { }
2598
2599 // Downcast a base pointer to a Mips_output_section_reginfo pointer.
2600 static Mips_output_section_reginfo<size, big_endian>*
2601 as_mips_output_section_reginfo(Output_section* os)
2602 { return static_cast<Mips_output_section_reginfo<size, big_endian>*>(os); }
2603
2604 // Set masks of the output .reginfo section.
2605 void
2606 set_masks(Valtype gprmask, Valtype cprmask1, Valtype cprmask2,
2607 Valtype cprmask3, Valtype cprmask4)
2608 {
2609 this->gprmask_ = gprmask;
2610 this->cprmask1_ = cprmask1;
2611 this->cprmask2_ = cprmask2;
2612 this->cprmask3_ = cprmask3;
2613 this->cprmask4_ = cprmask4;
2614 }
2615
2616 protected:
2617 // Set the final data size.
2618 void
2619 set_final_data_size()
2620 { this->set_data_size(24); }
2621
2622 // Write out reginfo section.
2623 void
2624 do_write(Output_file* of);
2625
2626 private:
2627 Target_mips<size, big_endian>* target_;
2628
2629 // gprmask of the output .reginfo section.
2630 Valtype gprmask_;
2631 // cprmask1 of the output .reginfo section.
2632 Valtype cprmask1_;
2633 // cprmask2 of the output .reginfo section.
2634 Valtype cprmask2_;
2635 // cprmask3 of the output .reginfo section.
2636 Valtype cprmask3_;
2637 // cprmask4 of the output .reginfo section.
2638 Valtype cprmask4_;
2639 };
2640
2641 // The MIPS target has relocation types which default handling of relocatable
2642 // relocation cannot process. So we have to extend the default code.
2643
2644 template<bool big_endian, int sh_type, typename Classify_reloc>
2645 class Mips_scan_relocatable_relocs :
2646 public Default_scan_relocatable_relocs<sh_type, Classify_reloc>
2647 {
2648 public:
2649 // Return the strategy to use for a local symbol which is a section
2650 // symbol, given the relocation type.
2651 inline Relocatable_relocs::Reloc_strategy
2652 local_section_strategy(unsigned int r_type, Relobj* object)
2653 {
2654 if (sh_type == elfcpp::SHT_RELA)
2655 return Relocatable_relocs::RELOC_ADJUST_FOR_SECTION_RELA;
2656 else
2657 {
2658 switch (r_type)
2659 {
2660 case elfcpp::R_MIPS_26:
2661 return Relocatable_relocs::RELOC_SPECIAL;
2662
2663 default:
2664 return Default_scan_relocatable_relocs<sh_type, Classify_reloc>::
2665 local_section_strategy(r_type, object);
2666 }
2667 }
2668 }
2669 };
2670
2671 // Mips_copy_relocs class. The only difference from the base class is the
2672 // method emit_mips, which should be called instead of Copy_reloc_entry::emit.
2673 // Mips cannot convert all relocation types to dynamic relocs. If a reloc
2674 // cannot be made dynamic, a COPY reloc is emitted.
2675
2676 template<int sh_type, int size, bool big_endian>
2677 class Mips_copy_relocs : public Copy_relocs<sh_type, size, big_endian>
2678 {
2679 public:
2680 Mips_copy_relocs()
2681 : Copy_relocs<sh_type, size, big_endian>(elfcpp::R_MIPS_COPY)
2682 { }
2683
2684 // Emit any saved relocations which turn out to be needed. This is
2685 // called after all the relocs have been scanned.
2686 void
2687 emit_mips(Output_data_reloc<sh_type, true, size, big_endian>*,
2688 Symbol_table*, Layout*, Target_mips<size, big_endian>*);
2689
2690 private:
2691 typedef typename Copy_relocs<sh_type, size, big_endian>::Copy_reloc_entry
2692 Copy_reloc_entry;
2693
2694 // Emit this reloc if appropriate. This is called after we have
2695 // scanned all the relocations, so we know whether we emitted a
2696 // COPY relocation for SYM_.
2697 void
2698 emit_entry(Copy_reloc_entry& entry,
2699 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
2700 Symbol_table* symtab, Layout* layout,
2701 Target_mips<size, big_endian>* target);
2702 };
2703
2704
2705 // Return true if the symbol SYM should be considered to resolve local
2706 // to the current module, and false otherwise. The logic is taken from
2707 // GNU ld's method _bfd_elf_symbol_refs_local_p.
2708 static bool
2709 symbol_refs_local(const Symbol* sym, bool has_dynsym_entry,
2710 bool local_protected)
2711 {
2712 // If it's a local sym, of course we resolve locally.
2713 if (sym == NULL)
2714 return true;
2715
2716 // STV_HIDDEN or STV_INTERNAL ones must be local.
2717 if (sym->visibility() == elfcpp::STV_HIDDEN
2718 || sym->visibility() == elfcpp::STV_INTERNAL)
2719 return true;
2720
2721 // If we don't have a definition in a regular file, then we can't
2722 // resolve locally. The sym is either undefined or dynamic.
2723 if (sym->source() != Symbol::FROM_OBJECT || sym->object()->is_dynamic()
2724 || sym->is_undefined())
2725 return false;
2726
2727 // Forced local symbols resolve locally.
2728 if (sym->is_forced_local())
2729 return true;
2730
2731 // As do non-dynamic symbols.
2732 if (!has_dynsym_entry)
2733 return true;
2734
2735 // At this point, we know the symbol is defined and dynamic. In an
2736 // executable it must resolve locally, likewise when building symbolic
2737 // shared libraries.
2738 if (parameters->options().output_is_executable()
2739 || parameters->options().Bsymbolic())
2740 return true;
2741
2742 // Now deal with defined dynamic symbols in shared libraries. Ones
2743 // with default visibility might not resolve locally.
2744 if (sym->visibility() == elfcpp::STV_DEFAULT)
2745 return false;
2746
2747 // STV_PROTECTED non-function symbols are local.
2748 if (sym->type() != elfcpp::STT_FUNC)
2749 return true;
2750
2751 // Function pointer equality tests may require that STV_PROTECTED
2752 // symbols be treated as dynamic symbols. If the address of a
2753 // function not defined in an executable is set to that function's
2754 // plt entry in the executable, then the address of the function in
2755 // a shared library must also be the plt entry in the executable.
2756 return local_protected;
2757 }
2758
2759 // Return TRUE if references to this symbol always reference the symbol in this
2760 // object.
2761 static bool
2762 symbol_references_local(const Symbol* sym, bool has_dynsym_entry)
2763 {
2764 return symbol_refs_local(sym, has_dynsym_entry, false);
2765 }
2766
2767 // Return TRUE if calls to this symbol always call the version in this object.
2768 static bool
2769 symbol_calls_local(const Symbol* sym, bool has_dynsym_entry)
2770 {
2771 return symbol_refs_local(sym, has_dynsym_entry, true);
2772 }
2773
2774 // Compare GOT offsets of two symbols.
2775
2776 template<int size, bool big_endian>
2777 static bool
2778 got_offset_compare(Symbol* sym1, Symbol* sym2)
2779 {
2780 Mips_symbol<size>* mips_sym1 = Mips_symbol<size>::as_mips_sym(sym1);
2781 Mips_symbol<size>* mips_sym2 = Mips_symbol<size>::as_mips_sym(sym2);
2782 unsigned int area1 = mips_sym1->global_got_area();
2783 unsigned int area2 = mips_sym2->global_got_area();
2784 gold_assert(area1 != GGA_NONE && area1 != GGA_NONE);
2785
2786 // GGA_NORMAL entries always come before GGA_RELOC_ONLY.
2787 if (area1 != area2)
2788 return area1 < area2;
2789
2790 return mips_sym1->global_gotoffset() < mips_sym2->global_gotoffset();
2791 }
2792
2793 // This method divides dynamic symbols into symbols that have GOT entry, and
2794 // symbols that don't have GOT entry. It also sorts symbols with the GOT entry.
2795 // Mips ABI requires that symbols with the GOT entry must be at the end of
2796 // dynamic symbol table, and the order in dynamic symbol table must match the
2797 // order in GOT.
2798
2799 template<int size, bool big_endian>
2800 static void
2801 reorder_dyn_symbols(std::vector<Symbol*>* dyn_symbols,
2802 std::vector<Symbol*>* non_got_symbols,
2803 std::vector<Symbol*>* got_symbols)
2804 {
2805 for (std::vector<Symbol*>::iterator p = dyn_symbols->begin();
2806 p != dyn_symbols->end();
2807 ++p)
2808 {
2809 Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(*p);
2810 if (mips_sym->global_got_area() == GGA_NORMAL
2811 || mips_sym->global_got_area() == GGA_RELOC_ONLY)
2812 got_symbols->push_back(mips_sym);
2813 else
2814 non_got_symbols->push_back(mips_sym);
2815 }
2816
2817 std::sort(got_symbols->begin(), got_symbols->end(),
2818 got_offset_compare<size, big_endian>);
2819 }
2820
2821 // Functor class for processing the global symbol table.
2822
2823 template<int size, bool big_endian>
2824 class Symbol_visitor_check_symbols
2825 {
2826 public:
2827 Symbol_visitor_check_symbols(Target_mips<size, big_endian>* target,
2828 Layout* layout, Symbol_table* symtab)
2829 : target_(target), layout_(layout), symtab_(symtab)
2830 { }
2831
2832 void
2833 operator()(Sized_symbol<size>* sym)
2834 {
2835 Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);
2836 if (local_pic_function<size, big_endian>(mips_sym))
2837 {
2838 // SYM is a function that might need $25 to be valid on entry.
2839 // If we're creating a non-PIC relocatable object, mark SYM as
2840 // being PIC. If we're creating a non-relocatable object with
2841 // non-PIC branches and jumps to SYM, make sure that SYM has an la25
2842 // stub.
2843 if (parameters->options().relocatable())
2844 {
2845 if (!parameters->options().output_is_position_independent())
2846 mips_sym->set_pic();
2847 }
2848 else if (mips_sym->has_nonpic_branches())
2849 {
2850 this->target_->la25_stub_section(layout_)
2851 ->create_la25_stub(this->symtab_, this->target_, mips_sym);
2852 }
2853 }
2854 }
2855
2856 private:
2857 Target_mips<size, big_endian>* target_;
2858 Layout* layout_;
2859 Symbol_table* symtab_;
2860 };
2861
2862 template<int size, bool big_endian>
2863 class Target_mips : public Sized_target<size, big_endian>
2864 {
2865 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
2866 typedef Output_data_reloc<elfcpp::SHT_REL, true, size, big_endian>
2867 Reloc_section;
2868 typedef Output_data_reloc<elfcpp::SHT_RELA, true, size, big_endian>
2869 Reloca_section;
2870 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
2871 typedef typename elfcpp::Swap<size, big_endian>::Valtype Valtype;
2872
2873 public:
2874 Target_mips(const Target::Target_info* info = &mips_info)
2875 : Sized_target<size, big_endian>(info), got_(NULL), gp_(NULL), plt_(NULL),
2876 got_plt_(NULL), rel_dyn_(NULL), copy_relocs_(),
2877 dyn_relocs_(), la25_stub_(NULL), mips_mach_extensions_(),
2878 mips_stubs_(NULL), ei_class_(0), mach_(0), layout_(NULL),
2879 got16_addends_(), entry_symbol_is_compressed_(false), insn32_(false)
2880 {
2881 this->add_machine_extensions();
2882 }
2883
2884 // The offset of $gp from the beginning of the .got section.
2885 static const unsigned int MIPS_GP_OFFSET = 0x7ff0;
2886
2887 // The maximum size of the GOT for it to be addressable using 16-bit
2888 // offsets from $gp.
2889 static const unsigned int MIPS_GOT_MAX_SIZE = MIPS_GP_OFFSET + 0x7fff;
2890
2891 // Make a new symbol table entry for the Mips target.
2892 Sized_symbol<size>*
2893 make_symbol() const
2894 { return new Mips_symbol<size>(); }
2895
2896 // Process the relocations to determine unreferenced sections for
2897 // garbage collection.
2898 void
2899 gc_process_relocs(Symbol_table* symtab,
2900 Layout* layout,
2901 Sized_relobj_file<size, big_endian>* object,
2902 unsigned int data_shndx,
2903 unsigned int sh_type,
2904 const unsigned char* prelocs,
2905 size_t reloc_count,
2906 Output_section* output_section,
2907 bool needs_special_offset_handling,
2908 size_t local_symbol_count,
2909 const unsigned char* plocal_symbols);
2910
2911 // Scan the relocations to look for symbol adjustments.
2912 void
2913 scan_relocs(Symbol_table* symtab,
2914 Layout* layout,
2915 Sized_relobj_file<size, big_endian>* object,
2916 unsigned int data_shndx,
2917 unsigned int sh_type,
2918 const unsigned char* prelocs,
2919 size_t reloc_count,
2920 Output_section* output_section,
2921 bool needs_special_offset_handling,
2922 size_t local_symbol_count,
2923 const unsigned char* plocal_symbols);
2924
2925 // Finalize the sections.
2926 void
2927 do_finalize_sections(Layout*, const Input_objects*, Symbol_table*);
2928
2929 // Relocate a section.
2930 void
2931 relocate_section(const Relocate_info<size, big_endian>*,
2932 unsigned int sh_type,
2933 const unsigned char* prelocs,
2934 size_t reloc_count,
2935 Output_section* output_section,
2936 bool needs_special_offset_handling,
2937 unsigned char* view,
2938 Mips_address view_address,
2939 section_size_type view_size,
2940 const Reloc_symbol_changes*);
2941
2942 // Scan the relocs during a relocatable link.
2943 void
2944 scan_relocatable_relocs(Symbol_table* symtab,
2945 Layout* layout,
2946 Sized_relobj_file<size, big_endian>* object,
2947 unsigned int data_shndx,
2948 unsigned int sh_type,
2949 const unsigned char* prelocs,
2950 size_t reloc_count,
2951 Output_section* output_section,
2952 bool needs_special_offset_handling,
2953 size_t local_symbol_count,
2954 const unsigned char* plocal_symbols,
2955 Relocatable_relocs*);
2956
2957 // Emit relocations for a section.
2958 void
2959 relocate_relocs(const Relocate_info<size, big_endian>*,
2960 unsigned int sh_type,
2961 const unsigned char* prelocs,
2962 size_t reloc_count,
2963 Output_section* output_section,
2964 typename elfcpp::Elf_types<size>::Elf_Off
2965 offset_in_output_section,
2966 const Relocatable_relocs*,
2967 unsigned char* view,
2968 Mips_address view_address,
2969 section_size_type view_size,
2970 unsigned char* reloc_view,
2971 section_size_type reloc_view_size);
2972
2973 // Perform target-specific processing in a relocatable link. This is
2974 // only used if we use the relocation strategy RELOC_SPECIAL.
2975 void
2976 relocate_special_relocatable(const Relocate_info<size, big_endian>* relinfo,
2977 unsigned int sh_type,
2978 const unsigned char* preloc_in,
2979 size_t relnum,
2980 Output_section* output_section,
2981 typename elfcpp::Elf_types<size>::Elf_Off
2982 offset_in_output_section,
2983 unsigned char* view,
2984 Mips_address view_address,
2985 section_size_type view_size,
2986 unsigned char* preloc_out);
2987
2988 // Return whether SYM is defined by the ABI.
2989 bool
2990 do_is_defined_by_abi(const Symbol* sym) const
2991 {
2992 return ((strcmp(sym->name(), "__gnu_local_gp") == 0)
2993 || (strcmp(sym->name(), "_gp_disp") == 0)
2994 || (strcmp(sym->name(), "___tls_get_addr") == 0));
2995 }
2996
2997 // Return the number of entries in the GOT.
2998 unsigned int
2999 got_entry_count() const
3000 {
3001 if (!this->has_got_section())
3002 return 0;
3003 return this->got_size() / (size/8);
3004 }
3005
3006 // Return the number of entries in the PLT.
3007 unsigned int
3008 plt_entry_count() const
3009 {
3010 if (this->plt_ == NULL)
3011 return 0;
3012 return this->plt_->entry_count();
3013 }
3014
3015 // Return the offset of the first non-reserved PLT entry.
3016 unsigned int
3017 first_plt_entry_offset() const
3018 { return this->plt_->first_plt_entry_offset(); }
3019
3020 // Return the size of each PLT entry.
3021 unsigned int
3022 plt_entry_size() const
3023 { return this->plt_->plt_entry_size(); }
3024
3025 // Get the GOT section, creating it if necessary.
3026 Mips_output_data_got<size, big_endian>*
3027 got_section(Symbol_table*, Layout*);
3028
3029 // Get the GOT section.
3030 Mips_output_data_got<size, big_endian>*
3031 got_section() const
3032 {
3033 gold_assert(this->got_ != NULL);
3034 return this->got_;
3035 }
3036
3037 // Get the .MIPS.stubs section, creating it if necessary.
3038 Mips_output_data_mips_stubs<size, big_endian>*
3039 mips_stubs_section(Layout* layout);
3040
3041 // Get the .MIPS.stubs section.
3042 Mips_output_data_mips_stubs<size, big_endian>*
3043 mips_stubs_section() const
3044 {
3045 gold_assert(this->mips_stubs_ != NULL);
3046 return this->mips_stubs_;
3047 }
3048
3049 // Get the LA25 stub section, creating it if necessary.
3050 Mips_output_data_la25_stub<size, big_endian>*
3051 la25_stub_section(Layout*);
3052
3053 // Get the LA25 stub section.
3054 Mips_output_data_la25_stub<size, big_endian>*
3055 la25_stub_section()
3056 {
3057 gold_assert(this->la25_stub_ != NULL);
3058 return this->la25_stub_;
3059 }
3060
3061 // Get gp value. It has the value of .got + 0x7FF0.
3062 Mips_address
3063 gp_value() const
3064 {
3065 if (this->gp_ != NULL)
3066 return this->gp_->value();
3067 return 0;
3068 }
3069
3070 // Get gp value. It has the value of .got + 0x7FF0. Adjust it for
3071 // multi-GOT links so that OBJECT's GOT + 0x7FF0 is returned.
3072 Mips_address
3073 adjusted_gp_value(const Mips_relobj<size, big_endian>* object)
3074 {
3075 if (this->gp_ == NULL)
3076 return 0;
3077
3078 bool multi_got = false;
3079 if (this->has_got_section())
3080 multi_got = this->got_section()->multi_got();
3081 if (!multi_got)
3082 return this->gp_->value();
3083 else
3084 return this->gp_->value() + this->got_section()->get_got_offset(object);
3085 }
3086
3087 // Get the dynamic reloc section, creating it if necessary.
3088 Reloc_section*
3089 rel_dyn_section(Layout*);
3090
3091 bool
3092 do_has_custom_set_dynsym_indexes() const
3093 { return true; }
3094
3095 // Don't emit input .reginfo sections to output .reginfo.
3096 bool
3097 do_should_include_section(elfcpp::Elf_Word sh_type) const
3098 { return sh_type != elfcpp::SHT_MIPS_REGINFO; }
3099
3100 // Set the dynamic symbol indexes. INDEX is the index of the first
3101 // global dynamic symbol. Pointers to the symbols are stored into the
3102 // vector SYMS. The names are added to DYNPOOL. This returns an
3103 // updated dynamic symbol index.
3104 unsigned int
3105 do_set_dynsym_indexes(std::vector<Symbol*>* dyn_symbols, unsigned int index,
3106 std::vector<Symbol*>* syms, Stringpool* dynpool,
3107 Versions* versions, Symbol_table* symtab) const;
3108
3109 // Remove .MIPS.stubs entry for a symbol.
3110 void
3111 remove_lazy_stub_entry(Mips_symbol<size>* sym)
3112 {
3113 if (this->mips_stubs_ != NULL)
3114 this->mips_stubs_->remove_entry(sym);
3115 }
3116
3117 // The value to write into got[1] for SVR4 targets, to identify it is
3118 // a GNU object. The dynamic linker can then use got[1] to store the
3119 // module pointer.
3120 uint64_t
3121 mips_elf_gnu_got1_mask()
3122 {
3123 if (this->is_output_n64())
3124 return (uint64_t)1 << 63;
3125 else
3126 return 1 << 31;
3127 }
3128
3129 // Whether the output has microMIPS code. This is valid only after
3130 // merge_processor_specific_flags() is called.
3131 bool
3132 is_output_micromips() const
3133 {
3134 gold_assert(this->are_processor_specific_flags_set());
3135 return elfcpp::is_micromips(this->processor_specific_flags());
3136 }
3137
3138 // Whether the output uses N32 ABI. This is valid only after
3139 // merge_processor_specific_flags() is called.
3140 bool
3141 is_output_n32() const
3142 {
3143 gold_assert(this->are_processor_specific_flags_set());
3144 return elfcpp::abi_n32(this->processor_specific_flags());
3145 }
3146
3147 // Whether the output uses N64 ABI. This is valid only after
3148 // merge_processor_specific_flags() is called.
3149 bool
3150 is_output_n64() const
3151 {
3152 gold_assert(this->are_processor_specific_flags_set());
3153 return elfcpp::abi_64(this->ei_class_);
3154 }
3155
3156 // Whether the output uses NEWABI. This is valid only after
3157 // merge_processor_specific_flags() is called.
3158 bool
3159 is_output_newabi() const
3160 { return this->is_output_n32() || this->is_output_n64(); }
3161
3162 // Whether we can only use 32-bit microMIPS instructions.
3163 bool
3164 use_32bit_micromips_instructions() const
3165 { return this->insn32_; }
3166
3167 protected:
3168 // Return the value to use for a dynamic symbol which requires special
3169 // treatment. This is how we support equality comparisons of function
3170 // pointers across shared library boundaries, as described in the
3171 // processor specific ABI supplement.
3172 uint64_t
3173 do_dynsym_value(const Symbol* gsym) const;
3174
3175 // Make an ELF object.
3176 Object*
3177 do_make_elf_object(const std::string&, Input_file*, off_t,
3178 const elfcpp::Ehdr<size, big_endian>& ehdr);
3179
3180 Object*
3181 do_make_elf_object(const std::string&, Input_file*, off_t,
3182 const elfcpp::Ehdr<size, !big_endian>&)
3183 { gold_unreachable(); }
3184
3185 // Make an output section.
3186 Output_section*
3187 do_make_output_section(const char* name, elfcpp::Elf_Word type,
3188 elfcpp::Elf_Xword flags)
3189 {
3190 if (type == elfcpp::SHT_MIPS_REGINFO)
3191 return new Mips_output_section_reginfo<size, big_endian>(name, type,
3192 flags, this);
3193 else
3194 return new Output_section(name, type, flags);
3195 }
3196
3197 // Adjust ELF file header.
3198 void
3199 do_adjust_elf_header(unsigned char* view, int len);
3200
3201 // Get the custom dynamic tag value.
3202 unsigned int
3203 do_dynamic_tag_custom_value(elfcpp::DT) const;
3204
3205 // Adjust the value written to the dynamic symbol table.
3206 virtual void
3207 do_adjust_dyn_symbol(const Symbol* sym, unsigned char* view) const
3208 {
3209 elfcpp::Sym<size, big_endian> isym(view);
3210 elfcpp::Sym_write<size, big_endian> osym(view);
3211 const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(sym);
3212
3213 // Keep dynamic compressed symbols odd. This allows the dynamic linker
3214 // to treat compressed symbols like any other.
3215 Mips_address value = isym.get_st_value();
3216 if (mips_sym->is_mips16() && value != 0)
3217 {
3218 if (!mips_sym->has_mips16_fn_stub())
3219 value |= 1;
3220 else
3221 {
3222 // If we have a MIPS16 function with a stub, the dynamic symbol
3223 // must refer to the stub, since only the stub uses the standard
3224 // calling conventions. Stub contains MIPS32 code, so don't add +1
3225 // in this case.
3226
3227 // There is a code which does this in the method
3228 // Target_mips::do_dynsym_value, but that code will only be
3229 // executed if the symbol is from dynobj.
3230 // TODO(sasa): GNU ld also changes the value in non-dynamic symbol
3231 // table.
3232
3233 Mips16_stub_section<size, big_endian>* fn_stub =
3234 mips_sym->template get_mips16_fn_stub<big_endian>();
3235 value = fn_stub->output_address();
3236 osym.put_st_size(fn_stub->section_size());
3237 }
3238
3239 osym.put_st_value(value);
3240 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
3241 mips_sym->nonvis() - (elfcpp::STO_MIPS16 >> 2)));
3242 }
3243 else if ((mips_sym->is_micromips()
3244 // Stubs are always microMIPS if there is any microMIPS code in
3245 // the output.
3246 || (this->is_output_micromips() && mips_sym->has_lazy_stub()))
3247 && value != 0)
3248 {
3249 osym.put_st_value(value | 1);
3250 osym.put_st_other(elfcpp::elf_st_other(sym->visibility(),
3251 mips_sym->nonvis() - (elfcpp::STO_MICROMIPS >> 2)));
3252 }
3253 }
3254
3255 private:
3256 // The class which scans relocations.
3257 class Scan
3258 {
3259 public:
3260 Scan()
3261 { }
3262
3263 static inline int
3264 get_reference_flags(unsigned int r_type);
3265
3266 inline void
3267 local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3268 Sized_relobj_file<size, big_endian>* object,
3269 unsigned int data_shndx,
3270 Output_section* output_section,
3271 const elfcpp::Rel<size, big_endian>& reloc, unsigned int r_type,
3272 const elfcpp::Sym<size, big_endian>& lsym,
3273 bool is_discarded);
3274
3275 inline void
3276 local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3277 Sized_relobj_file<size, big_endian>* object,
3278 unsigned int data_shndx,
3279 Output_section* output_section,
3280 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
3281 const elfcpp::Sym<size, big_endian>& lsym,
3282 bool is_discarded);
3283
3284 inline void
3285 local(Symbol_table* symtab, Layout* layout, Target_mips* target,
3286 Sized_relobj_file<size, big_endian>* object,
3287 unsigned int data_shndx,
3288 Output_section* output_section,
3289 const elfcpp::Rela<size, big_endian>* rela,
3290 const elfcpp::Rel<size, big_endian>* rel,
3291 unsigned int rel_type,
3292 unsigned int r_type,
3293 const elfcpp::Sym<size, big_endian>& lsym,
3294 bool is_discarded);
3295
3296 inline void
3297 global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3298 Sized_relobj_file<size, big_endian>* object,
3299 unsigned int data_shndx,
3300 Output_section* output_section,
3301 const elfcpp::Rel<size, big_endian>& reloc, unsigned int r_type,
3302 Symbol* gsym);
3303
3304 inline void
3305 global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3306 Sized_relobj_file<size, big_endian>* object,
3307 unsigned int data_shndx,
3308 Output_section* output_section,
3309 const elfcpp::Rela<size, big_endian>& reloc, unsigned int r_type,
3310 Symbol* gsym);
3311
3312 inline void
3313 global(Symbol_table* symtab, Layout* layout, Target_mips* target,
3314 Sized_relobj_file<size, big_endian>* object,
3315 unsigned int data_shndx,
3316 Output_section* output_section,
3317 const elfcpp::Rela<size, big_endian>* rela,
3318 const elfcpp::Rel<size, big_endian>* rel,
3319 unsigned int rel_type,
3320 unsigned int r_type,
3321 Symbol* gsym);
3322
3323 inline bool
3324 local_reloc_may_be_function_pointer(Symbol_table* , Layout*,
3325 Target_mips*,
3326 Sized_relobj_file<size, big_endian>*,
3327 unsigned int,
3328 Output_section*,
3329 const elfcpp::Rel<size, big_endian>&,
3330 unsigned int,
3331 const elfcpp::Sym<size, big_endian>&)
3332 { return false; }
3333
3334 inline bool
3335 global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3336 Target_mips*,
3337 Sized_relobj_file<size, big_endian>*,
3338 unsigned int,
3339 Output_section*,
3340 const elfcpp::Rel<size, big_endian>&,
3341 unsigned int, Symbol*)
3342 { return false; }
3343
3344 inline bool
3345 local_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3346 Target_mips*,
3347 Sized_relobj_file<size, big_endian>*,
3348 unsigned int,
3349 Output_section*,
3350 const elfcpp::Rela<size, big_endian>&,
3351 unsigned int,
3352 const elfcpp::Sym<size, big_endian>&)
3353 { return false; }
3354
3355 inline bool
3356 global_reloc_may_be_function_pointer(Symbol_table*, Layout*,
3357 Target_mips*,
3358 Sized_relobj_file<size, big_endian>*,
3359 unsigned int,
3360 Output_section*,
3361 const elfcpp::Rela<size, big_endian>&,
3362 unsigned int, Symbol*)
3363 { return false; }
3364 private:
3365 static void
3366 unsupported_reloc_local(Sized_relobj_file<size, big_endian>*,
3367 unsigned int r_type);
3368
3369 static void
3370 unsupported_reloc_global(Sized_relobj_file<size, big_endian>*,
3371 unsigned int r_type, Symbol*);
3372 };
3373
3374 // The class which implements relocation.
3375 class Relocate
3376 {
3377 public:
3378 Relocate()
3379 { }
3380
3381 ~Relocate()
3382 { }
3383
3384 // Return whether the R_MIPS_32 relocation needs to be applied.
3385 inline bool
3386 should_apply_r_mips_32_reloc(const Mips_symbol<size>* gsym,
3387 unsigned int r_type,
3388 Output_section* output_section,
3389 Target_mips* target);
3390
3391 // Do a relocation. Return false if the caller should not issue
3392 // any warnings about this relocation.
3393 inline bool
3394 relocate(const Relocate_info<size, big_endian>*, Target_mips*,
3395 Output_section*, size_t relnum,
3396 const elfcpp::Rela<size, big_endian>*,
3397 const elfcpp::Rel<size, big_endian>*,
3398 unsigned int,
3399 unsigned int, const Sized_symbol<size>*,
3400 const Symbol_value<size>*,
3401 unsigned char*,
3402 Mips_address,
3403 section_size_type);
3404
3405 inline bool
3406 relocate(const Relocate_info<size, big_endian>*, Target_mips*,
3407 Output_section*, size_t relnum,
3408 const elfcpp::Rel<size, big_endian>&,
3409 unsigned int, const Sized_symbol<size>*,
3410 const Symbol_value<size>*,
3411 unsigned char*,
3412 Mips_address,
3413 section_size_type);
3414
3415 inline bool
3416 relocate(const Relocate_info<size, big_endian>*, Target_mips*,
3417 Output_section*, size_t relnum,
3418 const elfcpp::Rela<size, big_endian>&,
3419 unsigned int, const Sized_symbol<size>*,
3420 const Symbol_value<size>*,
3421 unsigned char*,
3422 Mips_address,
3423 section_size_type);
3424 };
3425
3426 // A class which returns the size required for a relocation type,
3427 // used while scanning relocs during a relocatable link.
3428 class Relocatable_size_for_reloc
3429 {
3430 public:
3431 unsigned int
3432 get_size_for_reloc(unsigned int, Relobj*);
3433 };
3434
3435 // This POD class holds the dynamic relocations that should be emitted instead
3436 // of R_MIPS_32, R_MIPS_REL32 and R_MIPS_64 relocations. We will emit these
3437 // relocations if it turns out that the symbol does not have static
3438 // relocations.
3439 class Dyn_reloc
3440 {
3441 public:
3442 Dyn_reloc(Mips_symbol<size>* sym, unsigned int r_type,
3443 Mips_relobj<size, big_endian>* relobj, unsigned int shndx,
3444 Output_section* output_section, Mips_address r_offset)
3445 : sym_(sym), r_type_(r_type), relobj_(relobj),
3446 shndx_(shndx), output_section_(output_section),
3447 r_offset_(r_offset)
3448 { }
3449
3450 // Emit this reloc if appropriate. This is called after we have
3451 // scanned all the relocations, so we know whether the symbol has
3452 // static relocations.
3453 void
3454 emit(Reloc_section* rel_dyn, Mips_output_data_got<size, big_endian>* got,
3455 Symbol_table* symtab)
3456 {
3457 if (!this->sym_->has_static_relocs())
3458 {
3459 got->record_global_got_symbol(this->sym_, this->relobj_,
3460 this->r_type_, true, false);
3461 if (!symbol_references_local(this->sym_,
3462 this->sym_->should_add_dynsym_entry(symtab)))
3463 rel_dyn->add_global(this->sym_, this->r_type_,
3464 this->output_section_, this->relobj_,
3465 this->shndx_, this->r_offset_);
3466 else
3467 rel_dyn->add_symbolless_global_addend(this->sym_, this->r_type_,
3468 this->output_section_, this->relobj_,
3469 this->shndx_, this->r_offset_);
3470 }
3471 }
3472
3473 private:
3474 Mips_symbol<size>* sym_;
3475 unsigned int r_type_;
3476 Mips_relobj<size, big_endian>* relobj_;
3477 unsigned int shndx_;
3478 Output_section* output_section_;
3479 Mips_address r_offset_;
3480 };
3481
3482 // Adjust TLS relocation type based on the options and whether this
3483 // is a local symbol.
3484 static tls::Tls_optimization
3485 optimize_tls_reloc(bool is_final, int r_type);
3486
3487 // Return whether there is a GOT section.
3488 bool
3489 has_got_section() const
3490 { return this->got_ != NULL; }
3491
3492 // Check whether the given ELF header flags describe a 32-bit binary.
3493 bool
3494 mips_32bit_flags(elfcpp::Elf_Word);
3495
3496 enum Mips_mach {
3497 mach_mips3000 = 3000,
3498 mach_mips3900 = 3900,
3499 mach_mips4000 = 4000,
3500 mach_mips4010 = 4010,
3501 mach_mips4100 = 4100,
3502 mach_mips4111 = 4111,
3503 mach_mips4120 = 4120,
3504 mach_mips4300 = 4300,
3505 mach_mips4400 = 4400,
3506 mach_mips4600 = 4600,
3507 mach_mips4650 = 4650,
3508 mach_mips5000 = 5000,
3509 mach_mips5400 = 5400,
3510 mach_mips5500 = 5500,
3511 mach_mips6000 = 6000,
3512 mach_mips7000 = 7000,
3513 mach_mips8000 = 8000,
3514 mach_mips9000 = 9000,
3515 mach_mips10000 = 10000,
3516 mach_mips12000 = 12000,
3517 mach_mips14000 = 14000,
3518 mach_mips16000 = 16000,
3519 mach_mips16 = 16,
3520 mach_mips5 = 5,
3521 mach_mips_loongson_2e = 3001,
3522 mach_mips_loongson_2f = 3002,
3523 mach_mips_loongson_3a = 3003,
3524 mach_mips_sb1 = 12310201, // octal 'SB', 01
3525 mach_mips_octeon = 6501,
3526 mach_mips_octeonp = 6601,
3527 mach_mips_octeon2 = 6502,
3528 mach_mips_xlr = 887682, // decimal 'XLR'
3529 mach_mipsisa32 = 32,
3530 mach_mipsisa32r2 = 33,
3531 mach_mipsisa64 = 64,
3532 mach_mipsisa64r2 = 65,
3533 mach_mips_micromips = 96
3534 };
3535
3536 // Return the MACH for a MIPS e_flags value.
3537 unsigned int
3538 elf_mips_mach(elfcpp::Elf_Word);
3539
3540 // Check whether machine EXTENSION is an extension of machine BASE.
3541 bool
3542 mips_mach_extends(unsigned int, unsigned int);
3543
3544 // Merge processor specific flags.
3545 void
3546 merge_processor_specific_flags(const std::string&, elfcpp::Elf_Word,
3547 unsigned char, bool);
3548
3549 // True if we are linking for CPUs that are faster if JAL is converted to BAL.
3550 static inline bool
3551 jal_to_bal()
3552 { return false; }
3553
3554 // True if we are linking for CPUs that are faster if JALR is converted to
3555 // BAL. This should be safe for all architectures. We enable this predicate
3556 // for all CPUs.
3557 static inline bool
3558 jalr_to_bal()
3559 { return true; }
3560
3561 // True if we are linking for CPUs that are faster if JR is converted to B.
3562 // This should be safe for all architectures. We enable this predicate for
3563 // all CPUs.
3564 static inline bool
3565 jr_to_b()
3566 { return true; }
3567
3568 // Return the size of the GOT section.
3569 section_size_type
3570 got_size() const
3571 {
3572 gold_assert(this->got_ != NULL);
3573 return this->got_->data_size();
3574 }
3575
3576 // Create a PLT entry for a global symbol referenced by r_type relocation.
3577 void
3578 make_plt_entry(Symbol_table*, Layout*, Mips_symbol<size>*,
3579 unsigned int r_type);
3580
3581 // Get the PLT section.
3582 Mips_output_data_plt<size, big_endian>*
3583 plt_section() const
3584 {
3585 gold_assert(this->plt_ != NULL);
3586 return this->plt_;
3587 }
3588
3589 // Get the GOT PLT section.
3590 const Mips_output_data_plt<size, big_endian>*
3591 got_plt_section() const
3592 {
3593 gold_assert(this->got_plt_ != NULL);
3594 return this->got_plt_;
3595 }
3596
3597 // Copy a relocation against a global symbol.
3598 void
3599 copy_reloc(Symbol_table* symtab, Layout* layout,
3600 Sized_relobj_file<size, big_endian>* object,
3601 unsigned int shndx, Output_section* output_section,
3602 Symbol* sym, const elfcpp::Rel<size, big_endian>& reloc)
3603 {
3604 this->copy_relocs_.copy_reloc(symtab, layout,
3605 symtab->get_sized_symbol<size>(sym),
3606 object, shndx, output_section,
3607 reloc, this->rel_dyn_section(layout));
3608 }
3609
3610 void
3611 dynamic_reloc(Mips_symbol<size>* sym, unsigned int r_type,
3612 Mips_relobj<size, big_endian>* relobj,
3613 unsigned int shndx, Output_section* output_section,
3614 Mips_address r_offset)
3615 {
3616 this->dyn_relocs_.push_back(Dyn_reloc(sym, r_type, relobj, shndx,
3617 output_section, r_offset));
3618 }
3619
3620 // Calculate value of _gp symbol.
3621 void
3622 set_gp(Layout*, Symbol_table*);
3623
3624 const char*
3625 elf_mips_abi_name(elfcpp::Elf_Word e_flags, unsigned char ei_class);
3626 const char*
3627 elf_mips_mach_name(elfcpp::Elf_Word e_flags);
3628
3629 // Adds entries that describe how machines relate to one another. The entries
3630 // are ordered topologically with MIPS I extensions listed last. First
3631 // element is extension, second element is base.
3632 void
3633 add_machine_extensions()
3634 {
3635 // MIPS64r2 extensions.
3636 this->add_extension(mach_mips_octeon2, mach_mips_octeonp);
3637 this->add_extension(mach_mips_octeonp, mach_mips_octeon);
3638 this->add_extension(mach_mips_octeon, mach_mipsisa64r2);
3639
3640 // MIPS64 extensions.
3641 this->add_extension(mach_mipsisa64r2, mach_mipsisa64);
3642 this->add_extension(mach_mips_sb1, mach_mipsisa64);
3643 this->add_extension(mach_mips_xlr, mach_mipsisa64);
3644 this->add_extension(mach_mips_loongson_3a, mach_mipsisa64);
3645
3646 // MIPS V extensions.
3647 this->add_extension(mach_mipsisa64, mach_mips5);
3648
3649 // R10000 extensions.
3650 this->add_extension(mach_mips12000, mach_mips10000);
3651 this->add_extension(mach_mips14000, mach_mips10000);
3652 this->add_extension(mach_mips16000, mach_mips10000);
3653
3654 // R5000 extensions. Note: the vr5500 ISA is an extension of the core
3655 // vr5400 ISA, but doesn't include the multimedia stuff. It seems
3656 // better to allow vr5400 and vr5500 code to be merged anyway, since
3657 // many libraries will just use the core ISA. Perhaps we could add
3658 // some sort of ASE flag if this ever proves a problem.
3659 this->add_extension(mach_mips5500, mach_mips5400);
3660 this->add_extension(mach_mips5400, mach_mips5000);
3661
3662 // MIPS IV extensions.
