gdb: add target_ops::supports_displaced_step
[deliverable/binutils-gdb.git] / gold / output.cc
1 // output.cc -- manage the output file for gold
2
3 // Copyright (C) 2006-2020 Free Software Foundation, Inc.
4 // Written by Ian Lance Taylor <iant@google.com>.
5
6 // This file is part of gold.
7
8 // This program is free software; you can redistribute it and/or modify
9 // it under the terms of the GNU General Public License as published by
10 // the Free Software Foundation; either version 3 of the License, or
11 // (at your option) any later version.
12
13 // This program is distributed in the hope that it will be useful,
14 // but WITHOUT ANY WARRANTY; without even the implied warranty of
15 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 // GNU General Public License for more details.
17
18 // You should have received a copy of the GNU General Public License
19 // along with this program; if not, write to the Free Software
20 // Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 // MA 02110-1301, USA.
22
23 #include "gold.h"
24
25 #include <cstdlib>
26 #include <cstring>
27 #include <cerrno>
28 #include <fcntl.h>
29 #include <unistd.h>
30 #include <sys/stat.h>
31 #include <algorithm>
32
33 #ifdef HAVE_SYS_MMAN_H
34 #include <sys/mman.h>
35 #endif
36
37 #include "libiberty.h"
38
39 #include "dwarf.h"
40 #include "parameters.h"
41 #include "object.h"
42 #include "symtab.h"
43 #include "reloc.h"
44 #include "merge.h"
45 #include "descriptors.h"
46 #include "layout.h"
47 #include "output.h"
48
49 // For systems without mmap support.
50 #ifndef HAVE_MMAP
51 # define mmap gold_mmap
52 # define munmap gold_munmap
53 # define mremap gold_mremap
54 # ifndef MAP_FAILED
55 # define MAP_FAILED (reinterpret_cast<void*>(-1))
56 # endif
57 # ifndef PROT_READ
58 # define PROT_READ 0
59 # endif
60 # ifndef PROT_WRITE
61 # define PROT_WRITE 0
62 # endif
63 # ifndef MAP_PRIVATE
64 # define MAP_PRIVATE 0
65 # endif
66 # ifndef MAP_ANONYMOUS
67 # define MAP_ANONYMOUS 0
68 # endif
69 # ifndef MAP_SHARED
70 # define MAP_SHARED 0
71 # endif
72
73 # ifndef ENOSYS
74 # define ENOSYS EINVAL
75 # endif
76
77 static void *
78 gold_mmap(void *, size_t, int, int, int, off_t)
79 {
80 errno = ENOSYS;
81 return MAP_FAILED;
82 }
83
84 static int
85 gold_munmap(void *, size_t)
86 {
87 errno = ENOSYS;
88 return -1;
89 }
90
91 static void *
92 gold_mremap(void *, size_t, size_t, int)
93 {
94 errno = ENOSYS;
95 return MAP_FAILED;
96 }
97
98 #endif
99
100 #if defined(HAVE_MMAP) && !defined(HAVE_MREMAP)
101 # define mremap gold_mremap
102 extern "C" void *gold_mremap(void *, size_t, size_t, int);
103 #endif
104
105 // Some BSD systems still use MAP_ANON instead of MAP_ANONYMOUS
106 #ifndef MAP_ANONYMOUS
107 # define MAP_ANONYMOUS MAP_ANON
108 #endif
109
110 #ifndef MREMAP_MAYMOVE
111 # define MREMAP_MAYMOVE 1
112 #endif
113
114 // Mingw does not have S_ISLNK.
115 #ifndef S_ISLNK
116 # define S_ISLNK(mode) 0
117 #endif
118
119 namespace gold
120 {
121
122 // A wrapper around posix_fallocate. If we don't have posix_fallocate,
123 // or the --no-posix-fallocate option is set, we try the fallocate
124 // system call directly. If that fails, we use ftruncate to set
125 // the file size and hope that there is enough disk space.
126
127 static int
128 gold_fallocate(int o, off_t offset, off_t len)
129 {
130 if (len <= 0)
131 return 0;
132
133 #ifdef HAVE_POSIX_FALLOCATE
134 if (parameters->options().posix_fallocate())
135 {
136 int err = ::posix_fallocate(o, offset, len);
137 if (err != EINVAL && err != ENOSYS && err != EOPNOTSUPP)
138 return err;
139 }
140 #endif // defined(HAVE_POSIX_FALLOCATE)
141
142 #ifdef HAVE_FALLOCATE
143 {
144 int err = ::fallocate(o, 0, offset, len);
145 if (err != EINVAL && err != ENOSYS && err != EOPNOTSUPP)
146 return err;
147 }
148 #endif // defined(HAVE_FALLOCATE)
149
150 if (::ftruncate(o, offset + len) < 0)
151 return errno;
152 return 0;
153 }
154
155 // Output_data variables.
156
157 bool Output_data::allocated_sizes_are_fixed;
158
159 // Output_data methods.
160
161 Output_data::~Output_data()
162 {
163 }
164
165 // Return the default alignment for the target size.
166
167 uint64_t
168 Output_data::default_alignment()
169 {
170 return Output_data::default_alignment_for_size(
171 parameters->target().get_size());
172 }
173
174 // Return the default alignment for a size--32 or 64.
175
176 uint64_t
177 Output_data::default_alignment_for_size(int size)
178 {
179 if (size == 32)
180 return 4;
181 else if (size == 64)
182 return 8;
183 else
184 gold_unreachable();
185 }
186
187 // Output_section_header methods. This currently assumes that the
188 // segment and section lists are complete at construction time.
189
190 Output_section_headers::Output_section_headers(
191 const Layout* layout,
192 const Layout::Segment_list* segment_list,
193 const Layout::Section_list* section_list,
194 const Layout::Section_list* unattached_section_list,
195 const Stringpool* secnamepool,
196 const Output_section* shstrtab_section)
197 : layout_(layout),
198 segment_list_(segment_list),
199 section_list_(section_list),
200 unattached_section_list_(unattached_section_list),
201 secnamepool_(secnamepool),
202 shstrtab_section_(shstrtab_section)
203 {
204 }
205
206 // Compute the current data size.
207
208 off_t
209 Output_section_headers::do_size() const
210 {
211 // Count all the sections. Start with 1 for the null section.
212 off_t count = 1;
213 if (!parameters->options().relocatable())
214 {
215 for (Layout::Segment_list::const_iterator p =
216 this->segment_list_->begin();
217 p != this->segment_list_->end();
218 ++p)
219 if ((*p)->type() == elfcpp::PT_LOAD)
220 count += (*p)->output_section_count();
221 }
222 else
223 {
224 for (Layout::Section_list::const_iterator p =
225 this->section_list_->begin();
226 p != this->section_list_->end();
227 ++p)
228 if (((*p)->flags() & elfcpp::SHF_ALLOC) != 0)
229 ++count;
230 }
231 count += this->unattached_section_list_->size();
232
233 const int size = parameters->target().get_size();
234 int shdr_size;
235 if (size == 32)
236 shdr_size = elfcpp::Elf_sizes<32>::shdr_size;
237 else if (size == 64)
238 shdr_size = elfcpp::Elf_sizes<64>::shdr_size;
239 else
240 gold_unreachable();
241
242 return count * shdr_size;
243 }
244
245 // Write out the section headers.
246
247 void
248 Output_section_headers::do_write(Output_file* of)
249 {
250 switch (parameters->size_and_endianness())
251 {
252 #ifdef HAVE_TARGET_32_LITTLE
253 case Parameters::TARGET_32_LITTLE:
254 this->do_sized_write<32, false>(of);
255 break;
256 #endif
257 #ifdef HAVE_TARGET_32_BIG
258 case Parameters::TARGET_32_BIG:
259 this->do_sized_write<32, true>(of);
260 break;
261 #endif
262 #ifdef HAVE_TARGET_64_LITTLE
263 case Parameters::TARGET_64_LITTLE:
264 this->do_sized_write<64, false>(of);
265 break;
266 #endif
267 #ifdef HAVE_TARGET_64_BIG
268 case Parameters::TARGET_64_BIG:
269 this->do_sized_write<64, true>(of);
270 break;
271 #endif
272 default:
273 gold_unreachable();
274 }
275 }
276
277 template<int size, bool big_endian>
278 void
279 Output_section_headers::do_sized_write(Output_file* of)
280 {
281 off_t all_shdrs_size = this->data_size();
282 unsigned char* view = of->get_output_view(this->offset(), all_shdrs_size);
283
284 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
285 unsigned char* v = view;
286
287 {
288 typename elfcpp::Shdr_write<size, big_endian> oshdr(v);
289 oshdr.put_sh_name(0);
290 oshdr.put_sh_type(elfcpp::SHT_NULL);
291 oshdr.put_sh_flags(0);
292 oshdr.put_sh_addr(0);
293 oshdr.put_sh_offset(0);
294
295 size_t section_count = (this->data_size()
296 / elfcpp::Elf_sizes<size>::shdr_size);
297 if (section_count < elfcpp::SHN_LORESERVE)
298 oshdr.put_sh_size(0);
299 else
300 oshdr.put_sh_size(section_count);
301
302 unsigned int shstrndx = this->shstrtab_section_->out_shndx();
303 if (shstrndx < elfcpp::SHN_LORESERVE)
304 oshdr.put_sh_link(0);
305 else
306 oshdr.put_sh_link(shstrndx);
307
308 size_t segment_count = this->segment_list_->size();
309 oshdr.put_sh_info(segment_count >= elfcpp::PN_XNUM ? segment_count : 0);
310
311 oshdr.put_sh_addralign(0);
312 oshdr.put_sh_entsize(0);
313 }
314
315 v += shdr_size;
316
317 unsigned int shndx = 1;
318 if (!parameters->options().relocatable())
319 {
320 for (Layout::Segment_list::const_iterator p =
321 this->segment_list_->begin();
322 p != this->segment_list_->end();
323 ++p)
324 v = (*p)->write_section_headers<size, big_endian>(this->layout_,
325 this->secnamepool_,
326 v,
327 &shndx);
328 }
329 else
330 {
331 for (Layout::Section_list::const_iterator p =
332 this->section_list_->begin();
333 p != this->section_list_->end();
334 ++p)
335 {
336 // We do unallocated sections below, except that group
337 // sections have to come first.
338 if (((*p)->flags() & elfcpp::SHF_ALLOC) == 0
339 && (*p)->type() != elfcpp::SHT_GROUP)
340 continue;
341 gold_assert(shndx == (*p)->out_shndx());
342 elfcpp::Shdr_write<size, big_endian> oshdr(v);
343 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
344 v += shdr_size;
345 ++shndx;
346 }
347 }
348
349 for (Layout::Section_list::const_iterator p =
350 this->unattached_section_list_->begin();
351 p != this->unattached_section_list_->end();
352 ++p)
353 {
354 // For a relocatable link, we did unallocated group sections
355 // above, since they have to come first.
356 if ((*p)->type() == elfcpp::SHT_GROUP
357 && parameters->options().relocatable())
358 continue;
359 gold_assert(shndx == (*p)->out_shndx());
360 elfcpp::Shdr_write<size, big_endian> oshdr(v);
361 (*p)->write_header(this->layout_, this->secnamepool_, &oshdr);
362 v += shdr_size;
363 ++shndx;
364 }
365
366 of->write_output_view(this->offset(), all_shdrs_size, view);
367 }
368
369 // Output_segment_header methods.
370
371 Output_segment_headers::Output_segment_headers(
372 const Layout::Segment_list& segment_list)
373 : segment_list_(segment_list)
374 {
375 this->set_current_data_size_for_child(this->do_size());
376 }
377
378 void
379 Output_segment_headers::do_write(Output_file* of)
380 {
381 switch (parameters->size_and_endianness())
382 {
383 #ifdef HAVE_TARGET_32_LITTLE
384 case Parameters::TARGET_32_LITTLE:
385 this->do_sized_write<32, false>(of);
386 break;
387 #endif
388 #ifdef HAVE_TARGET_32_BIG
389 case Parameters::TARGET_32_BIG:
390 this->do_sized_write<32, true>(of);
391 break;
392 #endif
393 #ifdef HAVE_TARGET_64_LITTLE
394 case Parameters::TARGET_64_LITTLE:
395 this->do_sized_write<64, false>(of);
396 break;
397 #endif
398 #ifdef HAVE_TARGET_64_BIG
399 case Parameters::TARGET_64_BIG:
400 this->do_sized_write<64, true>(of);
401 break;
402 #endif
403 default:
404 gold_unreachable();
405 }
406 }
407
408 template<int size, bool big_endian>
409 void
410 Output_segment_headers::do_sized_write(Output_file* of)
411 {
412 const int phdr_size = elfcpp::Elf_sizes<size>::phdr_size;
413 off_t all_phdrs_size = this->segment_list_.size() * phdr_size;
414 gold_assert(all_phdrs_size == this->data_size());
415 unsigned char* view = of->get_output_view(this->offset(),
416 all_phdrs_size);
417 unsigned char* v = view;
418 for (Layout::Segment_list::const_iterator p = this->segment_list_.begin();
419 p != this->segment_list_.end();
420 ++p)
421 {
422 elfcpp::Phdr_write<size, big_endian> ophdr(v);
423 (*p)->write_header(&ophdr);
424 v += phdr_size;
425 }
426
427 gold_assert(v - view == all_phdrs_size);
428
429 of->write_output_view(this->offset(), all_phdrs_size, view);
430 }
431
432 off_t
433 Output_segment_headers::do_size() const
434 {
435 const int size = parameters->target().get_size();
436 int phdr_size;
437 if (size == 32)
438 phdr_size = elfcpp::Elf_sizes<32>::phdr_size;
439 else if (size == 64)
440 phdr_size = elfcpp::Elf_sizes<64>::phdr_size;
441 else
442 gold_unreachable();
443
444 return this->segment_list_.size() * phdr_size;
445 }
446
447 // Output_file_header methods.
448
449 Output_file_header::Output_file_header(Target* target,
450 const Symbol_table* symtab,
451 const Output_segment_headers* osh)
452 : target_(target),
453 symtab_(symtab),
454 segment_header_(osh),
455 section_header_(NULL),
456 shstrtab_(NULL)
457 {
458 this->set_data_size(this->do_size());
459 }
460
461 // Set the section table information for a file header.
462
463 void
464 Output_file_header::set_section_info(const Output_section_headers* shdrs,
465 const Output_section* shstrtab)
466 {
467 this->section_header_ = shdrs;
468 this->shstrtab_ = shstrtab;
469 }
470
471 // Write out the file header.
472
473 void
474 Output_file_header::do_write(Output_file* of)
475 {
476 gold_assert(this->offset() == 0);
477
478 switch (parameters->size_and_endianness())
479 {
480 #ifdef HAVE_TARGET_32_LITTLE
481 case Parameters::TARGET_32_LITTLE:
482 this->do_sized_write<32, false>(of);
483 break;
484 #endif
485 #ifdef HAVE_TARGET_32_BIG
486 case Parameters::TARGET_32_BIG:
487 this->do_sized_write<32, true>(of);
488 break;
489 #endif
490 #ifdef HAVE_TARGET_64_LITTLE
491 case Parameters::TARGET_64_LITTLE:
492 this->do_sized_write<64, false>(of);
493 break;
494 #endif
495 #ifdef HAVE_TARGET_64_BIG
496 case Parameters::TARGET_64_BIG:
497 this->do_sized_write<64, true>(of);
498 break;
499 #endif
500 default:
501 gold_unreachable();
502 }
503 }
504
505 // Write out the file header with appropriate size and endianness.
506
507 template<int size, bool big_endian>
508 void
509 Output_file_header::do_sized_write(Output_file* of)
510 {
511 gold_assert(this->offset() == 0);
512
513 int ehdr_size = elfcpp::Elf_sizes<size>::ehdr_size;
514 unsigned char* view = of->get_output_view(0, ehdr_size);
515 elfcpp::Ehdr_write<size, big_endian> oehdr(view);
516
517 unsigned char e_ident[elfcpp::EI_NIDENT];
518 memset(e_ident, 0, elfcpp::EI_NIDENT);
519 e_ident[elfcpp::EI_MAG0] = elfcpp::ELFMAG0;
520 e_ident[elfcpp::EI_MAG1] = elfcpp::ELFMAG1;
521 e_ident[elfcpp::EI_MAG2] = elfcpp::ELFMAG2;
522 e_ident[elfcpp::EI_MAG3] = elfcpp::ELFMAG3;
523 if (size == 32)
524 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS32;
525 else if (size == 64)
526 e_ident[elfcpp::EI_CLASS] = elfcpp::ELFCLASS64;
527 else
528 gold_unreachable();
529 e_ident[elfcpp::EI_DATA] = (big_endian
530 ? elfcpp::ELFDATA2MSB
531 : elfcpp::ELFDATA2LSB);
532 e_ident[elfcpp::EI_VERSION] = elfcpp::EV_CURRENT;
533 oehdr.put_e_ident(e_ident);
534
535 elfcpp::ET e_type;
536 if (parameters->options().relocatable())
537 e_type = elfcpp::ET_REL;
538 else if (parameters->options().output_is_position_independent())
539 e_type = elfcpp::ET_DYN;
540 else
541 e_type = elfcpp::ET_EXEC;
542 oehdr.put_e_type(e_type);
543
544 oehdr.put_e_machine(this->target_->machine_code());
545 oehdr.put_e_version(elfcpp::EV_CURRENT);
546
547 oehdr.put_e_entry(this->entry<size>());
548
549 if (this->segment_header_ == NULL)
550 oehdr.put_e_phoff(0);
551 else
552 oehdr.put_e_phoff(this->segment_header_->offset());
553
554 oehdr.put_e_shoff(this->section_header_->offset());
555 oehdr.put_e_flags(this->target_->processor_specific_flags());
556 oehdr.put_e_ehsize(elfcpp::Elf_sizes<size>::ehdr_size);
557
558 if (this->segment_header_ == NULL)
559 {
560 oehdr.put_e_phentsize(0);
561 oehdr.put_e_phnum(0);
562 }
563 else
564 {
565 oehdr.put_e_phentsize(elfcpp::Elf_sizes<size>::phdr_size);
566 size_t phnum = (this->segment_header_->data_size()
567 / elfcpp::Elf_sizes<size>::phdr_size);
568 if (phnum > elfcpp::PN_XNUM)
569 phnum = elfcpp::PN_XNUM;
570 oehdr.put_e_phnum(phnum);
571 }
572
573 oehdr.put_e_shentsize(elfcpp::Elf_sizes<size>::shdr_size);
574 size_t section_count = (this->section_header_->data_size()
575 / elfcpp::Elf_sizes<size>::shdr_size);
576
577 if (section_count < elfcpp::SHN_LORESERVE)
578 oehdr.put_e_shnum(this->section_header_->data_size()
579 / elfcpp::Elf_sizes<size>::shdr_size);
580 else
581 oehdr.put_e_shnum(0);
582
583 unsigned int shstrndx = this->shstrtab_->out_shndx();
584 if (shstrndx < elfcpp::SHN_LORESERVE)
585 oehdr.put_e_shstrndx(this->shstrtab_->out_shndx());
586 else
587 oehdr.put_e_shstrndx(elfcpp::SHN_XINDEX);
588
589 // Let the target adjust the ELF header, e.g., to set EI_OSABI in
590 // the e_ident field.
591 this->target_->adjust_elf_header(view, ehdr_size);
592
593 of->write_output_view(0, ehdr_size, view);
594 }
595
596 // Return the value to use for the entry address.
597
598 template<int size>
599 typename elfcpp::Elf_types<size>::Elf_Addr
600 Output_file_header::entry()
601 {
602 const bool should_issue_warning = (parameters->options().entry() != NULL
603 && !parameters->options().relocatable()
604 && !parameters->options().shared());
605 const char* entry = parameters->entry();
606 Symbol* sym = this->symtab_->lookup(entry);
607
608 typename Sized_symbol<size>::Value_type v;
609 if (sym != NULL)
610 {
611 Sized_symbol<size>* ssym;
612 ssym = this->symtab_->get_sized_symbol<size>(sym);
613 if (!ssym->is_defined() && should_issue_warning)
614 gold_warning("entry symbol '%s' exists but is not defined", entry);
615 v = ssym->value();
616 }
617 else
618 {
619 // We couldn't find the entry symbol. See if we can parse it as
620 // a number. This supports, e.g., -e 0x1000.
621 char* endptr;
622 v = strtoull(entry, &endptr, 0);
623 if (*endptr != '\0')
624 {
625 if (should_issue_warning)
626 gold_warning("cannot find entry symbol '%s'", entry);
627 v = 0;
628 }
629 }
630
631 return v;
632 }
633
634 // Compute the current data size.
635
636 off_t
637 Output_file_header::do_size() const
638 {
639 const int size = parameters->target().get_size();
640 if (size == 32)
641 return elfcpp::Elf_sizes<32>::ehdr_size;
642 else if (size == 64)
643 return elfcpp::Elf_sizes<64>::ehdr_size;
644 else
645 gold_unreachable();
646 }
647
648 // Output_data_const methods.
649
650 void
651 Output_data_const::do_write(Output_file* of)
652 {
653 of->write(this->offset(), this->data_.data(), this->data_.size());
654 }
655
656 // Output_data_const_buffer methods.
657
658 void
659 Output_data_const_buffer::do_write(Output_file* of)
660 {
661 of->write(this->offset(), this->p_, this->data_size());
662 }
663
664 // Output_section_data methods.
665
666 // Record the output section, and set the entry size and such.
667
668 void
669 Output_section_data::set_output_section(Output_section* os)
670 {
671 gold_assert(this->output_section_ == NULL);
672 this->output_section_ = os;
673 this->do_adjust_output_section(os);
674 }
675
676 // Return the section index of the output section.
677
678 unsigned int
679 Output_section_data::do_out_shndx() const
680 {
681 gold_assert(this->output_section_ != NULL);
682 return this->output_section_->out_shndx();
683 }
684
685 // Set the alignment, which means we may need to update the alignment
686 // of the output section.
687
688 void
689 Output_section_data::set_addralign(uint64_t addralign)
690 {
691 this->addralign_ = addralign;
692 if (this->output_section_ != NULL
693 && this->output_section_->addralign() < addralign)
694 this->output_section_->set_addralign(addralign);
695 }
696
697 // Output_data_strtab methods.
698
699 // Set the final data size.
700
701 void
702 Output_data_strtab::set_final_data_size()
703 {
704 this->strtab_->set_string_offsets();
705 this->set_data_size(this->strtab_->get_strtab_size());
706 }
707
708 // Write out a string table.
709
710 void
711 Output_data_strtab::do_write(Output_file* of)
712 {
713 this->strtab_->write(of, this->offset());
714 }
715
716 // Output_reloc methods.
717
718 // A reloc against a global symbol.
719
720 template<bool dynamic, int size, bool big_endian>
721 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
722 Symbol* gsym,
723 unsigned int type,
724 Output_data* od,
725 Address address,
726 bool is_relative,
727 bool is_symbolless,
728 bool use_plt_offset)
729 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
730 is_relative_(is_relative), is_symbolless_(is_symbolless),
731 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(INVALID_CODE)
732 {
733 // this->type_ is a bitfield; make sure TYPE fits.
734 gold_assert(this->type_ == type);
735 this->u1_.gsym = gsym;
736 this->u2_.od = od;
737 if (dynamic)
738 this->set_needs_dynsym_index();
739 }
740
741 template<bool dynamic, int size, bool big_endian>
742 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
743 Symbol* gsym,
744 unsigned int type,
745 Sized_relobj<size, big_endian>* relobj,
746 unsigned int shndx,
747 Address address,
748 bool is_relative,
749 bool is_symbolless,
750 bool use_plt_offset)
751 : address_(address), local_sym_index_(GSYM_CODE), type_(type),
752 is_relative_(is_relative), is_symbolless_(is_symbolless),
753 is_section_symbol_(false), use_plt_offset_(use_plt_offset), shndx_(shndx)
754 {
755 gold_assert(shndx != INVALID_CODE);
756 // this->type_ is a bitfield; make sure TYPE fits.
757 gold_assert(this->type_ == type);
758 this->u1_.gsym = gsym;
759 this->u2_.relobj = relobj;
760 if (dynamic)
761 this->set_needs_dynsym_index();
762 }
763
764 // A reloc against a local symbol.
765
766 template<bool dynamic, int size, bool big_endian>
767 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
768 Sized_relobj<size, big_endian>* relobj,
769 unsigned int local_sym_index,
770 unsigned int type,
771 Output_data* od,
772 Address address,
773 bool is_relative,
774 bool is_symbolless,
775 bool is_section_symbol,
776 bool use_plt_offset)
777 : address_(address), local_sym_index_(local_sym_index), type_(type),
778 is_relative_(is_relative), is_symbolless_(is_symbolless),
779 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
780 shndx_(INVALID_CODE)
781 {
782 gold_assert(local_sym_index != GSYM_CODE
783 && local_sym_index != INVALID_CODE);
784 // this->type_ is a bitfield; make sure TYPE fits.
785 gold_assert(this->type_ == type);
786 this->u1_.relobj = relobj;
787 this->u2_.od = od;
788 if (dynamic)
789 this->set_needs_dynsym_index();
790 }
791
792 template<bool dynamic, int size, bool big_endian>
793 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
794 Sized_relobj<size, big_endian>* relobj,
795 unsigned int local_sym_index,
796 unsigned int type,
797 unsigned int shndx,
798 Address address,
799 bool is_relative,
800 bool is_symbolless,
801 bool is_section_symbol,
802 bool use_plt_offset)
803 : address_(address), local_sym_index_(local_sym_index), type_(type),
804 is_relative_(is_relative), is_symbolless_(is_symbolless),
805 is_section_symbol_(is_section_symbol), use_plt_offset_(use_plt_offset),
806 shndx_(shndx)
807 {
808 gold_assert(local_sym_index != GSYM_CODE
809 && local_sym_index != INVALID_CODE);
810 gold_assert(shndx != INVALID_CODE);
811 // this->type_ is a bitfield; make sure TYPE fits.
812 gold_assert(this->type_ == type);
813 this->u1_.relobj = relobj;
814 this->u2_.relobj = relobj;
815 if (dynamic)
816 this->set_needs_dynsym_index();
817 }
818
819 // A reloc against the STT_SECTION symbol of an output section.
820
821 template<bool dynamic, int size, bool big_endian>
822 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
823 Output_section* os,
824 unsigned int type,
825 Output_data* od,
826 Address address,
827 bool is_relative)
828 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
829 is_relative_(is_relative), is_symbolless_(is_relative),
830 is_section_symbol_(true), use_plt_offset_(false), shndx_(INVALID_CODE)
831 {
832 // this->type_ is a bitfield; make sure TYPE fits.
833 gold_assert(this->type_ == type);
834 this->u1_.os = os;
835 this->u2_.od = od;
836 if (dynamic)
837 this->set_needs_dynsym_index();
838 else
839 os->set_needs_symtab_index();
840 }
841
842 template<bool dynamic, int size, bool big_endian>
843 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
844 Output_section* os,
845 unsigned int type,
846 Sized_relobj<size, big_endian>* relobj,
847 unsigned int shndx,
848 Address address,
849 bool is_relative)
850 : address_(address), local_sym_index_(SECTION_CODE), type_(type),
851 is_relative_(is_relative), is_symbolless_(is_relative),
852 is_section_symbol_(true), use_plt_offset_(false), shndx_(shndx)
853 {
854 gold_assert(shndx != INVALID_CODE);
855 // this->type_ is a bitfield; make sure TYPE fits.
856 gold_assert(this->type_ == type);
857 this->u1_.os = os;
858 this->u2_.relobj = relobj;
859 if (dynamic)
860 this->set_needs_dynsym_index();
861 else
862 os->set_needs_symtab_index();
863 }
864
865 // An absolute or relative relocation.
866
867 template<bool dynamic, int size, bool big_endian>
868 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
869 unsigned int type,
870 Output_data* od,
871 Address address,
872 bool is_relative)
873 : address_(address), local_sym_index_(0), type_(type),
874 is_relative_(is_relative), is_symbolless_(false),
875 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
876 {
877 // this->type_ is a bitfield; make sure TYPE fits.
878 gold_assert(this->type_ == type);
879 this->u1_.relobj = NULL;
880 this->u2_.od = od;
881 }
882
883 template<bool dynamic, int size, bool big_endian>
884 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
885 unsigned int type,
886 Sized_relobj<size, big_endian>* relobj,
887 unsigned int shndx,
888 Address address,
889 bool is_relative)
890 : address_(address), local_sym_index_(0), type_(type),
891 is_relative_(is_relative), is_symbolless_(false),
892 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
893 {
894 gold_assert(shndx != INVALID_CODE);
895 // this->type_ is a bitfield; make sure TYPE fits.
896 gold_assert(this->type_ == type);
897 this->u1_.relobj = NULL;
898 this->u2_.relobj = relobj;
899 }
900
901 // A target specific relocation.
902
903 template<bool dynamic, int size, bool big_endian>
904 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
905 unsigned int type,
906 void* arg,
907 Output_data* od,
908 Address address)
909 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
910 is_relative_(false), is_symbolless_(false),
911 is_section_symbol_(false), use_plt_offset_(false), shndx_(INVALID_CODE)
912 {
913 // this->type_ is a bitfield; make sure TYPE fits.
914 gold_assert(this->type_ == type);
915 this->u1_.arg = arg;
916 this->u2_.od = od;
917 }
918
919 template<bool dynamic, int size, bool big_endian>
920 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::Output_reloc(
921 unsigned int type,
922 void* arg,
923 Sized_relobj<size, big_endian>* relobj,
924 unsigned int shndx,
925 Address address)
926 : address_(address), local_sym_index_(TARGET_CODE), type_(type),
927 is_relative_(false), is_symbolless_(false),
928 is_section_symbol_(false), use_plt_offset_(false), shndx_(shndx)
929 {
930 gold_assert(shndx != INVALID_CODE);
931 // this->type_ is a bitfield; make sure TYPE fits.
932 gold_assert(this->type_ == type);
933 this->u1_.arg = arg;
934 this->u2_.relobj = relobj;
935 }
936
937 // Record that we need a dynamic symbol index for this relocation.
938
939 template<bool dynamic, int size, bool big_endian>
940 void
941 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
942 set_needs_dynsym_index()
943 {
944 if (this->is_symbolless_)
945 return;
946 switch (this->local_sym_index_)
947 {
948 case INVALID_CODE:
949 gold_unreachable();
950
951 case GSYM_CODE:
952 this->u1_.gsym->set_needs_dynsym_entry();
953 break;
954
955 case SECTION_CODE:
956 this->u1_.os->set_needs_dynsym_index();
957 break;
958
959 case TARGET_CODE:
960 // The target must take care of this if necessary.
961 break;
962
963 case 0:
964 break;
965
966 default:
967 {
968 const unsigned int lsi = this->local_sym_index_;
969 Sized_relobj_file<size, big_endian>* relobj =
970 this->u1_.relobj->sized_relobj();
971 gold_assert(relobj != NULL);
972 if (!this->is_section_symbol_)
973 relobj->set_needs_output_dynsym_entry(lsi);
974 else
975 relobj->output_section(lsi)->set_needs_dynsym_index();
976 }
977 break;
978 }
979 }
980
981 // Get the symbol index of a relocation.
982
983 template<bool dynamic, int size, bool big_endian>
984 unsigned int
985 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_symbol_index()
986 const
987 {
988 unsigned int index;
989 if (this->is_symbolless_)
990 return 0;
991 switch (this->local_sym_index_)
992 {
993 case INVALID_CODE:
994 gold_unreachable();
995
996 case GSYM_CODE:
997 if (this->u1_.gsym == NULL)
998 index = 0;
999 else if (dynamic)
1000 index = this->u1_.gsym->dynsym_index();
1001 else
1002 index = this->u1_.gsym->symtab_index();
1003 break;
1004
1005 case SECTION_CODE:
1006 if (dynamic)
1007 index = this->u1_.os->dynsym_index();
1008 else
1009 index = this->u1_.os->symtab_index();
1010 break;
1011
1012 case TARGET_CODE:
1013 index = parameters->target().reloc_symbol_index(this->u1_.arg,
1014 this->type_);
1015 break;
1016
1017 case 0:
1018 // Relocations without symbols use a symbol index of 0.
1019 index = 0;
1020 break;
1021
1022 default:
1023 {
1024 const unsigned int lsi = this->local_sym_index_;
1025 Sized_relobj_file<size, big_endian>* relobj =
1026 this->u1_.relobj->sized_relobj();
1027 gold_assert(relobj != NULL);
1028 if (!this->is_section_symbol_)
1029 {
1030 if (dynamic)
1031 index = relobj->dynsym_index(lsi);
1032 else
1033 index = relobj->symtab_index(lsi);
1034 }
1035 else
1036 {
1037 Output_section* os = relobj->output_section(lsi);
1038 gold_assert(os != NULL);
1039 if (dynamic)
1040 index = os->dynsym_index();
1041 else
1042 index = os->symtab_index();
1043 }
1044 }
1045 break;
1046 }
1047 gold_assert(index != -1U);
1048 return index;
1049 }
1050
1051 // For a local section symbol, get the address of the offset ADDEND
1052 // within the input section.
1053
1054 template<bool dynamic, int size, bool big_endian>
1055 typename elfcpp::Elf_types<size>::Elf_Addr
1056 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1057 local_section_offset(Addend addend) const
1058 {
1059 gold_assert(this->local_sym_index_ != GSYM_CODE
1060 && this->local_sym_index_ != SECTION_CODE
1061 && this->local_sym_index_ != TARGET_CODE
1062 && this->local_sym_index_ != INVALID_CODE
1063 && this->local_sym_index_ != 0
1064 && this->is_section_symbol_);
1065 const unsigned int lsi = this->local_sym_index_;
1066 Output_section* os = this->u1_.relobj->output_section(lsi);
1067 gold_assert(os != NULL);
1068 Address offset = this->u1_.relobj->get_output_section_offset(lsi);
1069 if (offset != invalid_address)
1070 return offset + addend;
1071 // This is a merge section.
1072 Sized_relobj_file<size, big_endian>* relobj =
1073 this->u1_.relobj->sized_relobj();
1074 gold_assert(relobj != NULL);
1075 offset = os->output_address(relobj, lsi, addend);
1076 gold_assert(offset != invalid_address);
1077 return offset;
1078 }
1079
1080 // Get the output address of a relocation.
1081
1082 template<bool dynamic, int size, bool big_endian>
1083 typename elfcpp::Elf_types<size>::Elf_Addr
1084 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::get_address() const
1085 {
1086 Address address = this->address_;
1087 if (this->shndx_ != INVALID_CODE)
1088 {
1089 Output_section* os = this->u2_.relobj->output_section(this->shndx_);
1090 gold_assert(os != NULL);
1091 Address off = this->u2_.relobj->get_output_section_offset(this->shndx_);
1092 if (off != invalid_address)
1093 address += os->address() + off;
1094 else
1095 {
1096 Sized_relobj_file<size, big_endian>* relobj =
1097 this->u2_.relobj->sized_relobj();
1098 gold_assert(relobj != NULL);
1099 address = os->output_address(relobj, this->shndx_, address);
1100 gold_assert(address != invalid_address);
1101 }
1102 }
1103 else if (this->u2_.od != NULL)
1104 address += this->u2_.od->address();
1105 return address;
1106 }
1107
1108 // Write out the offset and info fields of a Rel or Rela relocation
1109 // entry.
1110
1111 template<bool dynamic, int size, bool big_endian>
1112 template<typename Write_rel>
1113 void
1114 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write_rel(
1115 Write_rel* wr) const
1116 {
1117 wr->put_r_offset(this->get_address());
1118 unsigned int sym_index = this->get_symbol_index();
1119 wr->put_r_info(elfcpp::elf_r_info<size>(sym_index, this->type_));
1120 }
1121
1122 // Write out a Rel relocation.
1123
1124 template<bool dynamic, int size, bool big_endian>
1125 void
1126 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::write(
1127 unsigned char* pov) const
1128 {
1129 elfcpp::Rel_write<size, big_endian> orel(pov);
1130 this->write_rel(&orel);
1131 }
1132
1133 // Get the value of the symbol referred to by a Rel relocation.
1134
1135 template<bool dynamic, int size, bool big_endian>
1136 typename elfcpp::Elf_types<size>::Elf_Addr
1137 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::symbol_value(
1138 Addend addend) const
1139 {
1140 if (this->local_sym_index_ == GSYM_CODE)
1141 {
1142 const Sized_symbol<size>* sym;
1143 sym = static_cast<const Sized_symbol<size>*>(this->u1_.gsym);
1144 if (this->use_plt_offset_ && sym->has_plt_offset())
1145 return parameters->target().plt_address_for_global(sym);
1146 else
1147 return sym->value() + addend;
1148 }
1149 if (this->local_sym_index_ == SECTION_CODE)
1150 {
1151 gold_assert(!this->use_plt_offset_);
1152 return this->u1_.os->address() + addend;
1153 }
1154 gold_assert(this->local_sym_index_ != TARGET_CODE
1155 && this->local_sym_index_ != INVALID_CODE
1156 && this->local_sym_index_ != 0
1157 && !this->is_section_symbol_);
1158 const unsigned int lsi = this->local_sym_index_;
1159 Sized_relobj_file<size, big_endian>* relobj =
1160 this->u1_.relobj->sized_relobj();
1161 gold_assert(relobj != NULL);
1162 if (this->use_plt_offset_)
1163 return parameters->target().plt_address_for_local(relobj, lsi);
1164 const Symbol_value<size>* symval = relobj->local_symbol(lsi);
1165 return symval->value(relobj, addend);
1166 }
1167
1168 // Reloc comparison. This function sorts the dynamic relocs for the
1169 // benefit of the dynamic linker. First we sort all relative relocs
1170 // to the front. Among relative relocs, we sort by output address.
1171 // Among non-relative relocs, we sort by symbol index, then by output
1172 // address.
1173
1174 template<bool dynamic, int size, bool big_endian>
1175 int
1176 Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>::
1177 compare(const Output_reloc<elfcpp::SHT_REL, dynamic, size, big_endian>& r2)
1178 const
1179 {
1180 if (this->is_relative_)
1181 {
1182 if (!r2.is_relative_)
1183 return -1;
1184 // Otherwise sort by reloc address below.
1185 }
1186 else if (r2.is_relative_)
1187 return 1;
1188 else
1189 {
1190 unsigned int sym1 = this->get_symbol_index();
1191 unsigned int sym2 = r2.get_symbol_index();
1192 if (sym1 < sym2)
1193 return -1;
1194 else if (sym1 > sym2)
1195 return 1;
1196 // Otherwise sort by reloc address.
1197 }
1198
1199 section_offset_type addr1 = this->get_address();
1200 section_offset_type addr2 = r2.get_address();
1201 if (addr1 < addr2)
1202 return -1;
1203 else if (addr1 > addr2)
1204 return 1;
1205
1206 // Final tie breaker, in order to generate the same output on any
1207 // host: reloc type.
1208 unsigned int type1 = this->type_;
1209 unsigned int type2 = r2.type_;
1210 if (type1 < type2)
1211 return -1;
1212 else if (type1 > type2)
1213 return 1;
1214
1215 // These relocs appear to be exactly the same.
1216 return 0;
1217 }
1218
1219 // Write out a Rela relocation.
1220
1221 template<bool dynamic, int size, bool big_endian>
1222 void
1223 Output_reloc<elfcpp::SHT_RELA, dynamic, size, big_endian>::write(
1224 unsigned char* pov) const
1225 {
1226 elfcpp::Rela_write<size, big_endian> orel(pov);
1227 this->rel_.write_rel(&orel);
1228 Addend addend = this->addend_;
1229 if (this->rel_.is_target_specific())
1230 addend = parameters->target().reloc_addend(this->rel_.target_arg(),
1231 this->rel_.type(), addend);
1232 else if (this->rel_.is_symbolless())
1233 addend = this->rel_.symbol_value(addend);
1234 else if (this->rel_.is_local_section_symbol())
1235 addend = this->rel_.local_section_offset(addend);
1236 orel.put_r_addend(addend);
1237 }
1238
1239 // Output_data_reloc_base methods.
1240
1241 // Adjust the output section.
1242
1243 template<int sh_type, bool dynamic, int size, bool big_endian>
1244 void
1245 Output_data_reloc_base<sh_type, dynamic, size, big_endian>
1246 ::do_adjust_output_section(Output_section* os)
1247 {
1248 if (sh_type == elfcpp::SHT_REL)
1249 os->set_entsize(elfcpp::Elf_sizes<size>::rel_size);
1250 else if (sh_type == elfcpp::SHT_RELA)
1251 os->set_entsize(elfcpp::Elf_sizes<size>::rela_size);
1252 else
1253 gold_unreachable();
1254
1255 // A STT_GNU_IFUNC symbol may require a IRELATIVE reloc when doing a
1256 // static link. The backends will generate a dynamic reloc section
1257 // to hold this. In that case we don't want to link to the dynsym
1258 // section, because there isn't one.
1259 if (!dynamic)
1260 os->set_should_link_to_symtab();
1261 else if (parameters->doing_static_link())
1262 ;
1263 else
1264 os->set_should_link_to_dynsym();
1265 }
1266
1267 // Standard relocation writer, which just calls Output_reloc::write().
1268
1269 template<int sh_type, bool dynamic, int size, bool big_endian>
1270 struct Output_reloc_writer
1271 {
1272 typedef Output_reloc<sh_type, dynamic, size, big_endian> Output_reloc_type;
1273 typedef std::vector<Output_reloc_type> Relocs;
1274
1275 static void
1276 write(typename Relocs::const_iterator p, unsigned char* pov)
1277 { p->write(pov); }
1278 };
1279
1280 // Write out relocation data.
1281
1282 template<int sh_type, bool dynamic, int size, bool big_endian>
1283 void
1284 Output_data_reloc_base<sh_type, dynamic, size, big_endian>::do_write(
1285 Output_file* of)
1286 {
1287 typedef Output_reloc_writer<sh_type, dynamic, size, big_endian> Writer;
1288 this->do_write_generic<Writer>(of);
1289 }
1290
1291 // Class Output_relocatable_relocs.
1292
1293 template<int sh_type, int size, bool big_endian>
1294 void
1295 Output_relocatable_relocs<sh_type, size, big_endian>::set_final_data_size()
1296 {
1297 this->set_data_size(this->rr_->output_reloc_count()
1298 * Reloc_types<sh_type, size, big_endian>::reloc_size);
1299 }
1300
1301 // class Output_data_group.
1302
1303 template<int size, bool big_endian>
1304 Output_data_group<size, big_endian>::Output_data_group(
1305 Sized_relobj_file<size, big_endian>* relobj,
1306 section_size_type entry_count,
1307 elfcpp::Elf_Word flags,
1308 std::vector<unsigned int>* input_shndxes)
1309 : Output_section_data(entry_count * 4, 4, false),
1310 relobj_(relobj),
1311 flags_(flags)
1312 {
1313 this->input_shndxes_.swap(*input_shndxes);
1314 }
1315
1316 // Write out the section group, which means translating the section
1317 // indexes to apply to the output file.
1318
1319 template<int size, bool big_endian>
1320 void
1321 Output_data_group<size, big_endian>::do_write(Output_file* of)
1322 {
1323 const off_t off = this->offset();
1324 const section_size_type oview_size =
1325 convert_to_section_size_type(this->data_size());
1326 unsigned char* const oview = of->get_output_view(off, oview_size);
1327
1328 elfcpp::Elf_Word* contents = reinterpret_cast<elfcpp::Elf_Word*>(oview);
1329 elfcpp::Swap<32, big_endian>::writeval(contents, this->flags_);
1330 ++contents;
1331
1332 for (std::vector<unsigned int>::const_iterator p =
1333 this->input_shndxes_.begin();
1334 p != this->input_shndxes_.end();
1335 ++p, ++contents)
1336 {
1337 Output_section* os = this->relobj_->output_section(*p);
1338
1339 unsigned int output_shndx;
1340 if (os != NULL)
1341 output_shndx = os->out_shndx();
1342 else
1343 {
1344 this->relobj_->error(_("section group retained but "
1345 "group element discarded"));
1346 output_shndx = 0;
1347 }
1348
1349 elfcpp::Swap<32, big_endian>::writeval(contents, output_shndx);
1350 }
1351
1352 size_t wrote = reinterpret_cast<unsigned char*>(contents) - oview;
1353 gold_assert(wrote == oview_size);
1354
1355 of->write_output_view(off, oview_size, oview);
1356
1357 // We no longer need this information.
1358 this->input_shndxes_.clear();
1359 }
1360
1361 // Output_data_got::Got_entry methods.
1362
1363 // Write out the entry.
1364
1365 template<int got_size, bool big_endian>
1366 void
1367 Output_data_got<got_size, big_endian>::Got_entry::write(
1368 unsigned int got_indx,
1369 unsigned char* pov) const
1370 {
1371 Valtype val = 0;
1372
1373 switch (this->local_sym_index_)
1374 {
1375 case GSYM_CODE:
1376 {
1377 // If the symbol is resolved locally, we need to write out the
1378 // link-time value, which will be relocated dynamically by a
1379 // RELATIVE relocation.
1380 Symbol* gsym = this->u_.gsym;
1381 if (this->use_plt_or_tls_offset_ && gsym->has_plt_offset())
1382 val = parameters->target().plt_address_for_global(gsym);
1383 else
1384 {
1385 switch (parameters->size_and_endianness())
1386 {
1387 #if defined(HAVE_TARGET_32_LITTLE) || defined(HAVE_TARGET_32_BIG)
1388 case Parameters::TARGET_32_LITTLE:
1389 case Parameters::TARGET_32_BIG:
1390 {
1391 // This cast is ugly. We don't want to put a
1392 // virtual method in Symbol, because we want Symbol
1393 // to be as small as possible.
1394 Sized_symbol<32>::Value_type v;
1395 v = static_cast<Sized_symbol<32>*>(gsym)->value();
1396 val = convert_types<Valtype, Sized_symbol<32>::Value_type>(v);
1397 }
1398 break;
1399 #endif
1400 #if defined(HAVE_TARGET_64_LITTLE) || defined(HAVE_TARGET_64_BIG)
1401 case Parameters::TARGET_64_LITTLE:
1402 case Parameters::TARGET_64_BIG:
1403 {
1404 Sized_symbol<64>::Value_type v;
1405 v = static_cast<Sized_symbol<64>*>(gsym)->value();
1406 val = convert_types<Valtype, Sized_symbol<64>::Value_type>(v);
1407 }
1408 break;
1409 #endif
1410 default:
1411 gold_unreachable();
1412 }
1413 if (this->use_plt_or_tls_offset_
1414 && gsym->type() == elfcpp::STT_TLS)
1415 val += parameters->target().tls_offset_for_global(gsym,
1416 got_indx);
1417 }
1418 }
1419 break;
1420
1421 case CONSTANT_CODE:
1422 val = this->u_.constant;
1423 break;
1424
1425 case RESERVED_CODE:
1426 // If we're doing an incremental update, don't touch this GOT entry.
1427 if (parameters->incremental_update())
1428 return;
1429 val = this->u_.constant;
1430 break;
1431
1432 default:
1433 {
1434 const Relobj* object = this->u_.object;
1435 const unsigned int lsi = this->local_sym_index_;
1436 bool is_tls = object->local_is_tls(lsi);
1437 if (this->use_plt_or_tls_offset_ && !is_tls)
1438 val = parameters->target().plt_address_for_local(object, lsi);
1439 else
1440 {
1441 uint64_t lval = object->local_symbol_value(lsi, this->addend_);
1442 val = convert_types<Valtype, uint64_t>(lval);
1443 if (this->use_plt_or_tls_offset_ && is_tls)
1444 val += parameters->target().tls_offset_for_local(object, lsi,
1445 got_indx);
1446 }
1447 }
1448 break;
1449 }
1450
1451 elfcpp::Swap<got_size, big_endian>::writeval(pov, val);
1452 }
1453
1454 // Output_data_got methods.