3663 this->add_extension(mach_mips5, mach_mips8000);
3664 this->add_extension(mach_mips10000, mach_mips8000);
3665 this->add_extension(mach_mips5000, mach_mips8000);
3666 this->add_extension(mach_mips7000, mach_mips8000);
3667 this->add_extension(mach_mips9000, mach_mips8000);
3668
3669 // VR4100 extensions.
3670 this->add_extension(mach_mips4120, mach_mips4100);
3671 this->add_extension(mach_mips4111, mach_mips4100);
3672
3673 // MIPS III extensions.
3674 this->add_extension(mach_mips_loongson_2e, mach_mips4000);
3675 this->add_extension(mach_mips_loongson_2f, mach_mips4000);
3676 this->add_extension(mach_mips8000, mach_mips4000);
3677 this->add_extension(mach_mips4650, mach_mips4000);
3678 this->add_extension(mach_mips4600, mach_mips4000);
3679 this->add_extension(mach_mips4400, mach_mips4000);
3680 this->add_extension(mach_mips4300, mach_mips4000);
3681 this->add_extension(mach_mips4100, mach_mips4000);
3682 this->add_extension(mach_mips4010, mach_mips4000);
3683
3684 // MIPS32 extensions.
3685 this->add_extension(mach_mipsisa32r2, mach_mipsisa32);
3686
3687 // MIPS II extensions.
3688 this->add_extension(mach_mips4000, mach_mips6000);
3689 this->add_extension(mach_mipsisa32, mach_mips6000);
3690
3691 // MIPS I extensions.
3692 this->add_extension(mach_mips6000, mach_mips3000);
3693 this->add_extension(mach_mips3900, mach_mips3000);
3694 }
3695
3696 // Add value to MIPS extenstions.
3697 void
3698 add_extension(unsigned int base, unsigned int extension)
3699 {
3700 std::pair<unsigned int, unsigned int> ext(base, extension);
3701 this->mips_mach_extensions_.push_back(ext);
3702 }
3703
3704 // Return the number of entries in the .dynsym section.
3705 unsigned int get_dt_mips_symtabno() const
3706 {
3707 return ((unsigned int)(this->layout_->dynsym_section()->data_size()
3708 / elfcpp::Elf_sizes<size>::sym_size));
3709 // TODO(sasa): Entry size is MIPS_ELF_SYM_SIZE.
3710 }
3711
3712 // Information about this specific target which we pass to the
3713 // general Target structure.
3714 static Target::Target_info mips_info;
3715 // The GOT section.
3716 Mips_output_data_got<size, big_endian>* got_;
3717 // gp symbol. It has the value of .got + 0x7FF0.
3718 Sized_symbol<size>* gp_;
3719 // The PLT section.
3720 Mips_output_data_plt<size, big_endian>* plt_;
3721 // The GOT PLT section.
3722 Output_data_space* got_plt_;
3723 // The dynamic reloc section.
3724 Reloc_section* rel_dyn_;
3725 // Relocs saved to avoid a COPY reloc.
3726 Mips_copy_relocs<elfcpp::SHT_REL, size, big_endian> copy_relocs_;
3727
3728 // A list of dyn relocs to be saved.
3729 std::vector<Dyn_reloc> dyn_relocs_;
3730
3731 // The LA25 stub section.
3732 Mips_output_data_la25_stub<size, big_endian>* la25_stub_;
3733 // Architecture extensions.
3734 std::vector<std::pair<unsigned int, unsigned int> > mips_mach_extensions_;
3735 // .MIPS.stubs
3736 Mips_output_data_mips_stubs<size, big_endian>* mips_stubs_;
3737
3738 unsigned char ei_class_;
3739 unsigned int mach_;
3740 Layout* layout_;
3741
3742 typename std::list<got16_addend<size, big_endian> > got16_addends_;
3743
3744 // Whether the entry symbol is mips16 or micromips.
3745 bool entry_symbol_is_compressed_;
3746
3747 // Whether we can use only 32-bit microMIPS instructions.
3748 // TODO(sasa): This should be a linker option.
3749 bool insn32_;
3750 };
3751
3752
3753 // Helper structure for R_MIPS*_HI16/LO16 and R_MIPS*_GOT16/LO16 relocations.
3754 // It records high part of the relocation pair.
3755
3756 template<int size, bool big_endian>
3757 struct reloc_high
3758 {
3759 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
3760
3761 reloc_high(unsigned char* _view, const Mips_relobj<size, big_endian>* _object,
3762 const Symbol_value<size>* _psymval, Mips_address _addend,
3763 unsigned int _r_type, bool _extract_addend,
3764 Mips_address _address = 0, bool _gp_disp = false)
3765 : view(_view), object(_object), psymval(_psymval), addend(_addend),
3766 r_type(_r_type), extract_addend(_extract_addend), address(_address),
3767 gp_disp(_gp_disp)
3768 { }
3769
3770 unsigned char* view;
3771 const Mips_relobj<size, big_endian>* object;
3772 const Symbol_value<size>* psymval;
3773 Mips_address addend;
3774 unsigned int r_type;
3775 bool extract_addend;
3776 Mips_address address;
3777 bool gp_disp;
3778 };
3779
3780 template<int size, bool big_endian>
3781 class Mips_relocate_functions : public Relocate_functions<size, big_endian>
3782 {
3783 typedef typename elfcpp::Elf_types<size>::Elf_Addr Mips_address;
3784 typedef typename elfcpp::Swap<16, big_endian>::Valtype Valtype16;
3785 typedef typename elfcpp::Swap<32, big_endian>::Valtype Valtype32;
3786
3787 public:
3788 typedef enum
3789 {
3790 STATUS_OKAY, // No error during relocation.
3791 STATUS_OVERFLOW, // Relocation overflow.
3792 STATUS_BAD_RELOC // Relocation cannot be applied.
3793 } Status;
3794
3795 private:
3796 typedef Relocate_functions<size, big_endian> Base;
3797 typedef Mips_relocate_functions<size, big_endian> This;
3798
3799 static typename std::list<reloc_high<size, big_endian> > hi16_relocs;
3800 static typename std::list<reloc_high<size, big_endian> > got16_relocs;
3801
3802 // R_MIPS16_26 is used for the mips16 jal and jalx instructions.
3803 // Most mips16 instructions are 16 bits, but these instructions
3804 // are 32 bits.
3805 //
3806 // The format of these instructions is:
3807 //
3808 // +--------------+--------------------------------+
3809 // | JALX | X| Imm 20:16 | Imm 25:21 |
3810 // +--------------+--------------------------------+
3811 // | Immediate 15:0 |
3812 // +-----------------------------------------------+
3813 //
3814 // JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
3815 // Note that the immediate value in the first word is swapped.
3816 //
3817 // When producing a relocatable object file, R_MIPS16_26 is
3818 // handled mostly like R_MIPS_26. In particular, the addend is
3819 // stored as a straight 26-bit value in a 32-bit instruction.
3820 // (gas makes life simpler for itself by never adjusting a
3821 // R_MIPS16_26 reloc to be against a section, so the addend is
3822 // always zero). However, the 32 bit instruction is stored as 2
3823 // 16-bit values, rather than a single 32-bit value. In a
3824 // big-endian file, the result is the same; in a little-endian
3825 // file, the two 16-bit halves of the 32 bit value are swapped.
3826 // This is so that a disassembler can recognize the jal
3827 // instruction.
3828 //
3829 // When doing a final link, R_MIPS16_26 is treated as a 32 bit
3830 // instruction stored as two 16-bit values. The addend A is the
3831 // contents of the targ26 field. The calculation is the same as
3832 // R_MIPS_26. When storing the calculated value, reorder the
3833 // immediate value as shown above, and don't forget to store the
3834 // value as two 16-bit values.
3835 //
3836 // To put it in MIPS ABI terms, the relocation field is T-targ26-16,
3837 // defined as
3838 //
3839 // big-endian:
3840 // +--------+----------------------+
3841 // | | |
3842 // | | targ26-16 |
3843 // |31 26|25 0|
3844 // +--------+----------------------+
3845 //
3846 // little-endian:
3847 // +----------+------+-------------+
3848 // | | | |
3849 // | sub1 | | sub2 |
3850 // |0 9|10 15|16 31|
3851 // +----------+--------------------+
3852 // where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
3853 // ((sub1 << 16) | sub2)).
3854 //
3855 // When producing a relocatable object file, the calculation is
3856 // (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3857 // When producing a fully linked file, the calculation is
3858 // let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
3859 // ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
3860 //
3861 // The table below lists the other MIPS16 instruction relocations.
3862 // Each one is calculated in the same way as the non-MIPS16 relocation
3863 // given on the right, but using the extended MIPS16 layout of 16-bit
3864 // immediate fields:
3865 //
3866 // R_MIPS16_GPREL R_MIPS_GPREL16
3867 // R_MIPS16_GOT16 R_MIPS_GOT16
3868 // R_MIPS16_CALL16 R_MIPS_CALL16
3869 // R_MIPS16_HI16 R_MIPS_HI16
3870 // R_MIPS16_LO16 R_MIPS_LO16
3871 //
3872 // A typical instruction will have a format like this:
3873 //
3874 // +--------------+--------------------------------+
3875 // | EXTEND | Imm 10:5 | Imm 15:11 |
3876 // +--------------+--------------------------------+
3877 // | Major | rx | ry | Imm 4:0 |
3878 // +--------------+--------------------------------+
3879 //
3880 // EXTEND is the five bit value 11110. Major is the instruction
3881 // opcode.
3882 //
3883 // All we need to do here is shuffle the bits appropriately.
3884 // As above, the two 16-bit halves must be swapped on a
3885 // little-endian system.
3886
3887 // Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
3888 // on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
3889 // and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions.
3890
3891 static inline bool
3892 should_shuffle_micromips_reloc(unsigned int r_type)
3893 {
3894 return (micromips_reloc(r_type)
3895 && r_type != elfcpp::R_MICROMIPS_PC7_S1
3896 && r_type != elfcpp::R_MICROMIPS_PC10_S1);
3897 }
3898
3899 static void
3900 mips_reloc_unshuffle(unsigned char* view, unsigned int r_type,
3901 bool jal_shuffle)
3902 {
3903 if (!mips16_reloc(r_type)
3904 && !should_shuffle_micromips_reloc(r_type))
3905 return;
3906
3907 // Pick up the first and second halfwords of the instruction.
3908 Valtype16 first = elfcpp::Swap<16, big_endian>::readval(view);
3909 Valtype16 second = elfcpp::Swap<16, big_endian>::readval(view + 2);
3910 Valtype32 val;
3911
3912 if (micromips_reloc(r_type)
3913 || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
3914 val = first << 16 | second;
3915 else if (r_type != elfcpp::R_MIPS16_26)
3916 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
3917 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
3918 else
3919 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
3920 | ((first & 0x1f) << 21) | second);
3921
3922 elfcpp::Swap<32, big_endian>::writeval(view, val);
3923 }
3924
3925 static void
3926 mips_reloc_shuffle(unsigned char* view, unsigned int r_type, bool jal_shuffle)
3927 {
3928 if (!mips16_reloc(r_type)
3929 && !should_shuffle_micromips_reloc(r_type))
3930 return;
3931
3932 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
3933 Valtype16 first, second;
3934
3935 if (micromips_reloc(r_type)
3936 || (r_type == elfcpp::R_MIPS16_26 && !jal_shuffle))
3937 {
3938 second = val & 0xffff;
3939 first = val >> 16;
3940 }
3941 else if (r_type != elfcpp::R_MIPS16_26)
3942 {
3943 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
3944 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
3945 }
3946 else
3947 {
3948 second = val & 0xffff;
3949 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
3950 | ((val >> 21) & 0x1f);
3951 }
3952
3953 elfcpp::Swap<16, big_endian>::writeval(view + 2, second);
3954 elfcpp::Swap<16, big_endian>::writeval(view, first);
3955 }
3956
3957 public:
3958 // R_MIPS_16: S + sign-extend(A)
3959 static inline typename This::Status
3960 rel16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
3961 const Symbol_value<size>* psymval, Mips_address addend_a,
3962 bool extract_addend, unsigned int r_type)
3963 {
3964 mips_reloc_unshuffle(view, r_type, false);
3965 Valtype16* wv = reinterpret_cast<Valtype16*>(view);
3966 Valtype16 val = elfcpp::Swap<16, big_endian>::readval(wv);
3967
3968 Valtype32 addend = (extract_addend ? Bits<16>::sign_extend32(val)
3969 : Bits<16>::sign_extend32(addend_a));
3970
3971 Valtype32 x = psymval->value(object, addend);
3972 val = Bits<16>::bit_select32(val, x, 0xffffU);
3973 elfcpp::Swap<16, big_endian>::writeval(wv, val);
3974 mips_reloc_shuffle(view, r_type, false);
3975 return (Bits<16>::has_overflow32(x)
3976 ? This::STATUS_OVERFLOW
3977 : This::STATUS_OKAY);
3978 }
3979
3980 // R_MIPS_32: S + A
3981 static inline typename This::Status
3982 rel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
3983 const Symbol_value<size>* psymval, Mips_address addend_a,
3984 bool extract_addend, unsigned int r_type)
3985 {
3986 mips_reloc_unshuffle(view, r_type, false);
3987 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
3988 Valtype32 addend = (extract_addend
3989 ? elfcpp::Swap<32, big_endian>::readval(wv)
3990 : Bits<32>::sign_extend32(addend_a));
3991 Valtype32 x = psymval->value(object, addend);
3992 elfcpp::Swap<32, big_endian>::writeval(wv, x);
3993 mips_reloc_shuffle(view, r_type, false);
3994 return This::STATUS_OKAY;
3995 }
3996
3997 // R_MIPS_JALR, R_MICROMIPS_JALR
3998 static inline typename This::Status
3999 reljalr(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4000 const Symbol_value<size>* psymval, Mips_address address,
4001 Mips_address addend_a, bool extract_addend, bool cross_mode_jump,
4002 unsigned int r_type, bool jalr_to_bal, bool jr_to_b)
4003 {
4004 mips_reloc_unshuffle(view, r_type, false);
4005 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4006 Valtype32 addend = extract_addend ? 0 : addend_a;
4007 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4008
4009 // Try converting J(AL)R to B(AL), if the target is in range.
4010 if (!parameters->options().relocatable()
4011 && r_type == elfcpp::R_MIPS_JALR
4012 && !cross_mode_jump
4013 && ((jalr_to_bal && val == 0x0320f809) // jalr t9
4014 || (jr_to_b && val == 0x03200008))) // jr t9
4015 {
4016 int offset = psymval->value(object, addend) - (address + 4);
4017 if (!Bits<18>::has_overflow32(offset))
4018 {
4019 if (val == 0x03200008) // jr t9
4020 val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff); // b addr
4021 else
4022 val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
4023 }
4024 }
4025
4026 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4027 mips_reloc_shuffle(view, r_type, false);
4028 return This::STATUS_OKAY;
4029 }
4030
4031 // R_MIPS_PC32: S + A - P
4032 static inline typename This::Status
4033 relpc32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4034 const Symbol_value<size>* psymval, Mips_address address,
4035 Mips_address addend_a, bool extract_addend, unsigned int r_type)
4036 {
4037 mips_reloc_unshuffle(view, r_type, false);
4038 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4039 Valtype32 addend = (extract_addend
4040 ? elfcpp::Swap<32, big_endian>::readval(wv)
4041 : Bits<32>::sign_extend32(addend_a));
4042 Valtype32 x = psymval->value(object, addend) - address;
4043 elfcpp::Swap<32, big_endian>::writeval(wv, x);
4044 mips_reloc_shuffle(view, r_type, false);
4045 return This::STATUS_OKAY;
4046 }
4047
4048 // R_MIPS_26, R_MIPS16_26, R_MICROMIPS_26_S1
4049 static inline typename This::Status
4050 rel26(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4051 const Symbol_value<size>* psymval, Mips_address address,
4052 bool local, Mips_address addend_a, bool extract_addend,
4053 const Symbol* gsym, bool cross_mode_jump, unsigned int r_type,
4054 bool jal_to_bal)
4055 {
4056 mips_reloc_unshuffle(view, r_type, false);
4057 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4058 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4059
4060 Valtype32 addend;
4061 if (extract_addend)
4062 {
4063 if (r_type == elfcpp::R_MICROMIPS_26_S1)
4064 addend = (val & 0x03ffffff) << 1;
4065 else
4066 addend = (val & 0x03ffffff) << 2;
4067 }
4068 else
4069 addend = addend_a;
4070
4071 // Make sure the target of JALX is word-aligned. Bit 0 must be
4072 // the correct ISA mode selector and bit 1 must be 0.
4073 if (cross_mode_jump
4074 && (psymval->value(object, 0) & 3) != (r_type == elfcpp::R_MIPS_26))
4075 {
4076 gold_warning(_("JALX to a non-word-aligned address"));
4077 mips_reloc_shuffle(view, r_type, !parameters->options().relocatable());
4078 return This::STATUS_BAD_RELOC;
4079 }
4080
4081 // Shift is 2, unusually, for microMIPS JALX.
4082 unsigned int shift =
4083 (!cross_mode_jump && r_type == elfcpp::R_MICROMIPS_26_S1) ? 1 : 2;
4084
4085 Valtype32 x;
4086 if (local)
4087 x = addend | ((address + 4) & (0xfc000000 << shift));
4088 else
4089 {
4090 if (shift == 1)
4091 x = Bits<27>::sign_extend32(addend);
4092 else
4093 x = Bits<28>::sign_extend32(addend);
4094 }
4095 x = psymval->value(object, x) >> shift;
4096
4097 if (!local && !gsym->is_weak_undefined())
4098 {
4099 if ((x >> 26) != ((address + 4) >> (26 + shift)))
4100 {
4101 gold_error(_("relocation truncated to fit: %u against '%s'"),
4102 r_type, gsym->name());
4103 return This::STATUS_OVERFLOW;
4104 }
4105 }
4106
4107 val = Bits<32>::bit_select32(val, x, 0x03ffffff);
4108
4109 // If required, turn JAL into JALX.
4110 if (cross_mode_jump)
4111 {
4112 bool ok;
4113 Valtype32 opcode = val >> 26;
4114 Valtype32 jalx_opcode;
4115
4116 // Check to see if the opcode is already JAL or JALX.
4117 if (r_type == elfcpp::R_MIPS16_26)
4118 {
4119 ok = (opcode == 0x6) || (opcode == 0x7);
4120 jalx_opcode = 0x7;
4121 }
4122 else if (r_type == elfcpp::R_MICROMIPS_26_S1)
4123 {
4124 ok = (opcode == 0x3d) || (opcode == 0x3c);
4125 jalx_opcode = 0x3c;
4126 }
4127 else
4128 {
4129 ok = (opcode == 0x3) || (opcode == 0x1d);
4130 jalx_opcode = 0x1d;
4131 }
4132
4133 // If the opcode is not JAL or JALX, there's a problem. We cannot
4134 // convert J or JALS to JALX.
4135 if (!ok)
4136 {
4137 gold_error(_("Unsupported jump between ISA modes; consider "
4138 "recompiling with interlinking enabled."));
4139 return This::STATUS_BAD_RELOC;
4140 }
4141
4142 // Make this the JALX opcode.
4143 val = (val & ~(0x3f << 26)) | (jalx_opcode << 26);
4144 }
4145
4146 // Try converting JAL to BAL, if the target is in range.
4147 if (!parameters->options().relocatable()
4148 && !cross_mode_jump
4149 && ((jal_to_bal
4150 && r_type == elfcpp::R_MIPS_26
4151 && (val >> 26) == 0x3))) // jal addr
4152 {
4153 Valtype32 dest = (x << 2) | (((address + 4) >> 28) << 28);
4154 int offset = dest - (address + 4);
4155 if (!Bits<18>::has_overflow32(offset))
4156 {
4157 if (val == 0x03200008) // jr t9
4158 val = 0x10000000 | (((Valtype32)offset >> 2) & 0xffff); // b addr
4159 else
4160 val = 0x04110000 | (((Valtype32)offset >> 2) & 0xffff); //bal addr
4161 }
4162 }
4163
4164 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4165 mips_reloc_shuffle(view, r_type, !parameters->options().relocatable());
4166 return This::STATUS_OKAY;
4167 }
4168
4169 // R_MIPS_PC16
4170 static inline typename This::Status
4171 relpc16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4172 const Symbol_value<size>* psymval, Mips_address address,
4173 Mips_address addend_a, bool extract_addend, unsigned int r_type)
4174 {
4175 mips_reloc_unshuffle(view, r_type, false);
4176 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4177 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4178
4179 Valtype32 addend = extract_addend ? (val & 0xffff) << 2 : addend_a;
4180 addend = Bits<18>::sign_extend32(addend);
4181
4182 Valtype32 x = psymval->value(object, addend) - address;
4183 val = Bits<16>::bit_select32(val, x >> 2, 0xffff);
4184 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4185 mips_reloc_shuffle(view, r_type, false);
4186 return (Bits<18>::has_overflow32(x)
4187 ? This::STATUS_OVERFLOW
4188 : This::STATUS_OKAY);
4189 }
4190
4191 // R_MICROMIPS_PC7_S1
4192 static inline typename This::Status
4193 relmicromips_pc7_s1(unsigned char* view,
4194 const Mips_relobj<size, big_endian>* object,
4195 const Symbol_value<size>* psymval, Mips_address address,
4196 Mips_address addend_a, bool extract_addend,
4197 unsigned int r_type)
4198 {
4199 mips_reloc_unshuffle(view, r_type, false);
4200 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4201 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4202
4203 Valtype32 addend = extract_addend ? (val & 0x7f) << 1 : addend_a;
4204 addend = Bits<8>::sign_extend32(addend);
4205
4206 Valtype32 x = psymval->value(object, addend) - address;
4207 val = Bits<16>::bit_select32(val, x >> 1, 0x7f);
4208 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4209 mips_reloc_shuffle(view, r_type, false);
4210 return (Bits<8>::has_overflow32(x)
4211 ? This::STATUS_OVERFLOW
4212 : This::STATUS_OKAY);
4213 }
4214
4215 // R_MICROMIPS_PC10_S1
4216 static inline typename This::Status
4217 relmicromips_pc10_s1(unsigned char* view,
4218 const Mips_relobj<size, big_endian>* object,
4219 const Symbol_value<size>* psymval, Mips_address address,
4220 Mips_address addend_a, bool extract_addend,
4221 unsigned int r_type)
4222 {
4223 mips_reloc_unshuffle(view, r_type, false);
4224 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4225 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4226
4227 Valtype32 addend = extract_addend ? (val & 0x3ff) << 1 : addend_a;
4228 addend = Bits<11>::sign_extend32(addend);
4229
4230 Valtype32 x = psymval->value(object, addend) - address;
4231 val = Bits<16>::bit_select32(val, x >> 1, 0x3ff);
4232 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4233 mips_reloc_shuffle(view, r_type, false);
4234 return (Bits<11>::has_overflow32(x)
4235 ? This::STATUS_OVERFLOW
4236 : This::STATUS_OKAY);
4237 }
4238
4239 // R_MICROMIPS_PC16_S1
4240 static inline typename This::Status
4241 relmicromips_pc16_s1(unsigned char* view,
4242 const Mips_relobj<size, big_endian>* object,
4243 const Symbol_value<size>* psymval, Mips_address address,
4244 Mips_address addend_a, bool extract_addend,
4245 unsigned int r_type)
4246 {
4247 mips_reloc_unshuffle(view, r_type, false);
4248 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4249 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4250
4251 Valtype32 addend = extract_addend ? (val & 0xffff) << 1 : addend_a;
4252 addend = Bits<17>::sign_extend32(addend);
4253
4254 Valtype32 x = psymval->value(object, addend) - address;
4255 val = Bits<16>::bit_select32(val, x >> 1, 0xffff);
4256 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4257 mips_reloc_shuffle(view, r_type, false);
4258 return (Bits<17>::has_overflow32(x)
4259 ? This::STATUS_OVERFLOW
4260 : This::STATUS_OKAY);
4261 }
4262
4263 // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
4264 static inline typename This::Status
4265 relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4266 const Symbol_value<size>* psymval, Mips_address addend,
4267 Mips_address address, bool gp_disp, unsigned int r_type,
4268 bool extract_addend)
4269 {
4270 // Record the relocation. It will be resolved when we find lo16 part.
4271 hi16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
4272 addend, r_type, extract_addend, address, gp_disp));
4273 return This::STATUS_OKAY;
4274 }
4275
4276 // R_MIPS_HI16, R_MIPS16_HI16, R_MICROMIPS_HI16,
4277 static inline typename This::Status
4278 do_relhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4279 const Symbol_value<size>* psymval, Mips_address addend_hi,
4280 Mips_address address, bool is_gp_disp, unsigned int r_type,
4281 bool extract_addend, Valtype32 addend_lo,
4282 Target_mips<size, big_endian>* target)
4283 {
4284 mips_reloc_unshuffle(view, r_type, false);
4285 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4286 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4287
4288 Valtype32 addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
4289 : addend_hi);
4290
4291 Valtype32 value;
4292 if (!is_gp_disp)
4293 value = psymval->value(object, addend);
4294 else
4295 {
4296 // For MIPS16 ABI code we generate this sequence
4297 // 0: li $v0,%hi(_gp_disp)
4298 // 4: addiupc $v1,%lo(_gp_disp)
4299 // 8: sll $v0,16
4300 // 12: addu $v0,$v1
4301 // 14: move $gp,$v0
4302 // So the offsets of hi and lo relocs are the same, but the
4303 // base $pc is that used by the ADDIUPC instruction at $t9 + 4.
4304 // ADDIUPC clears the low two bits of the instruction address,
4305 // so the base is ($t9 + 4) & ~3.
4306 Valtype32 gp_disp;
4307 if (r_type == elfcpp::R_MIPS16_HI16)
4308 gp_disp = (target->adjusted_gp_value(object)
4309 - ((address + 4) & ~0x3));
4310 // The microMIPS .cpload sequence uses the same assembly
4311 // instructions as the traditional psABI version, but the
4312 // incoming $t9 has the low bit set.
4313 else if (r_type == elfcpp::R_MICROMIPS_HI16)
4314 gp_disp = target->adjusted_gp_value(object) - address - 1;
4315 else
4316 gp_disp = target->adjusted_gp_value(object) - address;
4317 value = gp_disp + addend;
4318 }
4319 Valtype32 x = ((value + 0x8000) >> 16) & 0xffff;
4320 val = Bits<32>::bit_select32(val, x, 0xffff);
4321 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4322 mips_reloc_shuffle(view, r_type, false);
4323 return (is_gp_disp && Bits<16>::has_overflow32(x)
4324 ? This::STATUS_OVERFLOW
4325 : This::STATUS_OKAY);
4326 }
4327
4328 // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
4329 static inline typename This::Status
4330 relgot16_local(unsigned char* view,
4331 const Mips_relobj<size, big_endian>* object,
4332 const Symbol_value<size>* psymval, Mips_address addend_a,
4333 bool extract_addend, unsigned int r_type)
4334 {
4335 // Record the relocation. It will be resolved when we find lo16 part.
4336 got16_relocs.push_back(reloc_high<size, big_endian>(view, object, psymval,
4337 addend_a, r_type, extract_addend));
4338 return This::STATUS_OKAY;
4339 }
4340
4341 // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
4342 static inline typename This::Status
4343 do_relgot16_local(unsigned char* view,
4344 const Mips_relobj<size, big_endian>* object,
4345 const Symbol_value<size>* psymval, Mips_address addend_hi,
4346 unsigned int r_type, bool extract_addend,
4347 Valtype32 addend_lo, Target_mips<size, big_endian>* target)
4348 {
4349 mips_reloc_unshuffle(view, r_type, false);
4350 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4351 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4352
4353 Valtype32 addend = (extract_addend ? ((val & 0xffff) << 16) + addend_lo
4354 : addend_hi);
4355
4356 // Find GOT page entry.
4357 Mips_address value = ((psymval->value(object, addend) + 0x8000) >> 16)
4358 & 0xffff;
4359 value <<= 16;
4360 unsigned int got_offset =
4361 target->got_section()->get_got_page_offset(value, object);
4362
4363 // Resolve the relocation.
4364 Valtype32 x = target->got_section()->gp_offset(got_offset, object);
4365 val = Bits<32>::bit_select32(val, x, 0xffff);
4366 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4367 mips_reloc_shuffle(view, r_type, false);
4368 return (Bits<16>::has_overflow32(x)
4369 ? This::STATUS_OVERFLOW
4370 : This::STATUS_OKAY);
4371 }
4372
4373 // R_MIPS_LO16, R_MIPS16_LO16, R_MICROMIPS_LO16, R_MICROMIPS_HI0_LO16
4374 static inline typename This::Status
4375 rello16(Target_mips<size, big_endian>* target, unsigned char* view,
4376 const Mips_relobj<size, big_endian>* object,
4377 const Symbol_value<size>* psymval, Mips_address addend_a,
4378 bool extract_addend, Mips_address address, bool is_gp_disp,
4379 unsigned int r_type)
4380 {
4381 mips_reloc_unshuffle(view, r_type, false);
4382 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4383 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4384
4385 Valtype32 addend = (extract_addend ? Bits<16>::sign_extend32(val & 0xffff)
4386 : addend_a);
4387
4388 // Resolve pending R_MIPS_HI16 relocations.
4389 typename std::list<reloc_high<size, big_endian> >::iterator it =
4390 hi16_relocs.begin();
4391 while (it != hi16_relocs.end())
4392 {
4393 reloc_high<size, big_endian> hi16 = *it;
4394 if (hi16.psymval->value(hi16.object, 0) == psymval->value(object, 0))
4395 {
4396 if (do_relhi16(hi16.view, hi16.object, hi16.psymval, hi16.addend,
4397 hi16.address, hi16.gp_disp, hi16.r_type,
4398 hi16.extract_addend, addend, target)
4399 == This::STATUS_OVERFLOW)
4400 return This::STATUS_OVERFLOW;
4401 it = hi16_relocs.erase(it);
4402 }
4403 else
4404 ++it;
4405 }
4406
4407 // Resolve pending local R_MIPS_GOT16 relocations.
4408 typename std::list<reloc_high<size, big_endian> >::iterator it2 =
4409 got16_relocs.begin();
4410 while (it2 != got16_relocs.end())
4411 {
4412 reloc_high<size, big_endian> got16 = *it2;
4413 if (got16.psymval->value(got16.object, 0) == psymval->value(object, 0))
4414 {
4415 if (do_relgot16_local(got16.view, got16.object, got16.psymval,
4416 got16.addend, got16.r_type,
4417 got16.extract_addend, addend,
4418 target) == This::STATUS_OVERFLOW)
4419 return This::STATUS_OVERFLOW;
4420 it2 = got16_relocs.erase(it2);
4421 }
4422 else
4423 ++it2;
4424 }
4425
4426 // Resolve R_MIPS_LO16 relocation.
4427 Valtype32 x;
4428 if (!is_gp_disp)
4429 x = psymval->value(object, addend);
4430 else
4431 {
4432 // See the comment for R_MIPS16_HI16 above for the reason
4433 // for this conditional.
4434 Valtype32 gp_disp;
4435 if (r_type == elfcpp::R_MIPS16_LO16)
4436 gp_disp = target->adjusted_gp_value(object) - (address & ~0x3);
4437 else if (r_type == elfcpp::R_MICROMIPS_LO16
4438 || r_type == elfcpp::R_MICROMIPS_HI0_LO16)
4439 gp_disp = target->adjusted_gp_value(object) - address + 3;
4440 else
4441 gp_disp = target->adjusted_gp_value(object) - address + 4;
4442 // The MIPS ABI requires checking the R_MIPS_LO16 relocation
4443 // for overflow. Relocations against _gp_disp are normally
4444 // generated from the .cpload pseudo-op. It generates code
4445 // that normally looks like this:
4446
4447 // lui $gp,%hi(_gp_disp)
4448 // addiu $gp,$gp,%lo(_gp_disp)
4449 // addu $gp,$gp,$t9
4450
4451 // Here $t9 holds the address of the function being called,
4452 // as required by the MIPS ELF ABI. The R_MIPS_LO16
4453 // relocation can easily overflow in this situation, but the
4454 // R_MIPS_HI16 relocation will handle the overflow.
4455 // Therefore, we consider this a bug in the MIPS ABI, and do
4456 // not check for overflow here.
4457 x = gp_disp + addend;
4458 }
4459 val = Bits<32>::bit_select32(val, x, 0xffff);
4460 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4461 mips_reloc_shuffle(view, r_type, false);
4462 return This::STATUS_OKAY;
4463 }
4464
4465 // R_MIPS_CALL16, R_MIPS16_CALL16, R_MICROMIPS_CALL16
4466 // R_MIPS_GOT16, R_MIPS16_GOT16, R_MICROMIPS_GOT16
4467 // R_MIPS_TLS_GD, R_MIPS16_TLS_GD, R_MICROMIPS_TLS_GD
4468 // R_MIPS_TLS_GOTTPREL, R_MIPS16_TLS_GOTTPREL, R_MICROMIPS_TLS_GOTTPREL
4469 // R_MIPS_TLS_LDM, R_MIPS16_TLS_LDM, R_MICROMIPS_TLS_LDM
4470 // R_MIPS_GOT_DISP, R_MICROMIPS_GOT_DISP
4471 static inline typename This::Status
4472 relgot(unsigned char* view, int gp_offset, unsigned int r_type)
4473 {
4474 mips_reloc_unshuffle(view, r_type, false);
4475 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4476 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4477 Valtype32 x = gp_offset;
4478 val = Bits<32>::bit_select32(val, x, 0xffff);
4479 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4480 mips_reloc_shuffle(view, r_type, false);
4481 return (Bits<16>::has_overflow32(x)
4482 ? This::STATUS_OVERFLOW
4483 : This::STATUS_OKAY);
4484 }
4485
4486 // R_MIPS_GOT_PAGE, R_MICROMIPS_GOT_PAGE
4487 static inline typename This::Status
4488 relgotpage(Target_mips<size, big_endian>* target, unsigned char* view,
4489 const Mips_relobj<size, big_endian>* object,
4490 const Symbol_value<size>* psymval, Mips_address addend_a,
4491 bool extract_addend, unsigned int r_type)
4492 {
4493 mips_reloc_unshuffle(view, r_type, false);
4494 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4495 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
4496 Valtype32 addend = extract_addend ? val & 0xffff : addend_a;
4497
4498 // Find a GOT page entry that points to within 32KB of symbol + addend.
4499 Mips_address value = (psymval->value(object, addend) + 0x8000) & ~0xffff;
4500 unsigned int got_offset =
4501 target->got_section()->get_got_page_offset(value, object);
4502
4503 Valtype32 x = target->got_section()->gp_offset(got_offset, object);
4504 val = Bits<32>::bit_select32(val, x, 0xffff);
4505 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4506 mips_reloc_shuffle(view, r_type, false);
4507 return (Bits<16>::has_overflow32(x)
4508 ? This::STATUS_OVERFLOW
4509 : This::STATUS_OKAY);
4510 }
4511
4512 // R_MIPS_GOT_OFST, R_MICROMIPS_GOT_OFST
4513 static inline typename This::Status
4514 relgotofst(Target_mips<size, big_endian>* target, unsigned char* view,
4515 const Mips_relobj<size, big_endian>* object,
4516 const Symbol_value<size>* psymval, Mips_address addend_a,
4517 bool extract_addend, bool local, unsigned int r_type)
4518 {
4519 mips_reloc_unshuffle(view, r_type, false);
4520 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4521 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
4522 Valtype32 addend = extract_addend ? val & 0xffff : addend_a;
4523
4524 // For a local symbol, find a GOT page entry that points to within 32KB of
4525 // symbol + addend. Relocation value is the offset of the GOT page entry's
4526 // value from symbol + addend.
4527 // For a global symbol, relocation value is addend.
4528 Valtype32 x;
4529 if (local)
4530 {
4531 // Find GOT page entry.
4532 Mips_address value = ((psymval->value(object, addend) + 0x8000)
4533 & ~0xffff);
4534 target->got_section()->get_got_page_offset(value, object);
4535
4536 x = psymval->value(object, addend) - value;
4537 }
4538 else
4539 x = addend;
4540 val = Bits<32>::bit_select32(val, x, 0xffff);
4541 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4542 mips_reloc_shuffle(view, r_type, false);
4543 return (Bits<16>::has_overflow32(x)
4544 ? This::STATUS_OVERFLOW
4545 : This::STATUS_OKAY);
4546 }
4547
4548 // R_MIPS_GOT_HI16, R_MIPS_CALL_HI16,
4549 // R_MICROMIPS_GOT_HI16, R_MICROMIPS_CALL_HI16
4550 static inline typename This::Status
4551 relgot_hi16(unsigned char* view, int gp_offset, unsigned int r_type)
4552 {
4553 mips_reloc_unshuffle(view, r_type, false);
4554 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4555 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4556 Valtype32 x = gp_offset;
4557 x = ((x + 0x8000) >> 16) & 0xffff;
4558 val = Bits<32>::bit_select32(val, x, 0xffff);
4559 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4560 mips_reloc_shuffle(view, r_type, false);
4561 return This::STATUS_OKAY;
4562 }
4563
4564 // R_MIPS_GOT_LO16, R_MIPS_CALL_LO16,
4565 // R_MICROMIPS_GOT_LO16, R_MICROMIPS_CALL_LO16
4566 static inline typename This::Status
4567 relgot_lo16(unsigned char* view, int gp_offset, unsigned int r_type)
4568 {
4569 mips_reloc_unshuffle(view, r_type, false);
4570 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4571 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4572 Valtype32 x = gp_offset;
4573 val = Bits<32>::bit_select32(val, x, 0xffff);
4574 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4575 mips_reloc_shuffle(view, r_type, false);
4576 return This::STATUS_OKAY;
4577 }
4578
4579 // R_MIPS_GPREL16, R_MIPS16_GPREL, R_MIPS_LITERAL, R_MICROMIPS_LITERAL
4580 // R_MICROMIPS_GPREL7_S2, R_MICROMIPS_GPREL16
4581 static inline typename This::Status
4582 relgprel(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4583 const Symbol_value<size>* psymval, Mips_address gp,
4584 Mips_address addend_a, bool extract_addend, bool local,
4585 unsigned int r_type)
4586 {
4587 mips_reloc_unshuffle(view, r_type, false);
4588 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4589 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4590
4591 Valtype32 addend;
4592 if (extract_addend)
4593 {
4594 if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2)
4595 addend = (val & 0x7f) << 2;
4596 else
4597 addend = val & 0xffff;
4598 // Only sign-extend the addend if it was extracted from the
4599 // instruction. If the addend was separate, leave it alone,
4600 // otherwise we may lose significant bits.
4601 addend = Bits<16>::sign_extend32(addend);
4602 }
4603 else
4604 addend = addend_a;
4605
4606 Valtype32 x = psymval->value(object, addend) - gp;
4607
4608 // If the symbol was local, any earlier relocatable links will
4609 // have adjusted its addend with the gp offset, so compensate
4610 // for that now. Don't do it for symbols forced local in this
4611 // link, though, since they won't have had the gp offset applied
4612 // to them before.
4613 if (local)
4614 x += object->gp_value();
4615
4616 if (r_type == elfcpp::R_MICROMIPS_GPREL7_S2)
4617 val = Bits<32>::bit_select32(val, x, 0x7f);
4618 else
4619 val = Bits<32>::bit_select32(val, x, 0xffff);
4620 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4621 mips_reloc_shuffle(view, r_type, false);
4622 if (Bits<16>::has_overflow32(x))
4623 {
4624 gold_error(_("small-data section exceeds 64KB; lower small-data size "
4625 "limit (see option -G)"));
4626 return This::STATUS_OVERFLOW;
4627 }
4628 return This::STATUS_OKAY;
4629 }
4630
4631 // R_MIPS_GPREL32
4632 static inline typename This::Status
4633 relgprel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4634 const Symbol_value<size>* psymval, Mips_address gp,
4635 Mips_address addend_a, bool extract_addend, unsigned int r_type)
4636 {
4637 mips_reloc_unshuffle(view, r_type, false);
4638 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4639 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4640 Valtype32 addend = extract_addend ? val : addend_a;
4641
4642 // R_MIPS_GPREL32 relocations are defined for local symbols only.