1455
1456 // Add an entry for a global symbol to the GOT. This returns true if
1457 // this is a new GOT entry, false if the symbol already had a GOT
1458 // entry.
1459
1460 template<int got_size, bool big_endian>
1461 bool
1462 Output_data_got<got_size, big_endian>::add_global(
1463 Symbol* gsym,
1464 unsigned int got_type)
1465 {
1466 if (gsym->has_got_offset(got_type))
1467 return false;
1468
1469 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, false));
1470 gsym->set_got_offset(got_type, got_offset);
1471 return true;
1472 }
1473
1474 // Like add_global, but use the PLT offset.
1475
1476 template<int got_size, bool big_endian>
1477 bool
1478 Output_data_got<got_size, big_endian>::add_global_plt(Symbol* gsym,
1479 unsigned int got_type)
1480 {
1481 if (gsym->has_got_offset(got_type))
1482 return false;
1483
1484 unsigned int got_offset = this->add_got_entry(Got_entry(gsym, true));
1485 gsym->set_got_offset(got_type, got_offset);
1486 return true;
1487 }
1488
1489 // Add an entry for a global symbol to the GOT, and add a dynamic
1490 // relocation of type R_TYPE for the GOT entry.
1491
1492 template<int got_size, bool big_endian>
1493 void
1494 Output_data_got<got_size, big_endian>::add_global_with_rel(
1495 Symbol* gsym,
1496 unsigned int got_type,
1497 Output_data_reloc_generic* rel_dyn,
1498 unsigned int r_type)
1499 {
1500 if (gsym->has_got_offset(got_type))
1501 return;
1502
1503 unsigned int got_offset = this->add_got_entry(Got_entry());
1504 gsym->set_got_offset(got_type, got_offset);
1505 rel_dyn->add_global_generic(gsym, r_type, this, got_offset, 0);
1506 }
1507
1508 // Add a pair of entries for a global symbol to the GOT, and add
1509 // dynamic relocations of type R_TYPE_1 and R_TYPE_2, respectively.
1510 // If R_TYPE_2 == 0, add the second entry with no relocation.
1511 template<int got_size, bool big_endian>
1512 void
1513 Output_data_got<got_size, big_endian>::add_global_pair_with_rel(
1514 Symbol* gsym,
1515 unsigned int got_type,
1516 Output_data_reloc_generic* rel_dyn,
1517 unsigned int r_type_1,
1518 unsigned int r_type_2)
1519 {
1520 if (gsym->has_got_offset(got_type))
1521 return;
1522
1523 unsigned int got_offset = this->add_got_entry_pair(Got_entry(), Got_entry());
1524 gsym->set_got_offset(got_type, got_offset);
1525 rel_dyn->add_global_generic(gsym, r_type_1, this, got_offset, 0);
1526
1527 if (r_type_2 != 0)
1528 rel_dyn->add_global_generic(gsym, r_type_2, this,
1529 got_offset + got_size / 8, 0);
1530 }
1531
1532 // Add an entry for a local symbol to the GOT. This returns true if
1533 // this is a new GOT entry, false if the symbol already has a GOT
1534 // entry.
1535
1536 template<int got_size, bool big_endian>
1537 bool
1538 Output_data_got<got_size, big_endian>::add_local(
1539 Relobj* object,
1540 unsigned int symndx,
1541 unsigned int got_type)
1542 {
1543 if (object->local_has_got_offset(symndx, got_type))
1544 return false;
1545
1546 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1547 false));
1548 object->set_local_got_offset(symndx, got_type, got_offset);
1549 return true;
1550 }
1551
1552 // Add an entry for a local symbol plus ADDEND to the GOT. This returns
1553 // true if this is a new GOT entry, false if the symbol already has a GOT
1554 // entry.
1555
1556 template<int got_size, bool big_endian>
1557 bool
1558 Output_data_got<got_size, big_endian>::add_local(
1559 Relobj* object,
1560 unsigned int symndx,
1561 unsigned int got_type,
1562 uint64_t addend)
1563 {
1564 if (object->local_has_got_offset(symndx, got_type, addend))
1565 return false;
1566
1567 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1568 false, addend));
1569 object->set_local_got_offset(symndx, got_type, got_offset, addend);
1570 return true;
1571 }
1572
1573 // Like add_local, but use the PLT offset.
1574
1575 template<int got_size, bool big_endian>
1576 bool
1577 Output_data_got<got_size, big_endian>::add_local_plt(
1578 Relobj* object,
1579 unsigned int symndx,
1580 unsigned int got_type)
1581 {
1582 if (object->local_has_got_offset(symndx, got_type))
1583 return false;
1584
1585 unsigned int got_offset = this->add_got_entry(Got_entry(object, symndx,
1586 true));
1587 object->set_local_got_offset(symndx, got_type, got_offset);
1588 return true;
1589 }
1590
1591 // Add an entry for a local symbol to the GOT, and add a dynamic
1592 // relocation of type R_TYPE for the GOT entry.
1593
1594 template<int got_size, bool big_endian>
1595 void
1596 Output_data_got<got_size, big_endian>::add_local_with_rel(
1597 Relobj* object,
1598 unsigned int symndx,
1599 unsigned int got_type,
1600 Output_data_reloc_generic* rel_dyn,
1601 unsigned int r_type)
1602 {
1603 if (object->local_has_got_offset(symndx, got_type))
1604 return;
1605
1606 unsigned int got_offset = this->add_got_entry(Got_entry());
1607 object->set_local_got_offset(symndx, got_type, got_offset);
1608 rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset, 0);
1609 }
1610
1611 // Add an entry for a local symbol plus ADDEND to the GOT, and add a dynamic
1612 // relocation of type R_TYPE for the GOT entry.
1613
1614 template<int got_size, bool big_endian>
1615 void
1616 Output_data_got<got_size, big_endian>::add_local_with_rel(
1617 Relobj* object,
1618 unsigned int symndx,
1619 unsigned int got_type,
1620 Output_data_reloc_generic* rel_dyn,
1621 unsigned int r_type, uint64_t addend)
1622 {
1623 if (object->local_has_got_offset(symndx, got_type, addend))
1624 return;
1625
1626 unsigned int got_offset = this->add_got_entry(Got_entry());
1627 object->set_local_got_offset(symndx, got_type, got_offset, addend);
1628 rel_dyn->add_local_generic(object, symndx, r_type, this, got_offset,
1629 addend);
1630 }
1631
1632 // Add a pair of entries for a local symbol to the GOT, and add
1633 // a dynamic relocation of type R_TYPE using the section symbol of
1634 // the output section to which input section SHNDX maps, on the first.
1635 // The first got entry will have a value of zero, the second the
1636 // value of the local symbol.
1637 template<int got_size, bool big_endian>
1638 void
1639 Output_data_got<got_size, big_endian>::add_local_pair_with_rel(
1640 Relobj* object,
1641 unsigned int symndx,
1642 unsigned int shndx,
1643 unsigned int got_type,
1644 Output_data_reloc_generic* rel_dyn,
1645 unsigned int r_type)
1646 {
1647 if (object->local_has_got_offset(symndx, got_type))
1648 return;
1649
1650 unsigned int got_offset =
1651 this->add_got_entry_pair(Got_entry(),
1652 Got_entry(object, symndx, false));
1653 object->set_local_got_offset(symndx, got_type, got_offset);
1654 Output_section* os = object->output_section(shndx);
1655 rel_dyn->add_output_section_generic(os, r_type, this, got_offset, 0);
1656 }
1657
1658 // Add a pair of entries for a local symbol plus ADDEND to the GOT, and add
1659 // a dynamic relocation of type R_TYPE using the section symbol of
1660 // the output section to which input section SHNDX maps, on the first.
1661 // The first got entry will have a value of zero, the second the
1662 // value of the local symbol.
1663 template<int got_size, bool big_endian>
1664 void
1665 Output_data_got<got_size, big_endian>::add_local_pair_with_rel(
1666 Relobj* object,
1667 unsigned int symndx,
1668 unsigned int shndx,
1669 unsigned int got_type,
1670 Output_data_reloc_generic* rel_dyn,
1671 unsigned int r_type, uint64_t addend)
1672 {
1673 if (object->local_has_got_offset(symndx, got_type, addend))
1674 return;
1675
1676 unsigned int got_offset =
1677 this->add_got_entry_pair(Got_entry(),
1678 Got_entry(object, symndx, false, addend));
1679 object->set_local_got_offset(symndx, got_type, got_offset, addend);
1680 Output_section* os = object->output_section(shndx);
1681 rel_dyn->add_output_section_generic(os, r_type, this, got_offset, addend);
1682 }
1683
1684 // Add a pair of entries for a local symbol to the GOT, and add
1685 // a dynamic relocation of type R_TYPE using STN_UNDEF on the first.
1686 // The first got entry will have a value of zero, the second the
1687 // value of the local symbol offset by Target::tls_offset_for_local.
1688 template<int got_size, bool big_endian>
1689 void
1690 Output_data_got<got_size, big_endian>::add_local_tls_pair(
1691 Relobj* object,
1692 unsigned int symndx,
1693 unsigned int got_type,
1694 Output_data_reloc_generic* rel_dyn,
1695 unsigned int r_type)
1696 {
1697 if (object->local_has_got_offset(symndx, got_type))
1698 return;
1699
1700 unsigned int got_offset
1701 = this->add_got_entry_pair(Got_entry(),
1702 Got_entry(object, symndx, true));
1703 object->set_local_got_offset(symndx, got_type, got_offset);
1704 rel_dyn->add_local_generic(object, 0, r_type, this, got_offset, 0);
1705 }
1706
1707 // Reserve a slot in the GOT for a local symbol or the second slot of a pair.
1708
1709 template<int got_size, bool big_endian>
1710 void
1711 Output_data_got<got_size, big_endian>::reserve_local(
1712 unsigned int i,
1713 Relobj* object,
1714 unsigned int sym_index,
1715 unsigned int got_type)
1716 {
1717 this->do_reserve_slot(i);
1718 object->set_local_got_offset(sym_index, got_type, this->got_offset(i));
1719 }
1720
1721 // Reserve a slot in the GOT for a global symbol.
1722
1723 template<int got_size, bool big_endian>
1724 void
1725 Output_data_got<got_size, big_endian>::reserve_global(
1726 unsigned int i,
1727 Symbol* gsym,
1728 unsigned int got_type)
1729 {
1730 this->do_reserve_slot(i);
1731 gsym->set_got_offset(got_type, this->got_offset(i));
1732 }
1733
1734 // Write out the GOT.
1735
1736 template<int got_size, bool big_endian>
1737 void
1738 Output_data_got<got_size, big_endian>::do_write(Output_file* of)
1739 {
1740 const int add = got_size / 8;
1741
1742 const off_t off = this->offset();
1743 const off_t oview_size = this->data_size();
1744 unsigned char* const oview = of->get_output_view(off, oview_size);
1745
1746 unsigned char* pov = oview;
1747 for (unsigned int i = 0; i < this->entries_.size(); ++i)
1748 {
1749 this->entries_[i].write(i, pov);
1750 pov += add;
1751 }
1752
1753 gold_assert(pov - oview == oview_size);
1754
1755 of->write_output_view(off, oview_size, oview);
1756
1757 // We no longer need the GOT entries.
1758 this->entries_.clear();
1759 }
1760
1761 // Create a new GOT entry and return its offset.
1762
1763 template<int got_size, bool big_endian>
1764 unsigned int
1765 Output_data_got<got_size, big_endian>::add_got_entry(Got_entry got_entry)
1766 {
1767 if (!this->is_data_size_valid())
1768 {
1769 this->entries_.push_back(got_entry);
1770 this->set_got_size();
1771 return this->last_got_offset();
1772 }
1773 else
1774 {
1775 // For an incremental update, find an available slot.
1776 off_t got_offset = this->free_list_.allocate(got_size / 8,
1777 got_size / 8, 0);
1778 if (got_offset == -1)
1779 gold_fallback(_("out of patch space (GOT);"
1780 " relink with --incremental-full"));
1781 unsigned int got_index = got_offset / (got_size / 8);
1782 gold_assert(got_index < this->entries_.size());
1783 this->entries_[got_index] = got_entry;
1784 return static_cast<unsigned int>(got_offset);
1785 }
1786 }
1787
1788 // Create a pair of new GOT entries and return the offset of the first.
1789
1790 template<int got_size, bool big_endian>
1791 unsigned int
1792 Output_data_got<got_size, big_endian>::add_got_entry_pair(
1793 Got_entry got_entry_1,
1794 Got_entry got_entry_2)
1795 {
1796 if (!this->is_data_size_valid())
1797 {
1798 unsigned int got_offset;
1799 this->entries_.push_back(got_entry_1);
1800 got_offset = this->last_got_offset();
1801 this->entries_.push_back(got_entry_2);
1802 this->set_got_size();
1803 return got_offset;
1804 }
1805 else
1806 {
1807 // For an incremental update, find an available pair of slots.
1808 off_t got_offset = this->free_list_.allocate(2 * got_size / 8,
1809 got_size / 8, 0);
1810 if (got_offset == -1)
1811 gold_fallback(_("out of patch space (GOT);"
1812 " relink with --incremental-full"));
1813 unsigned int got_index = got_offset / (got_size / 8);
1814 gold_assert(got_index < this->entries_.size());
1815 this->entries_[got_index] = got_entry_1;
1816 this->entries_[got_index + 1] = got_entry_2;
1817 return static_cast<unsigned int>(got_offset);
1818 }
1819 }
1820
1821 // Replace GOT entry I with a new value.
1822
1823 template<int got_size, bool big_endian>
1824 void
1825 Output_data_got<got_size, big_endian>::replace_got_entry(
1826 unsigned int i,
1827 Got_entry got_entry)
1828 {
1829 gold_assert(i < this->entries_.size());
1830 this->entries_[i] = got_entry;
1831 }
1832
1833 // Output_data_dynamic::Dynamic_entry methods.
1834
1835 // Write out the entry.
1836
1837 template<int size, bool big_endian>
1838 void
1839 Output_data_dynamic::Dynamic_entry::write(
1840 unsigned char* pov,
1841 const Stringpool* pool) const
1842 {
1843 typename elfcpp::Elf_types<size>::Elf_WXword val;
1844 switch (this->offset_)
1845 {
1846 case DYNAMIC_NUMBER:
1847 val = this->u_.val;
1848 break;
1849
1850 case DYNAMIC_SECTION_SIZE:
1851 val = this->u_.od->data_size();
1852 if (this->od2 != NULL)
1853 val += this->od2->data_size();
1854 break;
1855
1856 case DYNAMIC_SYMBOL:
1857 {
1858 const Sized_symbol<size>* s =
1859 static_cast<const Sized_symbol<size>*>(this->u_.sym);
1860 val = s->value();
1861 }
1862 break;
1863
1864 case DYNAMIC_STRING:
1865 val = pool->get_offset(this->u_.str);
1866 break;
1867
1868 case DYNAMIC_CUSTOM:
1869 val = parameters->target().dynamic_tag_custom_value(this->tag_);
1870 break;
1871
1872 default:
1873 val = this->u_.od->address() + this->offset_;
1874 break;
1875 }
1876
1877 elfcpp::Dyn_write<size, big_endian> dw(pov);
1878 dw.put_d_tag(this->tag_);
1879 dw.put_d_val(val);
1880 }
1881
1882 // Output_data_dynamic methods.
1883
1884 // Adjust the output section to set the entry size.
1885
1886 void
1887 Output_data_dynamic::do_adjust_output_section(Output_section* os)
1888 {
1889 if (parameters->target().get_size() == 32)
1890 os->set_entsize(elfcpp::Elf_sizes<32>::dyn_size);
1891 else if (parameters->target().get_size() == 64)
1892 os->set_entsize(elfcpp::Elf_sizes<64>::dyn_size);
1893 else
1894 gold_unreachable();
1895 }
1896
1897 // Get a dynamic entry offset.
1898
1899 unsigned int
1900 Output_data_dynamic::get_entry_offset(elfcpp::DT tag) const
1901 {
1902 int dyn_size;
1903
1904 if (parameters->target().get_size() == 32)
1905 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1906 else if (parameters->target().get_size() == 64)
1907 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1908 else
1909 gold_unreachable();
1910
1911 for (size_t i = 0; i < entries_.size(); ++i)
1912 if (entries_[i].tag() == tag)
1913 return i * dyn_size;
1914
1915 return -1U;
1916 }
1917
1918 // Set the final data size.
1919
1920 void
1921 Output_data_dynamic::set_final_data_size()
1922 {
1923 // Add the terminating entry if it hasn't been added.
1924 // Because of relaxation, we can run this multiple times.
1925 if (this->entries_.empty() || this->entries_.back().tag() != elfcpp::DT_NULL)
1926 {
1927 int extra = parameters->options().spare_dynamic_tags();
1928 for (int i = 0; i < extra; ++i)
1929 this->add_constant(elfcpp::DT_NULL, 0);
1930 this->add_constant(elfcpp::DT_NULL, 0);
1931 }
1932
1933 int dyn_size;
1934 if (parameters->target().get_size() == 32)
1935 dyn_size = elfcpp::Elf_sizes<32>::dyn_size;
1936 else if (parameters->target().get_size() == 64)
1937 dyn_size = elfcpp::Elf_sizes<64>::dyn_size;
1938 else
1939 gold_unreachable();
1940 this->set_data_size(this->entries_.size() * dyn_size);
1941 }
1942
1943 // Write out the dynamic entries.
1944
1945 void
1946 Output_data_dynamic::do_write(Output_file* of)
1947 {
1948 switch (parameters->size_and_endianness())
1949 {
1950 #ifdef HAVE_TARGET_32_LITTLE
1951 case Parameters::TARGET_32_LITTLE:
1952 this->sized_write<32, false>(of);
1953 break;
1954 #endif
1955 #ifdef HAVE_TARGET_32_BIG
1956 case Parameters::TARGET_32_BIG:
1957 this->sized_write<32, true>(of);
1958 break;
1959 #endif
1960 #ifdef HAVE_TARGET_64_LITTLE
1961 case Parameters::TARGET_64_LITTLE:
1962 this->sized_write<64, false>(of);
1963 break;
1964 #endif
1965 #ifdef HAVE_TARGET_64_BIG
1966 case Parameters::TARGET_64_BIG:
1967 this->sized_write<64, true>(of);
1968 break;
1969 #endif
1970 default:
1971 gold_unreachable();
1972 }
1973 }
1974
1975 template<int size, bool big_endian>
1976 void
1977 Output_data_dynamic::sized_write(Output_file* of)
1978 {
1979 const int dyn_size = elfcpp::Elf_sizes<size>::dyn_size;
1980
1981 const off_t offset = this->offset();
1982 const off_t oview_size = this->data_size();
1983 unsigned char* const oview = of->get_output_view(offset, oview_size);
1984
1985 unsigned char* pov = oview;
1986 for (typename Dynamic_entries::const_iterator p = this->entries_.begin();
1987 p != this->entries_.end();
1988 ++p)
1989 {
1990 p->write<size, big_endian>(pov, this->pool_);
1991 pov += dyn_size;
1992 }
1993
1994 gold_assert(pov - oview == oview_size);
1995
1996 of->write_output_view(offset, oview_size, oview);
1997
1998 // We no longer need the dynamic entries.
1999 this->entries_.clear();
2000 }
2001
2002 // Class Output_symtab_xindex.
2003
2004 void
2005 Output_symtab_xindex::do_write(Output_file* of)
2006 {
2007 const off_t offset = this->offset();
2008 const off_t oview_size = this->data_size();
2009 unsigned char* const oview = of->get_output_view(offset, oview_size);
2010
2011 memset(oview, 0, oview_size);
2012
2013 if (parameters->target().is_big_endian())
2014 this->endian_do_write<true>(oview);
2015 else
2016 this->endian_do_write<false>(oview);
2017
2018 of->write_output_view(offset, oview_size, oview);
2019
2020 // We no longer need the data.
2021 this->entries_.clear();
2022 }
2023
2024 template<bool big_endian>
2025 void
2026 Output_symtab_xindex::endian_do_write(unsigned char* const oview)
2027 {
2028 for (Xindex_entries::const_iterator p = this->entries_.begin();
2029 p != this->entries_.end();
2030 ++p)
2031 {
2032 unsigned int symndx = p->first;
2033 gold_assert(static_cast<off_t>(symndx) * 4 < this->data_size());
2034 elfcpp::Swap<32, big_endian>::writeval(oview + symndx * 4, p->second);
2035 }
2036 }
2037
2038 // Output_fill_debug_info methods.
2039
2040 // Return the minimum size needed for a dummy compilation unit header.
2041
2042 size_t
2043 Output_fill_debug_info::do_minimum_hole_size() const
2044 {
2045 // Compile unit header fields: unit_length, version, debug_abbrev_offset,
2046 // address_size.
2047 const size_t len = 4 + 2 + 4 + 1;
2048 // For type units, add type_signature, type_offset.
2049 if (this->is_debug_types_)
2050 return len + 8 + 4;
2051 return len;
2052 }
2053
2054 // Write a dummy compilation unit header to fill a hole in the
2055 // .debug_info or .debug_types section.
2056
2057 void
2058 Output_fill_debug_info::do_write(Output_file* of, off_t off, size_t len) const
2059 {
2060 gold_debug(DEBUG_INCREMENTAL, "fill_debug_info(%08lx, %08lx)",
2061 static_cast<long>(off), static_cast<long>(len));
2062
2063 gold_assert(len >= this->do_minimum_hole_size());
2064
2065 unsigned char* const oview = of->get_output_view(off, len);
2066 unsigned char* pov = oview;
2067
2068 // Write header fields: unit_length, version, debug_abbrev_offset,
2069 // address_size.
2070 if (this->is_big_endian())
2071 {
2072 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
2073 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
2074 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, 0);
2075 }
2076 else
2077 {
2078 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
2079 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
2080 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, 0);
2081 }
2082 pov += 4 + 2 + 4;
2083 *pov++ = 4;
2084
2085 // For type units, the additional header fields -- type_signature,
2086 // type_offset -- can be filled with zeroes.
2087
2088 // Fill the remainder of the free space with zeroes. The first
2089 // zero should tell the consumer there are no DIEs to read in this
2090 // compilation unit.
2091 if (pov < oview + len)
2092 memset(pov, 0, oview + len - pov);
2093
2094 of->write_output_view(off, len, oview);
2095 }
2096
2097 // Output_fill_debug_line methods.
2098
2099 // Return the minimum size needed for a dummy line number program header.
2100
2101 size_t
2102 Output_fill_debug_line::do_minimum_hole_size() const
2103 {
2104 // Line number program header fields: unit_length, version, header_length,
2105 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2106 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2107 const size_t len = 4 + 2 + 4 + this->header_length;
2108 return len;
2109 }
2110
2111 // Write a dummy line number program header to fill a hole in the
2112 // .debug_line section.
2113
2114 void
2115 Output_fill_debug_line::do_write(Output_file* of, off_t off, size_t len) const
2116 {
2117 gold_debug(DEBUG_INCREMENTAL, "fill_debug_line(%08lx, %08lx)",
2118 static_cast<long>(off), static_cast<long>(len));
2119
2120 gold_assert(len >= this->do_minimum_hole_size());
2121
2122 unsigned char* const oview = of->get_output_view(off, len);
2123 unsigned char* pov = oview;
2124
2125 // Write header fields: unit_length, version, header_length,
2126 // minimum_instruction_length, default_is_stmt, line_base, line_range,
2127 // opcode_base, standard_opcode_lengths[], include_directories, filenames.
2128 // We set the header_length field to cover the entire hole, so the
2129 // line number program is empty.