4643 Valtype32 x = psymval->value(object, addend) + object->gp_value() - gp;
4644 elfcpp::Swap<32, big_endian>::writeval(wv, x);
4645 mips_reloc_shuffle(view, r_type, false);
4646 return This::STATUS_OKAY;
4647 }
4648
4649 // R_MIPS_TLS_TPREL_HI16, R_MIPS16_TLS_TPREL_HI16, R_MICROMIPS_TLS_TPREL_HI16
4650 // R_MIPS_TLS_DTPREL_HI16, R_MIPS16_TLS_DTPREL_HI16,
4651 // R_MICROMIPS_TLS_DTPREL_HI16
4652 static inline typename This::Status
4653 tlsrelhi16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4654 const Symbol_value<size>* psymval, Valtype32 tp_offset,
4655 Mips_address addend_a, bool extract_addend, unsigned int r_type)
4656 {
4657 mips_reloc_unshuffle(view, r_type, false);
4658 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4659 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4660 Valtype32 addend = extract_addend ? val & 0xffff : addend_a;
4661
4662 // tls symbol values are relative to tls_segment()->vaddr()
4663 Valtype32 x = ((psymval->value(object, addend) - tp_offset) + 0x8000) >> 16;
4664 val = Bits<32>::bit_select32(val, x, 0xffff);
4665 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4666 mips_reloc_shuffle(view, r_type, false);
4667 return This::STATUS_OKAY;
4668 }
4669
4670 // R_MIPS_TLS_TPREL_LO16, R_MIPS16_TLS_TPREL_LO16, R_MICROMIPS_TLS_TPREL_LO16,
4671 // R_MIPS_TLS_DTPREL_LO16, R_MIPS16_TLS_DTPREL_LO16,
4672 // R_MICROMIPS_TLS_DTPREL_LO16,
4673 static inline typename This::Status
4674 tlsrello16(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4675 const Symbol_value<size>* psymval, Valtype32 tp_offset,
4676 Mips_address addend_a, bool extract_addend, unsigned int r_type)
4677 {
4678 mips_reloc_unshuffle(view, r_type, false);
4679 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4680 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4681 Valtype32 addend = extract_addend ? val & 0xffff : addend_a;
4682
4683 // tls symbol values are relative to tls_segment()->vaddr()
4684 Valtype32 x = psymval->value(object, addend) - tp_offset;
4685 val = Bits<32>::bit_select32(val, x, 0xffff);
4686 elfcpp::Swap<32, big_endian>::writeval(wv, val);
4687 mips_reloc_shuffle(view, r_type, false);
4688 return This::STATUS_OKAY;
4689 }
4690
4691 // R_MIPS_TLS_TPREL32, R_MIPS_TLS_TPREL64,
4692 // R_MIPS_TLS_DTPREL32, R_MIPS_TLS_DTPREL64
4693 static inline typename This::Status
4694 tlsrel32(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4695 const Symbol_value<size>* psymval, Valtype32 tp_offset,
4696 Mips_address addend_a, bool extract_addend, unsigned int r_type)
4697 {
4698 mips_reloc_unshuffle(view, r_type, false);
4699 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4700 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4701 Valtype32 addend = extract_addend ? val : addend_a;
4702
4703 // tls symbol values are relative to tls_segment()->vaddr()
4704 Valtype32 x = psymval->value(object, addend) - tp_offset;
4705 elfcpp::Swap<32, big_endian>::writeval(wv, x);
4706 mips_reloc_shuffle(view, r_type, false);
4707 return This::STATUS_OKAY;
4708 }
4709
4710 // R_MIPS_SUB, R_MICROMIPS_SUB
4711 static inline typename This::Status
4712 relsub(unsigned char* view, const Mips_relobj<size, big_endian>* object,
4713 const Symbol_value<size>* psymval, Mips_address addend_a,
4714 bool extract_addend, unsigned int r_type)
4715 {
4716 mips_reloc_unshuffle(view, r_type, false);
4717 Valtype32* wv = reinterpret_cast<Valtype32*>(view);
4718 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(wv);
4719 Valtype32 addend = extract_addend ? val : addend_a;
4720
4721 Valtype32 x = psymval->value(object, -addend);
4722 elfcpp::Swap<32, big_endian>::writeval(wv, x);
4723 mips_reloc_shuffle(view, r_type, false);
4724 return This::STATUS_OKAY;
4725 }
4726 };
4727
4728 template<int size, bool big_endian>
4729 typename std::list<reloc_high<size, big_endian> >
4730 Mips_relocate_functions<size, big_endian>::hi16_relocs;
4731
4732 template<int size, bool big_endian>
4733 typename std::list<reloc_high<size, big_endian> >
4734 Mips_relocate_functions<size, big_endian>::got16_relocs;
4735
4736 // Mips_got_info methods.
4737
4738 // Reserve GOT entry for a GOT relocation of type R_TYPE against symbol
4739 // SYMNDX + ADDEND, where SYMNDX is a local symbol in section SHNDX in OBJECT.
4740
4741 template<int size, bool big_endian>
4742 void
4743 Mips_got_info<size, big_endian>::record_local_got_symbol(
4744 Mips_relobj<size, big_endian>* object, unsigned int symndx,
4745 Mips_address addend, unsigned int r_type, unsigned int shndx)
4746 {
4747 Mips_got_entry<size, big_endian>* entry =
4748 new Mips_got_entry<size, big_endian>(object, symndx, addend,
4749 mips_elf_reloc_tls_type(r_type),
4750 shndx);
4751 this->record_got_entry(entry, object);
4752 }
4753
4754 // Reserve GOT entry for a GOT relocation of type R_TYPE against MIPS_SYM,
4755 // in OBJECT. FOR_CALL is true if the caller is only interested in
4756 // using the GOT entry for calls. DYN_RELOC is true if R_TYPE is a dynamic
4757 // relocation.
4758
4759 template<int size, bool big_endian>
4760 void
4761 Mips_got_info<size, big_endian>::record_global_got_symbol(
4762 Mips_symbol<size>* mips_sym, Mips_relobj<size, big_endian>* object,
4763 unsigned int r_type, bool dyn_reloc, bool for_call)
4764 {
4765 if (!for_call)
4766 mips_sym->set_got_not_only_for_calls();
4767
4768 // A global symbol in the GOT must also be in the dynamic symbol table.
4769 if (!mips_sym->needs_dynsym_entry())
4770 {
4771 switch (mips_sym->visibility())
4772 {
4773 case elfcpp::STV_INTERNAL:
4774 case elfcpp::STV_HIDDEN:
4775 mips_sym->set_is_forced_local();
4776 break;
4777 default:
4778 mips_sym->set_needs_dynsym_entry();
4779 break;
4780 }
4781 }
4782
4783 unsigned char tls_type = mips_elf_reloc_tls_type(r_type);
4784 if (tls_type == GOT_TLS_NONE)
4785 this->global_got_symbols_.insert(mips_sym);
4786
4787 if (dyn_reloc)
4788 {
4789 if (mips_sym->global_got_area() == GGA_NONE)
4790 mips_sym->set_global_got_area(GGA_RELOC_ONLY);
4791 return;
4792 }
4793
4794 Mips_got_entry<size, big_endian>* entry =
4795 new Mips_got_entry<size, big_endian>(object, mips_sym, tls_type);
4796
4797 this->record_got_entry(entry, object);
4798 }
4799
4800 // Add ENTRY to master GOT and to OBJECT's GOT.
4801
4802 template<int size, bool big_endian>
4803 void
4804 Mips_got_info<size, big_endian>::record_got_entry(
4805 Mips_got_entry<size, big_endian>* entry,
4806 Mips_relobj<size, big_endian>* object)
4807 {
4808 if (this->got_entries_.find(entry) == this->got_entries_.end())
4809 this->got_entries_.insert(entry);
4810
4811 // Create the GOT entry for the OBJECT's GOT.
4812 Mips_got_info<size, big_endian>* g = object->get_or_create_got_info();
4813 Mips_got_entry<size, big_endian>* entry2 =
4814 new Mips_got_entry<size, big_endian>(*entry);
4815
4816 if (g->got_entries_.find(entry2) == g->got_entries_.end())
4817 g->got_entries_.insert(entry2);
4818 }
4819
4820 // Record that OBJECT has a page relocation against symbol SYMNDX and
4821 // that ADDEND is the addend for that relocation.
4822 // This function creates an upper bound on the number of GOT slots
4823 // required; no attempt is made to combine references to non-overridable
4824 // global symbols across multiple input files.
4825
4826 template<int size, bool big_endian>
4827 void
4828 Mips_got_info<size, big_endian>::record_got_page_entry(
4829 Mips_relobj<size, big_endian>* object, unsigned int symndx, int addend)
4830 {
4831 struct Got_page_range **range_ptr, *range;
4832 int old_pages, new_pages;
4833
4834 // Find the Got_page_entry for this symbol.
4835 Got_page_entry* entry = new Got_page_entry(object, symndx);
4836 typename Got_page_entry_set::iterator it =
4837 this->got_page_entries_.find(entry);
4838 if (it != this->got_page_entries_.end())
4839 entry = *it;
4840 else
4841 this->got_page_entries_.insert(entry);
4842
4843 // Add the same entry to the OBJECT's GOT.
4844 Got_page_entry* entry2 = NULL;
4845 Mips_got_info<size, big_endian>* g2 = object->get_or_create_got_info();
4846 if (g2->got_page_entries_.find(entry) == g2->got_page_entries_.end())
4847 {
4848 entry2 = new Got_page_entry(*entry);
4849 g2->got_page_entries_.insert(entry2);
4850 }
4851
4852 // Skip over ranges whose maximum extent cannot share a page entry
4853 // with ADDEND.
4854 range_ptr = &entry->ranges;
4855 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4856 range_ptr = &(*range_ptr)->next;
4857
4858 // If we scanned to the end of the list, or found a range whose
4859 // minimum extent cannot share a page entry with ADDEND, create
4860 // a new singleton range.
4861 range = *range_ptr;
4862 if (!range || addend < range->min_addend - 0xffff)
4863 {
4864 range = new Got_page_range();
4865 range->next = *range_ptr;
4866 range->min_addend = addend;
4867 range->max_addend = addend;
4868
4869 *range_ptr = range;
4870 ++entry->num_pages;
4871 if (entry2 != NULL)
4872 ++entry2->num_pages;
4873 ++this->page_gotno_;
4874 ++g2->page_gotno_;
4875 return;
4876 }
4877
4878 // Remember how many pages the old range contributed.
4879 old_pages = range->get_max_pages();
4880
4881 // Update the ranges.
4882 if (addend < range->min_addend)
4883 range->min_addend = addend;
4884 else if (addend > range->max_addend)
4885 {
4886 if (range->next && addend >= range->next->min_addend - 0xffff)
4887 {
4888 old_pages += range->next->get_max_pages();
4889 range->max_addend = range->next->max_addend;
4890 range->next = range->next->next;
4891 }
4892 else
4893 range->max_addend = addend;
4894 }
4895
4896 // Record any change in the total estimate.
4897 new_pages = range->get_max_pages();
4898 if (old_pages != new_pages)
4899 {
4900 entry->num_pages += new_pages - old_pages;
4901 if (entry2 != NULL)
4902 entry2->num_pages += new_pages - old_pages;
4903 this->page_gotno_ += new_pages - old_pages;
4904 g2->page_gotno_ += new_pages - old_pages;
4905 }
4906 }
4907
4908 // Create all entries that should be in the local part of the GOT.
4909
4910 template<int size, bool big_endian>
4911 void
4912 Mips_got_info<size, big_endian>::add_local_entries(
4913 Target_mips<size, big_endian>* target, Layout* layout)
4914 {
4915 Mips_output_data_got<size, big_endian>* got = target->got_section();
4916 // First two GOT entries are reserved. The first entry will be filled at
4917 // runtime. The second entry will be used by some runtime loaders.
4918 got->add_constant(0);
4919 got->add_constant(target->mips_elf_gnu_got1_mask());
4920
4921 for (typename Got_entry_set::iterator
4922 p = this->got_entries_.begin();
4923 p != this->got_entries_.end();
4924 ++p)
4925 {
4926 Mips_got_entry<size, big_endian>* entry = *p;
4927 if (entry->is_for_local_symbol() && !entry->is_tls_entry())
4928 {
4929 got->add_local(entry->object(), entry->symndx(),
4930 GOT_TYPE_STANDARD);
4931 unsigned int got_offset = entry->object()->local_got_offset(
4932 entry->symndx(), GOT_TYPE_STANDARD);
4933 if (got->multi_got() && this->index_ > 0
4934 && parameters->options().output_is_position_independent())
4935 target->rel_dyn_section(layout)->add_local(entry->object(),
4936 entry->symndx(), elfcpp::R_MIPS_REL32, got, got_offset);
4937 }
4938 }
4939
4940 this->add_page_entries(target, layout);
4941
4942 // Add global entries that should be in the local area.
4943 for (typename Got_entry_set::iterator
4944 p = this->got_entries_.begin();
4945 p != this->got_entries_.end();
4946 ++p)
4947 {
4948 Mips_got_entry<size, big_endian>* entry = *p;
4949 if (!entry->is_for_global_symbol())
4950 continue;
4951
4952 Mips_symbol<size>* mips_sym = entry->sym();
4953 if (mips_sym->global_got_area() == GGA_NONE && !entry->is_tls_entry())
4954 {
4955 unsigned int got_type;
4956 if (!got->multi_got())
4957 got_type = GOT_TYPE_STANDARD;
4958 else
4959 got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
4960 if (got->add_global(mips_sym, got_type))
4961 {
4962 mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
4963 if (got->multi_got() && this->index_ > 0
4964 && parameters->options().output_is_position_independent())
4965 target->rel_dyn_section(layout)->add_symbolless_global_addend(
4966 mips_sym, elfcpp::R_MIPS_REL32, got,
4967 mips_sym->got_offset(got_type));
4968 }
4969 }
4970 }
4971 }
4972
4973 // Create GOT page entries.
4974
4975 template<int size, bool big_endian>
4976 void
4977 Mips_got_info<size, big_endian>::add_page_entries(
4978 Target_mips<size, big_endian>* target, Layout* layout)
4979 {
4980 if (this->page_gotno_ == 0)
4981 return;
4982
4983 Mips_output_data_got<size, big_endian>* got = target->got_section();
4984 this->got_page_offset_start_ = got->add_constant(0);
4985 if (got->multi_got() && this->index_ > 0
4986 && parameters->options().output_is_position_independent())
4987 target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
4988 this->got_page_offset_start_);
4989 int num_entries = this->page_gotno_;
4990 unsigned int prev_offset = this->got_page_offset_start_;
4991 while (--num_entries > 0)
4992 {
4993 unsigned int next_offset = got->add_constant(0);
4994 if (got->multi_got() && this->index_ > 0
4995 && parameters->options().output_is_position_independent())
4996 target->rel_dyn_section(layout)->add_absolute(elfcpp::R_MIPS_REL32, got,
4997 next_offset);
4998 gold_assert(next_offset == prev_offset + size/8);
4999 prev_offset = next_offset;
5000 }
5001 this->got_page_offset_next_ = this->got_page_offset_start_;
5002 }
5003
5004 // Create global GOT entries, both GGA_NORMAL and GGA_RELOC_ONLY.
5005
5006 template<int size, bool big_endian>
5007 void
5008 Mips_got_info<size, big_endian>::add_global_entries(
5009 Target_mips<size, big_endian>* target, Layout* layout,
5010 unsigned int non_reloc_only_global_gotno)
5011 {
5012 Mips_output_data_got<size, big_endian>* got = target->got_section();
5013 // Add GGA_NORMAL entries.
5014 unsigned int count = 0;
5015 for (typename Got_entry_set::iterator
5016 p = this->got_entries_.begin();
5017 p != this->got_entries_.end();
5018 ++p)
5019 {
5020 Mips_got_entry<size, big_endian>* entry = *p;
5021 if (!entry->is_for_global_symbol())
5022 continue;
5023
5024 Mips_symbol<size>* mips_sym = entry->sym();
5025 if (mips_sym->global_got_area() != GGA_NORMAL)
5026 continue;
5027
5028 unsigned int got_type;
5029 if (!got->multi_got())
5030 got_type = GOT_TYPE_STANDARD;
5031 else
5032 // In multi-GOT links, global symbol can be in both primary and
5033 // secondary GOT(s). By creating custom GOT type
5034 // (GOT_TYPE_STANDARD_MULTIGOT + got_index) we ensure that symbol
5035 // is added to secondary GOT(s).
5036 got_type = GOT_TYPE_STANDARD_MULTIGOT + this->index_;
5037 if (!got->add_global(mips_sym, got_type))
5038 continue;
5039
5040 mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5041 if (got->multi_got() && this->index_ == 0)
5042 count++;
5043 if (got->multi_got() && this->index_ > 0)
5044 {
5045 if (parameters->options().output_is_position_independent()
5046 || (!parameters->doing_static_link()
5047 && mips_sym->is_from_dynobj() && !mips_sym->is_undefined()))
5048 {
5049 target->rel_dyn_section(layout)->add_global(
5050 mips_sym, elfcpp::R_MIPS_REL32, got,
5051 mips_sym->got_offset(got_type));
5052 got->add_secondary_got_reloc(mips_sym->got_offset(got_type),
5053 elfcpp::R_MIPS_REL32, mips_sym);
5054 }
5055 }
5056 }
5057
5058 if (!got->multi_got() || this->index_ == 0)
5059 {
5060 if (got->multi_got())
5061 {
5062 // We need to allocate space in the primary GOT for GGA_NORMAL entries
5063 // of secondary GOTs, to ensure that GOT offsets of GGA_RELOC_ONLY
5064 // entries correspond to dynamic symbol indexes.
5065 while (count < non_reloc_only_global_gotno)
5066 {
5067 got->add_constant(0);
5068 ++count;
5069 }
5070 }
5071
5072 // Add GGA_RELOC_ONLY entries.
5073 got->add_reloc_only_entries();
5074 }
5075 }
5076
5077 // Create global GOT entries that should be in the GGA_RELOC_ONLY area.
5078
5079 template<int size, bool big_endian>
5080 void
5081 Mips_got_info<size, big_endian>::add_reloc_only_entries(
5082 Mips_output_data_got<size, big_endian>* got)
5083 {
5084 for (typename Unordered_set<Mips_symbol<size>*>::iterator
5085 p = this->global_got_symbols_.begin();
5086 p != this->global_got_symbols_.end();
5087 ++p)
5088 {
5089 Mips_symbol<size>* mips_sym = *p;
5090 if (mips_sym->global_got_area() == GGA_RELOC_ONLY)
5091 {
5092 unsigned int got_type;
5093 if (!got->multi_got())
5094 got_type = GOT_TYPE_STANDARD;
5095 else
5096 got_type = GOT_TYPE_STANDARD_MULTIGOT;
5097 if (got->add_global(mips_sym, got_type))
5098 mips_sym->set_global_gotoffset(mips_sym->got_offset(got_type));
5099 }
5100 }
5101 }
5102
5103 // Create TLS GOT entries.
5104
5105 template<int size, bool big_endian>
5106 void
5107 Mips_got_info<size, big_endian>::add_tls_entries(
5108 Target_mips<size, big_endian>* target, Layout* layout)
5109 {
5110 Mips_output_data_got<size, big_endian>* got = target->got_section();
5111 // Add local tls entries.
5112 for (typename Got_entry_set::iterator
5113 p = this->got_entries_.begin();
5114 p != this->got_entries_.end();
5115 ++p)
5116 {
5117 Mips_got_entry<size, big_endian>* entry = *p;
5118 if (!entry->is_tls_entry() || !entry->is_for_local_symbol())
5119 continue;
5120
5121 if (entry->tls_type() == GOT_TLS_GD)
5122 {
5123 unsigned int got_type = GOT_TYPE_TLS_PAIR;
5124 unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
5125 : elfcpp::R_MIPS_TLS_DTPMOD64);
5126 unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
5127 : elfcpp::R_MIPS_TLS_DTPREL64);
5128
5129 if (!parameters->doing_static_link())
5130 {
5131 got->add_local_pair_with_rel(entry->object(), entry->symndx(),
5132 entry->shndx(), got_type,
5133 target->rel_dyn_section(layout),
5134 r_type1);
5135 unsigned int got_offset =
5136 entry->object()->local_got_offset(entry->symndx(), got_type);
5137 got->add_static_reloc(got_offset + size/8, r_type2,
5138 entry->object(), entry->symndx());
5139 }
5140 else
5141 {
5142 // We are doing a static link. Mark it as belong to module 1,
5143 // the executable.
5144 unsigned int got_offset = got->add_constant(1);
5145 entry->object()->set_local_got_offset(entry->symndx(), got_type,
5146 got_offset);
5147 got->add_constant(0);
5148 got->add_static_reloc(got_offset + size/8, r_type2,
5149 entry->object(), entry->symndx());
5150 }
5151 }
5152 else if (entry->tls_type() == GOT_TLS_IE)
5153 {
5154 unsigned int got_type = GOT_TYPE_TLS_OFFSET;
5155 unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
5156 : elfcpp::R_MIPS_TLS_TPREL64);
5157 if (!parameters->doing_static_link())
5158 got->add_local_with_rel(entry->object(), entry->symndx(), got_type,
5159 target->rel_dyn_section(layout), r_type);
5160 else
5161 {
5162 got->add_local(entry->object(), entry->symndx(), got_type);
5163 unsigned int got_offset =
5164 entry->object()->local_got_offset(entry->symndx(), got_type);
5165 got->add_static_reloc(got_offset, r_type, entry->object(),
5166 entry->symndx());
5167 }
5168 }
5169 else if (entry->tls_type() == GOT_TLS_LDM)
5170 {
5171 unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
5172 : elfcpp::R_MIPS_TLS_DTPMOD64);
5173 unsigned int got_offset;
5174 if (!parameters->doing_static_link())
5175 {
5176 got_offset = got->add_constant(0);
5177 target->rel_dyn_section(layout)->add_local(
5178 entry->object(), 0, r_type, got, got_offset);
5179 }
5180 else
5181 // We are doing a static link. Just mark it as belong to module 1,
5182 // the executable.
5183 got_offset = got->add_constant(1);
5184
5185 got->add_constant(0);
5186 got->set_tls_ldm_offset(got_offset, entry->object());
5187 }
5188 else
5189 gold_unreachable();
5190 }
5191
5192 // Add global tls entries.
5193 for (typename Got_entry_set::iterator
5194 p = this->got_entries_.begin();
5195 p != this->got_entries_.end();
5196 ++p)
5197 {
5198 Mips_got_entry<size, big_endian>* entry = *p;
5199 if (!entry->is_tls_entry() || !entry->is_for_global_symbol())
5200 continue;
5201
5202 Mips_symbol<size>* mips_sym = entry->sym();
5203 if (entry->tls_type() == GOT_TLS_GD)
5204 {
5205 unsigned int got_type;
5206 if (!got->multi_got())
5207 got_type = GOT_TYPE_TLS_PAIR;
5208 else
5209 got_type = GOT_TYPE_TLS_PAIR_MULTIGOT + this->index_;
5210 unsigned int r_type1 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPMOD32
5211 : elfcpp::R_MIPS_TLS_DTPMOD64);
5212 unsigned int r_type2 = (size == 32 ? elfcpp::R_MIPS_TLS_DTPREL32
5213 : elfcpp::R_MIPS_TLS_DTPREL64);
5214 if (!parameters->doing_static_link())
5215 got->add_global_pair_with_rel(mips_sym, got_type,
5216 target->rel_dyn_section(layout), r_type1, r_type2);
5217 else
5218 {
5219 // Add a GOT pair for for R_MIPS_TLS_GD. The creates a pair of
5220 // GOT entries. The first one is initialized to be 1, which is the
5221 // module index for the main executable and the second one 0. A
5222 // reloc of the type R_MIPS_TLS_DTPREL32/64 will be created for
5223 // the second GOT entry and will be applied by gold.
5224 unsigned int got_offset = got->add_constant(1);
5225 mips_sym->set_got_offset(got_type, got_offset);
5226 got->add_constant(0);
5227 got->add_static_reloc(got_offset + size/8, r_type2, mips_sym);
5228 }
5229 }
5230 else if (entry->tls_type() == GOT_TLS_IE)
5231 {
5232 unsigned int got_type;
5233 if (!got->multi_got())
5234 got_type = GOT_TYPE_TLS_OFFSET;
5235 else
5236 got_type = GOT_TYPE_TLS_OFFSET_MULTIGOT + this->index_;
5237 unsigned int r_type = (size == 32 ? elfcpp::R_MIPS_TLS_TPREL32
5238 : elfcpp::R_MIPS_TLS_TPREL64);
5239 if (!parameters->doing_static_link())
5240 got->add_global_with_rel(mips_sym, got_type,
5241 target->rel_dyn_section(layout), r_type);
5242 else
5243 {
5244 got->add_global(mips_sym, got_type);
5245 unsigned int got_offset = mips_sym->got_offset(got_type);
5246 got->add_static_reloc(got_offset, r_type, mips_sym);
5247 }
5248 }
5249 else
5250 gold_unreachable();
5251 }
5252 }
5253
5254 // Decide whether the symbol needs an entry in the global part of the primary
5255 // GOT, setting global_got_area accordingly. Count the number of global
5256 // symbols that are in the primary GOT only because they have dynamic
5257 // relocations R_MIPS_REL32 against them (reloc_only_gotno).
5258
5259 template<int size, bool big_endian>
5260 void
5261 Mips_got_info<size, big_endian>::count_got_symbols(Symbol_table* symtab)
5262 {
5263 for (typename Unordered_set<Mips_symbol<size>*>::iterator
5264 p = this->global_got_symbols_.begin();
5265 p != this->global_got_symbols_.end();
5266 ++p)
5267 {
5268 Mips_symbol<size>* sym = *p;
5269 // Make a final decision about whether the symbol belongs in the
5270 // local or global GOT. Symbols that bind locally can (and in the
5271 // case of forced-local symbols, must) live in the local GOT.
5272 // Those that are aren't in the dynamic symbol table must also
5273 // live in the local GOT.
5274
5275 if (!sym->should_add_dynsym_entry(symtab)
5276 || (sym->got_only_for_calls()
5277 ? symbol_calls_local(sym, sym->should_add_dynsym_entry(symtab))
5278 : symbol_references_local(sym,
5279 sym->should_add_dynsym_entry(symtab))))
5280 // The symbol belongs in the local GOT. We no longer need this
5281 // entry if it was only used for relocations; those relocations
5282 // will be against the null or section symbol instead.
5283 sym->set_global_got_area(GGA_NONE);
5284 else if (sym->global_got_area() == GGA_RELOC_ONLY)
5285 {
5286 ++this->reloc_only_gotno_;
5287 ++this->global_gotno_ ;
5288 }
5289 }
5290 }
5291
5292 // Return the offset of GOT page entry for VALUE. Initialize the entry with
5293 // VALUE if it is not initialized.
5294
5295 template<int size, bool big_endian>
5296 unsigned int
5297 Mips_got_info<size, big_endian>::get_got_page_offset(Mips_address value,
5298 Mips_output_data_got<size, big_endian>* got)
5299 {
5300 typename Got_page_offsets::iterator it = this->got_page_offsets_.find(value);
5301 if (it != this->got_page_offsets_.end())
5302 return it->second;
5303
5304 gold_assert(this->got_page_offset_next_ < this->got_page_offset_start_
5305 + (size/8) * this->page_gotno_);
5306
5307 unsigned int got_offset = this->got_page_offset_next_;
5308 this->got_page_offsets_[value] = got_offset;
5309 this->got_page_offset_next_ += size/8;
5310 got->update_got_entry(got_offset, value);
5311 return got_offset;
5312 }
5313
5314 // Remove lazy-binding stubs for global symbols in this GOT.
5315
5316 template<int size, bool big_endian>
5317 void
5318 Mips_got_info<size, big_endian>::remove_lazy_stubs(
5319 Target_mips<size, big_endian>* target)
5320 {
5321 for (typename Got_entry_set::iterator
5322 p = this->got_entries_.begin();
5323 p != this->got_entries_.end();
5324 ++p)
5325 {
5326 Mips_got_entry<size, big_endian>* entry = *p;
5327 if (entry->is_for_global_symbol())
5328 target->remove_lazy_stub_entry(entry->sym());
5329 }
5330 }
5331
5332 // Count the number of GOT entries required.
5333
5334 template<int size, bool big_endian>
5335 void
5336 Mips_got_info<size, big_endian>::count_got_entries()
5337 {
5338 for (typename Got_entry_set::iterator
5339 p = this->got_entries_.begin();
5340 p != this->got_entries_.end();
5341 ++p)
5342 {
5343 this->count_got_entry(*p);
5344 }
5345 }
5346
5347 // Count the number of GOT entries required by ENTRY. Accumulate the result.
5348
5349 template<int size, bool big_endian>
5350 void
5351 Mips_got_info<size, big_endian>::count_got_entry(
5352 Mips_got_entry<size, big_endian>* entry)
5353 {
5354 if (entry->is_tls_entry())
5355 this->tls_gotno_ += mips_tls_got_entries(entry->tls_type());
5356 else if (entry->is_for_local_symbol()
5357 || entry->sym()->global_got_area() == GGA_NONE)
5358 ++this->local_gotno_;
5359 else
5360 ++this->global_gotno_;
5361 }
5362
5363 // Add FROM's GOT entries.
5364
5365 template<int size, bool big_endian>
5366 void
5367 Mips_got_info<size, big_endian>::add_got_entries(
5368 Mips_got_info<size, big_endian>* from)
5369 {
5370 for (typename Got_entry_set::iterator
5371 p = from->got_entries_.begin();
5372 p != from->got_entries_.end();
5373 ++p)
5374 {
5375 Mips_got_entry<size, big_endian>* entry = *p;
5376 if (this->got_entries_.find(entry) == this->got_entries_.end())
5377 {
5378 Mips_got_entry<size, big_endian>* entry2 =
5379 new Mips_got_entry<size, big_endian>(*entry);
5380 this->got_entries_.insert(entry2);
5381 this->count_got_entry(entry);
5382 }
5383 }
5384 }
5385
5386 // Add FROM's GOT page entries.
5387
5388 template<int size, bool big_endian>
5389 void
5390 Mips_got_info<size, big_endian>::add_got_page_entries(
5391 Mips_got_info<size, big_endian>* from)
5392 {
5393 for (typename Got_page_entry_set::iterator
5394 p = from->got_page_entries_.begin();
5395 p != from->got_page_entries_.end();
5396 ++p)
5397 {
5398 Got_page_entry* entry = *p;
5399 if (this->got_page_entries_.find(entry) == this->got_page_entries_.end())
5400 {
5401 Got_page_entry* entry2 = new Got_page_entry(*entry);
5402 this->got_page_entries_.insert(entry2);
5403 this->page_gotno_ += entry->num_pages;
5404 }
5405 }
5406 }
5407
5408 // Mips_output_data_got methods.
5409
5410 // Lay out the GOT. Add local, global and TLS entries. If GOT is
5411 // larger than 64K, create multi-GOT.
5412
5413 template<int size, bool big_endian>
5414 void
5415 Mips_output_data_got<size, big_endian>::lay_out_got(Layout* layout,
5416 Symbol_table* symtab, const Input_objects* input_objects)
5417 {
5418 // Decide which symbols need to go in the global part of the GOT and
5419 // count the number of reloc-only GOT symbols.
5420 this->master_got_info_->count_got_symbols(symtab);
5421
5422 // Count the number of GOT entries.
5423 this->master_got_info_->count_got_entries();
5424
5425 unsigned int got_size = this->master_got_info_->got_size();
5426 if (got_size > Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE)
5427 this->lay_out_multi_got(layout, input_objects);
5428 else
5429 {
5430 // Record that all objects use single GOT.
5431 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
5432 p != input_objects->relobj_end();
5433 ++p)
5434 {
5435 Mips_relobj<size, big_endian>* object =
5436 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
5437 if (object->get_got_info() != NULL)
5438 object->set_got_info(this->master_got_info_);
5439 }
5440
5441 this->master_got_info_->add_local_entries(this->target_, layout);
5442 this->master_got_info_->add_global_entries(this->target_, layout,
5443 /*not used*/-1U);
5444 this->master_got_info_->add_tls_entries(this->target_, layout);
5445 }
5446 }
5447
5448 // Create multi-GOT. For every GOT, add local, global and TLS entries.
5449
5450 template<int size, bool big_endian>
5451 void
5452 Mips_output_data_got<size, big_endian>::lay_out_multi_got(Layout* layout,
5453 const Input_objects* input_objects)
5454 {
5455 // Try to merge the GOTs of input objects together, as long as they
5456 // don't seem to exceed the maximum GOT size, choosing one of them
5457 // to be the primary GOT.
5458 this->merge_gots(input_objects);
5459
5460 // Every symbol that is referenced in a dynamic relocation must be
5461 // present in the primary GOT.
5462 this->primary_got_->set_global_gotno(this->master_got_info_->global_gotno());
5463
5464 // Add GOT entries.
5465 unsigned int i = 0;
5466 unsigned int offset = 0;
5467 Mips_got_info<size, big_endian>* g = this->primary_got_;
5468 do
5469 {
5470 g->set_index(i);
5471 g->set_offset(offset);
5472
5473 g->add_local_entries(this->target_, layout);
5474 if (i == 0)
5475 g->add_global_entries(this->target_, layout,
5476 (this->master_got_info_->global_gotno()
5477 - this->master_got_info_->reloc_only_gotno()));
5478 else
5479 g->add_global_entries(this->target_, layout, /*not used*/-1U);
5480 g->add_tls_entries(this->target_, layout);
5481
5482 // Forbid global symbols in every non-primary GOT from having
5483 // lazy-binding stubs.
5484 if (i > 0)
5485 g->remove_lazy_stubs(this->target_);
5486
5487 ++i;
5488 offset += g->got_size();
5489 g = g->next();
5490 }
5491 while (g);
5492 }
5493
5494 // Attempt to merge GOTs of different input objects. Try to use as much as
5495 // possible of the primary GOT, since it doesn't require explicit dynamic
5496 // relocations, but don't use objects that would reference global symbols
5497 // out of the addressable range. Failing the primary GOT, attempt to merge
5498 // with the current GOT, or finish the current GOT and then make make the new
5499 // GOT current.
5500
5501 template<int size, bool big_endian>
5502 void
5503 Mips_output_data_got<size, big_endian>::merge_gots(
5504 const Input_objects* input_objects)
5505 {
5506 gold_assert(this->primary_got_ == NULL);
5507 Mips_got_info<size, big_endian>* current = NULL;
5508
5509 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
5510 p != input_objects->relobj_end();
5511 ++p)
5512 {
5513 Mips_relobj<size, big_endian>* object =
5514 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
5515
5516 Mips_got_info<size, big_endian>* g = object->get_got_info();
5517 if (g == NULL)
5518 continue;
5519
5520 g->count_got_entries();
5521
5522 // Work out the number of page, local and TLS entries.
5523 unsigned int estimate = this->master_got_info_->page_gotno();
5524 if (estimate > g->page_gotno())
5525 estimate = g->page_gotno();
5526 estimate += g->local_gotno() + g->tls_gotno();
5527
5528 // We place TLS GOT entries after both locals and globals. The globals
5529 // for the primary GOT may overflow the normal GOT size limit, so be
5530 // sure not to merge a GOT which requires TLS with the primary GOT in that
5531 // case. This doesn't affect non-primary GOTs.
5532 estimate += (g->tls_gotno() > 0 ? this->master_got_info_->global_gotno()
5533 : g->global_gotno());
5534
5535 unsigned int max_count =
5536 Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
5537 if (estimate <= max_count)
5538 {
5539 // If we don't have a primary GOT, use it as
5540 // a starting point for the primary GOT.
5541 if (!this->primary_got_)
5542 {
5543 this->primary_got_ = g;
5544 continue;
5545 }
5546
5547 // Try merging with the primary GOT.
5548 if (this->merge_got_with(g, object, this->primary_got_))
5549 continue;
5550 }
5551
5552 // If we can merge with the last-created GOT, do it.
5553 if (current && this->merge_got_with(g, object, current))
5554 continue;
5555
5556 // Well, we couldn't merge, so create a new GOT. Don't check if it
5557 // fits; if it turns out that it doesn't, we'll get relocation
5558 // overflows anyway.
5559 g->set_next(current);
5560 current = g;
5561 }
5562
5563 // If we do not find any suitable primary GOT, create an empty one.
5564 if (this->primary_got_ == NULL)
5565 this->primary_got_ = new Mips_got_info<size, big_endian>();
5566
5567 // Link primary GOT with secondary GOTs.
5568 this->primary_got_->set_next(current);
5569 }
5570
5571 // Consider merging FROM, which is OBJECT's GOT, into TO. Return false if
5572 // this would lead to overflow, true if they were merged successfully.
5573
5574 template<int size, bool big_endian>
5575 bool
5576 Mips_output_data_got<size, big_endian>::merge_got_with(
5577 Mips_got_info<size, big_endian>* from,
5578 Mips_relobj<size, big_endian>* object,
5579 Mips_got_info<size, big_endian>* to)
5580 {
5581 // Work out how many page entries we would need for the combined GOT.
5582 unsigned int estimate = this->master_got_info_->page_gotno();
5583 if (estimate >= from->page_gotno() + to->page_gotno())
5584 estimate = from->page_gotno() + to->page_gotno();
5585
5586 // Conservatively estimate how many local and TLS entries would be needed.
5587 estimate += from->local_gotno() + to->local_gotno();
5588 estimate += from->tls_gotno() + to->tls_gotno();
5589
5590 // If we're merging with the primary got, any TLS relocations will
5591 // come after the full set of global entries. Otherwise estimate those
5592 // conservatively as well.
5593 if (to == this->primary_got_ && (from->tls_gotno() + to->tls_gotno()) > 0)
5594 estimate += this->master_got_info_->global_gotno();
5595 else
5596 estimate += from->global_gotno() + to->global_gotno();
5597
5598 // Bail out if the combined GOT might be too big.
5599 unsigned int max_count =
5600 Target_mips<size, big_endian>::MIPS_GOT_MAX_SIZE / (size/8) - 2;
5601 if (estimate > max_count)
5602 return false;
5603
5604 // Transfer the object's GOT information from FROM to TO.
5605 to->add_got_entries(from);
5606 to->add_got_page_entries(from);
5607
5608 // Record that OBJECT should use output GOT TO.
5609 object->set_got_info(to);
5610
5611 return true;
5612 }
5613
5614 // Write out the GOT.
5615
5616 template<int size, bool big_endian>
5617 void
5618 Mips_output_data_got<size, big_endian>::do_write(Output_file* of)
5619 {
5620 // Call parent to write out GOT.
5621 Output_data_got<size, big_endian>::do_write(of);
5622
5623 const off_t offset = this->offset();
5624 const section_size_type oview_size =
5625 convert_to_section_size_type(this->data_size());
5626 unsigned char* const oview = of->get_output_view(offset, oview_size);
5627
5628 // Needed for fixing values of .got section.
5629 this->got_view_ = oview;
5630
5631 // Write lazy stub addresses.
5632 for (typename Unordered_set<Mips_symbol<size>*>::iterator
5633 p = this->master_got_info_->global_got_symbols().begin();
5634 p != this->master_got_info_->global_got_symbols().end();
5635 ++p)
5636 {
5637 Mips_symbol<size>* mips_sym = *p;
5638 if (mips_sym->has_lazy_stub())
5639 {
5640 Valtype* wv = reinterpret_cast<Valtype*>(
5641 oview + this->get_primary_got_offset(mips_sym));
5642 Valtype value =
5643 this->target_->mips_stubs_section()->stub_address(mips_sym);
5644 elfcpp::Swap<size, big_endian>::writeval(wv, value);
5645 }
5646 }
5647
5648 // Add +1 to GGA_NONE nonzero MIPS16 and microMIPS entries.
5649 for (typename Unordered_set<Mips_symbol<size>*>::iterator
5650 p = this->master_got_info_->global_got_symbols().begin();
5651 p != this->master_got_info_->global_got_symbols().end();
5652 ++p)
5653 {
5654 Mips_symbol<size>* mips_sym = *p;
5655 if (!this->multi_got()
5656 && (mips_sym->is_mips16() || mips_sym->is_micromips())
5657 && mips_sym->global_got_area() == GGA_NONE
5658 && mips_sym->has_got_offset(GOT_TYPE_STANDARD))
5659 {
5660 Valtype* wv = reinterpret_cast<Valtype*>(
5661 oview + mips_sym->got_offset(GOT_TYPE_STANDARD));
5662 Valtype value = elfcpp::Swap<size, big_endian>::readval(wv);
5663 if (value != 0)
5664 {
5665 value |= 1;
5666 elfcpp::Swap<size, big_endian>::writeval(wv, value);
5667 }
5668 }
5669 }
5670
5671 if (!this->secondary_got_relocs_.empty())
5672 {
5673 // Fixup for the secondary GOT R_MIPS_REL32 relocs. For global
5674 // secondary GOT entries with non-zero initial value copy the value
5675 // to the corresponding primary GOT entry, and set the secondary GOT
5676 // entry to zero.
5677 // TODO(sasa): This is workaround. It needs to be investigated further.
5678
5679 for (size_t i = 0; i < this->secondary_got_relocs_.size(); ++i)
5680 {
5681 Static_reloc& reloc(this->secondary_got_relocs_[i]);
5682 if (reloc.symbol_is_global())
5683 {
5684 Mips_symbol<size>* gsym = reloc.symbol();
5685 gold_assert(gsym != NULL);
5686
5687 unsigned got_offset = reloc.got_offset();
5688 gold_assert(got_offset < oview_size);
5689
5690 // Find primary GOT entry.
5691 Valtype* wv_prim = reinterpret_cast<Valtype*>(
5692 oview + this->get_primary_got_offset(gsym));
5693
5694 // Find secondary GOT entry.
5695 Valtype* wv_sec = reinterpret_cast<Valtype*>(oview + got_offset);
5696
5697 Valtype value = elfcpp::Swap<size, big_endian>::readval(wv_sec);
5698 if (value != 0)
5699 {
5700 elfcpp::Swap<size, big_endian>::writeval(wv_prim, value);
5701 elfcpp::Swap<size, big_endian>::writeval(wv_sec, 0);
5702 gsym->set_applied_secondary_got_fixup();
5703 }
5704 }
5705 }
5706
5707 of->write_output_view(offset, oview_size, oview);
5708 }
5709
5710 // We are done if there is no fix up.
5711 if (this->static_relocs_.empty())
5712 return;
5713
5714 Output_segment* tls_segment = this->layout_->tls_segment();
5715 gold_assert(tls_segment != NULL);
5716
5717 for (size_t i = 0; i < this->static_relocs_.size(); ++i)
5718 {
5719 Static_reloc& reloc(this->static_relocs_[i]);
5720
5721 Mips_address value;
5722 if (!reloc.symbol_is_global())
5723 {
5724 Sized_relobj_file<size, big_endian>* object = reloc.relobj();
5725 const Symbol_value<size>* psymval =
5726 object->local_symbol(reloc.index());
5727
5728 // We are doing static linking. Issue an error and skip this
5729 // relocation if the symbol is undefined or in a discarded_section.
5730 bool is_ordinary;
5731 unsigned int shndx = psymval->input_shndx(&is_ordinary);
5732 if ((shndx == elfcpp::SHN_UNDEF)
5733 || (is_ordinary
5734 && shndx != elfcpp::SHN_UNDEF
5735 && !object->is_section_included(shndx)
5736 && !this->symbol_table_->is_section_folded(object, shndx)))
5737 {
5738 gold_error(_("undefined or discarded local symbol %u from "
5739 " object %s in GOT"),
5740 reloc.index(), reloc.relobj()->name().c_str());
5741 continue;
5742 }
5743
5744 value = psymval->value(object, 0);
5745 }
5746 else
5747 {
5748 const Mips_symbol<size>* gsym = reloc.symbol();
5749 gold_assert(gsym != NULL);
5750
5751 // We are doing static linking. Issue an error and skip this
5752 // relocation if the symbol is undefined or in a discarded_section
5753 // unless it is a weakly_undefined symbol.
5754 if ((gsym->is_defined_in_discarded_section() || gsym->is_undefined())
5755 && !gsym->is_weak_undefined())
5756 {
5757 gold_error(_("undefined or discarded symbol %s in GOT"),
5758 gsym->name());
5759 continue;
5760 }
5761
5762 if (!gsym->is_weak_undefined())
5763 value = gsym->value();
5764 else
5765 value = 0;
5766 }
5767
5768 unsigned got_offset = reloc.got_offset();
5769 gold_assert(got_offset < oview_size);
5770
5771 Valtype* wv = reinterpret_cast<Valtype*>(oview + got_offset);
5772 Valtype x;
5773
5774 switch (reloc.r_type())
5775 {
5776 case elfcpp::R_MIPS_TLS_DTPMOD32:
5777 case elfcpp::R_MIPS_TLS_DTPMOD64:
5778 x = value;
5779 break;
5780 case elfcpp::R_MIPS_TLS_DTPREL32:
5781 case elfcpp::R_MIPS_TLS_DTPREL64:
5782 x = value - elfcpp::DTP_OFFSET;
5783 break;
5784 case elfcpp::R_MIPS_TLS_TPREL32:
5785 case elfcpp::R_MIPS_TLS_TPREL64:
5786 x = value - elfcpp::TP_OFFSET;
5787 break;
5788 default:
5789 gold_unreachable();
5790 break;
5791 }
5792
5793 elfcpp::Swap<size, big_endian>::writeval(wv, x);
5794 }
5795
5796 of->write_output_view(offset, oview_size, oview);
5797 }
5798
5799 // Mips_relobj methods.
5800
5801 // Count the local symbols. The Mips backend needs to know if a symbol
5802 // is a MIPS16 or microMIPS function or not. For global symbols, it is easy
5803 // because the Symbol object keeps the ELF symbol type and st_other field.
5804 // For local symbol it is harder because we cannot access this information.
5805 // So we override the do_count_local_symbol in parent and scan local symbols to
5806 // mark MIPS16 and microMIPS functions. This is not the most efficient way but
5807 // I do not want to slow down other ports by calling a per symbol target hook
5808 // inside Sized_relobj_file<size, big_endian>::do_count_local_symbols.
5809
5810 template<int size, bool big_endian>
5811 void
5812 Mips_relobj<size, big_endian>::do_count_local_symbols(
5813 Stringpool_template<char>* pool,
5814 Stringpool_template<char>* dynpool)
5815 {
5816 // Ask parent to count the local symbols.
5817 Sized_relobj_file<size, big_endian>::do_count_local_symbols(pool, dynpool);
5818 const unsigned int loccount = this->local_symbol_count();
5819 if (loccount == 0)
5820 return;
5821
5822 // Initialize the mips16 and micromips function bit-vector.
5823 this->local_symbol_is_mips16_.resize(loccount, false);
5824 this->local_symbol_is_micromips_.resize(loccount, false);
5825
5826 // Read the symbol table section header.
5827 const unsigned int symtab_shndx = this->symtab_shndx();
5828 elfcpp::Shdr<size, big_endian>
5829 symtabshdr(this, this->elf_file()->section_header(symtab_shndx));
5830 gold_assert(symtabshdr.get_sh_type() == elfcpp::SHT_SYMTAB);
5831
5832 // Read the local symbols.
5833 const int sym_size = elfcpp::Elf_sizes<size>::sym_size;
5834 gold_assert(loccount == symtabshdr.get_sh_info());
5835 off_t locsize = loccount * sym_size;
5836 const unsigned char* psyms = this->get_view(symtabshdr.get_sh_offset(),
5837 locsize, true, true);
5838
5839 // Loop over the local symbols and mark any MIPS16 or microMIPS local symbols.
5840
5841 // Skip the first dummy symbol.
5842 psyms += sym_size;
5843 for (unsigned int i = 1; i < loccount; ++i, psyms += sym_size)
5844 {
5845 elfcpp::Sym<size, big_endian> sym(psyms);
5846 unsigned char st_other = sym.get_st_other();
5847 this->local_symbol_is_mips16_[i] = elfcpp::elf_st_is_mips16(st_other);
5848 this->local_symbol_is_micromips_[i] =
5849 elfcpp::elf_st_is_micromips(st_other);
5850 }
5851 }
5852
5853 // Read the symbol information.
5854
5855 template<int size, bool big_endian>
5856 void
5857 Mips_relobj<size, big_endian>::do_read_symbols(Read_symbols_data* sd)
5858 {
5859 // Call parent class to read symbol information.
5860 Sized_relobj_file<size, big_endian>::do_read_symbols(sd);
5861
5862 // Read processor-specific flags in ELF file header.
5863 const unsigned char* pehdr = this->get_view(elfcpp::file_header_offset,
5864 elfcpp::Elf_sizes<size>::ehdr_size,
5865 true, false);
5866 elfcpp::Ehdr<size, big_endian> ehdr(pehdr);
5867 this->processor_specific_flags_ = ehdr.get_e_flags();
5868
5869 // Get the section names.
5870 const unsigned char* pnamesu = sd->section_names->data();
5871 const char* pnames = reinterpret_cast<const char*>(pnamesu);
5872
5873 // Initialize the mips16 stub section bit-vectors.
5874 this->section_is_mips16_fn_stub_.resize(this->shnum(), false);
5875 this->section_is_mips16_call_stub_.resize(this->shnum(), false);
5876 this->section_is_mips16_call_fp_stub_.resize(this->shnum(), false);
5877
5878 const size_t shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
5879 const unsigned char* pshdrs = sd->section_headers->data();
5880 const unsigned char* ps = pshdrs + shdr_size;
5881 for (unsigned int i = 1; i < this->shnum(); ++i, ps += shdr_size)
5882 {
5883 elfcpp::Shdr<size, big_endian> shdr(ps);
5884
5885 if (shdr.get_sh_type() == elfcpp::SHT_MIPS_REGINFO)
5886 {
5887 // Read the gp value that was used to create this object. We need the
5888 // gp value while processing relocs. The .reginfo section is not used
5889 // in the 64-bit MIPS ELF ABI.
5890 section_offset_type section_offset = shdr.get_sh_offset();
5891 section_size_type section_size =
5892 convert_to_section_size_type(shdr.get_sh_size());
5893 const unsigned char* view =
5894 this->get_view(section_offset, section_size, true, false);
5895
5896 this->gp_ = elfcpp::Swap<size, big_endian>::readval(view + 20);
5897
5898 // Read the rest of .reginfo.
5899 this->gprmask_ = elfcpp::Swap<size, big_endian>::readval(view);
5900 this->cprmask1_ = elfcpp::Swap<size, big_endian>::readval(view + 4);
5901 this->cprmask2_ = elfcpp::Swap<size, big_endian>::readval(view + 8);
5902 this->cprmask3_ = elfcpp::Swap<size, big_endian>::readval(view + 12);
5903 this->cprmask4_ = elfcpp::Swap<size, big_endian>::readval(view + 16);
5904 }
5905
5906 const char* name = pnames + shdr.get_sh_name();
5907 this->section_is_mips16_fn_stub_[i] = is_prefix_of(".mips16.fn", name);
5908 this->section_is_mips16_call_stub_[i] =
5909 is_prefix_of(".mips16.call.", name);
5910 this->section_is_mips16_call_fp_stub_[i] =
5911 is_prefix_of(".mips16.call.fp.", name);
5912
5913 if (strcmp(name, ".pdr") == 0)
5914 {
5915 gold_assert(this->pdr_shndx_ == -1U);
5916 this->pdr_shndx_ = i;
5917 }
5918 }
5919 }
5920
5921 // Discard MIPS16 stub secions that are not needed.
5922
5923 template<int size, bool big_endian>
5924 void
5925 Mips_relobj<size, big_endian>::discard_mips16_stub_sections(Symbol_table* symtab)
5926 {
5927 for (typename Mips16_stubs_int_map::const_iterator
5928 it = this->mips16_stub_sections_.begin();
5929 it != this->mips16_stub_sections_.end(); ++it)
5930 {
5931 Mips16_stub_section<size, big_endian>* stub_section = it->second;
5932 if (!stub_section->is_target_found())
5933 {
5934 gold_error(_("no relocation found in mips16 stub section '%s'"),
5935 stub_section->object()
5936 ->section_name(stub_section->shndx()).c_str());
5937 }
5938
5939 bool discard = false;
5940 if (stub_section->is_for_local_function())
5941 {
5942 if (stub_section->is_fn_stub())
5943 {
5944 // This stub is for a local symbol. This stub will only
5945 // be needed if there is some relocation in this object,
5946 // other than a 16 bit function call, which refers to this
5947 // symbol.
5948 if (!this->has_local_non_16bit_call_relocs(stub_section->r_sym()))
5949 discard = true;
5950 else
5951 this->add_local_mips16_fn_stub(stub_section);
5952 }
5953 else
5954 {
5955 // This stub is for a local symbol. This stub will only
5956 // be needed if there is some relocation (R_MIPS16_26) in
5957 // this object that refers to this symbol.
5958 gold_assert(stub_section->is_call_stub()
5959 || stub_section->is_call_fp_stub());
5960 if (!this->has_local_16bit_call_relocs(stub_section->r_sym()))
5961 discard = true;
5962 else
5963 this->add_local_mips16_call_stub(stub_section);
5964 }
5965 }
5966 else
5967 {
5968 Mips_symbol<size>* gsym = stub_section->gsym();
5969 if (stub_section->is_fn_stub())
5970 {
5971 if (gsym->has_mips16_fn_stub())
5972 // We already have a stub for this function.
5973 discard = true;
5974 else
5975 {
5976 gsym->set_mips16_fn_stub(stub_section);
5977 if (gsym->should_add_dynsym_entry(symtab))
5978 {
5979 // If we have a MIPS16 function with a stub, the
5980 // dynamic symbol must refer to the stub, since only
5981 // the stub uses the standard calling conventions.
5982 gsym->set_need_fn_stub();
5983 if (gsym->is_from_dynobj())
5984 gsym->set_needs_dynsym_value();
5985 }
5986 }
5987 if (!gsym->need_fn_stub())
5988 discard = true;
5989 }
5990 else if (stub_section->is_call_stub())
5991 {
5992 if (gsym->is_mips16())
5993 // We don't need the call_stub; this is a 16 bit
5994 // function, so calls from other 16 bit functions are
5995 // OK.
5996 discard = true;
5997 else if (gsym->has_mips16_call_stub())
5998 // We already have a stub for this function.
5999 discard = true;
6000 else
6001 gsym->set_mips16_call_stub(stub_section);
6002 }
6003 else
6004 {
6005 gold_assert(stub_section->is_call_fp_stub());
6006 if (gsym->is_mips16())
6007 // We don't need the call_stub; this is a 16 bit
6008 // function, so calls from other 16 bit functions are
6009 // OK.
6010 discard = true;
6011 else if (gsym->has_mips16_call_fp_stub())
6012 // We already have a stub for this function.
6013 discard = true;
6014 else
6015 gsym->set_mips16_call_fp_stub(stub_section);
6016 }
6017 }
6018 if (discard)
6019 this->set_output_section(stub_section->shndx(), NULL);
6020 }
6021 }
6022
6023 // Mips_output_data_la25_stub methods.
6024
6025 // Template for standard LA25 stub.
6026 template<int size, bool big_endian>
6027 const uint32_t
6028 Mips_output_data_la25_stub<size, big_endian>::la25_stub_entry[] =
6029 {
6030 0x3c190000, // lui $25,%hi(func)
6031 0x08000000, // j func
6032 0x27390000, // add $25,$25,%lo(func)
6033 0x00000000 // nop
6034 };
6035
6036 // Template for microMIPS LA25 stub.
6037 template<int size, bool big_endian>
6038 const uint32_t
6039 Mips_output_data_la25_stub<size, big_endian>::la25_stub_micromips_entry[] =
6040 {
6041 0x41b9, 0x0000, // lui t9,%hi(func)
6042 0xd400, 0x0000, // j func
6043 0x3339, 0x0000, // addiu t9,t9,%lo(func)
6044 0x0000, 0x0000 // nop
6045 };
6046
6047 // Create la25 stub for a symbol.
6048
6049 template<int size, bool big_endian>
6050 void
6051 Mips_output_data_la25_stub<size, big_endian>::create_la25_stub(
6052 Symbol_table* symtab, Target_mips<size, big_endian>* target,
6053 Mips_symbol<size>* gsym)
6054 {
6055 if (!gsym->has_la25_stub())
6056 {
6057 gsym->set_la25_stub_offset(this->symbols_.size() * 16);
6058 this->symbols_.insert(gsym);
6059 this->create_stub_symbol(gsym, symtab, target, 16);
6060 }
6061 }
6062
6063 // Create a symbol for SYM stub's value and size, to help make the disassembly
6064 // easier to read.
6065
6066 template<int size, bool big_endian>
6067 void
6068 Mips_output_data_la25_stub<size, big_endian>::create_stub_symbol(
6069 Mips_symbol<size>* sym, Symbol_table* symtab,
6070 Target_mips<size, big_endian>* target, uint64_t symsize)
6071 {
6072 std::string name(".pic.");
6073 name += sym->name();
6074
6075 unsigned int offset = sym->la25_stub_offset();
6076 if (sym->is_micromips())
6077 offset |= 1;
6078
6079 // Make it a local function.
6080 Symbol* new_sym = symtab->define_in_output_data(name.c_str(), NULL,
6081 Symbol_table::PREDEFINED,
6082 target->la25_stub_section(),
6083 offset, symsize, elfcpp::STT_FUNC,
6084 elfcpp::STB_LOCAL,
6085 elfcpp::STV_DEFAULT, 0,
6086 false, false);
6087 new_sym->set_is_forced_local();
6088 }
6089
6090 // Write out la25 stubs. This uses the hand-coded instructions above,
6091 // and adjusts them as needed.
6092
6093 template<int size, bool big_endian>
6094 void
6095 Mips_output_data_la25_stub<size, big_endian>::do_write(Output_file* of)
6096 {
6097 const off_t offset = this->offset();
6098 const section_size_type oview_size =
6099 convert_to_section_size_type(this->data_size());
6100 unsigned char* const oview = of->get_output_view(offset, oview_size);
6101
6102 for (typename Unordered_set<Mips_symbol<size>*>::iterator
6103 p = this->symbols_.begin();
6104 p != this->symbols_.end();
6105 ++p)
6106 {
6107 Mips_symbol<size>* sym = *p;
6108 unsigned char* pov = oview + sym->la25_stub_offset();
6109
6110 Mips_address target = sym->value();
6111 if (!sym->is_micromips())
6112 {
6113 elfcpp::Swap<32, big_endian>::writeval(pov,
6114 la25_stub_entry[0] | (((target + 0x8000) >> 16) & 0xffff));
6115 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
6116 la25_stub_entry[1] | ((target >> 2) & 0x3ffffff));
6117 elfcpp::Swap<32, big_endian>::writeval(pov + 8,
6118 la25_stub_entry[2] | (target & 0xffff));
6119 elfcpp::Swap<32, big_endian>::writeval(pov + 12, la25_stub_entry[3]);
6120 }
6121 else
6122 {
6123 target |= 1;
6124 // First stub instruction. Paste high 16-bits of the target.
6125 elfcpp::Swap<16, big_endian>::writeval(pov,
6126 la25_stub_micromips_entry[0]);
6127 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
6128 ((target + 0x8000) >> 16) & 0xffff);
6129 // Second stub instruction. Paste low 26-bits of the target, shifted
6130 // right by 1.
6131 elfcpp::Swap<16, big_endian>::writeval(pov + 4,
6132 la25_stub_micromips_entry[2] | ((target >> 17) & 0x3ff));
6133 elfcpp::Swap<16, big_endian>::writeval(pov + 6,
6134 la25_stub_micromips_entry[3] | ((target >> 1) & 0xffff));
6135 // Third stub instruction. Paste low 16-bits of the target.
6136 elfcpp::Swap<16, big_endian>::writeval(pov + 8,
6137 la25_stub_micromips_entry[4]);
6138 elfcpp::Swap<16, big_endian>::writeval(pov + 10, target & 0xffff);
6139 // Fourth stub instruction.
6140 elfcpp::Swap<16, big_endian>::writeval(pov + 12,
6141 la25_stub_micromips_entry[6]);
6142 elfcpp::Swap<16, big_endian>::writeval(pov + 14,
6143 la25_stub_micromips_entry[7]);
6144 }
6145 }
6146
6147 of->write_output_view(offset, oview_size, oview);
6148 }
6149
6150 // Mips_output_data_plt methods.
6151
6152 // The format of the first PLT entry in an O32 executable.
6153 template<int size, bool big_endian>
6154 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_o32[] =
6155 {
6156 0x3c1c0000, // lui $28, %hi(&GOTPLT[0])
6157 0x8f990000, // lw $25, %lo(&GOTPLT[0])($28)
6158 0x279c0000, // addiu $28, $28, %lo(&GOTPLT[0])
6159 0x031cc023, // subu $24, $24, $28
6160 0x03e07821, // move $15, $31 # 32-bit move (addu)
6161 0x0018c082, // srl $24, $24, 2
6162 0x0320f809, // jalr $25
6163 0x2718fffe // subu $24, $24, 2
6164 };
6165
6166 // The format of the first PLT entry in an N32 executable. Different
6167 // because gp ($28) is not available; we use t2 ($14) instead.
6168 template<int size, bool big_endian>
6169 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n32[] =
6170 {
6171 0x3c0e0000, // lui $14, %hi(&GOTPLT[0])
6172 0x8dd90000, // lw $25, %lo(&GOTPLT[0])($14)
6173 0x25ce0000, // addiu $14, $14, %lo(&GOTPLT[0])
6174 0x030ec023, // subu $24, $24, $14
6175 0x03e07821, // move $15, $31 # 32-bit move (addu)
6176 0x0018c082, // srl $24, $24, 2
6177 0x0320f809, // jalr $25
6178 0x2718fffe // subu $24, $24, 2
6179 };
6180
6181 // The format of the first PLT entry in an N64 executable. Different
6182 // from N32 because of the increased size of GOT entries.
6183 template<int size, bool big_endian>
6184 const uint32_t Mips_output_data_plt<size, big_endian>::plt0_entry_n64[] =
6185 {
6186 0x3c0e0000, // lui $14, %hi(&GOTPLT[0])
6187 0xddd90000, // ld $25, %lo(&GOTPLT[0])($14)
6188 0x25ce0000, // addiu $14, $14, %lo(&GOTPLT[0])
6189 0x030ec023, // subu $24, $24, $14
6190 0x03e07821, // move $15, $31 # 64-bit move (daddu)
6191 0x0018c0c2, // srl $24, $24, 3
6192 0x0320f809, // jalr $25
6193 0x2718fffe // subu $24, $24, 2
6194 };
6195
6196 // The format of the microMIPS first PLT entry in an O32 executable.
6197 // We rely on v0 ($2) rather than t8 ($24) to contain the address
6198 // of the GOTPLT entry handled, so this stub may only be used when
6199 // all the subsequent PLT entries are microMIPS code too.
6200 //
6201 // The trailing NOP is for alignment and correct disassembly only.
6202 template<int size, bool big_endian>
6203 const uint32_t Mips_output_data_plt<size, big_endian>::
6204 plt0_entry_micromips_o32[] =
6205 {
6206 0x7980, 0x0000, // addiupc $3, (&GOTPLT[0]) - .
6207 0xff23, 0x0000, // lw $25, 0($3)
6208 0x0535, // subu $2, $2, $3
6209 0x2525, // srl $2, $2, 2
6210 0x3302, 0xfffe, // subu $24, $2, 2
6211 0x0dff, // move $15, $31
6212 0x45f9, // jalrs $25
6213 0x0f83, // move $28, $3
6214 0x0c00 // nop
6215 };
6216
6217 // The format of the microMIPS first PLT entry in an O32 executable
6218 // in the insn32 mode.
6219 template<int size, bool big_endian>
6220 const uint32_t Mips_output_data_plt<size, big_endian>::
6221 plt0_entry_micromips32_o32[] =
6222 {
6223 0x41bc, 0x0000, // lui $28, %hi(&GOTPLT[0])
6224 0xff3c, 0x0000, // lw $25, %lo(&GOTPLT[0])($28)
6225 0x339c, 0x0000, // addiu $28, $28, %lo(&GOTPLT[0])
6226 0x0398, 0xc1d0, // subu $24, $24, $28
6227 0x001f, 0x7950, // move $15, $31
6228 0x0318, 0x1040, // srl $24, $24, 2
6229 0x03f9, 0x0f3c, // jalr $25
6230 0x3318, 0xfffe // subu $24, $24, 2
6231 };
6232
6233 // The format of subsequent standard entries in the PLT.
6234 template<int size, bool big_endian>
6235 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry[] =
6236 {
6237 0x3c0f0000, // lui $15, %hi(.got.plt entry)
6238 0x8df90000, // l[wd] $25, %lo(.got.plt entry)($15)
6239 0x03200008, // jr $25
6240 0x25f80000 // addiu $24, $15, %lo(.got.plt entry)
6241 };
6242
6243 // The format of subsequent MIPS16 o32 PLT entries. We use v1 ($3) as a
6244 // temporary because t8 ($24) and t9 ($25) are not directly addressable.
6245 // Note that this differs from the GNU ld which uses both v0 ($2) and v1 ($3).
6246 // We cannot use v0 because MIPS16 call stubs from the CS toolchain expect
6247 // target function address in register v0.
6248 template<int size, bool big_endian>
6249 const uint32_t Mips_output_data_plt<size, big_endian>::plt_entry_mips16_o32[] =
6250 {
6251 0xb303, // lw $3, 12($pc)
6252 0x651b, // move $24, $3
6253 0x9b60, // lw $3, 0($3)
6254 0xeb00, // jr $3
6255 0x653b, // move $25, $3
6256 0x6500, // nop
6257 0x0000, 0x0000 // .word (.got.plt entry)
6258 };
6259
6260 // The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
6261 // as a temporary because t8 ($24) is not addressable with ADDIUPC.
6262 template<int size, bool big_endian>
6263 const uint32_t Mips_output_data_plt<size, big_endian>::
6264 plt_entry_micromips_o32[] =
6265 {
6266 0x7900, 0x0000, // addiupc $2, (.got.plt entry) - .
6267 0xff22, 0x0000, // lw $25, 0($2)
6268 0x4599, // jr $25
6269 0x0f02 // move $24, $2
6270 };
6271
6272 // The format of subsequent microMIPS o32 PLT entries in the insn32 mode.
6273 template<int size, bool big_endian>
6274 const uint32_t Mips_output_data_plt<size, big_endian>::
6275 plt_entry_micromips32_o32[] =
6276 {
6277 0x41af, 0x0000, // lui $15, %hi(.got.plt entry)
6278 0xff2f, 0x0000, // lw $25, %lo(.got.plt entry)($15)
6279 0x0019, 0x0f3c, // jr $25
6280 0x330f, 0x0000 // addiu $24, $15, %lo(.got.plt entry)
6281 };
6282
6283 // Add an entry to the PLT for a symbol referenced by r_type relocation.
6284
6285 template<int size, bool big_endian>
6286 void
6287 Mips_output_data_plt<size, big_endian>::add_entry(Mips_symbol<size>* gsym,
6288 unsigned int r_type)
6289 {
6290 gold_assert(!gsym->has_plt_offset());
6291
6292 // Final PLT offset for a symbol will be set in method set_plt_offsets().
6293 gsym->set_plt_offset(this->entry_count() * sizeof(plt_entry)
6294 + sizeof(plt0_entry_o32));
6295 this->symbols_.push_back(gsym);
6296
6297 // Record whether the relocation requires a standard MIPS
6298 // or a compressed code entry.
6299 if (jal_reloc(r_type))
6300 {
6301 if (r_type == elfcpp::R_MIPS_26)
6302 gsym->set_needs_mips_plt(true);
6303 else
6304 gsym->set_needs_comp_plt(true);
6305 }
6306
6307 section_offset_type got_offset = this->got_plt_->current_data_size();
6308
6309 // Every PLT entry needs a GOT entry which points back to the PLT
6310 // entry (this will be changed by the dynamic linker, normally
6311 // lazily when the function is called).
6312 this->got_plt_->set_current_data_size(got_offset + size/8);
6313
6314 gsym->set_needs_dynsym_entry();
6315 this->rel_->add_global(gsym, elfcpp::R_MIPS_JUMP_SLOT, this->got_plt_,
6316 got_offset);
6317 }
6318
6319 // Set final PLT offsets. For each symbol, determine whether standard or
6320 // compressed (MIPS16 or microMIPS) PLT entry is used.
6321
6322 template<int size, bool big_endian>
6323 void
6324 Mips_output_data_plt<size, big_endian>::set_plt_offsets()
6325 {
6326 // The sizes of individual PLT entries.
6327 unsigned int plt_mips_entry_size = this->standard_plt_entry_size();
6328 unsigned int plt_comp_entry_size = (!this->target_->is_output_newabi()
6329 ? this->compressed_plt_entry_size() : 0);
6330
6331 for (typename std::vector<Mips_symbol<size>*>::const_iterator
6332 p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
6333 {
6334 Mips_symbol<size>* mips_sym = *p;
6335
6336 // There are no defined MIPS16 or microMIPS PLT entries for n32 or n64,
6337 // so always use a standard entry there.
6338 //
6339 // If the symbol has a MIPS16 call stub and gets a PLT entry, then
6340 // all MIPS16 calls will go via that stub, and there is no benefit
6341 // to having a MIPS16 entry. And in the case of call_stub a
6342 // standard entry actually has to be used as the stub ends with a J
6343 // instruction.
6344 if (this->target_->is_output_newabi()
6345 || mips_sym->has_mips16_call_stub()
6346 || mips_sym->has_mips16_call_fp_stub())
6347 {
6348 mips_sym->set_needs_mips_plt(true);
6349 mips_sym->set_needs_comp_plt(false);
6350 }
6351
6352 // Otherwise, if there are no direct calls to the function, we
6353 // have a free choice of whether to use standard or compressed
6354 // entries. Prefer microMIPS entries if the object is known to
6355 // contain microMIPS code, so that it becomes possible to create
6356 // pure microMIPS binaries. Prefer standard entries otherwise,
6357 // because MIPS16 ones are no smaller and are usually slower.
6358 if (!mips_sym->needs_mips_plt() && !mips_sym->needs_comp_plt())
6359 {
6360 if (this->target_->is_output_micromips())
6361 mips_sym->set_needs_comp_plt(true);
6362 else
6363 mips_sym->set_needs_mips_plt(true);
6364 }
6365
6366 if (mips_sym->needs_mips_plt())
6367 {
6368 mips_sym->set_mips_plt_offset(this->plt_mips_offset_);
6369 this->plt_mips_offset_ += plt_mips_entry_size;
6370 }
6371 if (mips_sym->needs_comp_plt())
6372 {
6373 mips_sym->set_comp_plt_offset(this->plt_comp_offset_);
6374 this->plt_comp_offset_ += plt_comp_entry_size;
6375 }
6376 }
6377
6378 // Figure out the size of the PLT header if we know that we are using it.
6379 if (this->plt_mips_offset_ + this->plt_comp_offset_ != 0)
6380 this->plt_header_size_ = this->get_plt_header_size();
6381 }
6382
6383 // Write out the PLT. This uses the hand-coded instructions above,
6384 // and adjusts them as needed.
6385
6386 template<int size, bool big_endian>
6387 void
6388 Mips_output_data_plt<size, big_endian>::do_write(Output_file* of)
6389 {
6390 const off_t offset = this->offset();
6391 const section_size_type oview_size =
6392 convert_to_section_size_type(this->data_size());
6393 unsigned char* const oview = of->get_output_view(offset, oview_size);
6394
6395 const off_t gotplt_file_offset = this->got_plt_->offset();
6396 const section_size_type gotplt_size =
6397 convert_to_section_size_type(this->got_plt_->data_size());
6398 unsigned char* const gotplt_view = of->get_output_view(gotplt_file_offset,
6399 gotplt_size);
6400 unsigned char* pov = oview;
6401
6402 Mips_address plt_address = this->address();
6403
6404 // Calculate the address of .got.plt.
6405 Mips_address gotplt_addr = this->got_plt_->address();
6406 Mips_address gotplt_addr_high = ((gotplt_addr + 0x8000) >> 16) & 0xffff;
6407 Mips_address gotplt_addr_low = gotplt_addr & 0xffff;
6408
6409 // The PLT sequence is not safe for N64 if .got.plt's address can
6410 // not be loaded in two instructions.
6411 gold_assert((gotplt_addr & ~(Mips_address) 0x7fffffff) == 0
6412 || ~(gotplt_addr | 0x7fffffff) == 0);
6413
6414 // Write the PLT header.
6415 const uint32_t* plt0_entry = this->get_plt_header_entry();
6416 if (plt0_entry == plt0_entry_micromips_o32)
6417 {
6418 // Write microMIPS PLT header.
6419 gold_assert(gotplt_addr % 4 == 0);
6420
6421 Mips_address gotpc_offset = gotplt_addr - ((plt_address | 3) ^ 3);
6422
6423 // ADDIUPC has a span of +/-16MB, check we're in range.
6424 if (gotpc_offset + 0x1000000 >= 0x2000000)
6425 {
6426 gold_error(_(".got.plt offset of %ld from .plt beyond the range of "
6427 "ADDIUPC"), (long)gotpc_offset);
6428 return;
6429 }
6430
6431 elfcpp::Swap<16, big_endian>::writeval(pov,
6432 plt0_entry[0] | ((gotpc_offset >> 18) & 0x7f));
6433 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
6434 (gotpc_offset >> 2) & 0xffff);
6435 pov += 4;
6436 for (unsigned int i = 2;
6437 i < (sizeof(plt0_entry_micromips_o32)
6438 / sizeof(plt0_entry_micromips_o32[0]));
6439 i++)
6440 {
6441 elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
6442 pov += 2;
6443 }
6444 }
6445 else if (plt0_entry == plt0_entry_micromips32_o32)
6446 {
6447 // Write microMIPS PLT header in insn32 mode.
6448 elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[0]);
6449 elfcpp::Swap<16, big_endian>::writeval(pov + 2, gotplt_addr_high);
6450 elfcpp::Swap<16, big_endian>::writeval(pov + 4, plt0_entry[2]);
6451 elfcpp::Swap<16, big_endian>::writeval(pov + 6, gotplt_addr_low);
6452 elfcpp::Swap<16, big_endian>::writeval(pov + 8, plt0_entry[4]);
6453 elfcpp::Swap<16, big_endian>::writeval(pov + 10, gotplt_addr_low);
6454 pov += 12;
6455 for (unsigned int i = 6;
6456 i < (sizeof(plt0_entry_micromips32_o32)
6457 / sizeof(plt0_entry_micromips32_o32[0]));
6458 i++)
6459 {
6460 elfcpp::Swap<16, big_endian>::writeval(pov, plt0_entry[i]);
6461 pov += 2;
6462 }
6463 }
6464 else
6465 {
6466 // Write standard PLT header.
6467 elfcpp::Swap<32, big_endian>::writeval(pov,
6468 plt0_entry[0] | gotplt_addr_high);
6469 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
6470 plt0_entry[1] | gotplt_addr_low);
6471 elfcpp::Swap<32, big_endian>::writeval(pov + 8,
6472 plt0_entry[2] | gotplt_addr_low);
6473 pov += 12;
6474 for (int i = 3; i < 8; i++)
6475 {
6476 elfcpp::Swap<32, big_endian>::writeval(pov, plt0_entry[i]);
6477 pov += 4;
6478 }
6479 }
6480
6481
6482 unsigned char* gotplt_pov = gotplt_view;
6483 unsigned int got_entry_size = size/8; // TODO(sasa): MIPS_ELF_GOT_SIZE
6484
6485 // The first two entries in .got.plt are reserved.
6486 elfcpp::Swap<size, big_endian>::writeval(gotplt_pov, 0);
6487 elfcpp::Swap<size, big_endian>::writeval(gotplt_pov + got_entry_size, 0);
6488
6489 unsigned int gotplt_offset = 2 * got_entry_size;
6490 gotplt_pov += 2 * got_entry_size;
6491
6492 // Calculate the address of the PLT header.
6493 Mips_address header_address = (plt_address
6494 + (this->is_plt_header_compressed() ? 1 : 0));
6495
6496 // Initialize compressed PLT area view.
6497 unsigned char* pov2 = pov + this->plt_mips_offset_;
6498
6499 // Write the PLT entries.
6500 for (typename std::vector<Mips_symbol<size>*>::const_iterator
6501 p = this->symbols_.begin();
6502 p != this->symbols_.end();
6503 ++p, gotplt_pov += got_entry_size, gotplt_offset += got_entry_size)
6504 {
6505 Mips_symbol<size>* mips_sym = *p;
6506
6507 // Calculate the address of the .got.plt entry.
6508 uint32_t gotplt_entry_addr = (gotplt_addr + gotplt_offset);
6509 uint32_t gotplt_entry_addr_hi = (((gotplt_entry_addr + 0x8000) >> 16)
6510 & 0xffff);
6511 uint32_t gotplt_entry_addr_lo = gotplt_entry_addr & 0xffff;
6512
6513 // Initially point the .got.plt entry at the PLT header.
6514 if (this->target_->is_output_n64())
6515 elfcpp::Swap<64, big_endian>::writeval(gotplt_pov, header_address);
6516 else
6517 elfcpp::Swap<32, big_endian>::writeval(gotplt_pov, header_address);
6518
6519 // Now handle the PLT itself. First the standard entry.
6520 if (mips_sym->has_mips_plt_offset())
6521 {
6522 // Pick the load opcode (LW or LD).
6523 uint64_t load = this->target_->is_output_n64() ? 0xdc000000
6524 : 0x8c000000;
6525
6526 // Fill in the PLT entry itself.
6527 elfcpp::Swap<32, big_endian>::writeval(pov,
6528 plt_entry[0] | gotplt_entry_addr_hi);
6529 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
6530 plt_entry[1] | gotplt_entry_addr_lo | load);
6531 elfcpp::Swap<32, big_endian>::writeval(pov + 8, plt_entry[2]);
6532 elfcpp::Swap<32, big_endian>::writeval(pov + 12,
6533 plt_entry[3] | gotplt_entry_addr_lo);
6534 pov += 16;
6535 }
6536
6537 // Now the compressed entry. They come after any standard ones.
6538 if (mips_sym->has_comp_plt_offset())
6539 {
6540 if (!this->target_->is_output_micromips())
6541 {
6542 // Write MIPS16 PLT entry.
6543 const uint32_t* plt_entry = plt_entry_mips16_o32;
6544
6545 elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
6546 elfcpp::Swap<16, big_endian>::writeval(pov2 + 2, plt_entry[1]);
6547 elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
6548 elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
6549 elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
6550 elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
6551 elfcpp::Swap<32, big_endian>::writeval(pov2 + 12,
6552 gotplt_entry_addr);
6553 pov2 += 16;
6554 }
6555 else if (this->target_->use_32bit_micromips_instructions())
6556 {
6557 // Write microMIPS PLT entry in insn32 mode.
6558 const uint32_t* plt_entry = plt_entry_micromips32_o32;
6559
6560 elfcpp::Swap<16, big_endian>::writeval(pov2, plt_entry[0]);
6561 elfcpp::Swap<16, big_endian>::writeval(pov2 + 2,
6562 gotplt_entry_addr_hi);
6563 elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
6564 elfcpp::Swap<16, big_endian>::writeval(pov2 + 6,
6565 gotplt_entry_addr_lo);
6566 elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
6567 elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
6568 elfcpp::Swap<16, big_endian>::writeval(pov2 + 12, plt_entry[6]);
6569 elfcpp::Swap<16, big_endian>::writeval(pov2 + 14,
6570 gotplt_entry_addr_lo);
6571 pov2 += 16;
6572 }
6573 else
6574 {
6575 // Write microMIPS PLT entry.