2130 if (this->is_big_endian())
2131 {
2132 elfcpp::Swap_unaligned<32, true>::writeval(pov, len - 4);
2133 elfcpp::Swap_unaligned<16, true>::writeval(pov + 4, this->version);
2134 elfcpp::Swap_unaligned<32, true>::writeval(pov + 6, len - (4 + 2 + 4));
2135 }
2136 else
2137 {
2138 elfcpp::Swap_unaligned<32, false>::writeval(pov, len - 4);
2139 elfcpp::Swap_unaligned<16, false>::writeval(pov + 4, this->version);
2140 elfcpp::Swap_unaligned<32, false>::writeval(pov + 6, len - (4 + 2 + 4));
2141 }
2142 pov += 4 + 2 + 4;
2143 *pov++ = 1; // minimum_instruction_length
2144 *pov++ = 0; // default_is_stmt
2145 *pov++ = 0; // line_base
2146 *pov++ = 5; // line_range
2147 *pov++ = 13; // opcode_base
2148 *pov++ = 0; // standard_opcode_lengths[1]
2149 *pov++ = 1; // standard_opcode_lengths[2]
2150 *pov++ = 1; // standard_opcode_lengths[3]
2151 *pov++ = 1; // standard_opcode_lengths[4]
2152 *pov++ = 1; // standard_opcode_lengths[5]
2153 *pov++ = 0; // standard_opcode_lengths[6]
2154 *pov++ = 0; // standard_opcode_lengths[7]
2155 *pov++ = 0; // standard_opcode_lengths[8]
2156 *pov++ = 1; // standard_opcode_lengths[9]
2157 *pov++ = 0; // standard_opcode_lengths[10]
2158 *pov++ = 0; // standard_opcode_lengths[11]
2159 *pov++ = 1; // standard_opcode_lengths[12]
2160 *pov++ = 0; // include_directories (empty)
2161 *pov++ = 0; // filenames (empty)
2162
2163 // Some consumers don't check the header_length field, and simply
2164 // start reading the line number program immediately following the
2165 // header. For those consumers, we fill the remainder of the free
2166 // space with DW_LNS_set_basic_block opcodes. These are effectively
2167 // no-ops: the resulting line table program will not create any rows.
2168 if (pov < oview + len)
2169 memset(pov, elfcpp::DW_LNS_set_basic_block, oview + len - pov);
2170
2171 of->write_output_view(off, len, oview);
2172 }
2173
2174 // Output_section::Input_section methods.
2175
2176 // Return the current data size. For an input section we store the size here.
2177 // For an Output_section_data, we have to ask it for the size.
2178
2179 off_t
2180 Output_section::Input_section::current_data_size() const
2181 {
2182 if (this->is_input_section())
2183 return this->u1_.data_size;
2184 else
2185 {
2186 this->u2_.posd->pre_finalize_data_size();
2187 return this->u2_.posd->current_data_size();
2188 }
2189 }
2190
2191 // Return the data size. For an input section we store the size here.
2192 // For an Output_section_data, we have to ask it for the size.
2193
2194 off_t
2195 Output_section::Input_section::data_size() const
2196 {
2197 if (this->is_input_section())
2198 return this->u1_.data_size;
2199 else
2200 return this->u2_.posd->data_size();
2201 }
2202
2203 // Return the object for an input section.
2204
2205 Relobj*
2206 Output_section::Input_section::relobj() const
2207 {
2208 if (this->is_input_section())
2209 return this->u2_.object;
2210 else if (this->is_merge_section())
2211 {
2212 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2213 return this->u2_.pomb->first_relobj();
2214 }
2215 else if (this->is_relaxed_input_section())
2216 return this->u2_.poris->relobj();
2217 else
2218 gold_unreachable();
2219 }
2220
2221 // Return the input section index for an input section.
2222
2223 unsigned int
2224 Output_section::Input_section::shndx() const
2225 {
2226 if (this->is_input_section())
2227 return this->shndx_;
2228 else if (this->is_merge_section())
2229 {
2230 gold_assert(this->u2_.pomb->first_relobj() != NULL);
2231 return this->u2_.pomb->first_shndx();
2232 }
2233 else if (this->is_relaxed_input_section())
2234 return this->u2_.poris->shndx();
2235 else
2236 gold_unreachable();
2237 }
2238
2239 // Set the address and file offset.
2240
2241 void
2242 Output_section::Input_section::set_address_and_file_offset(
2243 uint64_t address,
2244 off_t file_offset,
2245 off_t section_file_offset)
2246 {
2247 if (this->is_input_section())
2248 this->u2_.object->set_section_offset(this->shndx_,
2249 file_offset - section_file_offset);
2250 else
2251 this->u2_.posd->set_address_and_file_offset(address, file_offset);
2252 }
2253
2254 // Reset the address and file offset.
2255
2256 void
2257 Output_section::Input_section::reset_address_and_file_offset()
2258 {
2259 if (!this->is_input_section())
2260 this->u2_.posd->reset_address_and_file_offset();
2261 }
2262
2263 // Finalize the data size.
2264
2265 void
2266 Output_section::Input_section::finalize_data_size()
2267 {
2268 if (!this->is_input_section())
2269 this->u2_.posd->finalize_data_size();
2270 }
2271
2272 // Try to turn an input offset into an output offset. We want to
2273 // return the output offset relative to the start of this
2274 // Input_section in the output section.
2275
2276 inline bool
2277 Output_section::Input_section::output_offset(
2278 const Relobj* object,
2279 unsigned int shndx,
2280 section_offset_type offset,
2281 section_offset_type* poutput) const
2282 {
2283 if (!this->is_input_section())
2284 return this->u2_.posd->output_offset(object, shndx, offset, poutput);
2285 else
2286 {
2287 if (this->shndx_ != shndx || this->u2_.object != object)
2288 return false;
2289 *poutput = offset;
2290 return true;
2291 }
2292 }
2293
2294 // Write out the data. We don't have to do anything for an input
2295 // section--they are handled via Object::relocate--but this is where
2296 // we write out the data for an Output_section_data.
2297
2298 void
2299 Output_section::Input_section::write(Output_file* of)
2300 {
2301 if (!this->is_input_section())
2302 this->u2_.posd->write(of);
2303 }
2304
2305 // Write the data to a buffer. As for write(), we don't have to do
2306 // anything for an input section.
2307
2308 void
2309 Output_section::Input_section::write_to_buffer(unsigned char* buffer)
2310 {
2311 if (!this->is_input_section())
2312 this->u2_.posd->write_to_buffer(buffer);
2313 }
2314
2315 // Print to a map file.
2316
2317 void
2318 Output_section::Input_section::print_to_mapfile(Mapfile* mapfile) const
2319 {
2320 switch (this->shndx_)
2321 {
2322 case OUTPUT_SECTION_CODE:
2323 case MERGE_DATA_SECTION_CODE:
2324 case MERGE_STRING_SECTION_CODE:
2325 this->u2_.posd->print_to_mapfile(mapfile);
2326 break;
2327
2328 case RELAXED_INPUT_SECTION_CODE:
2329 {
2330 Output_relaxed_input_section* relaxed_section =
2331 this->relaxed_input_section();
2332 mapfile->print_input_section(relaxed_section->relobj(),
2333 relaxed_section->shndx());
2334 }
2335 break;
2336 default:
2337 mapfile->print_input_section(this->u2_.object, this->shndx_);
2338 break;
2339 }
2340 }
2341
2342 // Output_section methods.
2343
2344 // Construct an Output_section. NAME will point into a Stringpool.
2345
2346 Output_section::Output_section(const char* name, elfcpp::Elf_Word type,
2347 elfcpp::Elf_Xword flags)
2348 : name_(name),
2349 addralign_(0),
2350 entsize_(0),
2351 load_address_(0),
2352 link_section_(NULL),
2353 link_(0),
2354 info_section_(NULL),
2355 info_symndx_(NULL),
2356 info_(0),
2357 type_(type),
2358 flags_(flags),
2359 order_(ORDER_INVALID),
2360 out_shndx_(-1U),
2361 symtab_index_(0),
2362 dynsym_index_(0),
2363 input_sections_(),
2364 first_input_offset_(0),
2365 fills_(),
2366 postprocessing_buffer_(NULL),
2367 needs_symtab_index_(false),
2368 needs_dynsym_index_(false),
2369 should_link_to_symtab_(false),
2370 should_link_to_dynsym_(false),
2371 after_input_sections_(false),
2372 requires_postprocessing_(false),
2373 found_in_sections_clause_(false),
2374 has_load_address_(false),
2375 info_uses_section_index_(false),
2376 input_section_order_specified_(false),
2377 may_sort_attached_input_sections_(false),
2378 must_sort_attached_input_sections_(false),
2379 attached_input_sections_are_sorted_(false),
2380 is_relro_(false),
2381 is_small_section_(false),
2382 is_large_section_(false),
2383 generate_code_fills_at_write_(false),
2384 is_entsize_zero_(false),
2385 section_offsets_need_adjustment_(false),
2386 is_noload_(false),
2387 always_keeps_input_sections_(false),
2388 has_fixed_layout_(false),
2389 is_patch_space_allowed_(false),
2390 is_unique_segment_(false),
2391 tls_offset_(0),
2392 extra_segment_flags_(0),
2393 segment_alignment_(0),
2394 checkpoint_(NULL),
2395 lookup_maps_(new Output_section_lookup_maps),
2396 free_list_(),
2397 free_space_fill_(NULL),
2398 patch_space_(0),
2399 reloc_section_(NULL)
2400 {
2401 // An unallocated section has no address. Forcing this means that
2402 // we don't need special treatment for symbols defined in debug
2403 // sections.
2404 if ((flags & elfcpp::SHF_ALLOC) == 0)
2405 this->set_address(0);
2406 }
2407
2408 Output_section::~Output_section()
2409 {
2410 delete this->checkpoint_;
2411 }
2412
2413 // Set the entry size.
2414
2415 void
2416 Output_section::set_entsize(uint64_t v)
2417 {
2418 if (this->is_entsize_zero_)
2419 ;
2420 else if (this->entsize_ == 0)
2421 this->entsize_ = v;
2422 else if (this->entsize_ != v)
2423 {
2424 this->entsize_ = 0;
2425 this->is_entsize_zero_ = 1;
2426 }
2427 }
2428
2429 // Add the input section SHNDX, with header SHDR, named SECNAME, in
2430 // OBJECT, to the Output_section. RELOC_SHNDX is the index of a
2431 // relocation section which applies to this section, or 0 if none, or
2432 // -1U if more than one. Return the offset of the input section
2433 // within the output section. Return -1 if the input section will
2434 // receive special handling. In the normal case we don't always keep
2435 // track of input sections for an Output_section. Instead, each
2436 // Object keeps track of the Output_section for each of its input
2437 // sections. However, if HAVE_SECTIONS_SCRIPT is true, we do keep
2438 // track of input sections here; this is used when SECTIONS appears in
2439 // a linker script.
2440
2441 template<int size, bool big_endian>
2442 off_t
2443 Output_section::add_input_section(Layout* layout,
2444 Sized_relobj_file<size, big_endian>* object,
2445 unsigned int shndx,
2446 const char* secname,
2447 const elfcpp::Shdr<size, big_endian>& shdr,
2448 unsigned int reloc_shndx,
2449 bool have_sections_script)
2450 {
2451 section_size_type input_section_size = shdr.get_sh_size();
2452 section_size_type uncompressed_size;
2453 elfcpp::Elf_Xword addralign = shdr.get_sh_addralign();
2454 if (object->section_is_compressed(shndx, &uncompressed_size,
2455 &addralign))
2456 input_section_size = uncompressed_size;
2457
2458 if ((addralign & (addralign - 1)) != 0)
2459 {
2460 object->error(_("invalid alignment %lu for section \"%s\""),
2461 static_cast<unsigned long>(addralign), secname);
2462 addralign = 1;
2463 }
2464
2465 if (addralign > this->addralign_)
2466 this->addralign_ = addralign;
2467
2468 typename elfcpp::Elf_types<size>::Elf_WXword sh_flags = shdr.get_sh_flags();
2469 uint64_t entsize = shdr.get_sh_entsize();
2470
2471 // .debug_str is a mergeable string section, but is not always so
2472 // marked by compilers. Mark manually here so we can optimize.
2473 if (strcmp(secname, ".debug_str") == 0)
2474 {
2475 sh_flags |= (elfcpp::SHF_MERGE | elfcpp::SHF_STRINGS);
2476 entsize = 1;
2477 }
2478
2479 this->update_flags_for_input_section(sh_flags);
2480 this->set_entsize(entsize);
2481
2482 // If this is a SHF_MERGE section, we pass all the input sections to
2483 // a Output_data_merge. We don't try to handle relocations for such
2484 // a section. We don't try to handle empty merge sections--they
2485 // mess up the mappings, and are useless anyhow.
2486 // FIXME: Need to handle merge sections during incremental update.
2487 if ((sh_flags & elfcpp::SHF_MERGE) != 0
2488 && reloc_shndx == 0
2489 && shdr.get_sh_size() > 0
2490 && !parameters->incremental())
2491 {
2492 // Keep information about merged input sections for rebuilding fast
2493 // lookup maps if we have sections-script or we do relaxation.
2494 bool keeps_input_sections = (this->always_keeps_input_sections_
2495 || have_sections_script
2496 || parameters->target().may_relax());
2497
2498 if (this->add_merge_input_section(object, shndx, sh_flags, entsize,
2499 addralign, keeps_input_sections))
2500 {
2501 // Tell the relocation routines that they need to call the
2502 // output_offset method to determine the final address.
2503 return -1;
2504 }
2505 }
2506
2507 off_t offset_in_section;
2508
2509 if (this->has_fixed_layout())
2510 {
2511 // For incremental updates, find a chunk of unused space in the section.
2512 offset_in_section = this->free_list_.allocate(input_section_size,
2513 addralign, 0);
2514 if (offset_in_section == -1)
2515 gold_fallback(_("out of patch space in section %s; "
2516 "relink with --incremental-full"),
2517 this->name());
2518 return offset_in_section;
2519 }
2520
2521 offset_in_section = this->current_data_size_for_child();
2522 off_t aligned_offset_in_section = align_address(offset_in_section,
2523 addralign);
2524 this->set_current_data_size_for_child(aligned_offset_in_section
2525 + input_section_size);
2526
2527 // Determine if we want to delay code-fill generation until the output
2528 // section is written. When the target is relaxing, we want to delay fill
2529 // generating to avoid adjusting them during relaxation. Also, if we are
2530 // sorting input sections we must delay fill generation.
2531 if (!this->generate_code_fills_at_write_
2532 && !have_sections_script
2533 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2534 && parameters->target().has_code_fill()
2535 && (parameters->target().may_relax()
2536 || layout->is_section_ordering_specified()))
2537 {
2538 gold_assert(this->fills_.empty());
2539 this->generate_code_fills_at_write_ = true;
2540 }
2541
2542 if (aligned_offset_in_section > offset_in_section
2543 && !this->generate_code_fills_at_write_
2544 && !have_sections_script
2545 && (sh_flags & elfcpp::SHF_EXECINSTR) != 0
2546 && parameters->target().has_code_fill())
2547 {
2548 // We need to add some fill data. Using fill_list_ when
2549 // possible is an optimization, since we will often have fill
2550 // sections without input sections.
2551 off_t fill_len = aligned_offset_in_section - offset_in_section;
2552 if (this->input_sections_.empty())
2553 this->fills_.push_back(Fill(offset_in_section, fill_len));
2554 else
2555 {
2556 std::string fill_data(parameters->target().code_fill(fill_len));
2557 Output_data_const* odc = new Output_data_const(fill_data, 1);
2558 this->input_sections_.push_back(Input_section(odc));
2559 }
2560 }
2561
2562 // We need to keep track of this section if we are already keeping
2563 // track of sections, or if we are relaxing. Also, if this is a
2564 // section which requires sorting, or which may require sorting in
2565 // the future, we keep track of the sections. If the
2566 // --section-ordering-file option is used to specify the order of
2567 // sections, we need to keep track of sections.
2568 if (this->always_keeps_input_sections_
2569 || have_sections_script
2570 || !this->input_sections_.empty()
2571 || this->may_sort_attached_input_sections()
2572 || this->must_sort_attached_input_sections()
2573 || parameters->options().user_set_Map()
2574 || parameters->target().may_relax()
2575 || layout->is_section_ordering_specified())
2576 {
2577 Input_section isecn(object, shndx, input_section_size, addralign);
2578 /* If section ordering is requested by specifying a ordering file,
2579 using --section-ordering-file, match the section name with
2580 a pattern. */
2581 if (parameters->options().section_ordering_file())
2582 {
2583 unsigned int section_order_index =
2584 layout->find_section_order_index(std::string(secname));
2585 if (section_order_index != 0)
2586 {
2587 isecn.set_section_order_index(section_order_index);
2588 this->set_input_section_order_specified();
2589 }
2590 }
2591 this->input_sections_.push_back(isecn);
2592 }
2593
2594 return aligned_offset_in_section;
2595 }
2596
2597 // Add arbitrary data to an output section.
2598
2599 void
2600 Output_section::add_output_section_data(Output_section_data* posd)
2601 {
2602 Input_section inp(posd);
2603 this->add_output_section_data(&inp);
2604
2605 if (posd->is_data_size_valid())
2606 {
2607 off_t offset_in_section;
2608 if (this->has_fixed_layout())
2609 {
2610 // For incremental updates, find a chunk of unused space.
2611 offset_in_section = this->free_list_.allocate(posd->data_size(),
2612 posd->addralign(), 0);
2613 if (offset_in_section == -1)
2614 gold_fallback(_("out of patch space in section %s; "
2615 "relink with --incremental-full"),
2616 this->name());
2617 // Finalize the address and offset now.
2618 uint64_t addr = this->address();
2619 off_t offset = this->offset();
2620 posd->set_address_and_file_offset(addr + offset_in_section,
2621 offset + offset_in_section);
2622 }
2623 else
2624 {
2625 offset_in_section = this->current_data_size_for_child();
2626 off_t aligned_offset_in_section = align_address(offset_in_section,
2627 posd->addralign());
2628 this->set_current_data_size_for_child(aligned_offset_in_section
2629 + posd->data_size());
2630 }
2631 }
2632 else if (this->has_fixed_layout())
2633 {
2634 // For incremental updates, arrange for the data to have a fixed layout.
2635 // This will mean that additions to the data must be allocated from
2636 // free space within the containing output section.
2637 uint64_t addr = this->address();
2638 posd->set_address(addr);
2639 posd->set_file_offset(0);
2640 // FIXME: This should eventually be unreachable.
2641 // gold_unreachable();
2642 }
2643 }
2644
2645 // Add a relaxed input section.
2646
2647 void
2648 Output_section::add_relaxed_input_section(Layout* layout,
2649 Output_relaxed_input_section* poris,
2650 const std::string& name)
2651 {
2652 Input_section inp(poris);
2653
2654 // If the --section-ordering-file option is used to specify the order of
2655 // sections, we need to keep track of sections.
2656 if (layout->is_section_ordering_specified())
2657 {
2658 unsigned int section_order_index =
2659 layout->find_section_order_index(name);
2660 if (section_order_index != 0)
2661 {
2662 inp.set_section_order_index(section_order_index);
2663 this->set_input_section_order_specified();
2664 }
2665 }
2666
2667 this->add_output_section_data(&inp);
2668 if (this->lookup_maps_->is_valid())
2669 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2670 poris->shndx(), poris);
2671
2672 // For a relaxed section, we use the current data size. Linker scripts
2673 // get all the input sections, including relaxed one from an output
2674 // section and add them back to the same output section to compute the
2675 // output section size. If we do not account for sizes of relaxed input
2676 // sections, an output section would be incorrectly sized.
2677 off_t offset_in_section = this->current_data_size_for_child();
2678 off_t aligned_offset_in_section = align_address(offset_in_section,
2679 poris->addralign());
2680 this->set_current_data_size_for_child(aligned_offset_in_section
2681 + poris->current_data_size());
2682 }
2683
2684 // Add arbitrary data to an output section by Input_section.
2685
2686 void
2687 Output_section::add_output_section_data(Input_section* inp)
2688 {
2689 if (this->input_sections_.empty())
2690 this->first_input_offset_ = this->current_data_size_for_child();
2691
2692 this->input_sections_.push_back(*inp);
2693
2694 uint64_t addralign = inp->addralign();
2695 if (addralign > this->addralign_)
2696 this->addralign_ = addralign;
2697
2698 inp->set_output_section(this);
2699 }
2700
2701 // Add a merge section to an output section.
2702
2703 void
2704 Output_section::add_output_merge_section(Output_section_data* posd,
2705 bool is_string, uint64_t entsize)
2706 {
2707 Input_section inp(posd, is_string, entsize);
2708 this->add_output_section_data(&inp);
2709 }
2710
2711 // Add an input section to a SHF_MERGE section.
2712
2713 bool
2714 Output_section::add_merge_input_section(Relobj* object, unsigned int shndx,
2715 uint64_t flags, uint64_t entsize,
2716 uint64_t addralign,
2717 bool keeps_input_sections)
2718 {
2719 // We cannot merge sections with entsize == 0.
2720 if (entsize == 0)
2721 return false;
2722
2723 bool is_string = (flags & elfcpp::SHF_STRINGS) != 0;
2724
2725 // We cannot restore merged input section states.
2726 gold_assert(this->checkpoint_ == NULL);
2727
2728 // Look up merge sections by required properties.
2729 // Currently, we only invalidate the lookup maps in script processing
2730 // and relaxation. We should not have done either when we reach here.
2731 // So we assume that the lookup maps are valid to simply code.
2732 gold_assert(this->lookup_maps_->is_valid());
2733 Merge_section_properties msp(is_string, entsize, addralign);
2734 Output_merge_base* pomb = this->lookup_maps_->find_merge_section(msp);
2735 bool is_new = false;
2736 if (pomb != NULL)
2737 {
2738 gold_assert(pomb->is_string() == is_string
2739 && pomb->entsize() == entsize
2740 && pomb->addralign() == addralign);
2741 }
2742 else
2743 {
2744 // Create a new Output_merge_data or Output_merge_string_data.
2745 if (!is_string)
2746 pomb = new Output_merge_data(entsize, addralign);
2747 else
2748 {
2749 switch (entsize)
2750 {
2751 case 1:
2752 pomb = new Output_merge_string<char>(addralign);
2753 break;
2754 case 2:
2755 pomb = new Output_merge_string<uint16_t>(addralign);
2756 break;
2757 case 4:
2758 pomb = new Output_merge_string<uint32_t>(addralign);
2759 break;
2760 default:
2761 return false;
2762 }
2763 }
2764 // If we need to do script processing or relaxation, we need to keep
2765 // the original input sections to rebuild the fast lookup maps.
2766 if (keeps_input_sections)
2767 pomb->set_keeps_input_sections();
2768 is_new = true;
2769 }
2770
2771 if (pomb->add_input_section(object, shndx))
2772 {
2773 // Add new merge section to this output section and link merge
2774 // section properties to new merge section in map.
2775 if (is_new)
2776 {
2777 this->add_output_merge_section(pomb, is_string, entsize);
2778 this->lookup_maps_->add_merge_section(msp, pomb);
2779 }
2780
2781 return true;
2782 }
2783 else
2784 {
2785 // If add_input_section failed, delete new merge section to avoid
2786 // exporting empty merge sections in Output_section::get_input_section.
2787 if (is_new)
2788 delete pomb;
2789 return false;
2790 }
2791 }
2792
2793 // Build a relaxation map to speed up relaxation of existing input sections.
2794 // Look up to the first LIMIT elements in INPUT_SECTIONS.
2795
2796 void
2797 Output_section::build_relaxation_map(
2798 const Input_section_list& input_sections,
2799 size_t limit,
2800 Relaxation_map* relaxation_map) const
2801 {
2802 for (size_t i = 0; i < limit; ++i)
2803 {
2804 const Input_section& is(input_sections[i]);
2805 if (is.is_input_section() || is.is_relaxed_input_section())
2806 {
2807 Section_id sid(is.relobj(), is.shndx());
2808 (*relaxation_map)[sid] = i;
2809 }
2810 }
2811 }
2812
2813 // Convert regular input sections in INPUT_SECTIONS into relaxed input
2814 // sections in RELAXED_SECTIONS. MAP is a prebuilt map from section id
2815 // indices of INPUT_SECTIONS.