6576 const uint32_t* plt_entry = plt_entry_micromips_o32;
6577
6578 gold_assert(gotplt_entry_addr % 4 == 0);
6579
6580 Mips_address loc_address = plt_address + pov2 - oview;
6581 int gotpc_offset = gotplt_entry_addr - ((loc_address | 3) ^ 3);
6582
6583 // ADDIUPC has a span of +/-16MB, check we're in range.
6584 if (gotpc_offset + 0x1000000 >= 0x2000000)
6585 {
6586 gold_error(_(".got.plt offset of %ld from .plt beyond the "
6587 "range of ADDIUPC"), (long)gotpc_offset);
6588 return;
6589 }
6590
6591 elfcpp::Swap<16, big_endian>::writeval(pov2,
6592 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f));
6593 elfcpp::Swap<16, big_endian>::writeval(
6594 pov2 + 2, (gotpc_offset >> 2) & 0xffff);
6595 elfcpp::Swap<16, big_endian>::writeval(pov2 + 4, plt_entry[2]);
6596 elfcpp::Swap<16, big_endian>::writeval(pov2 + 6, plt_entry[3]);
6597 elfcpp::Swap<16, big_endian>::writeval(pov2 + 8, plt_entry[4]);
6598 elfcpp::Swap<16, big_endian>::writeval(pov2 + 10, plt_entry[5]);
6599 pov2 += 12;
6600 }
6601 }
6602 }
6603
6604 // Check the number of bytes written for standard entries.
6605 gold_assert(static_cast<section_size_type>(
6606 pov - oview - this->plt_header_size_) == this->plt_mips_offset_);
6607 // Check the number of bytes written for compressed entries.
6608 gold_assert((static_cast<section_size_type>(pov2 - pov)
6609 == this->plt_comp_offset_));
6610 // Check the total number of bytes written.
6611 gold_assert(static_cast<section_size_type>(pov2 - oview) == oview_size);
6612
6613 gold_assert(static_cast<section_size_type>(gotplt_pov - gotplt_view)
6614 == gotplt_size);
6615
6616 of->write_output_view(offset, oview_size, oview);
6617 of->write_output_view(gotplt_file_offset, gotplt_size, gotplt_view);
6618 }
6619
6620 // Mips_output_data_mips_stubs methods.
6621
6622 // The format of the lazy binding stub when dynamic symbol count is less than
6623 // 64K, dynamic symbol index is less than 32K, and ABI is not N64.
6624 template<int size, bool big_endian>
6625 const uint32_t
6626 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1[4] =
6627 {
6628 0x8f998010, // lw t9,0x8010(gp)
6629 0x03e07821, // addu t7,ra,zero
6630 0x0320f809, // jalr t9,ra
6631 0x24180000 // addiu t8,zero,DYN_INDEX sign extended
6632 };
6633
6634 // The format of the lazy binding stub when dynamic symbol count is less than
6635 // 64K, dynamic symbol index is less than 32K, and ABI is N64.
6636 template<int size, bool big_endian>
6637 const uint32_t
6638 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_1_n64[4] =
6639 {
6640 0xdf998010, // ld t9,0x8010(gp)
6641 0x03e0782d, // daddu t7,ra,zero
6642 0x0320f809, // jalr t9,ra
6643 0x64180000 // daddiu t8,zero,DYN_INDEX sign extended
6644 };
6645
6646 // The format of the lazy binding stub when dynamic symbol count is less than
6647 // 64K, dynamic symbol index is between 32K and 64K, and ABI is not N64.
6648 template<int size, bool big_endian>
6649 const uint32_t
6650 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2[4] =
6651 {
6652 0x8f998010, // lw t9,0x8010(gp)
6653 0x03e07821, // addu t7,ra,zero
6654 0x0320f809, // jalr t9,ra
6655 0x34180000 // ori t8,zero,DYN_INDEX unsigned
6656 };
6657
6658 // The format of the lazy binding stub when dynamic symbol count is less than
6659 // 64K, dynamic symbol index is between 32K and 64K, and ABI is N64.
6660 template<int size, bool big_endian>
6661 const uint32_t
6662 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_normal_2_n64[4] =
6663 {
6664 0xdf998010, // ld t9,0x8010(gp)
6665 0x03e0782d, // daddu t7,ra,zero
6666 0x0320f809, // jalr t9,ra
6667 0x34180000 // ori t8,zero,DYN_INDEX unsigned
6668 };
6669
6670 // The format of the lazy binding stub when dynamic symbol count is greater than
6671 // 64K, and ABI is not N64.
6672 template<int size, bool big_endian>
6673 const uint32_t Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big[5] =
6674 {
6675 0x8f998010, // lw t9,0x8010(gp)
6676 0x03e07821, // addu t7,ra,zero
6677 0x3c180000, // lui t8,DYN_INDEX
6678 0x0320f809, // jalr t9,ra
6679 0x37180000 // ori t8,t8,DYN_INDEX
6680 };
6681
6682 // The format of the lazy binding stub when dynamic symbol count is greater than
6683 // 64K, and ABI is N64.
6684 template<int size, bool big_endian>
6685 const uint32_t
6686 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_big_n64[5] =
6687 {
6688 0xdf998010, // ld t9,0x8010(gp)
6689 0x03e0782d, // daddu t7,ra,zero
6690 0x3c180000, // lui t8,DYN_INDEX
6691 0x0320f809, // jalr t9,ra
6692 0x37180000 // ori t8,t8,DYN_INDEX
6693 };
6694
6695 // microMIPS stubs.
6696
6697 // The format of the microMIPS lazy binding stub when dynamic symbol count is
6698 // less than 64K, dynamic symbol index is less than 32K, and ABI is not N64.
6699 template<int size, bool big_endian>
6700 const uint32_t
6701 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_1[] =
6702 {
6703 0xff3c, 0x8010, // lw t9,0x8010(gp)
6704 0x0dff, // move t7,ra
6705 0x45d9, // jalr t9
6706 0x3300, 0x0000 // addiu t8,zero,DYN_INDEX sign extended
6707 };
6708
6709 // The format of the microMIPS lazy binding stub when dynamic symbol count is
6710 // less than 64K, dynamic symbol index is less than 32K, and ABI is N64.
6711 template<int size, bool big_endian>
6712 const uint32_t
6713 Mips_output_data_mips_stubs<size, big_endian>::
6714 lazy_stub_micromips_normal_1_n64[] =
6715 {
6716 0xdf3c, 0x8010, // ld t9,0x8010(gp)
6717 0x0dff, // move t7,ra
6718 0x45d9, // jalr t9
6719 0x5f00, 0x0000 // daddiu t8,zero,DYN_INDEX sign extended
6720 };
6721
6722 // The format of the microMIPS lazy binding stub when dynamic symbol
6723 // count is less than 64K, dynamic symbol index is between 32K and 64K,
6724 // and ABI is not N64.
6725 template<int size, bool big_endian>
6726 const uint32_t
6727 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_normal_2[] =
6728 {
6729 0xff3c, 0x8010, // lw t9,0x8010(gp)
6730 0x0dff, // move t7,ra
6731 0x45d9, // jalr t9
6732 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
6733 };
6734
6735 // The format of the microMIPS lazy binding stub when dynamic symbol
6736 // count is less than 64K, dynamic symbol index is between 32K and 64K,
6737 // and ABI is N64.
6738 template<int size, bool big_endian>
6739 const uint32_t
6740 Mips_output_data_mips_stubs<size, big_endian>::
6741 lazy_stub_micromips_normal_2_n64[] =
6742 {
6743 0xdf3c, 0x8010, // ld t9,0x8010(gp)
6744 0x0dff, // move t7,ra
6745 0x45d9, // jalr t9
6746 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
6747 };
6748
6749 // The format of the microMIPS lazy binding stub when dynamic symbol count is
6750 // greater than 64K, and ABI is not N64.
6751 template<int size, bool big_endian>
6752 const uint32_t
6753 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big[] =
6754 {
6755 0xff3c, 0x8010, // lw t9,0x8010(gp)
6756 0x0dff, // move t7,ra
6757 0x41b8, 0x0000, // lui t8,DYN_INDEX
6758 0x45d9, // jalr t9
6759 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
6760 };
6761
6762 // The format of the microMIPS lazy binding stub when dynamic symbol count is
6763 // greater than 64K, and ABI is N64.
6764 template<int size, bool big_endian>
6765 const uint32_t
6766 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips_big_n64[] =
6767 {
6768 0xdf3c, 0x8010, // ld t9,0x8010(gp)
6769 0x0dff, // move t7,ra
6770 0x41b8, 0x0000, // lui t8,DYN_INDEX
6771 0x45d9, // jalr t9
6772 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
6773 };
6774
6775 // 32-bit microMIPS stubs.
6776
6777 // The format of the microMIPS lazy binding stub when dynamic symbol count is
6778 // less than 64K, dynamic symbol index is less than 32K, ABI is not N64, and we
6779 // can use only 32-bit instructions.
6780 template<int size, bool big_endian>
6781 const uint32_t
6782 Mips_output_data_mips_stubs<size, big_endian>::
6783 lazy_stub_micromips32_normal_1[] =
6784 {
6785 0xff3c, 0x8010, // lw t9,0x8010(gp)
6786 0x001f, 0x7950, // addu t7,ra,zero
6787 0x03f9, 0x0f3c, // jalr ra,t9
6788 0x3300, 0x0000 // addiu t8,zero,DYN_INDEX sign extended
6789 };
6790
6791 // The format of the microMIPS lazy binding stub when dynamic symbol count is
6792 // less than 64K, dynamic symbol index is less than 32K, ABI is N64, and we can
6793 // use only 32-bit instructions.
6794 template<int size, bool big_endian>
6795 const uint32_t
6796 Mips_output_data_mips_stubs<size, big_endian>::
6797 lazy_stub_micromips32_normal_1_n64[] =
6798 {
6799 0xdf3c, 0x8010, // ld t9,0x8010(gp)
6800 0x581f, 0x7950, // daddu t7,ra,zero
6801 0x03f9, 0x0f3c, // jalr ra,t9
6802 0x5f00, 0x0000 // daddiu t8,zero,DYN_INDEX sign extended
6803 };
6804
6805 // The format of the microMIPS lazy binding stub when dynamic symbol
6806 // count is less than 64K, dynamic symbol index is between 32K and 64K,
6807 // ABI is not N64, and we can use only 32-bit instructions.
6808 template<int size, bool big_endian>
6809 const uint32_t
6810 Mips_output_data_mips_stubs<size, big_endian>::
6811 lazy_stub_micromips32_normal_2[] =
6812 {
6813 0xff3c, 0x8010, // lw t9,0x8010(gp)
6814 0x001f, 0x7950, // addu t7,ra,zero
6815 0x03f9, 0x0f3c, // jalr ra,t9
6816 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
6817 };
6818
6819 // The format of the microMIPS lazy binding stub when dynamic symbol
6820 // count is less than 64K, dynamic symbol index is between 32K and 64K,
6821 // ABI is N64, and we can use only 32-bit instructions.
6822 template<int size, bool big_endian>
6823 const uint32_t
6824 Mips_output_data_mips_stubs<size, big_endian>::
6825 lazy_stub_micromips32_normal_2_n64[] =
6826 {
6827 0xdf3c, 0x8010, // ld t9,0x8010(gp)
6828 0x581f, 0x7950, // daddu t7,ra,zero
6829 0x03f9, 0x0f3c, // jalr ra,t9
6830 0x5300, 0x0000 // ori t8,zero,DYN_INDEX unsigned
6831 };
6832
6833 // The format of the microMIPS lazy binding stub when dynamic symbol count is
6834 // greater than 64K, ABI is not N64, and we can use only 32-bit instructions.
6835 template<int size, bool big_endian>
6836 const uint32_t
6837 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big[] =
6838 {
6839 0xff3c, 0x8010, // lw t9,0x8010(gp)
6840 0x001f, 0x7950, // addu t7,ra,zero
6841 0x41b8, 0x0000, // lui t8,DYN_INDEX
6842 0x03f9, 0x0f3c, // jalr ra,t9
6843 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
6844 };
6845
6846 // The format of the microMIPS lazy binding stub when dynamic symbol count is
6847 // greater than 64K, ABI is N64, and we can use only 32-bit instructions.
6848 template<int size, bool big_endian>
6849 const uint32_t
6850 Mips_output_data_mips_stubs<size, big_endian>::lazy_stub_micromips32_big_n64[] =
6851 {
6852 0xdf3c, 0x8010, // ld t9,0x8010(gp)
6853 0x581f, 0x7950, // daddu t7,ra,zero
6854 0x41b8, 0x0000, // lui t8,DYN_INDEX
6855 0x03f9, 0x0f3c, // jalr ra,t9
6856 0x5318, 0x0000 // ori t8,t8,DYN_INDEX
6857 };
6858
6859 // Create entry for a symbol.
6860
6861 template<int size, bool big_endian>
6862 void
6863 Mips_output_data_mips_stubs<size, big_endian>::make_entry(
6864 Mips_symbol<size>* gsym)
6865 {
6866 if (!gsym->has_lazy_stub() && !gsym->has_plt_offset())
6867 {
6868 this->symbols_.insert(gsym);
6869 gsym->set_has_lazy_stub(true);
6870 }
6871 }
6872
6873 // Remove entry for a symbol.
6874
6875 template<int size, bool big_endian>
6876 void
6877 Mips_output_data_mips_stubs<size, big_endian>::remove_entry(
6878 Mips_symbol<size>* gsym)
6879 {
6880 if (gsym->has_lazy_stub())
6881 {
6882 this->symbols_.erase(gsym);
6883 gsym->set_has_lazy_stub(false);
6884 }
6885 }
6886
6887 // Set stub offsets for symbols. This method expects that the number of
6888 // entries in dynamic symbol table is set.
6889
6890 template<int size, bool big_endian>
6891 void
6892 Mips_output_data_mips_stubs<size, big_endian>::set_lazy_stub_offsets()
6893 {
6894 gold_assert(this->dynsym_count_ != -1U);
6895
6896 if (this->stub_offsets_are_set_)
6897 return;
6898
6899 unsigned int stub_size = this->stub_size();
6900 unsigned int offset = 0;
6901 for (typename Unordered_set<Mips_symbol<size>*>::const_iterator
6902 p = this->symbols_.begin();
6903 p != this->symbols_.end();
6904 ++p, offset += stub_size)
6905 {
6906 Mips_symbol<size>* mips_sym = *p;
6907 mips_sym->set_lazy_stub_offset(offset);
6908 }
6909 this->stub_offsets_are_set_ = true;
6910 }
6911
6912 template<int size, bool big_endian>
6913 void
6914 Mips_output_data_mips_stubs<size, big_endian>::set_needs_dynsym_value()
6915 {
6916 for (typename Unordered_set<Mips_symbol<size>*>::const_iterator
6917 p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
6918 {
6919 Mips_symbol<size>* sym = *p;
6920 if (sym->is_from_dynobj())
6921 sym->set_needs_dynsym_value();
6922 }
6923 }
6924
6925 // Write out the .MIPS.stubs. This uses the hand-coded instructions and
6926 // adjusts them as needed.
6927
6928 template<int size, bool big_endian>
6929 void
6930 Mips_output_data_mips_stubs<size, big_endian>::do_write(Output_file* of)
6931 {
6932 const off_t offset = this->offset();
6933 const section_size_type oview_size =
6934 convert_to_section_size_type(this->data_size());
6935 unsigned char* const oview = of->get_output_view(offset, oview_size);
6936
6937 bool big_stub = this->dynsym_count_ > 0x10000;
6938
6939 unsigned char* pov = oview;
6940 for (typename Unordered_set<Mips_symbol<size>*>::const_iterator
6941 p = this->symbols_.begin(); p != this->symbols_.end(); ++p)
6942 {
6943 Mips_symbol<size>* sym = *p;
6944 const uint32_t* lazy_stub;
6945 bool n64 = this->target_->is_output_n64();
6946
6947 if (!this->target_->is_output_micromips())
6948 {
6949 // Write standard (non-microMIPS) stub.
6950 if (!big_stub)
6951 {
6952 if (sym->dynsym_index() & ~0x7fff)
6953 // Dynsym index is between 32K and 64K.
6954 lazy_stub = n64 ? lazy_stub_normal_2_n64 : lazy_stub_normal_2;
6955 else
6956 // Dynsym index is less than 32K.
6957 lazy_stub = n64 ? lazy_stub_normal_1_n64 : lazy_stub_normal_1;
6958 }
6959 else
6960 lazy_stub = n64 ? lazy_stub_big_n64 : lazy_stub_big;
6961
6962 unsigned int i = 0;
6963 elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
6964 elfcpp::Swap<32, big_endian>::writeval(pov + 4, lazy_stub[i + 1]);
6965 pov += 8;
6966
6967 i += 2;
6968 if (big_stub)
6969 {
6970 // LUI instruction of the big stub. Paste high 16 bits of the
6971 // dynsym index.
6972 elfcpp::Swap<32, big_endian>::writeval(pov,
6973 lazy_stub[i] | ((sym->dynsym_index() >> 16) & 0x7fff));
6974 pov += 4;
6975 i += 1;
6976 }
6977 elfcpp::Swap<32, big_endian>::writeval(pov, lazy_stub[i]);
6978 // Last stub instruction. Paste low 16 bits of the dynsym index.
6979 elfcpp::Swap<32, big_endian>::writeval(pov + 4,
6980 lazy_stub[i + 1] | (sym->dynsym_index() & 0xffff));
6981 pov += 8;
6982 }
6983 else if (this->target_->use_32bit_micromips_instructions())
6984 {
6985 // Write microMIPS stub in insn32 mode.
6986 if (!big_stub)
6987 {
6988 if (sym->dynsym_index() & ~0x7fff)
6989 // Dynsym index is between 32K and 64K.
6990 lazy_stub = n64 ? lazy_stub_micromips32_normal_2_n64
6991 : lazy_stub_micromips32_normal_2;
6992 else
6993 // Dynsym index is less than 32K.
6994 lazy_stub = n64 ? lazy_stub_micromips32_normal_1_n64
6995 : lazy_stub_micromips32_normal_1;
6996 }
6997 else
6998 lazy_stub = n64 ? lazy_stub_micromips32_big_n64
6999 : lazy_stub_micromips32_big;
7000
7001 unsigned int i = 0;
7002 // First stub instruction. We emit 32-bit microMIPS instructions by
7003 // emitting two 16-bit parts because on microMIPS the 16-bit part of
7004 // the instruction where the opcode is must always come first, for
7005 // both little and big endian.
7006 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
7007 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
7008 // Second stub instruction.
7009 elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
7010 elfcpp::Swap<16, big_endian>::writeval(pov + 6, lazy_stub[i + 3]);
7011 pov += 8;
7012 i += 4;
7013 if (big_stub)
7014 {
7015 // LUI instruction of the big stub. Paste high 16 bits of the
7016 // dynsym index.
7017 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
7018 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
7019 (sym->dynsym_index() >> 16) & 0x7fff);
7020 pov += 4;
7021 i += 2;
7022 }
7023 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
7024 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
7025 // Last stub instruction. Paste low 16 bits of the dynsym index.
7026 elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
7027 elfcpp::Swap<16, big_endian>::writeval(pov + 6,
7028 sym->dynsym_index() & 0xffff);
7029 pov += 8;
7030 }
7031 else
7032 {
7033 // Write microMIPS stub.
7034 if (!big_stub)
7035 {
7036 if (sym->dynsym_index() & ~0x7fff)
7037 // Dynsym index is between 32K and 64K.
7038 lazy_stub = n64 ? lazy_stub_micromips_normal_2_n64
7039 : lazy_stub_micromips_normal_2;
7040 else
7041 // Dynsym index is less than 32K.
7042 lazy_stub = n64 ? lazy_stub_micromips_normal_1_n64
7043 : lazy_stub_micromips_normal_1;
7044 }
7045 else
7046 lazy_stub = n64 ? lazy_stub_micromips_big_n64
7047 : lazy_stub_micromips_big;
7048
7049 unsigned int i = 0;
7050 // First stub instruction. We emit 32-bit microMIPS instructions by
7051 // emitting two 16-bit parts because on microMIPS the 16-bit part of
7052 // the instruction where the opcode is must always come first, for
7053 // both little and big endian.
7054 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
7055 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
7056 // Second stub instruction.
7057 elfcpp::Swap<16, big_endian>::writeval(pov + 4, lazy_stub[i + 2]);
7058 pov += 6;
7059 i += 3;
7060 if (big_stub)
7061 {
7062 // LUI instruction of the big stub. Paste high 16 bits of the
7063 // dynsym index.
7064 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
7065 elfcpp::Swap<16, big_endian>::writeval(pov + 2,
7066 (sym->dynsym_index() >> 16) & 0x7fff);
7067 pov += 4;
7068 i += 2;
7069 }
7070 elfcpp::Swap<16, big_endian>::writeval(pov, lazy_stub[i]);
7071 // Last stub instruction. Paste low 16 bits of the dynsym index.
7072 elfcpp::Swap<16, big_endian>::writeval(pov + 2, lazy_stub[i + 1]);
7073 elfcpp::Swap<16, big_endian>::writeval(pov + 4,
7074 sym->dynsym_index() & 0xffff);
7075 pov += 6;
7076 }
7077 }
7078
7079 // We always allocate 20 bytes for every stub, because final dynsym count is
7080 // not known in method do_finalize_sections. There are 4 unused bytes per
7081 // stub if final dynsym count is less than 0x10000.
7082 unsigned int used = pov - oview;
7083 unsigned int unused = big_stub ? 0 : this->symbols_.size() * 4;
7084 gold_assert(static_cast<section_size_type>(used + unused) == oview_size);
7085
7086 // Fill the unused space with zeroes.
7087 // TODO(sasa): Can we strip unused bytes during the relaxation?
7088 if (unused > 0)
7089 memset(pov, 0, unused);
7090
7091 of->write_output_view(offset, oview_size, oview);
7092 }
7093
7094 // Mips_output_section_reginfo methods.
7095
7096 template<int size, bool big_endian>
7097 void
7098 Mips_output_section_reginfo<size, big_endian>::do_write(Output_file* of)
7099 {
7100 off_t offset = this->offset();
7101 off_t data_size = this->data_size();
7102
7103 unsigned char* view = of->get_output_view(offset, data_size);
7104 elfcpp::Swap<size, big_endian>::writeval(view, this->gprmask_);
7105 elfcpp::Swap<size, big_endian>::writeval(view + 4, this->cprmask1_);
7106 elfcpp::Swap<size, big_endian>::writeval(view + 8, this->cprmask2_);
7107 elfcpp::Swap<size, big_endian>::writeval(view + 12, this->cprmask3_);
7108 elfcpp::Swap<size, big_endian>::writeval(view + 16, this->cprmask4_);
7109 // Write the gp value.
7110 elfcpp::Swap<size, big_endian>::writeval(view + 20,
7111 this->target_->gp_value());
7112
7113 of->write_output_view(offset, data_size, view);
7114 }
7115
7116 // Mips_copy_relocs methods.
7117
7118 // Emit any saved relocs.
7119
7120 template<int sh_type, int size, bool big_endian>
7121 void
7122 Mips_copy_relocs<sh_type, size, big_endian>::emit_mips(
7123 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
7124 Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
7125 {
7126 for (typename Copy_relocs<sh_type, size, big_endian>::
7127 Copy_reloc_entries::iterator p = this->entries_.begin();
7128 p != this->entries_.end();
7129 ++p)
7130 emit_entry(*p, reloc_section, symtab, layout, target);
7131
7132 // We no longer need the saved information.
7133 this->entries_.clear();
7134 }
7135
7136 // Emit the reloc if appropriate.
7137
7138 template<int sh_type, int size, bool big_endian>
7139 void
7140 Mips_copy_relocs<sh_type, size, big_endian>::emit_entry(
7141 Copy_reloc_entry& entry,
7142 Output_data_reloc<sh_type, true, size, big_endian>* reloc_section,
7143 Symbol_table* symtab, Layout* layout, Target_mips<size, big_endian>* target)
7144 {
7145 // If the symbol is no longer defined in a dynamic object, then we
7146 // emitted a COPY relocation, and we do not want to emit this
7147 // dynamic relocation.
7148 if (!entry.sym_->is_from_dynobj())
7149 return;
7150
7151 bool can_make_dynamic = (entry.reloc_type_ == elfcpp::R_MIPS_32
7152 || entry.reloc_type_ == elfcpp::R_MIPS_REL32
7153 || entry.reloc_type_ == elfcpp::R_MIPS_64);
7154
7155 Mips_symbol<size>* sym = Mips_symbol<size>::as_mips_sym(entry.sym_);
7156 if (can_make_dynamic && !sym->has_static_relocs())
7157 {
7158 Mips_relobj<size, big_endian>* object =
7159 Mips_relobj<size, big_endian>::as_mips_relobj(entry.relobj_);
7160 target->got_section(symtab, layout)->record_global_got_symbol(
7161 sym, object, entry.reloc_type_, true, false);
7162 if (!symbol_references_local(sym, sym->should_add_dynsym_entry(symtab)))
7163 target->rel_dyn_section(layout)->add_global(sym, elfcpp::R_MIPS_REL32,
7164 entry.output_section_, entry.relobj_, entry.shndx_, entry.address_);
7165 else
7166 target->rel_dyn_section(layout)->add_symbolless_global_addend(
7167 sym, elfcpp::R_MIPS_REL32, entry.output_section_, entry.relobj_,
7168 entry.shndx_, entry.address_);
7169 }
7170 else
7171 this->make_copy_reloc(symtab, layout,
7172 static_cast<Sized_symbol<size>*>(entry.sym_),
7173 reloc_section);
7174 }
7175
7176 // Target_mips methods.
7177
7178 // Return the value to use for a dynamic symbol which requires special
7179 // treatment. This is how we support equality comparisons of function
7180 // pointers across shared library boundaries, as described in the
7181 // processor specific ABI supplement.
7182
7183 template<int size, bool big_endian>
7184 uint64_t
7185 Target_mips<size, big_endian>::do_dynsym_value(const Symbol* gsym) const
7186 {
7187 uint64_t value = 0;
7188 const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
7189
7190 if (!mips_sym->has_lazy_stub())
7191 {
7192 if (mips_sym->has_plt_offset())
7193 {
7194 // We distinguish between PLT entries and lazy-binding stubs by
7195 // giving the former an st_other value of STO_MIPS_PLT. Set the
7196 // value to the stub address if there are any relocations in the
7197 // binary where pointer equality matters.
7198 if (mips_sym->pointer_equality_needed())
7199 {
7200 // Prefer a standard MIPS PLT entry.
7201 if (mips_sym->has_mips_plt_offset())
7202 value = this->plt_section()->mips_entry_address(mips_sym);
7203 else
7204 value = this->plt_section()->comp_entry_address(mips_sym) + 1;
7205 }
7206 else
7207 value = 0;
7208 }
7209 }
7210 else
7211 {
7212 // First, set stub offsets for symbols. This method expects that the
7213 // number of entries in dynamic symbol table is set.
7214 this->mips_stubs_section()->set_lazy_stub_offsets();
7215
7216 // The run-time linker uses the st_value field of the symbol
7217 // to reset the global offset table entry for this external
7218 // to its stub address when unlinking a shared object.
7219 value = this->mips_stubs_section()->stub_address(mips_sym);
7220 }
7221
7222 if (mips_sym->has_mips16_fn_stub())
7223 {
7224 // If we have a MIPS16 function with a stub, the dynamic symbol must
7225 // refer to the stub, since only the stub uses the standard calling
7226 // conventions.
7227 value = mips_sym->template
7228 get_mips16_fn_stub<big_endian>()->output_address();
7229 }
7230
7231 return value;
7232 }
7233
7234 // Get the dynamic reloc section, creating it if necessary. It's always
7235 // .rel.dyn, even for MIPS64.
7236
7237 template<int size, bool big_endian>
7238 typename Target_mips<size, big_endian>::Reloc_section*
7239 Target_mips<size, big_endian>::rel_dyn_section(Layout* layout)
7240 {
7241 if (this->rel_dyn_ == NULL)
7242 {
7243 gold_assert(layout != NULL);
7244 this->rel_dyn_ = new Reloc_section(parameters->options().combreloc());
7245 layout->add_output_section_data(".rel.dyn", elfcpp::SHT_REL,
7246 elfcpp::SHF_ALLOC, this->rel_dyn_,
7247 ORDER_DYNAMIC_RELOCS, false);
7248
7249 // First entry in .rel.dyn has to be null.
7250 // This is hack - we define dummy output data and set its address to 0,
7251 // and define absolute R_MIPS_NONE relocation with offset 0 against it.
7252 // This ensures that the entry is null.
7253 Output_data* od = new Output_data_zero_fill(0, 0);
7254 od->set_address(0);
7255 this->rel_dyn_->add_absolute(elfcpp::R_MIPS_NONE, od, 0);
7256 }
7257 return this->rel_dyn_;
7258 }
7259
7260 // Get the GOT section, creating it if necessary.
7261
7262 template<int size, bool big_endian>
7263 Mips_output_data_got<size, big_endian>*
7264 Target_mips<size, big_endian>::got_section(Symbol_table* symtab,
7265 Layout* layout)
7266 {
7267 if (this->got_ == NULL)
7268 {
7269 gold_assert(symtab != NULL && layout != NULL);
7270
7271 this->got_ = new Mips_output_data_got<size, big_endian>(this, symtab,
7272 layout);
7273 layout->add_output_section_data(".got", elfcpp::SHT_PROGBITS,
7274 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE |
7275 elfcpp::SHF_MIPS_GPREL),
7276 this->got_, ORDER_DATA, false);
7277
7278 // Define _GLOBAL_OFFSET_TABLE_ at the start of the .got section.
7279 symtab->define_in_output_data("_GLOBAL_OFFSET_TABLE_", NULL,
7280 Symbol_table::PREDEFINED,
7281 this->got_,
7282 0, 0, elfcpp::STT_OBJECT,
7283 elfcpp::STB_GLOBAL,
7284 elfcpp::STV_DEFAULT, 0,
7285 false, false);
7286 }
7287
7288 return this->got_;
7289 }
7290
7291 // Calculate value of _gp symbol.
7292
7293 template<int size, bool big_endian>
7294 void
7295 Target_mips<size, big_endian>::set_gp(Layout* layout, Symbol_table* symtab)
7296 {
7297 if (this->gp_ != NULL)
7298 return;
7299
7300 Output_data* section = layout->find_output_section(".got");
7301 if (section == NULL)
7302 {
7303 // If there is no .got section, gp should be based on .sdata.
7304 // TODO(sasa): This is probably not needed. This was needed for older
7305 // MIPS architectures which accessed both GOT and .sdata section using
7306 // gp-relative addressing. Modern Mips Linux ELF architectures don't
7307 // access .sdata using gp-relative addressing.
7308 for (Layout::Section_list::const_iterator
7309 p = layout->section_list().begin();
7310 p != layout->section_list().end();
7311 ++p)
7312 {
7313 if (strcmp((*p)->name(), ".sdata") == 0)
7314 {
7315 section = *p;
7316 break;
7317 }
7318 }
7319 }
7320
7321 Sized_symbol<size>* gp =
7322 static_cast<Sized_symbol<size>*>(symtab->lookup("_gp"));
7323 if (gp != NULL)
7324 {
7325 if (gp->source() != Symbol::IS_CONSTANT && section != NULL)
7326 gp->init_output_data(gp->name(), NULL, section, MIPS_GP_OFFSET, 0,
7327 elfcpp::STT_OBJECT,
7328 elfcpp::STB_GLOBAL,
7329 elfcpp::STV_DEFAULT, 0,
7330 false, false);
7331 this->gp_ = gp;
7332 }
7333 else if (section != NULL)
7334 {
7335 gp = static_cast<Sized_symbol<size>*>(symtab->define_in_output_data(
7336 "_gp", NULL, Symbol_table::PREDEFINED,
7337 section, MIPS_GP_OFFSET, 0,
7338 elfcpp::STT_OBJECT,
7339 elfcpp::STB_GLOBAL,
7340 elfcpp::STV_DEFAULT,
7341 0, false, false));
7342 this->gp_ = gp;
7343 }
7344 }
7345
7346 // Set the dynamic symbol indexes. INDEX is the index of the first
7347 // global dynamic symbol. Pointers to the symbols are stored into the
7348 // vector SYMS. The names are added to DYNPOOL. This returns an
7349 // updated dynamic symbol index.
7350
7351 template<int size, bool big_endian>
7352 unsigned int
7353 Target_mips<size, big_endian>::do_set_dynsym_indexes(
7354 std::vector<Symbol*>* dyn_symbols, unsigned int index,
7355 std::vector<Symbol*>* syms, Stringpool* dynpool,
7356 Versions* versions, Symbol_table* symtab) const
7357 {
7358 std::vector<Symbol*> non_got_symbols;
7359 std::vector<Symbol*> got_symbols;
7360
7361 reorder_dyn_symbols<size, big_endian>(dyn_symbols, &non_got_symbols,
7362 &got_symbols);
7363
7364 for (std::vector<Symbol*>::iterator p = non_got_symbols.begin();
7365 p != non_got_symbols.end();
7366 ++p)
7367 {
7368 Symbol* sym = *p;
7369
7370 // Note that SYM may already have a dynamic symbol index, since
7371 // some symbols appear more than once in the symbol table, with
7372 // and without a version.
7373
7374 if (!sym->has_dynsym_index())
7375 {
7376 sym->set_dynsym_index(index);
7377 ++index;
7378 syms->push_back(sym);
7379 dynpool->add(sym->name(), false, NULL);
7380
7381 // Record any version information.
7382 if (sym->version() != NULL)
7383 versions->record_version(symtab, dynpool, sym);
7384
7385 // If the symbol is defined in a dynamic object and is
7386 // referenced in a regular object, then mark the dynamic
7387 // object as needed. This is used to implement --as-needed.
7388 if (sym->is_from_dynobj() && sym->in_reg())
7389 sym->object()->set_is_needed();
7390 }
7391 }
7392
7393 for (std::vector<Symbol*>::iterator p = got_symbols.begin();
7394 p != got_symbols.end();
7395 ++p)
7396 {
7397 Symbol* sym = *p;
7398 if (!sym->has_dynsym_index())
7399 {
7400 // Record any version information.
7401 if (sym->version() != NULL)
7402 versions->record_version(symtab, dynpool, sym);
7403 }
7404 }
7405
7406 index = versions->finalize(symtab, index, syms);
7407
7408 int got_sym_count = 0;
7409 for (std::vector<Symbol*>::iterator p = got_symbols.begin();
7410 p != got_symbols.end();
7411 ++p)
7412 {
7413 Symbol* sym = *p;
7414
7415 if (!sym->has_dynsym_index())
7416 {
7417 ++got_sym_count;
7418 sym->set_dynsym_index(index);
7419 ++index;
7420 syms->push_back(sym);
7421 dynpool->add(sym->name(), false, NULL);
7422
7423 // If the symbol is defined in a dynamic object and is
7424 // referenced in a regular object, then mark the dynamic
7425 // object as needed. This is used to implement --as-needed.
7426 if (sym->is_from_dynobj() && sym->in_reg())
7427 sym->object()->set_is_needed();
7428 }
7429 }
7430
7431 // Set index of the first symbol that has .got entry.
7432 this->got_->set_first_global_got_dynsym_index(
7433 got_sym_count > 0 ? index - got_sym_count : -1U);
7434
7435 if (this->mips_stubs_ != NULL)
7436 this->mips_stubs_->set_dynsym_count(index);
7437
7438 return index;
7439 }
7440
7441 // Create a PLT entry for a global symbol referenced by r_type relocation.
7442
7443 template<int size, bool big_endian>
7444 void
7445 Target_mips<size, big_endian>::make_plt_entry(Symbol_table* symtab,
7446 Layout* layout,
7447 Mips_symbol<size>* gsym,
7448 unsigned int r_type)
7449 {
7450 if (gsym->has_lazy_stub() || gsym->has_plt_offset())
7451 return;
7452
7453 if (this->plt_ == NULL)
7454 {
7455 // Create the GOT section first.
7456 this->got_section(symtab, layout);
7457
7458 this->got_plt_ = new Output_data_space(4, "** GOT PLT");
7459 layout->add_output_section_data(".got.plt", elfcpp::SHT_PROGBITS,
7460 (elfcpp::SHF_ALLOC | elfcpp::SHF_WRITE),
7461 this->got_plt_, ORDER_DATA, false);
7462
7463 // The first two entries are reserved.
7464 this->got_plt_->set_current_data_size(2 * size/8);
7465
7466 this->plt_ = new Mips_output_data_plt<size, big_endian>(layout,
7467 this->got_plt_,
7468 this);
7469 layout->add_output_section_data(".plt", elfcpp::SHT_PROGBITS,
7470 (elfcpp::SHF_ALLOC
7471 | elfcpp::SHF_EXECINSTR),
7472 this->plt_, ORDER_PLT, false);
7473 }
7474
7475 this->plt_->add_entry(gsym, r_type);
7476 }
7477
7478
7479 // Get the .MIPS.stubs section, creating it if necessary.
7480
7481 template<int size, bool big_endian>
7482 Mips_output_data_mips_stubs<size, big_endian>*
7483 Target_mips<size, big_endian>::mips_stubs_section(Layout* layout)
7484 {
7485 if (this->mips_stubs_ == NULL)
7486 {
7487 this->mips_stubs_ =
7488 new Mips_output_data_mips_stubs<size, big_endian>(this);
7489 layout->add_output_section_data(".MIPS.stubs", elfcpp::SHT_PROGBITS,
7490 (elfcpp::SHF_ALLOC
7491 | elfcpp::SHF_EXECINSTR),
7492 this->mips_stubs_, ORDER_PLT, false);
7493 }
7494 return this->mips_stubs_;
7495 }
7496
7497 // Get the LA25 stub section, creating it if necessary.
7498
7499 template<int size, bool big_endian>
7500 Mips_output_data_la25_stub<size, big_endian>*
7501 Target_mips<size, big_endian>::la25_stub_section(Layout* layout)
7502 {
7503 if (this->la25_stub_ == NULL)
7504 {
7505 this->la25_stub_ = new Mips_output_data_la25_stub<size, big_endian>();
7506 layout->add_output_section_data(".text", elfcpp::SHT_PROGBITS,
7507 (elfcpp::SHF_ALLOC
7508 | elfcpp::SHF_EXECINSTR),
7509 this->la25_stub_, ORDER_TEXT, false);
7510 }
7511 return this->la25_stub_;
7512 }
7513
7514 // Process the relocations to determine unreferenced sections for
7515 // garbage collection.
7516
7517 template<int size, bool big_endian>
7518 void
7519 Target_mips<size, big_endian>::gc_process_relocs(
7520 Symbol_table* symtab,
7521 Layout* layout,
7522 Sized_relobj_file<size, big_endian>* object,
7523 unsigned int data_shndx,
7524 unsigned int,
7525 const unsigned char* prelocs,
7526 size_t reloc_count,
7527 Output_section* output_section,
7528 bool needs_special_offset_handling,
7529 size_t local_symbol_count,
7530 const unsigned char* plocal_symbols)
7531 {
7532 typedef Target_mips<size, big_endian> Mips;
7533 typedef typename Target_mips<size, big_endian>::Scan Scan;
7534
7535 gold::gc_process_relocs<size, big_endian, Mips, elfcpp::SHT_REL, Scan,
7536 typename Target_mips::Relocatable_size_for_reloc>(
7537 symtab,
7538 layout,
7539 this,
7540 object,
7541 data_shndx,
7542 prelocs,
7543 reloc_count,
7544 output_section,
7545 needs_special_offset_handling,
7546 local_symbol_count,
7547 plocal_symbols);
7548 }
7549
7550 // Scan relocations for a section.
7551
7552 template<int size, bool big_endian>
7553 void
7554 Target_mips<size, big_endian>::scan_relocs(
7555 Symbol_table* symtab,
7556 Layout* layout,
7557 Sized_relobj_file<size, big_endian>* object,
7558 unsigned int data_shndx,
7559 unsigned int sh_type,
7560 const unsigned char* prelocs,
7561 size_t reloc_count,
7562 Output_section* output_section,
7563 bool needs_special_offset_handling,
7564 size_t local_symbol_count,
7565 const unsigned char* plocal_symbols)
7566 {
7567 typedef Target_mips<size, big_endian> Mips;
7568 typedef typename Target_mips<size, big_endian>::Scan Scan;
7569
7570 if (sh_type == elfcpp::SHT_REL)
7571 gold::scan_relocs<size, big_endian, Mips, elfcpp::SHT_REL, Scan>(
7572 symtab,
7573 layout,
7574 this,
7575 object,
7576 data_shndx,
7577 prelocs,
7578 reloc_count,
7579 output_section,
7580 needs_special_offset_handling,
7581 local_symbol_count,
7582 plocal_symbols);
7583 else if (sh_type == elfcpp::SHT_RELA)
7584 gold::scan_relocs<size, big_endian, Mips, elfcpp::SHT_RELA, Scan>(
7585 symtab,
7586 layout,
7587 this,
7588 object,
7589 data_shndx,
7590 prelocs,
7591 reloc_count,
7592 output_section,
7593 needs_special_offset_handling,
7594 local_symbol_count,
7595 plocal_symbols);
7596 }
7597
7598 template<int size, bool big_endian>
7599 bool
7600 Target_mips<size, big_endian>::mips_32bit_flags(elfcpp::Elf_Word flags)
7601 {
7602 return ((flags & elfcpp::EF_MIPS_32BITMODE) != 0
7603 || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_O32
7604 || (flags & elfcpp::EF_MIPS_ABI) == elfcpp::E_MIPS_ABI_EABI32
7605 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_1
7606 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_2
7607 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32
7608 || (flags & elfcpp::EF_MIPS_ARCH) == elfcpp::E_MIPS_ARCH_32R2);
7609 }
7610
7611 // Return the MACH for a MIPS e_flags value.
7612 template<int size, bool big_endian>
7613 unsigned int
7614 Target_mips<size, big_endian>::elf_mips_mach(elfcpp::Elf_Word flags)
7615 {
7616 switch (flags & elfcpp::EF_MIPS_MACH)
7617 {
7618 case elfcpp::E_MIPS_MACH_3900:
7619 return mach_mips3900;
7620
7621 case elfcpp::E_MIPS_MACH_4010:
7622 return mach_mips4010;
7623
7624 case elfcpp::E_MIPS_MACH_4100:
7625 return mach_mips4100;
7626
7627 case elfcpp::E_MIPS_MACH_4111:
7628 return mach_mips4111;
7629
7630 case elfcpp::E_MIPS_MACH_4120:
7631 return mach_mips4120;
7632
7633 case elfcpp::E_MIPS_MACH_4650:
7634 return mach_mips4650;
7635
7636 case elfcpp::E_MIPS_MACH_5400:
7637 return mach_mips5400;
7638
7639 case elfcpp::E_MIPS_MACH_5500:
7640 return mach_mips5500;
7641
7642 case elfcpp::E_MIPS_MACH_9000:
7643 return mach_mips9000;
7644
7645 case elfcpp::E_MIPS_MACH_SB1:
7646 return mach_mips_sb1;
7647
7648 case elfcpp::E_MIPS_MACH_LS2E:
7649 return mach_mips_loongson_2e;
7650
7651 case elfcpp::E_MIPS_MACH_LS2F:
7652 return mach_mips_loongson_2f;
7653
7654 case elfcpp::E_MIPS_MACH_LS3A:
7655 return mach_mips_loongson_3a;
7656
7657 case elfcpp::E_MIPS_MACH_OCTEON2:
7658 return mach_mips_octeon2;
7659
7660 case elfcpp::E_MIPS_MACH_OCTEON:
7661 return mach_mips_octeon;
7662
7663 case elfcpp::E_MIPS_MACH_XLR:
7664 return mach_mips_xlr;
7665
7666 default:
7667 switch (flags & elfcpp::EF_MIPS_ARCH)
7668 {
7669 default:
7670 case elfcpp::E_MIPS_ARCH_1:
7671 return mach_mips3000;
7672
7673 case elfcpp::E_MIPS_ARCH_2:
7674 return mach_mips6000;
7675
7676 case elfcpp::E_MIPS_ARCH_3:
7677 return mach_mips4000;
7678
7679 case elfcpp::E_MIPS_ARCH_4:
7680 return mach_mips8000;
7681
7682 case elfcpp::E_MIPS_ARCH_5:
7683 return mach_mips5;
7684
7685 case elfcpp::E_MIPS_ARCH_32:
7686 return mach_mipsisa32;
7687
7688 case elfcpp::E_MIPS_ARCH_64:
7689 return mach_mipsisa64;
7690
7691 case elfcpp::E_MIPS_ARCH_32R2:
7692 return mach_mipsisa32r2;
7693
7694 case elfcpp::E_MIPS_ARCH_64R2:
7695 return mach_mipsisa64r2;
7696 }
7697 }
7698
7699 return 0;
7700 }
7701
7702 // Check whether machine EXTENSION is an extension of machine BASE.
7703 template<int size, bool big_endian>
7704 bool
7705 Target_mips<size, big_endian>::mips_mach_extends(unsigned int base,
7706 unsigned int extension)
7707 {
7708 if (extension == base)
7709 return true;
7710
7711 if ((base == mach_mipsisa32)
7712 && this->mips_mach_extends(mach_mipsisa64, extension))
7713 return true;
7714
7715 if ((base == mach_mipsisa32r2)
7716 && this->mips_mach_extends(mach_mipsisa64r2, extension))
7717 return true;
7718
7719 for (unsigned int i = 0; i < this->mips_mach_extensions_.size(); ++i)
7720 if (extension == this->mips_mach_extensions_[i].first)
7721 {
7722 extension = this->mips_mach_extensions_[i].second;
7723 if (extension == base)
7724 return true;
7725 }
7726
7727 return false;
7728 }
7729
7730 template<int size, bool big_endian>
7731 void
7732 Target_mips<size, big_endian>::merge_processor_specific_flags(
7733 const std::string& name, elfcpp::Elf_Word in_flags,
7734 unsigned char in_ei_class, bool dyn_obj)
7735 {
7736 // If flags are not set yet, just copy them.
7737 if (!this->are_processor_specific_flags_set())
7738 {
7739 this->set_processor_specific_flags(in_flags);
7740 this->ei_class_ = in_ei_class;
7741 this->mach_ = this->elf_mips_mach(in_flags);
7742 return;
7743 }
7744
7745 elfcpp::Elf_Word new_flags = in_flags;
7746 elfcpp::Elf_Word old_flags = this->processor_specific_flags();
7747 elfcpp::Elf_Word merged_flags = this->processor_specific_flags();
7748 merged_flags |= new_flags & elfcpp::EF_MIPS_NOREORDER;
7749
7750 // Check flag compatibility.
7751 new_flags &= ~elfcpp::EF_MIPS_NOREORDER;
7752 old_flags &= ~elfcpp::EF_MIPS_NOREORDER;
7753
7754 // Some IRIX 6 BSD-compatibility objects have this bit set. It
7755 // doesn't seem to matter.
7756 new_flags &= ~elfcpp::EF_MIPS_XGOT;
7757 old_flags &= ~elfcpp::EF_MIPS_XGOT;
7758
7759 // MIPSpro generates ucode info in n64 objects. Again, we should
7760 // just be able to ignore this.
7761 new_flags &= ~elfcpp::EF_MIPS_UCODE;
7762 old_flags &= ~elfcpp::EF_MIPS_UCODE;
7763
7764 // DSOs should only be linked with CPIC code.
7765 if (dyn_obj)
7766 new_flags |= elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC;
7767
7768 if (new_flags == old_flags)
7769 {
7770 this->set_processor_specific_flags(merged_flags);
7771 return;
7772 }
7773
7774 if (((new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0)
7775 != ((old_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC)) != 0))
7776 gold_warning(_("%s: linking abicalls files with non-abicalls files"),
7777 name.c_str());
7778
7779 if (new_flags & (elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC))
7780 merged_flags |= elfcpp::EF_MIPS_CPIC;
7781 if (!(new_flags & elfcpp::EF_MIPS_PIC))
7782 merged_flags &= ~elfcpp::EF_MIPS_PIC;
7783
7784 new_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);
7785 old_flags &= ~(elfcpp::EF_MIPS_PIC | elfcpp::EF_MIPS_CPIC);
7786
7787 // Compare the ISAs.
7788 if (mips_32bit_flags(old_flags) != mips_32bit_flags(new_flags))
7789 gold_error(_("%s: linking 32-bit code with 64-bit code"), name.c_str());
7790 else if (!this->mips_mach_extends(this->elf_mips_mach(in_flags), this->mach_))
7791 {
7792 // Output ISA isn't the same as, or an extension of, input ISA.
7793 if (this->mips_mach_extends(this->mach_, this->elf_mips_mach(in_flags)))
7794 {
7795 // Copy the architecture info from input object to output. Also copy
7796 // the 32-bit flag (if set) so that we continue to recognise
7797 // output as a 32-bit binary.
7798 this->mach_ = this->elf_mips_mach(in_flags);
7799 merged_flags &= ~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH);
7800 merged_flags |= (new_flags & (elfcpp::EF_MIPS_ARCH
7801 | elfcpp::EF_MIPS_MACH | elfcpp::EF_MIPS_32BITMODE));
7802
7803 // Copy across the ABI flags if output doesn't use them
7804 // and if that was what caused us to treat input object as 32-bit.
7805 if ((old_flags & elfcpp::EF_MIPS_ABI) == 0
7806 && this->mips_32bit_flags(new_flags)
7807 && !this->mips_32bit_flags(new_flags & ~elfcpp::EF_MIPS_ABI))
7808 merged_flags |= new_flags & elfcpp::EF_MIPS_ABI;
7809 }
7810 else
7811 // The ISAs aren't compatible.
7812 gold_error(_("%s: linking %s module with previous %s modules"),
7813 name.c_str(), this->elf_mips_mach_name(in_flags),
7814 this->elf_mips_mach_name(merged_flags));
7815 }
7816
7817 new_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
7818 | elfcpp::EF_MIPS_32BITMODE));
7819 old_flags &= (~(elfcpp::EF_MIPS_ARCH | elfcpp::EF_MIPS_MACH
7820 | elfcpp::EF_MIPS_32BITMODE));
7821
7822 // Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it does set
7823 // EI_CLASS differently from any 32-bit ABI.
7824 if ((new_flags & elfcpp::EF_MIPS_ABI) != (old_flags & elfcpp::EF_MIPS_ABI)
7825 || (in_ei_class != this->ei_class_))
7826 {
7827 // Only error if both are set (to different values).
7828 if (((new_flags & elfcpp::EF_MIPS_ABI)
7829 && (old_flags & elfcpp::EF_MIPS_ABI))
7830 || (in_ei_class != this->ei_class_))
7831 gold_error(_("%s: ABI mismatch: linking %s module with "
7832 "previous %s modules"), name.c_str(),
7833 this->elf_mips_abi_name(in_flags, in_ei_class),
7834 this->elf_mips_abi_name(merged_flags, this->ei_class_));
7835
7836 new_flags &= ~elfcpp::EF_MIPS_ABI;
7837 old_flags &= ~elfcpp::EF_MIPS_ABI;
7838 }
7839
7840 // Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
7841 // and allow arbitrary mixing of the remaining ASEs (retain the union).
7842 if ((new_flags & elfcpp::EF_MIPS_ARCH_ASE)
7843 != (old_flags & elfcpp::EF_MIPS_ARCH_ASE))
7844 {
7845 int old_micro = old_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
7846 int new_micro = new_flags & elfcpp::EF_MIPS_ARCH_ASE_MICROMIPS;
7847 int old_m16 = old_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
7848 int new_m16 = new_flags & elfcpp::EF_MIPS_ARCH_ASE_M16;
7849 int micro_mis = old_m16 && new_micro;
7850 int m16_mis = old_micro && new_m16;
7851
7852 if (m16_mis || micro_mis)
7853 gold_error(_("%s: ASE mismatch: linking %s module with "
7854 "previous %s modules"), name.c_str(),
7855 m16_mis ? "MIPS16" : "microMIPS",
7856 m16_mis ? "microMIPS" : "MIPS16");
7857
7858 merged_flags |= new_flags & elfcpp::EF_MIPS_ARCH_ASE;
7859
7860 new_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
7861 old_flags &= ~ elfcpp::EF_MIPS_ARCH_ASE;
7862 }
7863
7864 // Warn about any other mismatches.
7865 if (new_flags != old_flags)
7866 gold_error(_("%s: uses different e_flags (0x%x) fields than previous "
7867 "modules (0x%x)"), name.c_str(), new_flags, old_flags);
7868
7869 this->set_processor_specific_flags(merged_flags);
7870 }
7871
7872 // Adjust ELF file header.
7873
7874 template<int size, bool big_endian>
7875 void
7876 Target_mips<size, big_endian>::do_adjust_elf_header(
7877 unsigned char* view,
7878 int len)
7879 {
7880 gold_assert(len == elfcpp::Elf_sizes<size>::ehdr_size);
7881
7882 elfcpp::Ehdr<size, big_endian> ehdr(view);
7883 unsigned char e_ident[elfcpp::EI_NIDENT];
7884 memcpy(e_ident, ehdr.get_e_ident(), elfcpp::EI_NIDENT);
7885
7886 e_ident[elfcpp::EI_CLASS] = this->ei_class_;
7887
7888 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
7889 oehdr.put_e_ident(e_ident);
7890 if (this->entry_symbol_is_compressed_)
7891 oehdr.put_e_entry(ehdr.get_e_entry() + 1);
7892 }
7893
7894 // do_make_elf_object to override the same function in the base class.
7895 // We need to use a target-specific sub-class of
7896 // Sized_relobj_file<size, big_endian> to store Mips specific information.
7897 // Hence we need to have our own ELF object creation.
7898
7899 template<int size, bool big_endian>
7900 Object*
7901 Target_mips<size, big_endian>::do_make_elf_object(
7902 const std::string& name,
7903 Input_file* input_file,
7904 off_t offset, const elfcpp::Ehdr<size, big_endian>& ehdr)
7905 {
7906 int et = ehdr.get_e_type();
7907 // ET_EXEC files are valid input for --just-symbols/-R,
7908 // and we treat them as relocatable objects.
7909 if (et == elfcpp::ET_REL
7910 || (et == elfcpp::ET_EXEC && input_file->just_symbols()))
7911 {
7912 Mips_relobj<size, big_endian>* obj =
7913 new Mips_relobj<size, big_endian>(name, input_file, offset, ehdr);
7914 obj->setup();
7915 return obj;
7916 }
7917 else if (et == elfcpp::ET_DYN)
7918 {
7919 // TODO(sasa): Should we create Mips_dynobj?
7920 return Target::do_make_elf_object(name, input_file, offset, ehdr);
7921 }
7922 else
7923 {
7924 gold_error(_("%s: unsupported ELF file type %d"),
7925 name.c_str(), et);
7926 return NULL;
7927 }
7928 }
7929
7930 // Finalize the sections.
7931
7932 template <int size, bool big_endian>
7933 void
7934 Target_mips<size, big_endian>::do_finalize_sections(Layout* layout,
7935 const Input_objects* input_objects,
7936 Symbol_table* symtab)
7937 {
7938 // Add +1 to MIPS16 and microMIPS init_ and _fini symbols so that DT_INIT and
7939 // DT_FINI have correct values.
7940 Mips_symbol<size>* init = static_cast<Mips_symbol<size>*>(
7941 symtab->lookup(parameters->options().init()));
7942 if (init != NULL && (init->is_mips16() || init->is_micromips()))
7943 init->set_value(init->value() | 1);
7944 Mips_symbol<size>* fini = static_cast<Mips_symbol<size>*>(
7945 symtab->lookup(parameters->options().fini()));
7946 if (fini != NULL && (fini->is_mips16() || fini->is_micromips()))
7947 fini->set_value(fini->value() | 1);
7948
7949 // Check whether the entry symbol is mips16 or micromips. This is needed to
7950 // adjust entry address in ELF header.
7951 Mips_symbol<size>* entry =
7952 static_cast<Mips_symbol<size>*>(symtab->lookup(this->entry_symbol_name()));
7953 this->entry_symbol_is_compressed_ = (entry != NULL && (entry->is_mips16()
7954 || entry->is_micromips()));
7955
7956 if (!parameters->doing_static_link()
7957 && (strcmp(parameters->options().hash_style(), "gnu") == 0
7958 || strcmp(parameters->options().hash_style(), "both") == 0))
7959 {
7960 // .gnu.hash and the MIPS ABI require .dynsym to be sorted in different
7961 // ways. .gnu.hash needs symbols to be grouped by hash code whereas the
7962 // MIPS ABI requires a mapping between the GOT and the symbol table.
7963 gold_error(".gnu.hash is incompatible with the MIPS ABI");
7964 }
7965
7966 // Check whether the final section that was scanned has HI16 or GOT16
7967 // relocations without the corresponding LO16 part.
7968 if (this->got16_addends_.size() > 0)
7969 gold_error("Can't find matching LO16 reloc");
7970
7971 // Set _gp value.
7972 this->set_gp(layout, symtab);
7973
7974 // Check for any mips16 stub sections that we can discard.
7975 if (!parameters->options().relocatable())
7976 {
7977 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
7978 p != input_objects->relobj_end();
7979 ++p)
7980 {
7981 Mips_relobj<size, big_endian>* object =
7982 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
7983 object->discard_mips16_stub_sections(symtab);
7984 }
7985 }
7986
7987 // Merge processor-specific flags.
7988 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
7989 p != input_objects->relobj_end();
7990 ++p)
7991 {
7992 Mips_relobj<size, big_endian>* relobj =
7993 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
7994
7995 Input_file::Format format = relobj->input_file()->format();
7996 if (format == Input_file::FORMAT_ELF)
7997 {
7998 // Read processor-specific flags in ELF file header.
7999 const unsigned char* pehdr = relobj->get_view(
8000 elfcpp::file_header_offset,
8001 elfcpp::Elf_sizes<size>::ehdr_size,
8002 true, false);
8003
8004 elfcpp::Ehdr<size, big_endian> ehdr(pehdr);
8005 elfcpp::Elf_Word in_flags = ehdr.get_e_flags();
8006 unsigned char ei_class = ehdr.get_e_ident()[elfcpp::EI_CLASS];
8007
8008 this->merge_processor_specific_flags(relobj->name(), in_flags,
8009 ei_class, false);
8010 }
8011 }
8012
8013 for (Input_objects::Dynobj_iterator p = input_objects->dynobj_begin();
8014 p != input_objects->dynobj_end();
8015 ++p)
8016 {
8017 Sized_dynobj<size, big_endian>* dynobj =
8018 static_cast<Sized_dynobj<size, big_endian>*>(*p);
8019
8020 // Read processor-specific flags.
8021 const unsigned char* pehdr = dynobj->get_view(elfcpp::file_header_offset,
8022 elfcpp::Elf_sizes<size>::ehdr_size,
8023 true, false);
8024
8025 elfcpp::Ehdr<size, big_endian> ehdr(pehdr);
8026 elfcpp::Elf_Word in_flags = ehdr.get_e_flags();
8027 unsigned char ei_class = ehdr.get_e_ident()[elfcpp::EI_CLASS];
8028
8029 this->merge_processor_specific_flags(dynobj->name(), in_flags, ei_class,
8030 true);
8031 }
8032
8033 // Merge .reginfo contents of input objects.
8034 Valtype gprmask = 0;
8035 Valtype cprmask1 = 0;
8036 Valtype cprmask2 = 0;
8037 Valtype cprmask3 = 0;
8038 Valtype cprmask4 = 0;
8039 for (Input_objects::Relobj_iterator p = input_objects->relobj_begin();
8040 p != input_objects->relobj_end();
8041 ++p)
8042 {
8043 Mips_relobj<size, big_endian>* relobj =
8044 Mips_relobj<size, big_endian>::as_mips_relobj(*p);
8045
8046 gprmask |= relobj->gprmask();
8047 cprmask1 |= relobj->cprmask1();
8048 cprmask2 |= relobj->cprmask2();
8049 cprmask3 |= relobj->cprmask3();
8050 cprmask4 |= relobj->cprmask4();
8051 }
8052
8053 if (this->plt_ != NULL)
8054 {
8055 // Set final PLT offsets for symbols.
8056 this->plt_section()->set_plt_offsets();
8057
8058 // Define _PROCEDURE_LINKAGE_TABLE_ at the start of the .plt section.
8059 // Set STO_MICROMIPS flag if the output has microMIPS code, but only if
8060 // there are no standard PLT entries present.
8061 unsigned char nonvis = 0;
8062 if (this->is_output_micromips()
8063 && !this->plt_section()->has_standard_entries())
8064 nonvis = elfcpp::STO_MICROMIPS >> 2;
8065 symtab->define_in_output_data("_PROCEDURE_LINKAGE_TABLE_", NULL,
8066 Symbol_table::PREDEFINED,
8067 this->plt_,
8068 0, 0, elfcpp::STT_FUNC,
8069 elfcpp::STB_LOCAL,
8070 elfcpp::STV_DEFAULT, nonvis,
8071 false, false);
8072 }
8073
8074 if (this->mips_stubs_ != NULL)
8075 {
8076 // Define _MIPS_STUBS_ at the start of the .MIPS.stubs section.
8077 unsigned char nonvis = 0;
8078 if (this->is_output_micromips())
8079 nonvis = elfcpp::STO_MICROMIPS >> 2;
8080 symtab->define_in_output_data("_MIPS_STUBS_", NULL,
8081 Symbol_table::PREDEFINED,
8082 this->mips_stubs_,
8083 0, 0, elfcpp::STT_FUNC,
8084 elfcpp::STB_LOCAL,
8085 elfcpp::STV_DEFAULT, nonvis,
8086 false, false);
8087 }
8088
8089 if (!parameters->options().relocatable() && !parameters->doing_static_link())
8090 // In case there is no .got section, create one.
8091 this->got_section(symtab, layout);
8092
8093 // Emit any relocs we saved in an attempt to avoid generating COPY
8094 // relocs.
8095 if (this->copy_relocs_.any_saved_relocs())
8096 this->copy_relocs_.emit_mips(this->rel_dyn_section(layout), symtab, layout,
8097 this);
8098
8099 // Emit dynamic relocs.
8100 for (typename std::vector<Dyn_reloc>::iterator p = this->dyn_relocs_.begin();
8101 p != this->dyn_relocs_.end();
8102 ++p)
8103 p->emit(this->rel_dyn_section(layout), this->got_section(), symtab);
8104
8105 if (this->has_got_section())
8106 this->got_section()->lay_out_got(layout, symtab, input_objects);
8107
8108 if (this->mips_stubs_ != NULL)
8109 this->mips_stubs_->set_needs_dynsym_value();
8110
8111 // Check for functions that might need $25 to be valid on entry.
8112 // TODO(sasa): Can we do this without iterating over all symbols?
8113 typedef Symbol_visitor_check_symbols<size, big_endian> Symbol_visitor;
8114 symtab->for_all_symbols<size, Symbol_visitor>(Symbol_visitor(this, layout,
8115 symtab));
8116
8117 // Add NULL segment.
8118 if (!parameters->options().relocatable())
8119 layout->make_output_segment(elfcpp::PT_NULL, 0);
8120
8121 for (Layout::Section_list::const_iterator p = layout->section_list().begin();
8122 p != layout->section_list().end();
8123 ++p)
8124 {
8125 if ((*p)->type() == elfcpp::SHT_MIPS_REGINFO)
8126 {
8127 Mips_output_section_reginfo<size, big_endian>* reginfo =
8128 Mips_output_section_reginfo<size, big_endian>::
8129 as_mips_output_section_reginfo(*p);
8130
8131 reginfo->set_masks(gprmask, cprmask1, cprmask2, cprmask3, cprmask4);
8132
8133 if (!parameters->options().relocatable())
8134 {
8135 Output_segment* reginfo_segment =
8136 layout->make_output_segment(elfcpp::PT_MIPS_REGINFO,
8137 elfcpp::PF_R);
8138 reginfo_segment->add_output_section_to_nonload(reginfo,
8139 elfcpp::PF_R);
8140 }
8141 }
8142 }
8143
8144 // Fill in some more dynamic tags.
8145 // TODO(sasa): Add more dynamic tags.
8146 const Reloc_section* rel_plt = (this->plt_ == NULL
8147 ? NULL : this->plt_->rel_plt());
8148 layout->add_target_dynamic_tags(true, this->got_, rel_plt,
8149 this->rel_dyn_, true, false);
8150
8151 Output_data_dynamic* const odyn = layout->dynamic_data();
8152 if (odyn != NULL
8153 && !parameters->options().relocatable()
8154 && !parameters->doing_static_link())
8155 {
8156 unsigned int d_val;
8157 // This element holds a 32-bit version id for the Runtime
8158 // Linker Interface. This will start at integer value 1.
8159 d_val = 0x01;
8160 odyn->add_constant(elfcpp::DT_MIPS_RLD_VERSION, d_val);
8161
8162 // Dynamic flags
8163 d_val = elfcpp::RHF_NOTPOT;
8164 odyn->add_constant(elfcpp::DT_MIPS_FLAGS, d_val);
8165
8166 // Save layout for using when emiting custom dynamic tags.
8167 this->layout_ = layout;
8168
8169 // This member holds the base address of the segment.
8170 odyn->add_custom(elfcpp::DT_MIPS_BASE_ADDRESS);
8171
8172 // This member holds the number of entries in the .dynsym section.
8173 odyn->add_custom(elfcpp::DT_MIPS_SYMTABNO);
8174
8175 // This member holds the index of the first dynamic symbol
8176 // table entry that corresponds to an entry in the global offset table.
8177 odyn->add_custom(elfcpp::DT_MIPS_GOTSYM);
8178
8179 // This member holds the number of local GOT entries.
8180 odyn->add_constant(elfcpp::DT_MIPS_LOCAL_GOTNO,
8181 this->got_->get_local_gotno());
8182
8183 if (this->plt_ != NULL)
8184 // DT_MIPS_PLTGOT dynamic tag
8185 odyn->add_section_address(elfcpp::DT_MIPS_PLTGOT, this->got_plt_);
8186 }
8187 }
8188
8189 // Get the custom dynamic tag value.
8190 template<int size, bool big_endian>
8191 unsigned int
8192 Target_mips<size, big_endian>::do_dynamic_tag_custom_value(elfcpp::DT tag) const
8193 {
8194 switch (tag)
8195 {
8196 case elfcpp::DT_MIPS_BASE_ADDRESS:
8197 {
8198 // The base address of the segment.
8199 // At this point, the segment list has been sorted into final order,
8200 // so just return vaddr of the first readable PT_LOAD segment.
8201 Output_segment* seg =
8202 this->layout_->find_output_segment(elfcpp::PT_LOAD, elfcpp::PF_R, 0);
8203 gold_assert(seg != NULL);
8204 return seg->vaddr();
8205 }
8206
8207 case elfcpp::DT_MIPS_SYMTABNO:
8208 // The number of entries in the .dynsym section.
8209 return this->get_dt_mips_symtabno();
8210
8211 case elfcpp::DT_MIPS_GOTSYM:
8212 {
8213 // The index of the first dynamic symbol table entry that corresponds
8214 // to an entry in the GOT.
8215 if (this->got_->first_global_got_dynsym_index() != -1U)
8216 return this->got_->first_global_got_dynsym_index();
8217 else
8218 // In case if we don't have global GOT symbols we default to setting
8219 // DT_MIPS_GOTSYM to the same value as DT_MIPS_SYMTABNO.
8220 return this->get_dt_mips_symtabno();
8221 }
8222
8223 default:
8224 gold_error(_("Unknown dynamic tag 0x%x"), (unsigned int)tag);
8225 }
8226
8227 return (unsigned int)-1;
8228 }
8229
8230 // Relocate section data.
8231
8232 template<int size, bool big_endian>
8233 void
8234 Target_mips<size, big_endian>::relocate_section(
8235 const Relocate_info<size, big_endian>* relinfo,
8236 unsigned int sh_type,
8237 const unsigned char* prelocs,
8238 size_t reloc_count,
8239 Output_section* output_section,
8240 bool needs_special_offset_handling,
8241 unsigned char* view,
8242 Mips_address address,
8243 section_size_type view_size,
8244 const Reloc_symbol_changes* reloc_symbol_changes)
8245 {
8246 typedef Target_mips<size, big_endian> Mips;
8247 typedef typename Target_mips<size, big_endian>::Relocate Mips_relocate;
8248
8249 if (sh_type == elfcpp::SHT_REL)
8250 gold::relocate_section<size, big_endian, Mips, elfcpp::SHT_REL,
8251 Mips_relocate, gold::Default_comdat_behavior>(
8252 relinfo,
8253 this,
8254 prelocs,
8255 reloc_count,
8256 output_section,
8257 needs_special_offset_handling,
8258 view,
8259 address,
8260 view_size,
8261 reloc_symbol_changes);
8262 else if (sh_type == elfcpp::SHT_RELA)
8263 gold::relocate_section<size, big_endian, Mips, elfcpp::SHT_RELA,
8264 Mips_relocate, gold::Default_comdat_behavior>(
8265 relinfo,
8266 this,
8267 prelocs,
8268 reloc_count,
8269 output_section,
8270 needs_special_offset_handling,
8271 view,
8272 address,
8273 view_size,
8274 reloc_symbol_changes);
8275 }
8276
8277 // Return the size of a relocation while scanning during a relocatable
8278 // link.
8279
8280 template<int size, bool big_endian>
8281 unsigned int
8282 Target_mips<size, big_endian>::Relocatable_size_for_reloc::get_size_for_reloc(
8283 unsigned int r_type,
8284 Relobj* object)
8285 {
8286 switch (r_type)
8287 {
8288 case elfcpp::R_MIPS_NONE:
8289 case elfcpp::R_MIPS_TLS_DTPMOD64:
8290 case elfcpp::R_MIPS_TLS_DTPREL64:
8291 case elfcpp::R_MIPS_TLS_TPREL64:
8292 return 0;
8293
8294 case elfcpp::R_MIPS_32:
8295 case elfcpp::R_MIPS_TLS_DTPMOD32:
8296 case elfcpp::R_MIPS_TLS_DTPREL32:
8297 case elfcpp::R_MIPS_TLS_TPREL32:
8298 case elfcpp::R_MIPS_REL32:
8299 case elfcpp::R_MIPS_PC32:
8300 case elfcpp::R_MIPS_GPREL32:
8301 case elfcpp::R_MIPS_JALR:
8302 return 4;
8303
8304 case elfcpp::R_MIPS_16:
8305 case elfcpp::R_MIPS_HI16:
8306 case elfcpp::R_MIPS_LO16:
8307 case elfcpp::R_MIPS_GPREL16:
8308 case elfcpp::R_MIPS16_HI16:
8309 case elfcpp::R_MIPS16_LO16:
8310 case elfcpp::R_MIPS_PC16:
8311 case elfcpp::R_MIPS_GOT16:
8312 case elfcpp::R_MIPS16_GOT16:
8313 case elfcpp::R_MIPS_CALL16:
8314 case elfcpp::R_MIPS16_CALL16:
8315 case elfcpp::R_MIPS_GOT_HI16:
8316 case elfcpp::R_MIPS_CALL_HI16:
8317 case elfcpp::R_MIPS_GOT_LO16:
8318 case elfcpp::R_MIPS_CALL_LO16:
8319 case elfcpp::R_MIPS_TLS_DTPREL_HI16:
8320 case elfcpp::R_MIPS_TLS_DTPREL_LO16:
8321 case elfcpp::R_MIPS_TLS_TPREL_HI16:
8322 case elfcpp::R_MIPS_TLS_TPREL_LO16:
8323 case elfcpp::R_MIPS16_GPREL:
8324 case elfcpp::R_MIPS_GOT_DISP:
8325 case elfcpp::R_MIPS_LITERAL:
8326 case elfcpp::R_MIPS_GOT_PAGE:
8327 case elfcpp::R_MIPS_GOT_OFST:
8328 case elfcpp::R_MIPS_TLS_GD:
8329 case elfcpp::R_MIPS_TLS_LDM:
8330 case elfcpp::R_MIPS_TLS_GOTTPREL:
8331 return 2;
8332
8333 // These relocations are not byte sized
8334 case elfcpp::R_MIPS_26:
8335 case elfcpp::R_MIPS16_26:
8336 return 4;
8337
8338 case elfcpp::R_MIPS_COPY:
8339 case elfcpp::R_MIPS_JUMP_SLOT:
8340 object->error(_("unexpected reloc %u in object file"), r_type);
8341 return 0;
8342
8343 default:
8344 object->error(_("unsupported reloc %u in object file"), r_type);
8345 return 0;
8346 }
8347 }
8348
8349 // Scan the relocs during a relocatable link.
8350
8351 template<int size, bool big_endian>
8352 void
8353 Target_mips<size, big_endian>::scan_relocatable_relocs(
8354 Symbol_table* symtab,
8355 Layout* layout,
8356 Sized_relobj_file<size, big_endian>* object,
8357 unsigned int data_shndx,
8358 unsigned int sh_type,
8359 const unsigned char* prelocs,
8360 size_t reloc_count,
8361 Output_section* output_section,
8362 bool needs_special_offset_handling,
8363 size_t local_symbol_count,
8364 const unsigned char* plocal_symbols,
8365 Relocatable_relocs* rr)
8366 {
8367 gold_assert(sh_type == elfcpp::SHT_REL);
8368
8369 typedef Mips_scan_relocatable_relocs<big_endian, elfcpp::SHT_REL,
8370 Relocatable_size_for_reloc> Scan_relocatable_relocs;
8371
8372 gold::scan_relocatable_relocs<size, big_endian, elfcpp::SHT_REL,
8373 Scan_relocatable_relocs>(
8374 symtab,
8375 layout,
8376 object,
8377 data_shndx,
8378 prelocs,
8379 reloc_count,
8380 output_section,
8381 needs_special_offset_handling,
8382 local_symbol_count,
8383 plocal_symbols,
8384 rr);
8385 }
8386
8387 // Emit relocations for a section.
8388
8389 template<int size, bool big_endian>
8390 void
8391 Target_mips<size, big_endian>::relocate_relocs(
8392 const Relocate_info<size, big_endian>* relinfo,
8393 unsigned int sh_type,
8394 const unsigned char* prelocs,
8395 size_t reloc_count,
8396 Output_section* output_section,
8397 typename elfcpp::Elf_types<size>::Elf_Off
8398 offset_in_output_section,
8399 const Relocatable_relocs* rr,
8400 unsigned char* view,
8401 Mips_address view_address,
8402 section_size_type view_size,
8403 unsigned char* reloc_view,
8404 section_size_type reloc_view_size)
8405 {
8406 gold_assert(sh_type == elfcpp::SHT_REL);
8407
8408 gold::relocate_relocs<size, big_endian, elfcpp::SHT_REL>(
8409 relinfo,
8410 prelocs,
8411 reloc_count,
8412 output_section,
8413 offset_in_output_section,
8414 rr,
8415 view,
8416 view_address,
8417 view_size,
8418 reloc_view,
8419 reloc_view_size);
8420 }
8421
8422 // Perform target-specific processing in a relocatable link. This is
8423 // only used if we use the relocation strategy RELOC_SPECIAL.
8424
8425 template<int size, bool big_endian>
8426 void
8427 Target_mips<size, big_endian>::relocate_special_relocatable(
8428 const Relocate_info<size, big_endian>* relinfo,
8429 unsigned int sh_type,
8430 const unsigned char* preloc_in,
8431 size_t relnum,
8432 Output_section* output_section,
8433 typename elfcpp::Elf_types<size>::Elf_Off offset_in_output_section,
8434 unsigned char* view,
8435 Mips_address view_address,
8436 section_size_type,
8437 unsigned char* preloc_out)
8438 {
8439 // We can only handle REL type relocation sections.
8440 gold_assert(sh_type == elfcpp::SHT_REL);
8441
8442 typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc
8443 Reltype;
8444 typedef typename Reloc_types<elfcpp::SHT_REL, size, big_endian>::Reloc_write
8445 Reltype_write;
8446
8447 typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;
8448
8449 const Mips_address invalid_address = static_cast<Mips_address>(0) - 1;
8450
8451 Mips_relobj<size, big_endian>* object =
8452 Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);
8453 const unsigned int local_count = object->local_symbol_count();
8454
8455 Reltype reloc(preloc_in);
8456 Reltype_write reloc_write(preloc_out);
8457
8458 elfcpp::Elf_types<32>::Elf_WXword r_info = reloc.get_r_info();
8459 const unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
8460 const unsigned int r_type = elfcpp::elf_r_type<size>(r_info);
8461
8462 // Get the new symbol index.
8463 // We only use RELOC_SPECIAL strategy in local relocations.
8464 gold_assert(r_sym < local_count);
8465
8466 // We are adjusting a section symbol. We need to find
8467 // the symbol table index of the section symbol for
8468 // the output section corresponding to input section
8469 // in which this symbol is defined.
8470 bool is_ordinary;
8471 unsigned int shndx = object->local_symbol_input_shndx(r_sym, &is_ordinary);
8472 gold_assert(is_ordinary);
8473 Output_section* os = object->output_section(shndx);
8474 gold_assert(os != NULL);
8475 gold_assert(os->needs_symtab_index());
8476 unsigned int new_symndx = os->symtab_index();
8477
8478 // Get the new offset--the location in the output section where
8479 // this relocation should be applied.
8480
8481 Mips_address offset = reloc.get_r_offset();
8482 Mips_address new_offset;
8483 if (offset_in_output_section != invalid_address)
8484 new_offset = offset + offset_in_output_section;
8485 else
8486 {
8487 section_offset_type sot_offset =
8488 convert_types<section_offset_type, Mips_address>(offset);
8489 section_offset_type new_sot_offset =
8490 output_section->output_offset(object, relinfo->data_shndx,
8491 sot_offset);
8492 gold_assert(new_sot_offset != -1);
8493 new_offset = new_sot_offset;
8494 }
8495
8496 // In an object file, r_offset is an offset within the section.
8497 // In an executable or dynamic object, generated by
8498 // --emit-relocs, r_offset is an absolute address.
8499 if (!parameters->options().relocatable())
8500 {
8501 new_offset += view_address;
8502 if (offset_in_output_section != invalid_address)
8503 new_offset -= offset_in_output_section;
8504 }
8505
8506 reloc_write.put_r_offset(new_offset);
8507 reloc_write.put_r_info(elfcpp::elf_r_info<32>(new_symndx, r_type));
8508
8509 // Handle the reloc addend.
8510 // The relocation uses a section symbol in the input file.
8511 // We are adjusting it to use a section symbol in the output
8512 // file. The input section symbol refers to some address in
8513 // the input section. We need the relocation in the output
8514 // file to refer to that same address. This adjustment to
8515 // the addend is the same calculation we use for a simple
8516 // absolute relocation for the input section symbol.
8517
8518 const Symbol_value<size>* psymval = object->local_symbol(r_sym);
8519
8520 unsigned char* paddend = view + offset;
8521 typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;
8522 switch (r_type)
8523 {
8524 case elfcpp::R_MIPS_26:
8525 reloc_status = Reloc_funcs::rel26(paddend, object, psymval,
8526 offset_in_output_section, true, 0, sh_type == elfcpp::SHT_REL, NULL,
8527 false /*TODO(sasa): cross mode jump*/, r_type, this->jal_to_bal());
8528 break;
8529
8530 default:
8531 gold_unreachable();
8532 }
8533
8534 // Report any errors.
8535 switch (reloc_status)
8536 {
8537 case Reloc_funcs::STATUS_OKAY:
8538 break;
8539 case Reloc_funcs::STATUS_OVERFLOW:
8540 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
8541 _("relocation overflow"));
8542 break;
8543 case Reloc_funcs::STATUS_BAD_RELOC:
8544 gold_error_at_location(relinfo, relnum, reloc.get_r_offset(),
8545 _("unexpected opcode while processing relocation"));
8546 break;
8547 default:
8548 gold_unreachable();
8549 }
8550 }
8551
8552 // Optimize the TLS relocation type based on what we know about the
8553 // symbol. IS_FINAL is true if the final address of this symbol is
8554 // known at link time.