2816
2817 void
2818 Output_section::convert_input_sections_in_list_to_relaxed_sections(
2819 const std::vector<Output_relaxed_input_section*>& relaxed_sections,
2820 const Relaxation_map& map,
2821 Input_section_list* input_sections)
2822 {
2823 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2824 {
2825 Output_relaxed_input_section* poris = relaxed_sections[i];
2826 Section_id sid(poris->relobj(), poris->shndx());
2827 Relaxation_map::const_iterator p = map.find(sid);
2828 gold_assert(p != map.end());
2829 gold_assert((*input_sections)[p->second].is_input_section());
2830
2831 // Remember section order index of original input section
2832 // if it is set. Copy it to the relaxed input section.
2833 unsigned int soi =
2834 (*input_sections)[p->second].section_order_index();
2835 (*input_sections)[p->second] = Input_section(poris);
2836 (*input_sections)[p->second].set_section_order_index(soi);
2837 }
2838 }
2839
2840 // Convert regular input sections into relaxed input sections. RELAXED_SECTIONS
2841 // is a vector of pointers to Output_relaxed_input_section or its derived
2842 // classes. The relaxed sections must correspond to existing input sections.
2843
2844 void
2845 Output_section::convert_input_sections_to_relaxed_sections(
2846 const std::vector<Output_relaxed_input_section*>& relaxed_sections)
2847 {
2848 gold_assert(parameters->target().may_relax());
2849
2850 // We want to make sure that restore_states does not undo the effect of
2851 // this. If there is no checkpoint active, just search the current
2852 // input section list and replace the sections there. If there is
2853 // a checkpoint, also replace the sections there.
2854
2855 // By default, we look at the whole list.
2856 size_t limit = this->input_sections_.size();
2857
2858 if (this->checkpoint_ != NULL)
2859 {
2860 // Replace input sections with relaxed input section in the saved
2861 // copy of the input section list.
2862 if (this->checkpoint_->input_sections_saved())
2863 {
2864 Relaxation_map map;
2865 this->build_relaxation_map(
2866 *(this->checkpoint_->input_sections()),
2867 this->checkpoint_->input_sections()->size(),
2868 &map);
2869 this->convert_input_sections_in_list_to_relaxed_sections(
2870 relaxed_sections,
2871 map,
2872 this->checkpoint_->input_sections());
2873 }
2874 else
2875 {
2876 // We have not copied the input section list yet. Instead, just
2877 // look at the portion that would be saved.
2878 limit = this->checkpoint_->input_sections_size();
2879 }
2880 }
2881
2882 // Convert input sections in input_section_list.
2883 Relaxation_map map;
2884 this->build_relaxation_map(this->input_sections_, limit, &map);
2885 this->convert_input_sections_in_list_to_relaxed_sections(
2886 relaxed_sections,
2887 map,
2888 &this->input_sections_);
2889
2890 // Update fast look-up map.
2891 if (this->lookup_maps_->is_valid())
2892 for (size_t i = 0; i < relaxed_sections.size(); ++i)
2893 {
2894 Output_relaxed_input_section* poris = relaxed_sections[i];
2895 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2896 poris->shndx(), poris);
2897 }
2898 }
2899
2900 // Update the output section flags based on input section flags.
2901
2902 void
2903 Output_section::update_flags_for_input_section(elfcpp::Elf_Xword flags)
2904 {
2905 // If we created the section with SHF_ALLOC clear, we set the
2906 // address. If we are now setting the SHF_ALLOC flag, we need to
2907 // undo that.
2908 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0
2909 && (flags & elfcpp::SHF_ALLOC) != 0)
2910 this->mark_address_invalid();
2911
2912 this->flags_ |= (flags
2913 & (elfcpp::SHF_WRITE
2914 | elfcpp::SHF_ALLOC
2915 | elfcpp::SHF_EXECINSTR));
2916
2917 if ((flags & elfcpp::SHF_MERGE) == 0)
2918 this->flags_ &=~ elfcpp::SHF_MERGE;
2919 else
2920 {
2921 if (this->current_data_size_for_child() == 0)
2922 this->flags_ |= elfcpp::SHF_MERGE;
2923 }
2924
2925 if ((flags & elfcpp::SHF_STRINGS) == 0)
2926 this->flags_ &=~ elfcpp::SHF_STRINGS;
2927 else
2928 {
2929 if (this->current_data_size_for_child() == 0)
2930 this->flags_ |= elfcpp::SHF_STRINGS;
2931 }
2932 }
2933
2934 // Find the merge section into which an input section with index SHNDX in
2935 // OBJECT has been added. Return NULL if none found.
2936
2937 const Output_section_data*
2938 Output_section::find_merge_section(const Relobj* object,
2939 unsigned int shndx) const
2940 {
2941 return object->find_merge_section(shndx);
2942 }
2943
2944 // Build the lookup maps for relaxed sections. This needs
2945 // to be declared as a const method so that it is callable with a const
2946 // Output_section pointer. The method only updates states of the maps.
2947
2948 void
2949 Output_section::build_lookup_maps() const
2950 {
2951 this->lookup_maps_->clear();
2952 for (Input_section_list::const_iterator p = this->input_sections_.begin();
2953 p != this->input_sections_.end();
2954 ++p)
2955 {
2956 if (p->is_relaxed_input_section())
2957 {
2958 Output_relaxed_input_section* poris = p->relaxed_input_section();
2959 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
2960 poris->shndx(), poris);
2961 }
2962 }
2963 }
2964
2965 // Find an relaxed input section corresponding to an input section
2966 // in OBJECT with index SHNDX.
2967
2968 const Output_relaxed_input_section*
2969 Output_section::find_relaxed_input_section(const Relobj* object,
2970 unsigned int shndx) const
2971 {
2972 if (!this->lookup_maps_->is_valid())
2973 this->build_lookup_maps();
2974 return this->lookup_maps_->find_relaxed_input_section(object, shndx);
2975 }
2976
2977 // Given an address OFFSET relative to the start of input section
2978 // SHNDX in OBJECT, return whether this address is being included in
2979 // the final link. This should only be called if SHNDX in OBJECT has
2980 // a special mapping.
2981
2982 bool
2983 Output_section::is_input_address_mapped(const Relobj* object,
2984 unsigned int shndx,
2985 off_t offset) const
2986 {
2987 // Look at the Output_section_data_maps first.
2988 const Output_section_data* posd = this->find_merge_section(object, shndx);
2989 if (posd == NULL)
2990 posd = this->find_relaxed_input_section(object, shndx);
2991
2992 if (posd != NULL)
2993 {
2994 section_offset_type output_offset;
2995 bool found = posd->output_offset(object, shndx, offset, &output_offset);
2996 // By default we assume that the address is mapped. See comment at the
2997 // end.
2998 if (!found)
2999 return true;
3000 return output_offset != -1;
3001 }
3002
3003 // Fall back to the slow look-up.
3004 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3005 p != this->input_sections_.end();
3006 ++p)
3007 {
3008 section_offset_type output_offset;
3009 if (p->output_offset(object, shndx, offset, &output_offset))
3010 return output_offset != -1;
3011 }
3012
3013 // By default we assume that the address is mapped. This should
3014 // only be called after we have passed all sections to Layout. At
3015 // that point we should know what we are discarding.
3016 return true;
3017 }
3018
3019 // Given an address OFFSET relative to the start of input section
3020 // SHNDX in object OBJECT, return the output offset relative to the
3021 // start of the input section in the output section. This should only
3022 // be called if SHNDX in OBJECT has a special mapping.
3023
3024 section_offset_type
3025 Output_section::output_offset(const Relobj* object, unsigned int shndx,
3026 section_offset_type offset) const
3027 {
3028 // This can only be called meaningfully when we know the data size
3029 // of this.
3030 gold_assert(this->is_data_size_valid());
3031
3032 // Look at the Output_section_data_maps first.
3033 const Output_section_data* posd = this->find_merge_section(object, shndx);
3034 if (posd == NULL)
3035 posd = this->find_relaxed_input_section(object, shndx);
3036 if (posd != NULL)
3037 {
3038 section_offset_type output_offset;
3039 bool found = posd->output_offset(object, shndx, offset, &output_offset);
3040 gold_assert(found);
3041 return output_offset;
3042 }
3043
3044 // Fall back to the slow look-up.
3045 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3046 p != this->input_sections_.end();
3047 ++p)
3048 {
3049 section_offset_type output_offset;
3050 if (p->output_offset(object, shndx, offset, &output_offset))
3051 return output_offset;
3052 }
3053 gold_unreachable();
3054 }
3055
3056 // Return the output virtual address of OFFSET relative to the start
3057 // of input section SHNDX in object OBJECT.
3058
3059 uint64_t
3060 Output_section::output_address(const Relobj* object, unsigned int shndx,
3061 off_t offset) const
3062 {
3063 uint64_t addr = this->address() + this->first_input_offset_;
3064
3065 // Look at the Output_section_data_maps first.
3066 const Output_section_data* posd = this->find_merge_section(object, shndx);
3067 if (posd == NULL)
3068 posd = this->find_relaxed_input_section(object, shndx);
3069 if (posd != NULL && posd->is_address_valid())
3070 {
3071 section_offset_type output_offset;
3072 bool found = posd->output_offset(object, shndx, offset, &output_offset);
3073 gold_assert(found);
3074 return posd->address() + output_offset;
3075 }
3076
3077 // Fall back to the slow look-up.
3078 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3079 p != this->input_sections_.end();
3080 ++p)
3081 {
3082 addr = align_address(addr, p->addralign());
3083 section_offset_type output_offset;
3084 if (p->output_offset(object, shndx, offset, &output_offset))
3085 {
3086 if (output_offset == -1)
3087 return -1ULL;
3088 return addr + output_offset;
3089 }
3090 addr += p->data_size();
3091 }
3092
3093 // If we get here, it means that we don't know the mapping for this
3094 // input section. This might happen in principle if
3095 // add_input_section were called before add_output_section_data.
3096 // But it should never actually happen.
3097
3098 gold_unreachable();
3099 }
3100
3101 // Find the output address of the start of the merged section for
3102 // input section SHNDX in object OBJECT.
3103
3104 bool
3105 Output_section::find_starting_output_address(const Relobj* object,
3106 unsigned int shndx,
3107 uint64_t* paddr) const
3108 {
3109 const Output_section_data* data = this->find_merge_section(object, shndx);
3110 if (data == NULL)
3111 return false;
3112
3113 // FIXME: This becomes a bottle-neck if we have many relaxed sections.
3114 // Looking up the merge section map does not always work as we sometimes
3115 // find a merge section without its address set.
3116 uint64_t addr = this->address() + this->first_input_offset_;
3117 for (Input_section_list::const_iterator p = this->input_sections_.begin();
3118 p != this->input_sections_.end();
3119 ++p)
3120 {
3121 addr = align_address(addr, p->addralign());
3122
3123 // It would be nice if we could use the existing output_offset
3124 // method to get the output offset of input offset 0.
3125 // Unfortunately we don't know for sure that input offset 0 is
3126 // mapped at all.
3127 if (!p->is_input_section() && p->output_section_data() == data)
3128 {
3129 *paddr = addr;
3130 return true;
3131 }
3132
3133 addr += p->data_size();
3134 }
3135
3136 // We couldn't find a merge output section for this input section.
3137 return false;
3138 }
3139
3140 // Update the data size of an Output_section.
3141
3142 void
3143 Output_section::update_data_size()
3144 {
3145 if (this->input_sections_.empty())
3146 return;
3147
3148 if (this->must_sort_attached_input_sections()
3149 || this->input_section_order_specified())
3150 this->sort_attached_input_sections();
3151
3152 off_t off = this->first_input_offset_;
3153 for (Input_section_list::iterator p = this->input_sections_.begin();
3154 p != this->input_sections_.end();
3155 ++p)
3156 {
3157 off = align_address(off, p->addralign());
3158 off += p->current_data_size();
3159 }
3160
3161 this->set_current_data_size_for_child(off);
3162 }
3163
3164 // Set the data size of an Output_section. This is where we handle
3165 // setting the addresses of any Output_section_data objects.
3166
3167 void
3168 Output_section::set_final_data_size()
3169 {
3170 off_t data_size;
3171
3172 if (this->input_sections_.empty())
3173 data_size = this->current_data_size_for_child();
3174 else
3175 {
3176 if (this->must_sort_attached_input_sections()
3177 || this->input_section_order_specified())
3178 this->sort_attached_input_sections();
3179
3180 uint64_t address = this->address();
3181 off_t startoff = this->offset();
3182 off_t off = this->first_input_offset_;
3183 for (Input_section_list::iterator p = this->input_sections_.begin();
3184 p != this->input_sections_.end();
3185 ++p)
3186 {
3187 off = align_address(off, p->addralign());
3188 p->set_address_and_file_offset(address + off, startoff + off,
3189 startoff);
3190 off += p->data_size();
3191 }
3192 data_size = off;
3193 }
3194
3195 // For full incremental links, we want to allocate some patch space
3196 // in most sections for subsequent incremental updates.
3197 if (this->is_patch_space_allowed_ && parameters->incremental_full())
3198 {
3199 double pct = parameters->options().incremental_patch();
3200 size_t extra = static_cast<size_t>(data_size * pct);
3201 if (this->free_space_fill_ != NULL
3202 && this->free_space_fill_->minimum_hole_size() > extra)
3203 extra = this->free_space_fill_->minimum_hole_size();
3204 off_t new_size = align_address(data_size + extra, this->addralign());
3205 this->patch_space_ = new_size - data_size;
3206 gold_debug(DEBUG_INCREMENTAL,
3207 "set_final_data_size: %08lx + %08lx: section %s",
3208 static_cast<long>(data_size),
3209 static_cast<long>(this->patch_space_),
3210 this->name());
3211 data_size = new_size;
3212 }
3213
3214 this->set_data_size(data_size);
3215 }
3216
3217 // Reset the address and file offset.
3218
3219 void
3220 Output_section::do_reset_address_and_file_offset()
3221 {
3222 // An unallocated section has no address. Forcing this means that
3223 // we don't need special treatment for symbols defined in debug
3224 // sections. We do the same in the constructor. This does not
3225 // apply to NOLOAD sections though.
3226 if (((this->flags_ & elfcpp::SHF_ALLOC) == 0) && !this->is_noload_)
3227 this->set_address(0);
3228
3229 for (Input_section_list::iterator p = this->input_sections_.begin();
3230 p != this->input_sections_.end();
3231 ++p)
3232 p->reset_address_and_file_offset();
3233
3234 // Remove any patch space that was added in set_final_data_size.
3235 if (this->patch_space_ > 0)
3236 {
3237 this->set_current_data_size_for_child(this->current_data_size_for_child()
3238 - this->patch_space_);
3239 this->patch_space_ = 0;
3240 }
3241 }
3242
3243 // Return true if address and file offset have the values after reset.
3244
3245 bool
3246 Output_section::do_address_and_file_offset_have_reset_values() const
3247 {
3248 if (this->is_offset_valid())
3249 return false;
3250
3251 // An unallocated section has address 0 after its construction or a reset.
3252 if ((this->flags_ & elfcpp::SHF_ALLOC) == 0)
3253 return this->is_address_valid() && this->address() == 0;
3254 else
3255 return !this->is_address_valid();
3256 }
3257
3258 // Set the TLS offset. Called only for SHT_TLS sections.
3259
3260 void
3261 Output_section::do_set_tls_offset(uint64_t tls_base)
3262 {
3263 this->tls_offset_ = this->address() - tls_base;
3264 }
3265
3266 // In a few cases we need to sort the input sections attached to an
3267 // output section. This is used to implement the type of constructor
3268 // priority ordering implemented by the GNU linker, in which the
3269 // priority becomes part of the section name and the sections are
3270 // sorted by name. We only do this for an output section if we see an
3271 // attached input section matching ".ctors.*", ".dtors.*",
3272 // ".init_array.*" or ".fini_array.*".
3273
3274 class Output_section::Input_section_sort_entry
3275 {
3276 public:
3277 Input_section_sort_entry()
3278 : input_section_(), index_(-1U), section_name_()
3279 { }
3280
3281 Input_section_sort_entry(const Input_section& input_section,
3282 unsigned int index,
3283 bool must_sort_attached_input_sections,
3284 const char* output_section_name)
3285 : input_section_(input_section), index_(index), section_name_()
3286 {
3287 if ((input_section.is_input_section()
3288 || input_section.is_relaxed_input_section())
3289 && must_sort_attached_input_sections)
3290 {
3291 // This is only called single-threaded from Layout::finalize,
3292 // so it is OK to lock. Unfortunately we have no way to pass
3293 // in a Task token.
3294 const Task* dummy_task = reinterpret_cast<const Task*>(-1);
3295 Object* obj = (input_section.is_input_section()
3296 ? input_section.relobj()
3297 : input_section.relaxed_input_section()->relobj());
3298 Task_lock_obj<Object> tl(dummy_task, obj);
3299
3300 // This is a slow operation, which should be cached in
3301 // Layout::layout if this becomes a speed problem.
3302 this->section_name_ = obj->section_name(input_section.shndx());
3303 }
3304 else if (input_section.is_output_section_data()
3305 && must_sort_attached_input_sections)
3306 {
3307 // For linker-generated sections, use the output section name.
3308 this->section_name_.assign(output_section_name);
3309 }
3310 }
3311
3312 // Return the Input_section.
3313 const Input_section&
3314 input_section() const
3315 {
3316 gold_assert(this->index_ != -1U);
3317 return this->input_section_;
3318 }
3319
3320 // The index of this entry in the original list. This is used to
3321 // make the sort stable.
3322 unsigned int
3323 index() const
3324 {
3325 gold_assert(this->index_ != -1U);
3326 return this->index_;
3327 }
3328
3329 // The section name.
3330 const std::string&
3331 section_name() const
3332 {
3333 return this->section_name_;
3334 }
3335
3336 // Return true if the section name has a priority. This is assumed
3337 // to be true if it has a dot after the initial dot.
3338 bool
3339 has_priority() const
3340 {
3341 return this->section_name_.find('.', 1) != std::string::npos;
3342 }
3343
3344 // Return the priority. Believe it or not, gcc encodes the priority
3345 // differently for .ctors/.dtors and .init_array/.fini_array
3346 // sections.
3347 unsigned int
3348 get_priority() const
3349 {
3350 bool is_ctors;
3351 if (is_prefix_of(".ctors.", this->section_name_.c_str())
3352 || is_prefix_of(".dtors.", this->section_name_.c_str()))
3353 is_ctors = true;
3354 else if (is_prefix_of(".init_array.", this->section_name_.c_str())
3355 || is_prefix_of(".fini_array.", this->section_name_.c_str()))
3356 is_ctors = false;
3357 else
3358 return 0;
3359 char* end;
3360 unsigned long prio = strtoul((this->section_name_.c_str()
3361 + (is_ctors ? 7 : 12)),
3362 &end, 10);
3363 if (*end != '\0')
3364 return 0;
3365 else if (is_ctors)
3366 return 65535 - prio;
3367 else
3368 return prio;
3369 }
3370
3371 // Return true if this an input file whose base name matches
3372 // FILE_NAME. The base name must have an extension of ".o", and
3373 // must be exactly FILE_NAME.o or FILE_NAME, one character, ".o".
3374 // This is to match crtbegin.o as well as crtbeginS.o without
3375 // getting confused by other possibilities. Overall matching the
3376 // file name this way is a dreadful hack, but the GNU linker does it
3377 // in order to better support gcc, and we need to be compatible.
3378 bool
3379 match_file_name(const char* file_name) const
3380 {
3381 if (this->input_section_.is_output_section_data())
3382 return false;
3383 return Layout::match_file_name(this->input_section_.relobj(), file_name);
3384 }
3385
3386 // Returns 1 if THIS should appear before S in section order, -1 if S
3387 // appears before THIS and 0 if they are not comparable.
3388 int
3389 compare_section_ordering(const Input_section_sort_entry& s) const
3390 {
3391 unsigned int this_secn_index = this->input_section_.section_order_index();
3392 unsigned int s_secn_index = s.input_section().section_order_index();
3393 if (this_secn_index > 0 && s_secn_index > 0)
3394 {
3395 if (this_secn_index < s_secn_index)
3396 return 1;
3397 else if (this_secn_index > s_secn_index)
3398 return -1;
3399 }
3400 return 0;
3401 }
3402
3403 private:
3404 // The Input_section we are sorting.
3405 Input_section input_section_;
3406 // The index of this Input_section in the original list.
3407 unsigned int index_;
3408 // The section name if there is one.
3409 std::string section_name_;
3410 };
3411
3412 // Return true if S1 should come before S2 in the output section.
3413
3414 bool
3415 Output_section::Input_section_sort_compare::operator()(
3416 const Output_section::Input_section_sort_entry& s1,
3417 const Output_section::Input_section_sort_entry& s2) const
3418 {
3419 // crtbegin.o must come first.
3420 bool s1_begin = s1.match_file_name("crtbegin");
3421 bool s2_begin = s2.match_file_name("crtbegin");
3422 if (s1_begin || s2_begin)
3423 {
3424 if (!s1_begin)
3425 return false;
3426 if (!s2_begin)
3427 return true;
3428 return s1.index() < s2.index();
3429 }
3430
3431 // crtend.o must come last.
3432 bool s1_end = s1.match_file_name("crtend");
3433 bool s2_end = s2.match_file_name("crtend");
3434 if (s1_end || s2_end)
3435 {
3436 if (!s1_end)
3437 return true;
3438 if (!s2_end)
3439 return false;
3440 return s1.index() < s2.index();
3441 }
3442
3443 // A section with a priority follows a section without a priority.
3444 bool s1_has_priority = s1.has_priority();
3445 bool s2_has_priority = s2.has_priority();
3446 if (s1_has_priority && !s2_has_priority)
3447 return false;
3448 if (!s1_has_priority && s2_has_priority)
3449 return true;
3450
3451 // Check if a section order exists for these sections through a section
3452 // ordering file. If sequence_num is 0, an order does not exist.
3453 int sequence_num = s1.compare_section_ordering(s2);
3454 if (sequence_num != 0)
3455 return sequence_num == 1;
3456
3457 // Otherwise we sort by name.
3458 int compare = s1.section_name().compare(s2.section_name());
3459 if (compare != 0)
3460 return compare < 0;
3461
3462 // Otherwise we keep the input order.
3463 return s1.index() < s2.index();
3464 }
3465
3466 // Return true if S1 should come before S2 in an .init_array or .fini_array
3467 // output section.
3468
3469 bool
3470 Output_section::Input_section_sort_init_fini_compare::operator()(
3471 const Output_section::Input_section_sort_entry& s1,
3472 const Output_section::Input_section_sort_entry& s2) const
3473 {
3474 // A section without a priority follows a section with a priority.
3475 // This is the reverse of .ctors and .dtors sections.
3476 bool s1_has_priority = s1.has_priority();
3477 bool s2_has_priority = s2.has_priority();
3478 if (s1_has_priority && !s2_has_priority)
3479 return true;
3480 if (!s1_has_priority && s2_has_priority)
3481 return false;
3482
3483 // .ctors and .dtors sections without priority come after
3484 // .init_array and .fini_array sections without priority.
3485 if (!s1_has_priority
3486 && (s1.section_name() == ".ctors" || s1.section_name() == ".dtors")
3487 && s1.section_name() != s2.section_name())
3488 return false;
3489 if (!s2_has_priority
3490 && (s2.section_name() == ".ctors" || s2.section_name() == ".dtors")
3491 && s2.section_name() != s1.section_name())
3492 return true;
3493
3494 // Sort by priority if we can.
3495 if (s1_has_priority)
3496 {
3497 unsigned int s1_prio = s1.get_priority();
3498 unsigned int s2_prio = s2.get_priority();
3499 if (s1_prio < s2_prio)
3500 return true;
3501 else if (s1_prio > s2_prio)
3502 return false;
3503 }
3504
3505 // Check if a section order exists for these sections through a section
3506 // ordering file. If sequence_num is 0, an order does not exist.