8555
8556 template<int size, bool big_endian>
8557 tls::Tls_optimization
8558 Target_mips<size, big_endian>::optimize_tls_reloc(bool, int)
8559 {
8560 // FIXME: Currently we do not do any TLS optimization.
8561 return tls::TLSOPT_NONE;
8562 }
8563
8564 // Scan a relocation for a local symbol.
8565
8566 template<int size, bool big_endian>
8567 inline void
8568 Target_mips<size, big_endian>::Scan::local(
8569 Symbol_table* symtab,
8570 Layout* layout,
8571 Target_mips<size, big_endian>* target,
8572 Sized_relobj_file<size, big_endian>* object,
8573 unsigned int data_shndx,
8574 Output_section* output_section,
8575 const elfcpp::Rela<size, big_endian>* rela,
8576 const elfcpp::Rel<size, big_endian>* rel,
8577 unsigned int rel_type,
8578 unsigned int r_type,
8579 const elfcpp::Sym<size, big_endian>& lsym,
8580 bool is_discarded)
8581 {
8582 if (is_discarded)
8583 return;
8584
8585 Mips_address r_offset;
8586 typename elfcpp::Elf_types<size>::Elf_WXword r_info;
8587 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
8588
8589 if (rel_type == elfcpp::SHT_RELA)
8590 {
8591 r_offset = rela->get_r_offset();
8592 r_info = rela->get_r_info();
8593 r_addend = rela->get_r_addend();
8594 }
8595 else
8596 {
8597 r_offset = rel->get_r_offset();
8598 r_info = rel->get_r_info();
8599 r_addend = 0;
8600 }
8601
8602 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
8603 Mips_relobj<size, big_endian>* mips_obj =
8604 Mips_relobj<size, big_endian>::as_mips_relobj(object);
8605
8606 if (mips_obj->is_mips16_stub_section(data_shndx))
8607 {
8608 mips_obj->get_mips16_stub_section(data_shndx)
8609 ->new_local_reloc_found(r_type, r_sym);
8610 }
8611
8612 if (r_type == elfcpp::R_MIPS_NONE)
8613 // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
8614 // mips16 stub.
8615 return;
8616
8617 if (!mips16_call_reloc(r_type)
8618 && !mips_obj->section_allows_mips16_refs(data_shndx))
8619 // This reloc would need to refer to a MIPS16 hard-float stub, if
8620 // there is one. We ignore MIPS16 stub sections and .pdr section when
8621 // looking for relocs that would need to refer to MIPS16 stubs.
8622 mips_obj->add_local_non_16bit_call(r_sym);
8623
8624 if (r_type == elfcpp::R_MIPS16_26
8625 && !mips_obj->section_allows_mips16_refs(data_shndx))
8626 mips_obj->add_local_16bit_call(r_sym);
8627
8628 switch (r_type)
8629 {
8630 case elfcpp::R_MIPS_GOT16:
8631 case elfcpp::R_MIPS_CALL16:
8632 case elfcpp::R_MIPS_CALL_HI16:
8633 case elfcpp::R_MIPS_CALL_LO16:
8634 case elfcpp::R_MIPS_GOT_HI16:
8635 case elfcpp::R_MIPS_GOT_LO16:
8636 case elfcpp::R_MIPS_GOT_PAGE:
8637 case elfcpp::R_MIPS_GOT_OFST:
8638 case elfcpp::R_MIPS_GOT_DISP:
8639 case elfcpp::R_MIPS_TLS_GOTTPREL:
8640 case elfcpp::R_MIPS_TLS_GD:
8641 case elfcpp::R_MIPS_TLS_LDM:
8642 case elfcpp::R_MIPS16_GOT16:
8643 case elfcpp::R_MIPS16_CALL16:
8644 case elfcpp::R_MIPS16_TLS_GOTTPREL:
8645 case elfcpp::R_MIPS16_TLS_GD:
8646 case elfcpp::R_MIPS16_TLS_LDM:
8647 case elfcpp::R_MICROMIPS_GOT16:
8648 case elfcpp::R_MICROMIPS_CALL16:
8649 case elfcpp::R_MICROMIPS_CALL_HI16:
8650 case elfcpp::R_MICROMIPS_CALL_LO16:
8651 case elfcpp::R_MICROMIPS_GOT_HI16:
8652 case elfcpp::R_MICROMIPS_GOT_LO16:
8653 case elfcpp::R_MICROMIPS_GOT_PAGE:
8654 case elfcpp::R_MICROMIPS_GOT_OFST:
8655 case elfcpp::R_MICROMIPS_GOT_DISP:
8656 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
8657 case elfcpp::R_MICROMIPS_TLS_GD:
8658 case elfcpp::R_MICROMIPS_TLS_LDM:
8659 // We need a GOT section.
8660 target->got_section(symtab, layout);
8661 break;
8662
8663 default:
8664 break;
8665 }
8666
8667 if (call_lo16_reloc(r_type)
8668 || got_lo16_reloc(r_type)
8669 || got_disp_reloc(r_type))
8670 {
8671 // We may need a local GOT entry for this relocation. We
8672 // don't count R_MIPS_GOT_PAGE because we can estimate the
8673 // maximum number of pages needed by looking at the size of
8674 // the segment. Similar comments apply to R_MIPS*_GOT16 and
8675 // R_MIPS*_CALL16. We don't count R_MIPS_GOT_HI16, or
8676 // R_MIPS_CALL_HI16 because these are always followed by an
8677 // R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16.
8678 Mips_output_data_got<size, big_endian>* got =
8679 target->got_section(symtab, layout);
8680 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
8681 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type, -1U);
8682 }
8683
8684 switch (r_type)
8685 {
8686 case elfcpp::R_MIPS_CALL16:
8687 case elfcpp::R_MIPS16_CALL16:
8688 case elfcpp::R_MICROMIPS_CALL16:
8689 gold_error(_("CALL16 reloc at 0x%lx not against global symbol "),
8690 (unsigned long)r_offset);
8691 return;
8692
8693 case elfcpp::R_MIPS_GOT_PAGE:
8694 case elfcpp::R_MICROMIPS_GOT_PAGE:
8695 case elfcpp::R_MIPS16_GOT16:
8696 case elfcpp::R_MIPS_GOT16:
8697 case elfcpp::R_MIPS_GOT_HI16:
8698 case elfcpp::R_MIPS_GOT_LO16:
8699 case elfcpp::R_MICROMIPS_GOT16:
8700 case elfcpp::R_MICROMIPS_GOT_HI16:
8701 case elfcpp::R_MICROMIPS_GOT_LO16:
8702 {
8703 // This relocation needs a page entry in the GOT.
8704 // Get the section contents.
8705 section_size_type view_size = 0;
8706 const unsigned char* view = object->section_contents(data_shndx,
8707 &view_size, false);
8708 view += r_offset;
8709
8710 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
8711 Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
8712 : r_addend);
8713
8714 if (rel_type == elfcpp::SHT_REL && got16_reloc(r_type))
8715 target->got16_addends_.push_back(got16_addend<size, big_endian>(
8716 object, data_shndx, r_type, r_sym, addend));
8717 else
8718 target->got_section()->record_got_page_entry(mips_obj, r_sym, addend);
8719 break;
8720 }
8721
8722 case elfcpp::R_MIPS_HI16:
8723 case elfcpp::R_MIPS16_HI16:
8724 case elfcpp::R_MICROMIPS_HI16:
8725 // Record the reloc so that we can check whether the corresponding LO16
8726 // part exists.
8727 if (rel_type == elfcpp::SHT_REL)
8728 target->got16_addends_.push_back(got16_addend<size, big_endian>(
8729 object, data_shndx, r_type, r_sym, 0));
8730 break;
8731
8732 case elfcpp::R_MIPS_LO16:
8733 case elfcpp::R_MIPS16_LO16:
8734 case elfcpp::R_MICROMIPS_LO16:
8735 {
8736 if (rel_type != elfcpp::SHT_REL)
8737 break;
8738
8739 // Find corresponding GOT16/HI16 relocation.
8740
8741 // According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8742 // be immediately following. However, for the IRIX6 ABI, the next
8743 // relocation may be a composed relocation consisting of several
8744 // relocations for the same address. In that case, the R_MIPS_LO16
8745 // relocation may occur as one of these. We permit a similar
8746 // extension in general, as that is useful for GCC.
8747
8748 // In some cases GCC dead code elimination removes the LO16 but
8749 // keeps the corresponding HI16. This is strictly speaking a
8750 // violation of the ABI but not immediately harmful.
8751
8752 typename std::list<got16_addend<size, big_endian> >::iterator it =
8753 target->got16_addends_.begin();
8754 while (it != target->got16_addends_.end())
8755 {
8756 got16_addend<size, big_endian> _got16_addend = *it;
8757
8758 // TODO(sasa): Split got16_addends_ list into two lists - one for
8759 // GOT16 relocs and the other for HI16 relocs.
8760
8761 // Report an error if we find HI16 or GOT16 reloc from the
8762 // previous section without the matching LO16 part.
8763 if (_got16_addend.object != object
8764 || _got16_addend.shndx != data_shndx)
8765 {
8766 gold_error("Can't find matching LO16 reloc");
8767 break;
8768 }
8769
8770 if (_got16_addend.r_sym != r_sym
8771 || !is_matching_lo16_reloc(_got16_addend.r_type, r_type))
8772 {
8773 ++it;
8774 continue;
8775 }
8776
8777 // We found a matching HI16 or GOT16 reloc for this LO16 reloc.
8778 // For GOT16, we need to calculate combined addend and record GOT page
8779 // entry.
8780 if (got16_reloc(_got16_addend.r_type))
8781 {
8782
8783 section_size_type view_size = 0;
8784 const unsigned char* view = object->section_contents(data_shndx,
8785 &view_size,
8786 false);
8787 view += r_offset;
8788
8789 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
8790 int32_t addend = Bits<16>::sign_extend32(val & 0xffff);
8791
8792 addend = (_got16_addend.addend << 16) + addend;
8793 target->got_section()->record_got_page_entry(mips_obj, r_sym,
8794 addend);
8795 }
8796
8797 it = target->got16_addends_.erase(it);
8798 }
8799 break;
8800 }
8801 }
8802
8803 switch (r_type)
8804 {
8805 case elfcpp::R_MIPS_32:
8806 case elfcpp::R_MIPS_REL32:
8807 case elfcpp::R_MIPS_64:
8808 {
8809 if (parameters->options().output_is_position_independent())
8810 {
8811 // If building a shared library (or a position-independent
8812 // executable), we need to create a dynamic relocation for
8813 // this location.
8814 Reloc_section* rel_dyn = target->rel_dyn_section(layout);
8815 unsigned int r_sym = elfcpp::elf_r_sym<32>(r_info);
8816 rel_dyn->add_symbolless_local_addend(object, r_sym,
8817 elfcpp::R_MIPS_REL32,
8818 output_section, data_shndx,
8819 r_offset);
8820 }
8821 break;
8822 }
8823
8824 case elfcpp::R_MIPS_TLS_GOTTPREL:
8825 case elfcpp::R_MIPS16_TLS_GOTTPREL:
8826 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
8827 case elfcpp::R_MIPS_TLS_LDM:
8828 case elfcpp::R_MIPS16_TLS_LDM:
8829 case elfcpp::R_MICROMIPS_TLS_LDM:
8830 case elfcpp::R_MIPS_TLS_GD:
8831 case elfcpp::R_MIPS16_TLS_GD:
8832 case elfcpp::R_MICROMIPS_TLS_GD:
8833 {
8834 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
8835 bool output_is_shared = parameters->options().shared();
8836 const tls::Tls_optimization optimized_type
8837 = Target_mips<size, big_endian>::optimize_tls_reloc(
8838 !output_is_shared, r_type);
8839 switch (r_type)
8840 {
8841 case elfcpp::R_MIPS_TLS_GD:
8842 case elfcpp::R_MIPS16_TLS_GD:
8843 case elfcpp::R_MICROMIPS_TLS_GD:
8844 if (optimized_type == tls::TLSOPT_NONE)
8845 {
8846 // Create a pair of GOT entries for the module index and
8847 // dtv-relative offset.
8848 Mips_output_data_got<size, big_endian>* got =
8849 target->got_section(symtab, layout);
8850 unsigned int shndx = lsym.get_st_shndx();
8851 bool is_ordinary;
8852 shndx = object->adjust_sym_shndx(r_sym, shndx, &is_ordinary);
8853 if (!is_ordinary)
8854 {
8855 object->error(_("local symbol %u has bad shndx %u"),
8856 r_sym, shndx);
8857 break;
8858 }
8859 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
8860 shndx);
8861 }
8862 else
8863 {
8864 // FIXME: TLS optimization not supported yet.
8865 gold_unreachable();
8866 }
8867 break;
8868
8869 case elfcpp::R_MIPS_TLS_LDM:
8870 case elfcpp::R_MIPS16_TLS_LDM:
8871 case elfcpp::R_MICROMIPS_TLS_LDM:
8872 if (optimized_type == tls::TLSOPT_NONE)
8873 {
8874 // We always record LDM symbols as local with index 0.
8875 target->got_section()->record_local_got_symbol(mips_obj, 0,
8876 r_addend, r_type,
8877 -1U);
8878 }
8879 else
8880 {
8881 // FIXME: TLS optimization not supported yet.
8882 gold_unreachable();
8883 }
8884 break;
8885 case elfcpp::R_MIPS_TLS_GOTTPREL:
8886 case elfcpp::R_MIPS16_TLS_GOTTPREL:
8887 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
8888 layout->set_has_static_tls();
8889 if (optimized_type == tls::TLSOPT_NONE)
8890 {
8891 // Create a GOT entry for the tp-relative offset.
8892 Mips_output_data_got<size, big_endian>* got =
8893 target->got_section(symtab, layout);
8894 got->record_local_got_symbol(mips_obj, r_sym, r_addend, r_type,
8895 -1U);
8896 }
8897 else
8898 {
8899 // FIXME: TLS optimization not supported yet.
8900 gold_unreachable();
8901 }
8902 break;
8903
8904 default:
8905 gold_unreachable();
8906 }
8907 }
8908 break;
8909
8910 default:
8911 break;
8912 }
8913
8914 // Refuse some position-dependent relocations when creating a
8915 // shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
8916 // not PIC, but we can create dynamic relocations and the result
8917 // will be fine. Also do not refuse R_MIPS_LO16, which can be
8918 // combined with R_MIPS_GOT16.
8919 if (parameters->options().shared())
8920 {
8921 switch (r_type)
8922 {
8923 case elfcpp::R_MIPS16_HI16:
8924 case elfcpp::R_MIPS_HI16:
8925 case elfcpp::R_MICROMIPS_HI16:
8926 // Don't refuse a high part relocation if it's against
8927 // no symbol (e.g. part of a compound relocation).
8928 if (r_sym == 0)
8929 break;
8930
8931 // FALLTHROUGH
8932
8933 case elfcpp::R_MIPS16_26:
8934 case elfcpp::R_MIPS_26:
8935 case elfcpp::R_MICROMIPS_26_S1:
8936 gold_error(_("%s: relocation %u against `%s' can not be used when "
8937 "making a shared object; recompile with -fPIC"),
8938 object->name().c_str(), r_type, "a local symbol");
8939 default:
8940 break;
8941 }
8942 }
8943 }
8944
8945 template<int size, bool big_endian>
8946 inline void
8947 Target_mips<size, big_endian>::Scan::local(
8948 Symbol_table* symtab,
8949 Layout* layout,
8950 Target_mips<size, big_endian>* target,
8951 Sized_relobj_file<size, big_endian>* object,
8952 unsigned int data_shndx,
8953 Output_section* output_section,
8954 const elfcpp::Rel<size, big_endian>& reloc,
8955 unsigned int r_type,
8956 const elfcpp::Sym<size, big_endian>& lsym,
8957 bool is_discarded)
8958 {
8959 if (is_discarded)
8960 return;
8961
8962 local(
8963 symtab,
8964 layout,
8965 target,
8966 object,
8967 data_shndx,
8968 output_section,
8969 (const elfcpp::Rela<size, big_endian>*) NULL,
8970 &reloc,
8971 elfcpp::SHT_REL,
8972 r_type,
8973 lsym, is_discarded);
8974 }
8975
8976
8977 template<int size, bool big_endian>
8978 inline void
8979 Target_mips<size, big_endian>::Scan::local(
8980 Symbol_table* symtab,
8981 Layout* layout,
8982 Target_mips<size, big_endian>* target,
8983 Sized_relobj_file<size, big_endian>* object,
8984 unsigned int data_shndx,
8985 Output_section* output_section,
8986 const elfcpp::Rela<size, big_endian>& reloc,
8987 unsigned int r_type,
8988 const elfcpp::Sym<size, big_endian>& lsym,
8989 bool is_discarded)
8990 {
8991 if (is_discarded)
8992 return;
8993
8994 local(
8995 symtab,
8996 layout,
8997 target,
8998 object,
8999 data_shndx,
9000 output_section,
9001 &reloc,
9002 (const elfcpp::Rel<size, big_endian>*) NULL,
9003 elfcpp::SHT_RELA,
9004 r_type,
9005 lsym, is_discarded);
9006 }
9007
9008 // Scan a relocation for a global symbol.
9009
9010 template<int size, bool big_endian>
9011 inline void
9012 Target_mips<size, big_endian>::Scan::global(
9013 Symbol_table* symtab,
9014 Layout* layout,
9015 Target_mips<size, big_endian>* target,
9016 Sized_relobj_file<size, big_endian>* object,
9017 unsigned int data_shndx,
9018 Output_section* output_section,
9019 const elfcpp::Rela<size, big_endian>* rela,
9020 const elfcpp::Rel<size, big_endian>* rel,
9021 unsigned int rel_type,
9022 unsigned int r_type,
9023 Symbol* gsym)
9024 {
9025 Mips_address r_offset;
9026 typename elfcpp::Elf_types<size>::Elf_WXword r_info;
9027 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
9028
9029 if (rel_type == elfcpp::SHT_RELA)
9030 {
9031 r_offset = rela->get_r_offset();
9032 r_info = rela->get_r_info();
9033 r_addend = rela->get_r_addend();
9034 }
9035 else
9036 {
9037 r_offset = rel->get_r_offset();
9038 r_info = rel->get_r_info();
9039 r_addend = 0;
9040 }
9041
9042 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
9043 Mips_relobj<size, big_endian>* mips_obj =
9044 Mips_relobj<size, big_endian>::as_mips_relobj(object);
9045 Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
9046
9047 if (mips_obj->is_mips16_stub_section(data_shndx))
9048 {
9049 mips_obj->get_mips16_stub_section(data_shndx)
9050 ->new_global_reloc_found(r_type, mips_sym);
9051 }
9052
9053 if (r_type == elfcpp::R_MIPS_NONE)
9054 // R_MIPS_NONE is used in mips16 stub sections, to define the target of the
9055 // mips16 stub.
9056 return;
9057
9058 if (!mips16_call_reloc(r_type)
9059 && !mips_obj->section_allows_mips16_refs(data_shndx))
9060 // This reloc would need to refer to a MIPS16 hard-float stub, if
9061 // there is one. We ignore MIPS16 stub sections and .pdr section when
9062 // looking for relocs that would need to refer to MIPS16 stubs.
9063 mips_sym->set_need_fn_stub();
9064
9065 // A reference to _GLOBAL_OFFSET_TABLE_ implies that we need a got
9066 // section. We check here to avoid creating a dynamic reloc against
9067 // _GLOBAL_OFFSET_TABLE_.
9068 if (!target->has_got_section()
9069 && strcmp(gsym->name(), "_GLOBAL_OFFSET_TABLE_") == 0)
9070 target->got_section(symtab, layout);
9071
9072 // We need PLT entries if there are static-only relocations against
9073 // an externally-defined function. This can technically occur for
9074 // shared libraries if there are branches to the symbol, although it
9075 // is unlikely that this will be used in practice due to the short
9076 // ranges involved. It can occur for any relative or absolute relocation
9077 // in executables; in that case, the PLT entry becomes the function's
9078 // canonical address.
9079 bool static_reloc = false;
9080
9081 // Set CAN_MAKE_DYNAMIC to true if we can convert this
9082 // relocation into a dynamic one.
9083 bool can_make_dynamic = false;
9084 switch (r_type)
9085 {
9086 case elfcpp::R_MIPS_GOT16:
9087 case elfcpp::R_MIPS_CALL16:
9088 case elfcpp::R_MIPS_CALL_HI16:
9089 case elfcpp::R_MIPS_CALL_LO16:
9090 case elfcpp::R_MIPS_GOT_HI16:
9091 case elfcpp::R_MIPS_GOT_LO16:
9092 case elfcpp::R_MIPS_GOT_PAGE:
9093 case elfcpp::R_MIPS_GOT_OFST:
9094 case elfcpp::R_MIPS_GOT_DISP:
9095 case elfcpp::R_MIPS_TLS_GOTTPREL:
9096 case elfcpp::R_MIPS_TLS_GD:
9097 case elfcpp::R_MIPS_TLS_LDM:
9098 case elfcpp::R_MIPS16_GOT16:
9099 case elfcpp::R_MIPS16_CALL16:
9100 case elfcpp::R_MIPS16_TLS_GOTTPREL:
9101 case elfcpp::R_MIPS16_TLS_GD:
9102 case elfcpp::R_MIPS16_TLS_LDM:
9103 case elfcpp::R_MICROMIPS_GOT16:
9104 case elfcpp::R_MICROMIPS_CALL16:
9105 case elfcpp::R_MICROMIPS_CALL_HI16:
9106 case elfcpp::R_MICROMIPS_CALL_LO16:
9107 case elfcpp::R_MICROMIPS_GOT_HI16:
9108 case elfcpp::R_MICROMIPS_GOT_LO16:
9109 case elfcpp::R_MICROMIPS_GOT_PAGE:
9110 case elfcpp::R_MICROMIPS_GOT_OFST:
9111 case elfcpp::R_MICROMIPS_GOT_DISP:
9112 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
9113 case elfcpp::R_MICROMIPS_TLS_GD:
9114 case elfcpp::R_MICROMIPS_TLS_LDM:
9115 // We need a GOT section.
9116 target->got_section(symtab, layout);
9117 break;
9118
9119 // This is just a hint; it can safely be ignored. Don't set
9120 // has_static_relocs for the corresponding symbol.
9121 case elfcpp::R_MIPS_JALR:
9122 case elfcpp::R_MICROMIPS_JALR:
9123 break;
9124
9125 case elfcpp::R_MIPS_GPREL16:
9126 case elfcpp::R_MIPS_GPREL32:
9127 case elfcpp::R_MIPS16_GPREL:
9128 case elfcpp::R_MICROMIPS_GPREL16:
9129 // TODO(sasa)
9130 // GP-relative relocations always resolve to a definition in a
9131 // regular input file, ignoring the one-definition rule. This is
9132 // important for the GP setup sequence in NewABI code, which
9133 // always resolves to a local function even if other relocations
9134 // against the symbol wouldn't.
9135 //constrain_symbol_p = FALSE;
9136 break;
9137
9138 case elfcpp::R_MIPS_32:
9139 case elfcpp::R_MIPS_REL32:
9140 case elfcpp::R_MIPS_64:
9141 if (parameters->options().shared()
9142 || strcmp(gsym->name(), "__gnu_local_gp") != 0)
9143 {
9144 if (r_type != elfcpp::R_MIPS_REL32)
9145 {
9146 static_reloc = true;
9147 mips_sym->set_pointer_equality_needed();
9148 }
9149 can_make_dynamic = true;
9150 break;
9151 }
9152 // Fall through.
9153
9154 default:
9155 // Most static relocations require pointer equality, except
9156 // for branches.
9157 mips_sym->set_pointer_equality_needed();
9158
9159 // Fall through.
9160
9161 case elfcpp::R_MIPS_26:
9162 case elfcpp::R_MIPS_PC16:
9163 case elfcpp::R_MIPS16_26:
9164 case elfcpp::R_MICROMIPS_26_S1:
9165 case elfcpp::R_MICROMIPS_PC7_S1:
9166 case elfcpp::R_MICROMIPS_PC10_S1:
9167 case elfcpp::R_MICROMIPS_PC16_S1:
9168 case elfcpp::R_MICROMIPS_PC23_S2:
9169 static_reloc = true;
9170 mips_sym->set_has_static_relocs();
9171 break;
9172 }
9173
9174 // If there are call relocations against an externally-defined symbol,
9175 // see whether we can create a MIPS lazy-binding stub for it. We can
9176 // only do this if all references to the function are through call
9177 // relocations, and in that case, the traditional lazy-binding stubs
9178 // are much more efficient than PLT entries.
9179 switch (r_type)
9180 {
9181 case elfcpp::R_MIPS16_CALL16:
9182 case elfcpp::R_MIPS_CALL16:
9183 case elfcpp::R_MIPS_CALL_HI16:
9184 case elfcpp::R_MIPS_CALL_LO16:
9185 case elfcpp::R_MIPS_JALR:
9186 case elfcpp::R_MICROMIPS_CALL16:
9187 case elfcpp::R_MICROMIPS_CALL_HI16:
9188 case elfcpp::R_MICROMIPS_CALL_LO16:
9189 case elfcpp::R_MICROMIPS_JALR:
9190 if (!mips_sym->no_lazy_stub())
9191 {
9192 if ((mips_sym->needs_plt_entry() && mips_sym->is_from_dynobj())
9193 // Calls from shared objects to undefined symbols of type
9194 // STT_NOTYPE need lazy-binding stub.
9195 || (mips_sym->is_undefined() && parameters->options().shared()))
9196 target->mips_stubs_section(layout)->make_entry(mips_sym);
9197 }
9198 break;
9199 default:
9200 {
9201 // We must not create a stub for a symbol that has relocations
9202 // related to taking the function's address.
9203 mips_sym->set_no_lazy_stub();
9204 target->remove_lazy_stub_entry(mips_sym);
9205 break;
9206 }
9207 }
9208
9209 if (relocation_needs_la25_stub<size, big_endian>(mips_obj, r_type,
9210 mips_sym->is_mips16()))
9211 mips_sym->set_has_nonpic_branches();
9212
9213 // R_MIPS_HI16 against _gp_disp is used for $gp setup,
9214 // and has a special meaning.
9215 bool gp_disp_against_hi16 = (!mips_obj->is_newabi()
9216 && strcmp(gsym->name(), "_gp_disp") == 0
9217 && (hi16_reloc(r_type) || lo16_reloc(r_type)));
9218 if (static_reloc && gsym->needs_plt_entry())
9219 {
9220 target->make_plt_entry(symtab, layout, mips_sym, r_type);
9221
9222 // Since this is not a PC-relative relocation, we may be
9223 // taking the address of a function. In that case we need to
9224 // set the entry in the dynamic symbol table to the address of
9225 // the PLT entry.
9226 if (gsym->is_from_dynobj() && !parameters->options().shared())
9227 {
9228 gsym->set_needs_dynsym_value();
9229 // We distinguish between PLT entries and lazy-binding stubs by
9230 // giving the former an st_other value of STO_MIPS_PLT. Set the
9231 // flag if there are any relocations in the binary where pointer
9232 // equality matters.
9233 if (mips_sym->pointer_equality_needed())
9234 mips_sym->set_mips_plt();
9235 }
9236 }
9237 if ((static_reloc || can_make_dynamic) && !gp_disp_against_hi16)
9238 {
9239 // Absolute addressing relocations.
9240 // Make a dynamic relocation if necessary.
9241 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type)))
9242 {
9243 if (gsym->may_need_copy_reloc())
9244 {
9245 target->copy_reloc(symtab, layout, object,
9246 data_shndx, output_section, gsym, *rel);
9247 }
9248 else if (can_make_dynamic)
9249 {
9250 // Create .rel.dyn section.
9251 target->rel_dyn_section(layout);
9252 target->dynamic_reloc(mips_sym, elfcpp::R_MIPS_REL32, mips_obj,
9253 data_shndx, output_section, r_offset);
9254 }
9255 else
9256 gold_error(_("non-dynamic relocations refer to dynamic symbol %s"),
9257 gsym->name());
9258 }
9259 }
9260
9261 bool for_call = false;
9262 switch (r_type)
9263 {
9264 case elfcpp::R_MIPS_CALL16:
9265 case elfcpp::R_MIPS16_CALL16:
9266 case elfcpp::R_MICROMIPS_CALL16:
9267 case elfcpp::R_MIPS_CALL_HI16:
9268 case elfcpp::R_MIPS_CALL_LO16:
9269 case elfcpp::R_MICROMIPS_CALL_HI16:
9270 case elfcpp::R_MICROMIPS_CALL_LO16:
9271 for_call = true;
9272 // Fall through.
9273
9274 case elfcpp::R_MIPS16_GOT16:
9275 case elfcpp::R_MIPS_GOT16:
9276 case elfcpp::R_MIPS_GOT_HI16:
9277 case elfcpp::R_MIPS_GOT_LO16:
9278 case elfcpp::R_MICROMIPS_GOT16:
9279 case elfcpp::R_MICROMIPS_GOT_HI16:
9280 case elfcpp::R_MICROMIPS_GOT_LO16:
9281 case elfcpp::R_MIPS_GOT_DISP:
9282 case elfcpp::R_MICROMIPS_GOT_DISP:
9283 {
9284 // The symbol requires a GOT entry.
9285 Mips_output_data_got<size, big_endian>* got =
9286 target->got_section(symtab, layout);
9287 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
9288 for_call);
9289 mips_sym->set_global_got_area(GGA_NORMAL);
9290 }
9291 break;
9292
9293 case elfcpp::R_MIPS_GOT_PAGE:
9294 case elfcpp::R_MICROMIPS_GOT_PAGE:
9295 {
9296 // This relocation needs a page entry in the GOT.
9297 // Get the section contents.
9298 section_size_type view_size = 0;
9299 const unsigned char* view =
9300 object->section_contents(data_shndx, &view_size, false);
9301 view += r_offset;
9302
9303 Valtype32 val = elfcpp::Swap<32, big_endian>::readval(view);
9304 Valtype32 addend = (rel_type == elfcpp::SHT_REL ? val & 0xffff
9305 : r_addend);
9306 Mips_output_data_got<size, big_endian>* got =
9307 target->got_section(symtab, layout);
9308 got->record_got_page_entry(mips_obj, r_sym, addend);
9309
9310 // If this is a global, overridable symbol, GOT_PAGE will
9311 // decay to GOT_DISP, so we'll need a GOT entry for it.
9312 bool def_regular = (mips_sym->source() == Symbol::FROM_OBJECT
9313 && !mips_sym->object()->is_dynamic()
9314 && !mips_sym->is_undefined());
9315 if (!def_regular
9316 || (parameters->options().output_is_position_independent()
9317 && !parameters->options().Bsymbolic()
9318 && !mips_sym->is_forced_local()))
9319 {
9320 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
9321 for_call);
9322 mips_sym->set_global_got_area(GGA_NORMAL);
9323 }
9324 }
9325 break;
9326
9327 case elfcpp::R_MIPS_TLS_GOTTPREL:
9328 case elfcpp::R_MIPS16_TLS_GOTTPREL:
9329 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
9330 case elfcpp::R_MIPS_TLS_LDM:
9331 case elfcpp::R_MIPS16_TLS_LDM:
9332 case elfcpp::R_MICROMIPS_TLS_LDM:
9333 case elfcpp::R_MIPS_TLS_GD:
9334 case elfcpp::R_MIPS16_TLS_GD:
9335 case elfcpp::R_MICROMIPS_TLS_GD:
9336 {
9337 const bool is_final = gsym->final_value_is_known();
9338 const tls::Tls_optimization optimized_type =
9339 Target_mips<size, big_endian>::optimize_tls_reloc(is_final, r_type);
9340
9341 switch (r_type)
9342 {
9343 case elfcpp::R_MIPS_TLS_GD:
9344 case elfcpp::R_MIPS16_TLS_GD:
9345 case elfcpp::R_MICROMIPS_TLS_GD:
9346 if (optimized_type == tls::TLSOPT_NONE)
9347 {
9348 // Create a pair of GOT entries for the module index and
9349 // dtv-relative offset.
9350 Mips_output_data_got<size, big_endian>* got =
9351 target->got_section(symtab, layout);
9352 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
9353 false);
9354 }
9355 else
9356 {
9357 // FIXME: TLS optimization not supported yet.
9358 gold_unreachable();
9359 }
9360 break;
9361
9362 case elfcpp::R_MIPS_TLS_LDM:
9363 case elfcpp::R_MIPS16_TLS_LDM:
9364 case elfcpp::R_MICROMIPS_TLS_LDM:
9365 if (optimized_type == tls::TLSOPT_NONE)
9366 {
9367 // We always record LDM symbols as local with index 0.
9368 target->got_section()->record_local_got_symbol(mips_obj, 0,
9369 r_addend, r_type,
9370 -1U);
9371 }
9372 else
9373 {
9374 // FIXME: TLS optimization not supported yet.
9375 gold_unreachable();
9376 }
9377 break;
9378 case elfcpp::R_MIPS_TLS_GOTTPREL:
9379 case elfcpp::R_MIPS16_TLS_GOTTPREL:
9380 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
9381 layout->set_has_static_tls();
9382 if (optimized_type == tls::TLSOPT_NONE)
9383 {
9384 // Create a GOT entry for the tp-relative offset.
9385 Mips_output_data_got<size, big_endian>* got =
9386 target->got_section(symtab, layout);
9387 got->record_global_got_symbol(mips_sym, mips_obj, r_type, false,
9388 false);
9389 }
9390 else
9391 {
9392 // FIXME: TLS optimization not supported yet.
9393 gold_unreachable();
9394 }
9395 break;
9396
9397 default:
9398 gold_unreachable();
9399 }
9400 }
9401 break;
9402 case elfcpp::R_MIPS_COPY:
9403 case elfcpp::R_MIPS_JUMP_SLOT:
9404 // These are relocations which should only be seen by the
9405 // dynamic linker, and should never be seen here.
9406 gold_error(_("%s: unexpected reloc %u in object file"),
9407 object->name().c_str(), r_type);
9408 break;
9409
9410 default:
9411 break;
9412 }
9413
9414 // Refuse some position-dependent relocations when creating a
9415 // shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
9416 // not PIC, but we can create dynamic relocations and the result
9417 // will be fine. Also do not refuse R_MIPS_LO16, which can be
9418 // combined with R_MIPS_GOT16.
9419 if (parameters->options().shared())
9420 {
9421 switch (r_type)
9422 {
9423 case elfcpp::R_MIPS16_HI16:
9424 case elfcpp::R_MIPS_HI16:
9425 case elfcpp::R_MICROMIPS_HI16:
9426 // Don't refuse a high part relocation if it's against
9427 // no symbol (e.g. part of a compound relocation).
9428 if (r_sym == 0)
9429 break;
9430
9431 // R_MIPS_HI16 against _gp_disp is used for $gp setup,
9432 // and has a special meaning.
9433 if (!mips_obj->is_newabi() && strcmp(gsym->name(), "_gp_disp") == 0)
9434 break;
9435
9436 // FALLTHROUGH
9437
9438 case elfcpp::R_MIPS16_26:
9439 case elfcpp::R_MIPS_26:
9440 case elfcpp::R_MICROMIPS_26_S1:
9441 gold_error(_("%s: relocation %u against `%s' can not be used when "
9442 "making a shared object; recompile with -fPIC"),
9443 object->name().c_str(), r_type, gsym->name());
9444 default:
9445 break;
9446 }
9447 }
9448 }
9449
9450 template<int size, bool big_endian>
9451 inline void
9452 Target_mips<size, big_endian>::Scan::global(
9453 Symbol_table* symtab,
9454 Layout* layout,
9455 Target_mips<size, big_endian>* target,
9456 Sized_relobj_file<size, big_endian>* object,
9457 unsigned int data_shndx,
9458 Output_section* output_section,
9459 const elfcpp::Rela<size, big_endian>& reloc,
9460 unsigned int r_type,
9461 Symbol* gsym)
9462 {
9463 global(
9464 symtab,
9465 layout,
9466 target,
9467 object,
9468 data_shndx,
9469 output_section,
9470 &reloc,
9471 (const elfcpp::Rel<size, big_endian>*) NULL,
9472 elfcpp::SHT_RELA,
9473 r_type,
9474 gsym);
9475 }
9476
9477 template<int size, bool big_endian>
9478 inline void
9479 Target_mips<size, big_endian>::Scan::global(
9480 Symbol_table* symtab,
9481 Layout* layout,
9482 Target_mips<size, big_endian>* target,
9483 Sized_relobj_file<size, big_endian>* object,
9484 unsigned int data_shndx,
9485 Output_section* output_section,
9486 const elfcpp::Rel<size, big_endian>& reloc,
9487 unsigned int r_type,
9488 Symbol* gsym)
9489 {
9490 global(
9491 symtab,
9492 layout,
9493 target,
9494 object,
9495 data_shndx,
9496 output_section,
9497 (const elfcpp::Rela<size, big_endian>*) NULL,
9498 &reloc,
9499 elfcpp::SHT_REL,
9500 r_type,
9501 gsym);
9502 }
9503
9504 // Return whether a R_MIPS_32 relocation needs to be applied.
9505
9506 template<int size, bool big_endian>
9507 inline bool
9508 Target_mips<size, big_endian>::Relocate::should_apply_r_mips_32_reloc(
9509 const Mips_symbol<size>* gsym,
9510 unsigned int r_type,
9511 Output_section* output_section,
9512 Target_mips* target)
9513 {
9514 // If the output section is not allocated, then we didn't call
9515 // scan_relocs, we didn't create a dynamic reloc, and we must apply
9516 // the reloc here.
9517 if ((output_section->flags() & elfcpp::SHF_ALLOC) == 0)
9518 return true;
9519
9520 if (gsym == NULL)
9521 return true;
9522 else
9523 {
9524 // For global symbols, we use the same helper routines used in the
9525 // scan pass.
9526 if (gsym->needs_dynamic_reloc(Scan::get_reference_flags(r_type))
9527 && !gsym->may_need_copy_reloc())
9528 {
9529 // We have generated dynamic reloc (R_MIPS_REL32).
9530
9531 bool multi_got = false;
9532 if (target->has_got_section())
9533 multi_got = target->got_section()->multi_got();
9534 bool has_got_offset;
9535 if (!multi_got)
9536 has_got_offset = gsym->has_got_offset(GOT_TYPE_STANDARD);
9537 else
9538 has_got_offset = gsym->global_gotoffset() != -1U;
9539 if (!has_got_offset)
9540 return true;
9541 else
9542 // Apply the relocation only if the symbol is in the local got.
9543 // Do not apply the relocation if the symbol is in the global
9544 // got.
9545 return symbol_references_local(gsym, gsym->has_dynsym_index());
9546 }
9547 else
9548 // We have not generated dynamic reloc.
9549 return true;
9550 }
9551 }
9552
9553 // Perform a relocation.