3507 int sequence_num = s1.compare_section_ordering(s2);
3508 if (sequence_num != 0)
3509 return sequence_num == 1;
3510
3511 // Otherwise we sort by name.
3512 int compare = s1.section_name().compare(s2.section_name());
3513 if (compare != 0)
3514 return compare < 0;
3515
3516 // Otherwise we keep the input order.
3517 return s1.index() < s2.index();
3518 }
3519
3520 // Return true if S1 should come before S2. Sections that do not match
3521 // any pattern in the section ordering file are placed ahead of the sections
3522 // that match some pattern.
3523
3524 bool
3525 Output_section::Input_section_sort_section_order_index_compare::operator()(
3526 const Output_section::Input_section_sort_entry& s1,
3527 const Output_section::Input_section_sort_entry& s2) const
3528 {
3529 unsigned int s1_secn_index = s1.input_section().section_order_index();
3530 unsigned int s2_secn_index = s2.input_section().section_order_index();
3531
3532 // Keep input order if section ordering cannot determine order.
3533 if (s1_secn_index == s2_secn_index)
3534 return s1.index() < s2.index();
3535
3536 return s1_secn_index < s2_secn_index;
3537 }
3538
3539 // Return true if S1 should come before S2. This is the sort comparison
3540 // function for .text to sort sections with prefixes
3541 // .text.{unlikely,exit,startup,hot} before other sections.
3542
3543 bool
3544 Output_section::Input_section_sort_section_prefix_special_ordering_compare
3545 ::operator()(
3546 const Output_section::Input_section_sort_entry& s1,
3547 const Output_section::Input_section_sort_entry& s2) const
3548 {
3549 // Some input section names have special ordering requirements.
3550 const char *s1_section_name = s1.section_name().c_str();
3551 const char *s2_section_name = s2.section_name().c_str();
3552 int o1 = Layout::special_ordering_of_input_section(s1_section_name);
3553 int o2 = Layout::special_ordering_of_input_section(s2_section_name);
3554 if (o1 != o2)
3555 {
3556 if (o1 < 0)
3557 return false;
3558 else if (o2 < 0)
3559 return true;
3560 else
3561 return o1 < o2;
3562 }
3563 else if (is_prefix_of(".text.sorted", s1_section_name))
3564 return strcmp(s1_section_name, s2_section_name) <= 0;
3565
3566 // Keep input order otherwise.
3567 return s1.index() < s2.index();
3568 }
3569
3570 // Return true if S1 should come before S2. This is the sort comparison
3571 // function for sections to sort them by name.
3572
3573 bool
3574 Output_section::Input_section_sort_section_name_compare
3575 ::operator()(
3576 const Output_section::Input_section_sort_entry& s1,
3577 const Output_section::Input_section_sort_entry& s2) const
3578 {
3579 // We sort by name.
3580 int compare = s1.section_name().compare(s2.section_name());
3581 if (compare != 0)
3582 return compare < 0;
3583
3584 // Keep input order otherwise.
3585 return s1.index() < s2.index();
3586 }
3587
3588 // This updates the section order index of input sections according to the
3589 // the order specified in the mapping from Section id to order index.
3590
3591 void
3592 Output_section::update_section_layout(
3593 const Section_layout_order* order_map)
3594 {
3595 for (Input_section_list::iterator p = this->input_sections_.begin();
3596 p != this->input_sections_.end();
3597 ++p)
3598 {
3599 if (p->is_input_section()
3600 || p->is_relaxed_input_section())
3601 {
3602 Relobj* obj = (p->is_input_section()
3603 ? p->relobj()
3604 : p->relaxed_input_section()->relobj());
3605 unsigned int shndx = p->shndx();
3606 Section_layout_order::const_iterator it
3607 = order_map->find(Section_id(obj, shndx));
3608 if (it == order_map->end())
3609 continue;
3610 unsigned int section_order_index = it->second;
3611 if (section_order_index != 0)
3612 {
3613 p->set_section_order_index(section_order_index);
3614 this->set_input_section_order_specified();
3615 }
3616 }
3617 }
3618 }
3619
3620 // Sort the input sections attached to an output section.
3621
3622 void
3623 Output_section::sort_attached_input_sections()
3624 {
3625 if (this->attached_input_sections_are_sorted_)
3626 return;
3627
3628 if (this->checkpoint_ != NULL
3629 && !this->checkpoint_->input_sections_saved())
3630 this->checkpoint_->save_input_sections();
3631
3632 // The only thing we know about an input section is the object and
3633 // the section index. We need the section name. Recomputing this
3634 // is slow but this is an unusual case. If this becomes a speed
3635 // problem we can cache the names as required in Layout::layout.
3636
3637 // We start by building a larger vector holding a copy of each
3638 // Input_section, plus its current index in the list and its name.
3639 std::vector<Input_section_sort_entry> sort_list;
3640
3641 unsigned int i = 0;
3642 for (Input_section_list::iterator p = this->input_sections_.begin();
3643 p != this->input_sections_.end();
3644 ++p, ++i)
3645 sort_list.push_back(Input_section_sort_entry(*p, i,
3646 this->must_sort_attached_input_sections(),
3647 this->name()));
3648
3649 // Sort the input sections.
3650 if (this->must_sort_attached_input_sections())
3651 {
3652 if (this->type() == elfcpp::SHT_PREINIT_ARRAY
3653 || this->type() == elfcpp::SHT_INIT_ARRAY
3654 || this->type() == elfcpp::SHT_FINI_ARRAY)
3655 std::sort(sort_list.begin(), sort_list.end(),
3656 Input_section_sort_init_fini_compare());
3657 else if (strcmp(parameters->options().sort_section(), "name") == 0)
3658 std::sort(sort_list.begin(), sort_list.end(),
3659 Input_section_sort_section_name_compare());
3660 else if (strcmp(this->name(), ".text") == 0)
3661 std::sort(sort_list.begin(), sort_list.end(),
3662 Input_section_sort_section_prefix_special_ordering_compare());
3663 else
3664 std::sort(sort_list.begin(), sort_list.end(),
3665 Input_section_sort_compare());
3666 }
3667 else
3668 {
3669 gold_assert(this->input_section_order_specified());
3670 std::sort(sort_list.begin(), sort_list.end(),
3671 Input_section_sort_section_order_index_compare());
3672 }
3673
3674 // Copy the sorted input sections back to our list.
3675 this->input_sections_.clear();
3676 for (std::vector<Input_section_sort_entry>::iterator p = sort_list.begin();
3677 p != sort_list.end();
3678 ++p)
3679 this->input_sections_.push_back(p->input_section());
3680 sort_list.clear();
3681
3682 // Remember that we sorted the input sections, since we might get
3683 // called again.
3684 this->attached_input_sections_are_sorted_ = true;
3685 }
3686
3687 // Write the section header to *OSHDR.
3688
3689 template<int size, bool big_endian>
3690 void
3691 Output_section::write_header(const Layout* layout,
3692 const Stringpool* secnamepool,
3693 elfcpp::Shdr_write<size, big_endian>* oshdr) const
3694 {
3695 oshdr->put_sh_name(secnamepool->get_offset(this->name_));
3696 oshdr->put_sh_type(this->type_);
3697
3698 elfcpp::Elf_Xword flags = this->flags_;
3699 if (this->info_section_ != NULL && this->info_uses_section_index_)
3700 flags |= elfcpp::SHF_INFO_LINK;
3701 oshdr->put_sh_flags(flags);
3702
3703 oshdr->put_sh_addr(this->address());
3704 oshdr->put_sh_offset(this->offset());
3705 oshdr->put_sh_size(this->data_size());
3706 if (this->link_section_ != NULL)
3707 oshdr->put_sh_link(this->link_section_->out_shndx());
3708 else if (this->should_link_to_symtab_)
3709 oshdr->put_sh_link(layout->symtab_section_shndx());
3710 else if (this->should_link_to_dynsym_)
3711 oshdr->put_sh_link(layout->dynsym_section()->out_shndx());
3712 else
3713 oshdr->put_sh_link(this->link_);
3714
3715 elfcpp::Elf_Word info;
3716 if (this->info_section_ != NULL)
3717 {
3718 if (this->info_uses_section_index_)
3719 info = this->info_section_->out_shndx();
3720 else
3721 info = this->info_section_->symtab_index();
3722 }
3723 else if (this->info_symndx_ != NULL)
3724 info = this->info_symndx_->symtab_index();
3725 else
3726 info = this->info_;
3727 oshdr->put_sh_info(info);
3728
3729 oshdr->put_sh_addralign(this->addralign_);
3730 oshdr->put_sh_entsize(this->entsize_);
3731 }
3732
3733 // Write out the data. For input sections the data is written out by
3734 // Object::relocate, but we have to handle Output_section_data objects
3735 // here.
3736
3737 void
3738 Output_section::do_write(Output_file* of)
3739 {
3740 gold_assert(!this->requires_postprocessing());
3741
3742 // If the target performs relaxation, we delay filler generation until now.
3743 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3744
3745 off_t output_section_file_offset = this->offset();
3746 for (Fill_list::iterator p = this->fills_.begin();
3747 p != this->fills_.end();
3748 ++p)
3749 {
3750 std::string fill_data(parameters->target().code_fill(p->length()));
3751 of->write(output_section_file_offset + p->section_offset(),
3752 fill_data.data(), fill_data.size());
3753 }
3754
3755 off_t off = this->offset() + this->first_input_offset_;
3756 for (Input_section_list::iterator p = this->input_sections_.begin();
3757 p != this->input_sections_.end();
3758 ++p)
3759 {
3760 off_t aligned_off = align_address(off, p->addralign());
3761 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3762 {
3763 size_t fill_len = aligned_off - off;
3764 std::string fill_data(parameters->target().code_fill(fill_len));
3765 of->write(off, fill_data.data(), fill_data.size());
3766 }
3767
3768 p->write(of);
3769 off = aligned_off + p->data_size();
3770 }
3771
3772 // For incremental links, fill in unused chunks in debug sections
3773 // with dummy compilation unit headers.
3774 if (this->free_space_fill_ != NULL)
3775 {
3776 for (Free_list::Const_iterator p = this->free_list_.begin();
3777 p != this->free_list_.end();
3778 ++p)
3779 {
3780 off_t off = p->start_;
3781 size_t len = p->end_ - off;
3782 this->free_space_fill_->write(of, this->offset() + off, len);
3783 }
3784 if (this->patch_space_ > 0)
3785 {
3786 off_t off = this->current_data_size_for_child() - this->patch_space_;
3787 this->free_space_fill_->write(of, this->offset() + off,
3788 this->patch_space_);
3789 }
3790 }
3791 }
3792
3793 // If a section requires postprocessing, create the buffer to use.
3794
3795 void
3796 Output_section::create_postprocessing_buffer()
3797 {
3798 gold_assert(this->requires_postprocessing());
3799
3800 if (this->postprocessing_buffer_ != NULL)
3801 return;
3802
3803 if (!this->input_sections_.empty())
3804 {
3805 off_t off = this->first_input_offset_;
3806 for (Input_section_list::iterator p = this->input_sections_.begin();
3807 p != this->input_sections_.end();
3808 ++p)
3809 {
3810 off = align_address(off, p->addralign());
3811 p->finalize_data_size();
3812 off += p->data_size();
3813 }
3814 this->set_current_data_size_for_child(off);
3815 }
3816
3817 off_t buffer_size = this->current_data_size_for_child();
3818 this->postprocessing_buffer_ = new unsigned char[buffer_size];
3819 }
3820
3821 // Write all the data of an Output_section into the postprocessing
3822 // buffer. This is used for sections which require postprocessing,
3823 // such as compression. Input sections are handled by
3824 // Object::Relocate.
3825
3826 void
3827 Output_section::write_to_postprocessing_buffer()
3828 {
3829 gold_assert(this->requires_postprocessing());
3830
3831 // If the target performs relaxation, we delay filler generation until now.
3832 gold_assert(!this->generate_code_fills_at_write_ || this->fills_.empty());
3833
3834 unsigned char* buffer = this->postprocessing_buffer();
3835 for (Fill_list::iterator p = this->fills_.begin();
3836 p != this->fills_.end();
3837 ++p)
3838 {
3839 std::string fill_data(parameters->target().code_fill(p->length()));
3840 memcpy(buffer + p->section_offset(), fill_data.data(),
3841 fill_data.size());
3842 }
3843
3844 off_t off = this->first_input_offset_;
3845 for (Input_section_list::iterator p = this->input_sections_.begin();
3846 p != this->input_sections_.end();
3847 ++p)
3848 {
3849 off_t aligned_off = align_address(off, p->addralign());
3850 if (this->generate_code_fills_at_write_ && (off != aligned_off))
3851 {
3852 size_t fill_len = aligned_off - off;
3853 std::string fill_data(parameters->target().code_fill(fill_len));
3854 memcpy(buffer + off, fill_data.data(), fill_data.size());
3855 }
3856
3857 p->write_to_buffer(buffer + aligned_off);
3858 off = aligned_off + p->data_size();
3859 }
3860 }
3861
3862 // Get the input sections for linker script processing. We leave
3863 // behind the Output_section_data entries. Note that this may be
3864 // slightly incorrect for merge sections. We will leave them behind,
3865 // but it is possible that the script says that they should follow
3866 // some other input sections, as in:
3867 // .rodata { *(.rodata) *(.rodata.cst*) }
3868 // For that matter, we don't handle this correctly:
3869 // .rodata { foo.o(.rodata.cst*) *(.rodata.cst*) }
3870 // With luck this will never matter.
3871
3872 uint64_t
3873 Output_section::get_input_sections(
3874 uint64_t address,
3875 const std::string& fill,
3876 std::list<Input_section>* input_sections)
3877 {
3878 if (this->checkpoint_ != NULL
3879 && !this->checkpoint_->input_sections_saved())
3880 this->checkpoint_->save_input_sections();
3881
3882 // Invalidate fast look-up maps.
3883 this->lookup_maps_->invalidate();
3884
3885 uint64_t orig_address = address;
3886
3887 address = align_address(address, this->addralign());
3888
3889 Input_section_list remaining;
3890 for (Input_section_list::iterator p = this->input_sections_.begin();
3891 p != this->input_sections_.end();
3892 ++p)
3893 {
3894 if (p->is_input_section()
3895 || p->is_relaxed_input_section()
3896 || p->is_merge_section())
3897 input_sections->push_back(*p);
3898 else
3899 {
3900 uint64_t aligned_address = align_address(address, p->addralign());
3901 if (aligned_address != address && !fill.empty())
3902 {
3903 section_size_type length =
3904 convert_to_section_size_type(aligned_address - address);
3905 std::string this_fill;
3906 this_fill.reserve(length);
3907 while (this_fill.length() + fill.length() <= length)
3908 this_fill += fill;
3909 if (this_fill.length() < length)
3910 this_fill.append(fill, 0, length - this_fill.length());
3911
3912 Output_section_data* posd = new Output_data_const(this_fill, 0);
3913 remaining.push_back(Input_section(posd));
3914 }
3915 address = aligned_address;
3916
3917 remaining.push_back(*p);
3918
3919 p->finalize_data_size();
3920 address += p->data_size();
3921 }
3922 }
3923
3924 this->input_sections_.swap(remaining);
3925 this->first_input_offset_ = 0;
3926
3927 uint64_t data_size = address - orig_address;
3928 this->set_current_data_size_for_child(data_size);
3929 return data_size;
3930 }
3931
3932 // Add a script input section. SIS is an Output_section::Input_section,
3933 // which can be either a plain input section or a special input section like
3934 // a relaxed input section. For a special input section, its size must be
3935 // finalized.
3936
3937 void
3938 Output_section::add_script_input_section(const Input_section& sis)
3939 {
3940 uint64_t data_size = sis.data_size();
3941 uint64_t addralign = sis.addralign();
3942 if (addralign > this->addralign_)
3943 this->addralign_ = addralign;
3944
3945 off_t offset_in_section = this->current_data_size_for_child();
3946 off_t aligned_offset_in_section = align_address(offset_in_section,
3947 addralign);
3948
3949 this->set_current_data_size_for_child(aligned_offset_in_section
3950 + data_size);
3951
3952 this->input_sections_.push_back(sis);
3953
3954 // Update fast lookup maps if necessary.
3955 if (this->lookup_maps_->is_valid())
3956 {
3957 if (sis.is_relaxed_input_section())
3958 {
3959 Output_relaxed_input_section* poris = sis.relaxed_input_section();
3960 this->lookup_maps_->add_relaxed_input_section(poris->relobj(),
3961 poris->shndx(), poris);
3962 }
3963 }
3964 }
3965
3966 // Save states for relaxation.
3967
3968 void
3969 Output_section::save_states()
3970 {
3971 gold_assert(this->checkpoint_ == NULL);
3972 Checkpoint_output_section* checkpoint =
3973 new Checkpoint_output_section(this->addralign_, this->flags_,
3974 this->input_sections_,
3975 this->first_input_offset_,
3976 this->attached_input_sections_are_sorted_);
3977 this->checkpoint_ = checkpoint;
3978 gold_assert(this->fills_.empty());
3979 }
3980
3981 void
3982 Output_section::discard_states()
3983 {
3984 gold_assert(this->checkpoint_ != NULL);
3985 delete this->checkpoint_;
3986 this->checkpoint_ = NULL;
3987 gold_assert(this->fills_.empty());
3988
3989 // Simply invalidate the fast lookup maps since we do not keep
3990 // track of them.
3991 this->lookup_maps_->invalidate();
3992 }
3993
3994 void
3995 Output_section::restore_states()
3996 {
3997 gold_assert(this->checkpoint_ != NULL);
3998 Checkpoint_output_section* checkpoint = this->checkpoint_;
3999
4000 this->addralign_ = checkpoint->addralign();
4001 this->flags_ = checkpoint->flags();
4002 this->first_input_offset_ = checkpoint->first_input_offset();
4003
4004 if (!checkpoint->input_sections_saved())
4005 {
4006 // If we have not copied the input sections, just resize it.
4007 size_t old_size = checkpoint->input_sections_size();
4008 gold_assert(this->input_sections_.size() >= old_size);
4009 this->input_sections_.resize(old_size);
4010 }
4011 else
4012 {
4013 // We need to copy the whole list. This is not efficient for
4014 // extremely large output with hundreads of thousands of input
4015 // objects. We may need to re-think how we should pass sections
4016 // to scripts.
4017 this->input_sections_ = *checkpoint->input_sections();
4018 }
4019
4020 this->attached_input_sections_are_sorted_ =
4021 checkpoint->attached_input_sections_are_sorted();
4022
4023 // Simply invalidate the fast lookup maps since we do not keep
4024 // track of them.
4025 this->lookup_maps_->invalidate();
4026 }
4027
4028 // Update the section offsets of input sections in this. This is required if
4029 // relaxation causes some input sections to change sizes.
4030
4031 void
4032 Output_section::adjust_section_offsets()
4033 {
4034 if (!this->section_offsets_need_adjustment_)
4035 return;
4036
4037 off_t off = 0;
4038 for (Input_section_list::iterator p = this->input_sections_.begin();
4039 p != this->input_sections_.end();
4040 ++p)
4041 {
4042 off = align_address(off, p->addralign());
4043 if (p->is_input_section())
4044 p->relobj()->set_section_offset(p->shndx(), off);
4045 off += p->data_size();
4046 }
4047
4048 this->section_offsets_need_adjustment_ = false;
4049 }
4050
4051 // Print to the map file.
4052
4053 void
4054 Output_section::do_print_to_mapfile(Mapfile* mapfile) const
4055 {
4056 mapfile->print_output_section(this);
4057
4058 for (Input_section_list::const_iterator p = this->input_sections_.begin();
4059 p != this->input_sections_.end();
4060 ++p)
4061 p->print_to_mapfile(mapfile);
4062 }
4063
4064 // Print stats for merge sections to stderr.
4065
4066 void
4067 Output_section::print_merge_stats()
4068 {
4069 Input_section_list::iterator p;
4070 for (p = this->input_sections_.begin();
4071 p != this->input_sections_.end();
4072 ++p)
4073 p->print_merge_stats(this->name_);
4074 }
4075
4076 // Set a fixed layout for the section. Used for incremental update links.
4077
4078 void
4079 Output_section::set_fixed_layout(uint64_t sh_addr, off_t sh_offset,
4080 off_t sh_size, uint64_t sh_addralign)
4081 {
4082 this->addralign_ = sh_addralign;
4083 this->set_current_data_size(sh_size);
4084 if ((this->flags_ & elfcpp::SHF_ALLOC) != 0)
4085 this->set_address(sh_addr);
4086 this->set_file_offset(sh_offset);
4087 this->finalize_data_size();
4088 this->free_list_.init(sh_size, false);
4089 this->has_fixed_layout_ = true;
4090 }
4091
4092 // Reserve space within the fixed layout for the section. Used for
4093 // incremental update links.
4094
4095 void
4096 Output_section::reserve(uint64_t sh_offset, uint64_t sh_size)
4097 {
4098 this->free_list_.remove(sh_offset, sh_offset + sh_size);
4099 }
4100
4101 // Allocate space from the free list for the section. Used for
4102 // incremental update links.
4103
4104 off_t
4105 Output_section::allocate(off_t len, uint64_t addralign)
4106 {
4107 return this->free_list_.allocate(len, addralign, 0);
4108 }
4109
4110 // Output segment methods.
4111
4112 Output_segment::Output_segment(elfcpp::Elf_Word type, elfcpp::Elf_Word flags)
4113 : vaddr_(0),
4114 paddr_(0),
4115 memsz_(0),
4116 max_align_(0),
4117 min_p_align_(0),
4118 offset_(0),
4119 filesz_(0),
4120 type_(type),
4121 flags_(flags),
4122 is_max_align_known_(false),
4123 are_addresses_set_(false),
4124 is_large_data_segment_(false),
4125 is_unique_segment_(false)
4126 {
4127 // The ELF ABI specifies that a PT_TLS segment always has PF_R as
4128 // the flags.
4129 if (type == elfcpp::PT_TLS)
4130 this->flags_ = elfcpp::PF_R;
4131 }
4132
4133 // Add an Output_section to a PT_LOAD Output_segment.
4134
4135 void
4136 Output_segment::add_output_section_to_load(Layout* layout,
4137 Output_section* os,
4138 elfcpp::Elf_Word seg_flags)
4139 {
4140 gold_assert(this->type() == elfcpp::PT_LOAD);
4141 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4142 gold_assert(!this->is_max_align_known_);
4143 gold_assert(os->is_large_data_section() == this->is_large_data_segment());
4144
4145 this->update_flags_for_output_section(seg_flags);
4146
4147 // We don't want to change the ordering if we have a linker script
4148 // with a SECTIONS clause.
4149 Output_section_order order = os->order();
4150 if (layout->script_options()->saw_sections_clause())
4151 order = static_cast<Output_section_order>(0);
4152 else
4153 gold_assert(order != ORDER_INVALID);
4154
4155 this->output_lists_[order].push_back(os);
4156 }
4157
4158 // Add an Output_section to a non-PT_LOAD Output_segment.
4159
4160 void
4161 Output_segment::add_output_section_to_nonload(Output_section* os,
4162 elfcpp::Elf_Word seg_flags)
4163 {
4164 gold_assert(this->type() != elfcpp::PT_LOAD);
4165 gold_assert((os->flags() & elfcpp::SHF_ALLOC) != 0);
4166 gold_assert(!this->is_max_align_known_);
4167
4168 this->update_flags_for_output_section(seg_flags);
4169
4170 this->output_lists_[0].push_back(os);
4171 }
4172
4173 // Remove an Output_section from this segment. It is an error if it
4174 // is not present.
4175
4176 void
4177 Output_segment::remove_output_section(Output_section* os)
4178 {
4179 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4180 {
4181 Output_data_list* pdl = &this->output_lists_[i];
4182 for (Output_data_list::iterator p = pdl->begin(); p != pdl->end(); ++p)
4183 {
4184 if (*p == os)
4185 {
4186 pdl->erase(p);
4187 return;
4188 }
4189 }
4190 }
4191 gold_unreachable();
4192 }
4193
4194 // Add an Output_data (which need not be an Output_section) to the
4195 // start of a segment.