9554
9555 template<int size, bool big_endian>
9556 inline bool
9557 Target_mips<size, big_endian>::Relocate::relocate(
9558 const Relocate_info<size, big_endian>* relinfo,
9559 Target_mips* target,
9560 Output_section* output_section,
9561 size_t relnum,
9562 const elfcpp::Rela<size, big_endian>* rela,
9563 const elfcpp::Rel<size, big_endian>* rel,
9564 unsigned int rel_type,
9565 unsigned int r_type,
9566 const Sized_symbol<size>* gsym,
9567 const Symbol_value<size>* psymval,
9568 unsigned char* view,
9569 Mips_address address,
9570 section_size_type)
9571 {
9572 Mips_address r_offset;
9573 typename elfcpp::Elf_types<size>::Elf_WXword r_info;
9574 typename elfcpp::Elf_types<size>::Elf_Swxword r_addend;
9575
9576 if (rel_type == elfcpp::SHT_RELA)
9577 {
9578 r_offset = rela->get_r_offset();
9579 r_info = rela->get_r_info();
9580 r_addend = rela->get_r_addend();
9581 }
9582 else
9583 {
9584 r_offset = rel->get_r_offset();
9585 r_info = rel->get_r_info();
9586 r_addend = 0;
9587 }
9588
9589 typedef Mips_relocate_functions<size, big_endian> Reloc_funcs;
9590 typename Reloc_funcs::Status reloc_status = Reloc_funcs::STATUS_OKAY;
9591
9592 Mips_relobj<size, big_endian>* object =
9593 Mips_relobj<size, big_endian>::as_mips_relobj(relinfo->object);
9594
9595 unsigned int r_sym = elfcpp::elf_r_sym<size>(r_info);
9596 bool target_is_16_bit_code = false;
9597 bool target_is_micromips_code = false;
9598 bool cross_mode_jump;
9599
9600 Symbol_value<size> symval;
9601
9602 const Mips_symbol<size>* mips_sym = Mips_symbol<size>::as_mips_sym(gsym);
9603
9604 bool changed_symbol_value = false;
9605 if (gsym == NULL)
9606 {
9607 target_is_16_bit_code = object->local_symbol_is_mips16(r_sym);
9608 target_is_micromips_code = object->local_symbol_is_micromips(r_sym);
9609 if (target_is_16_bit_code || target_is_micromips_code)
9610 {
9611 // MIPS16/microMIPS text labels should be treated as odd.
9612 symval.set_output_value(psymval->value(object, 1));
9613 psymval = &symval;
9614 changed_symbol_value = true;
9615 }
9616 }
9617 else
9618 {
9619 target_is_16_bit_code = mips_sym->is_mips16();
9620 target_is_micromips_code = mips_sym->is_micromips();
9621
9622 // If this is a mips16/microMIPS text symbol, add 1 to the value to make
9623 // it odd. This will cause something like .word SYM to come up with
9624 // the right value when it is loaded into the PC.
9625
9626 if ((mips_sym->is_mips16() || mips_sym->is_micromips())
9627 && psymval->value(object, 0) != 0)
9628 {
9629 symval.set_output_value(psymval->value(object, 0) | 1);
9630 psymval = &symval;
9631 changed_symbol_value = true;
9632 }
9633
9634 // Pick the value to use for symbols defined in shared objects.
9635 if (mips_sym->use_plt_offset(Scan::get_reference_flags(r_type))
9636 || mips_sym->has_lazy_stub())
9637 {
9638 Mips_address value;
9639 if (!mips_sym->has_lazy_stub())
9640 {
9641 // Prefer a standard MIPS PLT entry.
9642 if (mips_sym->has_mips_plt_offset())
9643 {
9644 value = target->plt_section()->mips_entry_address(mips_sym);
9645 target_is_micromips_code = false;
9646 target_is_16_bit_code = false;
9647 }
9648 else
9649 {
9650 value = (target->plt_section()->comp_entry_address(mips_sym)
9651 + 1);
9652 if (target->is_output_micromips())
9653 target_is_micromips_code = true;
9654 else
9655 target_is_16_bit_code = true;
9656 }
9657 }
9658 else
9659 value = target->mips_stubs_section()->stub_address(mips_sym);
9660
9661 symval.set_output_value(value);
9662 psymval = &symval;
9663 }
9664 }
9665
9666 // TRUE if the symbol referred to by this relocation is "_gp_disp".
9667 // Note that such a symbol must always be a global symbol.
9668 bool gp_disp = (gsym != NULL && (strcmp(gsym->name(), "_gp_disp") == 0)
9669 && !object->is_newabi());
9670
9671 // TRUE if the symbol referred to by this relocation is "__gnu_local_gp".
9672 // Note that such a symbol must always be a global symbol.
9673 bool gnu_local_gp = gsym && (strcmp(gsym->name(), "__gnu_local_gp") == 0);
9674
9675
9676 if (gp_disp)
9677 {
9678 if (!hi16_reloc(r_type) && !lo16_reloc(r_type))
9679 gold_error_at_location(relinfo, relnum, r_offset,
9680 _("relocations against _gp_disp are permitted only"
9681 " with R_MIPS_HI16 and R_MIPS_LO16 relocations."));
9682 }
9683 else if (gnu_local_gp)
9684 {
9685 // __gnu_local_gp is _gp symbol.
9686 symval.set_output_value(target->adjusted_gp_value(object));
9687 psymval = &symval;
9688 }
9689
9690 // If this is a reference to a 16-bit function with a stub, we need
9691 // to redirect the relocation to the stub unless:
9692 //
9693 // (a) the relocation is for a MIPS16 JAL;
9694 //
9695 // (b) the relocation is for a MIPS16 PIC call, and there are no
9696 // non-MIPS16 uses of the GOT slot; or
9697 //
9698 // (c) the section allows direct references to MIPS16 functions.
9699 if (r_type != elfcpp::R_MIPS16_26
9700 && !parameters->options().relocatable()
9701 && ((mips_sym != NULL
9702 && mips_sym->has_mips16_fn_stub()
9703 && (r_type != elfcpp::R_MIPS16_CALL16 || mips_sym->need_fn_stub()))
9704 || (mips_sym == NULL
9705 && object->get_local_mips16_fn_stub(r_sym) != NULL))
9706 && !object->section_allows_mips16_refs(relinfo->data_shndx))
9707 {
9708 // This is a 32- or 64-bit call to a 16-bit function. We should
9709 // have already noticed that we were going to need the
9710 // stub.
9711 Mips_address value;
9712 if (mips_sym == NULL)
9713 value = object->get_local_mips16_fn_stub(r_sym)->output_address();
9714 else
9715 {
9716 gold_assert(mips_sym->need_fn_stub());
9717 if (mips_sym->has_la25_stub())
9718 value = target->la25_stub_section()->stub_address(mips_sym);
9719 else
9720 {
9721 value = mips_sym->template
9722 get_mips16_fn_stub<big_endian>()->output_address();
9723 }
9724 }
9725 symval.set_output_value(value);
9726 psymval = &symval;
9727 changed_symbol_value = true;
9728
9729 // The target is 16-bit, but the stub isn't.
9730 target_is_16_bit_code = false;
9731 }
9732 // If this is a MIPS16 call with a stub, that is made through the PLT or
9733 // to a standard MIPS function, we need to redirect the call to the stub.
9734 // Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
9735 // indirect calls should use an indirect stub instead.
9736 else if (r_type == elfcpp::R_MIPS16_26 && !parameters->options().relocatable()
9737 && ((mips_sym != NULL
9738 && (mips_sym->has_mips16_call_stub()
9739 || mips_sym->has_mips16_call_fp_stub()))
9740 || (mips_sym == NULL
9741 && object->get_local_mips16_call_stub(r_sym) != NULL))
9742 && ((mips_sym != NULL && mips_sym->has_plt_offset())
9743 || !target_is_16_bit_code))
9744 {
9745 Mips16_stub_section<size, big_endian>* call_stub;
9746 if (mips_sym == NULL)
9747 call_stub = object->get_local_mips16_call_stub(r_sym);
9748 else
9749 {
9750 // If both call_stub and call_fp_stub are defined, we can figure
9751 // out which one to use by checking which one appears in the input
9752 // file.
9753 if (mips_sym->has_mips16_call_stub()
9754 && mips_sym->has_mips16_call_fp_stub())
9755 {
9756 call_stub = NULL;
9757 for (unsigned int i = 1; i < object->shnum(); ++i)
9758 {
9759 if (object->is_mips16_call_fp_stub_section(i))
9760 {
9761 call_stub = mips_sym->template
9762 get_mips16_call_fp_stub<big_endian>();
9763 break;
9764 }
9765
9766 }
9767 if (call_stub == NULL)
9768 call_stub =
9769 mips_sym->template get_mips16_call_stub<big_endian>();
9770 }
9771 else if (mips_sym->has_mips16_call_stub())
9772 call_stub = mips_sym->template get_mips16_call_stub<big_endian>();
9773 else
9774 call_stub = mips_sym->template get_mips16_call_fp_stub<big_endian>();
9775 }
9776
9777 symval.set_output_value(call_stub->output_address());
9778 psymval = &symval;
9779 changed_symbol_value = true;
9780 }
9781 // If this is a direct call to a PIC function, redirect to the
9782 // non-PIC stub.
9783 else if (mips_sym != NULL
9784 && mips_sym->has_la25_stub()
9785 && relocation_needs_la25_stub<size, big_endian>(
9786 object, r_type, target_is_16_bit_code))
9787 {
9788 Mips_address value = target->la25_stub_section()->stub_address(mips_sym);
9789 if (mips_sym->is_micromips())
9790 value += 1;
9791 symval.set_output_value(value);
9792 psymval = &symval;
9793 }
9794 // For direct MIPS16 and microMIPS calls make sure the compressed PLT
9795 // entry is used if a standard PLT entry has also been made.
9796 else if ((r_type == elfcpp::R_MIPS16_26
9797 || r_type == elfcpp::R_MICROMIPS_26_S1)
9798 && !parameters->options().relocatable()
9799 && mips_sym != NULL
9800 && mips_sym->has_plt_offset()
9801 && mips_sym->has_comp_plt_offset()
9802 && mips_sym->has_mips_plt_offset())
9803 {
9804 Mips_address value = (target->plt_section()->comp_entry_address(mips_sym)
9805 + 1);
9806 symval.set_output_value(value);
9807 psymval = &symval;
9808
9809 target_is_16_bit_code = !target->is_output_micromips();
9810 target_is_micromips_code = target->is_output_micromips();
9811 }
9812
9813 // Make sure MIPS16 and microMIPS are not used together.
9814 if ((r_type == elfcpp::R_MIPS16_26 && target_is_micromips_code)
9815 || (micromips_branch_reloc(r_type) && target_is_16_bit_code))
9816 {
9817 gold_error(_("MIPS16 and microMIPS functions cannot call each other"));
9818 }
9819
9820 // Calls from 16-bit code to 32-bit code and vice versa require the
9821 // mode change. However, we can ignore calls to undefined weak symbols,
9822 // which should never be executed at runtime. This exception is important
9823 // because the assembly writer may have "known" that any definition of the
9824 // symbol would be 16-bit code, and that direct jumps were therefore
9825 // acceptable.
9826 cross_mode_jump =
9827 (!parameters->options().relocatable()
9828 && !(gsym != NULL && gsym->is_weak_undefined())
9829 && ((r_type == elfcpp::R_MIPS16_26 && !target_is_16_bit_code)
9830 || (r_type == elfcpp::R_MICROMIPS_26_S1 && !target_is_micromips_code)
9831 || ((r_type == elfcpp::R_MIPS_26 || r_type == elfcpp::R_MIPS_JALR)
9832 && (target_is_16_bit_code || target_is_micromips_code))));
9833
9834 bool local = (mips_sym == NULL
9835 || (mips_sym->got_only_for_calls()
9836 ? symbol_calls_local(mips_sym, mips_sym->has_dynsym_index())
9837 : symbol_references_local(mips_sym,
9838 mips_sym->has_dynsym_index())));
9839
9840 // Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
9841 // to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
9842 // corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST.
9843 if (got_page_reloc(r_type) && !local)
9844 r_type = (micromips_reloc(r_type) ? elfcpp::R_MICROMIPS_GOT_DISP
9845 : elfcpp::R_MIPS_GOT_DISP);
9846
9847 unsigned int got_offset = 0;
9848 int gp_offset = 0;
9849
9850 bool update_got_entry = false;
9851 bool extract_addend = rel_type == elfcpp::SHT_REL;
9852 switch (r_type)
9853 {
9854 case elfcpp::R_MIPS_NONE:
9855 break;
9856 case elfcpp::R_MIPS_16:
9857 reloc_status = Reloc_funcs::rel16(view, object, psymval, r_addend,
9858 extract_addend, r_type);
9859 break;
9860
9861 case elfcpp::R_MIPS_32:
9862 if (should_apply_r_mips_32_reloc(mips_sym, r_type, output_section,
9863 target))
9864 reloc_status = Reloc_funcs::rel32(view, object, psymval, r_addend,
9865 extract_addend, r_type);
9866 if (mips_sym != NULL
9867 && (mips_sym->is_mips16() || mips_sym->is_micromips())
9868 && mips_sym->global_got_area() == GGA_RELOC_ONLY)
9869 {
9870 // If mips_sym->has_mips16_fn_stub() is false, symbol value is
9871 // already updated by adding +1.
9872 if (mips_sym->has_mips16_fn_stub())
9873 {
9874 gold_assert(mips_sym->need_fn_stub());
9875 Mips16_stub_section<size, big_endian>* fn_stub =
9876 mips_sym->template get_mips16_fn_stub<big_endian>();
9877
9878 symval.set_output_value(fn_stub->output_address());
9879 psymval = &symval;
9880 }
9881 got_offset = mips_sym->global_gotoffset();
9882 update_got_entry = true;
9883 }
9884 break;
9885
9886 case elfcpp::R_MIPS_REL32:
9887 gold_unreachable();
9888
9889 case elfcpp::R_MIPS_PC32:
9890 reloc_status = Reloc_funcs::relpc32(view, object, psymval, address,
9891 r_addend, extract_addend, r_type);
9892 break;
9893
9894 case elfcpp::R_MIPS16_26:
9895 // The calculation for R_MIPS16_26 is just the same as for an
9896 // R_MIPS_26. It's only the storage of the relocated field into
9897 // the output file that's different. So, we just fall through to the
9898 // R_MIPS_26 case here.
9899 case elfcpp::R_MIPS_26:
9900 case elfcpp::R_MICROMIPS_26_S1:
9901 reloc_status = Reloc_funcs::rel26(view, object, psymval, address,
9902 gsym == NULL, r_addend, extract_addend, gsym, cross_mode_jump, r_type,
9903 target->jal_to_bal());
9904 break;
9905
9906 case elfcpp::R_MIPS_HI16:
9907 case elfcpp::R_MIPS16_HI16:
9908 case elfcpp::R_MICROMIPS_HI16:
9909 reloc_status = Reloc_funcs::relhi16(view, object, psymval, r_addend,
9910 address, gp_disp, r_type,
9911 extract_addend);
9912 break;
9913
9914 case elfcpp::R_MIPS_LO16:
9915 case elfcpp::R_MIPS16_LO16:
9916 case elfcpp::R_MICROMIPS_LO16:
9917 case elfcpp::R_MICROMIPS_HI0_LO16:
9918 reloc_status = Reloc_funcs::rello16(target, view, object, psymval,
9919 r_addend, extract_addend, address,
9920 gp_disp, r_type);
9921 break;
9922
9923 case elfcpp::R_MIPS_LITERAL:
9924 case elfcpp::R_MICROMIPS_LITERAL:
9925 // Because we don't merge literal sections, we can handle this
9926 // just like R_MIPS_GPREL16. In the long run, we should merge
9927 // shared literals, and then we will need to additional work
9928 // here.
9929
9930 // Fall through.
9931
9932 case elfcpp::R_MIPS_GPREL16:
9933 case elfcpp::R_MIPS16_GPREL:
9934 case elfcpp::R_MICROMIPS_GPREL7_S2:
9935 case elfcpp::R_MICROMIPS_GPREL16:
9936 reloc_status = Reloc_funcs::relgprel(view, object, psymval,
9937 target->adjusted_gp_value(object),
9938 r_addend, extract_addend,
9939 gsym == NULL, r_type);
9940 break;
9941
9942 case elfcpp::R_MIPS_PC16:
9943 reloc_status = Reloc_funcs::relpc16(view, object, psymval, address,
9944 r_addend, extract_addend, r_type);
9945 break;
9946 case elfcpp::R_MICROMIPS_PC7_S1:
9947 reloc_status = Reloc_funcs::relmicromips_pc7_s1(view, object, psymval,
9948 address, r_addend,
9949 extract_addend, r_type);
9950 break;
9951 case elfcpp::R_MICROMIPS_PC10_S1:
9952 reloc_status = Reloc_funcs::relmicromips_pc10_s1(view, object, psymval,
9953 address, r_addend,
9954 extract_addend, r_type);
9955 break;
9956 case elfcpp::R_MICROMIPS_PC16_S1:
9957 reloc_status = Reloc_funcs::relmicromips_pc16_s1(view, object, psymval,
9958 address, r_addend,
9959 extract_addend, r_type);
9960 break;
9961 case elfcpp::R_MIPS_GPREL32:
9962 reloc_status = Reloc_funcs::relgprel32(view, object, psymval,
9963 target->adjusted_gp_value(object),
9964 r_addend, extract_addend, r_type);
9965 break;
9966 case elfcpp::R_MIPS_GOT_HI16:
9967 case elfcpp::R_MIPS_CALL_HI16:
9968 case elfcpp::R_MICROMIPS_GOT_HI16:
9969 case elfcpp::R_MICROMIPS_CALL_HI16:
9970 if (gsym != NULL)
9971 got_offset = target->got_section()->got_offset(gsym, GOT_TYPE_STANDARD,
9972 object);
9973 else
9974 got_offset = target->got_section()->got_offset(r_sym, GOT_TYPE_STANDARD,
9975 object);
9976 gp_offset = target->got_section()->gp_offset(got_offset, object);
9977 reloc_status = Reloc_funcs::relgot_hi16(view, gp_offset, r_type);
9978 update_got_entry = changed_symbol_value;
9979 break;
9980
9981 case elfcpp::R_MIPS_GOT_LO16:
9982 case elfcpp::R_MIPS_CALL_LO16:
9983 case elfcpp::R_MICROMIPS_GOT_LO16:
9984 case elfcpp::R_MICROMIPS_CALL_LO16:
9985 if (gsym != NULL)
9986 got_offset = target->got_section()->got_offset(gsym, GOT_TYPE_STANDARD,
9987 object);
9988 else
9989 got_offset = target->got_section()->got_offset(r_sym, GOT_TYPE_STANDARD,
9990 object);
9991 gp_offset = target->got_section()->gp_offset(got_offset, object);
9992 reloc_status = Reloc_funcs::relgot_lo16(view, gp_offset, r_type);
9993 update_got_entry = changed_symbol_value;
9994 break;
9995
9996 case elfcpp::R_MIPS_GOT_DISP:
9997 case elfcpp::R_MICROMIPS_GOT_DISP:
9998 if (gsym != NULL)
9999 got_offset = target->got_section()->got_offset(gsym, GOT_TYPE_STANDARD,
10000 object);
10001 else
10002 got_offset = target->got_section()->got_offset(r_sym, GOT_TYPE_STANDARD,
10003 object);
10004 gp_offset = target->got_section()->gp_offset(got_offset, object);
10005 reloc_status = Reloc_funcs::relgot(view, gp_offset, r_type);
10006 break;
10007
10008 case elfcpp::R_MIPS_CALL16:
10009 case elfcpp::R_MIPS16_CALL16:
10010 case elfcpp::R_MICROMIPS_CALL16:
10011 gold_assert(gsym != NULL);
10012 got_offset = target->got_section()->got_offset(gsym, GOT_TYPE_STANDARD,
10013 object);
10014 gp_offset = target->got_section()->gp_offset(got_offset, object);
10015 reloc_status = Reloc_funcs::relgot(view, gp_offset, r_type);
10016 // TODO(sasa): We should also initialize update_got_entry in other places
10017 // where relgot is called.
10018 update_got_entry = changed_symbol_value;
10019 break;
10020
10021 case elfcpp::R_MIPS_GOT16:
10022 case elfcpp::R_MIPS16_GOT16:
10023 case elfcpp::R_MICROMIPS_GOT16:
10024 if (gsym != NULL)
10025 {
10026 got_offset = target->got_section()->got_offset(gsym,
10027 GOT_TYPE_STANDARD,
10028 object);
10029 gp_offset = target->got_section()->gp_offset(got_offset, object);
10030 reloc_status = Reloc_funcs::relgot(view, gp_offset, r_type);
10031 }
10032 else
10033 reloc_status = Reloc_funcs::relgot16_local(view, object, psymval,
10034 r_addend, extract_addend,
10035 r_type);
10036 update_got_entry = changed_symbol_value;
10037 break;
10038
10039 case elfcpp::R_MIPS_TLS_GD:
10040 case elfcpp::R_MIPS16_TLS_GD:
10041 case elfcpp::R_MICROMIPS_TLS_GD:
10042 if (gsym != NULL)
10043 got_offset = target->got_section()->got_offset(gsym, GOT_TYPE_TLS_PAIR,
10044 object);
10045 else
10046 got_offset = target->got_section()->got_offset(r_sym, GOT_TYPE_TLS_PAIR,
10047 object);
10048 gp_offset = target->got_section()->gp_offset(got_offset, object);
10049 reloc_status = Reloc_funcs::relgot(view, gp_offset, r_type);
10050 break;
10051
10052 case elfcpp::R_MIPS_TLS_GOTTPREL:
10053 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10054 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10055 if (gsym != NULL)
10056 got_offset = target->got_section()->got_offset(gsym,
10057 GOT_TYPE_TLS_OFFSET,
10058 object);
10059 else
10060 got_offset = target->got_section()->got_offset(r_sym,
10061 GOT_TYPE_TLS_OFFSET,
10062 object);
10063 gp_offset = target->got_section()->gp_offset(got_offset, object);
10064 reloc_status = Reloc_funcs::relgot(view, gp_offset, r_type);
10065 break;
10066
10067 case elfcpp::R_MIPS_TLS_LDM:
10068 case elfcpp::R_MIPS16_TLS_LDM:
10069 case elfcpp::R_MICROMIPS_TLS_LDM:
10070 // Relocate the field with the offset of the GOT entry for
10071 // the module index.
10072 got_offset = target->got_section()->tls_ldm_offset(object);
10073 gp_offset = target->got_section()->gp_offset(got_offset, object);
10074 reloc_status = Reloc_funcs::relgot(view, gp_offset, r_type);
10075 break;
10076
10077 case elfcpp::R_MIPS_GOT_PAGE:
10078 case elfcpp::R_MICROMIPS_GOT_PAGE:
10079 reloc_status = Reloc_funcs::relgotpage(target, view, object, psymval,
10080 r_addend, extract_addend, r_type);
10081 break;
10082
10083 case elfcpp::R_MIPS_GOT_OFST:
10084 case elfcpp::R_MICROMIPS_GOT_OFST:
10085 reloc_status = Reloc_funcs::relgotofst(target, view, object, psymval,
10086 r_addend, extract_addend, local,
10087 r_type);
10088 break;
10089
10090 case elfcpp::R_MIPS_JALR:
10091 case elfcpp::R_MICROMIPS_JALR:
10092 // This relocation is only a hint. In some cases, we optimize
10093 // it into a bal instruction. But we don't try to optimize
10094 // when the symbol does not resolve locally.
10095 if (gsym == NULL || symbol_calls_local(gsym, gsym->has_dynsym_index()))
10096 reloc_status = Reloc_funcs::reljalr(view, object, psymval, address,
10097 r_addend, extract_addend,
10098 cross_mode_jump, r_type,
10099 target->jalr_to_bal(),
10100 target->jr_to_b());
10101 break;
10102
10103 case elfcpp::R_MIPS_TLS_DTPREL_HI16:
10104 case elfcpp::R_MIPS16_TLS_DTPREL_HI16:
10105 case elfcpp::R_MICROMIPS_TLS_DTPREL_HI16:
10106 reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
10107 elfcpp::DTP_OFFSET, r_addend,
10108 extract_addend, r_type);
10109 break;
10110 case elfcpp::R_MIPS_TLS_DTPREL_LO16:
10111 case elfcpp::R_MIPS16_TLS_DTPREL_LO16:
10112 case elfcpp::R_MICROMIPS_TLS_DTPREL_LO16:
10113 reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
10114 elfcpp::DTP_OFFSET, r_addend,
10115 extract_addend, r_type);
10116 break;
10117 case elfcpp::R_MIPS_TLS_DTPREL32:
10118 case elfcpp::R_MIPS_TLS_DTPREL64:
10119 reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
10120 elfcpp::DTP_OFFSET, r_addend,
10121 extract_addend, r_type);
10122 break;
10123 case elfcpp::R_MIPS_TLS_TPREL_HI16:
10124 case elfcpp::R_MIPS16_TLS_TPREL_HI16:
10125 case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
10126 reloc_status = Reloc_funcs::tlsrelhi16(view, object, psymval,
10127 elfcpp::TP_OFFSET, r_addend,
10128 extract_addend, r_type);
10129 break;
10130 case elfcpp::R_MIPS_TLS_TPREL_LO16:
10131 case elfcpp::R_MIPS16_TLS_TPREL_LO16:
10132 case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
10133 reloc_status = Reloc_funcs::tlsrello16(view, object, psymval,
10134 elfcpp::TP_OFFSET, r_addend,
10135 extract_addend, r_type);
10136 break;
10137 case elfcpp::R_MIPS_TLS_TPREL32:
10138 case elfcpp::R_MIPS_TLS_TPREL64:
10139 reloc_status = Reloc_funcs::tlsrel32(view, object, psymval,
10140 elfcpp::TP_OFFSET, r_addend,
10141 extract_addend, r_type);
10142 break;
10143 case elfcpp::R_MIPS_SUB:
10144 case elfcpp::R_MICROMIPS_SUB:
10145 reloc_status = Reloc_funcs::relsub(view, object, psymval, r_addend,
10146 extract_addend, r_type);
10147 break;
10148 default:
10149 gold_error_at_location(relinfo, relnum, r_offset,
10150 _("unsupported reloc %u"), r_type);
10151 break;
10152 }
10153
10154 if (update_got_entry)
10155 {
10156 Mips_output_data_got<size, big_endian>* got = target->got_section();
10157 if (mips_sym != NULL && mips_sym->get_applied_secondary_got_fixup())
10158 got->update_got_entry(got->get_primary_got_offset(mips_sym),
10159 psymval->value(object, 0));
10160 else
10161 got->update_got_entry(got_offset, psymval->value(object, 0));
10162 }
10163
10164 // Report any errors.
10165 switch (reloc_status)
10166 {
10167 case Reloc_funcs::STATUS_OKAY:
10168 break;
10169 case Reloc_funcs::STATUS_OVERFLOW:
10170 gold_error_at_location(relinfo, relnum, r_offset,
10171 _("relocation overflow"));
10172 break;
10173 case Reloc_funcs::STATUS_BAD_RELOC:
10174 gold_error_at_location(relinfo, relnum, r_offset,
10175 _("unexpected opcode while processing relocation"));
10176 break;
10177 default:
10178 gold_unreachable();
10179 }
10180
10181 return true;
10182 }
10183
10184 template<int size, bool big_endian>
10185 inline bool
10186 Target_mips<size, big_endian>::Relocate::relocate(
10187 const Relocate_info<size, big_endian>* relinfo,
10188 Target_mips* target,
10189 Output_section* output_section,
10190 size_t relnum,
10191 const elfcpp::Rela<size, big_endian>& reloc,
10192 unsigned int r_type,
10193 const Sized_symbol<size>* gsym,
10194 const Symbol_value<size>* psymval,
10195 unsigned char* view,
10196 Mips_address address,
10197 section_size_type view_size)
10198 {
10199 return relocate(
10200 relinfo,
10201 target,
10202 output_section,
10203 relnum,
10204 &reloc,
10205 (const elfcpp::Rel<size, big_endian>*) NULL,
10206 elfcpp::SHT_RELA,
10207 r_type,
10208 gsym,
10209 psymval,
10210 view,
10211 address,
10212 view_size);
10213 }
10214
10215 template<int size, bool big_endian>
10216 inline bool
10217 Target_mips<size, big_endian>::Relocate::relocate(
10218 const Relocate_info<size, big_endian>* relinfo,
10219 Target_mips* target,
10220 Output_section* output_section,
10221 size_t relnum,
10222 const elfcpp::Rel<size, big_endian>& reloc,
10223 unsigned int r_type,
10224 const Sized_symbol<size>* gsym,
10225 const Symbol_value<size>* psymval,
10226 unsigned char* view,
10227 Mips_address address,
10228 section_size_type view_size)
10229 {
10230 return relocate(
10231 relinfo,
10232 target,
10233 output_section,
10234 relnum,
10235 (const elfcpp::Rela<size, big_endian>*) NULL,
10236 &reloc,
10237 elfcpp::SHT_REL,
10238 r_type,
10239 gsym,
10240 psymval,
10241 view,
10242 address,
10243 view_size);
10244 }
10245
10246 // Get the Reference_flags for a particular relocation.
10247
10248 template<int size, bool big_endian>
10249 int
10250 Target_mips<size, big_endian>::Scan::get_reference_flags(
10251 unsigned int r_type)
10252 {
10253 switch (r_type)
10254 {
10255 case elfcpp::R_MIPS_NONE:
10256 // No symbol reference.
10257 return 0;
10258
10259 case elfcpp::R_MIPS_16:
10260 case elfcpp::R_MIPS_32:
10261 case elfcpp::R_MIPS_64:
10262 case elfcpp::R_MIPS_HI16:
10263 case elfcpp::R_MIPS_LO16:
10264 case elfcpp::R_MIPS16_HI16:
10265 case elfcpp::R_MIPS16_LO16:
10266 case elfcpp::R_MICROMIPS_HI16:
10267 case elfcpp::R_MICROMIPS_LO16:
10268 return Symbol::ABSOLUTE_REF;
10269
10270 case elfcpp::R_MIPS_26:
10271 case elfcpp::R_MIPS16_26:
10272 case elfcpp::R_MICROMIPS_26_S1:
10273 return Symbol::FUNCTION_CALL | Symbol::ABSOLUTE_REF;
10274
10275 case elfcpp::R_MIPS_GPREL32:
10276 case elfcpp::R_MIPS_GPREL16:
10277 case elfcpp::R_MIPS_REL32:
10278 case elfcpp::R_MIPS16_GPREL:
10279 return Symbol::RELATIVE_REF;
10280
10281 case elfcpp::R_MIPS_PC16:
10282 case elfcpp::R_MIPS_PC32:
10283 case elfcpp::R_MIPS_JALR:
10284 case elfcpp::R_MICROMIPS_JALR:
10285 return Symbol::FUNCTION_CALL | Symbol::RELATIVE_REF;
10286
10287 case elfcpp::R_MIPS_GOT16:
10288 case elfcpp::R_MIPS_CALL16:
10289 case elfcpp::R_MIPS_GOT_DISP:
10290 case elfcpp::R_MIPS_GOT_HI16:
10291 case elfcpp::R_MIPS_GOT_LO16:
10292 case elfcpp::R_MIPS_CALL_HI16:
10293 case elfcpp::R_MIPS_CALL_LO16:
10294 case elfcpp::R_MIPS_LITERAL:
10295 case elfcpp::R_MIPS_GOT_PAGE:
10296 case elfcpp::R_MIPS_GOT_OFST:
10297 case elfcpp::R_MIPS16_GOT16:
10298 case elfcpp::R_MIPS16_CALL16:
10299 case elfcpp::R_MICROMIPS_GOT16:
10300 case elfcpp::R_MICROMIPS_CALL16:
10301 case elfcpp::R_MICROMIPS_GOT_HI16:
10302 case elfcpp::R_MICROMIPS_GOT_LO16:
10303 case elfcpp::R_MICROMIPS_CALL_HI16:
10304 case elfcpp::R_MICROMIPS_CALL_LO16:
10305 // Absolute in GOT.
10306 return Symbol::RELATIVE_REF;
10307
10308 case elfcpp::R_MIPS_TLS_DTPMOD32:
10309 case elfcpp::R_MIPS_TLS_DTPREL32:
10310 case elfcpp::R_MIPS_TLS_DTPMOD64:
10311 case elfcpp::R_MIPS_TLS_DTPREL64:
10312 case elfcpp::R_MIPS_TLS_GD:
10313 case elfcpp::R_MIPS_TLS_LDM:
10314 case elfcpp::R_MIPS_TLS_DTPREL_HI16:
10315 case elfcpp::R_MIPS_TLS_DTPREL_LO16:
10316 case elfcpp::R_MIPS_TLS_GOTTPREL:
10317 case elfcpp::R_MIPS_TLS_TPREL32:
10318 case elfcpp::R_MIPS_TLS_TPREL64:
10319 case elfcpp::R_MIPS_TLS_TPREL_HI16:
10320 case elfcpp::R_MIPS_TLS_TPREL_LO16:
10321 case elfcpp::R_MIPS16_TLS_GD:
10322 case elfcpp::R_MIPS16_TLS_GOTTPREL:
10323 case elfcpp::R_MICROMIPS_TLS_GD:
10324 case elfcpp::R_MICROMIPS_TLS_GOTTPREL:
10325 case elfcpp::R_MICROMIPS_TLS_TPREL_HI16:
10326 case elfcpp::R_MICROMIPS_TLS_TPREL_LO16:
10327 return Symbol::TLS_REF;
10328
10329 case elfcpp::R_MIPS_COPY:
10330 case elfcpp::R_MIPS_JUMP_SLOT:
10331 default:
10332 gold_unreachable();
10333 // Not expected. We will give an error later.
10334 return 0;
10335 }
10336 }
10337
10338 // Report an unsupported relocation against a local symbol.
10339
10340 template<int size, bool big_endian>
10341 void
10342 Target_mips<size, big_endian>::Scan::unsupported_reloc_local(
10343 Sized_relobj_file<size, big_endian>* object,
10344 unsigned int r_type)
10345 {
10346 gold_error(_("%s: unsupported reloc %u against local symbol"),
10347 object->name().c_str(), r_type);
10348 }
10349
10350 // Report an unsupported relocation against a global symbol.
10351
10352 template<int size, bool big_endian>
10353 void
10354 Target_mips<size, big_endian>::Scan::unsupported_reloc_global(
10355 Sized_relobj_file<size, big_endian>* object,
10356 unsigned int r_type,
10357 Symbol* gsym)
10358 {
10359 gold_error(_("%s: unsupported reloc %u against global symbol %s"),
10360 object->name().c_str(), r_type, gsym->demangled_name().c_str());
10361 }
10362
10363 // Return printable name for ABI.
10364 template<int size, bool big_endian>
10365 const char*
10366 Target_mips<size, big_endian>::elf_mips_abi_name(elfcpp::Elf_Word e_flags,
10367 unsigned char ei_class)
10368 {
10369 switch (e_flags & elfcpp::EF_MIPS_ABI)
10370 {
10371 case 0:
10372 if ((e_flags & elfcpp::EF_MIPS_ABI2) != 0)
10373 return "N32";
10374 else if (elfcpp::abi_64(ei_class))
10375 return "64";
10376 else
10377 return "none";
10378 case elfcpp::E_MIPS_ABI_O32:
10379 return "O32";
10380 case elfcpp::E_MIPS_ABI_O64:
10381 return "O64";
10382 case elfcpp::E_MIPS_ABI_EABI32:
10383 return "EABI32";
10384 case elfcpp::E_MIPS_ABI_EABI64:
10385 return "EABI64";
10386 default:
10387 return "unknown abi";
10388 }
10389 }
10390
10391 template<int size, bool big_endian>
10392 const char*
10393 Target_mips<size, big_endian>::elf_mips_mach_name(elfcpp::Elf_Word e_flags)
10394 {
10395 switch (e_flags & elfcpp::EF_MIPS_MACH)
10396 {
10397 case elfcpp::E_MIPS_MACH_3900:
10398 return "mips:3900";
10399 case elfcpp::E_MIPS_MACH_4010:
10400 return "mips:4010";
10401 case elfcpp::E_MIPS_MACH_4100:
10402 return "mips:4100";
10403 case elfcpp::E_MIPS_MACH_4111:
10404 return "mips:4111";
10405 case elfcpp::E_MIPS_MACH_4120:
10406 return "mips:4120";
10407 case elfcpp::E_MIPS_MACH_4650:
10408 return "mips:4650";
10409 case elfcpp::E_MIPS_MACH_5400:
10410 return "mips:5400";
10411 case elfcpp::E_MIPS_MACH_5500:
10412 return "mips:5500";
10413 case elfcpp::E_MIPS_MACH_SB1:
10414 return "mips:sb1";
10415 case elfcpp::E_MIPS_MACH_9000:
10416 return "mips:9000";
10417 case elfcpp::E_MIPS_MACH_LS2E:
10418 return "mips:loongson-2e";
10419 case elfcpp::E_MIPS_MACH_LS2F:
10420 return "mips:loongson-2f";
10421 case elfcpp::E_MIPS_MACH_LS3A:
10422 return "mips:loongson-3a";
10423 case elfcpp::E_MIPS_MACH_OCTEON:
10424 return "mips:octeon";
10425 case elfcpp::E_MIPS_MACH_OCTEON2:
10426 return "mips:octeon2";
10427 case elfcpp::E_MIPS_MACH_XLR:
10428 return "mips:xlr";
10429 default:
10430 switch (e_flags & elfcpp::EF_MIPS_ARCH)
10431 {
10432 default:
10433 case elfcpp::E_MIPS_ARCH_1:
10434 return "mips:3000";
10435
10436 case elfcpp::E_MIPS_ARCH_2:
10437 return "mips:6000";
10438
10439 case elfcpp::E_MIPS_ARCH_3:
10440 return "mips:4000";
10441
10442 case elfcpp::E_MIPS_ARCH_4:
10443 return "mips:8000";
10444
10445 case elfcpp::E_MIPS_ARCH_5:
10446 return "mips:mips5";
10447
10448 case elfcpp::E_MIPS_ARCH_32:
10449 return "mips:isa32";
10450
10451 case elfcpp::E_MIPS_ARCH_64:
10452 return "mips:isa64";
10453
10454 case elfcpp::E_MIPS_ARCH_32R2:
10455 return "mips:isa32r2";
10456
10457 case elfcpp::E_MIPS_ARCH_64R2:
10458 return "mips:isa64r2";
10459 }
10460 }
10461 return "unknown CPU";
10462 }
10463
10464 template<int size, bool big_endian>
10465 Target::Target_info Target_mips<size, big_endian>::mips_info =
10466 {
10467 size, // size
10468 big_endian, // is_big_endian
10469 elfcpp::EM_MIPS, // machine_code
10470 true, // has_make_symbol
10471 false, // has_resolve
10472 false, // has_code_fill
10473 true, // is_default_stack_executable
10474 false, // can_icf_inline_merge_sections
10475 '\0', // wrap_char
10476 "/lib/ld.so.1", // dynamic_linker
10477 0x400000, // default_text_segment_address
10478 64 * 1024, // abi_pagesize (overridable by -z max-page-size)
10479 4 * 1024, // common_pagesize (overridable by -z common-page-size)
10480 false, // isolate_execinstr
10481 0, // rosegment_gap
10482 elfcpp::SHN_UNDEF, // small_common_shndx
10483 elfcpp::SHN_UNDEF, // large_common_shndx
10484 0, // small_common_section_flags
10485 0, // large_common_section_flags
10486 NULL, // attributes_section
10487 NULL, // attributes_vendor
10488 "__start" // entry_symbol_name
10489 };
10490
10491 // The selector for mips object files.
10492
10493 template<int size, bool big_endian>
10494 class Target_selector_mips : public Target_selector
10495 {
10496 public:
10497 Target_selector_mips()
10498 : Target_selector(elfcpp::EM_MIPS, size, big_endian,
10499 (size == 64 ?
10500 (big_endian ? "elf64-tradbigmips" : "elf64-tradlittlemips") :
10501 (big_endian ? "elf32-tradbigmips" : "elf32-tradlittlemips")),
10502 (size == 64 ?
10503 (big_endian ? "elf64-tradbigmips" : "elf64-tradlittlemips") :
10504 (big_endian ? "elf32-tradbigmips" : "elf32-tradlittlemips")))
10505 { }
10506
10507 Target* do_instantiate_target()
10508 { return new Target_mips<size, big_endian>(); }
10509 };
10510
10511 Target_selector_mips<32, true> target_selector_mips32be;
10512 Target_selector_mips<32, false> target_selector_mips32;
10513 Target_selector_mips<64, true> target_selector_mips64be;
10514 Target_selector_mips<64, false> target_selector_mips64;
10515
10516
10517 } // End anonymous namespace.
This page took 0.264608 seconds and 4 git commands to generate.