4196
4197 void
4198 Output_segment::add_initial_output_data(Output_data* od)
4199 {
4200 gold_assert(!this->is_max_align_known_);
4201 Output_data_list::iterator p = this->output_lists_[0].begin();
4202 this->output_lists_[0].insert(p, od);
4203 }
4204
4205 // Return true if this segment has any sections which hold actual
4206 // data, rather than being a BSS section.
4207
4208 bool
4209 Output_segment::has_any_data_sections() const
4210 {
4211 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4212 {
4213 const Output_data_list* pdl = &this->output_lists_[i];
4214 for (Output_data_list::const_iterator p = pdl->begin();
4215 p != pdl->end();
4216 ++p)
4217 {
4218 if (!(*p)->is_section())
4219 return true;
4220 if ((*p)->output_section()->type() != elfcpp::SHT_NOBITS)
4221 return true;
4222 }
4223 }
4224 return false;
4225 }
4226
4227 // Return whether the first data section (not counting TLS sections)
4228 // is a relro section.
4229
4230 bool
4231 Output_segment::is_first_section_relro() const
4232 {
4233 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4234 {
4235 if (i == static_cast<int>(ORDER_TLS_BSS))
4236 continue;
4237 const Output_data_list* pdl = &this->output_lists_[i];
4238 if (!pdl->empty())
4239 {
4240 Output_data* p = pdl->front();
4241 return p->is_section() && p->output_section()->is_relro();
4242 }
4243 }
4244 return false;
4245 }
4246
4247 // Return the maximum alignment of the Output_data in Output_segment.
4248
4249 uint64_t
4250 Output_segment::maximum_alignment()
4251 {
4252 if (!this->is_max_align_known_)
4253 {
4254 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4255 {
4256 const Output_data_list* pdl = &this->output_lists_[i];
4257 uint64_t addralign = Output_segment::maximum_alignment_list(pdl);
4258 if (addralign > this->max_align_)
4259 this->max_align_ = addralign;
4260 }
4261 this->is_max_align_known_ = true;
4262 }
4263
4264 return this->max_align_;
4265 }
4266
4267 // Return the maximum alignment of a list of Output_data.
4268
4269 uint64_t
4270 Output_segment::maximum_alignment_list(const Output_data_list* pdl)
4271 {
4272 uint64_t ret = 0;
4273 for (Output_data_list::const_iterator p = pdl->begin();
4274 p != pdl->end();
4275 ++p)
4276 {
4277 uint64_t addralign = (*p)->addralign();
4278 if (addralign > ret)
4279 ret = addralign;
4280 }
4281 return ret;
4282 }
4283
4284 // Return whether this segment has any dynamic relocs.
4285
4286 bool
4287 Output_segment::has_dynamic_reloc() const
4288 {
4289 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4290 if (this->has_dynamic_reloc_list(&this->output_lists_[i]))
4291 return true;
4292 return false;
4293 }
4294
4295 // Return whether this Output_data_list has any dynamic relocs.
4296
4297 bool
4298 Output_segment::has_dynamic_reloc_list(const Output_data_list* pdl) const
4299 {
4300 for (Output_data_list::const_iterator p = pdl->begin();
4301 p != pdl->end();
4302 ++p)
4303 if ((*p)->has_dynamic_reloc())
4304 return true;
4305 return false;
4306 }
4307
4308 // Set the section addresses for an Output_segment. If RESET is true,
4309 // reset the addresses first. ADDR is the address and *POFF is the
4310 // file offset. Set the section indexes starting with *PSHNDX.
4311 // INCREASE_RELRO is the size of the portion of the first non-relro
4312 // section that should be included in the PT_GNU_RELRO segment.
4313 // If this segment has relro sections, and has been aligned for
4314 // that purpose, set *HAS_RELRO to TRUE. Return the address of
4315 // the immediately following segment. Update *HAS_RELRO, *POFF,
4316 // and *PSHNDX.
4317
4318 uint64_t
4319 Output_segment::set_section_addresses(const Target* target,
4320 Layout* layout, bool reset,
4321 uint64_t addr,
4322 unsigned int* increase_relro,
4323 bool* has_relro,
4324 off_t* poff,
4325 unsigned int* pshndx)
4326 {
4327 gold_assert(this->type_ == elfcpp::PT_LOAD);
4328
4329 uint64_t last_relro_pad = 0;
4330 off_t orig_off = *poff;
4331
4332 bool in_tls = false;
4333
4334 // If we have relro sections, we need to pad forward now so that the
4335 // relro sections plus INCREASE_RELRO end on an abi page boundary.
4336 if (parameters->options().relro()
4337 && this->is_first_section_relro()
4338 && (!this->are_addresses_set_ || reset))
4339 {
4340 uint64_t relro_size = 0;
4341 off_t off = *poff;
4342 uint64_t max_align = 0;
4343 for (int i = 0; i <= static_cast<int>(ORDER_RELRO_LAST); ++i)
4344 {
4345 Output_data_list* pdl = &this->output_lists_[i];
4346 Output_data_list::iterator p;
4347 for (p = pdl->begin(); p != pdl->end(); ++p)
4348 {
4349 if (!(*p)->is_section())
4350 break;
4351 uint64_t align = (*p)->addralign();
4352 if (align > max_align)
4353 max_align = align;
4354 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS))
4355 in_tls = true;
4356 else if (in_tls)
4357 {
4358 // Align the first non-TLS section to the alignment
4359 // of the TLS segment.
4360 align = max_align;
4361 in_tls = false;
4362 }
4363 // Ignore the size of the .tbss section.
4364 if ((*p)->is_section_flag_set(elfcpp::SHF_TLS)
4365 && (*p)->is_section_type(elfcpp::SHT_NOBITS))
4366 continue;
4367 relro_size = align_address(relro_size, align);
4368 if ((*p)->is_address_valid())
4369 relro_size += (*p)->data_size();
4370 else
4371 {
4372 // FIXME: This could be faster.
4373 (*p)->set_address_and_file_offset(relro_size,
4374 relro_size);
4375 relro_size += (*p)->data_size();
4376 (*p)->reset_address_and_file_offset();
4377 }
4378 }
4379 if (p != pdl->end())
4380 break;
4381 }
4382 relro_size += *increase_relro;
4383 // Pad the total relro size to a multiple of the maximum
4384 // section alignment seen.
4385 uint64_t aligned_size = align_address(relro_size, max_align);
4386 // Note the amount of padding added after the last relro section.
4387 last_relro_pad = aligned_size - relro_size;
4388 *has_relro = true;
4389
4390 uint64_t page_align = parameters->target().abi_pagesize();
4391
4392 // Align to offset N such that (N + RELRO_SIZE) % PAGE_ALIGN == 0.
4393 uint64_t desired_align = page_align - (aligned_size % page_align);
4394 if (desired_align < off % page_align)
4395 off += page_align;
4396 off += desired_align - off % page_align;
4397 addr += off - orig_off;
4398 orig_off = off;
4399 *poff = off;
4400 }
4401
4402 if (!reset && this->are_addresses_set_)
4403 {
4404 gold_assert(this->paddr_ == addr);
4405 addr = this->vaddr_;
4406 }
4407 else
4408 {
4409 this->vaddr_ = addr;
4410 this->paddr_ = addr;
4411 this->are_addresses_set_ = true;
4412 }
4413
4414 in_tls = false;
4415
4416 this->offset_ = orig_off;
4417
4418 off_t off = 0;
4419 off_t foff = *poff;
4420 uint64_t ret = 0;
4421 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4422 {
4423 if (i == static_cast<int>(ORDER_RELRO_LAST))
4424 {
4425 *poff += last_relro_pad;
4426 foff += last_relro_pad;
4427 addr += last_relro_pad;
4428 if (this->output_lists_[i].empty())
4429 {
4430 // If there is nothing in the ORDER_RELRO_LAST list,
4431 // the padding will occur at the end of the relro
4432 // segment, and we need to add it to *INCREASE_RELRO.
4433 *increase_relro += last_relro_pad;
4434 }
4435 }
4436 addr = this->set_section_list_addresses(layout, reset,
4437 &this->output_lists_[i],
4438 addr, poff, &foff, pshndx,
4439 &in_tls);
4440
4441 // FOFF tracks the last offset used for the file image,
4442 // and *POFF tracks the last offset used for the memory image.
4443 // When not using a linker script, bss sections should all
4444 // be processed in the ORDER_SMALL_BSS and later buckets.
4445 gold_assert(*poff == foff
4446 || i == static_cast<int>(ORDER_TLS_BSS)
4447 || i >= static_cast<int>(ORDER_SMALL_BSS)
4448 || layout->script_options()->saw_sections_clause());
4449
4450 this->filesz_ = foff - orig_off;
4451 off = foff;
4452
4453 ret = addr;
4454 }
4455
4456 // If the last section was a TLS section, align upward to the
4457 // alignment of the TLS segment, so that the overall size of the TLS
4458 // segment is aligned.
4459 if (in_tls)
4460 {
4461 uint64_t segment_align = layout->tls_segment()->maximum_alignment();
4462 *poff = align_address(*poff, segment_align);
4463 }
4464
4465 this->memsz_ = *poff - orig_off;
4466
4467 // Ignore the file offset adjustments made by the BSS Output_data
4468 // objects.
4469 *poff = off;
4470
4471 // If code segments must contain only code, and this code segment is
4472 // page-aligned in the file, then fill it out to a whole page with
4473 // code fill (the tail of the segment will not be within any section).
4474 // Thus the entire code segment can be mapped from the file as whole
4475 // pages and that mapping will contain only valid instructions.
4476 if (target->isolate_execinstr() && (this->flags() & elfcpp::PF_X) != 0)
4477 {
4478 uint64_t abi_pagesize = target->abi_pagesize();
4479 if (orig_off % abi_pagesize == 0 && off % abi_pagesize != 0)
4480 {
4481 size_t fill_size = abi_pagesize - (off % abi_pagesize);
4482
4483 std::string fill_data;
4484 if (target->has_code_fill())
4485 fill_data = target->code_fill(fill_size);
4486 else
4487 fill_data.resize(fill_size); // Zero fill.
4488
4489 Output_data_const* fill = new Output_data_const(fill_data, 0);
4490 fill->set_address(this->vaddr_ + this->memsz_);
4491 fill->set_file_offset(off);
4492 layout->add_relax_output(fill);
4493
4494 off += fill_size;
4495 gold_assert(off % abi_pagesize == 0);
4496 ret += fill_size;
4497 gold_assert(ret % abi_pagesize == 0);
4498
4499 gold_assert((uint64_t) this->filesz_ == this->memsz_);
4500 this->memsz_ = this->filesz_ += fill_size;
4501
4502 *poff = off;
4503 }
4504 }
4505
4506 return ret;
4507 }
4508
4509 // Set the addresses and file offsets in a list of Output_data
4510 // structures.
4511
4512 uint64_t
4513 Output_segment::set_section_list_addresses(Layout* layout, bool reset,
4514 Output_data_list* pdl,
4515 uint64_t addr, off_t* poff,
4516 off_t* pfoff,
4517 unsigned int* pshndx,
4518 bool* in_tls)
4519 {
4520 off_t startoff = *poff;
4521 // For incremental updates, we may allocate non-fixed sections from
4522 // free space in the file. This keeps track of the high-water mark.
4523 off_t maxoff = startoff;
4524
4525 off_t off = startoff;
4526 off_t foff = *pfoff;
4527 for (Output_data_list::iterator p = pdl->begin();
4528 p != pdl->end();
4529 ++p)
4530 {
4531 bool is_bss = (*p)->is_section_type(elfcpp::SHT_NOBITS);
4532 bool is_tls = (*p)->is_section_flag_set(elfcpp::SHF_TLS);
4533
4534 if (reset)
4535 (*p)->reset_address_and_file_offset();
4536
4537 // When doing an incremental update or when using a linker script,
4538 // the section will most likely already have an address.
4539 if (!(*p)->is_address_valid())
4540 {
4541 uint64_t align = (*p)->addralign();
4542
4543 if (is_tls)
4544 {
4545 // Give the first TLS section the alignment of the
4546 // entire TLS segment. Otherwise the TLS segment as a
4547 // whole may be misaligned.
4548 if (!*in_tls)
4549 {
4550 Output_segment* tls_segment = layout->tls_segment();
4551 gold_assert(tls_segment != NULL);
4552 uint64_t segment_align = tls_segment->maximum_alignment();
4553 gold_assert(segment_align >= align);
4554 align = segment_align;
4555
4556 *in_tls = true;
4557 }
4558 }
4559 else
4560 {
4561 // If this is the first section after the TLS segment,
4562 // align it to at least the alignment of the TLS
4563 // segment, so that the size of the overall TLS segment
4564 // is aligned.
4565 if (*in_tls)
4566 {
4567 uint64_t segment_align =
4568 layout->tls_segment()->maximum_alignment();
4569 if (segment_align > align)
4570 align = segment_align;
4571
4572 *in_tls = false;
4573 }
4574 }
4575
4576 if (!parameters->incremental_update())
4577 {
4578 gold_assert(off == foff || is_bss);
4579 off = align_address(off, align);
4580 if (is_tls || !is_bss)
4581 foff = off;
4582 (*p)->set_address_and_file_offset(addr + (off - startoff), foff);
4583 }
4584 else
4585 {
4586 // Incremental update: allocate file space from free list.
4587 (*p)->pre_finalize_data_size();
4588 off_t current_size = (*p)->current_data_size();
4589 off = layout->allocate(current_size, align, startoff);
4590 foff = off;
4591 if (off == -1)
4592 {
4593 gold_assert((*p)->output_section() != NULL);
4594 gold_fallback(_("out of patch space for section %s; "
4595 "relink with --incremental-full"),
4596 (*p)->output_section()->name());
4597 }
4598 (*p)->set_address_and_file_offset(addr + (off - startoff), foff);
4599 if ((*p)->data_size() > current_size)
4600 {
4601 gold_assert((*p)->output_section() != NULL);
4602 gold_fallback(_("%s: section changed size; "
4603 "relink with --incremental-full"),
4604 (*p)->output_section()->name());
4605 }
4606 }
4607 }
4608 else if (parameters->incremental_update())
4609 {
4610 // For incremental updates, use the fixed offset for the
4611 // high-water mark computation.
4612 off = (*p)->offset();
4613 foff = off;
4614 }
4615 else
4616 {
4617 // The script may have inserted a skip forward, but it
4618 // better not have moved backward.
4619 if ((*p)->address() >= addr + (off - startoff))
4620 {
4621 if (!is_bss && off > foff)
4622 gold_warning(_("script places BSS section in the middle "
4623 "of a LOAD segment; space will be allocated "
4624 "in the file"));
4625 off += (*p)->address() - (addr + (off - startoff));
4626 if (is_tls || !is_bss)
4627 foff = off;
4628 }
4629 else
4630 {
4631 if (!layout->script_options()->saw_sections_clause())
4632 gold_unreachable();
4633 else
4634 {
4635 Output_section* os = (*p)->output_section();
4636
4637 // Cast to unsigned long long to avoid format warnings.
4638 unsigned long long previous_dot =
4639 static_cast<unsigned long long>(addr + (off - startoff));
4640 unsigned long long dot =
4641 static_cast<unsigned long long>((*p)->address());
4642
4643 if (os == NULL)
4644 gold_error(_("dot moves backward in linker script "
4645 "from 0x%llx to 0x%llx"), previous_dot, dot);
4646 else
4647 gold_error(_("address of section '%s' moves backward "
4648 "from 0x%llx to 0x%llx"),
4649 os->name(), previous_dot, dot);
4650 }
4651 }
4652 (*p)->set_file_offset(foff);
4653 (*p)->finalize_data_size();
4654 }
4655
4656 if (parameters->incremental_update())
4657 gold_debug(DEBUG_INCREMENTAL,
4658 "set_section_list_addresses: %08lx %08lx %s",
4659 static_cast<long>(off),
4660 static_cast<long>((*p)->data_size()),
4661 ((*p)->output_section() != NULL
4662 ? (*p)->output_section()->name() : "(special)"));
4663
4664 // We want to ignore the size of a SHF_TLS SHT_NOBITS
4665 // section. Such a section does not affect the size of a
4666 // PT_LOAD segment.
4667 if (!is_tls || !is_bss)
4668 off += (*p)->data_size();
4669
4670 // We don't allocate space in the file for SHT_NOBITS sections,
4671 // unless a script has force-placed one in the middle of a segment.
4672 if (!is_bss)
4673 foff = off;
4674
4675 if (off > maxoff)
4676 maxoff = off;
4677
4678 if ((*p)->is_section())
4679 {
4680 (*p)->set_out_shndx(*pshndx);
4681 ++*pshndx;
4682 }
4683 }
4684
4685 *poff = maxoff;
4686 *pfoff = foff;
4687 return addr + (maxoff - startoff);
4688 }
4689
4690 // For a non-PT_LOAD segment, set the offset from the sections, if
4691 // any. Add INCREASE to the file size and the memory size.
4692
4693 void
4694 Output_segment::set_offset(unsigned int increase)
4695 {
4696 gold_assert(this->type_ != elfcpp::PT_LOAD);
4697
4698 gold_assert(!this->are_addresses_set_);
4699
4700 // A non-load section only uses output_lists_[0].
4701
4702 Output_data_list* pdl = &this->output_lists_[0];
4703
4704 if (pdl->empty())
4705 {
4706 gold_assert(increase == 0);
4707 this->vaddr_ = 0;
4708 this->paddr_ = 0;
4709 this->are_addresses_set_ = true;
4710 this->memsz_ = 0;
4711 this->min_p_align_ = 0;
4712 this->offset_ = 0;
4713 this->filesz_ = 0;
4714 return;
4715 }
4716
4717 // Find the first and last section by address.
4718 const Output_data* first = NULL;
4719 const Output_data* last_data = NULL;
4720 const Output_data* last_bss = NULL;
4721 for (Output_data_list::const_iterator p = pdl->begin();
4722 p != pdl->end();
4723 ++p)
4724 {
4725 if (first == NULL
4726 || (*p)->address() < first->address()
4727 || ((*p)->address() == first->address()
4728 && (*p)->data_size() < first->data_size()))
4729 first = *p;
4730 const Output_data** plast;
4731 if ((*p)->is_section()
4732 && (*p)->output_section()->type() == elfcpp::SHT_NOBITS)
4733 plast = &last_bss;
4734 else
4735 plast = &last_data;
4736 if (*plast == NULL
4737 || (*p)->address() > (*plast)->address()
4738 || ((*p)->address() == (*plast)->address()
4739 && (*p)->data_size() > (*plast)->data_size()))
4740 *plast = *p;
4741 }
4742
4743 this->vaddr_ = first->address();
4744 this->paddr_ = (first->has_load_address()
4745 ? first->load_address()
4746 : this->vaddr_);
4747 this->are_addresses_set_ = true;
4748 this->offset_ = first->offset();
4749
4750 if (last_data == NULL)
4751 this->filesz_ = 0;
4752 else
4753 this->filesz_ = (last_data->address()
4754 + last_data->data_size()
4755 - this->vaddr_);
4756
4757 const Output_data* last = last_bss != NULL ? last_bss : last_data;
4758 this->memsz_ = (last->address()
4759 + last->data_size()
4760 - this->vaddr_);
4761
4762 this->filesz_ += increase;
4763 this->memsz_ += increase;
4764
4765 // If this is a RELRO segment, verify that the segment ends at a
4766 // page boundary.
4767 if (this->type_ == elfcpp::PT_GNU_RELRO)
4768 {
4769 uint64_t page_align = parameters->target().abi_pagesize();
4770 uint64_t segment_end = this->vaddr_ + this->memsz_;
4771 if (parameters->incremental_update())
4772 {
4773 // The INCREASE_RELRO calculation is bypassed for an incremental
4774 // update, so we need to adjust the segment size manually here.
4775 segment_end = align_address(segment_end, page_align);
4776 this->memsz_ = segment_end - this->vaddr_;
4777 }
4778 else
4779 gold_assert(segment_end == align_address(segment_end, page_align));
4780 }
4781
4782 // If this is a TLS segment, align the memory size. The code in
4783 // set_section_list ensures that the section after the TLS segment
4784 // is aligned to give us room.
4785 if (this->type_ == elfcpp::PT_TLS)
4786 {
4787 uint64_t segment_align = this->maximum_alignment();
4788 gold_assert(this->vaddr_ == align_address(this->vaddr_, segment_align));
4789 this->memsz_ = align_address(this->memsz_, segment_align);
4790 }
4791 }
4792
4793 // Set the TLS offsets of the sections in the PT_TLS segment.
4794
4795 void
4796 Output_segment::set_tls_offsets()
4797 {
4798 gold_assert(this->type_ == elfcpp::PT_TLS);
4799
4800 for (Output_data_list::iterator p = this->output_lists_[0].begin();
4801 p != this->output_lists_[0].end();
4802 ++p)
4803 (*p)->set_tls_offset(this->vaddr_);
4804 }
4805
4806 // Return the first section.
4807
4808 Output_section*
4809 Output_segment::first_section() const
4810 {
4811 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4812 {
4813 const Output_data_list* pdl = &this->output_lists_[i];
4814 for (Output_data_list::const_iterator p = pdl->begin();
4815 p != pdl->end();
4816 ++p)
4817 {
4818 if ((*p)->is_section())
4819 return (*p)->output_section();
4820 }
4821 }
4822 return NULL;
4823 }
4824
4825 // Return the number of Output_sections in an Output_segment.
4826
4827 unsigned int
4828 Output_segment::output_section_count() const
4829 {
4830 unsigned int ret = 0;
4831 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4832 ret += this->output_section_count_list(&this->output_lists_[i]);
4833 return ret;
4834 }
4835
4836 // Return the number of Output_sections in an Output_data_list.
4837
4838 unsigned int
4839 Output_segment::output_section_count_list(const Output_data_list* pdl) const
4840 {
4841 unsigned int count = 0;
4842 for (Output_data_list::const_iterator p = pdl->begin();
4843 p != pdl->end();
4844 ++p)
4845 {
4846 if ((*p)->is_section())
4847 ++count;
4848 }
4849 return count;
4850 }
4851
4852 // Return the section attached to the list segment with the lowest
4853 // load address. This is used when handling a PHDRS clause in a
4854 // linker script.
4855
4856 Output_section*
4857 Output_segment::section_with_lowest_load_address() const
4858 {
4859 Output_section* found = NULL;
4860 uint64_t found_lma = 0;
4861 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4862 this->lowest_load_address_in_list(&this->output_lists_[i], &found,
4863 &found_lma);
4864 return found;
4865 }
4866
4867 // Look through a list for a section with a lower load address.
4868
4869 void
4870 Output_segment::lowest_load_address_in_list(const Output_data_list* pdl,
4871 Output_section** found,
4872 uint64_t* found_lma) const
4873 {
4874 for (Output_data_list::const_iterator p = pdl->begin();
4875 p != pdl->end();
4876 ++p)
4877 {
4878 if (!(*p)->is_section())
4879 continue;
4880 Output_section* os = static_cast<Output_section*>(*p);
4881 uint64_t lma = (os->has_load_address()
4882 ? os->load_address()
4883 : os->address());
4884 if (*found == NULL || lma < *found_lma)
4885 {
4886 *found = os;
4887 *found_lma = lma;
4888 }
4889 }
4890 }
4891
4892 // Write the segment data into *OPHDR.
4893
4894 template<int size, bool big_endian>
4895 void
4896 Output_segment::write_header(elfcpp::Phdr_write<size, big_endian>* ophdr)
4897 {
4898 ophdr->put_p_type(this->type_);
4899 ophdr->put_p_offset(this->offset_);
4900 ophdr->put_p_vaddr(this->vaddr_);
4901 ophdr->put_p_paddr(this->paddr_);
4902 ophdr->put_p_filesz(this->filesz_);
4903 ophdr->put_p_memsz(this->memsz_);
4904 ophdr->put_p_flags(this->flags_);
4905 ophdr->put_p_align(std::max(this->min_p_align_, this->maximum_alignment()));
4906 }
4907
4908 // Write the section headers into V.
4909
4910 template<int size, bool big_endian>
4911 unsigned char*
4912 Output_segment::write_section_headers(const Layout* layout,
4913 const Stringpool* secnamepool,
4914 unsigned char* v,
4915 unsigned int* pshndx) const
4916 {
4917 // Every section that is attached to a segment must be attached to a
4918 // PT_LOAD segment, so we only write out section headers for PT_LOAD
4919 // segments.
4920 if (this->type_ != elfcpp::PT_LOAD)
4921 return v;
4922
4923 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4924 {
4925 const Output_data_list* pdl = &this->output_lists_[i];
4926 v = this->write_section_headers_list<size, big_endian>(layout,
4927 secnamepool,
4928 pdl,
4929 v, pshndx);
4930 }
4931
4932 return v;
4933 }
4934
4935 template<int size, bool big_endian>
4936 unsigned char*
4937 Output_segment::write_section_headers_list(const Layout* layout,
4938 const Stringpool* secnamepool,
4939 const Output_data_list* pdl,
4940 unsigned char* v,
4941 unsigned int* pshndx) const
4942 {
4943 const int shdr_size = elfcpp::Elf_sizes<size>::shdr_size;
4944 for (Output_data_list::const_iterator p = pdl->begin();
4945 p != pdl->end();
4946 ++p)
4947 {
4948 if ((*p)->is_section())
4949 {
4950 const Output_section* ps = static_cast<const Output_section*>(*p);
4951 gold_assert(*pshndx == ps->out_shndx());
4952 elfcpp::Shdr_write<size, big_endian> oshdr(v);
4953 ps->write_header(layout, secnamepool, &oshdr);
4954 v += shdr_size;
4955 ++*pshndx;
4956 }
4957 }
4958 return v;
4959 }
4960
4961 // Print the output sections to the map file.
4962
4963 void
4964 Output_segment::print_sections_to_mapfile(Mapfile* mapfile) const
4965 {
4966 if (this->type() != elfcpp::PT_LOAD)
4967 return;
4968 for (int i = 0; i < static_cast<int>(ORDER_MAX); ++i)
4969 this->print_section_list_to_mapfile(mapfile, &this->output_lists_[i]);
4970 }
4971
4972 // Print an output section list to the map file.
4973
4974 void
4975 Output_segment::print_section_list_to_mapfile(Mapfile* mapfile,
4976 const Output_data_list* pdl) const
4977 {
4978 for (Output_data_list::const_iterator p = pdl->begin();
4979 p != pdl->end();
4980 ++p)
4981 (*p)->print_to_mapfile(mapfile);
4982 }
4983
4984 // Output_file methods.
4985
4986 Output_file::Output_file(const char* name)
4987 : name_(name),
4988 o_(-1),
4989 file_size_(0),
4990 base_(NULL),
4991 map_is_anonymous_(false),
4992 map_is_allocated_(false),
4993 is_temporary_(false)
4994 {
4995 }
4996
4997 // Try to open an existing file. Returns false if the file doesn't
4998 // exist, has a size of 0 or can't be mmapped. If BASE_NAME is not
4999 // NULL, open that file as the base for incremental linking, and
5000 // copy its contents to the new output file. This routine can
5001 // be called for incremental updates, in which case WRITABLE should
5002 // be true, or by the incremental-dump utility, in which case
5003 // WRITABLE should be false.
5004
5005 bool
5006 Output_file::open_base_file(const char* base_name, bool writable)
5007 {
5008 // The name "-" means "stdout".
5009 if (strcmp(this->name_, "-") == 0)
5010 return false;
5011
5012 bool use_base_file = base_name != NULL;
5013 if (!use_base_file)
5014 base_name = this->name_;
5015 else if (strcmp(base_name, this->name_) == 0)
5016 gold_fatal(_("%s: incremental base and output file name are the same"),
5017 base_name);
5018
5019 // Don't bother opening files with a size of zero.
5020 struct stat s;
5021 if (::stat(base_name, &s) != 0)
5022 {
5023 gold_info(_("%s: stat: %s"), base_name, strerror(errno));
5024 return false;
5025 }
5026 if (s.st_size == 0)
5027 {
5028 gold_info(_("%s: incremental base file is empty"), base_name);
5029 return false;
5030 }
5031
5032 // If we're using a base file, we want to open it read-only.
5033 if (use_base_file)
5034 writable = false;
5035
5036 int oflags = writable ? O_RDWR : O_RDONLY;
5037 int o = open_descriptor(-1, base_name, oflags, 0);
5038 if (o < 0)
5039 {
5040 gold_info(_("%s: open: %s"), base_name, strerror(errno));
5041 return false;
5042 }
5043
5044 // If the base file and the output file are different, open a
5045 // new output file and read the contents from the base file into
5046 // the newly-mapped region.
5047 if (use_base_file)
5048 {
5049 this->open(s.st_size);
5050 ssize_t bytes_to_read = s.st_size;
5051 unsigned char* p = this->base_;
5052 while (bytes_to_read > 0)
5053 {
5054 ssize_t len = ::read(o, p, bytes_to_read);
5055 if (len < 0)
5056 {
5057 gold_info(_("%s: read failed: %s"), base_name, strerror(errno));
5058 return false;
5059 }
5060 if (len == 0)
5061 {
5062 gold_info(_("%s: file too short: read only %lld of %lld bytes"),
5063 base_name,
5064 static_cast<long long>(s.st_size - bytes_to_read),
5065 static_cast<long long>(s.st_size));
5066 return false;
5067 }
5068 p += len;
5069 bytes_to_read -= len;
5070 }
5071 ::close(o);
5072 return true;
5073 }
5074
5075 this->o_ = o;
5076 this->file_size_ = s.st_size;
5077
5078 if (!this->map_no_anonymous(writable))
5079 {
5080 release_descriptor(o, true);
5081 this->o_ = -1;
5082 this->file_size_ = 0;
5083 return false;
5084 }
5085
5086 return true;
5087 }
5088
5089 // Open the output file.
5090
5091 void
5092 Output_file::open(off_t file_size)
5093 {
5094 this->file_size_ = file_size;
5095
5096 // Unlink the file first; otherwise the open() may fail if the file
5097 // is busy (e.g. it's an executable that's currently being executed).
5098 //
5099 // However, the linker may be part of a system where a zero-length
5100 // file is created for it to write to, with tight permissions (gcc
5101 // 2.95 did something like this). Unlinking the file would work
5102 // around those permission controls, so we only unlink if the file
5103 // has a non-zero size. We also unlink only regular files to avoid
5104 // trouble with directories/etc.
5105 //
5106 // If we fail, continue; this command is merely a best-effort attempt
5107 // to improve the odds for open().
5108
5109 // We let the name "-" mean "stdout"
5110 if (!this->is_temporary_)
5111 {
5112 if (strcmp(this->name_, "-") == 0)
5113 this->o_ = STDOUT_FILENO;
5114 else
5115 {
5116 struct stat s;
5117 if (::stat(this->name_, &s) == 0
5118 && (S_ISREG (s.st_mode) || S_ISLNK (s.st_mode)))
5119 {
5120 if (s.st_size != 0)
5121 ::unlink(this->name_);
5122 else if (!parameters->options().relocatable())
5123 {
5124 // If we don't unlink the existing file, add execute
5125 // permission where read permissions already exist
5126 // and where the umask permits.
5127 int mask = ::umask(0);
5128 ::umask(mask);
5129 s.st_mode |= (s.st_mode & 0444) >> 2;
5130 ::chmod(this->name_, s.st_mode & ~mask);
5131 }
5132 }
5133
5134 int mode = parameters->options().relocatable() ? 0666 : 0777;
5135 int o = open_descriptor(-1, this->name_, O_RDWR | O_CREAT | O_TRUNC,
5136 mode);
5137 if (o < 0)
5138 gold_fatal(_("%s: open: %s"), this->name_, strerror(errno));
5139 this->o_ = o;
5140 }
5141 }
5142
5143 this->map();
5144 }
5145
5146 // Resize the output file.
5147
5148 void
5149 Output_file::resize(off_t file_size)
5150 {
5151 // If the mmap is mapping an anonymous memory buffer, this is easy:
5152 // just mremap to the new size. If it's mapping to a file, we want
5153 // to unmap to flush to the file, then remap after growing the file.
5154 if (this->map_is_anonymous_)
5155 {
5156 void* base;
5157 if (!this->map_is_allocated_)
5158 {
5159 base = ::mremap(this->base_, this->file_size_, file_size,
5160 MREMAP_MAYMOVE);
5161 if (base == MAP_FAILED)
5162 gold_fatal(_("%s: mremap: %s"), this->name_, strerror(errno));
5163 }
5164 else
5165 {
5166 base = realloc(this->base_, file_size);
5167 if (base == NULL)
5168 gold_nomem();
5169 if (file_size > this->file_size_)
5170 memset(static_cast<char*>(base) + this->file_size_, 0,
5171 file_size - this->file_size_);
5172 }
5173 this->base_ = static_cast<unsigned char*>(base);
5174 this->file_size_ = file_size;
5175 }
5176 else
5177 {
5178 this->unmap();
5179 this->file_size_ = file_size;
5180 if (!this->map_no_anonymous(true))
5181 gold_fatal(_("%s: mmap: %s"), this->name_, strerror(errno));
5182 }
5183 }
5184
5185 // Map an anonymous block of memory which will later be written to the
5186 // file. Return whether the map succeeded.
5187
5188 bool
5189 Output_file::map_anonymous()
5190 {
5191 void* base = ::mmap(NULL, this->file_size_, PROT_READ | PROT_WRITE,
5192 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
5193 if (base == MAP_FAILED)
5194 {
5195 base = malloc(this->file_size_);
5196 if (base == NULL)
5197 return false;
5198 memset(base, 0, this->file_size_);
5199 this->map_is_allocated_ = true;
5200 }
5201 this->base_ = static_cast<unsigned char*>(base);
5202 this->map_is_anonymous_ = true;
5203 return true;
5204 }
5205
5206 // Map the file into memory. Return whether the mapping succeeded.
5207 // If WRITABLE is true, map with write access.
5208
5209 bool
5210 Output_file::map_no_anonymous(bool writable)
5211 {
5212 const int o = this->o_;
5213
5214 // If the output file is not a regular file, don't try to mmap it;
5215 // instead, we'll mmap a block of memory (an anonymous buffer), and
5216 // then later write the buffer to the file.
5217 void* base;
5218 struct stat statbuf;
5219 if (o == STDOUT_FILENO || o == STDERR_FILENO
5220 || ::fstat(o, &statbuf) != 0
5221 || !S_ISREG(statbuf.st_mode)
5222 || this->is_temporary_)
5223 return false;
5224
5225 // Ensure that we have disk space available for the file. If we
5226 // don't do this, it is possible that we will call munmap, close,
5227 // and exit with dirty buffers still in the cache with no assigned
5228 // disk blocks. If the disk is out of space at that point, the
5229 // output file will wind up incomplete, but we will have already
5230 // exited. The alternative to fallocate would be to use fdatasync,
5231 // but that would be a more significant performance hit.
5232 if (writable)
5233 {
5234 int err = gold_fallocate(o, 0, this->file_size_);
5235 if (err != 0)
5236 gold_fatal(_("%s: %s"), this->name_, strerror(err));
5237 }
5238
5239 // Map the file into memory.
5240 int prot = PROT_READ;
5241 if (writable)
5242 prot |= PROT_WRITE;
5243 base = ::mmap(NULL, this->file_size_, prot, MAP_SHARED, o, 0);
5244
5245 // The mmap call might fail because of file system issues: the file
5246 // system might not support mmap at all, or it might not support
5247 // mmap with PROT_WRITE.
5248 if (base == MAP_FAILED)
5249 return false;
5250
5251 this->map_is_anonymous_ = false;
5252 this->base_ = static_cast<unsigned char*>(base);
5253 return true;
5254 }
5255
5256 // Map the file into memory.
5257
5258 void
5259 Output_file::map()
5260 {
5261 if (parameters->options().mmap_output_file()
5262 && this->map_no_anonymous(true))
5263 return;
5264
5265 // The mmap call might fail because of file system issues: the file
5266 // system might not support mmap at all, or it might not support
5267 // mmap with PROT_WRITE. I'm not sure which errno values we will
5268 // see in all cases, so if the mmap fails for any reason and we
5269 // don't care about file contents, try for an anonymous map.
5270 if (this->map_anonymous())
5271 return;
5272
5273 gold_fatal(_("%s: mmap: failed to allocate %lu bytes for output file: %s"),
5274 this->name_, static_cast<unsigned long>(this->file_size_),
5275 strerror(errno));
5276 }
5277
5278 // Unmap the file from memory.
5279
5280 void
5281 Output_file::unmap()
5282 {
5283 if (this->map_is_anonymous_)
5284 {
5285 // We've already written out the data, so there is no reason to
5286 // waste time unmapping or freeing the memory.
5287 }
5288 else
5289 {
5290 if (::munmap(this->base_, this->file_size_) < 0)
5291 gold_error(_("%s: munmap: %s"), this->name_, strerror(errno));
5292 }
5293 this->base_ = NULL;
5294 }
5295
5296 // Close the output file.
5297
5298 void
5299 Output_file::close()
5300 {
5301 // If the map isn't file-backed, we need to write it now.
5302 if (this->map_is_anonymous_ && !this->is_temporary_)
5303 {
5304 size_t bytes_to_write = this->file_size_;
5305 size_t offset = 0;
5306 while (bytes_to_write > 0)
5307 {
5308 ssize_t bytes_written = ::write(this->o_, this->base_ + offset,
5309 bytes_to_write);
5310 if (bytes_written == 0)
5311 gold_error(_("%s: write: unexpected 0 return-value"), this->name_);
5312 else if (bytes_written < 0)
5313 gold_error(_("%s: write: %s"), this->name_, strerror(errno));
5314 else
5315 {
5316 bytes_to_write -= bytes_written;
5317 offset += bytes_written;
5318 }
5319 }
5320 }
5321 this->unmap();
5322
5323 // We don't close stdout or stderr
5324 if (this->o_ != STDOUT_FILENO
5325 && this->o_ != STDERR_FILENO
5326 && !this->is_temporary_)
5327 if (::close(this->o_) < 0)
5328 gold_error(_("%s: close: %s"), this->name_, strerror(errno));
5329 this->o_ = -1;
5330 }
5331
5332 // Instantiate the templates we need. We could use the configure
5333 // script to restrict this to only the ones for implemented targets.
5334
5335 #ifdef HAVE_TARGET_32_LITTLE
5336 template
5337 off_t
5338 Output_section::add_input_section<32, false>(
5339 Layout* layout,
5340 Sized_relobj_file<32, false>* object,
5341 unsigned int shndx,
5342 const char* secname,
5343 const elfcpp::Shdr<32, false>& shdr,
5344 unsigned int reloc_shndx,
5345 bool have_sections_script);
5346 #endif
5347
5348 #ifdef HAVE_TARGET_32_BIG
5349 template
5350 off_t
5351 Output_section::add_input_section<32, true>(
5352 Layout* layout,
5353 Sized_relobj_file<32, true>* object,
5354 unsigned int shndx,
5355 const char* secname,
5356 const elfcpp::Shdr<32, true>& shdr,
5357 unsigned int reloc_shndx,
5358 bool have_sections_script);
5359 #endif
5360
5361 #ifdef HAVE_TARGET_64_LITTLE
5362 template
5363 off_t
5364 Output_section::add_input_section<64, false>(
5365 Layout* layout,
5366 Sized_relobj_file<64, false>* object,
5367 unsigned int shndx,
5368 const char* secname,
5369 const elfcpp::Shdr<64, false>& shdr,
5370 unsigned int reloc_shndx,
5371 bool have_sections_script);
5372 #endif
5373
5374 #ifdef HAVE_TARGET_64_BIG
5375 template
5376 off_t
5377 Output_section::add_input_section<64, true>(
5378 Layout* layout,
5379 Sized_relobj_file<64, true>* object,
5380 unsigned int shndx,
5381 const char* secname,
5382 const elfcpp::Shdr<64, true>& shdr,
5383 unsigned int reloc_shndx,
5384 bool have_sections_script);
5385 #endif
5386
5387 #ifdef HAVE_TARGET_32_LITTLE
5388 template
5389 class Output_reloc<elfcpp::SHT_REL, false, 32, false>;
5390 #endif
5391
5392 #ifdef HAVE_TARGET_32_BIG
5393 template
5394 class Output_reloc<elfcpp::SHT_REL, false, 32, true>;
5395 #endif
5396
5397 #ifdef HAVE_TARGET_64_LITTLE
5398 template
5399 class Output_reloc<elfcpp::SHT_REL, false, 64, false>;
5400 #endif
5401
5402 #ifdef HAVE_TARGET_64_BIG
5403 template
5404 class Output_reloc<elfcpp::SHT_REL, false, 64, true>;
5405 #endif
5406
5407 #ifdef HAVE_TARGET_32_LITTLE
5408 template
5409 class Output_reloc<elfcpp::SHT_REL, true, 32, false>;
5410 #endif
5411
5412 #ifdef HAVE_TARGET_32_BIG
5413 template
5414 class Output_reloc<elfcpp::SHT_REL, true, 32, true>;
5415 #endif
5416
5417 #ifdef HAVE_TARGET_64_LITTLE
5418 template
5419 class Output_reloc<elfcpp::SHT_REL, true, 64, false>;
5420 #endif
5421
5422 #ifdef HAVE_TARGET_64_BIG
5423 template
5424 class Output_reloc<elfcpp::SHT_REL, true, 64, true>;
5425 #endif
5426
5427 #ifdef HAVE_TARGET_32_LITTLE
5428 template
5429 class Output_reloc<elfcpp::SHT_RELA, false, 32, false>;
5430 #endif
5431
5432 #ifdef HAVE_TARGET_32_BIG
5433 template
5434 class Output_reloc<elfcpp::SHT_RELA, false, 32, true>;
5435 #endif
5436
5437 #ifdef HAVE_TARGET_64_LITTLE
5438 template
5439 class Output_reloc<elfcpp::SHT_RELA, false, 64, false>;
5440 #endif
5441
5442 #ifdef HAVE_TARGET_64_BIG
5443 template
5444 class Output_reloc<elfcpp::SHT_RELA, false, 64, true>;
5445 #endif
5446
5447 #ifdef HAVE_TARGET_32_LITTLE
5448 template
5449 class Output_reloc<elfcpp::SHT_RELA, true, 32, false>;
5450 #endif
5451
5452 #ifdef HAVE_TARGET_32_BIG
5453 template
5454 class Output_reloc<elfcpp::SHT_RELA, true, 32, true>;
5455 #endif
5456
5457 #ifdef HAVE_TARGET_64_LITTLE
5458 template
5459 class Output_reloc<elfcpp::SHT_RELA, true, 64, false>;
5460 #endif
5461
5462 #ifdef HAVE_TARGET_64_BIG
5463 template
5464 class Output_reloc<elfcpp::SHT_RELA, true, 64, true>;
5465 #endif
5466
5467 #ifdef HAVE_TARGET_32_LITTLE
5468 template
5469 class Output_data_reloc<elfcpp::SHT_REL, false, 32, false>;
5470 #endif
5471
5472 #ifdef HAVE_TARGET_32_BIG
5473 template
5474 class Output_data_reloc<elfcpp::SHT_REL, false, 32, true>;
5475 #endif
5476
5477 #ifdef HAVE_TARGET_64_LITTLE
5478 template
5479 class Output_data_reloc<elfcpp::SHT_REL, false, 64, false>;
5480 #endif
5481
5482 #ifdef HAVE_TARGET_64_BIG
5483 template
5484 class Output_data_reloc<elfcpp::SHT_REL, false, 64, true>;
5485 #endif
5486
5487 #ifdef HAVE_TARGET_32_LITTLE
5488 template
5489 class Output_data_reloc<elfcpp::SHT_REL, true, 32, false>;
5490 #endif
5491
5492 #ifdef HAVE_TARGET_32_BIG
5493 template
5494 class Output_data_reloc<elfcpp::SHT_REL, true, 32, true>;
5495 #endif
5496
5497 #ifdef HAVE_TARGET_64_LITTLE
5498 template
5499 class Output_data_reloc<elfcpp::SHT_REL, true, 64, false>;
5500 #endif
5501
5502 #ifdef HAVE_TARGET_64_BIG
5503 template
5504 class Output_data_reloc<elfcpp::SHT_REL, true, 64, true>;
5505 #endif
5506
5507 #ifdef HAVE_TARGET_32_LITTLE
5508 template
5509 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, false>;
5510 #endif
5511
5512 #ifdef HAVE_TARGET_32_BIG
5513 template
5514 class Output_data_reloc<elfcpp::SHT_RELA, false, 32, true>;
5515 #endif
5516
5517 #ifdef HAVE_TARGET_64_LITTLE
5518 template
5519 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, false>;
5520 #endif
5521
5522 #ifdef HAVE_TARGET_64_BIG
5523 template
5524 class Output_data_reloc<elfcpp::SHT_RELA, false, 64, true>;
5525 #endif
5526
5527 #ifdef HAVE_TARGET_32_LITTLE
5528 template
5529 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, false>;
5530 #endif
5531
5532 #ifdef HAVE_TARGET_32_BIG
5533 template
5534 class Output_data_reloc<elfcpp::SHT_RELA, true, 32, true>;
5535 #endif
5536
5537 #ifdef HAVE_TARGET_64_LITTLE
5538 template
5539 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, false>;
5540 #endif
5541
5542 #ifdef HAVE_TARGET_64_BIG
5543 template
5544 class Output_data_reloc<elfcpp::SHT_RELA, true, 64, true>;
5545 #endif
5546
5547 #ifdef HAVE_TARGET_32_LITTLE
5548 template
5549 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, false>;
5550 #endif
5551
5552 #ifdef HAVE_TARGET_32_BIG
5553 template
5554 class Output_relocatable_relocs<elfcpp::SHT_REL, 32, true>;
5555 #endif
5556
5557 #ifdef HAVE_TARGET_64_LITTLE
5558 template
5559 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, false>;
5560 #endif
5561
5562 #ifdef HAVE_TARGET_64_BIG
5563 template
5564 class Output_relocatable_relocs<elfcpp::SHT_REL, 64, true>;
5565 #endif
5566
5567 #ifdef HAVE_TARGET_32_LITTLE
5568 template
5569 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, false>;
5570 #endif
5571
5572 #ifdef HAVE_TARGET_32_BIG
5573 template
5574 class Output_relocatable_relocs<elfcpp::SHT_RELA, 32, true>;
5575 #endif
5576
5577 #ifdef HAVE_TARGET_64_LITTLE
5578 template
5579 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, false>;
5580 #endif
5581
5582 #ifdef HAVE_TARGET_64_BIG
5583 template
5584 class Output_relocatable_relocs<elfcpp::SHT_RELA, 64, true>;
5585 #endif
5586
5587 #ifdef HAVE_TARGET_32_LITTLE
5588 template
5589 class Output_data_group<32, false>;
5590 #endif
5591
5592 #ifdef HAVE_TARGET_32_BIG
5593 template
5594 class Output_data_group<32, true>;
5595 #endif
5596
5597 #ifdef HAVE_TARGET_64_LITTLE
5598 template
5599 class Output_data_group<64, false>;
5600 #endif
5601
5602 #ifdef HAVE_TARGET_64_BIG
5603 template
5604 class Output_data_group<64, true>;
5605 #endif
5606
5607 template
5608 class Output_data_got<32, false>;
5609
5610 template
5611 class Output_data_got<32, true>;
5612
5613 template
5614 class Output_data_got<64, false>;
5615
5616 template
5617 class Output_data_got<64, true>;
5618
5619 } // End namespace gold.
This page took 0.145922 seconds and 4 git commands to generate.